1 /* Rtl-level induction variable analysis.
2 Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* This is a simple analysis of induction variables of the loop. The major use
22 is for determining the number of iterations of a loop for loop unrolling,
23 doloop optimization and branch prediction. The iv information is computed
26 Induction variables are analyzed by walking the use-def chains. When
27 a basic induction variable (biv) is found, it is cached in the bivs
28 hash table. When register is proved to be a biv, its description
29 is stored to DF_REF_DATA of the def reference.
31 The analysis works always with one loop -- you must call
32 iv_analysis_loop_init (loop) for it. All the other functions then work with
33 this loop. When you need to work with another loop, just call
34 iv_analysis_loop_init for it. When you no longer need iv analysis, call
35 iv_analysis_done () to clean up the memory.
37 The available functions are:
39 iv_analyze (insn, reg, iv): Stores the description of the induction variable
40 corresponding to the use of register REG in INSN to IV. Returns true if
41 REG is an induction variable in INSN. false otherwise.
42 If use of REG is not found in INSN, following insns are scanned (so that
43 we may call this function on insn returned by get_condition).
44 iv_analyze_result (insn, def, iv): Stores to IV the description of the iv
45 corresponding to DEF, which is a register defined in INSN.
46 iv_analyze_expr (insn, rhs, mode, iv): Stores to IV the description of iv
47 corresponding to expression EXPR evaluated at INSN. All registers used bu
48 EXPR must also be used in INSN.
53 #include "coretypes.h"
56 #include "hard-reg-set.h"
58 #include "basic-block.h"
62 #include "diagnostic-core.h"
67 /* Possible return values of iv_get_reaching_def. */
71 /* More than one reaching def, or reaching def that does not
75 /* The use is trivial invariant of the loop, i.e. is not changed
79 /* The use is reached by initial value and a value from the
80 previous iteration. */
83 /* The use has single dominating def. */
87 /* Information about a biv. */
91 unsigned regno
; /* The register of the biv. */
92 struct rtx_iv iv
; /* Value of the biv. */
95 static bool clean_slate
= true;
97 static unsigned int iv_ref_table_size
= 0;
99 /* Table of rtx_ivs indexed by the df_ref uid field. */
100 static struct rtx_iv
** iv_ref_table
;
102 /* Induction variable stored at the reference. */
103 #define DF_REF_IV(REF) iv_ref_table[DF_REF_ID(REF)]
104 #define DF_REF_IV_SET(REF, IV) iv_ref_table[DF_REF_ID(REF)] = (IV)
106 /* The current loop. */
108 static struct loop
*current_loop
;
110 /* Bivs of the current loop. */
114 static bool iv_analyze_op (rtx
, rtx
, struct rtx_iv
*);
116 /* Return the RTX code corresponding to the IV extend code EXTEND. */
117 static inline enum rtx_code
118 iv_extend_to_rtx_code (enum iv_extend_code extend
)
126 case IV_UNKNOWN_EXTEND
:
132 /* Dumps information about IV to FILE. */
134 extern void dump_iv_info (FILE *, struct rtx_iv
*);
136 dump_iv_info (FILE *file
, struct rtx_iv
*iv
)
140 fprintf (file
, "not simple");
144 if (iv
->step
== const0_rtx
145 && !iv
->first_special
)
146 fprintf (file
, "invariant ");
148 print_rtl (file
, iv
->base
);
149 if (iv
->step
!= const0_rtx
)
151 fprintf (file
, " + ");
152 print_rtl (file
, iv
->step
);
153 fprintf (file
, " * iteration");
155 fprintf (file
, " (in %s)", GET_MODE_NAME (iv
->mode
));
157 if (iv
->mode
!= iv
->extend_mode
)
158 fprintf (file
, " %s to %s",
159 rtx_name
[iv_extend_to_rtx_code (iv
->extend
)],
160 GET_MODE_NAME (iv
->extend_mode
));
162 if (iv
->mult
!= const1_rtx
)
164 fprintf (file
, " * ");
165 print_rtl (file
, iv
->mult
);
167 if (iv
->delta
!= const0_rtx
)
169 fprintf (file
, " + ");
170 print_rtl (file
, iv
->delta
);
172 if (iv
->first_special
)
173 fprintf (file
, " (first special)");
176 /* Generates a subreg to get the least significant part of EXPR (in mode
177 INNER_MODE) to OUTER_MODE. */
180 lowpart_subreg (enum machine_mode outer_mode
, rtx expr
,
181 enum machine_mode inner_mode
)
183 return simplify_gen_subreg (outer_mode
, expr
, inner_mode
,
184 subreg_lowpart_offset (outer_mode
, inner_mode
));
188 check_iv_ref_table_size (void)
190 if (iv_ref_table_size
< DF_DEFS_TABLE_SIZE())
192 unsigned int new_size
= DF_DEFS_TABLE_SIZE () + (DF_DEFS_TABLE_SIZE () / 4);
193 iv_ref_table
= XRESIZEVEC (struct rtx_iv
*, iv_ref_table
, new_size
);
194 memset (&iv_ref_table
[iv_ref_table_size
], 0,
195 (new_size
- iv_ref_table_size
) * sizeof (struct rtx_iv
*));
196 iv_ref_table_size
= new_size
;
201 /* Checks whether REG is a well-behaved register. */
204 simple_reg_p (rtx reg
)
208 if (GET_CODE (reg
) == SUBREG
)
210 if (!subreg_lowpart_p (reg
))
212 reg
= SUBREG_REG (reg
);
219 if (HARD_REGISTER_NUM_P (r
))
222 if (GET_MODE_CLASS (GET_MODE (reg
)) != MODE_INT
)
228 /* Clears the information about ivs stored in df. */
233 unsigned i
, n_defs
= DF_DEFS_TABLE_SIZE ();
236 check_iv_ref_table_size ();
237 for (i
= 0; i
< n_defs
; i
++)
239 iv
= iv_ref_table
[i
];
243 iv_ref_table
[i
] = NULL
;
250 /* Returns hash value for biv B. */
253 biv_hash (const void *b
)
255 return ((const struct biv_entry
*) b
)->regno
;
258 /* Compares biv B and register R. */
261 biv_eq (const void *b
, const void *r
)
263 return ((const struct biv_entry
*) b
)->regno
== REGNO ((const_rtx
) r
);
266 /* Prepare the data for an induction variable analysis of a LOOP. */
269 iv_analysis_loop_init (struct loop
*loop
)
271 basic_block
*body
= get_loop_body_in_dom_order (loop
), bb
;
272 bitmap blocks
= BITMAP_ALLOC (NULL
);
277 /* Clear the information from the analysis of the previous loop. */
280 df_set_flags (DF_EQ_NOTES
+ DF_DEFER_INSN_RESCAN
);
281 bivs
= htab_create (10, biv_hash
, biv_eq
, free
);
287 for (i
= 0; i
< loop
->num_nodes
; i
++)
290 bitmap_set_bit (blocks
, bb
->index
);
292 /* Get rid of the ud chains before processing the rescans. Then add
294 df_remove_problem (df_chain
);
295 df_process_deferred_rescans ();
296 df_chain_add_problem (DF_UD_CHAIN
);
297 df_note_add_problem ();
298 df_set_blocks (blocks
);
301 df_dump_region (dump_file
);
303 check_iv_ref_table_size ();
304 BITMAP_FREE (blocks
);
308 /* Finds the definition of REG that dominates loop latch and stores
309 it to DEF. Returns false if there is not a single definition
310 dominating the latch. If REG has no definition in loop, DEF
311 is set to NULL and true is returned. */
314 latch_dominating_def (rtx reg
, df_ref
*def
)
316 df_ref single_rd
= NULL
, adef
;
317 unsigned regno
= REGNO (reg
);
318 struct df_rd_bb_info
*bb_info
= DF_RD_BB_INFO (current_loop
->latch
);
320 for (adef
= DF_REG_DEF_CHAIN (regno
); adef
; adef
= DF_REF_NEXT_REG (adef
))
322 if (!bitmap_bit_p (df
->blocks_to_analyze
, DF_REF_BBNO (adef
))
323 || !bitmap_bit_p (&bb_info
->out
, DF_REF_ID (adef
)))
326 /* More than one reaching definition. */
330 if (!just_once_each_iteration_p (current_loop
, DF_REF_BB (adef
)))
340 /* Gets definition of REG reaching its use in INSN and stores it to DEF. */
342 static enum iv_grd_result
343 iv_get_reaching_def (rtx insn
, rtx reg
, df_ref
*def
)
346 basic_block def_bb
, use_bb
;
351 if (!simple_reg_p (reg
))
353 if (GET_CODE (reg
) == SUBREG
)
354 reg
= SUBREG_REG (reg
);
355 gcc_assert (REG_P (reg
));
357 use
= df_find_use (insn
, reg
);
358 gcc_assert (use
!= NULL
);
360 if (!DF_REF_CHAIN (use
))
361 return GRD_INVARIANT
;
363 /* More than one reaching def. */
364 if (DF_REF_CHAIN (use
)->next
)
367 adef
= DF_REF_CHAIN (use
)->ref
;
369 /* We do not handle setting only part of the register. */
370 if (DF_REF_FLAGS (adef
) & DF_REF_READ_WRITE
)
373 def_insn
= DF_REF_INSN (adef
);
374 def_bb
= DF_REF_BB (adef
);
375 use_bb
= BLOCK_FOR_INSN (insn
);
377 if (use_bb
== def_bb
)
378 dom_p
= (DF_INSN_LUID (def_insn
) < DF_INSN_LUID (insn
));
380 dom_p
= dominated_by_p (CDI_DOMINATORS
, use_bb
, def_bb
