PR target/49868
[official-gcc.git] / gcc / explow.c
blob11dffedd4b0f88fd92cb921967b3cab6b8d0124e
1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987, 1991, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "diagnostic-core.h"
28 #include "rtl.h"
29 #include "tree.h"
30 #include "tm_p.h"
31 #include "flags.h"
32 #include "except.h"
33 #include "function.h"
34 #include "expr.h"
35 #include "optabs.h"
36 #include "libfuncs.h"
37 #include "hard-reg-set.h"
38 #include "insn-config.h"
39 #include "ggc.h"
40 #include "recog.h"
41 #include "langhooks.h"
42 #include "target.h"
43 #include "common/common-target.h"
44 #include "output.h"
46 static rtx break_out_memory_refs (rtx);
49 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
51 HOST_WIDE_INT
52 trunc_int_for_mode (HOST_WIDE_INT c, enum machine_mode mode)
54 int width = GET_MODE_PRECISION (mode);
56 /* You want to truncate to a _what_? */
57 gcc_assert (SCALAR_INT_MODE_P (mode));
59 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
60 if (mode == BImode)
61 return c & 1 ? STORE_FLAG_VALUE : 0;
63 /* Sign-extend for the requested mode. */
65 if (width < HOST_BITS_PER_WIDE_INT)
67 HOST_WIDE_INT sign = 1;
68 sign <<= width - 1;
69 c &= (sign << 1) - 1;
70 c ^= sign;
71 c -= sign;
74 return c;
77 /* Return an rtx for the sum of X and the integer C. */
79 rtx
80 plus_constant (rtx x, HOST_WIDE_INT c)
82 RTX_CODE code;
83 rtx y;
84 enum machine_mode mode;
85 rtx tem;
86 int all_constant = 0;
88 if (c == 0)
89 return x;
91 restart:
93 code = GET_CODE (x);
94 mode = GET_MODE (x);
95 y = x;
97 switch (code)
99 case CONST_INT:
100 return GEN_INT (INTVAL (x) + c);
102 case CONST_DOUBLE:
104 unsigned HOST_WIDE_INT l1 = CONST_DOUBLE_LOW (x);
105 HOST_WIDE_INT h1 = CONST_DOUBLE_HIGH (x);
106 unsigned HOST_WIDE_INT l2 = c;
107 HOST_WIDE_INT h2 = c < 0 ? ~0 : 0;
108 unsigned HOST_WIDE_INT lv;
109 HOST_WIDE_INT hv;
111 add_double (l1, h1, l2, h2, &lv, &hv);
113 return immed_double_const (lv, hv, VOIDmode);
116 case MEM:
117 /* If this is a reference to the constant pool, try replacing it with
118 a reference to a new constant. If the resulting address isn't
119 valid, don't return it because we have no way to validize it. */
120 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
121 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
124 = force_const_mem (GET_MODE (x),
125 plus_constant (get_pool_constant (XEXP (x, 0)),
126 c));
127 if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
128 return tem;
130 break;
132 case CONST:
133 /* If adding to something entirely constant, set a flag
134 so that we can add a CONST around the result. */
135 x = XEXP (x, 0);
136 all_constant = 1;
137 goto restart;
139 case SYMBOL_REF:
140 case LABEL_REF:
141 all_constant = 1;
142 break;
144 case PLUS:
145 /* The interesting case is adding the integer to a sum.
146 Look for constant term in the sum and combine
147 with C. For an integer constant term, we make a combined
148 integer. For a constant term that is not an explicit integer,
149 we cannot really combine, but group them together anyway.
151 Restart or use a recursive call in case the remaining operand is
152 something that we handle specially, such as a SYMBOL_REF.
154 We may not immediately return from the recursive call here, lest
155 all_constant gets lost. */
157 if (CONST_INT_P (XEXP (x, 1)))
159 c += INTVAL (XEXP (x, 1));
161 if (GET_MODE (x) != VOIDmode)
162 c = trunc_int_for_mode (c, GET_MODE (x));
164 x = XEXP (x, 0);
165 goto restart;
167 else if (CONSTANT_P (XEXP (x, 1)))
169 x = gen_rtx_PLUS (mode, XEXP (x, 0), plus_constant (XEXP (x, 1), c));
170 c = 0;
172 else if (find_constant_term_loc (&y))
174 /* We need to be careful since X may be shared and we can't
175 modify it in place. */
176 rtx copy = copy_rtx (x);
177 rtx *const_loc = find_constant_term_loc (&copy);
179 *const_loc = plus_constant (*const_loc, c);
180 x = copy;
181 c = 0;
183 break;
185 default:
186 break;
189 if (c != 0)
190 x = gen_rtx_PLUS (mode, x, GEN_INT (c));
192 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
193 return x;
194 else if (all_constant)
195 return gen_rtx_CONST (mode, x);
196 else
197 return x;
200 /* If X is a sum, return a new sum like X but lacking any constant terms.
201 Add all the removed constant terms into *CONSTPTR.
202 X itself is not altered. The result != X if and only if
203 it is not isomorphic to X. */
206 eliminate_constant_term (rtx x, rtx *constptr)
208 rtx x0, x1;
209 rtx tem;
211 if (GET_CODE (x) != PLUS)
212 return x;
214 /* First handle constants appearing at this level explicitly. */
215 if (CONST_INT_P (XEXP (x, 1))
216 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
217 XEXP (x, 1)))
218 && CONST_INT_P (tem))
220 *constptr = tem;
221 return eliminate_constant_term (XEXP (x, 0), constptr);
224 tem = const0_rtx;
225 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
226 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
227 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
228 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
229 *constptr, tem))
230 && CONST_INT_P (tem))
232 *constptr = tem;
233 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
236 return x;
239 /* Return an rtx for the size in bytes of the value of EXP. */
242 expr_size (tree exp)
244 tree size;
246 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
247 size = TREE_OPERAND (exp, 1);
248 else
250 size = tree_expr_size (exp);
251 gcc_assert (size);
252 gcc_assert (size == SUBSTITUTE_PLACEHOLDER_IN_EXPR (size, exp));
255 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), EXPAND_NORMAL);
258 /* Return a wide integer for the size in bytes of the value of EXP, or -1
259 if the size can vary or is larger than an integer. */
261 HOST_WIDE_INT
262 int_expr_size (tree exp)
264 tree size;
266 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
267 size = TREE_OPERAND (exp, 1);
268 else
270 size = tree_expr_size (exp);
271 gcc_assert (size);
274 if (size == 0 || !host_integerp (size, 0))
275 return -1;
277 return tree_low_cst (size, 0);
280 /* Return a copy of X in which all memory references
281 and all constants that involve symbol refs
282 have been replaced with new temporary registers.
283 Also emit code to load the memory locations and constants
284 into those registers.
286 If X contains no such constants or memory references,
287 X itself (not a copy) is returned.
289 If a constant is found in the address that is not a legitimate constant
290 in an insn, it is left alone in the hope that it might be valid in the
291 address.
