1 /* Functions to determine/estimate number of iterations of a loop.
2 Copyright (C) 2004-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
22 #include "coretypes.h"
27 #include "tree-pass.h"
29 #include "gimple-pretty-print.h"
30 #include "diagnostic-core.h"
31 #include "stor-layout.h"
32 #include "fold-const.h"
36 #include "gimple-iterator.h"
38 #include "tree-ssa-loop-ivopts.h"
39 #include "tree-ssa-loop-niter.h"
40 #include "tree-ssa-loop.h"
42 #include "tree-chrec.h"
43 #include "tree-scalar-evolution.h"
48 /* The maximum number of dominator BBs we search for conditions
49 of loop header copies we use for simplifying a conditional
51 #define MAX_DOMINATORS_TO_WALK 8
55 Analysis of number of iterations of an affine exit test.
59 /* Bounds on some value, BELOW <= X <= UP. */
67 /* Splits expression EXPR to a variable part VAR and constant OFFSET. */
70 split_to_var_and_offset (tree expr
, tree
*var
, mpz_t offset
)
72 tree type
= TREE_TYPE (expr
);
77 mpz_set_ui (offset
, 0);
79 switch (TREE_CODE (expr
))
86 case POINTER_PLUS_EXPR
:
87 op0
= TREE_OPERAND (expr
, 0);
88 op1
= TREE_OPERAND (expr
, 1);
90 if (TREE_CODE (op1
) != INTEGER_CST
)
94 /* Always sign extend the offset. */
95 wi::to_mpz (op1
, offset
, SIGNED
);
97 mpz_neg (offset
, offset
);
101 *var
= build_int_cst_type (type
, 0);
102 wi::to_mpz (expr
, offset
, TYPE_SIGN (type
));
110 /* From condition C0 CMP C1 derives information regarding the value range
111 of VAR, which is of TYPE. Results are stored in to BELOW and UP. */
114 refine_value_range_using_guard (tree type
, tree var
,
115 tree c0
, enum tree_code cmp
, tree c1
,
116 mpz_t below
, mpz_t up
)
118 tree varc0
, varc1
, ctype
;
120 mpz_t mint
, maxt
, minc1
, maxc1
;
122 bool no_wrap
= nowrap_type_p (type
);
124 signop sgn
= TYPE_SIGN (type
);
132 STRIP_SIGN_NOPS (c0
);
133 STRIP_SIGN_NOPS (c1
);
134 ctype
= TREE_TYPE (c0
);
135 if (!useless_type_conversion_p (ctype
, type
))
141 /* We could derive quite precise information from EQ_EXPR, however,
142 such a guard is unlikely to appear, so we do not bother with
147 /* NE_EXPR comparisons do not contain much of useful information,
148 except for cases of comparing with bounds. */
149 if (TREE_CODE (c1
) != INTEGER_CST
150 || !INTEGRAL_TYPE_P (type
))
153 /* Ensure that the condition speaks about an expression in the same
155 ctype
= TREE_TYPE (c0
);
156 if (TYPE_PRECISION (ctype
) != TYPE_PRECISION (type
))
158 c0
= fold_convert (type
, c0
);
159 c1
= fold_convert (type
, c1
);
161 if (operand_equal_p (var
, c0
, 0))
165 /* Case of comparing VAR with its below/up bounds. */
167 wi::to_mpz (c1
, valc1
, TYPE_SIGN (type
));
168 if (mpz_cmp (valc1
, below
) == 0)
170 if (mpz_cmp (valc1
, up
) == 0)
177 /* Case of comparing with the bounds of the type. */
178 wide_int min
= wi::min_value (type
);
179 wide_int max
= wi::max_value (type
);
181 if (wi::eq_p (c1
, min
))
183 if (wi::eq_p (c1
, max
))
187 /* Quick return if no useful information. */
199 split_to_var_and_offset (expand_simple_operations (c0
), &varc0
, offc0
);
200 split_to_var_and_offset (expand_simple_operations (c1
), &varc1
, offc1
);
202 /* We are only interested in comparisons of expressions based on VAR. */
203 if (operand_equal_p (var
, varc1
, 0))
205 std::swap (varc0
, varc1
);
206 mpz_swap (offc0
, offc1
);
207 cmp
= swap_tree_comparison (cmp
);
209 else if (!operand_equal_p (var
, varc0
, 0))
218 get_type_static_bounds (type
, mint
, maxt
);
221 /* Setup range information for varc1. */
222 if (integer_zerop (varc1
))
224 wi::to_mpz (integer_zero_node
, minc1
, TYPE_SIGN (type
));
225 wi::to_mpz (integer_zero_node
, maxc1
, TYPE_SIGN (type
));
227 else if (TREE_CODE (varc1
) == SSA_NAME
228 && INTEGRAL_TYPE_P (type
)
229 && get_range_info (varc1
, &minv
, &maxv
) == VR_RANGE
)
231 gcc_assert (wi::le_p (minv
, maxv
, sgn
));
232 wi::to_mpz (minv
, minc1
, sgn
);
233 wi::to_mpz (maxv
, maxc1
, sgn
);
237 mpz_set (minc1
, mint
);
238 mpz_set (maxc1
, maxt
);
241 /* Compute valid range information for varc1 + offc1. Note nothing
242 useful can be derived if it overflows or underflows. Overflow or
243 underflow could happen when:
245 offc1 > 0 && varc1 + offc1 > MAX_VAL (type)
246 offc1 < 0 && varc1 + offc1 < MIN_VAL (type). */
247 mpz_add (minc1
, minc1
, offc1
);
248 mpz_add (maxc1
, maxc1
, offc1
);
250 || mpz_sgn (offc1
) == 0
251 || (mpz_sgn (offc1
) < 0 && mpz_cmp (minc1
, mint
) >= 0)
252 || (mpz_sgn (offc1
) > 0 && mpz_cmp (maxc1
, maxt
) <= 0));
256 if (mpz_cmp (minc1
, mint
) < 0)
257 mpz_set (minc1
, mint
);
258 if (mpz_cmp (maxc1
, maxt
) > 0)
259 mpz_set (maxc1
, maxt
);
264 mpz_sub_ui (maxc1
, maxc1
, 1);
269 mpz_add_ui (minc1
, minc1
, 1);
272 /* Compute range information for varc0. If there is no overflow,
273 the condition implied that
275 (varc0) cmp (varc1 + offc1 - offc0)
277 We can possibly improve the upper bound of varc0 if cmp is LE_EXPR,
278 or the below bound if cmp is GE_EXPR.
280 To prove there is no overflow/underflow, we need to check below
282 1) cmp == LE_EXPR && offc0 > 0
284 (varc0 + offc0) doesn't overflow
285 && (varc1 + offc1 - offc0) doesn't underflow
287 2) cmp == LE_EXPR && offc0 < 0
289 (varc0 + offc0) doesn't underflow
290 && (varc1 + offc1 - offc0) doesn't overfloe
292 In this case, (varc0 + offc0) will never underflow if we can
293 prove (varc1 + offc1 - offc0) doesn't overflow.
295 3) cmp == GE_EXPR && offc0 < 0
297 (varc0 + offc0) doesn't underflow
298 && (varc1 + offc1 - offc0) doesn't overflow
300 4) cmp == GE_EXPR && offc0 > 0
302 (varc0 + offc0) doesn't overflow
303 && (varc1 + offc1 - offc0) doesn't underflow
305 In this case, (varc0 + offc0) will never overflow if we can
306 prove (varc1 + offc1 - offc0) doesn't underflow.
308 Note we only handle case 2 and 4 in below code. */
310 mpz_sub (minc1
, minc1
, offc0
);
311 mpz_sub (maxc1
, maxc1
, offc0
);
313 || mpz_sgn (offc0
) == 0
315 && mpz_sgn (offc0
) < 0 && mpz_cmp (maxc1
, maxt
) <= 0)
317 && mpz_sgn (offc0
) > 0 && mpz_cmp (minc1
, mint
) >= 0));
323 if (mpz_cmp (up
, maxc1
) > 0)
328 if (mpz_cmp (below
, minc1
) < 0)
329 mpz_set (below
, minc1
);
341 /* Stores estimate on the minimum/maximum value of the expression VAR + OFF
342 in TYPE to MIN and MAX. */
345 determine_value_range (struct loop
*loop
, tree type
, tree var
, mpz_t off
,
346 mpz_t min
, mpz_t max
)
352 enum value_range_type rtype
= VR_VARYING
;
354 /* If the expression is a constant, we know its value exactly. */
355 if (integer_zerop (var
))
362 get_type_static_bounds (type
, min
, max
);
364 /* See if we have some range info from VRP. */
365 if (TREE_CODE (var
) == SSA_NAME
&& INTEGRAL_TYPE_P (type
))
367 edge e
= loop_preheader_edge (loop
);
368 signop sgn
= TYPE_SIGN (type
);
371 /* Either for VAR itself... */
372 rtype
= get_range_info (var
, &minv
, &maxv
);
373 /* Or for PHI results in loop->header where VAR is used as
374 PHI argument from the loop preheader edge. */
375 for (gsi
= gsi_start_phis (loop
->header
); !gsi_end_p (gsi
); gsi_next (&gsi
))
377 gphi
*phi
= gsi
.phi ();
379 if (PHI_ARG_DEF_FROM_EDGE (phi
, e
) == var
380 && (get_range_info (gimple_phi_result (phi
), &minc
, &maxc
)
383 if (rtype
!= VR_RANGE
)
391 minv
= wi::max (minv
, minc
, sgn
);
392 maxv
= wi::min (maxv
, maxc
, sgn
);
393 /* If the PHI result range are inconsistent with
394 the VAR range, give up on looking at the PHI
395 results. This can happen if VR_UNDEFINED is
397 if (wi::gt_p (minv
, maxv
, sgn
))
399 rtype
= get_range_info (var
, &minv
, &maxv
);
407 if (rtype
!= VR_RANGE
)
414 gcc_assert (wi::le_p (minv
, maxv
, sgn
));
415 wi::to_mpz (minv
, minm
, sgn
);
416 wi::to_mpz (maxv
, maxm
, sgn
);
418 /* Now walk the dominators of the loop header and use the entry
419 guards to refine the estimates. */
420 for (bb
= loop
->header
;
421 bb
!= ENTRY_BLOCK_PTR_FOR_FN (cfun
) && cnt
< MAX_DOMINATORS_TO_WALK
;
422 bb
= get_immediate_dominator (CDI_DOMINATORS
, bb
))
429 if (!single_pred_p (bb
))
431 e
= single_pred_edge (bb
);
433 if (!(e
->flags
& (EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
)))
436 cond
= last_stmt (e
->src
);
437 c0
= gimple_cond_lhs (cond
);
438 cmp
= gimple_cond_code (cond
);
439 c1
= gimple_cond_rhs (cond
);
441 if (e
->flags
& EDGE_FALSE_VALUE
)
442 cmp
= invert_tree_comparison (cmp
, false);
444 refine_value_range_using_guard (type
, var
, c0
, cmp
, c1
, minm
, maxm
);
448 mpz_add (minm
, minm
, off
);
449 mpz_add (maxm
, maxm
, off
);
450 /* If the computation may not wrap or off is zero, then this
451 is always fine. If off is negative and minv + off isn't
452 smaller than type's minimum, or off is positive and
453 maxv + off isn't bigger than type's maximum, use the more
454 precise range too. */
455 if (nowrap_type_p (type
)
456 || mpz_sgn (off
) == 0
457 || (mpz_sgn (off
) < 0 && mpz_cmp (minm
, min
) >= 0)
458 || (mpz_sgn (off
) > 0 && mpz_cmp (maxm
, max
) <= 0))
470 /* If the computation may wrap, we know nothing about the value, except for
471 the range of the type. */
472 if (!nowrap_type_p (type
))
475 /* Since the addition of OFF does not wrap, if OFF is positive, then we may
476 add it to MIN, otherwise to MAX. */
477 if (mpz_sgn (off
) < 0)
478 mpz_add (max
, max
, off
);
480 mpz_add (min
, min
, off
);
483 /* Stores the bounds on the difference of the values of the expressions
484 (var + X) and (var + Y), computed in TYPE, to BNDS. */
487 bound_difference_of_offsetted_base (tree type
, mpz_t x
, mpz_t y
,
490 int rel
= mpz_cmp (x
, y
);
491 bool may_wrap
= !nowrap_type_p (type
);
494 /* If X == Y, then the expressions are always equal.
495 If X > Y, there are the following possibilities:
496 a) neither of var + X and var + Y overflow or underflow, or both of
497 them do. Then their difference is X - Y.
498 b) var + X overflows, and var + Y does not. Then the values of the
499 expressions are var + X - M and var + Y, where M is the range of
500 the type, and their difference is X - Y - M.
501 c) var + Y underflows and var + X does not. Their difference again
503 Therefore, if the arithmetics in type does not overflow, then the
504 bounds are (X - Y, X - Y), otherwise they are (X - Y - M, X - Y)
505 Similarly, if X < Y, the bounds are either (X - Y, X - Y) or
506 (X - Y, X - Y + M). */
510 mpz_set_ui (bnds
->below
, 0);
511 mpz_set_ui (bnds
->up
, 0);
516 wi::to_mpz (wi::minus_one (TYPE_PRECISION (type
)), m
, UNSIGNED
);
517 mpz_add_ui (m
, m
, 1);
518 mpz_sub (bnds
->up
, x
, y
);
519 mpz_set (bnds
->below
, bnds
->up
);
524 mpz_sub (bnds
->below
, bnds
->below
, m
);
526 mpz_add (bnds
->up
, bnds
->up
, m
);
532 /* From condition C0 CMP C1 derives information regarding the
533 difference of values of VARX + OFFX and VARY + OFFY, computed in TYPE,
534 and stores it to BNDS. */
537 refine_bounds_using_guard (tree type
, tree varx
, mpz_t offx
,
538 tree vary
, mpz_t offy
,
539 tree c0
, enum tree_code cmp
, tree c1
,
542 tree varc0
, varc1
, ctype
;
543 mpz_t offc0
, offc1
, loffx
, loffy
, bnd
;
545 bool no_wrap
= nowrap_type_p (type
);
554 STRIP_SIGN_NOPS (c0
);
555 STRIP_SIGN_NOPS (c1
);
556 ctype
= TREE_TYPE (c0
);
557 if (!useless_type_conversion_p (ctype
, type
))
563 /* We could derive quite precise information from EQ_EXPR, however, such
564 a guard is unlikely to appear, so we do not bother with handling
569 /* NE_EXPR comparisons do not contain much of useful information, except for
570 special case of comparing with the bounds of the type. */
571 if (TREE_CODE (c1
) != INTEGER_CST
572 || !INTEGRAL_TYPE_P (type
))
575 /* Ensure that the condition speaks about an expression in the same type
577 ctype
= TREE_TYPE (c0
);
578 if (TYPE_PRECISION (ctype
) != TYPE_PRECISION (type
))
580 c0
= fold_convert (type
, c0
);
581 c1
= fold_convert (type
, c1
);
583 if (TYPE_MIN_VALUE (type
)
584 && operand_equal_p (c1
, TYPE_MIN_VALUE (type
), 0))
589 if (TYPE_MAX_VALUE (type
)
590 && operand_equal_p (c1
, TYPE_MAX_VALUE (type
), 0))
603 split_to_var_and_offset (expand_simple_operations (c0
), &varc0
, offc0
);
604 split_to_var_and_offset (expand_simple_operations (c1
), &varc1
, offc1
);
606 /* We are only interested in comparisons of expressions based on VARX and
607 VARY. TODO -- we might also be able to derive some bounds from
608 expressions containing just one of the variables. */
610 if (operand_equal_p (varx
, varc1
, 0))
612 std::swap (varc0
, varc1
);
613 mpz_swap (offc0
, offc1
);
614 cmp
= swap_tree_comparison (cmp
);
617 if (!operand_equal_p (varx
, varc0
, 0)
618 || !operand_equal_p (vary
, varc1
, 0))
621 mpz_init_set (loffx
, offx
);
622 mpz_init_set (loffy
, offy
);
624 if (cmp
== GT_EXPR
|| cmp
== GE_EXPR
)
626 std::swap (varx
, vary
);
627 mpz_swap (offc0
, offc1
);
628 mpz_swap (loffx
, loffy
);
629 cmp
= swap_tree_comparison (cmp
);
633 /* If there is no overflow, the condition implies that
635 (VARX + OFFX) cmp (VARY + OFFY) + (OFFX - OFFY + OFFC1 - OFFC0).
637 The overflows and underflows may complicate things a bit; each
638 overflow decreases the appropriate offset by M, and underflow
639 increases it by M. The above inequality would not necessarily be
642 -- VARX + OFFX underflows and VARX + OFFC0 does not, or
643 VARX + OFFC0 overflows, but VARX + OFFX does not.
644 This may only happen if OFFX < OFFC0.
645 -- VARY + OFFY overflows and VARY + OFFC1 does not, or
646 VARY + OFFC1 underflows and VARY + OFFY does not.
647 This may only happen if OFFY > OFFC1. */
656 x_ok
= (integer_zerop (varx
)
657 || mpz_cmp (loffx
, offc0
) >= 0);
658 y_ok
= (integer_zerop (vary
)
659 || mpz_cmp (loffy
, offc1
) <= 0);
665 mpz_sub (bnd
, loffx
, loffy
);
666 mpz_add (bnd
, bnd
, offc1
);
667 mpz_sub (bnd
, bnd
, offc0
);
670 mpz_sub_ui (bnd
, bnd
, 1);
675 if (mpz_cmp (bnds
->below
, bnd
) < 0)
676 mpz_set (bnds
->below
, bnd
);
680 if (mpz_cmp (bnd
, bnds
->up
) < 0)
681 mpz_set (bnds
->up
, bnd
);
693 /* Stores the bounds on the value of the expression X - Y in LOOP to BNDS.
