1 /* Control flow functions for trees.
2 Copyright (C) 2001-2017 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
30 #include "tree-pass.h"
33 #include "gimple-pretty-print.h"
34 #include "diagnostic-core.h"
35 #include "fold-const.h"
36 #include "trans-mem.h"
37 #include "stor-layout.h"
38 #include "print-tree.h"
40 #include "gimple-fold.h"
42 #include "gimple-iterator.h"
43 #include "gimplify-me.h"
44 #include "gimple-walk.h"
46 #include "tree-ssa-loop-manip.h"
47 #include "tree-ssa-loop-niter.h"
48 #include "tree-into-ssa.h"
53 #include "tree-ssa-propagate.h"
54 #include "value-prof.h"
55 #include "tree-inline.h"
56 #include "tree-ssa-live.h"
57 #include "omp-general.h"
58 #include "omp-expand.h"
59 #include "tree-cfgcleanup.h"
65 /* This file contains functions for building the Control Flow Graph (CFG)
66 for a function tree. */
68 /* Local declarations. */
70 /* Initial capacity for the basic block array. */
71 static const int initial_cfg_capacity
= 20;
73 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
74 which use a particular edge. The CASE_LABEL_EXPRs are chained together
75 via their CASE_CHAIN field, which we clear after we're done with the
76 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
78 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
79 update the case vector in response to edge redirections.
81 Right now this table is set up and torn down at key points in the
82 compilation process. It would be nice if we could make the table
83 more persistent. The key is getting notification of changes to
84 the CFG (particularly edge removal, creation and redirection). */
86 static hash_map
<edge
, tree
> *edge_to_cases
;
88 /* If we record edge_to_cases, this bitmap will hold indexes
89 of basic blocks that end in a GIMPLE_SWITCH which we touched
90 due to edge manipulations. */
92 static bitmap touched_switch_bbs
;
97 long num_merged_labels
;
100 static struct cfg_stats_d cfg_stats
;
102 /* Data to pass to replace_block_vars_by_duplicates_1. */
103 struct replace_decls_d
105 hash_map
<tree
, tree
> *vars_map
;
109 /* Hash table to store last discriminator assigned for each locus. */
110 struct locus_discrim_map
116 /* Hashtable helpers. */
118 struct locus_discrim_hasher
: free_ptr_hash
<locus_discrim_map
>
120 static inline hashval_t
hash (const locus_discrim_map
*);
121 static inline bool equal (const locus_discrim_map
*,
122 const locus_discrim_map
*);
125 /* Trivial hash function for a location_t. ITEM is a pointer to
126 a hash table entry that maps a location_t to a discriminator. */
129 locus_discrim_hasher::hash (const locus_discrim_map
*item
)
131 return LOCATION_LINE (item
->locus
);
134 /* Equality function for the locus-to-discriminator map. A and B
135 point to the two hash table entries to compare. */
138 locus_discrim_hasher::equal (const locus_discrim_map
*a
,
139 const locus_discrim_map
*b
)
141 return LOCATION_LINE (a
->locus
) == LOCATION_LINE (b
->locus
);
144 static hash_table
<locus_discrim_hasher
> *discriminator_per_locus
;
146 /* Basic blocks and flowgraphs. */
147 static void make_blocks (gimple_seq
);
150 static void make_edges (void);
151 static void assign_discriminators (void);
152 static void make_cond_expr_edges (basic_block
);
153 static void make_gimple_switch_edges (gswitch
*, basic_block
);
154 static bool make_goto_expr_edges (basic_block
);
155 static void make_gimple_asm_edges (basic_block
);
156 static edge
gimple_redirect_edge_and_branch (edge
, basic_block
);
157 static edge
gimple_try_redirect_by_replacing_jump (edge
, basic_block
);
159 /* Various helpers. */
160 static inline bool stmt_starts_bb_p (gimple
*, gimple
*);
161 static int gimple_verify_flow_info (void);
162 static void gimple_make_forwarder_block (edge
);
163 static gimple
*first_non_label_stmt (basic_block
);
164 static bool verify_gimple_transaction (gtransaction
*);
165 static bool call_can_make_abnormal_goto (gimple
*);
167 /* Flowgraph optimization and cleanup. */
168 static void gimple_merge_blocks (basic_block
, basic_block
);