);
385 return GRD_SINGLE_DOM
;
388 /* The definition does not dominate the use. This is still OK if
389 this may be a use of a biv, i.e. if the def_bb dominates loop
391 if (just_once_each_iteration_p (current_loop
, def_bb
))
392 return GRD_MAYBE_BIV
;
397 /* Sets IV to invariant CST in MODE. Always returns true (just for
398 consistency with other iv manipulation functions that may fail). */
401 iv_constant (struct rtx_iv
*iv
, rtx cst
, enum machine_mode mode
)
403 if (mode
== VOIDmode
)
404 mode
= GET_MODE (cst
);
408 iv
->step
= const0_rtx
;
409 iv
->first_special
= false;
410 iv
->extend
= IV_UNKNOWN_EXTEND
;
411 iv
->extend_mode
= iv
->mode
;
412 iv
->delta
= const0_rtx
;
413 iv
->mult
= const1_rtx
;
418 /* Evaluates application of subreg to MODE on IV. */
421 iv_subreg (struct rtx_iv
*iv
, enum machine_mode mode
)
423 /* If iv is invariant, just calculate the new value. */
424 if (iv
->step
== const0_rtx
425 && !iv
->first_special
)
427 rtx val
= get_iv_value (iv
, const0_rtx
);
428 val
= lowpart_subreg (mode
, val
, iv
->extend_mode
);
431 iv
->extend
= IV_UNKNOWN_EXTEND
;
432 iv
->mode
= iv
->extend_mode
= mode
;
433 iv
->delta
= const0_rtx
;
434 iv
->mult
= const1_rtx
;
438 if (iv
->extend_mode
== mode
)
441 if (GET_MODE_BITSIZE (mode
) > GET_MODE_BITSIZE (iv
->mode
))
444 iv
->extend
= IV_UNKNOWN_EXTEND
;
447 iv
->base
= simplify_gen_binary (PLUS
, iv
->extend_mode
, iv
->delta
,
448 simplify_gen_binary (MULT
, iv
->extend_mode
,
449 iv
->base
, iv
->mult
));
450 iv
->step
= simplify_gen_binary (MULT
, iv
->extend_mode
, iv
->step
, iv
->mult
);
451 iv
->mult
= const1_rtx
;
452 iv
->delta
= const0_rtx
;
453 iv
->first_special
= false;
458 /* Evaluates application of EXTEND to MODE on IV. */
461 iv_extend (struct rtx_iv
*iv
, enum iv_extend_code extend
, enum machine_mode mode
)
463 /* If iv is invariant, just calculate the new value. */
464 if (iv
->step
== const0_rtx
465 && !iv
->first_special
)
467 rtx val
= get_iv_value (iv
, const0_rtx
);
468 val
= simplify_gen_unary (iv_extend_to_rtx_code (extend
), mode
,
469 val
, iv
->extend_mode
);
471 iv
->extend
= IV_UNKNOWN_EXTEND
;
472 iv
->mode
= iv
->extend_mode
= mode
;
473 iv
->delta
= const0_rtx
;
474 iv
->mult
= const1_rtx
;
478 if (mode
!= iv
->extend_mode
)
481 if (iv
->extend
!= IV_UNKNOWN_EXTEND
482 && iv
->extend
!= extend
)
490 /* Evaluates negation of IV. */
493 iv_neg (struct rtx_iv
*iv
)
495 if (iv
->extend
== IV_UNKNOWN_EXTEND
)
497 iv
->base
= simplify_gen_unary (NEG
, iv
->extend_mode
,
498 iv
->base
, iv
->extend_mode
);
499 iv
->step
= simplify_gen_unary (NEG
, iv
->extend_mode
,
500 iv
->step
, iv
->extend_mode
);
504 iv
->delta
= simplify_gen_unary (NEG
, iv
->extend_mode
,
505 iv
->delta
, iv
->extend_mode
);
506 iv
->mult
= simplify_gen_unary (NEG
, iv
->extend_mode
,
507 iv
->mult
, iv
->extend_mode
);
513 /* Evaluates addition or subtraction (according to OP) of IV1 to IV0. */
516 iv_add (struct rtx_iv
*iv0
, struct rtx_iv
*iv1
, enum rtx_code op
)
518 enum machine_mode mode
;
521 /* Extend the constant to extend_mode of the other operand if necessary. */
522 if (iv0
->extend
== IV_UNKNOWN_EXTEND
523 && iv0
->mode
== iv0
->extend_mode
524 && iv0
->step
== const0_rtx
525 && GET_MODE_SIZE (iv0
->extend_mode
) < GET_MODE_SIZE (iv1
->extend_mode
))
527 iv0
->extend_mode
= iv1
->extend_mode
;
528 iv0
->base
= simplify_gen_unary (ZERO_EXTEND
, iv0
->extend_mode
,
529 iv0
->base
, iv0
->mode
);
531 if (iv1
->extend
== IV_UNKNOWN_EXTEND
532 && iv1
->mode
== iv1
->extend_mode
533 && iv1
->step
== const0_rtx
534 && GET_MODE_SIZE (iv1
->extend_mode
) < GET_MODE_SIZE (iv0
->extend_mode
))
536 iv1
->extend_mode
= iv0
->extend_mode
;
537 iv1
->base
= simplify_gen_unary (ZERO_EXTEND
, iv1
->extend_mode
,
538 iv1
->base
, iv1
->mode
);
541 mode
= iv0
->extend_mode
;
542 if (mode
!= iv1
->extend_mode
)
545 if (iv0
->extend
== IV_UNKNOWN_EXTEND
546 && iv1
->extend
== IV_UNKNOWN_EXTEND
)
548 if (iv0
->mode
!= iv1
->mode
)
551 iv0
->base
= simplify_gen_binary (op
, mode
, iv0
->base
, iv1
->base
);
552 iv0
->step
= simplify_gen_binary (op
, mode
, iv0
->step
, iv1
->step
);
557 /* Handle addition of constant. */
558 if (iv1
->extend
== IV_UNKNOWN_EXTEND
560 && iv1
->step
== const0_rtx
)
562 iv0
->delta
= simplify_gen_binary (op
, mode
, iv0
->delta
, iv1
->base
);
566 if (iv0
->extend
== IV_UNKNOWN_EXTEND
568 && iv0
->step
== const0_rtx
)
576 iv0
->delta
= simplify_gen_binary (PLUS
, mode
, iv0
->delta
, arg
);
583 /* Evaluates multiplication of IV by constant CST. */
586 iv_mult (struct rtx_iv
*iv
, rtx mby
)
588 enum machine_mode mode
= iv
->extend_mode
;
590 if (GET_MODE (mby
) != VOIDmode
591 && GET_MODE (mby
) != mode
)
594 if (iv
->extend
== IV_UNKNOWN_EXTEND
)
596 iv
->base
= simplify_gen_binary (MULT
, mode
, iv
->base
, mby
);
597 iv
->step
= simplify_gen_binary (MULT
, mode
, iv
->step
, mby
);
601 iv
->delta
= simplify_gen_binary (MULT
, mode
, iv
->delta
, mby
);
602 iv
->mult
= simplify_gen_binary (MULT
, mode
, iv
->mult
, mby
);
608 /* Evaluates shift of IV by constant CST. */
611 iv_shift (struct rtx_iv
*iv
, rtx mby
)
613 enum machine_mode mode
= iv
->extend_mode
;
615 if (GET_MODE (mby
) != VOIDmode
616 && GET_MODE (mby
) != mode
)
619 if (iv
->extend
== IV_UNKNOWN_EXTEND
)
621 iv
->base
= simplify_gen_binary (ASHIFT
, mode
, iv
->base
, mby
);
622 iv
->step
= simplify_gen_binary (ASHIFT
, mode
, iv
->step
, mby
);
626 iv
->delta
= simplify_gen_binary (ASHIFT
, mode
, iv
->delta
, mby
);
627 iv
->mult
= simplify_gen_binary (ASHIFT
, mode
, iv
->mult
, mby
);
633 /* The recursive part of get_biv_step. Gets the value of the single value
634 defined by DEF wrto initial value of REG inside loop, in shape described
638 get_biv_step_1 (df_ref def
, rtx reg
,
639 rtx
*inner_step
, enum machine_mode
*inner_mode
,
640 enum iv_extend_code
*extend
, enum machine_mode outer_mode
,
643 rtx set
, rhs
, op0
= NULL_RTX
, op1
= NULL_RTX
;
644 rtx next
, nextr
, tmp
;
646 rtx insn
= DF_REF_INSN (def
);
648 enum iv_grd_result res
;
650 set
= single_set (insn
);
654 rhs
= find_reg_equal_equiv_note (insn
);
660 code
= GET_CODE (rhs
);
673 if (code
== PLUS
&& CONSTANT_P (op0
))
675 tmp
= op0
; op0
= op1
; op1
= tmp
;
678 if (!simple_reg_p (op0
)
679 || !CONSTANT_P (op1
))
682 if (GET_MODE (rhs
) != outer_mode
)
684 /* ppc64 uses expressions like
686 (set x:SI (plus:SI (subreg:SI y:DI) 1)).
688 this is equivalent to
690 (set x':DI (plus:DI y:DI 1))
691 (set x:SI (subreg:SI (x':DI)). */
692 if (GET_CODE (op0
) != SUBREG
)
694 if (GET_MODE (SUBREG_REG (op0
)) != outer_mode
)
703 if (GET_MODE (rhs
) != outer_mode
)
707 if (!simple_reg_p (op0
))
717 if (GET_CODE (next
) == SUBREG
)
719 if (!subreg_lowpart_p (next
))
722 nextr
= SUBREG_REG (next
);
723 if (GET_MODE (nextr
) != outer_mode
)
729 res
= iv_get_reaching_def (insn
, nextr
, &next_def
);
731 if (res
== GRD_INVALID
|| res
== GRD_INVARIANT
)
734 if (res
== GRD_MAYBE_BIV
)
736 if (!rtx_equal_p (nextr
, reg
))
739 *inner_step
= const0_rtx
;
740 *extend
= IV_UNKNOWN_EXTEND
;
741 *inner_mode
= outer_mode
;
742 *outer_step
= const0_rtx
;
744 else if (!get_biv_step_1 (next_def
, reg
,
745 inner_step
, inner_mode
, extend
, outer_mode
,
749 if (GET_CODE (next
) == SUBREG
)
751 enum machine_mode amode
= GET_MODE (next
);
753 if (GET_MODE_SIZE (amode
) > GET_MODE_SIZE (*inner_mode
))
757 *inner_step
= simplify_gen_binary (PLUS
, outer_mode
,
758 *inner_step
, *outer_step
);
759 *outer_step
= const0_rtx
;
760 *extend
= IV_UNKNOWN_EXTEND
;
771 if (*inner_mode
== outer_mode
772 /* See comment in previous switch. */
773 || GET_MODE (rhs
) != outer_mode
)
774 *inner_step
= simplify_gen_binary (code
, outer_mode
,
777 *outer_step
= simplify_gen_binary (code
, outer_mode
,
783 gcc_assert (GET_MODE (op0
) == *inner_mode
784 && *extend
== IV_UNKNOWN_EXTEND
785 && *outer_step
== const0_rtx
);
787 *extend
= (code
== SIGN_EXTEND
) ? IV_SIGN_EXTEND
: IV_ZERO_EXTEND
;