293 X may contain no arithmetic except addition, subtraction and multiplication.
294 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
296 static rtx
297 break_out_memory_refs (rtx x)
299 if (MEM_P (x)
300 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
301 && GET_MODE (x) != VOIDmode))
302 x = force_reg (GET_MODE (x), x);
303 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
304 || GET_CODE (x) == MULT)
306 rtx op0 = break_out_memory_refs (XEXP (x, 0));
307 rtx op1 = break_out_memory_refs (XEXP (x, 1));
309 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
310 x = simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
313 return x;
316 /* Given X, a memory address in address space AS' pointer mode, convert it to
317 an address in the address space's address mode, or vice versa (TO_MODE says
318 which way). We take advantage of the fact that pointers are not allowed to
319 overflow by commuting arithmetic operations over conversions so that address
320 arithmetic insns can be used. */
323 convert_memory_address_addr_space (enum machine_mode to_mode ATTRIBUTE_UNUSED,
324 rtx x, addr_space_t as ATTRIBUTE_UNUSED)
326 #ifndef POINTERS_EXTEND_UNSIGNED
327 gcc_assert (GET_MODE (x) == to_mode || GET_MODE (x) == VOIDmode);
328 return x;
329 #else /* defined(POINTERS_EXTEND_UNSIGNED) */
330 enum machine_mode pointer_mode, address_mode, from_mode;
331 rtx temp;
332 enum rtx_code code;
334 /* If X already has the right mode, just return it. */
335 if (GET_MODE (x) == to_mode)
336 return x;
338 pointer_mode = targetm.addr_space.pointer_mode (as);
339 address_mode = targetm.addr_space.address_mode (as);
340 from_mode = to_mode == pointer_mode ? address_mode : pointer_mode;
342 /* Here we handle some special cases. If none of them apply, fall through
343 to the default case. */
344 switch (GET_CODE (x))
346 case CONST_INT:
347 case CONST_DOUBLE:
348 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode))
349 code = TRUNCATE;
350 else if (POINTERS_EXTEND_UNSIGNED < 0)
351 break;
352 else if (POINTERS_EXTEND_UNSIGNED > 0)
353 code = ZERO_EXTEND;
354 else
355 code = SIGN_EXTEND;
356 temp = simplify_unary_operation (code, to_mode, x, from_mode);
357 if (temp)
358 return temp;
359 break;
361 case SUBREG:
362 if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x)))
363 && GET_MODE (SUBREG_REG (x)) == to_mode)
364 return SUBREG_REG (x);
365 break;
367 case LABEL_REF:
368 temp = gen_rtx_LABEL_REF (to_mode, XEXP (x, 0));
369 LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
370 return temp;
371 break;
373 case SYMBOL_REF:
374 temp = shallow_copy_rtx (x);
375 PUT_MODE (temp, to_mode);
376 return temp;
377 break;
379 case CONST:
380 return gen_rtx_CONST (to_mode,
381 convert_memory_address_addr_space
382 (to_mode, XEXP (x, 0), as));
383 break;
385 case PLUS:
386 case MULT:
387 /* FIXME: For addition, we used to permute the conversion and
388 addition operation only if one operand is a constant and
389 converting the constant does not change it or if one operand
390 is a constant and we are using a ptr_extend instruction
391 (POINTERS_EXTEND_UNSIGNED < 0) even if the resulting address
392 may overflow/underflow. We relax the condition to include
393 zero-extend (POINTERS_EXTEND_UNSIGNED > 0) since the other
394 parts of the compiler depend on it. See PR 49721.
396 We can always safely permute them if we are making the address
397 narrower. */
398 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
399 || (GET_CODE (x) == PLUS
400 && CONST_INT_P (XEXP (x, 1))
401 && (POINTERS_EXTEND_UNSIGNED != 0
402 || XEXP (x, 1) == convert_memory_address_addr_space
403 (to_mode, XEXP (x, 1), as))))
404 return gen_rtx_fmt_ee (GET_CODE (x), to_mode,
405 convert_memory_address_addr_space
406 (to_mode, XEXP (x, 0), as),
407 XEXP (x, 1));
408 break;
410 default:
411 break;
414 return convert_modes (to_mode, from_mode,
415 x, POINTERS_EXTEND_UNSIGNED);
416 #endif /* defined(POINTERS_EXTEND_UNSIGNED) */
419 /* Return something equivalent to X but valid as a memory address for something
420 of mode MODE in the named address space AS. When X is not itself valid,
421 this works by copying X or subexpressions of it into registers. */
424 memory_address_addr_space (enum machine_mode mode, rtx x, addr_space_t as)
426 rtx oldx = x;
427 enum machine_mode address_mode = targetm.addr_space.address_mode (as);
429 x = convert_memory_address_addr_space (address_mode, x, as);
431 /* By passing constant addresses through registers
432 we get a chance to cse them. */
433 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
434 x = force_reg (address_mode, x);
436 /* We get better cse by rejecting indirect addressing at this stage.
437 Let the combiner create indirect addresses where appropriate.
438 For now, generate the code so that the subexpressions useful to share
439 are visible. But not if cse won't be done! */
440 else
442 if (! cse_not_expected && !REG_P (x))
443 x = break_out_memory_refs (x);
445 /* At this point, any valid address is accepted. */
446 if (memory_address_addr_space_p (mode, x, as))
447 goto done;
449 /* If it was valid before but breaking out memory refs invalidated it,
450 use it the old way. */
451 if (memory_address_addr_space_p (mode, oldx, as))
453 x = oldx;
454 goto done;
457 /* Perform machine-dependent transformations on X
458 in certain cases. This is not necessary since the code
459 below can handle all possible cases, but machine-dependent
460 transformations can make better code. */
462 rtx orig_x = x;
463 x = targetm.addr_space.legitimize_address (x, oldx, mode, as);
464 if (orig_x != x && memory_address_addr_space_p (mode, x, as))
465 goto done;
468 /* PLUS and MULT can appear in special ways
469 as the result of attempts to make an address usable for indexing.
470 Usually they are dealt with by calling force_operand, below.
471 But a sum containing constant terms is special
472 if removing them makes the sum a valid address:
473 then we generate that address in a register
474 and index off of it. We do this because it often makes
475 shorter code, and because the addresses thus generated
476 in registers often become common subexpressions. */
477 if (GET_CODE (x) == PLUS)
479 rtx constant_term = const0_rtx;
480 rtx y = eliminate_constant_term (x, &constant_term);
481 if (constant_term == const0_rtx
482 || ! memory_address_addr_space_p (mode, y, as))
483 x = force_operand (x, NULL_RTX);
484 else
486 y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
487 if (! memory_address_addr_space_p (mode, y, as))
488 x = force_operand (x, NULL_RTX);
489 else
490 x = y;
494 else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
495 x = force_operand (x, NULL_RTX);
497 /* If we have a register that's an invalid address,
498 it must be a hard reg of the wrong class. Copy it to a pseudo. */
499 else if (REG_P (x))
500 x = copy_to_reg (x);
502 /* Last resort: copy the value to a register, since
503 the register is a valid address. */
504 else
505 x = force_reg (address_mode, x);
508 done:
510 gcc_assert (memory_address_addr_space_p (mode, x, as));
511 /* If we didn't change the address, we are done. Otherwise, mark
512 a reg as a pointer if we have REG or REG + CONST_INT. */
513 if (oldx == x)
514 return x;
515 else if (REG_P (x))
516 mark_reg_pointer (x, BITS_PER_UNIT);
517 else if (GET_CODE (x) == PLUS
518 && REG_P (XEXP (x, 0))
519 && CONST_INT_P (XEXP (x, 1)))
520 mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
522 /* OLDX may have been the address on a temporary. Update the address
523 to indicate that X is now used. */
524 update_temp_slot_address (oldx, x);
526 return x;
529 /* Convert a mem ref into one with a valid memory address.