169 static bool gimple_can_merge_blocks_p (basic_block
, basic_block
);
170 static void remove_bb (basic_block
);
171 static edge
find_taken_edge_computed_goto (basic_block
, tree
);
172 static edge
find_taken_edge_cond_expr (basic_block
, tree
);
173 static edge
find_taken_edge_switch_expr (gswitch
*, basic_block
, tree
);
174 static tree
find_case_label_for_value (gswitch
*, tree
);
175 static void lower_phi_internal_fn ();
178 init_empty_tree_cfg_for_function (struct function
*fn
)
180 /* Initialize the basic block array. */
182 profile_status_for_fn (fn
) = PROFILE_ABSENT
;
183 n_basic_blocks_for_fn (fn
) = NUM_FIXED_BLOCKS
;
184 last_basic_block_for_fn (fn
) = NUM_FIXED_BLOCKS
;
185 vec_alloc (basic_block_info_for_fn (fn
), initial_cfg_capacity
);
186 vec_safe_grow_cleared (basic_block_info_for_fn (fn
),
187 initial_cfg_capacity
);
189 /* Build a mapping of labels to their associated blocks. */
190 vec_alloc (label_to_block_map_for_fn (fn
), initial_cfg_capacity
);
191 vec_safe_grow_cleared (label_to_block_map_for_fn (fn
),
192 initial_cfg_capacity
);
194 SET_BASIC_BLOCK_FOR_FN (fn
, ENTRY_BLOCK
, ENTRY_BLOCK_PTR_FOR_FN (fn
));
195 SET_BASIC_BLOCK_FOR_FN (fn
, EXIT_BLOCK
, EXIT_BLOCK_PTR_FOR_FN (fn
));
197 ENTRY_BLOCK_PTR_FOR_FN (fn
)->next_bb
198 = EXIT_BLOCK_PTR_FOR_FN (fn
);
199 EXIT_BLOCK_PTR_FOR_FN (fn
)->prev_bb
200 = ENTRY_BLOCK_PTR_FOR_FN (fn
);
204 init_empty_tree_cfg (void)
206 init_empty_tree_cfg_for_function (cfun
);
209 /*---------------------------------------------------------------------------
211 ---------------------------------------------------------------------------*/
213 /* Entry point to the CFG builder for trees. SEQ is the sequence of
214 statements to be added to the flowgraph. */
217 build_gimple_cfg (gimple_seq seq
)
219 /* Register specific gimple functions. */
220 gimple_register_cfg_hooks ();
222 memset ((void *) &cfg_stats
, 0, sizeof (cfg_stats
));
224 init_empty_tree_cfg ();
228 /* Make sure there is always at least one block, even if it's empty. */
229 if (n_basic_blocks_for_fn (cfun
) == NUM_FIXED_BLOCKS
)
230 create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun
));
232 /* Adjust the size of the array. */
233 if (basic_block_info_for_fn (cfun
)->length ()
234 < (size_t) n_basic_blocks_for_fn (cfun
))
235 vec_safe_grow_cleared (basic_block_info_for_fn (cfun
),
236 n_basic_blocks_for_fn (cfun
));
238 /* To speed up statement iterator walks, we first purge dead labels. */
239 cleanup_dead_labels ();
241 /* Group case nodes to reduce the number of edges.
242 We do this after cleaning up dead labels because otherwise we miss
243 a lot of obvious case merging opportunities. */
244 group_case_labels ();
246 /* Create the edges of the flowgraph. */
247 discriminator_per_locus
= new hash_table
<locus_discrim_hasher
> (13);
249 assign_discriminators ();
250 lower_phi_internal_fn ();
251 cleanup_dead_labels ();
252 delete discriminator_per_locus
;
253 discriminator_per_locus
= NULL
;
256 /* Look for ANNOTATE calls with loop annotation kind in BB; if found, remove
257 them and propagate the information to LOOP. We assume that the annotations
258 come immediately before the condition in BB, if any. */
261 replace_loop_annotate_in_block (basic_block bb
, struct loop
*loop
)
263 gimple_stmt_iterator gsi
= gsi_last_bb (bb
);
264 gimple
*stmt
= gsi_stmt (gsi
);
266 if (!(stmt
&& gimple_code (stmt
) == GIMPLE_COND
))
269 for (gsi_prev_nondebug (&gsi
); !gsi_end_p (gsi
); gsi_prev (&gsi
))
271 stmt
= gsi_stmt (gsi
);
272 if (gimple_code (stmt
) != GIMPLE_CALL
)
274 if (!gimple_call_internal_p (stmt
)
275 || gimple_call_internal_fn (stmt
) != IFN_ANNOTATE
)
278 switch ((annot_expr_kind
) tree_to_shwi (gimple_call_arg (stmt
, 1)))
280 case annot_expr_ivdep_kind
:
281 loop
->safelen
= INT_MAX
;
283 case annot_expr_no_vector_kind
:
284 loop
->dont_vectorize
= true;
286 case annot_expr_vector_kind
:
287 loop
->force_vectorize
= true;
288 cfun
->has_force_vectorize_loops
= true;
294 stmt
= gimple_build_assign (gimple_call_lhs (stmt
),
295 gimple_call_arg (stmt