797 /* Gets the operation on register REG inside loop, in shape
799 OUTER_STEP + EXTEND_{OUTER_MODE} (SUBREG_{INNER_MODE} (REG + INNER_STEP))
801 If the operation cannot be described in this shape, return false.
802 LAST_DEF is the definition of REG that dominates loop latch. */
805 get_biv_step (df_ref last_def
, rtx reg
, rtx
*inner_step
,
806 enum machine_mode
*inner_mode
, enum iv_extend_code
*extend
,
807 enum machine_mode
*outer_mode
, rtx
*outer_step
)
809 *outer_mode
= GET_MODE (reg
);
811 if (!get_biv_step_1 (last_def
, reg
,
812 inner_step
, inner_mode
, extend
, *outer_mode
,
816 gcc_assert ((*inner_mode
== *outer_mode
) != (*extend
!= IV_UNKNOWN_EXTEND
));
817 gcc_assert (*inner_mode
!= *outer_mode
|| *outer_step
== const0_rtx
);
822 /* Records information that DEF is induction variable IV. */
825 record_iv (df_ref def
, struct rtx_iv
*iv
)
827 struct rtx_iv
*recorded_iv
= XNEW (struct rtx_iv
);
830 check_iv_ref_table_size ();
831 DF_REF_IV_SET (def
, recorded_iv
);
834 /* If DEF was already analyzed for bivness, store the description of the biv to
835 IV and return true. Otherwise return false. */
838 analyzed_for_bivness_p (rtx def
, struct rtx_iv
*iv
)
840 struct biv_entry
*biv
=
841 (struct biv_entry
*) htab_find_with_hash (bivs
, def
, REGNO (def
));
851 record_biv (rtx def
, struct rtx_iv
*iv
)
853 struct biv_entry
*biv
= XNEW (struct biv_entry
);
854 void **slot
= htab_find_slot_with_hash (bivs
, def
, REGNO (def
), INSERT
);
856 biv
->regno
= REGNO (def
);
862 /* Determines whether DEF is a biv and if so, stores its description
866 iv_analyze_biv (rtx def
, struct rtx_iv
*iv
)
868 rtx inner_step
, outer_step
;
869 enum machine_mode inner_mode
, outer_mode
;
870 enum iv_extend_code extend
;
875 fprintf (dump_file
, "Analyzing ");
876 print_rtl (dump_file
, def
);
877 fprintf (dump_file
, " for bivness.\n");
882 if (!CONSTANT_P (def
))
885 return iv_constant (iv
, def
, VOIDmode
);
888 if (!latch_dominating_def (def
, &last_def
))
891 fprintf (dump_file
, " not simple.\n");
896 return iv_constant (iv
, def
, VOIDmode
);
898 if (analyzed_for_bivness_p (def
, iv
))
901 fprintf (dump_file
, " already analysed.\n");
902 return iv
->base
!= NULL_RTX
;
905 if (!get_biv_step (last_def
, def
, &inner_step
, &inner_mode
, &extend
,
906 &outer_mode
, &outer_step
))
912 /* Loop transforms base to es (base + inner_step) + outer_step,
913 where es means extend of subreg between inner_mode and outer_mode.
914 The corresponding induction variable is
916 es ((base - outer_step) + i * (inner_step + outer_step)) + outer_step */
918 iv
->base
= simplify_gen_binary (MINUS
, outer_mode
, def
, outer_step
);
919 iv
->step
= simplify_gen_binary (PLUS
, outer_mode
, inner_step
, outer_step
);
920 iv
->mode
= inner_mode
;
921 iv
->extend_mode
= outer_mode
;
923 iv
->mult
= const1_rtx
;
924 iv
->delta
= outer_step
;
925 iv
->first_special
= inner_mode
!= outer_mode
;
930 fprintf (dump_file
, " ");
931 dump_iv_info (dump_file
, iv
);
932 fprintf (dump_file
, "\n");
935 record_biv (def
, iv
);
936 return iv
->base
!= NULL_RTX
;
939 /* Analyzes expression RHS used at INSN and stores the result to *IV.
940 The mode of the induction variable is MODE. */
943 iv_analyze_expr (rtx insn
, rtx rhs
, enum machine_mode mode
, struct rtx_iv
*iv
)
945 rtx mby
= NULL_RTX
, tmp
;
946 rtx op0
= NULL_RTX
, op1
= NULL_RTX
;
947 struct rtx_iv iv0
, iv1
;
948 enum rtx_code code
= GET_CODE (rhs
);
949 enum machine_mode omode
= mode
;
955 gcc_assert (GET_MODE (rhs
) == mode
|| GET_MODE (rhs
) == VOIDmode
);
961 if (!iv_analyze_op (insn
, rhs
, iv
))
964 if (iv
->mode
== VOIDmode
)
967 iv
->extend_mode
= mode
;
983 omode
= GET_MODE (op0
);
995 if (!CONSTANT_P (mby
))
1001 if (!CONSTANT_P (mby
))
1006 op0
= XEXP (rhs
, 0);
1007 mby
= XEXP (rhs
, 1);
1008 if (!CONSTANT_P (mby
))
1017 && !iv_analyze_expr (insn
, op0
, omode
, &iv0
))
1021 && !iv_analyze_expr (insn
, op1
, omode
, &iv1
))
1027 if (!iv_extend (&iv0
, IV_SIGN_EXTEND
, mode
))
1032 if (!iv_extend (&iv0
, IV_ZERO_EXTEND
, mode
))
1043 if (!iv_add (&iv0
, &iv1
, code
))
1048 if (!iv_mult (&iv0
, mby
))
1053 if (!iv_shift (&iv0
, mby
))
1062 return iv
->base
!= NULL_RTX
;
1065 /* Analyzes iv DEF and stores the result to *IV. */
1068 iv_analyze_def (df_ref def
, struct rtx_iv
*iv
)
1070 rtx insn
= DF_REF_INSN (def
);
1071 rtx reg
= DF_REF_REG (def
);
1076 fprintf (dump_file
, "Analyzing def of ");
1077 print_rtl (dump_file
, reg
);
1078 fprintf (dump_file
, " in insn ");
1079 print_rtl_single (dump_file
, insn
);
1082 check_iv_ref_table_size ();
1083 if (DF_REF_IV (def
))
1086 fprintf (dump_file
, " already analysed.\n");
1087 *iv
= *DF_REF_IV (def
);
1088 return iv
->base
!= NULL_RTX
;
1091 iv
->mode
= VOIDmode
;
1092 iv
->base
= NULL_RTX
;
1093 iv
->step
= NULL_RTX
;
1098 set
= single_set (insn
);
1102 if (!REG_P (SET_DEST (set
)))
1105 gcc_assert (SET_DEST (set
) == reg
);
1106 rhs
= find_reg_equal_equiv_note (insn
);
1108 rhs
= XEXP (rhs
, 0);
1110 rhs
= SET_SRC (set
);
1112 iv_analyze_expr (insn
, rhs
, GET_MODE (reg
), iv
);
1113 record_iv (def
, iv
);
1117 print_rtl (dump_file
, reg
);
1118 fprintf (dump_file
, " in insn ");
1119 print_rtl_single (dump_file
, insn
);
1120 fprintf (dump_file
, " is ");
1121 dump_iv_info (dump_file
, iv
);
1122 fprintf (dump_file
, "\n");
1125 return iv
->base
!= NULL_RTX
;
1128 /* Analyzes operand OP of INSN and stores the result to *IV. */
1131 iv_analyze_op (rtx insn
, rtx op
, struct rtx_iv
*iv
)
1134 enum iv_grd_result res
;
1138 fprintf (dump_file
, "Analyzing operand ");
1139 print_rtl (dump_file
, op
);
1140 fprintf (dump_file
, " of insn ");
1141 print_rtl_single (dump_file
, insn
);
1144 if (function_invariant_p (op
))
1145 res
= GRD_INVARIANT
;
1146 else if (GET_CODE (op
) == SUBREG
)
1148 if (!subreg_lowpart_p (op
))
1151 if (!iv_analyze_op (insn
, SUBREG_REG (op
), iv
))
1154 return iv_subreg (iv
, GET_MODE (op
));
1158 res
= iv_get_reaching_def (insn
, op
, &def
);
1159 if (res
== GRD_INVALID
)
1162 fprintf (dump_file
, " not simple.\n");
1167 if (res
== GRD_INVARIANT
)
1169 iv_constant (iv
, op
, VOIDmode
);
1173 fprintf (dump_file
, " ");
1174 dump_iv_info (dump_file
, iv
);
1175 fprintf (dump_file
, "\n");
1180 if (res
== GRD_MAYBE_BIV
)
1181 return iv_analyze_biv (op
, iv
);
1183 return iv_analyze_def (def
, iv
);
1186 /* Analyzes value VAL at INSN and stores the result to *IV. */
1189 iv_analyze (rtx insn
, rtx val
, struct rtx_iv
*iv
)
1193 /* We must find the insn in that val is used, so that we get to UD chains.
1194 Since the function is sometimes called on result of get_condition,
1195 this does not necessarily have to be directly INSN; scan also the
1197 if (simple_reg_p (val
))
1199 if (GET_CODE (val
) == SUBREG
)
1200 reg
= SUBREG_REG (val
);
1204 while (!df_find_use (insn
, reg
))
1205 insn
= NEXT_INSN (insn
);
1208 return iv_analyze_op (insn
, val
, iv
);
1211 /* Analyzes definition of DEF in INSN and stores the result to IV. */
1214 iv_analyze_result (rtx insn
, rtx def
, struct rtx_iv
*iv
)
1218 adef
= df_find_def (insn
, def
);
1222 return iv_analyze_def (adef
, iv
);
1225 /* Checks whether definition of register REG in INSN is a basic induction
1226 variable. IV analysis must have been initialized (via a call to
1227 iv_analysis_loop_init) for this function to produce a result. */
1230 biv_p (rtx insn
, rtx reg
)
1233 df_ref def
, last_def
;
1235 if (!simple_reg_p (reg
))
1238 def
= df_find_def (insn
, reg
);
1239 gcc_assert (def
!= NULL
);
1240 if (!latch_dominating_def (reg
, &last_def
))
1242 if (last_def
!= def
)
1245 if (!iv_analyze_biv (reg
, &iv
))
1248 return iv
.step
!= const0_rtx
;
1251 /* Calculates value of IV at ITERATION-th iteration. */
1254 get_iv_value (struct rtx_iv
*iv
, rtx iteration
)
1258 /* We would need to generate some if_then_else patterns, and so far
1259 it is not needed anywhere. */
1260 gcc_assert (!iv
->first_special
);
1262 if (iv
->step
!= const0_rtx
&& iteration
!= const0_rtx
)
1263 val
= simplify_gen_binary (PLUS
, iv
->extend_mode
, iv
->base
,
1264 simplify_gen_binary (MULT
, iv
->extend_mode
,
1265 iv
->step
, iteration
));
1269 if (iv
->extend_mode
== iv
->mode
)
1272 val
= lowpart_subreg (iv
->mode
, val
, iv
->extend_mode
);
1274 if (iv
->extend
== IV_UNKNOWN_EXTEND
)
1277 val
= simplify_gen_unary (iv_extend_to_rtx_code (iv
->extend
),
1278 iv
->extend_mode
, val
, iv
->mode
);
1279 val
= simplify_gen_binary (PLUS
, iv
->extend_mode
, iv
->delta
,
1280 simplify_gen_binary (MULT
, iv
->extend_mode
,
1286 /* Free the data for an induction variable analysis. */
1289 iv_analysis_done (void)
1295 df_finish_pass (true);
1297 free (iv_ref_table
);
1298 iv_ref_table
= NULL
;
1299 iv_ref_table_size
= 0;
1304 /* Computes inverse to X modulo (1 << MOD). */
1306 static unsigned HOST_WIDEST_INT
1307 inverse (unsigned HOST_WIDEST_INT x
, int mod
)
1309 unsigned HOST_WIDEST_INT mask
=
1310 ((unsigned HOST_WIDEST_INT
) 1 << (mod
- 1) << 1) - 1;
1311 unsigned HOST_WIDEST_INT rslt
= 1;
1314 for (i
= 0; i
< mod
- 1; i
++)
1316 rslt
= (rslt
* x
) & mask
;
1323 /* Checks whether register *REG is in set ALT. Callback for for_each_rtx. */
1326 altered_reg_used (rtx
*reg
, void *alt
)
1331 return REGNO_REG_SET_P ((bitmap
) alt
, REGNO (*reg
));
1334 /* Marks registers altered by EXPR in set ALT. */
1337 mark_altered (rtx expr
, const_rtx by ATTRIBUTE_UNUSED
, void *alt
)
1339 if (GET_CODE (expr
) == SUBREG
)
1340 expr
= SUBREG_REG (expr
);
1344 SET_REGNO_REG_SET ((bitmap
) alt
, REGNO (expr
));
1347 /* Checks whether RHS is simple enough to process. */
1350 simple_rhs_p (rtx rhs
)
1354 if (function_invariant_p (rhs
)
1355 || (REG_P (rhs
) && !HARD_REGISTER_P (rhs
)))
1358 switch (GET_CODE (rhs
))
1363 op0
= XEXP (rhs
, 0);
1364 op1
= XEXP (rhs
, 1);
1365 /* Allow reg OP const and reg OP reg. */
1366 if (!(REG_P (op0
) && !HARD_REGISTER_P (op0
))
1367 && !function_invariant_p (op0
))
1369 if (!(REG_P (op1
) && !HARD_REGISTER_P (op1
))
1370 && !function_invariant_p (op1
))
1379 op0
= XEXP (rhs
, 0);
1380 op1
= XEXP (rhs
, 1);
1381 /* Allow reg OP const. */
1382 if (!(REG_P (op0
) && !HARD_REGISTER_P (op0
)))
1384 if (!function_invariant_p (op1
))
1394 /* If REG has a single definition, replace it with its known value in EXPR.