694 The subtraction is considered to be performed in arbitrary precision,
697 We do not attempt to be too clever regarding the value ranges of X and
698 Y; most of the time, they are just integers or ssa names offsetted by
699 integer. However, we try to use the information contained in the
700 comparisons before the loop (usually created by loop header copying). */
703 bound_difference (struct loop
*loop
, tree x
, tree y
, bounds
*bnds
)
705 tree type
= TREE_TYPE (x
);
708 mpz_t minx
, maxx
, miny
, maxy
;
716 /* Get rid of unnecessary casts, but preserve the value of
721 mpz_init (bnds
->below
);
725 split_to_var_and_offset (x
, &varx
, offx
);
726 split_to_var_and_offset (y
, &vary
, offy
);
728 if (!integer_zerop (varx
)
729 && operand_equal_p (varx
, vary
, 0))
731 /* Special case VARX == VARY -- we just need to compare the
732 offsets. The matters are a bit more complicated in the
733 case addition of offsets may wrap. */
734 bound_difference_of_offsetted_base (type
, offx
, offy
, bnds
);
738 /* Otherwise, use the value ranges to determine the initial
739 estimates on below and up. */
744 determine_value_range (loop
, type
, varx
, offx
, minx
, maxx
);
745 determine_value_range (loop
, type
, vary
, offy
, miny
, maxy
);
747 mpz_sub (bnds
->below
, minx
, maxy
);
748 mpz_sub (bnds
->up
, maxx
, miny
);
755 /* If both X and Y are constants, we cannot get any more precise. */
756 if (integer_zerop (varx
) && integer_zerop (vary
))
759 /* Now walk the dominators of the loop header and use the entry
760 guards to refine the estimates. */
761 for (bb
= loop
->header
;
762 bb
!= ENTRY_BLOCK_PTR_FOR_FN (cfun
) && cnt
< MAX_DOMINATORS_TO_WALK
;
763 bb
= get_immediate_dominator (CDI_DOMINATORS
, bb
))
765 if (!single_pred_p (bb
))
767 e
= single_pred_edge (bb
);
769 if (!(e
->flags
& (EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
)))
772 cond
= last_stmt (e
->src
);
773 c0
= gimple_cond_lhs (cond
);
774 cmp
= gimple_cond_code (cond
);
775 c1
= gimple_cond_rhs (cond
);
777 if (e
->flags
& EDGE_FALSE_VALUE
)
778 cmp
= invert_tree_comparison (cmp
, false);
780 refine_bounds_using_guard (type
, varx
, offx
, vary
, offy
,
790 /* Update the bounds in BNDS that restrict the value of X to the bounds
791 that restrict the value of X + DELTA. X can be obtained as a
792 difference of two values in TYPE. */
795 bounds_add (bounds
*bnds
, const widest_int
&delta
, tree type
)
800 wi::to_mpz (delta
, mdelta
, SIGNED
);
803 wi::to_mpz (wi::minus_one (TYPE_PRECISION (type
)), max
, UNSIGNED
);
805 mpz_add (bnds
->up
, bnds
->up
, mdelta
);
806 mpz_add (bnds
->below
, bnds
->below
, mdelta
);
808 if (mpz_cmp (bnds
->up
, max
) > 0)
809 mpz_set (bnds
->up
, max
);
812 if (mpz_cmp (bnds
->below
, max
) < 0)
813 mpz_set (bnds
->below
, max
);
819 /* Update the bounds in BNDS that restrict the value of X to the bounds
820 that restrict the value of -X. */
823 bounds_negate (bounds
*bnds
)
827 mpz_init_set (tmp
, bnds
->up
);
828 mpz_neg (bnds
->up
, bnds
->below
);
829 mpz_neg (bnds
->below
, tmp
);
833 /* Returns inverse of X modulo 2^s, where MASK = 2^s-1. */
836 inverse (tree x
, tree mask
)
838 tree type
= TREE_TYPE (x
);
840 unsigned ctr
= tree_floor_log2 (mask
);
842 if (TYPE_PRECISION (type
) <= HOST_BITS_PER_WIDE_INT
)
844 unsigned HOST_WIDE_INT ix
;
845 unsigned HOST_WIDE_INT imask
;
846 unsigned HOST_WIDE_INT irslt
= 1;
848 gcc_assert (cst_and_fits_in_hwi (x
));
849 gcc_assert (cst_and_fits_in_hwi (mask
));
851 ix
= int_cst_value (x
);
852 imask
= int_cst_value (mask
);
861 rslt
= build_int_cst_type (type
, irslt
);
865 rslt
= build_int_cst (type
, 1);
868 rslt
= int_const_binop (MULT_EXPR
, rslt
, x
);
869 x
= int_const_binop (MULT_EXPR
, x
, x
);
871 rslt
= int_const_binop (BIT_AND_EXPR
, rslt
, mask
);
877 /* Derives the upper bound BND on the number of executions of loop with exit
878 condition S * i <> C. If NO_OVERFLOW is true, then the control variable of
879 the loop does not overflow. EXIT_MUST_BE_TAKEN is true if we are guaranteed
880 that the loop ends through this exit, i.e., the induction variable ever
881 reaches the value of C.
883 The value C is equal to final - base, where final and base are the final and
884 initial value of the actual induction variable in the analysed loop. BNDS
885 bounds the value of this difference when computed in signed type with
886 unbounded range, while the computation of C is performed in an unsigned
887 type with the range matching the range of the type of the induction variable.
888 In particular, BNDS.up contains an upper bound on C in the following cases:
889 -- if the iv must reach its final value without overflow, i.e., if
890 NO_OVERFLOW && EXIT_MUST_BE_TAKEN is true, or
891 -- if final >= base, which we know to hold when BNDS.below >= 0. */
894 number_of_iterations_ne_max (mpz_t bnd
, bool no_overflow
, tree c
, tree s
,
895 bounds
*bnds
, bool exit_must_be_taken
)
899 tree type
= TREE_TYPE (c
);
900 bool bnds_u_valid
= ((no_overflow
&& exit_must_be_taken
)
901 || mpz_sgn (bnds
->below
) >= 0);
904 || (TREE_CODE (c
) == INTEGER_CST
905 && TREE_CODE (s
) == INTEGER_CST
906 && wi::mod_trunc (c
, s
, TYPE_SIGN (type
)) == 0)
907 || (TYPE_OVERFLOW_UNDEFINED (type
)
908 && multiple_of_p (type
, c
, s
)))
910 /* If C is an exact multiple of S, then its value will be reached before
911 the induction variable overflows (unless the loop is exited in some
912 other way before). Note that the actual induction variable in the
913 loop (which ranges from base to final instead of from 0 to C) may
914 overflow, in which case BNDS.up will not be giving a correct upper
915 bound on C; thus, BNDS_U_VALID had to be computed in advance. */
917 exit_must_be_taken
= true;
920 /* If the induction variable can overflow, the number of iterations is at
921 most the period of the control variable (or infinite, but in that case
922 the whole # of iterations analysis will fail). */
925 max
= wi::mask
<widest_int
> (TYPE_PRECISION (type
) - wi::ctz (s
), false);
926 wi::to_mpz (max
, bnd
, UNSIGNED
);
930 /* Now we know that the induction variable does not overflow, so the loop
931 iterates at most (range of type / S) times. */
932 wi::to_mpz (wi::minus_one (TYPE_PRECISION (type
)), bnd
, UNSIGNED
);
934 /* If the induction variable is guaranteed to reach the value of C before
936 if (exit_must_be_taken
)
938 /* ... then we can strengthen this to C / S, and possibly we can use
939 the upper bound on C given by BNDS. */
940 if (TREE_CODE (c
) == INTEGER_CST
)
941 wi::to_mpz (c
, bnd
, UNSIGNED
);
942 else if (bnds_u_valid
)
943 mpz_set (bnd
, bnds
->up
);
947 wi::to_mpz (s
, d
, UNSIGNED
);
948 mpz_fdiv_q (bnd
, bnd
, d
);
952 /* Determines number of iterations of loop whose ending condition
953 is IV <> FINAL. TYPE is the type of the iv. The number of
954 iterations is stored to NITER. EXIT_MUST_BE_TAKEN is true if
955 we know that the exit must be taken eventually, i.e., that the IV
956 ever reaches the value FINAL (we derived this earlier, and possibly set
957 NITER->assumptions to make sure this is the case). BNDS contains the
958 bounds on the difference FINAL - IV->base. */
961 number_of_iterations_ne (struct loop
*loop
, tree type
, affine_iv
*iv
,
962 tree final
, struct tree_niter_desc
*niter
,
963 bool exit_must_be_taken
, bounds
*bnds
)
965 tree niter_type
= unsigned_type_for (type
);
966 tree s
, c
, d
, bits
, assumption
, tmp
, bound
;
969 niter
->control
= *iv
;
970 niter
->bound
= final
;
971 niter
->cmp
= NE_EXPR
;
973 /* Rearrange the terms so that we get inequality S * i <> C, with S
974 positive. Also cast everything to the unsigned type. If IV does
975 not overflow, BNDS bounds the value of C. Also, this is the
976 case if the computation |FINAL - IV->base| does not overflow, i.e.,
977 if BNDS->below in the result is nonnegative. */
978 if (tree_int_cst_sign_bit (iv
->step
))
980 s
= fold_convert (niter_type
,
981 fold_build1 (NEGATE_EXPR
, type
, iv
->step
));
982 c
= fold_build2 (MINUS_EXPR
, niter_type
,
983 fold_convert (niter_type
, iv
->base
),
984 fold_convert (niter_type
, final
));
985 bounds_negate (bnds
);
989 s
= fold_convert (niter_type
, iv
->step
);
990 c
= fold_build2 (MINUS_EXPR
, niter_type
,
991 fold_convert (niter_type
, final
),
992 fold_convert (niter_type
, iv
->base
));
996 number_of_iterations_ne_max (max
, iv
->no_overflow
, c
, s
, bnds
,
998 niter
->max
= widest_int::from (wi::from_mpz (niter_type
, max
, false),
999 TYPE_SIGN (niter_type
));
1002 /* Compute no-overflow information for the control iv. This can be
1003 proven when below two conditions are satisfied:
1005 1) IV evaluates toward FINAL at beginning, i.e:
1006 base <= FINAL ; step > 0
1007 base >= FINAL ; step < 0
1009 2) |FINAL - base| is an exact multiple of step.
1011 Unfortunately, it's hard to prove above conditions after pass loop-ch
1012 because loop with exit condition (IV != FINAL) usually will be guarded
1013 by initial-condition (IV.base - IV.step != FINAL). In this case, we
1014 can alternatively try to prove below conditions:
1016 1') IV evaluates toward FINAL at beginning, i.e:
1017 new_base = base - step < FINAL ; step > 0
1018 && base - step doesn't underflow
1019 new_base = base - step > FINAL ; step < 0
1020 && base - step doesn't overflow
1022 2') |FINAL - new_base| is an exact multiple of step.
1024 Please refer to PR34114 as an example of loop-ch's impact, also refer
1025 to PR72817 as an example why condition 2') is necessary.
1027 Note, for NE_EXPR, base equals to FINAL is a special case, in
1028 which the loop exits immediately, and the iv does not overflow. */
1029 if (!niter
->control
.no_overflow
1030 && (integer_onep (s
) || multiple_of_p (type
, c
, s
)))
1032 tree t
, cond
, new_c
, relaxed_cond
= boolean_false_node
;
1034 if (tree_int_cst_sign_bit (iv
->step
))
1036 cond
= fold_build2 (GE_EXPR
, boolean_type_node
, iv
->base
, final
);
1037 if (TREE_CODE (type
) == INTEGER_TYPE
)
1039 /* Only when base - step doesn't overflow. */
1040 t
= TYPE_MAX_VALUE (type
);
1041 t
= fold_build2 (PLUS_EXPR
, type
, t
, iv
->step
);
1042 t
= fold_build2 (GE_EXPR
, boolean_type_node
, t
, iv
->base
);
1043 if (integer_nonzerop (t
))
1045 t
= fold_build2 (MINUS_EXPR
, type
, iv
->base
, iv
->step
);
1046 new_c
= fold_build2 (MINUS_EXPR
, niter_type
,
1047 fold_convert (niter_type
, t
),
1048 fold_convert (niter_type
, final
));
1049 if (multiple_of_p (type
, new_c
, s
))
1050 relaxed_cond
= fold_build2 (GT_EXPR
, boolean_type_node
,
1057 cond
= fold_build2 (LE_EXPR
, boolean_type_node
, iv
->base
, final
);
1058 if (TREE_CODE (type
) == INTEGER_TYPE
)
1060 /* Only when base - step doesn't underflow. */
1061 t
= TYPE_MIN_VALUE (type
);
1062 t
= fold_build2 (PLUS_EXPR
, type
, t
, iv
->step
);
1063 t
= fold_build2 (LE_EXPR
, boolean_type_node
, t
, iv
->base
);
1064 if (integer_nonzerop (t
))
1066 t
= fold_build2 (MINUS_EXPR
, type
, iv
->base
, iv
->step
);
1067 new_c
= fold_build2 (MINUS_EXPR
, niter_type
,
1068 fold_convert (niter_type
, final
),
1069 fold_convert (niter_type
, t
));
1070 if (multiple_of_p (type
, new_c
, s
))
1071 relaxed_cond
= fold_build2 (LT_EXPR
, boolean_type_node
,
1077 t
= simplify_using_initial_conditions (loop
, cond
);
1078 if (!t
|| !integer_onep (t
))
1079 t
= simplify_using_initial_conditions (loop
, relaxed_cond
);
1081 if (t
&& integer_onep (t
))
1082 niter
->control
.no_overflow
= true;
1085 /* First the trivial cases -- when the step is 1. */
1086 if (integer_onep (s
))
1091 if (niter
->control
.no_overflow
&& multiple_of_p (type
, c
, s
))
1093 niter
->niter
= fold_build2 (FLOOR_DIV_EXPR
, niter_type
, c
, s
);
1097 /* Let nsd (step, size of mode) = d. If d does not divide c, the loop
1098 is infinite. Otherwise, the number of iterations is
1099 (inverse(s/d) * (c/d)) mod (size of mode/d). */
1100 bits
= num_ending_zeros (s
);
1101 bound
= build_low_bits_mask (niter_type
,
1102 (TYPE_PRECISION (niter_type
)
1103 - tree_to_uhwi (bits
)));
1105 d
= fold_binary_to_constant (LSHIFT_EXPR
, niter_type
,
1106 build_int_cst (niter_type
, 1), bits
);
1107 s
= fold_binary_to_constant (RSHIFT_EXPR
, niter_type
, s
, bits
);
1109 if (!exit_must_be_taken
)
1111 /* If we cannot assume that the exit is taken eventually, record the
1112 assumptions for divisibility of c. */
1113 assumption
= fold_build2 (FLOOR_MOD_EXPR
, niter_type
, c
, d
);
1114 assumption
= fold_build2 (EQ_EXPR
, boolean_type_node
,
1115 assumption
, build_int_cst (niter_type
, 0));
1116 if (!integer_nonzerop (assumption
))
1117 niter
->assumptions
= fold_build2 (TRUTH_AND_EXPR
, boolean_type_node
,
1118 niter
->assumptions
, assumption
);
1121 c
= fold_build2 (EXACT_DIV_EXPR
, niter_type
, c
, d
);
1122 tmp
= fold_build2 (MULT_EXPR
, niter_type
, c
, inverse (s
, bound
));
1123 niter
->niter
= fold_build2 (BIT_AND_EXPR
, niter_type
, tmp
, bound
);
1127 /* Checks whether we can determine the final value of the control variable
1128 of the loop with ending condition IV0 < IV1 (computed in TYPE).