530 Pass through anything else unchanged. */
533 validize_mem (rtx ref)
535 if (!MEM_P (ref))
536 return ref;
537 ref = use_anchored_address (ref);
538 if (memory_address_addr_space_p (GET_MODE (ref), XEXP (ref, 0),
539 MEM_ADDR_SPACE (ref)))
540 return ref;
542 /* Don't alter REF itself, since that is probably a stack slot. */
543 return replace_equiv_address (ref, XEXP (ref, 0));
546 /* If X is a memory reference to a member of an object block, try rewriting
547 it to use an anchor instead. Return the new memory reference on success
548 and the old one on failure. */
551 use_anchored_address (rtx x)
553 rtx base;
554 HOST_WIDE_INT offset;
556 if (!flag_section_anchors)
557 return x;
559 if (!MEM_P (x))
560 return x;
562 /* Split the address into a base and offset. */
563 base = XEXP (x, 0);
564 offset = 0;
565 if (GET_CODE (base) == CONST
566 && GET_CODE (XEXP (base, 0)) == PLUS
567 && CONST_INT_P (XEXP (XEXP (base, 0), 1)))
569 offset += INTVAL (XEXP (XEXP (base, 0), 1));
570 base = XEXP (XEXP (base, 0), 0);
573 /* Check whether BASE is suitable for anchors. */
574 if (GET_CODE (base) != SYMBOL_REF
575 || !SYMBOL_REF_HAS_BLOCK_INFO_P (base)
576 || SYMBOL_REF_ANCHOR_P (base)
577 || SYMBOL_REF_BLOCK (base) == NULL
578 || !targetm.use_anchors_for_symbol_p (base))
579 return x;
581 /* Decide where BASE is going to be. */
582 place_block_symbol (base);
584 /* Get the anchor we need to use. */
585 offset += SYMBOL_REF_BLOCK_OFFSET (base);
586 base = get_section_anchor (SYMBOL_REF_BLOCK (base), offset,
587 SYMBOL_REF_TLS_MODEL (base));
589 /* Work out the offset from the anchor. */
590 offset -= SYMBOL_REF_BLOCK_OFFSET (base);
592 /* If we're going to run a CSE pass, force the anchor into a register.
593 We will then be able to reuse registers for several accesses, if the
594 target costs say that that's worthwhile. */
595 if (!cse_not_expected)
596 base = force_reg (GET_MODE (base), base);
598 return replace_equiv_address (x, plus_constant (base, offset));
601 /* Copy the value or contents of X to a new temp reg and return that reg. */
604 copy_to_reg (rtx x)
606 rtx temp = gen_reg_rtx (GET_MODE (x));
608 /* If not an operand, must be an address with PLUS and MULT so
609 do the computation. */
610 if (! general_operand (x, VOIDmode))
611 x = force_operand (x, temp);
613 if (x != temp)
614 emit_move_insn (temp, x);
616 return temp;
619 /* Like copy_to_reg but always give the new register mode Pmode
620 in case X is a constant. */
623 copy_addr_to_reg (rtx x)
625 return copy_to_mode_reg (Pmode, x);
628 /* Like copy_to_reg but always give the new register mode MODE
629 in case X is a constant. */
632 copy_to_mode_reg (enum machine_mode mode, rtx x)
634 rtx temp = gen_reg_rtx (mode);
636 /* If not an operand, must be an address with PLUS and MULT so
637 do the computation. */
638 if (! general_operand (x, VOIDmode))
639 x = force_operand (x, temp);
641 gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
642 if (x != temp)
643 emit_move_insn (temp, x);
644 return temp;
647 /* Load X into a register if it is not already one.
648 Use mode MODE for the register.
649 X should be valid for mode MODE, but it may be a constant which
650 is valid for all integer modes; that's why caller must specify MODE.
652 The caller must not alter the value in the register we return,
653 since we mark it as a "constant" register. */
656 force_reg (enum machine_mode mode, rtx x)
658 rtx temp, insn, set;
660 if (REG_P (x))
661 return x;
663 if (general_operand (x, mode))
665 temp = gen_reg_rtx (mode);
666 insn = emit_move_insn (temp, x);
668 else
670 temp = force_operand (x, NULL_RTX);
671 if (REG_P (temp))
672 insn = get_last_insn ();
673 else
675 rtx temp2 = gen_reg_rtx (mode);
676 insn = emit_move_insn (temp2, temp);
677 temp = temp2;
681 /* Let optimizers know that TEMP's value never changes
682 and that X can be substituted for it. Don't get confused
683 if INSN set something else (such as a SUBREG of TEMP). */
684 if (CONSTANT_P (x)
685 && (set = single_set (insn)) != 0
686 && SET_DEST (set) == temp
687 && ! rtx_equal_p (x, SET_SRC (set)))
688 set_unique_reg_note (insn, REG_EQUAL, x);
690 /* Let optimizers know that TEMP is a pointer, and if so, the
691 known alignment of that pointer. */
693 unsigned align = 0;
694 if (GET_CODE (x) == SYMBOL_REF)
696 align = BITS_PER_UNIT;
697 if (SYMBOL_REF_DECL (x) && DECL_P (SYMBOL_REF_DECL (x)))
698 align = DECL_ALIGN (SYMBOL_REF_DECL (x));
700 else if (GET_CODE (x) == LABEL_REF)
701 align = BITS_PER_UNIT;
702 else if (GET_CODE (x) == CONST
703 && GET_CODE (XEXP (x, 0)) == PLUS
704 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
705 && CONST_INT_P (XEXP (XEXP (x, 0), 1)))
707 rtx s = XEXP (XEXP (x, 0), 0);
708 rtx c = XEXP (XEXP (x, 0), 1);
709 unsigned sa, ca;
711 sa = BITS_PER_UNIT;
712 if (SYMBOL_REF_DECL (s) && DECL_P (SYMBOL_REF_DECL (s)))
713 sa = DECL_ALIGN (SYMBOL_REF_DECL (s));
715 if (INTVAL (c) == 0)
716 align = sa;
717 else
719 ca = ctz_hwi (INTVAL (c)) * BITS_PER_UNIT;
720 align = MIN (sa, ca);
724 if (align || (MEM_P (x) && MEM_POINTER (x)))
725 mark_reg_pointer (temp, align);
728 return temp;
731 /* If X is a memory ref, copy its contents to a new temp reg and return
732 that reg. Otherwise, return X. */
735 force_not_mem (rtx x)
737 rtx temp;
739 if (!MEM_P (x) || GET_MODE (x) == BLKmode)
740 return x;
742 temp = gen_reg_rtx (GET_MODE (x));
744 if (MEM_POINTER (x))
745 REG_POINTER (temp) = 1;
747 emit_move_insn (temp, x);
748 return temp;
751 /* Copy X to TARGET (if it's nonzero and a reg)
752 or to a new temp reg and return that reg.
753 MODE is the mode to use for X in case it is a constant. */
756 copy_to_suggested_reg (rtx x, rtx target, enum machine_mode mode)
758 rtx temp;
760 if (target && REG_P (target))
761 temp = target;
762 else
763 temp = gen_reg_rtx (mode);
765 emit_move_insn (temp, x);
766 return temp;
769 /* Return the mode to use to pass or return a scalar of TYPE and MODE.
770 PUNSIGNEDP points to the signedness of the type and may be adjusted
771 to show what signedness to use on extension operations.
773 FOR_RETURN is nonzero if the caller is promoting the return value
774 of FNDECL, else it is for promoting args. */
776 enum machine_mode
777 promote_function_mode (const_tree type, enum machine_mode mode, int *punsignedp,
778 const_tree funtype, int for_return)
780 /* Called without a type node for a libcall. */
781 if (type == NULL_TREE)
783 if (INTEGRAL_MODE_P (mode))
784 return targetm.calls.promote_function_mode (NULL_TREE, mode,
785 punsignedp, funtype,
786 for_return);
787 else
788 return mode;
791 switch (TREE_CODE (type))
793 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
794 case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE:
795 case POINTER_TYPE: case REFERENCE_TYPE:
796 return targetm.calls.promote_function_mode (type, mode, punsignedp, funtype,
797 for_return);
799 default:
800 return mode;
803 /* Return the mode to use to store a scalar of TYPE and MODE.