1395 Callback for for_each_rtx. */
1398 replace_single_def_regs (rtx
*reg
, void *expr1
)
1403 rtx
*expr
= (rtx
*)expr1
;
1408 regno
= REGNO (*reg
);
1412 adef
= DF_REG_DEF_CHAIN (regno
);
1413 if (adef
== NULL
|| DF_REF_NEXT_REG (adef
) != NULL
1414 || DF_REF_IS_ARTIFICIAL (adef
))
1417 set
= single_set (DF_REF_INSN (adef
));
1418 if (set
== NULL
|| !REG_P (SET_DEST (set
))
1419 || REGNO (SET_DEST (set
)) != regno
)
1422 note
= find_reg_equal_equiv_note (DF_REF_INSN (adef
));
1424 if (note
&& function_invariant_p (XEXP (note
, 0)))
1426 src
= XEXP (note
, 0);
1429 src
= SET_SRC (set
);
1433 regno
= REGNO (src
);
1438 if (!function_invariant_p (src
))
1441 *expr
= simplify_replace_rtx (*expr
, *reg
, src
);
1445 /* A subroutine of simplify_using_initial_values, this function examines INSN
1446 to see if it contains a suitable set that we can use to make a replacement.
1447 If it is suitable, return true and set DEST and SRC to the lhs and rhs of
1448 the set; return false otherwise. */
1451 suitable_set_for_replacement (rtx insn
, rtx
*dest
, rtx
*src
)
1453 rtx set
= single_set (insn
);
1454 rtx lhs
= NULL_RTX
, rhs
;
1459 lhs
= SET_DEST (set
);
1463 rhs
= find_reg_equal_equiv_note (insn
);
1465 rhs
= XEXP (rhs
, 0);
1467 rhs
= SET_SRC (set
);
1469 if (!simple_rhs_p (rhs
))
1477 /* Using the data returned by suitable_set_for_replacement, replace DEST
1478 with SRC in *EXPR and return the new expression. Also call
1479 replace_single_def_regs if the replacement changed something. */
1481 replace_in_expr (rtx
*expr
, rtx dest
, rtx src
)
1484 *expr
= simplify_replace_rtx (*expr
, dest
, src
);
1487 while (for_each_rtx (expr
, replace_single_def_regs
, expr
) != 0)
1491 /* Checks whether A implies B. */
1494 implies_p (rtx a
, rtx b
)
1496 rtx op0
, op1
, opb0
, opb1
, r
;
1497 enum machine_mode mode
;
1499 if (GET_CODE (a
) == EQ
)
1506 r
= simplify_replace_rtx (b
, op0
, op1
);
1507 if (r
== const_true_rtx
)
1513 r
= simplify_replace_rtx (b
, op1
, op0
);
1514 if (r
== const_true_rtx
)
1519 if (b
== const_true_rtx
)
1522 if ((GET_RTX_CLASS (GET_CODE (a
)) != RTX_COMM_COMPARE
1523 && GET_RTX_CLASS (GET_CODE (a
)) != RTX_COMPARE
)
1524 || (GET_RTX_CLASS (GET_CODE (b
)) != RTX_COMM_COMPARE
1525 && GET_RTX_CLASS (GET_CODE (b
)) != RTX_COMPARE
))
1533 mode
= GET_MODE (op0
);
1534 if (mode
!= GET_MODE (opb0
))
1536 else if (mode
== VOIDmode
)
1538 mode
= GET_MODE (op1
);
1539 if (mode
!= GET_MODE (opb1
))
1543 /* A < B implies A + 1 <= B. */
1544 if ((GET_CODE (a
) == GT
|| GET_CODE (a
) == LT
)
1545 && (GET_CODE (b
) == GE
|| GET_CODE (b
) == LE
))
1548 if (GET_CODE (a
) == GT
)
1555 if (GET_CODE (b
) == GE
)
1562 if (SCALAR_INT_MODE_P (mode
)
1563 && rtx_equal_p (op1
, opb1
)
1564 && simplify_gen_binary (MINUS
, mode
, opb0
, op0
) == const1_rtx
)
1569 /* A < B or A > B imply A != B. TODO: Likewise
1570 A + n < B implies A != B + n if neither wraps. */
1571 if (GET_CODE (b
) == NE
1572 && (GET_CODE (a
) == GT
|| GET_CODE (a
) == GTU
1573 || GET_CODE (a
) == LT
|| GET_CODE (a
) == LTU
))
1575 if (rtx_equal_p (op0
, opb0
)
1576 && rtx_equal_p (op1
, opb1
))
1580 /* For unsigned comparisons, A != 0 implies A > 0 and A >= 1. */
1581 if (GET_CODE (a
) == NE
1582 && op1
== const0_rtx
)
1584 if ((GET_CODE (b
) == GTU
1585 && opb1
== const0_rtx
)
1586 || (GET_CODE (b
) == GEU
1587 && opb1
== const1_rtx
))
1588 return rtx_equal_p (op0
, opb0
);
1591 /* A != N is equivalent to A - (N + 1) <u -1. */
1592 if (GET_CODE (a
) == NE
1593 && CONST_INT_P (op1
)
1594 && GET_CODE (b
) == LTU
1595 && opb1
== constm1_rtx
1596 && GET_CODE (opb0
) == PLUS
1597 && CONST_INT_P (XEXP (opb0
, 1))
1598 /* Avoid overflows. */
1599 && ((unsigned HOST_WIDE_INT
) INTVAL (XEXP (opb0
, 1))
1600 != ((unsigned HOST_WIDE_INT
)1
1601 << (HOST_BITS_PER_WIDE_INT
- 1)) - 1)
1602 && INTVAL (XEXP (opb0
, 1)) + 1 == -INTVAL (op1
))
1603 return rtx_equal_p (op0
, XEXP (opb0
, 0));
1605 /* Likewise, A != N implies A - N > 0. */
1606 if (GET_CODE (a
) == NE
1607 && CONST_INT_P (op1
))
1609 if (GET_CODE (b
) == GTU
1610 && GET_CODE (opb0
) == PLUS
1611 && opb1
== const0_rtx
1612 && CONST_INT_P (XEXP (opb0
, 1))
1613 /* Avoid overflows. */
1614 && ((unsigned HOST_WIDE_INT
) INTVAL (XEXP (opb0
, 1))
1615 != ((unsigned HOST_WIDE_INT
) 1 << (HOST_BITS_PER_WIDE_INT
- 1)))
1616 && rtx_equal_p (XEXP (opb0
, 0), op0
))
1617 return INTVAL (op1
) == -INTVAL (XEXP (opb0
, 1));
1618 if (GET_CODE (b
) == GEU
1619 && GET_CODE (opb0
) == PLUS
1620 && opb1
== const1_rtx
1621 && CONST_INT_P (XEXP (opb0
, 1))
1622 /* Avoid overflows. */
1623 && ((unsigned HOST_WIDE_INT
) INTVAL (XEXP (opb0
, 1))
1624 != ((unsigned HOST_WIDE_INT
) 1 << (HOST_BITS_PER_WIDE_INT
- 1)))
1625 && rtx_equal_p (XEXP (opb0
, 0), op0
))
1626 return INTVAL (op1
) == -INTVAL (XEXP (opb0
, 1));
1629 /* A >s X, where X is positive, implies A <u Y, if Y is negative. */
1630 if ((GET_CODE (a
) == GT
|| GET_CODE (a
) == GE
)
1631 && CONST_INT_P (op1
)
1632 && ((GET_CODE (a
) == GT
&& op1
== constm1_rtx
)
1633 || INTVAL (op1
) >= 0)
1634 && GET_CODE (b
) == LTU
1635 && CONST_INT_P (opb1
)
1636 && rtx_equal_p (op0
, opb0
))
1637 return INTVAL (opb1
) < 0;
1642 /* Canonicalizes COND so that
1644 (1) Ensure that operands are ordered according to
1645 swap_commutative_operands_p.