1129 DELTA is the difference IV1->base - IV0->base, STEP is the absolute value
1130 of the step. The assumptions necessary to ensure that the computation
1131 of the final value does not overflow are recorded in NITER. If we
1132 find the final value, we adjust DELTA and return TRUE. Otherwise
1133 we return false. BNDS bounds the value of IV1->base - IV0->base,
1134 and will be updated by the same amount as DELTA. EXIT_MUST_BE_TAKEN is
1135 true if we know that the exit must be taken eventually. */
1138 number_of_iterations_lt_to_ne (tree type
, affine_iv
*iv0
, affine_iv
*iv1
,
1139 struct tree_niter_desc
*niter
,
1140 tree
*delta
, tree step
,
1141 bool exit_must_be_taken
, bounds
*bnds
)
1143 tree niter_type
= TREE_TYPE (step
);
1144 tree mod
= fold_build2 (FLOOR_MOD_EXPR
, niter_type
, *delta
, step
);
1147 tree assumption
= boolean_true_node
, bound
, noloop
;
1148 bool ret
= false, fv_comp_no_overflow
;
1150 if (POINTER_TYPE_P (type
))
1153 if (TREE_CODE (mod
) != INTEGER_CST
)
1155 if (integer_nonzerop (mod
))
1156 mod
= fold_build2 (MINUS_EXPR
, niter_type
, step
, mod
);
1157 tmod
= fold_convert (type1
, mod
);
1160 wi::to_mpz (mod
, mmod
, UNSIGNED
);
1161 mpz_neg (mmod
, mmod
);
1163 /* If the induction variable does not overflow and the exit is taken,
1164 then the computation of the final value does not overflow. This is
1165 also obviously the case if the new final value is equal to the
1166 current one. Finally, we postulate this for pointer type variables,
1167 as the code cannot rely on the object to that the pointer points being
1168 placed at the end of the address space (and more pragmatically,
1169 TYPE_{MIN,MAX}_VALUE is not defined for pointers). */
1170 if (integer_zerop (mod
) || POINTER_TYPE_P (type
))
1171 fv_comp_no_overflow
= true;
1172 else if (!exit_must_be_taken
)
1173 fv_comp_no_overflow
= false;
1175 fv_comp_no_overflow
=
1176 (iv0
->no_overflow
&& integer_nonzerop (iv0
->step
))
1177 || (iv1
->no_overflow
&& integer_nonzerop (iv1
->step
));
1179 if (integer_nonzerop (iv0
->step
))
1181 /* The final value of the iv is iv1->base + MOD, assuming that this
1182 computation does not overflow, and that
1183 iv0->base <= iv1->base + MOD. */
1184 if (!fv_comp_no_overflow
)
1186 bound
= fold_build2 (MINUS_EXPR
, type1
,
1187 TYPE_MAX_VALUE (type1
), tmod
);
1188 assumption
= fold_build2 (LE_EXPR
, boolean_type_node
,
1190 if (integer_zerop (assumption
))
1193 if (mpz_cmp (mmod
, bnds
->below
) < 0)
1194 noloop
= boolean_false_node
;
1195 else if (POINTER_TYPE_P (type
))
1196 noloop
= fold_build2 (GT_EXPR
, boolean_type_node
,
1198 fold_build_pointer_plus (iv1
->base
, tmod
));
1200 noloop
= fold_build2 (GT_EXPR
, boolean_type_node
,
1202 fold_build2 (PLUS_EXPR
, type1
,
1207 /* The final value of the iv is iv0->base - MOD, assuming that this
1208 computation does not overflow, and that
1209 iv0->base - MOD <= iv1->base. */
1210 if (!fv_comp_no_overflow
)
1212 bound
= fold_build2 (PLUS_EXPR
, type1
,
1213 TYPE_MIN_VALUE (type1
), tmod
);
1214 assumption
= fold_build2 (GE_EXPR
, boolean_type_node
,
1216 if (integer_zerop (assumption
))
1219 if (mpz_cmp (mmod
, bnds
->below
) < 0)
1220 noloop
= boolean_false_node
;
1221 else if (POINTER_TYPE_P (type
))
1222 noloop
= fold_build2 (GT_EXPR
, boolean_type_node
,
1223 fold_build_pointer_plus (iv0
->base
,
1224 fold_build1 (NEGATE_EXPR
,
1228 noloop
= fold_build2 (GT_EXPR
, boolean_type_node
,
1229 fold_build2 (MINUS_EXPR
, type1
,
1234 if (!integer_nonzerop (assumption
))
1235 niter
->assumptions
= fold_build2 (TRUTH_AND_EXPR
, boolean_type_node
,
1238 if (!integer_zerop (noloop
))
1239 niter
->may_be_zero
= fold_build2 (TRUTH_OR_EXPR
, boolean_type_node
,
1242 bounds_add (bnds
, wi::to_widest (mod
), type
);
1243 *delta
= fold_build2 (PLUS_EXPR
, niter_type
, *delta
, mod
);
1251 /* Add assertions to NITER that ensure that the control variable of the loop
1252 with ending condition IV0 < IV1 does not overflow. Types of IV0 and IV1
1253 are TYPE. Returns false if we can prove that there is an overflow, true
1254 otherwise. STEP is the absolute value of the step. */
1257 assert_no_overflow_lt (tree type
, affine_iv
*iv0
, affine_iv
*iv1
,
1258 struct tree_niter_desc
*niter
, tree step
)
1260 tree bound
, d
, assumption
, diff
;
1261 tree niter_type
= TREE_TYPE (step
);
1263 if (integer_nonzerop (iv0
->step
))
1265 /* for (i = iv0->base; i < iv1->base; i += iv0->step) */
1266 if (iv0
->no_overflow
)
1269 /* If iv0->base is a constant, we can determine the last value before
1270 overflow precisely; otherwise we conservatively assume
1273 if (TREE_CODE (iv0
->base
) == INTEGER_CST
)
1275 d
= fold_build2 (MINUS_EXPR
, niter_type
,
1276 fold_convert (niter_type
, TYPE_MAX_VALUE (type
)),
1277 fold_convert (niter_type
, iv0
->base
));
1278 diff
= fold_build2 (FLOOR_MOD_EXPR
, niter_type
, d
, step
);
1281 diff
= fold_build2 (MINUS_EXPR
, niter_type
, step
,
1282 build_int_cst (niter_type
, 1));
1283 bound
= fold_build2 (MINUS_EXPR
, type
,
1284 TYPE_MAX_VALUE (type
), fold_convert (type
, diff
));
1285 assumption
= fold_build2 (LE_EXPR
, boolean_type_node
,
1290 /* for (i = iv1->base; i > iv0->base; i += iv1->step) */
1291 if (iv1
->no_overflow
)
1294 if (TREE_CODE (iv1
->base
) == INTEGER_CST
)
1296 d
= fold_build2 (MINUS_EXPR
, niter_type
,
1297 fold_convert (niter_type
, iv1
->base
),
1298 fold_convert (niter_type
, TYPE_MIN_VALUE (type
)));
1299 diff
= fold_build2 (FLOOR_MOD_EXPR
, niter_type
, d
, step
);
1302 diff
= fold_build2 (MINUS_EXPR
, niter_type
, step
,
1303 build_int_cst (niter_type
, 1));
1304 bound
= fold_build2 (PLUS_EXPR
, type
,
1305 TYPE_MIN_VALUE (type
), fold_convert (type
, diff
));
1306 assumption
= fold_build2 (GE_EXPR
, boolean_type_node
,
1310 if (integer_zerop (assumption
))
1312 if (!integer_nonzerop (assumption
))
1313 niter
->assumptions
= fold_build2 (TRUTH_AND_EXPR
, boolean_type_node
,
1314 niter
->assumptions
, assumption
);
1316 iv0
->no_overflow
= true;
1317 iv1
->no_overflow
= true;
1321 /* Add an assumption to NITER that a loop whose ending condition
1322 is IV0 < IV1 rolls. TYPE is the type of the control iv. BNDS
1323 bounds the value of IV1->base - IV0->base. */
1326 assert_loop_rolls_lt (tree type
, affine_iv
*iv0
, affine_iv
*iv1
,
1327 struct tree_niter_desc
*niter
, bounds
*bnds
)
1329 tree assumption
= boolean_true_node
, bound
, diff
;
1330 tree mbz
, mbzl
, mbzr
, type1
;
1331 bool rolls_p
, no_overflow_p
;
1335 /* We are going to compute the number of iterations as
1336 (iv1->base - iv0->base + step - 1) / step, computed in the unsigned
1337 variant of TYPE. This formula only works if
1339 -step + 1 <= (iv1->base - iv0->base) <= MAX - step + 1
1341 (where MAX is the maximum value of the unsigned variant of TYPE, and
1342 the computations in this formula are performed in full precision,
1343 i.e., without overflows).
1345 Usually, for loops with exit condition iv0->base + step * i < iv1->base,
1346 we have a condition of the form iv0->base - step < iv1->base before the loop,
1347 and for loops iv0->base < iv1->base - step * i the condition
1348 iv0->base < iv1->base + step, due to loop header copying, which enable us
1349 to prove the lower bound.
1351 The upper bound is more complicated. Unless the expressions for initial
1352 and final value themselves contain enough information, we usually cannot
1353 derive it from the context. */
1355 /* First check whether the answer does not follow from the bounds we gathered
1357 if (integer_nonzerop (iv0
->step
))
1358 dstep
= wi::to_widest (iv0
->step
);
1361 dstep
= wi::sext (wi::to_widest (iv1
->step
), TYPE_PRECISION (type
));
1366 wi::to_mpz (dstep
, mstep
, UNSIGNED
);
1367 mpz_neg (mstep
, mstep
);
1368 mpz_add_ui (mstep
, mstep
, 1);
1370 rolls_p
= mpz_cmp (mstep
, bnds
->below
) <= 0;
1373 wi::to_mpz (wi::minus_one (TYPE_PRECISION (type
)), max
, UNSIGNED
);
1374 mpz_add (max
, max
, mstep
);
1375 no_overflow_p
= (mpz_cmp (bnds
->up
, max
) <= 0
1376 /* For pointers, only values lying inside a single object
1377 can be compared or manipulated by pointer arithmetics.
1378 Gcc in general does not allow or handle objects larger
1379 than half of the address space, hence the upper bound
1380 is satisfied for pointers. */
1381 || POINTER_TYPE_P (type
));
1385 if (rolls_p
&& no_overflow_p
)
1389 if (POINTER_TYPE_P (type
))
1392 /* Now the hard part; we must formulate the assumption(s) as expressions, and
1393 we must be careful not to introduce overflow. */
1395 if (integer_nonzerop (iv0
->step
))
1397 diff
= fold_build2 (MINUS_EXPR
, type1
,
1398 iv0
->step
, build_int_cst (type1
, 1));
1400 /* We need to know that iv0->base >= MIN + iv0->step - 1. Since
1401 0 address never belongs to any object, we can assume this for
1403 if (!POINTER_TYPE_P (type
))
1405 bound
= fold_build2 (PLUS_EXPR
, type1
,
1406 TYPE_MIN_VALUE (type
), diff
);
1407 assumption
= fold_build2 (GE_EXPR
, boolean_type_node
,
1411 /* And then we can compute iv0->base - diff, and compare it with
1413 mbzl
= fold_build2 (MINUS_EXPR
, type1
,
1414 fold_convert (type1
, iv0
->base
), diff
);
1415 mbzr
= fold_convert (type1
, iv1
->base
);
1419 diff
= fold_build2 (PLUS_EXPR
, type1
,
1420 iv1
->step
, build_int_cst (type1
, 1));
1422 if (!POINTER_TYPE_P (type
))
1424 bound
= fold_build2 (PLUS_EXPR
, type1
,
1425 TYPE_MAX_VALUE (type
), diff
);
1426 assumption
= fold_build2 (LE_EXPR
, boolean_type_node
,
1430 mbzl
= fold_convert (type1
, iv0
->base
);
1431 mbzr
= fold_build2 (MINUS_EXPR
, type1
,
1432 fold_convert (type1
, iv1
->base
), diff
);
1435 if (!integer_nonzerop (assumption
))
1436 niter
->assumptions
= fold_build2 (TRUTH_AND_EXPR
, boolean_type_node
,
1437 niter
->assumptions
, assumption
);
1440 mbz
= fold_build2 (GT_EXPR
, boolean_type_node
, mbzl
, mbzr
);
1441 niter
->may_be_zero
= fold_build2 (TRUTH_OR_EXPR
, boolean_type_node
,
1442 niter
->may_be_zero
, mbz
);
1446 /* Determines number of iterations of loop whose ending condition
1447 is IV0 < IV1. TYPE is the type of the iv. The number of
1448 iterations is stored to NITER. BNDS bounds the difference
1449 IV1->base - IV0->base. EXIT_MUST_BE_TAKEN is true if we know
1450 that the exit must be taken eventually. */
1453 number_of_iterations_lt (struct loop
*loop
, tree type
, affine_iv
*iv0
,
1454 affine_iv
*iv1
, struct tree_niter_desc
*niter
,
1455 bool exit_must_be_taken
, bounds
*bnds
)
1457 tree niter_type
= unsigned_type_for (type
);
1458 tree delta
, step
, s
;
1461 if (integer_nonzerop (iv0
->step
))
1463 niter
->control
= *iv0
;
1464 niter
->cmp
= LT_EXPR
;
1465 niter
->bound
= iv1
->base
;
1469 niter
->control
= *iv1
;
1470 niter
->cmp
= GT_EXPR
;
1471 niter
->bound
= iv0
->base
;
1474 delta
= fold_build2 (MINUS_EXPR
, niter_type
,
1475 fold_convert (niter_type
, iv1
->base
),
1476 fold_convert (niter_type
, iv0
->base
));
1478 /* First handle the special case that the step is +-1. */
1479 if ((integer_onep (iv0
->step
) && integer_zerop (iv1
->step
))
1480 || (integer_all_onesp (iv1
->step
) && integer_zerop (iv0
->step
)))
1482 /* for (i = iv0->base; i < iv1->base; i++)
1486 for (i = iv1->base; i > iv0->base; i--).
1488 In both cases # of iterations is iv1->base - iv0->base, assuming that
1489 iv1->base >= iv0->base.
1491 First try to derive a lower bound on the value of
1492 iv1->base - iv0->base, computed in full precision. If the difference
1493 is nonnegative, we are done, otherwise we must record the
1496 if (mpz_sgn (bnds
->below
) < 0)
1497 niter
->may_be_zero
= fold_build2 (LT_EXPR
, boolean_type_node
,
1498 iv1
->base
, iv0
->base
);
1499 niter
->niter
= delta
;
1500 niter
->max
= widest_int::from (wi::from_mpz (niter_type
, bnds
->up
, false),
1501 TYPE_SIGN (niter_type
));
1502 niter
->control
.no_overflow
= true;
1506 if (integer_nonzerop (iv0
->step
))
1507 step
= fold_convert (niter_type
, iv0
->step
);
1509 step
= fold_convert (niter_type
,
1510 fold_build1 (NEGATE_EXPR
, type
, iv1
->step
));
1512 /* If we can determine the final value of the control iv exactly, we can
1513 transform the condition to != comparison. In particular, this will be
1514 the case if DELTA is constant. */
1515 if (number_of_iterations_lt_to_ne (type
, iv0
, iv1
, niter
, &delta
, step
,
1516 exit_must_be_taken
, bnds
))
1520 zps
.base
= build_int_cst (niter_type
, 0);
1522 /* number_of_iterations_lt_to_ne will add assumptions that ensure that
1523 zps does not overflow. */
1524 zps
.no_overflow
= true;
1526 return number_of_iterations_ne (loop
, type
, &zps
,
1527 delta
, niter
, true, bnds
);
1530 /* Make sure that the control iv does not overflow. */
1531 if (!assert_no_overflow_lt (type
, iv0
, iv1
, niter
, step
))
1534 /* We determine the number of iterations as (delta + step - 1) / step. For
1535 this to work, we must know that iv1->base >= iv0->base - step + 1,
1536 otherwise the loop does not roll. */
1537 assert_loop_rolls_lt (type
, iv0
, iv1
, niter
, bnds
);
1539 s
= fold_build2 (MINUS_EXPR
, niter_type
,
1540 step
, build_int_cst (niter_type
, 1));
1541 delta
= fold_build2 (PLUS_EXPR
, niter_type
, delta
, s
);
1542 niter
->niter
= fold_build2 (FLOOR_DIV_EXPR
, niter_type
, delta
, step
);
1546 wi::to_mpz (step
, mstep
, UNSIGNED
);
1547 mpz_add (tmp
, bnds
->up
, mstep
);
1548 mpz_sub_ui (tmp
, tmp
, 1);
1549 mpz_fdiv_q (tmp
, tmp
, mstep
);
1550 niter
->max
= widest_int::from (wi::from_mpz (niter_type
, tmp
, false),
1551 TYPE_SIGN (niter_type
));
1558 /* Determines number of iterations of loop whose ending condition
1559 is IV0 <= IV1. TYPE is the type of the iv. The number of
1560 iterations is stored to NITER. EXIT_MUST_BE_TAKEN is true if
1561 we know that this condition must eventually become false (we derived this
1562 earlier, and possibly set NITER->assumptions to make sure this
1563 is the case). BNDS bounds the difference IV1->base - IV0->base. */
1566 number_of_iterations_le (struct loop
*loop
, tree type
, affine_iv
*iv0
,
1567 affine_iv
*iv1
, struct tree_niter_desc
*niter
,
1568 bool exit_must_be_taken
, bounds
*bnds
)
1572 if (POINTER_TYPE_P (type
))
1575 /* Say that IV0 is the control variable. Then IV0 <= IV1 iff
1576 IV0 < IV1 + 1, assuming that IV1 is not equal to the greatest
1577 value of the type. This we must know anyway, since if it is
1578 equal to this value, the loop rolls forever. We do not check
1579 this condition for pointer type ivs, as the code cannot rely on
1580 the object to that the pointer points being placed at the end of
1581 the address space (and more pragmatically, TYPE_{MIN,MAX}_VALUE is
1582 not defined for pointers). */
1584 if (!exit_must_be_taken
&& !POINTER_TYPE_P (type
))
1586 if (integer_nonzerop (iv0
->step
))
1587 assumption
= fold_build2 (NE_EXPR
, boolean_type_node
,
1588 iv1
->base
, TYPE_MAX_VALUE (type
));
1590 assumption
= fold_build2 (NE_EXPR
, boolean_type_node
,
1591 iv0
->base
, TYPE_MIN_VALUE (type
));
1593 if (integer_zerop (assumption
))
1595 if (!integer_nonzerop (assumption
))
1596 niter
->assumptions
= fold_build2 (TRUTH_AND_EXPR
, boolean_type_node
,
1597 niter
->assumptions
, assumption
);
1600 if (integer_nonzerop (iv0
->step
))
1602 if (POINTER_TYPE_P (type
))
1603 iv1
->base
= fold_build_pointer_plus_hwi (iv1
->base
, 1);
1605 iv1
->base
= fold_build2 (PLUS_EXPR
, type1
, iv1
->base
,
1606 build_int_cst (type1
, 1));
1608 else if (POINTER_TYPE_P (type
))
1609 iv0
->base
= fold_build_pointer_plus_hwi (iv0
->base
, -1);
1611 iv0
->base
= fold_build2 (MINUS_EXPR
, type1
,
1612 iv0
->base
, build_int_cst (type1
, 1));
1614 bounds_add (bnds
, 1, type1
);
1616 return number_of_iterations_lt (loop
, type
, iv0
, iv1
, niter
, exit_must_be_taken
,
1620 /* Dumps description of affine induction variable IV to FILE. */
1623 dump_affine_iv (FILE *file
, affine_iv
*iv
)
1625 if (!integer_zerop (iv
->step
))
1626 fprintf (file
, "[");
1628 print_generic_expr (dump_file
, iv
->base
, TDF_SLIM
);
1630 if (!integer_zerop (iv
->step
))
1632 fprintf (file
, ", + , ");
1633 print_generic_expr (dump_file
, iv
->step
, TDF_SLIM
);
1634 fprintf (file
, "]%s", iv
->no_overflow
? "(no_overflow)" : "");
1638 /* Determine the number of iterations according to condition (for staying
1639 inside loop) which compares two induction variables using comparison
1640 operator CODE. The induction variable on left side of the comparison
1641 is IV0, the right-hand side is IV1. Both induction variables must have
1642 type TYPE, which must be an integer or pointer type. The steps of the
1643 ivs must be constants (or NULL_TREE, which is interpreted as constant zero).
1645 LOOP is the loop whose number of iterations we are determining.
1647 ONLY_EXIT is true if we are sure this is the only way the loop could be
1648 exited (including possibly non-returning function calls, exceptions, etc.)
1649 -- in this case we can use the information whether the control induction
1650 variables can overflow or not in a more efficient way.
1652 if EVERY_ITERATION is true, we know the test is executed on every iteration.
1654 The results (number of iterations and assumptions as described in
1655 comments at struct tree_niter_desc in tree-ssa-loop.h) are stored to NITER.