, 0));
296 gsi_replace (&gsi
, stmt
, true);
300 /* Look for ANNOTATE calls with loop annotation kind; if found, remove
301 them and propagate the information to the loop. We assume that the
302 annotations come immediately before the condition of the loop. */
305 replace_loop_annotate (void)
309 gimple_stmt_iterator gsi
;
312 FOR_EACH_LOOP (loop
, 0)
314 /* First look into the header. */
315 replace_loop_annotate_in_block (loop
->header
, loop
);
317 /* Then look into the latch, if any. */
319 replace_loop_annotate_in_block (loop
->latch
, loop
);
322 /* Remove IFN_ANNOTATE. Safeguard for the case loop->latch == NULL. */
323 FOR_EACH_BB_FN (bb
, cfun
)
325 for (gsi
= gsi_last_bb (bb
); !gsi_end_p (gsi
); gsi_prev (&gsi
))
327 stmt
= gsi_stmt (gsi
);
328 if (gimple_code (stmt
) != GIMPLE_CALL
)
330 if (!gimple_call_internal_p (stmt
)
331 || gimple_call_internal_fn (stmt
) != IFN_ANNOTATE
)
334 switch ((annot_expr_kind
) tree_to_shwi (gimple_call_arg (stmt
, 1)))
336 case annot_expr_ivdep_kind
:
337 case annot_expr_no_vector_kind
:
338 case annot_expr_vector_kind
:
344 warning_at (gimple_location (stmt
), 0, "ignoring loop annotation");
345 stmt
= gimple_build_assign (gimple_call_lhs (stmt
),
346 gimple_call_arg (stmt
, 0));
347 gsi_replace (&gsi
, stmt
, true);
352 /* Lower internal PHI function from GIMPLE FE. */
355 lower_phi_internal_fn ()
357 basic_block bb
, pred
= NULL
;
358 gimple_stmt_iterator gsi
;
363 /* After edge creation, handle __PHI function from GIMPLE FE. */
364 FOR_EACH_BB_FN (bb
, cfun
)
366 for (gsi
= gsi_after_labels (bb
); !gsi_end_p (gsi
);)
368 stmt
= gsi_stmt (gsi
);
369 if (! gimple_call_internal_p (stmt
, IFN_PHI
))
372 lhs
= gimple_call_lhs (stmt
);
373 phi_node
= create_phi_node (lhs
, bb
);
375 /* Add arguments to the PHI node. */
376 for (unsigned i
= 0; i
< gimple_call_num_args (stmt
); ++i
)
378 tree arg
= gimple_call_arg (stmt
, i
);
379 if (TREE_CODE (arg
) == LABEL_DECL
)
380 pred
= label_to_block (arg
);
383 edge e
= find_edge (pred
, bb
);
384 add_phi_arg (phi_node
, arg
, e
, UNKNOWN_LOCATION
);
388 gsi_remove (&gsi
, true);
394 execute_build_cfg (void)
396 gimple_seq body
= gimple_body (current_function_decl
);
398 build_gimple_cfg (body
);
399 gimple_set_body (current_function_decl
, NULL
);
400 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
402 fprintf (dump_file
, "Scope blocks:\n");
403 dump_scope_blocks (dump_file
, dump_flags
);
406 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
);
407 replace_loop_annotate ();
413 const pass_data pass_data_build_cfg
=
415 GIMPLE_PASS
, /* type */
417 OPTGROUP_NONE
, /* optinfo_flags */
418 TV_TREE_CFG
, /* tv_id */
419 PROP_gimple_leh
, /* properties_required */
420 ( PROP_cfg
| PROP_loops
), /* properties_provided */
421 0, /* properties_destroyed */
422 0, /* todo_flags_start */
423 0, /* todo_flags_finish */
426 class pass_build_cfg
: public gimple_opt_pass
429 pass_build_cfg (gcc::context
*ctxt
)
430 : gimple_opt_pass (pass_data_build_cfg
, ctxt
)
433 /* opt_pass methods: */
434 virtual unsigned int execute (function
*) { return execute_build_cfg (); }
436 }; // class pass_build_cfg
441 make_pass_build_cfg (gcc::context
*ctxt
)
443 return new pass_build_cfg (ctxt
);
447 /* Return true if T is a computed goto. */
450 computed_goto_p (gimple
*t
)
452 return (gimple_code (t
) == GIMPLE_GOTO
453 && TREE_CODE (gimple_goto_dest (t
)) != LABEL_DECL
);
456 /* Returns true if the sequence of statements STMTS only contains
457 a call to __builtin_unreachable (). */
460 gimple_seq_unreachable_p (gimple_seq stmts
)
465 gimple_stmt_iterator gsi
= gsi_last (stmts
);
467 if (!gimple_call_builtin_p (gsi_stmt (gsi
), BUILT_IN_UNREACHABLE
))
470 for (gsi_prev (&gsi
); !gsi_end_p (gsi
); gsi_prev (&gsi
))
472 gimple
*stmt
= gsi_stmt (gsi
);
473 if (gimple_code (stmt
) != GIMPLE_LABEL
474 && !is_gimple_debug (stmt
)
475 && !gimple_clobber_p (stmt
))
481 /* Returns true for edge E where e->src ends with a GIMPLE_COND and
482 the other edge points to a bb with just __builtin_unreachable ().