1646 (2) (LE x const) will be replaced with (LT x <const+1>) and similarly
1647 for GE, GEU, and LEU. */
1650 canon_condition (rtx cond
)
1655 enum machine_mode mode
;
1657 code
= GET_CODE (cond
);
1658 op0
= XEXP (cond
, 0);
1659 op1
= XEXP (cond
, 1);
1661 if (swap_commutative_operands_p (op0
, op1
))
1663 code
= swap_condition (code
);
1669 mode
= GET_MODE (op0
);
1670 if (mode
== VOIDmode
)
1671 mode
= GET_MODE (op1
);
1672 gcc_assert (mode
!= VOIDmode
);
1674 if (CONST_INT_P (op1
)
1675 && GET_MODE_CLASS (mode
) != MODE_CC
1676 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
1678 HOST_WIDE_INT const_val
= INTVAL (op1
);
1679 unsigned HOST_WIDE_INT uconst_val
= const_val
;
1680 unsigned HOST_WIDE_INT max_val
1681 = (unsigned HOST_WIDE_INT
) GET_MODE_MASK (mode
);
1686 if ((unsigned HOST_WIDE_INT
) const_val
!= max_val
>> 1)
1687 code
= LT
, op1
= gen_int_mode (const_val
+ 1, GET_MODE (op0
));
1690 /* When cross-compiling, const_val might be sign-extended from
1691 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
1693 if ((HOST_WIDE_INT
) (const_val
& max_val
)
1694 != (((HOST_WIDE_INT
) 1
1695 << (GET_MODE_BITSIZE (GET_MODE (op0
)) - 1))))
1696 code
= GT
, op1
= gen_int_mode (const_val
- 1, mode
);
1700 if (uconst_val
< max_val
)
1701 code
= LTU
, op1
= gen_int_mode (uconst_val
+ 1, mode
);
1705 if (uconst_val
!= 0)
1706 code
= GTU
, op1
= gen_int_mode (uconst_val
- 1, mode
);
1714 if (op0
!= XEXP (cond
, 0)
1715 || op1
!= XEXP (cond
, 1)
1716 || code
!= GET_CODE (cond
)
1717 || GET_MODE (cond
) != SImode
)
1718 cond
= gen_rtx_fmt_ee (code
, SImode
, op0
, op1
);
1723 /* Tries to use the fact that COND holds to simplify EXPR. ALTERED is the
1724 set of altered regs. */
1727 simplify_using_condition (rtx cond
, rtx
*expr
, regset altered
)
1729 rtx rev
, reve
, exp
= *expr
;
1731 /* If some register gets altered later, we do not really speak about its
1732 value at the time of comparison. */
1734 && for_each_rtx (&cond
, altered_reg_used
, altered
))
1737 if (GET_CODE (cond
) == EQ
1738 && REG_P (XEXP (cond
, 0)) && CONSTANT_P (XEXP (cond
, 1)))
1740 *expr
= simplify_replace_rtx (*expr
, XEXP (cond
, 0), XEXP (cond
, 1));
1744 if (!COMPARISON_P (exp
))
1747 rev
= reversed_condition (cond
);
1748 reve
= reversed_condition (exp
);
1750 cond
= canon_condition (cond
);
1751 exp
= canon_condition (exp
);
1753 rev
= canon_condition (rev
);
1755 reve
= canon_condition (reve
);
1757 if (rtx_equal_p (exp
, cond
))
1759 *expr
= const_true_rtx
;
1763 if (rev
&& rtx_equal_p (exp
, rev
))
1769 if (implies_p (cond
, exp
))
1771 *expr
= const_true_rtx
;
1775 if (reve
&& implies_p (cond
, reve
))
1781 /* A proof by contradiction. If *EXPR implies (not cond), *EXPR must
1783 if (rev
&& implies_p (exp
, rev
))
1789 /* Similarly, If (not *EXPR) implies (not cond), *EXPR must be true. */
1790 if (rev
&& reve
&& implies_p (reve
, rev
))
1792 *expr
= const_true_rtx
;
1796 /* We would like to have some other tests here. TODO. */
1801 /* Use relationship between A and *B to eventually eliminate *B.
1802 OP is the operation we consider. */
1805 eliminate_implied_condition (enum rtx_code op
, rtx a
, rtx
*b
)
1810 /* If A implies *B, we may replace *B by true. */
1811 if (implies_p (a
, *b
))
1812 *b
= const_true_rtx
;
1816 /* If *B implies A, we may replace *B by false. */
1817 if (implies_p (*b
, a
))
1826 /* Eliminates the conditions in TAIL that are implied by HEAD. OP is the
1827 operation we consider. */
1830 eliminate_implied_conditions (enum rtx_code op
, rtx
*head
, rtx tail
)
1834 for (elt
= tail
; elt
; elt
= XEXP (elt
, 1))
1835 eliminate_implied_condition (op
, *head
, &XEXP (elt
, 0));
1836 for (elt
= tail
; elt
; elt
= XEXP (elt
, 1))
1837 eliminate_implied_condition (op
, XEXP (elt
, 0), head
);
1840 /* Simplifies *EXPR using initial values at the start of the LOOP. If *EXPR
1841 is a list, its elements are assumed to be combined using OP. */
1844 simplify_using_initial_values (struct loop
*loop
, enum rtx_code op
, rtx
*expr
)
1846 bool expression_valid
;
1847 rtx head
, tail
, insn
, cond_list
, last_valid_expr
;
1849 regset altered
, this_altered
;
1855 if (CONSTANT_P (*expr
))
1858 if (GET_CODE (*expr
) == EXPR_LIST
)
1860 head
= XEXP (*expr
, 0);
1861 tail
= XEXP (*expr
, 1);
1863 eliminate_implied_conditions (op
, &head
, tail
);
1868 neutral
= const_true_rtx
;
1873 neutral
= const0_rtx
;
1874 aggr
= const_true_rtx
;
1881 simplify_using_initial_values (loop
, UNKNOWN
, &head
);
1884 XEXP (*expr
, 0) = aggr
;
1885 XEXP (*expr
, 1) = NULL_RTX
;
1888 else if (head
== neutral
)
1891 simplify_using_initial_values (loop
, op
, expr
);
1894 simplify_using_initial_values (loop
, op
, &tail
);
1896 if (tail
&& XEXP (tail
, 0) == aggr
)
1902 XEXP (*expr
, 0) = head
;
1903 XEXP (*expr
, 1) = tail
;
1907 gcc_assert (op
== UNKNOWN
);
1910 if (for_each_rtx (expr
, replace_single_def_regs
, expr
) == 0)
1912 if (CONSTANT_P (*expr
))
1915 e
= loop_preheader_edge (loop
);
1916 if (e
->src
== ENTRY_BLOCK_PTR
)
1919 altered
= ALLOC_REG_SET (®_obstack
);
1920 this_altered
= ALLOC_REG_SET (®_obstack
);
1922 expression_valid
= true;
1923 last_valid_expr
= *expr
;
1924 cond_list
= NULL_RTX
;
1927 insn
= BB_END (e
->src
);
1928 if (any_condjump_p (insn
))
1930 rtx cond
= get_condition (BB_END (e
->src
), NULL
, false, true);
1932 if (cond
&& (e
->flags
& EDGE_FALLTHRU
))
1933 cond
= reversed_condition (cond
);
1937 simplify_using_condition (cond
, expr
, altered
);
1941 if (CONSTANT_P (*expr
))
1943 for (note
= cond_list
; note
; note
= XEXP (note
, 1))
1945 simplify_using_condition (XEXP (note
, 0), expr
, altered
);
1946 if (CONSTANT_P (*expr
))
1950 cond_list
= alloc_EXPR_LIST (0, cond
, cond_list
);
1954 FOR_BB_INSNS_REVERSE (e
->src
, insn
)
1962 CLEAR_REG_SET (this_altered
);
1963 note_stores (PATTERN (insn
), mark_altered
, this_altered
);
1968 /* Kill all call clobbered registers. */
1969 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1970 if (TEST_HARD_REG_BIT (regs_invalidated_by_call
, i
))
1971 SET_REGNO_REG_SET (this_altered
, i
);
1974 if (suitable_set_for_replacement (insn
, &dest
, &src
))
1976 rtx
*pnote
, *pnote_next
;
1978 replace_in_expr (expr
, dest
, src
);
1979 if (CONSTANT_P (*expr
))
1982 for (pnote
= &cond_list
; *pnote
; pnote
= pnote_next
)
1985 rtx old_cond
= XEXP (note
, 0);
1987 pnote_next
= &XEXP (note
, 1);
1988 replace_in_expr (&XEXP (note
, 0), dest
, src
);
1990 /* We can no longer use a condition that has been simplified
1991 to a constant, and simplify_using_condition will abort if
1993 if (CONSTANT_P (XEXP (note
, 0)))
1995 *pnote
= *pnote_next
;
1997 free_EXPR_LIST_node (note
);
1999 /* Retry simplifications with this condition if either the
2000 expression or the condition changed. */
2001 else if (old_cond
!= XEXP (note
, 0) || old
!= *expr
)
2002 simplify_using_condition (XEXP (note
, 0), expr
, altered
);
2006 /* If we did not use this insn to make a replacement, any overlap
2007 between stores in this insn and our expression will cause the
2008 expression to become invalid. */
2009 if (for_each_rtx (expr
, altered_reg_used
, this_altered
))
2012 if (CONSTANT_P (*expr
))
2015 IOR_REG_SET (altered
, this_altered
);
2017 /* If the expression now contains regs that have been altered, we
2018 can't return it to the caller. However, it is still valid for
2019 further simplification, so keep searching to see if we can
2020 eventually turn it into a constant. */
2021 if (for_each_rtx (expr
, altered_reg_used
, altered
))
2022 expression_valid
= false;
2023 if (expression_valid
)
2024 last_valid_expr
= *expr
;
2027 if (!single_pred_p (e
->src
)
2028 || single_pred (e
->src
) == ENTRY_BLOCK_PTR
)
2030 e
= single_pred_edge (e
->src
);
2034 free_EXPR_LIST_list (&cond_list
);
2035 if (!CONSTANT_P (*expr
))
2036 *expr
= last_valid_expr
;
2037 FREE_REG_SET (altered
);
2038 FREE_REG_SET (this_altered
);
2041 /* Transforms invariant IV into MODE. Adds assumptions based on the fact
2042 that IV occurs as left operands of comparison COND and its signedness
2043 is SIGNED_P to DESC. */
2046 shorten_into_mode (struct rtx_iv
*iv
, enum machine_mode mode
,
2047 enum rtx_code cond
, bool signed_p
, struct niter_desc
*desc
)
2049 rtx mmin
, mmax
, cond_over
, cond_under
;
2051 get_mode_bounds (mode
, signed_p
, iv
->extend_mode
, &mmin
, &mmax
);
2052 cond_under
= simplify_gen_relational (LT
, SImode
, iv
->extend_mode
,
2054 cond_over
= simplify_gen_relational (GT
, SImode
, iv
->extend_mode
,
2063 if (cond_under
!= const0_rtx
)
2065 alloc_EXPR_LIST (0, cond_under
, desc
->infinite
);
2066 if (cond_over
!= const0_rtx
)
2067 desc
->noloop_assumptions
=
2068 alloc_EXPR_LIST (0, cond_over
, desc
->noloop_assumptions
);
2075 if (cond_over
!= const0_rtx
)
2077 alloc_EXPR_LIST (0, cond_over
, desc
->infinite
);
2078 if (cond_under
!= const0_rtx
)
2079 desc
->noloop_assumptions
=
2080 alloc_EXPR_LIST (0, cond_under
, desc
->noloop_assumptions
);
2084 if (cond_over
!= const0_rtx
)
2086 alloc_EXPR_LIST (0, cond_over
, desc
->infinite
);
2087 if (cond_under
!= const0_rtx
)
2089 alloc_EXPR_LIST (0, cond_under
, desc
->infinite
);
2097 iv
->extend
= signed_p
? IV_SIGN_EXTEND
: IV_ZERO_EXTEND
;
2100 /* Transforms IV0 and IV1 compared by COND so that they are both compared as
2101 subregs of the same mode if possible (sometimes it is necessary to add
2102 some assumptions to DESC). */
2105 canonicalize_iv_subregs (struct rtx_iv
*iv0
, struct rtx_iv
*iv1
,
2106 enum rtx_code cond
, struct niter_desc
*desc
)
2108 enum machine_mode comp_mode
;
2111 /* If the ivs behave specially in the first iteration, or are
2112 added/multiplied after extending, we ignore them. */
2113 if (iv0
->first_special
|| iv0
->mult
!= const1_rtx
|| iv0
->delta
!= const0_rtx
)
2115 if (iv1
->first_special
|| iv1
->mult
!= const1_rtx
|| iv1
->delta
!= const0_rtx
)
2118 /* If there is some extend, it must match signedness of the comparison. */
2123 if (iv0
->extend
== IV_ZERO_EXTEND
2124 || iv1
->extend
== IV_ZERO_EXTEND
)
2131 if (iv0
->extend
== IV_SIGN_EXTEND
2132 || iv1
->extend
== IV_SIGN_EXTEND
)
2138 if (iv0
->extend
!= IV_UNKNOWN_EXTEND
2139 && iv1
->extend
!= IV_UNKNOWN_EXTEND
2140 && iv0
->extend
!= iv1
->extend
)
2144 if (iv0
->extend
!= IV_UNKNOWN_EXTEND
)
2145 signed_p
= iv0
->extend
== IV_SIGN_EXTEND
;
2146 if (iv1
->extend
!= IV_UNKNOWN_EXTEND
)
2147 signed_p
= iv1
->extend
== IV_SIGN_EXTEND
;
2154 /* Values of both variables should be computed in the same mode. These
2155 might indeed be different, if we have comparison like
2157 (compare (subreg:SI (iv0)) (subreg:SI (iv1)))
2159 and iv0 and iv1 are both ivs iterating in SI mode, but calculated
2160 in different modes. This does not seem impossible to handle, but
2161 it hardly ever occurs in practice.