1656 Returns false if it fails to determine number of iterations, true if it
1657 was determined (possibly with some assumptions). */
1660 number_of_iterations_cond (struct loop
*loop
,
1661 tree type
, affine_iv
*iv0
, enum tree_code code
,
1662 affine_iv
*iv1
, struct tree_niter_desc
*niter
,
1663 bool only_exit
, bool every_iteration
)
1665 bool exit_must_be_taken
= false, ret
;
1668 /* If the test is not executed every iteration, wrapping may make the test
1670 TODO: the overflow case can be still used as unreliable estimate of upper
1671 bound. But we have no API to pass it down to number of iterations code
1672 and, at present, it will not use it anyway. */
1673 if (!every_iteration
1674 && (!iv0
->no_overflow
|| !iv1
->no_overflow
1675 || code
== NE_EXPR
|| code
== EQ_EXPR
))
1678 /* The meaning of these assumptions is this:
1680 then the rest of information does not have to be valid
1681 if may_be_zero then the loop does not roll, even if
1683 niter
->assumptions
= boolean_true_node
;
1684 niter
->may_be_zero
= boolean_false_node
;
1685 niter
->niter
= NULL_TREE
;
1687 niter
->bound
= NULL_TREE
;
1688 niter
->cmp
= ERROR_MARK
;
1690 /* Make < comparison from > ones, and for NE_EXPR comparisons, ensure that
1691 the control variable is on lhs. */
1692 if (code
== GE_EXPR
|| code
== GT_EXPR
1693 || (code
== NE_EXPR
&& integer_zerop (iv0
->step
)))
1695 std::swap (iv0
, iv1
);
1696 code
= swap_tree_comparison (code
);
1699 if (POINTER_TYPE_P (type
))
1701 /* Comparison of pointers is undefined unless both iv0 and iv1 point
1702 to the same object. If they do, the control variable cannot wrap
1703 (as wrap around the bounds of memory will never return a pointer
1704 that would be guaranteed to point to the same object, even if we
1705 avoid undefined behavior by casting to size_t and back). */
1706 iv0
->no_overflow
= true;
1707 iv1
->no_overflow
= true;
1710 /* If the control induction variable does not overflow and the only exit
1711 from the loop is the one that we analyze, we know it must be taken
1715 if (!integer_zerop (iv0
->step
) && iv0
->no_overflow
)
1716 exit_must_be_taken
= true;
1717 else if (!integer_zerop (iv1
->step
) && iv1
->no_overflow
)
1718 exit_must_be_taken
= true;
1721 /* We can handle cases which neither of the sides of the comparison is
1724 {iv0.base, iv0.step} cmp_code {iv1.base, iv1.step}
1726 {iv0.base, iv0.step - iv1.step} cmp_code {iv1.base, 0}
1728 provided that either below condition is satisfied:
1730 a) the test is NE_EXPR;
1731 b) iv0.step - iv1.step is positive integer.
1733 This rarely occurs in practice, but it is simple enough to manage. */
1734 if (!integer_zerop (iv0
->step
) && !integer_zerop (iv1
->step
))
1736 tree step_type
= POINTER_TYPE_P (type
) ? sizetype
: type
;
1737 tree step
= fold_binary_to_constant (MINUS_EXPR
, step_type
,
1738 iv0
->step
, iv1
->step
);
1740 /* No need to check sign of the new step since below code takes care
1742 if (code
!= NE_EXPR
&& TREE_CODE (step
) != INTEGER_CST
)
1746 if (!POINTER_TYPE_P (type
))
1747 iv0
->no_overflow
= false;
1749 iv1
->step
= build_int_cst (step_type
, 0);
1750 iv1
->no_overflow
= true;
1753 /* If the result of the comparison is a constant, the loop is weird. More
1754 precise handling would be possible, but the situation is not common enough
1755 to waste time on it. */
1756 if (integer_zerop (iv0
->step
) && integer_zerop (iv1
->step
))
1759 /* Ignore loops of while (i-- < 10) type. */
1760 if (code
!= NE_EXPR
)
1762 if (iv0
->step
&& tree_int_cst_sign_bit (iv0
->step
))
1765 if (!integer_zerop (iv1
->step
) && !tree_int_cst_sign_bit (iv1
->step
))
1769 /* If the loop exits immediately, there is nothing to do. */
1770 tree tem
= fold_binary (code
, boolean_type_node
, iv0
->base
, iv1
->base
);
1771 if (tem
&& integer_zerop (tem
))
1773 niter
->niter
= build_int_cst (unsigned_type_for (type
), 0);
1778 /* OK, now we know we have a senseful loop. Handle several cases, depending
1779 on what comparison operator is used. */
1780 bound_difference (loop
, iv1
->base
, iv0
->base
, &bnds
);
1782 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1785 "Analyzing # of iterations of loop %d\n", loop
->num
);
1787 fprintf (dump_file
, " exit condition ");
1788 dump_affine_iv (dump_file
, iv0
);
1789 fprintf (dump_file
, " %s ",
1790 code
== NE_EXPR
? "!="
1791 : code
== LT_EXPR
? "<"
1793 dump_affine_iv (dump_file
, iv1
);
1794 fprintf (dump_file
, "\n");
1796 fprintf (dump_file
, " bounds on difference of bases: ");
1797 mpz_out_str (dump_file
, 10, bnds
.below
);
1798 fprintf (dump_file
, " ... ");
1799 mpz_out_str (dump_file
, 10, bnds
.up
);
1800 fprintf (dump_file
, "\n");
1806 gcc_assert (integer_zerop (iv1
->step
));
1807 ret
= number_of_iterations_ne (loop
, type
, iv0
, iv1
->base
, niter
,
1808 exit_must_be_taken
, &bnds
);
1812 ret
= number_of_iterations_lt (loop
, type
, iv0
, iv1
, niter
,
1813 exit_must_be_taken
, &bnds
);
1817 ret
= number_of_iterations_le (loop
, type
, iv0
, iv1
, niter
,
1818 exit_must_be_taken
, &bnds
);
1825 mpz_clear (bnds
.up
);
1826 mpz_clear (bnds
.below
);
1828 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1832 fprintf (dump_file
, " result:\n");
1833 if (!integer_nonzerop (niter
->assumptions
))
1835 fprintf (dump_file
, " under assumptions ");
1836 print_generic_expr (dump_file
, niter
->assumptions
, TDF_SLIM
);
1837 fprintf (dump_file
, "\n");
1840 if (!integer_zerop (niter
->may_be_zero
))
1842 fprintf (dump_file
, " zero if ");
1843 print_generic_expr (dump_file
, niter
->may_be_zero
, TDF_SLIM
);
1844 fprintf (dump_file
, "\n");
1847 fprintf (dump_file
, " # of iterations ");
1848 print_generic_expr (dump_file
, niter
->niter
, TDF_SLIM
);
1849 fprintf (dump_file
, ", bounded by ");
1850 print_decu (niter
->max
, dump_file
);
1851 fprintf (dump_file
, "\n");
1854 fprintf (dump_file
, " failed\n\n");
1859 /* Substitute NEW for OLD in EXPR and fold the result. */
1862 simplify_replace_tree (tree expr
, tree old
, tree new_tree
)
1865 tree ret
= NULL_TREE
, e
, se
;
1870 /* Do not bother to replace constants. */
1871 if (CONSTANT_CLASS_P (old
))
1875 || operand_equal_p (expr
, old
, 0))
1876 return unshare_expr (new_tree
);
1881 n
= TREE_OPERAND_LENGTH (expr
);
1882 for (i
= 0; i
< n
; i
++)
1884 e
= TREE_OPERAND (expr
, i
);
1885 se
= simplify_replace_tree (e
, old
, new_tree
);
1890 ret
= copy_node (expr
);
1892 TREE_OPERAND (ret
, i
) = se
;
1895 return (ret
? fold (ret
) : expr
);
1898 /* Expand definitions of ssa names in EXPR as long as they are simple
1899 enough, and return the new expression. If STOP is specified, stop
1900 expanding if EXPR equals to it. */
1903 expand_simple_operations (tree expr
, tree stop
)
1906 tree ret
= NULL_TREE
, e
, ee
, e1
;
1907 enum tree_code code
;
1910 if (expr
== NULL_TREE
)
1913 if (is_gimple_min_invariant (expr
))
1916 code
= TREE_CODE (expr
);
1917 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code
)))
1919 n
= TREE_OPERAND_LENGTH (expr
);
1920 for (i
= 0; i
< n
; i
++)
1922 e
= TREE_OPERAND (expr
, i
);
1923 ee
= expand_simple_operations (e
, stop
);
1928 ret
= copy_node (expr
);
1930 TREE_OPERAND (ret
, i
) = ee
;
1936 fold_defer_overflow_warnings ();
1938 fold_undefer_and_ignore_overflow_warnings ();
1942 /* Stop if it's not ssa name or the one we don't want to expand. */
1943 if (TREE_CODE (expr
) != SSA_NAME
|| expr
== stop
)
1946 stmt
= SSA_NAME_DEF_STMT (expr
);
1947 if (gimple_code (stmt
) == GIMPLE_PHI
)
1949 basic_block src
, dest
;
1951 if (gimple_phi_num_args (stmt
) != 1)
1953 e
= PHI_ARG_DEF (stmt
, 0);
1955 /* Avoid propagating through loop exit phi nodes, which
1956 could break loop-closed SSA form restrictions. */
1957 dest
= gimple_bb (stmt
);
1958 src
= single_pred (dest
);
1959 if (TREE_CODE (e
) == SSA_NAME
1960 && src
->loop_father
!= dest
->loop_father
)
1963 return expand_simple_operations (e
, stop
);
1965 if (gimple_code (stmt
) != GIMPLE_ASSIGN
)
1968 /* Avoid expanding to expressions that contain SSA names that need
1969 to take part in abnormal coalescing. */
1971 FOR_EACH_SSA_TREE_OPERAND (e
, stmt
, iter
, SSA_OP_USE
)
1972 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (e
))
1975 e
= gimple_assign_rhs1 (stmt
);
1976 code
= gimple_assign_rhs_code (stmt
);
1977 if (get_gimple_rhs_class (code
) == GIMPLE_SINGLE_RHS
)
1979 if (is_gimple_min_invariant (e
))
1982 if (code
== SSA_NAME
)
1983 return expand_simple_operations (e
, stop
);
1984 else if (code
== ADDR_EXPR
)
1986 HOST_WIDE_INT offset
;
1987 tree base
= get_addr_base_and_unit_offset (TREE_OPERAND (e
, 0),
1990 && TREE_CODE (base
) == MEM_REF
)
1992 ee
= expand_simple_operations (TREE_OPERAND (base
, 0), stop
);
1993 return fold_build2 (POINTER_PLUS_EXPR
, TREE_TYPE (expr
), ee
,
1994 wide_int_to_tree (sizetype
,
1995 mem_ref_offset (base
)
2006 /* Casts are simple. */
2007 ee
= expand_simple_operations (e
, stop
);
2008 return fold_build1 (code
, TREE_TYPE (expr
), ee
);
2012 if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (expr
))
2013 && TYPE_OVERFLOW_TRAPS (TREE_TYPE (expr
)))
2016 case POINTER_PLUS_EXPR
:
2017 /* And increments and decrements by a constant are simple. */
2018 e1
= gimple_assign_rhs2 (stmt
);
2019 if (!is_gimple_min_invariant (e1
))
2022 ee
= expand_simple_operations (e
, stop
);
2023 return fold_build2 (code
, TREE_TYPE (expr
), ee
, e1
);
2030 /* Tries to simplify EXPR using the condition COND. Returns the simplified
2031 expression (or EXPR unchanged, if no simplification was possible). */
2034 tree_simplify_using_condition_1 (tree cond
, tree expr
)
2037 tree e
, e0
, e1
, e2
, notcond
;
2038 enum tree_code code
= TREE_CODE (expr
);
2040 if (code
== INTEGER_CST
)
2043 if (code
== TRUTH_OR_EXPR
2044 || code
== TRUTH_AND_EXPR
2045 || code
== COND_EXPR
)
2049 e0
= tree_simplify_using_condition_1 (cond
, TREE_OPERAND (expr
, 0));
2050 if (TREE_OPERAND (expr
, 0) != e0
)
2053 e1
= tree_simplify_using_condition_1 (cond
, TREE_OPERAND (expr
, 1));
2054 if (TREE_OPERAND (expr
, 1) != e1
)
2057 if (code
== COND_EXPR
)
2059 e2
= tree_simplify_using_condition_1 (cond
, TREE_OPERAND (expr
, 2));
2060 if (TREE_OPERAND (expr
, 2) != e2
)
2068 if (code
== COND_EXPR
)
2069 expr
= fold_build3 (code
, boolean_type_node
, e0
, e1
, e2
);
2071 expr
= fold_build2 (code
, boolean_type_node
, e0
, e1
);
2077 /* In case COND is equality, we may be able to simplify EXPR by copy/constant
2078 propagation, and vice versa. Fold does not handle this, since it is
2079 considered too expensive. */
2080 if (TREE_CODE (cond
) == EQ_EXPR
)
2082 e0
= TREE_OPERAND (cond
, 0);
2083 e1
= TREE_OPERAND (cond
, 1);
2085 /* We know that e0 == e1. Check whether we cannot simplify expr
2087 e
= simplify_replace_tree (expr
, e0
, e1
);
2088 if (integer_zerop (e
) || integer_nonzerop (e
))
2091 e
= simplify_replace_tree (expr
, e1
, e0
);
2092 if (integer_zerop (e
) || integer_nonzerop (e
))
2095 if (TREE_CODE (expr
) == EQ_EXPR
)
2097 e0
= TREE_OPERAND (expr
, 0);
2098 e1
= TREE_OPERAND (expr
, 1);
2100 /* If e0 == e1 (EXPR) implies !COND, then EXPR cannot be true. */
2101 e
= simplify_replace_tree (cond
, e0
, e1
);
2102 if (integer_zerop (e
))
2104 e
= simplify_replace_tree (cond
, e1
, e0
);
2105 if (integer_zerop (e
))
2108 if (TREE_CODE (expr
) == NE_EXPR
)
2110 e0
= TREE_OPERAND (expr
, 0);
2111 e1
= TREE_OPERAND (expr
, 1);
2113 /* If e0 == e1 (!EXPR) implies !COND, then EXPR must be true. */
2114 e
= simplify_replace_tree (cond
, e0
, e1
);
2115 if (integer_zerop (e
))
2116 return boolean_true_node
;
2117 e
= simplify_replace_tree (cond
, e1
, e0
);
2118 if (integer_zerop (e
))
2119 return boolean_true_node
;
2122 /* Check whether COND ==> EXPR. */
2123 notcond
= invert_truthvalue (cond
);
2124 e
= fold_binary (TRUTH_OR_EXPR
, boolean_type_node
, notcond
, expr
);
2125 if (e
&& integer_nonzerop (e
))
2128 /* Check whether COND ==> not EXPR. */
2129 e
= fold_binary (TRUTH_AND_EXPR
, boolean_type_node
, cond
, expr
);
2130 if (e
&& integer_zerop (e
))
2136 /* Tries to simplify EXPR using the condition COND. Returns the simplified
2137 expression (or EXPR unchanged, if no simplification was possible).
2138 Wrapper around tree_simplify_using_condition_1 that ensures that chains
2139 of simple operations in definitions of ssa names in COND are expanded,
2140 so that things like casts or incrementing the value of the bound before
2141 the loop do not cause us to fail. */
2144 tree_simplify_using_condition (tree cond
, tree expr
)
2146 cond
= expand_simple_operations (cond
);
2148 return tree_simplify_using_condition_1 (cond
, expr
);
2151 /* Tries to simplify EXPR using the conditions on entry to LOOP.
2152 Returns the simplified expression (or EXPR unchanged, if no
2153 simplification was possible). */
2156 simplify_using_initial_conditions (struct loop
*loop
, tree expr
)
2161 tree cond
, expanded
, backup
;
2164 if (TREE_CODE (expr
) == INTEGER_CST
)
2167 backup
= expanded
= expand_simple_operations (expr
);
2169 /* Limit walking the dominators to avoid quadraticness in
2170 the number of BBs times the number of loops in degenerate
2172 for (bb
= loop
->header
;
2173 bb
!= ENTRY_BLOCK_PTR_FOR_FN (cfun
) && cnt
< MAX_DOMINATORS_TO_WALK
;
2174 bb
= get_immediate_dominator (CDI_DOMINATORS
, bb
))
2176 if (!single_pred_p (bb
))
2178 e
= single_pred_edge (bb
);
2180 if (!(e
->flags
& (EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
)))
2183 stmt
= last_stmt (e
->src
);
2184 cond
= fold_build2 (gimple_cond_code (stmt
),
2186 gimple_cond_lhs (stmt
),
2187 gimple_cond_rhs (stmt
));
2188 if (e
->flags
& EDGE_FALSE_VALUE
)
2189 cond
= invert_truthvalue (cond
);
2190 expanded
= tree_simplify_using_condition (cond
, expanded
);
2191 /* Break if EXPR is simplified to const values. */
2193 && (integer_zerop (expanded
) || integer_nonzerop (expanded
)))
2199 /* Return the original expression if no simplification is done. */
2200 return operand_equal_p (backup
, expanded
, 0) ? expr
: expanded
;
2203 /* Tries to simplify EXPR using the evolutions of the loop invariants
2204 in the superloops of LOOP. Returns the simplified expression
2205 (or EXPR unchanged, if no simplification was possible). */
2208 simplify_using_outer_evolutions (struct loop
*loop
, tree expr
)
2210 enum tree_code code
= TREE_CODE (expr
);
2214 if (is_gimple_min_invariant (expr
))
2217 if (code
== TRUTH_OR_EXPR
2218 || code
== TRUTH_AND_EXPR
2219 || code
== COND_EXPR
)
2223 e0
= simplify_using_outer_evolutions (loop
, TREE_OPERAND (expr
, 0));
2224 if (TREE_OPERAND (expr
, 0) != e0
)
2227 e1
= simplify_using_outer_evolutions (loop
, TREE_OPERAND (expr
, 1));
2228 if (TREE_OPERAND (expr
, 1) != e1
)
2231 if (code
== COND_EXPR
)
2233 e2
= simplify_using_outer_evolutions (loop
, TREE_OPERAND (expr
, 2));
2234 if (TREE_OPERAND (expr
, 2) != e2
)
2242 if (code
== COND_EXPR
)
2243 expr
= fold_build3 (code
, boolean_type_node
, e0
, e1
, e2
);
2245 expr
= fold_build2 (code
, boolean_type_node
, e0
, e1
);
2251 e
= instantiate_parameters (loop
, expr
);
2252 if (is_gimple_min_invariant (e
))
2258 /* Returns true if EXIT is the only possible exit from LOOP. */
2261 loop_only_exit_p (const struct loop
*loop
, const_edge exit
)
2264 gimple_stmt_iterator bsi
;
2267 if (exit
!= single_exit (loop
))
2270 body
= get_loop_body (loop
);
2271 for (i
= 0; i
< loop
->num_nodes
; i
++)
2273 for (bsi
= gsi_start_bb (body
[i
]); !gsi_end_p (bsi
); gsi_next (&bsi
))
2274 if (stmt_can_terminate_bb_p (gsi_stmt (bsi
)))
2285 /* Stores description of number of iterations of LOOP derived from
2286 EXIT (an exit edge of the LOOP) in NITER. Returns true if some useful
2287 information could be derived (and fields of NITER have meaning described
2288 in comments at struct tree_niter_desc declaration), false otherwise.