804 PUNSIGNEDP points to the signedness of the type and may be adjusted
805 to show what signedness to use on extension operations. */
807 enum machine_mode
808 promote_mode (const_tree type ATTRIBUTE_UNUSED, enum machine_mode mode,
809 int *punsignedp ATTRIBUTE_UNUSED)
811 #ifdef PROMOTE_MODE
812 enum tree_code code;
813 int unsignedp;
814 #endif
816 /* For libcalls this is invoked without TYPE from the backends
817 TARGET_PROMOTE_FUNCTION_MODE hooks. Don't do anything in that
818 case. */
819 if (type == NULL_TREE)
820 return mode;
822 /* FIXME: this is the same logic that was there until GCC 4.4, but we
823 probably want to test POINTERS_EXTEND_UNSIGNED even if PROMOTE_MODE
824 is not defined. The affected targets are M32C, S390, SPARC. */
825 #ifdef PROMOTE_MODE
826 code = TREE_CODE (type);
827 unsignedp = *punsignedp;
829 switch (code)
831 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
832 case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE:
833 PROMOTE_MODE (mode, unsignedp, type);
834 *punsignedp = unsignedp;
835 return mode;
836 break;
838 #ifdef POINTERS_EXTEND_UNSIGNED
839 case REFERENCE_TYPE:
840 case POINTER_TYPE:
841 *punsignedp = POINTERS_EXTEND_UNSIGNED;
842 return targetm.addr_space.address_mode
843 (TYPE_ADDR_SPACE (TREE_TYPE (type)));
844 break;
845 #endif
847 default:
848 return mode;
850 #else
851 return mode;
852 #endif
856 /* Use one of promote_mode or promote_function_mode to find the promoted
857 mode of DECL. If PUNSIGNEDP is not NULL, store there the unsignedness
858 of DECL after promotion. */
860 enum machine_mode
861 promote_decl_mode (const_tree decl, int *punsignedp)
863 tree type = TREE_TYPE (decl);
864 int unsignedp = TYPE_UNSIGNED (type);
865 enum machine_mode mode = DECL_MODE (decl);
866 enum machine_mode pmode;
868 if (TREE_CODE (decl) == RESULT_DECL
869 || TREE_CODE (decl) == PARM_DECL)
870 pmode = promote_function_mode (type, mode, &unsignedp,
871 TREE_TYPE (current_function_decl), 2);
872 else
873 pmode = promote_mode (type, mode, &unsignedp);
875 if (punsignedp)
876 *punsignedp = unsignedp;
877 return pmode;
881 /* Controls the behaviour of {anti_,}adjust_stack. */
882 static bool suppress_reg_args_size;
884 /* A helper for adjust_stack and anti_adjust_stack. */
886 static void
887 adjust_stack_1 (rtx adjust, bool anti_p)
889 rtx temp, insn;
891 #ifndef STACK_GROWS_DOWNWARD
892 /* Hereafter anti_p means subtract_p. */
893 anti_p = !anti_p;
894 #endif
896 temp = expand_binop (Pmode,
897 anti_p ? sub_optab : add_optab,
898 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
899 OPTAB_LIB_WIDEN);
901 if (temp != stack_pointer_rtx)
902 insn = emit_move_insn (stack_pointer_rtx, temp);
903 else
905 insn = get_last_insn ();
906 temp = single_set (insn);
907 gcc_assert (temp != NULL && SET_DEST (temp) == stack_pointer_rtx);
910 if (!suppress_reg_args_size)
911 add_reg_note (insn, REG_ARGS_SIZE, GEN_INT (stack_pointer_delta));
914 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
915 This pops when ADJUST is positive. ADJUST need not be constant. */
917 void
918 adjust_stack (rtx adjust)
920 if (adjust == const0_rtx)
921 return;
923 /* We expect all variable sized adjustments to be multiple of
924 PREFERRED_STACK_BOUNDARY. */
925 if (CONST_INT_P (adjust))
926 stack_pointer_delta -= INTVAL (adjust);
928 adjust_stack_1 (adjust, false);
931 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
932 This pushes when ADJUST is positive. ADJUST need not be constant. */
934 void
935 anti_adjust_stack (rtx adjust)
937 if (adjust == const0_rtx)
938 return;
940 /* We expect all variable sized adjustments to be multiple of
941 PREFERRED_STACK_BOUNDARY. */
942 if (CONST_INT_P (adjust))
943 stack_pointer_delta += INTVAL (adjust);
945 adjust_stack_1 (adjust, true);
948 /* Round the size of a block to be pushed up to the boundary required
949 by this machine. SIZE is the desired size, which need not be constant. */
951 static rtx
952 round_push (rtx size)
954 rtx align_rtx, alignm1_rtx;
956 if (!SUPPORTS_STACK_ALIGNMENT
957 || crtl->preferred_stack_boundary == MAX_SUPPORTED_STACK_ALIGNMENT)
959 int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;
961 if (align == 1)
962 return size;
964 if (CONST_INT_P (size))
966 HOST_WIDE_INT new_size = (INTVAL (size) + align - 1) / align * align;
968 if (INTVAL (size) != new_size)
969 size = GEN_INT (new_size);
970 return size;
973 align_rtx = GEN_INT (align);
974 alignm1_rtx = GEN_INT (align - 1);
976 else
978 /* If crtl->preferred_stack_boundary might still grow, use
979 virtual_preferred_stack_boundary_rtx instead. This will be
980 substituted by the right value in vregs pass and optimized
981 during combine. */
982 align_rtx = virtual_preferred_stack_boundary_rtx;
983 alignm1_rtx = force_operand (plus_constant (align_rtx, -1), NULL_RTX);
986 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
987 but we know it can't. So add ourselves and then do
988 TRUNC_DIV_EXPR. */
989 size = expand_binop (Pmode, add_optab, size, alignm1_rtx,
990 NULL_RTX, 1, OPTAB_LIB_WIDEN);
991 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, align_rtx,
992 NULL_RTX, 1);
993 size = expand_mult (Pmode, size, align_rtx, NULL_RTX, 1);
995 return size;
998 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
999 to a previously-created save area. If no save area has been allocated,
1000 this function will allocate one. If a save area is specified, it
1001 must be of the proper mode. */
1003 void
1004 emit_stack_save (enum save_level save_level, rtx *psave)
1006 rtx sa = *psave;
1007 /* The default is that we use a move insn and save in a Pmode object. */
1008 rtx (*fcn) (rtx, rtx) = gen_move_insn;
1009 enum machine_mode mode = STACK_SAVEAREA_MODE (save_level);
1011 /* See if this machine has anything special to do for this kind of save. */
1012 switch (save_level)
1014 #ifdef HAVE_save_stack_block
1015 case SAVE_BLOCK:
1016 if (HAVE_save_stack_block)
1017 fcn = gen_save_stack_block;
1018 break;
1019 #endif
1020 #ifdef HAVE_save_stack_function
1021 case SAVE_FUNCTION:
1022 if (HAVE_save_stack_function)
1023 fcn = gen_save_stack_function;
1024 break;
1025 #endif
1026 #ifdef HAVE_save_stack_nonlocal
1027 case SAVE_NONLOCAL:
1028 if (HAVE_save_stack_nonlocal)
1029 fcn = gen_save_stack_nonlocal;
1030 break;
1031 #endif
1032 default:
1033 break;
1036 /* If there is no save area and we have to allocate one, do so. Otherwise
1037 verify the save area is the proper mode. */
1039 if (sa == 0)
1041 if (mode != VOIDmode)
1043 if (save_level == SAVE_NONLOCAL)
1044 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
1045 else
1046 *psave = sa = gen_reg_rtx (mode);
1050 do_pending_stack_adjust ();
1051 if (sa != 0)
1052 sa = validize_mem (sa);
1053 emit_insn (fcn (sa, stack_pointer_rtx));
1056 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
1057 area made by emit_stack_save. If it is zero, we have nothing to do. */
1059 void
1060 emit_stack_restore (enum save_level save_level, rtx sa)
1062 /* The default is that we use a move insn. */
1063 rtx (*fcn) (rtx, rtx) = gen_move_insn;
1065 /* If stack_realign_drap, the x86 backend emits a prologue that aligns both
1066 STACK_POINTER and HARD_FRAME_POINTER.
1067 If stack_realign_fp, the x86 backend emits a prologue that aligns only
1068 STACK_POINTER. This renders the HARD_FRAME_POINTER unusable for accessing
1069 aligned variables, which is reflected in ix86_can_eliminate.