2163 The only exception is the case when one of operands is invariant.
2164 For example pentium 3 generates comparisons like
2165 (lt (subreg:HI (reg:SI)) 100). Here we assign HImode to 100, but we
2166 definitely do not want this prevent the optimization. */
2167 comp_mode
= iv0
->extend_mode
;
2168 if (GET_MODE_BITSIZE (comp_mode
) < GET_MODE_BITSIZE (iv1
->extend_mode
))
2169 comp_mode
= iv1
->extend_mode
;
2171 if (iv0
->extend_mode
!= comp_mode
)
2173 if (iv0
->mode
!= iv0
->extend_mode
2174 || iv0
->step
!= const0_rtx
)
2177 iv0
->base
= simplify_gen_unary (signed_p
? SIGN_EXTEND
: ZERO_EXTEND
,
2178 comp_mode
, iv0
->base
, iv0
->mode
);
2179 iv0
->extend_mode
= comp_mode
;
2182 if (iv1
->extend_mode
!= comp_mode
)
2184 if (iv1
->mode
!= iv1
->extend_mode
2185 || iv1
->step
!= const0_rtx
)
2188 iv1
->base
= simplify_gen_unary (signed_p
? SIGN_EXTEND
: ZERO_EXTEND
,
2189 comp_mode
, iv1
->base
, iv1
->mode
);
2190 iv1
->extend_mode
= comp_mode
;
2193 /* Check that both ivs belong to a range of a single mode. If one of the
2194 operands is an invariant, we may need to shorten it into the common
2196 if (iv0
->mode
== iv0
->extend_mode
2197 && iv0
->step
== const0_rtx
2198 && iv0
->mode
!= iv1
->mode
)
2199 shorten_into_mode (iv0
, iv1
->mode
, cond
, signed_p
, desc
);
2201 if (iv1
->mode
== iv1
->extend_mode
2202 && iv1
->step
== const0_rtx
2203 && iv0
->mode
!= iv1
->mode
)
2204 shorten_into_mode (iv1
, iv0
->mode
, swap_condition (cond
), signed_p
, desc
);
2206 if (iv0
->mode
!= iv1
->mode
)
2209 desc
->mode
= iv0
->mode
;
2210 desc
->signed_p
= signed_p
;
2215 /* Tries to estimate the maximum number of iterations in LOOP, and return the
2216 result. This function is called from iv_number_of_iterations with
2217 a number of fields in DESC already filled in. OLD_NITER is the original
2218 expression for the number of iterations, before we tried to simplify it. */
2220 static unsigned HOST_WIDEST_INT
2221 determine_max_iter (struct loop
*loop
, struct niter_desc
*desc
, rtx old_niter
)
2223 rtx niter
= desc
->niter_expr
;
2224 rtx mmin
, mmax
, cmp
;
2225 unsigned HOST_WIDEST_INT nmax
, inc
;
2227 if (GET_CODE (niter
) == AND
2228 && CONST_INT_P (XEXP (niter
, 0)))
2230 nmax
= INTVAL (XEXP (niter
, 0));
2231 if (!(nmax
& (nmax
+ 1)))
2235 get_mode_bounds (desc
->mode
, desc
->signed_p
, desc
->mode
, &mmin
, &mmax
);
2236 nmax
= INTVAL (mmax
) - INTVAL (mmin
);
2238 if (GET_CODE (niter
) == UDIV
)
2240 if (!CONST_INT_P (XEXP (niter
, 1)))
2242 inc
= INTVAL (XEXP (niter
, 1));
2243 niter
= XEXP (niter
, 0);
2248 /* We could use a binary search here, but for now improving the upper
2249 bound by just one eliminates one important corner case. */
2250 cmp
= simplify_gen_relational (desc
->signed_p
? LT
: LTU
, VOIDmode
,
2251 desc
->mode
, old_niter
, mmax
);
2252 simplify_using_initial_values (loop
, UNKNOWN
, &cmp
);
2253 if (cmp
== const_true_rtx
)
2258 fprintf (dump_file
, ";; improved upper bound by one.\n");
2263 /* Computes number of iterations of the CONDITION in INSN in LOOP and stores
2264 the result into DESC. Very similar to determine_number_of_iterations
2265 (basically its rtl version), complicated by things like subregs. */
2268 iv_number_of_iterations (struct loop
*loop
, rtx insn
, rtx condition
,
2269 struct niter_desc
*desc
)
2271 rtx op0
, op1
, delta
, step
, bound
, may_xform
, tmp
, tmp0
, tmp1
;
2272 struct rtx_iv iv0
, iv1
, tmp_iv
;
2273 rtx assumption
, may_not_xform
;
2275 enum machine_mode mode
, comp_mode
;
2276 rtx mmin
, mmax
, mode_mmin
, mode_mmax
;
2277 unsigned HOST_WIDEST_INT s
, size
, d
, inv
, max
;
2278 HOST_WIDEST_INT up
, down
, inc
, step_val
;
2279 int was_sharp
= false;
2283 /* The meaning of these assumptions is this:
2285 then the rest of information does not have to be valid
2286 if noloop_assumptions then the loop does not roll
2287 if infinite then this exit is never used */
2289 desc
->assumptions
= NULL_RTX
;
2290 desc
->noloop_assumptions
= NULL_RTX
;
2291 desc
->infinite
= NULL_RTX
;
2292 desc
->simple_p
= true;
2294 desc
->const_iter
= false;
2295 desc
->niter_expr
= NULL_RTX
;
2296 desc
->niter_max
= 0;
2297 if (loop
->any_upper_bound
2298 && double_int_fits_in_uhwi_p (loop
->nb_iterations_upper_bound
))
2299 desc
->niter_max
= loop
->nb_iterations_upper_bound
.low
;
2301 cond
= GET_CODE (condition
);
2302 gcc_assert (COMPARISON_P (condition
));
2304 mode
= GET_MODE (XEXP (condition
, 0));
2305 if (mode
== VOIDmode
)
2306 mode
= GET_MODE (XEXP (condition
, 1));
2307 /* The constant comparisons should be folded. */
2308 gcc_assert (mode
!= VOIDmode
);
2310 /* We only handle integers or pointers. */
2311 if (GET_MODE_CLASS (mode
) != MODE_INT
2312 && GET_MODE_CLASS (mode
) != MODE_PARTIAL_INT
)
2315 op0
= XEXP (condition
, 0);
2316 if (!iv_analyze (insn
, op0
, &iv0
))
2318 if (iv0
.extend_mode
== VOIDmode
)
2319 iv0
.mode
= iv0
.extend_mode
= mode
;
2321 op1
= XEXP (condition
, 1);
2322 if (!iv_analyze (insn
, op1
, &iv1
))
2324 if (iv1
.extend_mode
== VOIDmode
)
2325 iv1
.mode
= iv1
.extend_mode
= mode
;
2327 if (GET_MODE_BITSIZE (iv0
.extend_mode
) > HOST_BITS_PER_WIDE_INT
2328 || GET_MODE_BITSIZE (iv1
.extend_mode
) > HOST_BITS_PER_WIDE_INT
)
2331 /* Check condition and normalize it. */
2339 tmp_iv
= iv0
; iv0
= iv1
; iv1
= tmp_iv
;
2340 cond
= swap_condition (cond
);
2352 /* Handle extends. This is relatively nontrivial, so we only try in some
2353 easy cases, when we can canonicalize the ivs (possibly by adding some
2354 assumptions) to shape subreg (base + i * step). This function also fills
2355 in desc->mode and desc->signed_p. */
2357 if (!canonicalize_iv_subregs (&iv0
, &iv1
, cond
, desc
))
2360 comp_mode
= iv0
.extend_mode
;
2362 size
= GET_MODE_BITSIZE (mode
);
2363 get_mode_bounds (mode
, (cond
== LE
|| cond
== LT
), comp_mode
, &mmin
, &mmax
);
2364 mode_mmin
= lowpart_subreg (mode
, mmin
, comp_mode
);
2365 mode_mmax
= lowpart_subreg (mode
, mmax
, comp_mode
);
2367 if (!CONST_INT_P (iv0
.step
) || !CONST_INT_P (iv1
.step
))
2370 /* We can take care of the case of two induction variables chasing each other
2371 if the test is NE. I have never seen a loop using it, but still it is
2373 if (iv0
.step
!= const0_rtx
&& iv1
.step
!= const0_rtx
)
2378 iv0
.step
= simplify_gen_binary (MINUS
, comp_mode
, iv0
.step
, iv1
.step
);
2379 iv1
.step
= const0_rtx
;
2382 /* This is either infinite loop or the one that ends immediately, depending
2383 on initial values. Unswitching should remove this kind of conditions. */
2384 if (iv0
.step
== const0_rtx
&& iv1
.step
== const0_rtx
)
2389 if (iv0
.step
== const0_rtx
)
2390 step_val
= -INTVAL (iv1
.step
);
2392 step_val
= INTVAL (iv0
.step
);
2394 /* Ignore loops of while (i-- < 10) type. */
2398 step_is_pow2
= !(step_val
& (step_val
- 1));
2402 /* We do not care about whether the step is power of two in this
2404 step_is_pow2
= false;
2408 /* Some more condition normalization. We must record some assumptions
2409 due to overflows. */
2414 /* We want to take care only of non-sharp relationals; this is easy,
2415 as in cases the overflow would make the transformation unsafe
2416 the loop does not roll. Seemingly it would make more sense to want
2417 to take care of sharp relationals instead, as NE is more similar to
2418 them, but the problem is that here the transformation would be more
2419 difficult due to possibly infinite loops. */
2420 if (iv0
.step
== const0_rtx
)
2422 tmp
= lowpart_subreg (mode
, iv0
.base
, comp_mode
);
2423 assumption
= simplify_gen_relational (EQ
, SImode
, mode
, tmp
,
2425 if (assumption
== const_true_rtx
)
2426 goto zero_iter_simplify
;
2427 iv0
.base
= simplify_gen_binary (PLUS
, comp_mode
,
2428 iv0
.base
, const1_rtx
);
2432 tmp
= lowpart_subreg (mode
, iv1
.base
, comp_mode
);
2433 assumption
= simplify_gen_relational (EQ
, SImode
, mode
, tmp
,
2435 if (assumption
== const_true_rtx
)
2436 goto zero_iter_simplify
;
2437 iv1
.base
= simplify_gen_binary (PLUS
, comp_mode
,
2438 iv1
.base
, constm1_rtx
);
2441 if (assumption
!= const0_rtx
)
2442 desc
->noloop_assumptions
=
2443 alloc_EXPR_LIST (0, assumption