2289 When EVERY_ITERATION is true, only tests that are known to be executed
2290 every iteration are considered (i.e. only test that alone bounds the loop).
2291 If AT_STMT is not NULL, this function stores LOOP's condition statement in
2292 it when returning true. */
2295 number_of_iterations_exit_assumptions (struct loop
*loop
, edge exit
,
2296 struct tree_niter_desc
*niter
,
2297 gcond
**at_stmt
, bool every_iteration
)
2303 enum tree_code code
;
2307 /* Nothing to analyze if the loop is known to be infinite. */
2308 if (loop_constraint_set_p (loop
, LOOP_C_INFINITE
))
2311 safe
= dominated_by_p (CDI_DOMINATORS
, loop
->latch
, exit
->src
);
2313 if (every_iteration
&& !safe
)
2316 niter
->assumptions
= boolean_false_node
;
2317 niter
->control
.base
= NULL_TREE
;
2318 niter
->control
.step
= NULL_TREE
;
2319 niter
->control
.no_overflow
= false;
2320 last
= last_stmt (exit
->src
);
2323 stmt
= dyn_cast
<gcond
*> (last
);
2327 /* We want the condition for staying inside loop. */
2328 code
= gimple_cond_code (stmt
);
2329 if (exit
->flags
& EDGE_TRUE_VALUE
)
2330 code
= invert_tree_comparison (code
, false);
2345 op0
= gimple_cond_lhs (stmt
);
2346 op1
= gimple_cond_rhs (stmt
);
2347 type
= TREE_TYPE (op0
);
2349 if (TREE_CODE (type
) != INTEGER_TYPE
2350 && !POINTER_TYPE_P (type
))
2353 tree iv0_niters
= NULL_TREE
;
2354 if (!simple_iv_with_niters (loop
, loop_containing_stmt (stmt
),
2355 op0
, &iv0
, &iv0_niters
, false))
2357 tree iv1_niters
= NULL_TREE
;
2358 if (!simple_iv_with_niters (loop
, loop_containing_stmt (stmt
),
2359 op1
, &iv1
, &iv1_niters
, false))
2361 /* Give up on complicated case. */
2362 if (iv0_niters
&& iv1_niters
)
2365 /* We don't want to see undefined signed overflow warnings while
2366 computing the number of iterations. */
2367 fold_defer_overflow_warnings ();
2369 iv0
.base
= expand_simple_operations (iv0
.base
);
2370 iv1
.base
= expand_simple_operations (iv1
.base
);
2371 if (!number_of_iterations_cond (loop
, type
, &iv0
, code
, &iv1
, niter
,
2372 loop_only_exit_p (loop
, exit
), safe
))
2374 fold_undefer_and_ignore_overflow_warnings ();
2378 /* Incorporate additional assumption implied by control iv. */
2379 tree iv_niters
= iv0_niters
? iv0_niters
: iv1_niters
;
2382 tree assumption
= fold_build2 (LE_EXPR
, boolean_type_node
, niter
->niter
,
2383 fold_convert (TREE_TYPE (niter
->niter
),
2386 if (!integer_nonzerop (assumption
))
2387 niter
->assumptions
= fold_build2 (TRUTH_AND_EXPR
, boolean_type_node
,
2388 niter
->assumptions
, assumption
);
2390 /* Refine upper bound if possible. */
2391 if (TREE_CODE (iv_niters
) == INTEGER_CST
2392 && niter
->max
> wi::to_widest (iv_niters
))
2393 niter
->max
= wi::to_widest (iv_niters
);
2396 /* There is no assumptions if the loop is known to be finite. */
2397 if (!integer_zerop (niter
->assumptions
)
2398 && loop_constraint_set_p (loop
, LOOP_C_FINITE
))
2399 niter
->assumptions
= boolean_true_node
;
2403 niter
->assumptions
= simplify_using_outer_evolutions (loop
,
2404 niter
->assumptions
);
2405 niter
->may_be_zero
= simplify_using_outer_evolutions (loop
,
2406 niter
->may_be_zero
);
2407 niter
->niter
= simplify_using_outer_evolutions (loop
, niter
->niter
);
2411 = simplify_using_initial_conditions (loop
,
2412 niter
->assumptions
);
2414 = simplify_using_initial_conditions (loop
,
2415 niter
->may_be_zero
);
2417 fold_undefer_and_ignore_overflow_warnings ();
2419 /* If NITER has simplified into a constant, update MAX. */
2420 if (TREE_CODE (niter
->niter
) == INTEGER_CST
)
2421 niter
->max
= wi::to_widest (niter
->niter
);
2426 return (!integer_zerop (niter
->assumptions
));
2429 /* Like number_of_iterations_exit_assumptions, but return TRUE only if
2430 the niter information holds unconditionally. */
2433 number_of_iterations_exit (struct loop
*loop
, edge exit
,
2434 struct tree_niter_desc
*niter
,
2435 bool warn
, bool every_iteration
)
2438 if (!number_of_iterations_exit_assumptions (loop
, exit
, niter
,
2439 &stmt
, every_iteration
))
2442 if (integer_nonzerop (niter
->assumptions
))
2446 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, gimple_location_safe (stmt
),
2447 "missed loop optimization: niters analysis ends up "
2448 "with assumptions.\n");
2453 /* Try to determine the number of iterations of LOOP. If we succeed,
2454 expression giving number of iterations is returned and *EXIT is
2455 set to the edge from that the information is obtained. Otherwise
2456 chrec_dont_know is returned. */
2459 find_loop_niter (struct loop
*loop
, edge
*exit
)
2462 vec
<edge
> exits
= get_loop_exit_edges (loop
);
2464 tree niter
= NULL_TREE
, aniter
;
2465 struct tree_niter_desc desc
;
2468 FOR_EACH_VEC_ELT (exits
, i
, ex
)
2470 if (!number_of_iterations_exit (loop
, ex
, &desc
, false))
2473 if (integer_nonzerop (desc
.may_be_zero
))
2475 /* We exit in the first iteration through this exit.
2476 We won't find anything better. */
2477 niter
= build_int_cst (unsigned_type_node
, 0);
2482 if (!integer_zerop (desc
.may_be_zero
))
2485 aniter
= desc
.niter
;
2489 /* Nothing recorded yet. */
2495 /* Prefer constants, the lower the better. */
2496 if (TREE_CODE (aniter
) != INTEGER_CST
)
2499 if (TREE_CODE (niter
) != INTEGER_CST
)
2506 if (tree_int_cst_lt (aniter
, niter
))
2515 return niter
? niter
: chrec_dont_know
;
2518 /* Return true if loop is known to have bounded number of iterations. */
2521 finite_loop_p (struct loop
*loop
)
2526 flags
= flags_from_decl_or_type (current_function_decl
);
2527 if ((flags
& (ECF_CONST
|ECF_PURE
)) && !(flags
& ECF_LOOPING_CONST_OR_PURE
))
2529 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2530 fprintf (dump_file
, "Found loop %i to be finite: it is within pure or const function.\n",
2535 if (loop
->any_upper_bound
2536 || max_loop_iterations (loop
, &nit
))
2538 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2539 fprintf (dump_file
, "Found loop %i to be finite: upper bound found.\n",
2548 Analysis of a number of iterations of a loop by a brute-force evaluation.
2552 /* Bound on the number of iterations we try to evaluate. */
2554 #define MAX_ITERATIONS_TO_TRACK \
2555 ((unsigned) PARAM_VALUE (PARAM_MAX_ITERATIONS_TO_TRACK))
2557 /* Returns the loop phi node of LOOP such that ssa name X is derived from its
2558 result by a chain of operations such that all but exactly one of their
2559 operands are constants. */
2562 chain_of_csts_start (struct loop
*loop
, tree x
)
2564 gimple
*stmt
= SSA_NAME_DEF_STMT (x
);
2566 basic_block bb
= gimple_bb (stmt
);
2567 enum tree_code code
;
2570 || !flow_bb_inside_loop_p (loop
, bb
))
2573 if (gimple_code (stmt
) == GIMPLE_PHI
)
2575 if (bb
== loop
->header
)
2576 return as_a
<gphi
*> (stmt
);
2581 if (gimple_code (stmt
) != GIMPLE_ASSIGN
2582 || gimple_assign_rhs_class (stmt
) == GIMPLE_TERNARY_RHS
)
2585 code
= gimple_assign_rhs_code (stmt
);
2586 if (gimple_references_memory_p (stmt
)
2587 || TREE_CODE_CLASS (code
) == tcc_reference
2588 || (code
== ADDR_EXPR
2589 && !is_gimple_min_invariant (gimple_assign_rhs1 (stmt
))))
2592 use
= SINGLE_SSA_TREE_OPERAND (stmt
, SSA_OP_USE
);
2593 if (use
== NULL_TREE
)
2596 return chain_of_csts_start (loop
, use
);
2599 /* Determines whether the expression X is derived from a result of a phi node
2600 in header of LOOP such that
2602 * the derivation of X consists only from operations with constants
2603 * the initial value of the phi node is constant
2604 * the value of the phi node in the next iteration can be derived from the
2605 value in the current iteration by a chain of operations with constants,
2606 or is also a constant
2608 If such phi node exists, it is returned, otherwise NULL is returned. */
2611 get_base_for (struct loop
*loop
, tree x
)
2616 if (is_gimple_min_invariant (x
))
2619 phi
= chain_of_csts_start (loop
, x
);
2623 init
= PHI_ARG_DEF_FROM_EDGE (phi
, loop_preheader_edge (loop
));
2624 next
= PHI_ARG_DEF_FROM_EDGE (phi
, loop_latch_edge (loop
));
2626 if (!is_gimple_min_invariant (init
))
2629 if (TREE_CODE (next
) == SSA_NAME
2630 && chain_of_csts_start (loop
, next
) != phi
)
2636 /* Given an expression X, then
2638 * if X is NULL_TREE, we return the constant BASE.
2639 * if X is a constant, we return the constant X.
2640 * otherwise X is a SSA name, whose value in the considered loop is derived
2641 by a chain of operations with constant from a result of a phi node in
2642 the header of the loop. Then we return value of X when the value of the
2643 result of this phi node is given by the constant BASE. */
2646 get_val_for (tree x
, tree base
)
2650 gcc_checking_assert (is_gimple_min_invariant (base
));
2654 else if (is_gimple_min_invariant (x
))
2657 stmt
= SSA_NAME_DEF_STMT (x
);
2658 if (gimple_code (stmt
) == GIMPLE_PHI
)
2661 gcc_checking_assert (is_gimple_assign (stmt
));
2663 /* STMT must be either an assignment of a single SSA name or an
2664 expression involving an SSA name and a constant. Try to fold that
2665 expression using the value for the SSA name. */
2666 if (gimple_assign_ssa_name_copy_p (stmt
))
2667 return get_val_for (gimple_assign_rhs1 (stmt
), base
);
2668 else if (gimple_assign_rhs_class (stmt
) == GIMPLE_UNARY_RHS
2669 && TREE_CODE (gimple_assign_rhs1 (stmt
)) == SSA_NAME
)
2670 return fold_build1 (gimple_assign_rhs_code (stmt
),
2671 gimple_expr_type (stmt
),
2672 get_val_for (gimple_assign_rhs1 (stmt
), base
));
2673 else if (gimple_assign_rhs_class (stmt
) == GIMPLE_BINARY_RHS
)
2675 tree rhs1
= gimple_assign_rhs1 (stmt
);
2676 tree rhs2
= gimple_assign_rhs2 (stmt
);
2677 if (TREE_CODE (rhs1
) == SSA_NAME
)
2678 rhs1
= get_val_for (rhs1
, base
);
2679 else if (TREE_CODE (rhs2
) == SSA_NAME
)
2680 rhs2
= get_val_for (rhs2
, base
);
2683 return fold_build2 (gimple_assign_rhs_code (stmt
),
2684 gimple_expr_type (stmt
), rhs1
, rhs2
);
2691 /* Tries to count the number of iterations of LOOP till it exits by EXIT
2692 by brute force -- i.e. by determining the value of the operands of the
2693 condition at EXIT in first few iterations of the loop (assuming that
2694 these values are constant) and determining the first one in that the
2695 condition is not satisfied. Returns the constant giving the number
2696 of the iterations of LOOP if successful, chrec_dont_know otherwise. */
2699 loop_niter_by_eval (struct loop
*loop
, edge exit
)
2702 tree op
[2], val
[2], next
[2], aval
[2];
2708 cond
= last_stmt (exit
->src
);
2709 if (!cond
|| gimple_code (cond
) != GIMPLE_COND
)
2710 return chrec_dont_know
;
2712 cmp
= gimple_cond_code (cond
);
2713 if (exit
->flags
& EDGE_TRUE_VALUE
)
2714 cmp
= invert_tree_comparison (cmp
, false);
2724 op
[0] = gimple_cond_lhs (cond
);
2725 op
[1] = gimple_cond_rhs (cond
);
2729 return chrec_dont_know
;
2732 for (j
= 0; j
< 2; j
++)
2734 if (is_gimple_min_invariant (op
[j
]))
2737 next
[j
] = NULL_TREE
;
2742 phi
= get_base_for (loop
, op
[j
]);
2744 return chrec_dont_know
;
2745 val
[j
] = PHI_ARG_DEF_FROM_EDGE (phi
, loop_preheader_edge (loop
));
2746 next
[j
] = PHI_ARG_DEF_FROM_EDGE (phi
, loop_latch_edge (loop
));
2750 /* Don't issue signed overflow warnings. */
2751 fold_defer_overflow_warnings ();
2753 for (i
= 0; i
< MAX_ITERATIONS_TO_TRACK
; i
++)
2755 for (j
= 0; j
< 2; j
++)
2756 aval
[j
] = get_val_for (op
[j
], val
[j
]);
2758 acnd
= fold_binary (cmp
, boolean_type_node
, aval
[0], aval
[1]);
2759 if (acnd
&& integer_zerop (acnd
))
2761 fold_undefer_and_ignore_overflow_warnings ();
2762 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2764 "Proved that loop %d iterates %d times using brute force.\n",
2766 return build_int_cst (unsigned_type_node
, i
);
2769 for (j
= 0; j
< 2; j
++)
2772 val
[j
] = get_val_for (next
[j
], val
[j
]);
2773 if (!is_gimple_min_invariant (val
[j
]))
2775 fold_undefer_and_ignore_overflow_warnings ();
2776 return chrec_dont_know
;
2780 /* If the next iteration would use the same base values
2781 as the current one, there is no point looping further,
2782 all following iterations will be the same as this one. */
2783 if (val
[0] == aval
[0] && val
[1] == aval
[1])
2787 fold_undefer_and_ignore_overflow_warnings ();
2789 return chrec_dont_know
;
2792 /* Finds the exit of the LOOP by that the loop exits after a constant
2793 number of iterations and stores the exit edge to *EXIT. The constant
2794 giving the number of iterations of LOOP is returned. The number of
2795 iterations is determined using loop_niter_by_eval (i.e. by brute force
2796 evaluation). If we are unable to find the exit for that loop_niter_by_eval
2797 determines the number of iterations, chrec_dont_know is returned. */
2800 find_loop_niter_by_eval (struct loop
*loop
, edge
*exit
)
2803 vec
<edge
> exits
= get_loop_exit_edges (loop
);
2805 tree niter
= NULL_TREE
, aniter
;
2809 /* Loops with multiple exits are expensive to handle and less important. */
2810 if (!flag_expensive_optimizations
2811 && exits
.length () > 1)
2814 return chrec_dont_know
;
2817 FOR_EACH_VEC_ELT (exits
, i
, ex
)
2819 if (!just_once_each_iteration_p (loop
, ex
->src
))
2822 aniter
= loop_niter_by_eval (loop
, ex
);
2823 if (chrec_contains_undetermined (aniter
))
2827 && !tree_int_cst_lt (aniter
, niter
))
2835 return niter
? niter
: chrec_dont_know
;
2840 Analysis of upper bounds on number of iterations of a loop.
2844 static widest_int
derive_constant_upper_bound_ops (tree
, tree
,
2845 enum tree_code
, tree
);
2847 /* Returns a constant upper bound on the value of the right-hand side of
2848 an assignment statement STMT. */
2851 derive_constant_upper_bound_assign (gimple
*stmt
)
2853 enum tree_code code
= gimple_assign_rhs_code (stmt
);
2854 tree op0
= gimple_assign_rhs1 (stmt
);
2855 tree op1
= gimple_assign_rhs2 (stmt
);
2857 return derive_constant_upper_bound_ops (TREE_TYPE (gimple_assign_lhs (stmt
)),
2861 /* Returns a constant upper bound on the value of expression VAL. VAL
2862 is considered to be unsigned. If its type is signed, its value must
2866 derive_constant_upper_bound (tree val
)
2868 enum tree_code code
;
2871 extract_ops_from_tree (val
, &code
, &op0
, &op1
, &op2
);
2872 return derive_constant_upper_bound_ops (TREE_TYPE (val
), op0
, code
, op1
);
2875 /* Returns a constant upper bound on the value of expression OP0 CODE OP1,
2876 whose type is TYPE. The expression is considered to be unsigned. If
2877 its type is signed, its value must be nonnegative. */
2880 derive_constant_upper_bound_ops (tree type
, tree op0
,
2881 enum tree_code code
, tree op1
)
2884 widest_int bnd
, max
, cst
;
2887 if (INTEGRAL_TYPE_P (type
))
2888 maxt
= TYPE_MAX_VALUE (type
);
2890 maxt
= upper_bound_in_type (type
, type
);
2892 max
= wi::to_widest (maxt
);
2897 return wi::to_widest (op0
);
2900 subtype
= TREE_TYPE (op0
);
2901 if (!TYPE_UNSIGNED (subtype
)
2902 /* If TYPE is also signed, the fact that VAL is nonnegative implies
2903 that OP0 is nonnegative. */
2904 && TYPE_UNSIGNED (type
)
2905 && !tree_expr_nonnegative_p (op0
))
2907 /* If we cannot prove that the casted expression is nonnegative,
2908 we cannot establish more useful upper bound than the precision
2909 of the type gives us. */
2913 /* We now know that op0 is an nonnegative value. Try deriving an upper
2915 bnd
= derive_constant_upper_bound (op0
);
2917 /* If the bound does not fit in TYPE, max. value of TYPE could be
2919 if (wi::ltu_p (max
, bnd
))
2925 case POINTER_PLUS_EXPR
:
2927 if (TREE_CODE (op1
) != INTEGER_CST
2928 || !tree_expr_nonnegative_p (op0
))
2931 /* Canonicalize to OP0 - CST. Consider CST to be signed, in order to
2932 choose the most logical way how to treat this constant regardless
2933 of the signedness of the type. */
2934 cst
= wi::sext (wi::to_widest (op1
), TYPE_PRECISION (type
));
2935 if (code
!= MINUS_EXPR
)
2938 bnd
= derive_constant_upper_bound (op0
);
2940 if (wi::neg_p (cst
))
2943 /* Avoid CST == 0x80000... */
2944 if (wi::neg_p (cst
))
2947 /* OP0 + CST. We need to check that
2948 BND <= MAX (type) - CST. */
2950 widest_int mmax
= max
- cst
;
2951 if (wi::leu_p (bnd
, mmax
))
2958 /* OP0 - CST, where CST >= 0.