1070 We normally still have the realigned STACK_POINTER that we can use.
1071 But if there is a stack restore still present at reload, it can trigger
1072 mark_not_eliminable for the STACK_POINTER, leaving no way to eliminate
1073 FRAME_POINTER into a hard reg.
1074 To prevent this situation, we force need_drap if we emit a stack
1075 restore. */
1076 if (SUPPORTS_STACK_ALIGNMENT)
1077 crtl->need_drap = true;
1079 /* See if this machine has anything special to do for this kind of save. */
1080 switch (save_level)
1082 #ifdef HAVE_restore_stack_block
1083 case SAVE_BLOCK:
1084 if (HAVE_restore_stack_block)
1085 fcn = gen_restore_stack_block;
1086 break;
1087 #endif
1088 #ifdef HAVE_restore_stack_function
1089 case SAVE_FUNCTION:
1090 if (HAVE_restore_stack_function)
1091 fcn = gen_restore_stack_function;
1092 break;
1093 #endif
1094 #ifdef HAVE_restore_stack_nonlocal
1095 case SAVE_NONLOCAL:
1096 if (HAVE_restore_stack_nonlocal)
1097 fcn = gen_restore_stack_nonlocal;
1098 break;
1099 #endif
1100 default:
1101 break;
1104 if (sa != 0)
1106 sa = validize_mem (sa);
1107 /* These clobbers prevent the scheduler from moving
1108 references to variable arrays below the code
1109 that deletes (pops) the arrays. */
1110 emit_clobber (gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode)));
1111 emit_clobber (gen_rtx_MEM (BLKmode, stack_pointer_rtx));
1114 discard_pending_stack_adjust ();
1116 emit_insn (fcn (stack_pointer_rtx, sa));
1119 /* Invoke emit_stack_save on the nonlocal_goto_save_area for the current
1120 function. This function should be called whenever we allocate or
1121 deallocate dynamic stack space. */
1123 void
1124 update_nonlocal_goto_save_area (void)
1126 tree t_save;
1127 rtx r_save;
1129 /* The nonlocal_goto_save_area object is an array of N pointers. The
1130 first one is used for the frame pointer save; the rest are sized by
1131 STACK_SAVEAREA_MODE. Create a reference to array index 1, the first
1132 of the stack save area slots. */
1133 t_save = build4 (ARRAY_REF,
1134 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
1135 cfun->nonlocal_goto_save_area,
1136 integer_one_node, NULL_TREE, NULL_TREE);
1137 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
1139 emit_stack_save (SAVE_NONLOCAL, &r_save);
1142 /* Return an rtx representing the address of an area of memory dynamically
1143 pushed on the stack.
1145 Any required stack pointer alignment is preserved.
1147 SIZE is an rtx representing the size of the area.
1149 SIZE_ALIGN is the alignment (in bits) that we know SIZE has. This
1150 parameter may be zero. If so, a proper value will be extracted
1151 from SIZE if it is constant, otherwise BITS_PER_UNIT will be assumed.
1153 REQUIRED_ALIGN is the alignment (in bits) required for the region
1154 of memory.
1156 If CANNOT_ACCUMULATE is set to TRUE, the caller guarantees that the
1157 stack space allocated by the generated code cannot be added with itself
1158 in the course of the execution of the function. It is always safe to
1159 pass FALSE here and the following criterion is sufficient in order to
1160 pass TRUE: every path in the CFG that starts at the allocation point and
1161 loops to it executes the associated deallocation code. */
1164 allocate_dynamic_stack_space (rtx size, unsigned size_align,
1165 unsigned required_align, bool cannot_accumulate)
1167 HOST_WIDE_INT stack_usage_size = -1;
1168 rtx final_label, final_target, target;
1169 unsigned extra_align = 0;
1170 bool must_align;
1172 /* If we're asking for zero bytes, it doesn't matter what we point
1173 to since we can't dereference it. But return a reasonable
1174 address anyway. */
1175 if (size == const0_rtx)
1176 return virtual_stack_dynamic_rtx;
1178 /* Otherwise, show we're calling alloca or equivalent. */
1179 cfun->calls_alloca = 1;
1181 /* If stack usage info is requested, look into the size we are passed.
1182 We need to do so this early to avoid the obfuscation that may be
1183 introduced later by the various alignment operations. */
1184 if (flag_stack_usage_info)
1186 if (CONST_INT_P (size))
1187 stack_usage_size = INTVAL (size);
1188 else if (REG_P (size))
1190 /* Look into the last emitted insn and see if we can deduce
1191 something for the register. */
1192 rtx insn, set, note;
1193 insn = get_last_insn ();
1194 if ((set = single_set (insn)) && rtx_equal_p (SET_DEST (set), size))
1196 if (CONST_INT_P (SET_SRC (set)))
1197 stack_usage_size = INTVAL (SET_SRC (set));
1198 else if ((note = find_reg_equal_equiv_note (insn))
1199 && CONST_INT_P (XEXP (note, 0)))
1200 stack_usage_size = INTVAL (XEXP (note, 0));
1204 /* If the size is not constant, we can't say anything. */
1205 if (stack_usage_size == -1)
1207 current_function_has_unbounded_dynamic_stack_size = 1;
1208 stack_usage_size = 0;
1212 /* Ensure the size is in the proper mode. */
1213 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1214 size = convert_to_mode (Pmode, size, 1);
1216 /* Adjust SIZE_ALIGN, if needed. */
1217 if (CONST_INT_P (size))
1219 unsigned HOST_WIDE_INT lsb;
1221 lsb = INTVAL (size);
1222 lsb &= -lsb;
1224 /* Watch out for overflow truncating to "unsigned". */
1225 if (lsb > UINT_MAX / BITS_PER_UNIT)
1226 size_align = 1u << (HOST_BITS_PER_INT - 1);
1227 else
1228 size_align = (unsigned)lsb * BITS_PER_UNIT;
1230 else if (size_align < BITS_PER_UNIT)
1231 size_align = BITS_PER_UNIT;
1233 /* We can't attempt to minimize alignment necessary, because we don't
1234 know the final value of preferred_stack_boundary yet while executing
1235 this code. */
1236 if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
1237 crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1239 /* We will need to ensure that the address we return is aligned to
1240 REQUIRED_ALIGN. If STACK_DYNAMIC_OFFSET is defined, we don't
1241 always know its final value at this point in the compilation (it
1242 might depend on the size of the outgoing parameter lists, for
1243 example), so we must align the value to be returned in that case.