, desc
->noloop_assumptions
);
2444 cond
= (cond
== LT
) ? LE
: LEU
;
2446 /* It will be useful to be able to tell the difference once more in
2447 LE -> NE reduction. */
2453 /* Take care of trivially infinite loops. */
2456 if (iv0
.step
== const0_rtx
)
2458 tmp
= lowpart_subreg (mode
, iv0
.base
, comp_mode
);
2459 if (rtx_equal_p (tmp
, mode_mmin
))
2462 alloc_EXPR_LIST (0, const_true_rtx
, NULL_RTX
);
2463 /* Fill in the remaining fields somehow. */
2464 goto zero_iter_simplify
;
2469 tmp
= lowpart_subreg (mode
, iv1
.base
, comp_mode
);
2470 if (rtx_equal_p (tmp
, mode_mmax
))
2473 alloc_EXPR_LIST (0, const_true_rtx
, NULL_RTX
);
2474 /* Fill in the remaining fields somehow. */
2475 goto zero_iter_simplify
;
2480 /* If we can we want to take care of NE conditions instead of size
2481 comparisons, as they are much more friendly (most importantly
2482 this takes care of special handling of loops with step 1). We can
2483 do it if we first check that upper bound is greater or equal to
2484 lower bound, their difference is constant c modulo step and that
2485 there is not an overflow. */
2488 if (iv0
.step
== const0_rtx
)
2489 step
= simplify_gen_unary (NEG
, comp_mode
, iv1
.step
, comp_mode
);
2492 delta
= simplify_gen_binary (MINUS
, comp_mode
, iv1
.base
, iv0
.base
);
2493 delta
= lowpart_subreg (mode
, delta
, comp_mode
);
2494 delta
= simplify_gen_binary (UMOD
, mode
, delta
, step
);
2495 may_xform
= const0_rtx
;
2496 may_not_xform
= const_true_rtx
;
2498 if (CONST_INT_P (delta
))
2500 if (was_sharp
&& INTVAL (delta
) == INTVAL (step
) - 1)
2502 /* A special case. We have transformed condition of type
2503 for (i = 0; i < 4; i += 4)
2505 for (i = 0; i <= 3; i += 4)
2506 obviously if the test for overflow during that transformation
2507 passed, we cannot overflow here. Most importantly any
2508 loop with sharp end condition and step 1 falls into this
2509 category, so handling this case specially is definitely
2510 worth the troubles. */
2511 may_xform
= const_true_rtx
;
2513 else if (iv0
.step
== const0_rtx
)
2515 bound
= simplify_gen_binary (PLUS
, comp_mode
, mmin
, step
);
2516 bound
= simplify_gen_binary (MINUS
, comp_mode
, bound
, delta
);
2517 bound
= lowpart_subreg (mode
, bound
, comp_mode
);
2518 tmp
= lowpart_subreg (mode
, iv0
.base
, comp_mode
);
2519 may_xform
= simplify_gen_relational (cond
, SImode
, mode
,
2521 may_not_xform
= simplify_gen_relational (reverse_condition (cond
),
2527 bound
= simplify_gen_binary (MINUS
, comp_mode
, mmax
, step
);
2528 bound
= simplify_gen_binary (PLUS
, comp_mode
, bound
, delta
);
2529 bound
= lowpart_subreg (mode
, bound
, comp_mode
);
2530 tmp
= lowpart_subreg (mode
, iv1
.base
, comp_mode
);
2531 may_xform
= simplify_gen_relational (cond
, SImode
, mode
,
2533 may_not_xform
= simplify_gen_relational (reverse_condition (cond
),
2539 if (may_xform
!= const0_rtx
)
2541 /* We perform the transformation always provided that it is not
2542 completely senseless. This is OK, as we would need this assumption
2543 to determine the number of iterations anyway. */
2544 if (may_xform
!= const_true_rtx
)
2546 /* If the step is a power of two and the final value we have
2547 computed overflows, the cycle is infinite. Otherwise it
2548 is nontrivial to compute the number of iterations. */
2550 desc
->infinite
= alloc_EXPR_LIST (0, may_not_xform
,
2553 desc
->assumptions
= alloc_EXPR_LIST (0, may_xform
,
2557 /* We are going to lose some information about upper bound on
2558 number of iterations in this step, so record the information
2560 inc
= INTVAL (iv0
.step
) - INTVAL (iv1
.step
);
2561 if (CONST_INT_P (iv1
.base
))
2562 up
= INTVAL (iv1
.base
);
2564 up
= INTVAL (mode_mmax
) - inc
;
2565 down
= INTVAL (CONST_INT_P (iv0
.base
)
2568 max
= (up
- down
) / inc
+ 1;
2569 if (!desc
->niter_max
2570 || max
< desc
->niter_max
)
2571 desc
->niter_max
= max
;
2573 if (iv0
.step
== const0_rtx
)
2575 iv0
.base
= simplify_gen_binary (PLUS
, comp_mode
, iv0
.base
, delta
);
2576 iv0
.base
= simplify_gen_binary (MINUS
, comp_mode
, iv0
.base
, step
);
2580 iv1
.base
= simplify_gen_binary (MINUS
, comp_mode
, iv1
.base
, delta
);
2581 iv1
.base
= simplify_gen_binary (PLUS
, comp_mode
, iv1
.base
, step
);
2584 tmp0
= lowpart_subreg (mode
, iv0
.base
, comp_mode
);
2585 tmp1
= lowpart_subreg (mode
, iv1
.base
, comp_mode
);
2586 assumption
= simplify_gen_relational (reverse_condition (cond
),
2587 SImode
, mode
, tmp0
, tmp1
);
2588 if (assumption
== const_true_rtx
)
2589 goto zero_iter_simplify
;
2590 else if (assumption
!= const0_rtx
)
2591 desc
->noloop_assumptions
=
2592 alloc_EXPR_LIST (0, assumption
, desc
->noloop_assumptions
);
2597 /* Count the number of iterations. */
2600 /* Everything we do here is just arithmetics modulo size of mode. This
2601 makes us able to do more involved computations of number of iterations
2602 than in other cases. First transform the condition into shape
2603 s * i <> c, with s positive. */
2604 iv1
.base
= simplify_gen_binary (MINUS
, comp_mode
, iv1
.base
, iv0
.base
);
2605 iv0
.base
= const0_rtx
;
2606 iv0
.step
= simplify_gen_binary (MINUS
, comp_mode
, iv0
.step
, iv1
.step
);
2607 iv1
.step
= const0_rtx
;
2608 if (INTVAL (iv0
.step
) < 0)
2610 iv0
.step
= simplify_gen_unary (NEG
, comp_mode
, iv0
.step
, mode
);
2611 iv1
.base
= simplify_gen_unary (NEG
, comp_mode
, iv1
.base
, mode
);
2613 iv0
.step
= lowpart_subreg (mode
, iv0
.step
, comp_mode
);
2615 /* Let nsd (s, size of mode) = d. If d does not divide c, the loop
2616 is infinite. Otherwise, the number of iterations is
2617 (inverse(s/d) * (c/d)) mod (size of mode/d). */
2618 s
= INTVAL (iv0
.step
); d
= 1;
2625 bound
= GEN_INT (((unsigned HOST_WIDEST_INT
) 1 << (size
- 1 ) << 1) - 1);
2627 tmp1
= lowpart_subreg (mode
, iv1
.base
, comp_mode
);
2628 tmp
= simplify_gen_binary (UMOD
, mode
, tmp1
, GEN_INT (d
));
2629 assumption
= simplify_gen_relational (NE
, SImode
, mode
, tmp
, const0_rtx
);
2630 desc
->infinite
= alloc_EXPR_LIST (0, assumption
, desc
->infinite
);
2632 tmp
= simplify_gen_binary (UDIV
, mode
, tmp1
, GEN_INT (d
));
2633 inv
= inverse (s
, size
);
2634 tmp
= simplify_gen_binary (MULT
, mode
, tmp
, gen_int_mode (inv
, mode
));
2635 desc
->niter_expr
= simplify_gen_binary (AND
, mode
, tmp
, bound
);
2639 if (iv1
.step
== const0_rtx
)
2640 /* Condition in shape a + s * i <= b
2641 We must know that b + s does not overflow and a <= b + s and then we
2642 can compute number of iterations as (b + s - a) / s. (It might
2643 seem that we in fact could be more clever about testing the b + s
2644 overflow condition using some information about b - a mod s,
2645 but it was already taken into account during LE -> NE transform). */
2648 tmp0
= lowpart_subreg (mode
, iv0
.base
, comp_mode
);
2649 tmp1
= lowpart_subreg (mode
, iv1
.base
, comp_mode
);
2651 bound
= simplify_gen_binary (MINUS
, mode
, mode_mmax
,
2652 lowpart_subreg (mode
, step
,
2658 /* If s is power of 2, we know that the loop is infinite if
2659 a % s <= b % s and b + s overflows. */
2660 assumption
= simplify_gen_relational (reverse_condition (cond
),
2664 t0
= simplify_gen_binary (UMOD
, mode
, copy_rtx (tmp0
), step
);
2665 t1
= simplify_gen_binary (UMOD
, mode
, copy_rtx (tmp1
), step
);
2666 tmp
= simplify_gen_relational (cond
, SImode
, mode
, t0
, t1
);
2667 assumption
= simplify_gen_binary (AND
, SImode
, assumption
, tmp
);
2669 alloc_EXPR_LIST (0, assumption
, desc
->infinite
);
2673 assumption
= simplify_gen_relational (cond
, SImode
, mode
,
2676 alloc_EXPR_LIST (0, assumption
, desc
->assumptions
);
2679 tmp
= simplify_gen_binary (PLUS
, comp_mode
, iv1
.base
, iv0
.step
);
2680 tmp
= lowpart_subreg (mode
, tmp
, comp_mode
);
2681 assumption
= simplify_gen_relational (reverse_condition (cond
),
2682 SImode
, mode
, tmp0
, tmp
);
2684 delta
= simplify_gen_binary (PLUS
, mode
, tmp1
, step
);
2685 delta
= simplify_gen_binary (MINUS
, mode
, delta
, tmp0
);
2689 /* Condition in shape a <= b - s * i
2690 We must know that a - s does not overflow and a - s <= b and then