2960 If TYPE is signed, we have already verified that OP0 >= 0, and we
2961 know that the result is nonnegative. This implies that
2964 If TYPE is unsigned, we must additionally know that OP0 >= CST,
2965 otherwise the operation underflows.
2968 /* This should only happen if the type is unsigned; however, for
2969 buggy programs that use overflowing signed arithmetics even with
2970 -fno-wrapv, this condition may also be true for signed values. */
2971 if (wi::ltu_p (bnd
, cst
))
2974 if (TYPE_UNSIGNED (type
))
2976 tree tem
= fold_binary (GE_EXPR
, boolean_type_node
, op0
,
2977 wide_int_to_tree (type
, cst
));
2978 if (!tem
|| integer_nonzerop (tem
))
2987 case FLOOR_DIV_EXPR
:
2988 case EXACT_DIV_EXPR
:
2989 if (TREE_CODE (op1
) != INTEGER_CST
2990 || tree_int_cst_sign_bit (op1
))
2993 bnd
= derive_constant_upper_bound (op0
);
2994 return wi::udiv_floor (bnd
, wi::to_widest (op1
));
2997 if (TREE_CODE (op1
) != INTEGER_CST
2998 || tree_int_cst_sign_bit (op1
))
3000 return wi::to_widest (op1
);
3003 stmt
= SSA_NAME_DEF_STMT (op0
);
3004 if (gimple_code (stmt
) != GIMPLE_ASSIGN
3005 || gimple_assign_lhs (stmt
) != op0
)
3007 return derive_constant_upper_bound_assign (stmt
);
3014 /* Emit a -Waggressive-loop-optimizations warning if needed. */
3017 do_warn_aggressive_loop_optimizations (struct loop
*loop
,
3018 widest_int i_bound
, gimple
*stmt
)
3020 /* Don't warn if the loop doesn't have known constant bound. */
3021 if (!loop
->nb_iterations
3022 || TREE_CODE (loop
->nb_iterations
) != INTEGER_CST
3023 || !warn_aggressive_loop_optimizations
3024 /* To avoid warning multiple times for the same loop,
3025 only start warning when we preserve loops. */
3026 || (cfun
->curr_properties
& PROP_loops
) == 0
3027 /* Only warn once per loop. */
3028 || loop
->warned_aggressive_loop_optimizations
3029 /* Only warn if undefined behavior gives us lower estimate than the
3030 known constant bound. */
3031 || wi::cmpu (i_bound
, wi::to_widest (loop
->nb_iterations
)) >= 0
3032 /* And undefined behavior happens unconditionally. */
3033 || !dominated_by_p (CDI_DOMINATORS
, loop
->latch
, gimple_bb (stmt
)))
3036 edge e
= single_exit (loop
);
3040 gimple
*estmt
= last_stmt (e
->src
);
3041 char buf
[WIDE_INT_PRINT_BUFFER_SIZE
];
3042 print_dec (i_bound
, buf
, TYPE_UNSIGNED (TREE_TYPE (loop
->nb_iterations
))
3043 ? UNSIGNED
: SIGNED
);
3044 if (warning_at (gimple_location (stmt
), OPT_Waggressive_loop_optimizations
,
3045 "iteration %s invokes undefined behavior", buf
))
3046 inform (gimple_location (estmt
), "within this loop");
3047 loop
->warned_aggressive_loop_optimizations
= true;
3050 /* Records that AT_STMT is executed at most BOUND + 1 times in LOOP. IS_EXIT
3051 is true if the loop is exited immediately after STMT, and this exit
3052 is taken at last when the STMT is executed BOUND + 1 times.
3053 REALISTIC is true if BOUND is expected to be close to the real number
3054 of iterations. UPPER is true if we are sure the loop iterates at most
3055 BOUND times. I_BOUND is a widest_int upper estimate on BOUND. */
3058 record_estimate (struct loop
*loop
, tree bound
, const widest_int
&i_bound
,
3059 gimple
*at_stmt
, bool is_exit
, bool realistic
, bool upper
)
3063 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3065 fprintf (dump_file
, "Statement %s", is_exit
? "(exit)" : "");
3066 print_gimple_stmt (dump_file
, at_stmt
, 0, TDF_SLIM
);
3067 fprintf (dump_file
, " is %sexecuted at most ",
3068 upper
? "" : "probably ");
3069 print_generic_expr (dump_file
, bound
, TDF_SLIM
);
3070 fprintf (dump_file
, " (bounded by ");
3071 print_decu (i_bound
, dump_file
);
3072 fprintf (dump_file
, ") + 1 times in loop %d.\n", loop
->num
);
3075 /* If the I_BOUND is just an estimate of BOUND, it rarely is close to the
3076 real number of iterations. */
3077 if (TREE_CODE (bound
) != INTEGER_CST
)
3080 gcc_checking_assert (i_bound
== wi::to_widest (bound
));
3082 /* If we have a guaranteed upper bound, record it in the appropriate
3083 list, unless this is an !is_exit bound (i.e. undefined behavior in
3084 at_stmt) in a loop with known constant number of iterations. */
3087 || loop
->nb_iterations
== NULL_TREE
3088 || TREE_CODE (loop
->nb_iterations
) != INTEGER_CST
))
3090 struct nb_iter_bound
*elt
= ggc_alloc
<nb_iter_bound
> ();
3092 elt
->bound
= i_bound
;
3093 elt
->stmt
= at_stmt
;
3094 elt
->is_exit
= is_exit
;
3095 elt
->next
= loop
->bounds
;
3099 /* If statement is executed on every path to the loop latch, we can directly
3100 infer the upper bound on the # of iterations of the loop. */
3101 if (!dominated_by_p (CDI_DOMINATORS
, loop
->latch
, gimple_bb (at_stmt
)))
3104 /* Update the number of iteration estimates according to the bound.
3105 If at_stmt is an exit then the loop latch is executed at most BOUND times,
3106 otherwise it can be executed BOUND + 1 times. We will lower the estimate
3107 later if such statement must be executed on last iteration */
3112 widest_int new_i_bound
= i_bound
+ delta
;
3114 /* If an overflow occurred, ignore the result. */
3115 if (wi::ltu_p (new_i_bound
, delta
))
3118 if (upper
&& !is_exit
)
3119 do_warn_aggressive_loop_optimizations (loop
, new_i_bound
, at_stmt
);
3120 record_niter_bound (loop
, new_i_bound
, realistic
, upper
);
3123 /* Records the control iv analyzed in NITER for LOOP if the iv is valid
3124 and doesn't overflow. */
3127 record_control_iv (struct loop
*loop
, struct tree_niter_desc
*niter
)
3129 struct control_iv
*iv
;
3131 if (!niter
->control
.base
|| !niter
->control
.step
)
3134 if (!integer_onep (niter
->assumptions
) || !niter
->control
.no_overflow
)
3137 iv
= ggc_alloc
<control_iv
> ();
3138 iv
->base
= niter
->control
.base
;
3139 iv
->step
= niter
->control
.step
;
3140 iv
->next
= loop
->control_ivs
;
3141 loop
->control_ivs
= iv
;
3146 /* This function returns TRUE if below conditions are satisfied:
3147 1) VAR is SSA variable.
3148 2) VAR is an IV:{base, step} in its defining loop.
3149 3) IV doesn't overflow.
3150 4) Both base and step are integer constants.
3151 5) Base is the MIN/MAX value depends on IS_MIN.
3152 Store value of base to INIT correspondingly. */
3155 get_cst_init_from_scev (tree var
, wide_int
*init
, bool is_min
)
3157 if (TREE_CODE (var
) != SSA_NAME
)
3160 gimple
*def_stmt
= SSA_NAME_DEF_STMT (var
);
3161 struct loop
*loop
= loop_containing_stmt (def_stmt
);
3167 if (!simple_iv (loop
, loop
, var
, &iv
, false))
3170 if (!iv
.no_overflow
)
3173 if (TREE_CODE (iv
.base
) != INTEGER_CST
|| TREE_CODE (iv
.step
) != INTEGER_CST
)
3176 if (is_min
== tree_int_cst_sign_bit (iv
.step
))
3183 /* Record the estimate on number of iterations of LOOP based on the fact that
3184 the induction variable BASE + STEP * i evaluated in STMT does not wrap and
3185 its values belong to the range <LOW, HIGH>. REALISTIC is true if the
3186 estimated number of iterations is expected to be close to the real one.
3187 UPPER is true if we are sure the induction variable does not wrap. */
3190 record_nonwrapping_iv (struct loop
*loop
, tree base
, tree step
, gimple
*stmt
,
3191 tree low
, tree high
, bool realistic
, bool upper
)
3193 tree niter_bound
, extreme
, delta
;
3194 tree type
= TREE_TYPE (base
), unsigned_type
;
3195 tree orig_base
= base
;
3197 if (TREE_CODE (step
) != INTEGER_CST
|| integer_zerop (step
))
3200 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3202 fprintf (dump_file
, "Induction variable (");
3203 print_generic_expr (dump_file
, TREE_TYPE (base
), TDF_SLIM
);
3204 fprintf (dump_file
, ") ");
3205 print_generic_expr (dump_file
, base
, TDF_SLIM
);
3206 fprintf (dump_file
, " + ");
3207 print_generic_expr (dump_file
, step
, TDF_SLIM
);
3208 fprintf (dump_file
, " * iteration does not wrap in statement ");
3209 print_gimple_stmt (dump_file
, stmt
, 0, TDF_SLIM
);
3210 fprintf (dump_file
, " in loop %d.\n", loop
->num
);
3213 unsigned_type
= unsigned_type_for (type
);
3214 base
= fold_convert (unsigned_type
, base
);
3215 step
= fold_convert (unsigned_type
, step
);
3217 if (tree_int_cst_sign_bit (step
))
3220 extreme
= fold_convert (unsigned_type
, low
);
3221 if (TREE_CODE (orig_base
) == SSA_NAME
3222 && TREE_CODE (high
) == INTEGER_CST
3223 && INTEGRAL_TYPE_P (TREE_TYPE (orig_base
))
3224 && (get_range_info (orig_base
, &min
, &max
) == VR_RANGE
3225 || get_cst_init_from_scev (orig_base
, &max
, false))
3226 && wi::gts_p (high
, max
))
3227 base
= wide_int_to_tree (unsigned_type
, max
);
3228 else if (TREE_CODE (base
) != INTEGER_CST
3229 && dominated_by_p (CDI_DOMINATORS
,
3230 loop
->latch
, gimple_bb (stmt
)))
3231 base
= fold_convert (unsigned_type
, high
);
3232 delta
= fold_build2 (MINUS_EXPR
, unsigned_type
, base
, extreme
);
3233 step
= fold_build1 (NEGATE_EXPR
, unsigned_type
, step
);
3238 extreme
= fold_convert (unsigned_type
, high
);
3239 if (TREE_CODE (orig_base
) == SSA_NAME
3240 && TREE_CODE (low
) == INTEGER_CST
3241 && INTEGRAL_TYPE_P (TREE_TYPE (orig_base
))
3242 && (get_range_info (orig_base
, &min
, &max
) == VR_RANGE
3243 || get_cst_init_from_scev (orig_base
, &min
, true))
3244 && wi::gts_p (min
, low
))
3245 base
= wide_int_to_tree (unsigned_type
, min
);
3246 else if (TREE_CODE (base
) != INTEGER_CST
3247 && dominated_by_p (CDI_DOMINATORS
,
3248 loop
->latch
, gimple_bb (stmt
)))
3249 base
= fold_convert (unsigned_type
, low
);
3250 delta
= fold_build2 (MINUS_EXPR
, unsigned_type
, extreme
, base
);
3253 /* STMT is executed at most NITER_BOUND + 1 times, since otherwise the value
3254 would get out of the range. */
3255 niter_bound
= fold_build2 (FLOOR_DIV_EXPR
, unsigned_type
, delta
, step
);
3256 widest_int max
= derive_constant_upper_bound (niter_bound
);
3257 record_estimate (loop
, niter_bound
, max
, stmt
, false, realistic
, upper
);
3260 /* Determine information about number of iterations a LOOP from the index
3261 IDX of a data reference accessed in STMT. RELIABLE is true if STMT is
3262 guaranteed to be executed in every iteration of LOOP. Callback for
3272 idx_infer_loop_bounds (tree base
, tree
*idx
, void *dta
)
3274 struct ilb_data
*data
= (struct ilb_data
*) dta
;
3275 tree ev
, init
, step
;
3276 tree low
, high
, type
, next
;
3277 bool sign
, upper
= true, at_end
= false;
3278 struct loop
*loop
= data
->loop
;
3280 if (TREE_CODE (base
) != ARRAY_REF
)
3283 /* For arrays at the end of the structure, we are not guaranteed that they
3284 do not really extend over their declared size. However, for arrays of
3285 size greater than one, this is unlikely to be intended. */
3286 if (array_at_struct_end_p (base
))
3292 struct loop
*dloop
= loop_containing_stmt (data
->stmt
);
3296 ev
= analyze_scalar_evolution (dloop
, *idx
);
3297 ev
= instantiate_parameters (loop
, ev
);
3298 init
= initial_condition (ev
);
3299 step
= evolution_part_in_loop_num (ev
, loop
->num
);
3303 || TREE_CODE (step
) != INTEGER_CST
3304 || integer_zerop (step
)
3305 || tree_contains_chrecs (init
, NULL
)
3306 || chrec_contains_symbols_defined_in_loop (init
, loop
->num
))
3309 low
= array_ref_low_bound (base
);
3310 high
= array_ref_up_bound (base
);
3312 /* The case of nonconstant bounds could be handled, but it would be
3314 if (TREE_CODE (low
) != INTEGER_CST
3316 || TREE_CODE (high
) != INTEGER_CST
)
3318 sign
= tree_int_cst_sign_bit (step
);
3319 type
= TREE_TYPE (step
);
3321 /* The array of length 1 at the end of a structure most likely extends
3322 beyond its bounds. */
3324 && operand_equal_p (low
, high
, 0))
3327 /* In case the relevant bound of the array does not fit in type, or
3328 it does, but bound + step (in type) still belongs into the range of the
3329 array, the index may wrap and still stay within the range of the array
3330 (consider e.g. if the array is indexed by the full range of
3333 To make things simpler, we require both bounds to fit into type, although
3334 there are cases where this would not be strictly necessary. */
3335 if (!int_fits_type_p (high
, type
)
3336 || !int_fits_type_p (low
, type
))
3338 low
= fold_convert (type
, low
);
3339 high
= fold_convert (type
, high
);
3342 next
= fold_binary (PLUS_EXPR
, type
, low
, step
);
3344 next
= fold_binary (PLUS_EXPR
, type
, high
, step
);
3346 if (tree_int_cst_compare (low
, next
) <= 0
3347 && tree_int_cst_compare (next
, high
) <= 0)
3350 /* If access is not executed on every iteration, we must ensure that overlow
3351 may not make the access valid later. */
3352 if (!dominated_by_p (CDI_DOMINATORS
, loop
->latch
, gimple_bb (data
->stmt
))
3353 && scev_probably_wraps_p (NULL_TREE
,
3354 initial_condition_in_loop_num (ev
, loop
->num
),
3355 step
, data
->stmt
, loop
, true))
3358 record_nonwrapping_iv (loop
, init
, step
, data
->stmt
, low
, high
, false, upper
);
3362 /* Determine information about number of iterations a LOOP from the bounds
3363 of arrays in the data reference REF accessed in STMT. RELIABLE is true if
3364 STMT is guaranteed to be executed in every iteration of LOOP.*/
3367 infer_loop_bounds_from_ref (struct loop
*loop
, gimple
*stmt
, tree ref
)
3369 struct ilb_data data
;
3373 for_each_index (&ref
, idx_infer_loop_bounds
, &data
);
3376 /* Determine information about number of iterations of a LOOP from the way
3377 arrays are used in STMT. RELIABLE is true if STMT is guaranteed to be
3378 executed in every iteration of LOOP. */
3381 infer_loop_bounds_from_array (struct loop
*loop
, gimple
*stmt
)
3383 if (is_gimple_assign (stmt
))
3385 tree op0
= gimple_assign_lhs (stmt
);
3386 tree op1
= gimple_assign_rhs1 (stmt
);
3388 /* For each memory access, analyze its access function
3389 and record a bound on the loop iteration domain. */
3390 if (REFERENCE_CLASS_P (op0
))
3391 infer_loop_bounds_from_ref (loop
, stmt
, op0
);
3393 if (REFERENCE_CLASS_P (op1
))
3394 infer_loop_bounds_from_ref (loop
, stmt
, op1
);
3396 else if (is_gimple_call (stmt
))
3399 unsigned i
, n
= gimple_call_num_args (stmt
);
3401 lhs
= gimple_call_lhs (stmt
);
3402 if (lhs
&& REFERENCE_CLASS_P (lhs
))
3403 infer_loop_bounds_from_ref (loop
, stmt
, lhs
);
3405 for (i
= 0; i
< n
; i
++)
3407 arg
= gimple_call_arg (stmt
, i
);
3408 if (REFERENCE_CLASS_P (arg
))
3409 infer_loop_bounds_from_ref (loop
, stmt
, arg
);
3414 /* Determine information about number of iterations of a LOOP from the fact
3415 that pointer arithmetics in STMT does not overflow. */
3418 infer_loop_bounds_from_pointer_arith (struct loop
*loop
, gimple
*stmt
)
3420 tree def
, base
, step
, scev
, type
, low
, high
;
3423 if (!is_gimple_assign (stmt
)
3424 || gimple_assign_rhs_code (stmt
) != POINTER_PLUS_EXPR
)
3427 def
= gimple_assign_lhs (stmt
);
3428 if (TREE_CODE (def
) != SSA_NAME
)
3431 type
= TREE_TYPE (def
);
3432 if (!nowrap_type_p (type
))
3435 ptr
= gimple_assign_rhs1 (stmt
);
3436 if (!expr_invariant_in_loop_p (loop
, ptr
))
3439 var
= gimple_assign_rhs2 (stmt
);
3440 if (TYPE_PRECISION (type
) != TYPE_PRECISION (TREE_TYPE (var
)))
3443 scev
= instantiate_parameters (loop
, analyze_scalar_evolution (loop
, def
));
3444 if (chrec_contains_undetermined (scev
))
3447 base
= initial_condition_in_loop_num (scev
, loop
->num
);
3448 step
= evolution_part_in_loop_num (scev
, loop
->num
);
3451 || TREE_CODE (step
) != INTEGER_CST
3452 || tree_contains_chrecs (base
, NULL
)
3453 || chrec_contains_symbols_defined_in_loop (base
, loop
->num
))
3456 low
= lower_bound_in_type (type
, type
);
3457 high
= upper_bound_in_type (type
, type
);
3459 /* In C, pointer arithmetic p + 1 cannot use a NULL pointer, and p - 1 cannot
3460 produce a NULL pointer. The contrary would mean NULL points to an object,
3461 while NULL is supposed to compare unequal with the address of all objects.