1244 (Note that STACK_DYNAMIC_OFFSET will have a default nonzero value if
1245 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1246 We must also do an alignment operation on the returned value if
1247 the stack pointer alignment is less strict than REQUIRED_ALIGN.
1249 If we have to align, we must leave space in SIZE for the hole
1250 that might result from the alignment operation. */
1252 must_align = (crtl->preferred_stack_boundary < required_align);
1253 if (must_align)
1255 if (required_align > PREFERRED_STACK_BOUNDARY)
1256 extra_align = PREFERRED_STACK_BOUNDARY;
1257 else if (required_align > STACK_BOUNDARY)
1258 extra_align = STACK_BOUNDARY;
1259 else
1260 extra_align = BITS_PER_UNIT;
1263 /* ??? STACK_POINTER_OFFSET is always defined now. */
1264 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET)
1265 must_align = true;
1266 extra_align = BITS_PER_UNIT;
1267 #endif
1269 if (must_align)
1271 unsigned extra = (required_align - extra_align) / BITS_PER_UNIT;
1273 size = plus_constant (size, extra);
1274 size = force_operand (size, NULL_RTX);
1276 if (flag_stack_usage_info)
1277 stack_usage_size += extra;
1279 if (extra && size_align > extra_align)
1280 size_align = extra_align;
1283 /* Round the size to a multiple of the required stack alignment.
1284 Since the stack if presumed to be rounded before this allocation,
1285 this will maintain the required alignment.
1287 If the stack grows downward, we could save an insn by subtracting
1288 SIZE from the stack pointer and then aligning the stack pointer.
1289 The problem with this is that the stack pointer may be unaligned
1290 between the execution of the subtraction and alignment insns and
1291 some machines do not allow this. Even on those that do, some
1292 signal handlers malfunction if a signal should occur between those
1293 insns. Since this is an extremely rare event, we have no reliable
1294 way of knowing which systems have this problem. So we avoid even
1295 momentarily mis-aligning the stack. */
1296 if (size_align % MAX_SUPPORTED_STACK_ALIGNMENT != 0)
1298 size = round_push (size);
1300 if (flag_stack_usage_info)
1302 int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;
1303 stack_usage_size = (stack_usage_size + align - 1) / align * align;
1307 target = gen_reg_rtx (Pmode);
1309 /* The size is supposed to be fully adjusted at this point so record it
1310 if stack usage info is requested. */
1311 if (flag_stack_usage_info)
1313 current_function_dynamic_stack_size += stack_usage_size;
1315 /* ??? This is gross but the only safe stance in the absence
1316 of stack usage oriented flow analysis. */
1317 if (!cannot_accumulate)
1318 current_function_has_unbounded_dynamic_stack_size = 1;
1321 final_label = NULL_RTX;
1322 final_target = NULL_RTX;
1324 /* If we are splitting the stack, we need to ask the backend whether
1325 there is enough room on the current stack. If there isn't, or if
1326 the backend doesn't know how to tell is, then we need to call a
1327 function to allocate memory in some other way. This memory will
1328 be released when we release the current stack segment. The
1329 effect is that stack allocation becomes less efficient, but at
1330 least it doesn't cause a stack overflow. */
1331 if (flag_split_stack)
1333 rtx available_label, ask, space, func;
1335 available_label = NULL_RTX;
1337 #ifdef HAVE_split_stack_space_check
1338 if (HAVE_split_stack_space_check)
1340 available_label = gen_label_rtx ();
1342 /* This instruction will branch to AVAILABLE_LABEL if there
1343 are SIZE bytes available on the stack. */
1344 emit_insn (gen_split_stack_space_check (size, available_label));
1346 #endif
1348 /* The __morestack_allocate_stack_space function will allocate
1349 memory using malloc. If the alignment of the memory returned
1350 by malloc does not meet REQUIRED_ALIGN, we increase SIZE to
1351 make sure we allocate enough space. */
1352 if (MALLOC_ABI_ALIGNMENT >= required_align)
1353 ask = size;
1354 else
1356 ask = expand_binop (Pmode, add_optab, size,
1357 GEN_INT (required_align / BITS_PER_UNIT - 1),
1358 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1359 must_align = true;
1362 func = init_one_libfunc ("__morestack_allocate_stack_space");
1364 space = emit_library_call_value (func, target, LCT_NORMAL, Pmode,
1365 1, ask, Pmode);
1367 if (available_label == NULL_RTX)
1368 return space;
1370 final_target = gen_reg_rtx (Pmode);
1372 emit_move_insn (final_target, space);
1374 final_label = gen_label_rtx ();
1375 emit_jump (final_label);
1377 emit_label (available_label);
1380 do_pending_stack_adjust ();
1382 /* We ought to be called always on the toplevel and stack ought to be aligned
1383 properly. */
1384 gcc_assert (!(stack_pointer_delta
1385 % (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)));
1387 /* If needed, check that we have the required amount of stack. Take into
1388 account what has already been checked. */
1389 if (STACK_CHECK_MOVING_SP)
1391 else if (flag_stack_check == GENERIC_STACK_CHECK)
1392 probe_stack_range (STACK_OLD_CHECK_PROTECT + STACK_CHECK_MAX_FRAME_SIZE,
1393 size);
1394 else if (flag_stack_check == STATIC_BUILTIN_STACK_CHECK)
1395 probe_stack_range (STACK_CHECK_PROTECT, size);
1397 /* Don't let anti_adjust_stack emit notes. */
1398 suppress_reg_args_size = true;
1400 /* Perform the required allocation from the stack. Some systems do
1401 this differently than simply incrementing/decrementing from the
1402 stack pointer, such as acquiring the space by calling malloc(). */
1403 #ifdef HAVE_allocate_stack
1404 if (HAVE_allocate_stack)
1406 struct expand_operand ops[2];
1407 /* We don't have to check against the predicate for operand 0 since
1408 TARGET is known to be a pseudo of the proper mode, which must
1409 be valid for the operand. */
1410 create_fixed_operand (&ops[0], target);
1411 create_convert_operand_to (&ops[1], size, STACK_SIZE_MODE, true);
1412 expand_insn (CODE_FOR_allocate_stack, 2, ops);
1414 else
1415 #endif
1417 int saved_stack_pointer_delta;
1419 #ifndef STACK_GROWS_DOWNWARD
1420 emit_move_insn (target, virtual_stack_dynamic_rtx);
1421 #endif
1423 /* Check stack bounds if necessary. */
1424 if (crtl->limit_stack)
1426 rtx available;
1427 rtx space_available = gen_label_rtx ();
1428 #ifdef STACK_GROWS_DOWNWARD
1429 available = expand_binop (Pmode, sub_optab,
1430 stack_pointer_rtx, stack_limit_rtx,
1431 NULL_RTX, 1, OPTAB_WIDEN);
1432 #else
1433 available = expand_binop (Pmode, sub_optab,
1434 stack_limit_rtx, stack_pointer_rtx,
1435 NULL_RTX, 1, OPTAB_WIDEN);
1436 #endif
1437 emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
1438 space_available);
1439 #ifdef HAVE_trap
1440 if (HAVE_trap)
1441 emit_insn (gen_trap ());
1442 else
1443 #endif
1444 error ("stack limits not supported on this target");
1445 emit_barrier ();
1446 emit_label (space_available);
1449 saved_stack_pointer_delta = stack_pointer_delta;
1451 if (flag_stack_check && STACK_CHECK_MOVING_SP)
1452 anti_adjust_stack_and_probe (size, false);
1453 else
1454 anti_adjust_stack (size);
1456 /* Even if size is constant, don't modify stack_pointer_delta.