483 I.e. return true for C->M edge in:
491 __builtin_unreachable ();
495 assert_unreachable_fallthru_edge_p (edge e
)
497 basic_block pred_bb
= e
->src
;
498 gimple
*last
= last_stmt (pred_bb
);
499 if (last
&& gimple_code (last
) == GIMPLE_COND
)
501 basic_block other_bb
= EDGE_SUCC (pred_bb
, 0)->dest
;
502 if (other_bb
== e
->dest
)
503 other_bb
= EDGE_SUCC (pred_bb
, 1)->dest
;
504 if (EDGE_COUNT (other_bb
->succs
) == 0)
505 return gimple_seq_unreachable_p (bb_seq (other_bb
));
511 /* Initialize GF_CALL_CTRL_ALTERING flag, which indicates the call
512 could alter control flow except via eh. We initialize the flag at
513 CFG build time and only ever clear it later. */
516 gimple_call_initialize_ctrl_altering (gimple
*stmt
)
518 int flags
= gimple_call_flags (stmt
);
520 /* A call alters control flow if it can make an abnormal goto. */
521 if (call_can_make_abnormal_goto (stmt
)
522 /* A call also alters control flow if it does not return. */
523 || flags
& ECF_NORETURN
524 /* TM ending statements have backedges out of the transaction.
525 Return true so we split the basic block containing them.
526 Note that the TM_BUILTIN test is merely an optimization. */
527 || ((flags
& ECF_TM_BUILTIN
)
528 && is_tm_ending_fndecl (gimple_call_fndecl (stmt
)))
529 /* BUILT_IN_RETURN call is same as return statement. */
530 || gimple_call_builtin_p (stmt
, BUILT_IN_RETURN
)
531 /* IFN_UNIQUE should be the last insn, to make checking for it
532 as cheap as possible. */
533 || (gimple_call_internal_p (stmt
)
534 && gimple_call_internal_unique_p (stmt
)))
535 gimple_call_set_ctrl_altering (stmt
, true);
537 gimple_call_set_ctrl_altering (stmt
, false);
541 /* Insert SEQ after BB and build a flowgraph. */
544 make_blocks_1 (gimple_seq seq
, basic_block bb
)
546 gimple_stmt_iterator i
= gsi_start (seq
);
548 bool start_new_block
= true;
549 bool first_stmt_of_seq
= true;
551 while (!gsi_end_p (i
))
558 if (stmt
&& is_gimple_call (stmt
))
559 gimple_call_initialize_ctrl_altering (stmt
);
561 /* If the statement starts a new basic block or if we have determined
562 in a previous pass that we need to create a new block for STMT, do
564 if (start_new_block
|| stmt_starts_bb_p (stmt
, prev_stmt
))
566 if (!first_stmt_of_seq
)
567 gsi_split_seq_before (&i
, &seq
);
568 bb
= create_basic_block (seq
, bb
);
569 start_new_block
= false;
572 /* Now add STMT to BB and create the subgraphs for special statement
574 gimple_set_bb (stmt
, bb
);
576 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
578 if (stmt_ends_bb_p (stmt
))
580 /* If the stmt can make abnormal goto use a new temporary
581 for the assignment to the LHS. This makes sure the old value
582 of the LHS is available on the abnormal edge. Otherwise
583 we will end up with overlapping life-ranges for abnormal
585 if (gimple_has_lhs (stmt
)
586 && stmt_can_make_abnormal_goto (stmt
)
587 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt
))))
589 tree lhs
= gimple_get_lhs (stmt
);
590 tree tmp
= create_tmp_var (TREE_TYPE (lhs
));
591 gimple
*s
= gimple_build_assign (lhs
, tmp
);
592 gimple_set_location (s
, gimple_location (stmt
));
593 gimple_set_block (s
, gimple_block (stmt
));
594 gimple_set_lhs (stmt
, tmp
);
595 if (TREE_CODE (TREE_TYPE (tmp
)) == COMPLEX_TYPE
596 || TREE_CODE (TREE_TYPE (tmp
)) == VECTOR_TYPE
)
597 DECL_GIMPLE_REG_P (tmp
) = 1;
598 gsi_insert_after (&i
, s
, GSI_SAME_STMT
);
600 start_new_block
= true;
604 first_stmt_of_seq
= false;
609 /* Build a flowgraph for the sequence of stmts SEQ. */
612 make_blocks (gimple_seq seq
)
614 make_blocks_1 (seq
, ENTRY_BLOCK_PTR_FOR_FN (cfun
));
617 /* Create and return a new empty basic block after bb AFTER. */
620 create_bb (void *h
, void *e
, basic_block after
)
626 /* Create and initialize a new basic block. Since alloc_block uses
627 GC allocation that clears memory to allocate a basic block, we do
628 not have to clear the newly allocated basic block here. */
631 bb
->index
= last_basic_block_for_fn (cfun
);
633 set_bb_seq (bb
, h
? (gimple_seq