3462 Furthermore, p + 1 cannot produce a NULL pointer and p - 1 cannot use a
3463 NULL pointer since that would mean wrapping, which we assume here not to
3464 happen. So, we can exclude NULL from the valid range of pointer
3466 if (flag_delete_null_pointer_checks
&& int_cst_value (low
) == 0)
3467 low
= build_int_cstu (TREE_TYPE (low
), TYPE_ALIGN_UNIT (TREE_TYPE (type
)));
3469 record_nonwrapping_iv (loop
, base
, step
, stmt
, low
, high
, false, true);
3472 /* Determine information about number of iterations of a LOOP from the fact
3473 that signed arithmetics in STMT does not overflow. */
3476 infer_loop_bounds_from_signedness (struct loop
*loop
, gimple
*stmt
)
3478 tree def
, base
, step
, scev
, type
, low
, high
;
3480 if (gimple_code (stmt
) != GIMPLE_ASSIGN
)
3483 def
= gimple_assign_lhs (stmt
);
3485 if (TREE_CODE (def
) != SSA_NAME
)
3488 type
= TREE_TYPE (def
);
3489 if (!INTEGRAL_TYPE_P (type
)
3490 || !TYPE_OVERFLOW_UNDEFINED (type
))
3493 scev
= instantiate_parameters (loop
, analyze_scalar_evolution (loop
, def
));
3494 if (chrec_contains_undetermined (scev
))
3497 base
= initial_condition_in_loop_num (scev
, loop
->num
);
3498 step
= evolution_part_in_loop_num (scev
, loop
->num
);
3501 || TREE_CODE (step
) != INTEGER_CST
3502 || tree_contains_chrecs (base
, NULL
)
3503 || chrec_contains_symbols_defined_in_loop (base
, loop
->num
))
3506 low
= lower_bound_in_type (type
, type
);
3507 high
= upper_bound_in_type (type
, type
);
3509 record_nonwrapping_iv (loop
, base
, step
, stmt
, low
, high
, false, true);
3512 /* The following analyzers are extracting informations on the bounds
3513 of LOOP from the following undefined behaviors:
3515 - data references should not access elements over the statically
3518 - signed variables should not overflow when flag_wrapv is not set.
3522 infer_loop_bounds_from_undefined (struct loop
*loop
)
3526 gimple_stmt_iterator bsi
;
3530 bbs
= get_loop_body (loop
);
3532 for (i
= 0; i
< loop
->num_nodes
; i
++)
3536 /* If BB is not executed in each iteration of the loop, we cannot
3537 use the operations in it to infer reliable upper bound on the
3538 # of iterations of the loop. However, we can use it as a guess.
3539 Reliable guesses come only from array bounds. */
3540 reliable
= dominated_by_p (CDI_DOMINATORS
, loop
->latch
, bb
);
3542 for (bsi
= gsi_start_bb (bb
); !gsi_end_p (bsi
); gsi_next (&bsi
))
3544 gimple
*stmt
= gsi_stmt (bsi
);
3546 infer_loop_bounds_from_array (loop
, stmt
);
3550 infer_loop_bounds_from_signedness (loop
, stmt
);
3551 infer_loop_bounds_from_pointer_arith (loop
, stmt
);
3560 /* Compare wide ints, callback for qsort. */
3563 wide_int_cmp (const void *p1
, const void *p2
)
3565 const widest_int
*d1
= (const widest_int
*) p1
;
3566 const widest_int
*d2
= (const widest_int
*) p2
;
3567 return wi::cmpu (*d1
, *d2
);
3570 /* Return index of BOUND in BOUNDS array sorted in increasing order.
3571 Lookup by binary search. */
3574 bound_index (vec
<widest_int
> bounds
, const widest_int
&bound
)
3576 unsigned int end
= bounds
.length ();
3577 unsigned int begin
= 0;
3579 /* Find a matching index by means of a binary search. */
3580 while (begin
!= end
)
3582 unsigned int middle
= (begin
+ end
) / 2;
3583 widest_int index
= bounds
[middle
];
3587 else if (wi::ltu_p (index
, bound
))
3595 /* We recorded loop bounds only for statements dominating loop latch (and thus
3596 executed each loop iteration). If there are any bounds on statements not
3597 dominating the loop latch we can improve the estimate by walking the loop
3598 body and seeing if every path from loop header to loop latch contains
3599 some bounded statement. */
3602 discover_iteration_bound_by_body_walk (struct loop
*loop
)
3604 struct nb_iter_bound
*elt
;
3605 auto_vec
<widest_int
> bounds
;
3606 vec
<vec
<basic_block
> > queues
= vNULL
;
3607 vec
<basic_block
> queue
= vNULL
;
3608 ptrdiff_t queue_index
;
3609 ptrdiff_t latch_index
= 0;
3611 /* Discover what bounds may interest us. */
3612 for (elt
= loop
->bounds
; elt
; elt
= elt
->next
)
3614 widest_int bound
= elt
->bound
;
3616 /* Exit terminates loop at given iteration, while non-exits produce undefined
3617 effect on the next iteration. */
3621 /* If an overflow occurred, ignore the result. */
3626 if (!loop
->any_upper_bound
3627 || wi::ltu_p (bound
, loop
->nb_iterations_upper_bound
))
3628 bounds
.safe_push (bound
);
3631 /* Exit early if there is nothing to do. */
3632 if (!bounds
.exists ())
3635 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3636 fprintf (dump_file
, " Trying to walk loop body to reduce the bound.\n");
3638 /* Sort the bounds in decreasing order. */
3639 bounds
.qsort (wide_int_cmp
);
3641 /* For every basic block record the lowest bound that is guaranteed to
3642 terminate the loop. */
3644 hash_map
<basic_block
, ptrdiff_t> bb_bounds
;
3645 for (elt
= loop
->bounds
; elt
; elt
= elt
->next
)
3647 widest_int bound
= elt
->bound
;
3651 /* If an overflow occurred, ignore the result. */
3656 if (!loop
->any_upper_bound
3657 || wi::ltu_p (bound
, loop
->nb_iterations_upper_bound
))
3659 ptrdiff_t index
= bound_index (bounds
, bound
);
3660 ptrdiff_t *entry
= bb_bounds
.get (gimple_bb (elt
->stmt
));
3662 bb_bounds
.put (gimple_bb (elt
->stmt
), index
);
3663 else if ((ptrdiff_t)*entry
> index
)
3668 hash_map
<basic_block
, ptrdiff_t> block_priority
;
3670 /* Perform shortest path discovery loop->header ... loop->latch.
3672 The "distance" is given by the smallest loop bound of basic block
3673 present in the path and we look for path with largest smallest bound
3676 To avoid the need for fibonacci heap on double ints we simply compress
3677 double ints into indexes to BOUNDS array and then represent the queue
3678 as arrays of queues for every index.
3679 Index of BOUNDS.length() means that the execution of given BB has
3680 no bounds determined.
3682 VISITED is a pointer map translating basic block into smallest index
3683 it was inserted into the priority queue with. */
3686 /* Start walk in loop header with index set to infinite bound. */
3687 queue_index
= bounds
.length ();
3688 queues
.safe_grow_cleared (queue_index
+ 1);
3689 queue
.safe_push (loop
->header
);
3690 queues
[queue_index
] = queue
;
3691 block_priority
.put (loop
->header
, queue_index
);
3693 for (; queue_index
>= 0; queue_index
--)
3695 if (latch_index
< queue_index
)
3697 while (queues
[queue_index
].length ())
3700 ptrdiff_t bound_index
= queue_index
;
3704 queue
= queues
[queue_index
];
3707 /* OK, we later inserted the BB with lower priority, skip it. */
3708 if (*block_priority
.get (bb
) > queue_index
)
3711 /* See if we can improve the bound. */
3712 ptrdiff_t *entry
= bb_bounds
.get (bb
);
3713 if (entry
&& *entry
< bound_index
)
3714 bound_index
= *entry
;
3716 /* Insert succesors into the queue, watch for latch edge
3717 and record greatest index we saw. */
3718 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
3720 bool insert
= false;
3722 if (loop_exit_edge_p (loop
, e
))
3725 if (e
== loop_latch_edge (loop
)
3726 && latch_index
< bound_index
)
3727 latch_index
= bound_index
;
3728 else if (!(entry
= block_priority
.get (e
->dest
)))
3731 block_priority
.put (e
->dest
, bound_index
);
3733 else if (*entry
< bound_index
)
3736 *entry
= bound_index
;
3740 queues
[bound_index
].safe_push (e
->dest
);
3744 queues
[queue_index
].release ();
3747 gcc_assert (latch_index
>= 0);
3748 if ((unsigned)latch_index
< bounds
.length ())
3750 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3752 fprintf (dump_file
, "Found better loop bound ");
3753 print_decu (bounds
[latch_index
], dump_file
);
3754 fprintf (dump_file
, "\n");
3756 record_niter_bound (loop
, bounds
[latch_index
], false, true);
3762 /* See if every path cross the loop goes through a statement that is known
3763 to not execute at the last iteration. In that case we can decrese iteration
3767 maybe_lower_iteration_bound (struct loop
*loop
)
3769 hash_set
<gimple
*> *not_executed_last_iteration
= NULL
;
3770 struct nb_iter_bound
*elt
;
3771 bool found_exit
= false;
3772 auto_vec
<basic_block
> queue
;
3775 /* Collect all statements with interesting (i.e. lower than
3776 nb_iterations_upper_bound) bound on them.
3778 TODO: Due to the way record_estimate choose estimates to store, the bounds
3779 will be always nb_iterations_upper_bound-1. We can change this to record
3780 also statements not dominating the loop latch and update the walk bellow
3781 to the shortest path algorithm. */
3782 for (elt
= loop
->bounds
; elt
; elt
= elt
->next
)
3785 && wi::ltu_p (elt
->bound
, loop
->nb_iterations_upper_bound
))
3787 if (!not_executed_last_iteration
)
3788 not_executed_last_iteration
= new hash_set
<gimple
*>;
3789 not_executed_last_iteration
->add (elt
->stmt
);
3792 if (!not_executed_last_iteration
)
3795 /* Start DFS walk in the loop header and see if we can reach the
3796 loop latch or any of the exits (including statements with side
3797 effects that may terminate the loop otherwise) without visiting
3798 any of the statements known to have undefined effect on the last
3800 queue
.safe_push (loop
->header
);
3801 visited
= BITMAP_ALLOC (NULL
);
3802 bitmap_set_bit (visited
, loop
->header
->index
);
3807 basic_block bb
= queue
.pop ();
3808 gimple_stmt_iterator gsi
;
3809 bool stmt_found
= false;
3811 /* Loop for possible exits and statements bounding the execution. */
3812 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
3814 gimple
*stmt
= gsi_stmt (gsi
);
3815 if (not_executed_last_iteration
->contains (stmt
))
3820 if (gimple_has_side_effects (stmt
))
3829 /* If no bounding statement is found, continue the walk. */
3835 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
3837 if (loop_exit_edge_p (loop
, e
)
3838 || e
== loop_latch_edge (loop
))
3843 if (bitmap_set_bit (visited
, e
->dest
->index
))
3844 queue
.safe_push (e
->dest
);
3848 while (queue
.length () && !found_exit
);
3850 /* If every path through the loop reach bounding statement before exit,
3851 then we know the last iteration of the loop will have undefined effect
3852 and we can decrease number of iterations. */
3856 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3857 fprintf (dump_file
, "Reducing loop iteration estimate by 1; "
3858 "undefined statement must be executed at the last iteration.\n");
3859 record_niter_bound (loop
, loop
->nb_iterations_upper_bound
- 1,
3863 BITMAP_FREE (visited
);
3864 delete not_executed_last_iteration
;
3867 /* Records estimates on numbers of iterations of LOOP. If USE_UNDEFINED_P
3868 is true also use estimates derived from undefined behavior. */
3871 estimate_numbers_of_iterations (struct loop
*loop
)
3876 struct tree_niter_desc niter_desc
;
3881 /* Give up if we already have tried to compute an estimation. */
3882 if (loop
->estimate_state
!= EST_NOT_COMPUTED
)
3885 loop
->estimate_state
= EST_AVAILABLE
;
3887 /* If we have a measured profile, use it to estimate the number of
3888 iterations. Normally this is recorded by branch_prob right after
3889 reading the profile. In case we however found a new loop, record the
3892 Explicitly check for profile status so we do not report
3893 wrong prediction hitrates for guessed loop iterations heuristics.
3894 Do not recompute already recorded bounds - we ought to be better on
3895 updating iteration bounds than updating profile in general and thus
3896 recomputing iteration bounds later in the compilation process will just
3897 introduce random roundoff errors. */
3898 if (!loop
->any_estimate
3899 && loop
->header
->count
> 0)
3901 gcov_type nit
= expected_loop_iterations_unbounded (loop
);
3902 bound
= gcov_type_to_wide_int (nit
);
3903 record_niter_bound (loop
, bound
, true, false);
3906 /* Ensure that loop->nb_iterations is computed if possible. If it turns out
3907 to be constant, we avoid undefined behavior implied bounds and instead
3908 diagnose those loops with -Waggressive-loop-optimizations. */
3909 number_of_latch_executions (loop
);
3911 exits
= get_loop_exit_edges (loop
);
3912 likely_exit
= single_likely_exit (loop
);
3913 FOR_EACH_VEC_ELT (exits
, i
, ex
)
3915 if (!number_of_iterations_exit (loop
, ex
, &niter_desc
, false, false))
3918 niter
= niter_desc
.niter
;
3919 type
= TREE_TYPE (niter
);
3920 if (TREE_CODE (niter_desc
.may_be_zero
) != INTEGER_CST
)
3921 niter
= build3 (COND_EXPR
, type
, niter_desc
.may_be_zero
,
3922 build_int_cst (type
, 0),
3924 record_estimate (loop
, niter
, niter_desc
.max
,
3925 last_stmt (ex
->src
),
3926 true, ex
== likely_exit
, true);
3927 record_control_iv (loop
, &niter_desc
);
3931 if (flag_aggressive_loop_optimizations
)
3932 infer_loop_bounds_from_undefined (loop
);
3934 discover_iteration_bound_by_body_walk (loop
);
3936 maybe_lower_iteration_bound (loop
);
3938 /* If we know the exact number of iterations of this loop, try to
3939 not break code with undefined behavior by not recording smaller
3940 maximum number of iterations. */
3941 if (loop
->nb_iterations
3942 && TREE_CODE (loop
->nb_iterations
) == INTEGER_CST
)
3944 loop
->any_upper_bound
= true;
3945 loop
->nb_iterations_upper_bound
= wi::to_widest (loop
->nb_iterations
);
3949 /* Sets NIT to the estimated number of executions of the latch of the
3950 LOOP. If CONSERVATIVE is true, we must be sure that NIT is at least as
3951 large as the number of iterations. If we have no reliable estimate,
3952 the function returns false, otherwise returns true. */
3955 estimated_loop_iterations (struct loop
*loop
, widest_int
*nit
)
3957 /* When SCEV information is available, try to update loop iterations
3958 estimate. Otherwise just return whatever we recorded earlier. */
3959 if (scev_initialized_p ())
3960 estimate_numbers_of_iterations (loop
);
3962 return (get_estimated_loop_iterations (loop
, nit
));
3965 /* Similar to estimated_loop_iterations, but returns the estimate only
3966 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
3967 on the number of iterations of LOOP could not be derived, returns -1. */
3970 estimated_loop_iterations_int (struct loop
*loop
)
3973 HOST_WIDE_INT hwi_nit
;
3975 if (!estimated_loop_iterations (loop
, &nit
))
3978 if (!wi::fits_shwi_p (nit
))
3980 hwi_nit
= nit
.to_shwi ();
3982 return hwi_nit
< 0 ? -1 : hwi_nit
;
3986 /* Sets NIT to an upper bound for the maximum number of executions of the
3987 latch of the LOOP. If we have no reliable estimate, the function returns
3988 false, otherwise returns true. */
3991 max_loop_iterations (struct loop
*loop
, widest_int
*nit
)
3993 /* When SCEV information is available, try to update loop iterations
3994 estimate. Otherwise just return whatever we recorded earlier. */
3995 if (scev_initialized_p ())
3996 estimate_numbers_of_iterations (loop
);
3998 return get_max_loop_iterations (loop
, nit
);
4001 /* Similar to max_loop_iterations, but returns the estimate only
4002 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
4003 on the number of iterations of LOOP could not be derived, returns -1. */
4006 max_loop_iterations_int (struct loop
*loop
)
4009 HOST_WIDE_INT hwi_nit
;
4011 if (!max_loop_iterations (loop
, &nit
))
4014 if (!wi::fits_shwi_p (nit
))
4016 hwi_nit
= nit
.to_shwi ();
4018 return hwi_nit
< 0 ? -1 : hwi_nit
;
4021 /* Sets NIT to an likely upper bound for the maximum number of executions of the
4022 latch of the LOOP. If we have no reliable estimate, the function returns
4023 false, otherwise returns true. */
4026 likely_max_loop_iterations (struct loop
*loop
, widest_int
*nit
)
4028 /* When SCEV information is available, try to update loop iterations
4029 estimate. Otherwise just return whatever we recorded earlier. */
4030 if (scev_initialized_p ())
4031 estimate_numbers_of_iterations (loop
);
4033 return get_likely_max_loop_iterations (loop
, nit
);
4036 /* Similar to max_loop_iterations, but returns the estimate only
4037 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
4038 on the number of iterations of LOOP could not be derived, returns -1. */
4041 likely_max_loop_iterations_int (struct loop
*loop
)
4044 HOST_WIDE_INT hwi_nit
;
4046 if (!likely_max_loop_iterations (loop
, &nit
))
4049 if (!wi::fits_shwi_p (nit
))
4051 hwi_nit
= nit
.to_shwi ();
4053 return hwi_nit
< 0 ? -1 : hwi_nit
;
4056 /* Returns an estimate for the number of executions of statements
4057 in the LOOP. For statements before the loop exit, this exceeds
4058 the number of execution of the latch by one. */
4061 estimated_stmt_executions_int (struct loop
*loop
)
4063 HOST_WIDE_INT nit
= estimated_loop_iterations_int (loop
);
4069 snit
= (HOST_WIDE_INT
) ((unsigned HOST_WIDE_INT
) nit
+ 1);
4071 /* If the computation overflows, return -1. */
4072 return snit
< 0 ? -1 : snit
;
4075 /* Sets NIT to the maximum number of executions of the latch of the
4076 LOOP, plus one. If we have no reliable estimate, the function returns
4077 false, otherwise returns true. */
4080 max_stmt_executions (struct loop
*loop
, widest_int
*nit
)
4082 widest_int nit_minus_one
;
4084 if (!max_loop_iterations (loop
, nit
))
4087 nit_minus_one
= *nit
;
4091 return wi::gtu_p (*nit
, nit_minus_one
);
4094 /* Sets NIT to the estimated maximum number of executions of the latch of the
4095 LOOP, plus one. If we have no likely estimate, the function returns
4096 false, otherwise returns true. */
4099 likely_max_stmt_executions (struct loop
*loop
, widest_int
*nit
)
4101 widest_int nit_minus_one
;
4103 if (!likely_max_loop_iterations (loop
, nit
))
4106 nit_minus_one
= *nit
;
4110 return wi::gtu_p (*nit
, nit_minus_one
);
4113 /* Sets NIT to the estimated number of executions of the latch of the
4114 LOOP, plus one. If we have no reliable estimate, the function returns
4115 false, otherwise returns true. */
4118 estimated_stmt_executions (struct loop
*loop
, widest_int
*nit
)
4120 widest_int nit_minus_one
;
4122 if (!estimated_loop_iterations (loop
, nit
))
4125 nit_minus_one
= *nit
;
4129 return wi::gtu_p (*nit
, nit_minus_one
);
4132 /* Records estimates on numbers of iterations of loops. */
4135 estimate_numbers_of_iterations (function
*fn
)
4139 /* We don't want to issue signed overflow warnings while getting
4140 loop iteration estimates. */
4141 fold_defer_overflow_warnings ();
4143 FOR_EACH_LOOP_FN (fn
, loop
, 0)
4144 estimate_numbers_of_iterations (loop
);
4146 fold_undefer_and_ignore_overflow_warnings ();
4149 /* Returns true if statement S1 dominates statement S2. */
4152 stmt_dominates_stmt_p (gimple
*s1
, gimple
*s2
)
4154 basic_block bb1
= gimple_bb (s1
), bb2
= gimple_bb (s2
);
4162 gimple_stmt_iterator bsi
;
4164 if (gimple_code (s2
) == GIMPLE_PHI
)
4167 if (gimple_code (s1
) == GIMPLE_PHI
)
4170 for (bsi
= gsi_start_bb (bb1
); gsi_stmt (bsi
) != s2
; gsi_next (&bsi
))
4171 if (gsi_stmt (bsi
) == s1
)
4177 return dominated_by_p (CDI_DOMINATORS
, bb2
, bb1
);