1457 The constant size alloca should preserve
1458 crtl->preferred_stack_boundary alignment. */
1459 stack_pointer_delta = saved_stack_pointer_delta;
1461 #ifdef STACK_GROWS_DOWNWARD
1462 emit_move_insn (target, virtual_stack_dynamic_rtx);
1463 #endif
1466 suppress_reg_args_size = false;
1468 /* Finish up the split stack handling. */
1469 if (final_label != NULL_RTX)
1471 gcc_assert (flag_split_stack);
1472 emit_move_insn (final_target, target);
1473 emit_label (final_label);
1474 target = final_target;
1477 if (must_align)
1479 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1480 but we know it can't. So add ourselves and then do
1481 TRUNC_DIV_EXPR. */
1482 target = expand_binop (Pmode, add_optab, target,
1483 GEN_INT (required_align / BITS_PER_UNIT - 1),
1484 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1485 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1486 GEN_INT (required_align / BITS_PER_UNIT),
1487 NULL_RTX, 1);
1488 target = expand_mult (Pmode, target,
1489 GEN_INT (required_align / BITS_PER_UNIT),
1490 NULL_RTX, 1);
1493 /* Now that we've committed to a return value, mark its alignment. */
1494 mark_reg_pointer (target, required_align);
1496 /* Record the new stack level for nonlocal gotos. */
1497 if (cfun->nonlocal_goto_save_area != 0)
1498 update_nonlocal_goto_save_area ();
1500 return target;
1503 /* A front end may want to override GCC's stack checking by providing a
1504 run-time routine to call to check the stack, so provide a mechanism for
1505 calling that routine. */
1507 static GTY(()) rtx stack_check_libfunc;
1509 void
1510 set_stack_check_libfunc (const char *libfunc_name)
1512 gcc_assert (stack_check_libfunc == NULL_RTX);
1513 stack_check_libfunc = gen_rtx_SYMBOL_REF (Pmode, libfunc_name);
1516 /* Emit one stack probe at ADDRESS, an address within the stack. */
1518 void
1519 emit_stack_probe (rtx address)
1521 rtx memref = gen_rtx_MEM (word_mode, address);
1523 MEM_VOLATILE_P (memref) = 1;
1525 /* See if we have an insn to probe the stack. */
1526 #ifdef HAVE_probe_stack
1527 if (HAVE_probe_stack)
1528 emit_insn (gen_probe_stack (memref));
1529 else
1530 #endif
1531 emit_move_insn (memref, const0_rtx);
1534 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1535 FIRST is a constant and size is a Pmode RTX. These are offsets from
1536 the current stack pointer. STACK_GROWS_DOWNWARD says whether to add
1537 or subtract them from the stack pointer. */
1539 #define PROBE_INTERVAL (1 << STACK_CHECK_PROBE_INTERVAL_EXP)
1541 #ifdef STACK_GROWS_DOWNWARD
1542 #define STACK_GROW_OP MINUS
1543 #define STACK_GROW_OPTAB sub_optab
1544 #define STACK_GROW_OFF(off) -(off)
1545 #else
1546 #define STACK_GROW_OP PLUS
1547 #define STACK_GROW_OPTAB add_optab
1548 #define STACK_GROW_OFF(off) (off)
1549 #endif
1551 void
1552 probe_stack_range (HOST_WIDE_INT first, rtx size)
1554 /* First ensure SIZE is Pmode. */
1555 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1556 size = convert_to_mode (Pmode, size, 1);
1558 /* Next see if we have a function to check the stack. */
1559 if (stack_check_libfunc)
1561 rtx addr = memory_address (Pmode,
1562 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1563 stack_pointer_rtx,
1564 plus_constant (size, first)));
1565 emit_library_call (stack_check_libfunc, LCT_NORMAL, VOIDmode, 1, addr,
1566 Pmode);
1567 return;
1570 /* Next see if we have an insn to check the stack. */
1571 #ifdef HAVE_check_stack
1572 if (HAVE_check_stack)
1574 struct expand_operand ops[1];
1575 rtx addr = memory_address (Pmode,
1576 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1577 stack_pointer_rtx,
1578 plus_constant (size, first)));
1580 create_input_operand (&ops[0], addr, Pmode);
1581 if (maybe_expand_insn (CODE_FOR_check_stack, 1, ops))
1582 return;
1584 #endif
1586 /* Otherwise we have to generate explicit probes. If we have a constant
1587 small number of them to generate, that's the easy case. */
1588 else if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
1590 HOST_WIDE_INT isize = INTVAL (size), i;
1591 rtx addr;
1593 /* Probe at FIRST + N * PROBE_INTERVAL for values of N from 1 until
1594 it exceeds SIZE. If only one probe is needed, this will not
1595 generate any code. Then probe at FIRST + SIZE. */
1596 for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
1598 addr = memory_address (Pmode,
1599 plus_constant (stack_pointer_rtx,
1600 STACK_GROW_OFF (first + i)));
1601 emit_stack_probe (addr);
1604 addr = memory_address (Pmode,
1605 plus_constant (stack_pointer_rtx,
1606 STACK_GROW_OFF (first + isize)));
1607 emit_stack_probe (addr);
1610 /* In the variable case, do the same as above, but in a loop. Note that we
1611 must be extra careful with variables wrapping around because we might be
1612 at the very top (or the very bottom) of the address space and we have to
1613 be able to handle this case properly; in particular, we use an equality
1614 test for the loop condition. */
1615 else
1617 rtx rounded_size, rounded_size_op, test_addr, last_addr, temp;
1618 rtx loop_lab = gen_label_rtx ();
1619 rtx end_lab = gen_label_rtx ();
1622 /* Step 1: round SIZE to the previous multiple of the interval. */
1624 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
1625 rounded_size
1626 = simplify_gen_binary (AND, Pmode, size, GEN_INT (-PROBE_INTERVAL));
1627 rounded_size_op = force_operand (rounded_size, NULL_RTX);
1630 /* Step 2: compute initial and final value of the loop counter. */
1632 /* TEST_ADDR = SP + FIRST. */
1633 test_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1634 stack_pointer_rtx,
1635 GEN_INT (first)), NULL_RTX);
1637 /* LAST_ADDR = SP + FIRST + ROUNDED_SIZE. */
1638 last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1639 test_addr,
1640 rounded_size_op), NULL_RTX);
1643 /* Step 3: the loop
1645 while (TEST_ADDR != LAST_ADDR)
1647 TEST_ADDR = TEST_ADDR + PROBE_INTERVAL
1648 probe at TEST_ADDR
1651 probes at FIRST + N * PROBE_INTERVAL for values of N from 1
1652 until it is equal to ROUNDED_SIZE. */
1654 emit_label (loop_lab);
1656 /* Jump to END_LAB if TEST_ADDR == LAST_ADDR. */
1657 emit_cmp_and_jump_insns (test_addr, last_addr, EQ, NULL_RTX, Pmode, 1,
1658 end_lab);
1660 /* TEST_ADDR = TEST_ADDR + PROBE_INTERVAL. */
1661 temp = expand_binop (Pmode, STACK_GROW_OPTAB, test_addr,
1662 GEN_INT (PROBE_INTERVAL), test_addr,
1663 1, OPTAB_WIDEN);
1665 gcc_assert (temp == test_addr);
1667 /* Probe at TEST_ADDR. */
1668 emit_stack_probe (test_addr);
1670 emit_jump (loop_lab);
1672 emit_label (end_lab);
1675 /* Step 4: probe at FIRST + SIZE if we cannot assert at compile-time
1676 that SIZE is equal to ROUNDED_SIZE. */
1678 /* TEMP = SIZE - ROUNDED_SIZE. */
1679 temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
1680 if (temp != const0_rtx)
1682 rtx addr;
1684 if (CONST_INT_P (temp))
1686 /* Use [base + disp} addressing mode if supported. */
1687 HOST_WIDE_INT offset = INTVAL (temp);