) h
: NULL
);
635 /* Add the new block to the linked list of blocks. */
636 link_block (bb
, after
);
638 /* Grow the basic block array if needed. */
639 if ((size_t) last_basic_block_for_fn (cfun
)
640 == basic_block_info_for_fn (cfun
)->length ())
643 (last_basic_block_for_fn (cfun
)
644 + (last_basic_block_for_fn (cfun
) + 3) / 4);
645 vec_safe_grow_cleared (basic_block_info_for_fn (cfun
), new_size
);
648 /* Add the newly created block to the array. */
649 SET_BASIC_BLOCK_FOR_FN (cfun
, last_basic_block_for_fn (cfun
), bb
);
651 n_basic_blocks_for_fn (cfun
)++;
652 last_basic_block_for_fn (cfun
)++;
658 /*---------------------------------------------------------------------------
660 ---------------------------------------------------------------------------*/
662 /* If basic block BB has an abnormal edge to a basic block
663 containing IFN_ABNORMAL_DISPATCHER internal call, return
664 that the dispatcher's basic block, otherwise return NULL. */
667 get_abnormal_succ_dispatcher (basic_block bb
)
672 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
673 if ((e
->flags
& (EDGE_ABNORMAL
| EDGE_EH
)) == EDGE_ABNORMAL
)
675 gimple_stmt_iterator gsi
676 = gsi_start_nondebug_after_labels_bb (e
->dest
);
677 gimple
*g
= gsi_stmt (gsi
);
678 if (g
&& gimple_call_internal_p (g
, IFN_ABNORMAL_DISPATCHER
))
684 /* Helper function for make_edges. Create a basic block with
685 with ABNORMAL_DISPATCHER internal call in it if needed, and
686 create abnormal edges from BBS to it and from it to FOR_BB
687 if COMPUTED_GOTO is false, otherwise factor the computed gotos. */
690 handle_abnormal_edges (basic_block
*dispatcher_bbs
,
691 basic_block for_bb
, int *bb_to_omp_idx
,
692 auto_vec
<basic_block
> *bbs
, bool computed_goto
)
694 basic_block
*dispatcher
= dispatcher_bbs
+ (computed_goto
? 1 : 0);
695 unsigned int idx
= 0;
701 dispatcher
= dispatcher_bbs
+ 2 * bb_to_omp_idx
[for_bb
->index
];
702 if (bb_to_omp_idx
[for_bb
->index
] != 0)
706 /* If the dispatcher has been created already, then there are basic
707 blocks with abnormal edges to it, so just make a new edge to
709 if (*dispatcher
== NULL
)
711 /* Check if there are any basic blocks that need to have
712 abnormal edges to this dispatcher. If there are none, return
714 if (bb_to_omp_idx
== NULL
)
716 if (bbs
->is_empty ())
721 FOR_EACH_VEC_ELT (*bbs
, idx
, bb
)
722 if (bb_to_omp_idx
[bb
->index
] == bb_to_omp_idx
[for_bb
->index
])
728 /* Create the dispatcher bb. */
729 *dispatcher
= create_basic_block (NULL
, for_bb
);
732 /* Factor computed gotos into a common computed goto site. Also
733 record the location of that site so that we can un-factor the
734 gotos after we have converted back to normal form. */
735 gimple_stmt_iterator gsi
= gsi_start_bb (*dispatcher
);
737 /* Create the destination of the factored goto. Each original
738 computed goto will put its desired destination into this
739 variable and jump to the label we create immediately below. */
740 tree var
= create_tmp_var (ptr_type_node
, "gotovar");
742 /* Build a label for the new block which will contain the
743 factored computed goto. */
744 tree factored_label_decl
745 = create_artificial_label (UNKNOWN_LOCATION
);
746 gimple
*factored_computed_goto_label
747 = gimple_build_label (factored_label_decl
);
748 gsi_insert_after (&gsi
, factored_computed_goto_label
, GSI_NEW_STMT
);
750 /* Build our new computed goto. */
751 gimple
*factored_computed_goto
= gimple_build_goto (var
);
752 gsi_insert_after (&gsi
, factored_computed_goto
, GSI_NEW_STMT
);
754 FOR_EACH_VEC_ELT (*bbs
, idx
, bb
)
757 && bb_to_omp_idx
[bb
->index
] != bb_to_omp_idx
[for_bb
->index
])
760 gsi
= gsi_last_bb (bb
);
761 gimple
*last
= gsi_stmt (gsi
);
763 gcc_assert (computed_goto_p (last
));
765 /* Copy the original computed goto's destination into VAR. */
767 = gimple_build_assign (var
, gimple_goto_dest (last
));
768 gsi_insert_before (&gsi
, assignment
, GSI_SAME_STMT
);
770 edge e
= make_edge (bb
, *dispatcher
, EDGE_FALLTHRU
);
771 e
->goto_locus