4180 /* Returns true when we can prove that the number of executions of
4181 STMT in the loop is at most NITER, according to the bound on
4182 the number of executions of the statement NITER_BOUND->stmt recorded in
4183 NITER_BOUND and fact that NITER_BOUND->stmt dominate STMT.
4185 ??? This code can become quite a CPU hog - we can have many bounds,
4186 and large basic block forcing stmt_dominates_stmt_p to be queried
4187 many times on a large basic blocks, so the whole thing is O(n^2)
4188 for scev_probably_wraps_p invocation (that can be done n times).
4190 It would make more sense (and give better answers) to remember BB
4191 bounds computed by discover_iteration_bound_by_body_walk. */
4194 n_of_executions_at_most (gimple
*stmt
,
4195 struct nb_iter_bound
*niter_bound
,
4198 widest_int bound
= niter_bound
->bound
;
4199 tree nit_type
= TREE_TYPE (niter
), e
;
4202 gcc_assert (TYPE_UNSIGNED (nit_type
));
4204 /* If the bound does not even fit into NIT_TYPE, it cannot tell us that
4205 the number of iterations is small. */
4206 if (!wi::fits_to_tree_p (bound
, nit_type
))
4209 /* We know that NITER_BOUND->stmt is executed at most NITER_BOUND->bound + 1
4210 times. This means that:
4212 -- if NITER_BOUND->is_exit is true, then everything after
4213 it at most NITER_BOUND->bound times.
4215 -- If NITER_BOUND->is_exit is false, then if we can prove that when STMT
4216 is executed, then NITER_BOUND->stmt is executed as well in the same
4217 iteration then STMT is executed at most NITER_BOUND->bound + 1 times.
4219 If we can determine that NITER_BOUND->stmt is always executed
4220 after STMT, then STMT is executed at most NITER_BOUND->bound + 2 times.
4221 We conclude that if both statements belong to the same
4222 basic block and STMT is before NITER_BOUND->stmt and there are no
4223 statements with side effects in between. */
4225 if (niter_bound
->is_exit
)
4227 if (stmt
== niter_bound
->stmt
4228 || !stmt_dominates_stmt_p (niter_bound
->stmt
, stmt
))
4234 if (!stmt_dominates_stmt_p (niter_bound
->stmt
, stmt
))
4236 gimple_stmt_iterator bsi
;
4237 if (gimple_bb (stmt
) != gimple_bb (niter_bound
->stmt
)
4238 || gimple_code (stmt
) == GIMPLE_PHI
4239 || gimple_code (niter_bound
->stmt
) == GIMPLE_PHI
)
4242 /* By stmt_dominates_stmt_p we already know that STMT appears
4243 before NITER_BOUND->STMT. Still need to test that the loop
4244 can not be terinated by a side effect in between. */
4245 for (bsi
= gsi_for_stmt (stmt
); gsi_stmt (bsi
) != niter_bound
->stmt
;
4247 if (gimple_has_side_effects (gsi_stmt (bsi
)))
4251 || !wi::fits_to_tree_p (bound
, nit_type
))
4257 e
= fold_binary (cmp
, boolean_type_node
,
4258 niter
, wide_int_to_tree (nit_type
, bound
));
4259 return e
&& integer_nonzerop (e
);
4262 /* Returns true if the arithmetics in TYPE can be assumed not to wrap. */
4265 nowrap_type_p (tree type
)
4267 if (ANY_INTEGRAL_TYPE_P (type
)
4268 && TYPE_OVERFLOW_UNDEFINED (type
))
4271 if (POINTER_TYPE_P (type
))
4277 /* Return true if we can prove LOOP is exited before evolution of induction
4278 variable {BASE, STEP} overflows with respect to its type bound. */
4281 loop_exits_before_overflow (tree base
, tree step
,
4282 gimple
*at_stmt
, struct loop
*loop
)
4285 struct control_iv
*civ
;
4286 struct nb_iter_bound
*bound
;
4287 tree e
, delta
, step_abs
, unsigned_base
;
4288 tree type
= TREE_TYPE (step
);
4289 tree unsigned_type
, valid_niter
;
4291 /* Don't issue signed overflow warnings. */
4292 fold_defer_overflow_warnings ();
4294 /* Compute the number of iterations before we reach the bound of the
4295 type, and verify that the loop is exited before this occurs. */
4296 unsigned_type
= unsigned_type_for (type
);
4297 unsigned_base
= fold_convert (unsigned_type
, base
);
4299 if (tree_int_cst_sign_bit (step
))
4301 tree extreme
= fold_convert (unsigned_type
,
4302 lower_bound_in_type (type
, type
));
4303 delta
= fold_build2 (MINUS_EXPR
, unsigned_type
, unsigned_base
, extreme
);
4304 step_abs
= fold_build1 (NEGATE_EXPR
, unsigned_type
,
4305 fold_convert (unsigned_type
, step
));
4309 tree extreme
= fold_convert (unsigned_type
,
4310 upper_bound_in_type (type
, type
));
4311 delta
= fold_build2 (MINUS_EXPR
, unsigned_type
, extreme
, unsigned_base
);
4312 step_abs
= fold_convert (unsigned_type
, step
);
4315 valid_niter
= fold_build2 (FLOOR_DIV_EXPR
, unsigned_type
, delta
, step_abs
);
4317 estimate_numbers_of_iterations (loop
);
4319 if (max_loop_iterations (loop
, &niter
)
4320 && wi::fits_to_tree_p (niter
, TREE_TYPE (valid_niter
))
4321 && (e
= fold_binary (GT_EXPR
, boolean_type_node
, valid_niter
,
4322 wide_int_to_tree (TREE_TYPE (valid_niter
),
4324 && integer_nonzerop (e
))
4326 fold_undefer_and_ignore_overflow_warnings ();
4330 for (bound
= loop
->bounds
; bound
; bound
= bound
->next
)
4332 if (n_of_executions_at_most (at_stmt
, bound
, valid_niter
))
4334 fold_undefer_and_ignore_overflow_warnings ();
4338 fold_undefer_and_ignore_overflow_warnings ();
4340 /* Try to prove loop is exited before {base, step} overflows with the
4341 help of analyzed loop control IV. This is done only for IVs with
4342 constant step because otherwise we don't have the information. */
4343 if (TREE_CODE (step
) == INTEGER_CST
)
4345 for (civ
= loop
->control_ivs
; civ
; civ
= civ
->next
)
4347 enum tree_code code
;
4348 tree civ_type
= TREE_TYPE (civ
->step
);
4350 /* Have to consider type difference because operand_equal_p ignores
4351 that for constants. */
4352 if (TYPE_UNSIGNED (type
) != TYPE_UNSIGNED (civ_type
)
4353 || element_precision (type
) != element_precision (civ_type
))
4356 /* Only consider control IV with same step. */
4357 if (!operand_equal_p (step
, civ
->step
, 0))
4360 /* Done proving if this is a no-overflow control IV. */
4361 if (operand_equal_p (base
, civ
->base
, 0))
4364 /* Control IV is recorded after expanding simple operations,
4365 Here we expand base and compare it too. */
4366 tree expanded_base
= expand_simple_operations (base
);
4367 if (operand_equal_p (expanded_base
, civ
->base
, 0))
4370 /* If this is a before stepping control IV, in other words, we have
4372 {civ_base, step} = {base + step, step}
4374 Because civ {base + step, step} doesn't overflow during loop
4375 iterations, {base, step} will not overflow if we can prove the
4376 operation "base + step" does not overflow. Specifically, we try
4377 to prove below conditions are satisfied:
4379 base <= UPPER_BOUND (type) - step ;;step > 0
4380 base >= LOWER_BOUND (type) - step ;;step < 0
4382 by proving the reverse conditions are false using loop's initial
4384 if (POINTER_TYPE_P (TREE_TYPE (base
)))
4385 code
= POINTER_PLUS_EXPR
;
4389 tree stepped
= fold_build2 (code
, TREE_TYPE (base
), base
, step
);
4390 tree expanded_stepped
= fold_build2 (code
, TREE_TYPE (base
),
4391 expanded_base
, step
);
4392 if (operand_equal_p (stepped
, civ
->base
, 0)
4393 || operand_equal_p (expanded_stepped
, civ
->base
, 0))
4397 if (tree_int_cst_sign_bit (step
))
4400 extreme
= lower_bound_in_type (type
, type
);
4405 extreme
= upper_bound_in_type (type
, type
);
4407 extreme
= fold_build2 (MINUS_EXPR
, type
, extreme
, step
);
4408 e
= fold_build2 (code
, boolean_type_node
, base
, extreme
);
4409 e
= simplify_using_initial_conditions (loop
, e
);
4410 if (integer_zerop (e
))
4419 /* VAR is scev variable whose evolution part is constant STEP, this function
4420 proves that VAR can't overflow by using value range info. If VAR's value
4421 range is [MIN, MAX], it can be proven by:
4422 MAX + step doesn't overflow ; if step > 0
4424 MIN + step doesn't underflow ; if step < 0.
4426 We can only do this if var is computed in every loop iteration, i.e, var's
4427 definition has to dominate loop latch. Consider below example:
4435 # RANGE [0, 4294967294] NONZERO 65535
4436 # i_21 = PHI <0(3), i_18(9)>
4443 # RANGE [0, 65533] NONZERO 65535
4444 _6 = i_21 + 4294967295;
4445 # RANGE [0, 65533] NONZERO 65535
4446 _7 = (long unsigned int) _6;
4447 # RANGE [0, 524264] NONZERO 524280
4449 # PT = nonlocal escaped
4454 # RANGE [1, 65535] NONZERO 65535
4468 VAR _6 doesn't overflow only with pre-condition (i_21 != 0), here we
4469 can't use _6 to prove no-overlfow for _7. In fact, var _7 takes value
4470 sequence (4294967295, 0, 1, ..., 65533) in loop life time, rather than
4471 (4294967295, 4294967296, ...). */
4474 scev_var_range_cant_overflow (tree var
, tree step
, struct loop
*loop
)
4477 wide_int minv
, maxv
, diff
, step_wi
;
4478 enum value_range_type rtype
;
4480 if (TREE_CODE (step
) != INTEGER_CST
|| !INTEGRAL_TYPE_P (TREE_TYPE (var
)))
4483 /* Check if VAR evaluates in every loop iteration. It's not the case
4484 if VAR is default definition or does not dominate loop's latch. */
4485 basic_block def_bb
= gimple_bb (SSA_NAME_DEF_STMT (var
));
4486 if (!def_bb
|| !dominated_by_p (CDI_DOMINATORS
, loop
->latch
, def_bb
))
4489 rtype
= get_range_info (var
, &minv
, &maxv
);
4490 if (rtype
!= VR_RANGE
)
4493 /* VAR is a scev whose evolution part is STEP and value range info
4494 is [MIN, MAX], we can prove its no-overflowness by conditions:
4496 type_MAX - MAX >= step ; if step > 0
4497 MIN - type_MIN >= |step| ; if step < 0.
4499 Or VAR must take value outside of value range, which is not true. */
4501 type
= TREE_TYPE (var
);
4502 if (tree_int_cst_sign_bit (step
))
4504 diff
= lower_bound_in_type (type
, type
);
4506 step_wi
= - step_wi
;
4510 diff
= upper_bound_in_type (type
, type
);
4514 return (wi::geu_p (diff
, step_wi
));
4517 /* Return false only when the induction variable BASE + STEP * I is
4518 known to not overflow: i.e. when the number of iterations is small
4519 enough with respect to the step and initial condition in order to
4520 keep the evolution confined in TYPEs bounds. Return true when the
4521 iv is known to overflow or when the property is not computable.
4523 USE_OVERFLOW_SEMANTICS is true if this function should assume that
4524 the rules for overflow of the given language apply (e.g., that signed
4525 arithmetics in C does not overflow).
4527 If VAR is a ssa variable, this function also returns false if VAR can
4528 be proven not overflow with value range info. */
4531 scev_probably_wraps_p (tree var
, tree base
, tree step
,
4532 gimple
*at_stmt
, struct loop
*loop
,
4533 bool use_overflow_semantics
)
4535 /* FIXME: We really need something like
4536 http://gcc.gnu.org/ml/gcc-patches/2005-06/msg02025.html.
4538 We used to test for the following situation that frequently appears
4539 during address arithmetics:
4541 D.1621_13 = (long unsigned intD.4) D.1620_12;
4542 D.1622_14 = D.1621_13 * 8;
4543 D.1623_15 = (doubleD.29 *) D.1622_14;
4545 And derived that the sequence corresponding to D_14
4546 can be proved to not wrap because it is used for computing a
4547 memory access; however, this is not really the case -- for example,
4548 if D_12 = (unsigned char) [254,+,1], then D_14 has values
4549 2032, 2040, 0, 8, ..., but the code is still legal. */
4551 if (chrec_contains_undetermined (base
)
4552 || chrec_contains_undetermined (step
))
4555 if (integer_zerop (step
))
4558 /* If we can use the fact that signed and pointer arithmetics does not
4559 wrap, we are done. */
4560 if (use_overflow_semantics
&& nowrap_type_p (TREE_TYPE (base
)))
4563 /* To be able to use estimates on number of iterations of the loop,
4564 we must have an upper bound on the absolute value of the step. */
4565 if (TREE_CODE (step
) != INTEGER_CST
)
4568 /* Check if var can be proven not overflow with value range info. */
4569 if (var
&& TREE_CODE (var
) == SSA_NAME
4570 && scev_var_range_cant_overflow (var
, step
, loop
))
4573 if (loop_exits_before_overflow (base
, step
, at_stmt
, loop
))
4576 /* At this point we still don't have a proof that the iv does not
4577 overflow: give up. */
4581 /* Frees the information on upper bounds on numbers of iterations of LOOP. */
4584 free_numbers_of_iterations_estimates (struct loop
*loop
)
4586 struct control_iv
*civ
;
4587 struct nb_iter_bound
*bound
;
4589 loop
->nb_iterations
= NULL
;
4590 loop
->estimate_state
= EST_NOT_COMPUTED
;
4591 for (bound
= loop
->bounds
; bound
;)
4593 struct nb_iter_bound
*next
= bound
->next
;
4597 loop
->bounds
= NULL
;
4599 for (civ
= loop
->control_ivs
; civ
;)
4601 struct control_iv
*next
= civ
->next
;
4605 loop
->control_ivs
= NULL
;
4608 /* Frees the information on upper bounds on numbers of iterations of loops. */
4611 free_numbers_of_iterations_estimates (function
*fn
)
4615 FOR_EACH_LOOP_FN (fn
, loop
, 0)
4616 free_numbers_of_iterations_estimates (loop
);
4619 /* Substitute value VAL for ssa name NAME inside expressions held
4623 substitute_in_loop_info (struct loop
*loop
, tree name
, tree val
)
4625 loop
->nb_iterations
= simplify_replace_tree (loop
->nb_iterations
, name
, val
);