1688 addr = memory_address (Pmode,
1689 plus_constant (last_addr,
1690 STACK_GROW_OFF (offset)));
1692 else
1694 /* Manual CSE if the difference is not known at compile-time. */
1695 temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
1696 addr = memory_address (Pmode,
1697 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1698 last_addr, temp));
1701 emit_stack_probe (addr);
1706 /* Adjust the stack pointer by minus SIZE (an rtx for a number of bytes)
1707 while probing it. This pushes when SIZE is positive. SIZE need not
1708 be constant. If ADJUST_BACK is true, adjust back the stack pointer
1709 by plus SIZE at the end. */
1711 void
1712 anti_adjust_stack_and_probe (rtx size, bool adjust_back)
1714 /* We skip the probe for the first interval + a small dope of 4 words and
1715 probe that many bytes past the specified size to maintain a protection
1716 area at the botton of the stack. */
1717 const int dope = 4 * UNITS_PER_WORD;
1719 /* First ensure SIZE is Pmode. */
1720 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1721 size = convert_to_mode (Pmode, size, 1);
1723 /* If we have a constant small number of probes to generate, that's the
1724 easy case. */
1725 if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
1727 HOST_WIDE_INT isize = INTVAL (size), i;
1728 bool first_probe = true;
1730 /* Adjust SP and probe at PROBE_INTERVAL + N * PROBE_INTERVAL for
1731 values of N from 1 until it exceeds SIZE. If only one probe is
1732 needed, this will not generate any code. Then adjust and probe
1733 to PROBE_INTERVAL + SIZE. */
1734 for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
1736 if (first_probe)
1738 anti_adjust_stack (GEN_INT (2 * PROBE_INTERVAL + dope));
1739 first_probe = false;
1741 else
1742 anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
1743 emit_stack_probe (stack_pointer_rtx);
1746 if (first_probe)
1747 anti_adjust_stack (plus_constant (size, PROBE_INTERVAL + dope));
1748 else
1749 anti_adjust_stack (plus_constant (size, PROBE_INTERVAL - i));
1750 emit_stack_probe (stack_pointer_rtx);
1753 /* In the variable case, do the same as above, but in a loop. Note that we
1754 must be extra careful with variables wrapping around because we might be
1755 at the very top (or the very bottom) of the address space and we have to
1756 be able to handle this case properly; in particular, we use an equality
1757 test for the loop condition. */
1758 else
1760 rtx rounded_size, rounded_size_op, last_addr, temp;
1761 rtx loop_lab = gen_label_rtx ();
1762 rtx end_lab = gen_label_rtx ();
1765 /* Step 1: round SIZE to the previous multiple of the interval. */
1767 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
1768 rounded_size
1769 = simplify_gen_binary (AND, Pmode, size, GEN_INT (-PROBE_INTERVAL));
1770 rounded_size_op = force_operand (rounded_size, NULL_RTX);
1773 /* Step 2: compute initial and final value of the loop counter. */
1775 /* SP = SP_0 + PROBE_INTERVAL. */
1776 anti_adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
1778 /* LAST_ADDR = SP_0 + PROBE_INTERVAL + ROUNDED_SIZE. */
1779 last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1780 stack_pointer_rtx,
1781 rounded_size_op), NULL_RTX);
1784 /* Step 3: the loop
1786 while (SP != LAST_ADDR)
1788 SP = SP + PROBE_INTERVAL
1789 probe at SP
1792 adjusts SP and probes at PROBE_INTERVAL + N * PROBE_INTERVAL for
1793 values of N from 1 until it is equal to ROUNDED_SIZE. */
1795 emit_label (loop_lab);
1797 /* Jump to END_LAB if SP == LAST_ADDR. */
1798 emit_cmp_and_jump_insns (stack_pointer_rtx, last_addr, EQ, NULL_RTX,
1799 Pmode, 1, end_lab);
1801 /* SP = SP + PROBE_INTERVAL and probe at SP. */
1802 anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
1803 emit_stack_probe (stack_pointer_rtx);
1805 emit_jump (loop_lab);
1807 emit_label (end_lab);
1810 /* Step 4: adjust SP and probe at PROBE_INTERVAL + SIZE if we cannot
1811 assert at compile-time that SIZE is equal to ROUNDED_SIZE. */
1813 /* TEMP = SIZE - ROUNDED_SIZE. */
1814 temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
1815 if (temp != const0_rtx)
1817 /* Manual CSE if the difference is not known at compile-time. */
1818 if (GET_CODE (temp) != CONST_INT)
1819 temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
1820 anti_adjust_stack (temp);
1821 emit_stack_probe (stack_pointer_rtx);
1825 /* Adjust back and account for the additional first interval. */
1826 if (adjust_back)
1827 adjust_stack (plus_constant (size, PROBE_INTERVAL + dope));
1828 else
1829 adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
1832 /* Return an rtx representing the register or memory location
1833 in which a scalar value of data type VALTYPE
1834 was returned by a function call to function FUNC.
1835 FUNC is a FUNCTION_DECL, FNTYPE a FUNCTION_TYPE node if the precise
1836 function is known, otherwise 0.
1837 OUTGOING is 1 if on a machine with register windows this function
1838 should return the register in which the function will put its result
1839 and 0 otherwise. */
1842 hard_function_value (const_tree valtype, const_tree func, const_tree fntype,
1843 int outgoing ATTRIBUTE_UNUSED)
1845 rtx val;
1847 val = targetm.calls.function_value (valtype, func ? func : fntype, outgoing);
1849 if (REG_P (val)
1850 && GET_MODE (val) == BLKmode)
1852 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype);
1853 enum machine_mode tmpmode;
1855 /* int_size_in_bytes can return -1. We don't need a check here
1856 since the value of bytes will then be large enough that no
1857 mode will match anyway. */
1859 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1860 tmpmode != VOIDmode;
1861 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1863 /* Have we found a large enough mode? */
1864 if (GET_MODE_SIZE (tmpmode) >= bytes)
1865 break;
1868 /* No suitable mode found. */
1869 gcc_assert (tmpmode != VOIDmode);
1871 PUT_MODE (val, tmpmode);
1873 return val;
1876 /* Return an rtx representing the register or memory location
1877 in which a scalar value of mode MODE was returned by a library call. */
1880 hard_libcall_value (enum machine_mode mode, rtx fun)
1882 return targetm.calls.libcall_value (mode, fun);
1885 /* Look up the tree code for a given rtx code
1886 to provide the arithmetic operation for REAL_ARITHMETIC.
1887 The function returns an int because the caller may not know
1888 what `enum tree_code' means. */
1891 rtx_to_tree_code (enum rtx_code code)
1893 enum tree_code tcode;
1895 switch (code)
1897 case PLUS:
1898 tcode = PLUS_EXPR;
1899 break;
1900 case MINUS:
1901 tcode = MINUS_EXPR;
1902 break;
1903 case MULT:
1904 tcode = MULT_EXPR;
1905 break;
1906 case DIV:
1907 tcode = RDIV_EXPR;
1908 break;
1909 case SMIN:
1910 tcode = MIN_EXPR;
1911 break;
1912 case SMAX:
1913 tcode = MAX_EXPR;
1914 break;
1915 default:
1916 tcode = LAST_AND_UNUSED_TREE_CODE;
1917 break;
1919 return ((int) tcode);
1922 #include "gt-explow.h"