= gimple_location (last
);
772 gsi_remove (&gsi
, true);
777 tree arg
= inner
? boolean_true_node
: boolean_false_node
;
778 gimple
*g
= gimple_build_call_internal (IFN_ABNORMAL_DISPATCHER
,
780 gimple_stmt_iterator gsi
= gsi_after_labels (*dispatcher
);
781 gsi_insert_after (&gsi
, g
, GSI_NEW_STMT
);
783 /* Create predecessor edges of the dispatcher. */
784 FOR_EACH_VEC_ELT (*bbs
, idx
, bb
)
787 && bb_to_omp_idx
[bb
->index
] != bb_to_omp_idx
[for_bb
->index
])
789 make_edge (bb
, *dispatcher
, EDGE_ABNORMAL
);
794 make_edge (*dispatcher
, for_bb
, EDGE_ABNORMAL
);
797 /* Creates outgoing edges for BB. Returns 1 when it ends with an
798 computed goto, returns 2 when it ends with a statement that
799 might return to this function via an nonlocal goto, otherwise
800 return 0. Updates *PCUR_REGION with the OMP region this BB is in. */
803 make_edges_bb (basic_block bb
, struct omp_region
**pcur_region
, int *pomp_index
)
805 gimple
*last
= last_stmt (bb
);
806 bool fallthru
= false;
812 switch (gimple_code (last
))
815 if (make_goto_expr_edges (bb
))
821 edge e
= make_edge (bb
, EXIT_BLOCK_PTR_FOR_FN (cfun
), 0);
822 e
->goto_locus
= gimple_location (last
);
827 make_cond_expr_edges (bb
);
831 make_gimple_switch_edges (as_a
<gswitch
*> (last
), bb
);
835 make_eh_edges (last
);
838 case GIMPLE_EH_DISPATCH
:
839 fallthru
= make_eh_dispatch_edges (as_a
<geh_dispatch
*> (last
));
843 /* If this function receives a nonlocal goto, then we need to
844 make edges from this call site to all the nonlocal goto
846 if (stmt_can_make_abnormal_goto (last
))
849 /* If this statement has reachable exception handlers, then
850 create abnormal edges to them. */
851 make_eh_edges (last
);
853 /* BUILTIN_RETURN is really a return statement. */
854 if (gimple_call_builtin_p (last
, BUILT_IN_RETURN
))
856 make_edge (bb
, EXIT_BLOCK_PTR_FOR_FN (cfun
), 0);
859 /* Some calls are known not to return. */
861 fallthru
= !gimple_call_noreturn_p (last
);
865 /* A GIMPLE_ASSIGN may throw internally and thus be considered
867 if (is_ctrl_altering_stmt (last
))
868 make_eh_edges (last
);
873 make_gimple_asm_edges (bb
);
878 fallthru
= omp_make_gimple_edges (bb
, pcur_region
, pomp_index
);
881 case GIMPLE_TRANSACTION
:
883 gtransaction
*txn
= as_a
<gtransaction
*> (last
);
884 tree label1
= gimple_transaction_label_norm (txn
);
885 tree label2
= gimple_transaction_label_uninst (txn
);
888 make_edge (bb
, label_to_block (label1
), EDGE_FALLTHRU
);
890 make_edge (bb
, label_to_block (label2
),
891 EDGE_TM_UNINSTRUMENTED
| (label1
? 0 : EDGE_FALLTHRU
));
893 tree label3
= gimple_transaction_label_over (txn
);
894 if (gimple_transaction_subcode (txn
)
895 & (GTMA_HAVE_ABORT
| GTMA_IS_OUTER
))
896 make_edge (bb
, label_to_block (label3
), EDGE_TM_ABORT
);
903 gcc_assert (!stmt_ends_bb_p (last
));
909 make_edge (bb
, bb
->next_bb
, EDGE_FALLTHRU
);
914 /* Join all the blocks in the flowgraph. */
920 struct omp_region
*cur_region
= NULL
;
921 auto_vec
<basic_block
> ab_edge_goto
;
922 auto_vec
<basic_block
> ab_edge_call
;
923 int *bb_to_omp_idx
= NULL
;
924 int cur_omp_region_idx
= 0;
926 /* Create an edge from entry to the first block with executable
928 make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun
),
929 BASIC_BLOCK_FOR_FN (cfun
, NUM_FIXED_BLOCKS
),
932 /* Traverse the basic block array placing edges. */
933 FOR_EACH_BB_FN (bb
, cfun
)
938 bb_to_omp_idx
[bb
->index
] = cur_omp_region_idx
;
940 mer
= make_edges_bb (bb
, &cur_region
, &cur_omp_region_idx
);
942 ab_edge_goto
.safe_push (bb
);
944 ab_edge_call
.safe_push (bb
);
946 if (cur_region
&& bb_to_omp_idx
== NULL
)
947 bb_to_omp_idx
= XCNEWVEC (int, n_basic_blocks_for_fn (cfun
));
950 /* Computed gotos are hell to deal with, especially if there are
951 lots of them with a large number of destinations. So we factor
952 them to a common computed goto location before we build the
953 edge list. After we convert back to normal form, we will un-factor
954 the computed gotos since factoring introduces an unwanted jump.