2691 we can again compute number of iterations as (b - (a - s)) / s. */
2692 step
= simplify_gen_unary (NEG
, mode
, iv1
.step
, mode
);
2693 tmp0
= lowpart_subreg (mode
, iv0
.base
, comp_mode
);
2694 tmp1
= lowpart_subreg (mode
, iv1
.base
, comp_mode
);
2696 bound
= simplify_gen_binary (PLUS
, mode
, mode_mmin
,
2697 lowpart_subreg (mode
, step
, comp_mode
));
2702 /* If s is power of 2, we know that the loop is infinite if
2703 a % s <= b % s and a - s overflows. */
2704 assumption
= simplify_gen_relational (reverse_condition (cond
),
2708 t0
= simplify_gen_binary (UMOD
, mode
, copy_rtx (tmp0
), step
);
2709 t1
= simplify_gen_binary (UMOD
, mode
, copy_rtx (tmp1
), step
);
2710 tmp
= simplify_gen_relational (cond
, SImode
, mode
, t0
, t1
);
2711 assumption
= simplify_gen_binary (AND
, SImode
, assumption
, tmp
);
2713 alloc_EXPR_LIST (0, assumption
, desc
->infinite
);
2717 assumption
= simplify_gen_relational (cond
, SImode
, mode
,
2720 alloc_EXPR_LIST (0, assumption
, desc
->assumptions
);
2723 tmp
= simplify_gen_binary (PLUS
, comp_mode
, iv0
.base
, iv1
.step
);
2724 tmp
= lowpart_subreg (mode
, tmp
, comp_mode
);
2725 assumption
= simplify_gen_relational (reverse_condition (cond
),
2728 delta
= simplify_gen_binary (MINUS
, mode
, tmp0
, step
);
2729 delta
= simplify_gen_binary (MINUS
, mode
, tmp1
, delta
);
2731 if (assumption
== const_true_rtx
)
2732 goto zero_iter_simplify
;
2733 else if (assumption
!= const0_rtx
)
2734 desc
->noloop_assumptions
=
2735 alloc_EXPR_LIST (0, assumption
, desc
->noloop_assumptions
);
2736 delta
= simplify_gen_binary (UDIV
, mode
, delta
, step
);
2737 desc
->niter_expr
= delta
;
2740 old_niter
= desc
->niter_expr
;
2742 simplify_using_initial_values (loop
, AND
, &desc
->assumptions
);
2743 if (desc
->assumptions
2744 && XEXP (desc
->assumptions
, 0) == const0_rtx
)
2746 simplify_using_initial_values (loop
, IOR
, &desc
->noloop_assumptions
);
2747 simplify_using_initial_values (loop
, IOR
, &desc
->infinite
);
2748 simplify_using_initial_values (loop
, UNKNOWN
, &desc
->niter_expr
);
2750 /* Rerun the simplification. Consider code (created by copying loop headers)
2762 The first pass determines that i = 0, the second pass uses it to eliminate
2763 noloop assumption. */
2765 simplify_using_initial_values (loop
, AND
, &desc
->assumptions
);
2766 if (desc
->assumptions
2767 && XEXP (desc
->assumptions
, 0) == const0_rtx
)
2769 simplify_using_initial_values (loop
, IOR
, &desc
->noloop_assumptions
);
2770 simplify_using_initial_values (loop
, IOR
, &desc
->infinite
);
2771 simplify_using_initial_values (loop
, UNKNOWN
, &desc
->niter_expr
);
2773 if (desc
->noloop_assumptions
2774 && XEXP (desc
->noloop_assumptions
, 0) == const_true_rtx
)
2777 if (CONST_INT_P (desc
->niter_expr
))
2779 unsigned HOST_WIDEST_INT val
= INTVAL (desc
->niter_expr
);
2781 desc
->const_iter
= true;
2782 desc
->niter_max
= desc
->niter
= val
& GET_MODE_MASK (desc
->mode
);
2786 max
= determine_max_iter (loop
, desc
, old_niter
);
2787 if (!desc
->niter_max
2788 || max
< desc
->niter_max
)
2789 desc
->niter_max
= max
;
2791 /* simplify_using_initial_values does a copy propagation on the registers
2792 in the expression for the number of iterations. This prolongs life
2793 ranges of registers and increases register pressure, and usually
2794 brings no gain (and if it happens to do, the cse pass will take care
2795 of it anyway). So prevent this behavior, unless it enabled us to
2796 derive that the number of iterations is a constant. */
2797 desc
->niter_expr
= old_niter
;
2803 /* Simplify the assumptions. */
2804 simplify_using_initial_values (loop
, AND
, &desc
->assumptions
);
2805 if (desc
->assumptions
2806 && XEXP (desc
->assumptions
, 0) == const0_rtx
)
2808 simplify_using_initial_values (loop
, IOR
, &desc
->infinite
);
2812 desc
->const_iter
= true;
2814 desc
->niter_max
= 0;
2815 desc
->noloop_assumptions
= NULL_RTX
;
2816 desc
->niter_expr
= const0_rtx
;
2820 desc
->simple_p
= false;
2824 /* Checks whether E is a simple exit from LOOP and stores its description
2828 check_simple_exit (struct loop
*loop
, edge e
, struct niter_desc
*desc
)
2830 basic_block exit_bb
;
2835 desc
->simple_p
= false;
2837 /* It must belong directly to the loop. */
2838 if (exit_bb
->loop_father
!= loop
)
2841 /* It must be tested (at least) once during any iteration. */
2842 if (!dominated_by_p (CDI_DOMINATORS
, loop
->latch
, exit_bb
))
2845 /* It must end in a simple conditional jump. */
2846 if (!any_condjump_p (BB_END (exit_bb
)))
2849 ein
= EDGE_SUCC (exit_bb
, 0);
2851 ein
= EDGE_SUCC (exit_bb
, 1);
2854 desc
->in_edge
= ein
;
2856 /* Test whether the condition is suitable. */
2857 if (!(condition
= get_condition (BB_END (ein
->src
), &at
, false, false)))
2860 if (ein
->flags
& EDGE_FALLTHRU
)
2862 condition
= reversed_condition (condition
);
2867 /* Check that we are able to determine number of iterations and fill
2868 in information about it. */
2869 iv_number_of_iterations (loop
, at
, condition
, desc
);
2872 /* Finds a simple exit of LOOP and stores its description into DESC. */
2875 find_simple_exit (struct loop
*loop
, struct niter_desc
*desc
)
2880 struct niter_desc act
;
2884 desc
->simple_p
= false;
2885 body
= get_loop_body (loop
);
2887 for (i
= 0; i
< loop
->num_nodes
; i
++)
2889 FOR_EACH_EDGE (e
, ei
, body
[i
]->succs
)
2891 if (flow_bb_inside_loop_p (loop
, e
->dest
))
2894 check_simple_exit (loop
, e
, &act
);
2902 /* Prefer constant iterations; the less the better. */
2904 || (desc
->const_iter
&& act
.niter
>= desc
->niter
))
2907 /* Also if the actual exit may be infinite, while the old one
2908 not, prefer the old one. */
2909 if (act
.infinite
&& !desc
->infinite
)
2921 fprintf (dump_file
, "Loop %d is simple:\n", loop
->num
);
2922 fprintf (dump_file
, " simple exit %d -> %d\n",
2923 desc
->out_edge
->src
->index
,
2924 desc
->out_edge
->dest
->index
);
2925 if (desc
->assumptions
)
2927 fprintf (dump_file
, " assumptions: ");
2928 print_rtl (dump_file
, desc
->assumptions
);
2929 fprintf (dump_file
, "\n");
2931 if (desc
->noloop_assumptions
)
2933 fprintf (dump_file
, " does not roll if: ");
2934 print_rtl (dump_file
, desc
->noloop_assumptions
);
2935 fprintf (dump_file
, "\n");
2939 fprintf (dump_file
, " infinite if: ");
2940 print_rtl (dump_file
, desc
->infinite
);
2941 fprintf (dump_file
, "\n");
2944 fprintf (dump_file
, " number of iterations: ");
2945 print_rtl (dump_file
, desc
->niter_expr
);
2946 fprintf (dump_file
, "\n");
2948 fprintf (dump_file
, " upper bound: ");
2949 fprintf (dump_file
, HOST_WIDEST_INT_PRINT_DEC
, desc
->niter_max
);
2950 fprintf (dump_file
, "\n");
2953 fprintf (dump_file
, "Loop %d is not simple.\n", loop
->num
);
2959 /* Creates a simple loop description of LOOP if it was not computed
2963 get_simple_loop_desc (struct loop
*loop
)
2965 struct niter_desc
*desc
= simple_loop_desc (loop
);
2970 /* At least desc->infinite is not always initialized by
2971 find_simple_loop_exit. */
2972 desc
= XCNEW (struct niter_desc
);
2973 iv_analysis_loop_init (loop
);
2974 find_simple_exit (loop
, desc
);
2977 if (desc
->simple_p
&& (desc
->assumptions
|| desc
->infinite
))
2979 const char *wording
;
2981 /* Assume that no overflow happens and that the loop is finite.
2982 We already warned at the tree level if we ran optimizations there. */
2983 if (!flag_tree_loop_optimize
&& warn_unsafe_loop_optimizations
)
2988 flag_unsafe_loop_optimizations
2989 ? N_("assuming that the loop is not infinite")
2990 : N_("cannot optimize possibly infinite loops");
2991 warning (OPT_Wunsafe_loop_optimizations
, "%s",
2994 if (desc
->assumptions
)
2997 flag_unsafe_loop_optimizations
2998 ? N_("assuming that the loop counter does not overflow")
2999 : N_("cannot optimize loop, the loop counter may overflow");
3000 warning (OPT_Wunsafe_loop_optimizations
, "%s",
3005 if (flag_unsafe_loop_optimizations
)
3007 desc
->assumptions
= NULL_RTX
;
3008 desc
->infinite
= NULL_RTX
;
3015 /* Releases simple loop description for LOOP. */
3018 free_simple_loop_desc (struct loop
*loop
)
3020 struct niter_desc
*desc
= simple_loop_desc (loop
);