955 For non-local gotos and abnormal edges from calls to calls that return
956 twice or forced labels, factor the abnormal edges too, by having all
957 abnormal edges from the calls go to a common artificial basic block
958 with ABNORMAL_DISPATCHER internal call and abnormal edges from that
959 basic block to all forced labels and calls returning twice.
960 We do this per-OpenMP structured block, because those regions
961 are guaranteed to be single entry single exit by the standard,
962 so it is not allowed to enter or exit such regions abnormally this way,
963 thus all computed gotos, non-local gotos and setjmp/longjmp calls
964 must not transfer control across SESE region boundaries. */
965 if (!ab_edge_goto
.is_empty () || !ab_edge_call
.is_empty ())
967 gimple_stmt_iterator gsi
;
968 basic_block dispatcher_bb_array
[2] = { NULL
, NULL
};
969 basic_block
*dispatcher_bbs
= dispatcher_bb_array
;
970 int count
= n_basic_blocks_for_fn (cfun
);
973 dispatcher_bbs
= XCNEWVEC (basic_block
, 2 * count
);
975 FOR_EACH_BB_FN (bb
, cfun
)
977 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
979 glabel
*label_stmt
= dyn_cast
<glabel
*> (gsi_stmt (gsi
));
985 target
= gimple_label_label (label_stmt
);
987 /* Make an edge to every label block that has been marked as a
988 potential target for a computed goto or a non-local goto. */
989 if (FORCED_LABEL (target
))
990 handle_abnormal_edges (dispatcher_bbs
, bb
, bb_to_omp_idx
,
991 &ab_edge_goto
, true);
992 if (DECL_NONLOCAL (target
))
994 handle_abnormal_edges (dispatcher_bbs
, bb
, bb_to_omp_idx
,
995 &ab_edge_call
, false);
1000 if (!gsi_end_p (gsi
) && is_gimple_debug (gsi_stmt (gsi
)))
1001 gsi_next_nondebug (&gsi
);
1002 if (!gsi_end_p (gsi
))
1004 /* Make an edge to every setjmp-like call. */
1005 gimple
*call_stmt
= gsi_stmt (gsi
);
1006 if (is_gimple_call (call_stmt
)
1007 && ((gimple_call_flags (call_stmt
) & ECF_RETURNS_TWICE
)
1008 || gimple_call_builtin_p (call_stmt
,
1009 BUILT_IN_SETJMP_RECEIVER
)))
1010 handle_abnormal_edges (dispatcher_bbs
, bb
, bb_to_omp_idx
,
1011 &ab_edge_call
, false);
1016 XDELETE (dispatcher_bbs
);
1019 XDELETE (bb_to_omp_idx
);
1021 omp_free_regions ();
1024 /* Add SEQ after GSI. Start new bb after GSI, and created further bbs as
1025 needed. Returns true if new bbs were created.
1026 Note: This is transitional code, and should not be used for new code. We
1027 should be able to get rid of this by rewriting all target va-arg
1028 gimplification hooks to use an interface gimple_build_cond_value as described
1029 in https://gcc.gnu.org/ml/gcc-patches/2015-02/msg01194.html. */
1032 gimple_find_sub_bbs (gimple_seq seq
, gimple_stmt_iterator
*gsi
)
1034 gimple
*stmt
= gsi_stmt (*gsi
);
1035 basic_block bb
= gimple_bb (stmt
);
1036 basic_block lastbb
, afterbb
;
1037 int old_num_bbs
= n_basic_blocks_for_fn (cfun
);
1039 lastbb
= make_blocks_1 (seq
, bb
);
1040 if (old_num_bbs
== n_basic_blocks_for_fn (cfun
))
1042 e
= split_block (bb
, stmt
);
1043 /* Move e->dest to come after the new basic blocks. */
1045 unlink_block (afterbb
);
1046 link_block (afterbb
, lastbb
);
1047 redirect_edge_succ (e
, bb
->next_bb
);
1049 while (bb
!= afterbb
)
1051 struct omp_region
*cur_region
= NULL
;
1052 profile_count cnt
= profile_count::zero ();
1056 int cur_omp_region_idx
= 0;
1057 int mer
= make_edges_bb (bb
, &cur_region
, &cur_omp_region_idx
);
1058 gcc_assert (!mer
&& !cur_region
);
1059 add_bb_to_loop (bb
, afterbb
->loop_father
);
1063 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
1065 if (e
->count
.initialized_p ())
1069 freq
+= EDGE_FREQUENCY (e
);
1071 tree_guess_outgoing_edge_probabilities (bb
);
1072 if (all
|| profile_status_for_fn (cfun
) == PROFILE_READ
)
1074 bb
->frequency
= freq
;
1075 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
1076 e
->count
= bb
->count
.apply_probability (e
->probability
);
1083 /* Find the next available discriminator value for LOCUS. The
1084 discriminator distinguishes among several basic blocks that
1085 share a common locus, allowing for more accurate sample-based
1089 next_discriminator_for_locus (location_t locus
)
1091 struct locus_discrim_map item
;
1092 struct locus_discrim_map
**slot
;
1095 item
.discriminator
= 0;
1096 slot
= discriminator_per_locus
->find_slot_with_hash (
1097 &item
, LOCATION_LINE (locus
), INSERT
);
1099 if (*slot
== HTAB_EMPTY_ENTRY
)
1101 *slot
= XNEW (struct locus_discrim_map
);
1103 (*slot
)->locus
= locus
;
1104 (*slot
)->discriminator
= 0;
1106 (*slot
)->discriminator
++;
1107 return (*slot
)->discriminator
;
1110 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
1113 same_line_p (location_t locus1
, location_t locus2
)
1115 expanded_location from
, to
;
1117 if (locus1
== locus2
)
1120 from
= expand_location (locus1
);
1121 to
= expand_location (locus2
);
1123 if (from
.line
!= to
.line
)
1125 if (from
.file
== to
.file
)
1127 return (from
.file
!= NULL
1129 && filename_cmp (from
.file
, to
.file
) == 0);
1132 /* Assign discriminators to each basic block. */
1135 assign_discriminators (void)
1139 FOR_EACH_BB_FN (bb
, cfun
)
1143 gimple
*last
= last_stmt (bb
);
1144 location_t locus
= last
? gimple_location (last
) : UNKNOWN_LOCATION
;
1146 if (locus
== UNKNOWN_LOCATION
)
1149 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
1151 gimple
*first
= first_non_label_stmt (e
->dest
);
1152 gimple
*last
= last_stmt (e
->dest
);
1153 if ((first
&& same_line_p (locus
, gimple_location (first
)))
1154 || (last
&& same_line_p (locus
, gimple_location (last
))))
1156 if (e
->dest
->discriminator
!= 0 && bb
->discriminator
== 0)
1157 bb
->discriminator
= next_discriminator_for_locus (locus
);
1159 e
->dest
->discriminator
= next_discriminator_for_locus (locus
);
1165 /* Create the edges for a GIMPLE_COND starting at block BB. */
1168 make_cond_expr_edges (basic_block bb
)
1170 gcond
*entry
= as_a
<gcond
*> (last_stmt (bb
));
1171 gimple
*then_stmt
, *else_stmt
;
1172 basic_block then_bb
, else_bb
;
1173 tree then_label
, else_label
;
1177 gcc_assert (gimple_code (entry
) == GIMPLE_COND
);
1179 /* Entry basic blocks for each component. */
1180 then_label
= gimple_cond_true_label (entry
);
1181 else_label
= gimple_cond_false_label (entry
);
1182 then_bb
= label_to_block (then_label
);
1183 else_bb
= label_to_block (else_label
);
1184 then_stmt
= first_stmt (then_bb
);
1185 else_stmt
= first_stmt (else_bb
);
1187 e
= make_edge (bb
, then_bb
, EDGE_TRUE_VALUE
);
1188 e
->goto_locus
= gimple_location (then_stmt
);
1189 e
= make_edge (bb
, else_bb
, EDGE_FALSE_VALUE
);
1191 e
->goto_locus
= gimple_location (else_stmt
);
1193 /* We do not need the labels anymore. */
1194 gimple_cond_set_true_label (entry
, NULL_TREE
);
1195 gimple_cond_set_false_label (entry
, NULL_TREE
);
1199 /* Called for each element in the hash table (P) as we delete the
1200 edge to cases hash table.
1202 Clear all the CASE_CHAINs to prevent problems with copying of
1203 SWITCH_EXPRs and structure sharing rules, then free the hash table
1207 edge_to_cases_cleanup (edge
const &, tree
const &value
, void *)
1211 for (t
= value
; t
; t
= next
)
1213 next
= CASE_CHAIN (t
);
1214 CASE_CHAIN (t
) = NULL
;
1220 /* Start recording information mapping edges to case labels. */
1223 start_recording_case_labels (void)
1225 gcc_assert (edge_to_cases
== NULL
);
1226 edge_to_cases
= new hash_map
<edge
, tree
>;
1227 touched_switch_bbs
= BITMAP_ALLOC (NULL
);
1230 /* Return nonzero if we are recording information for case labels. */
1233 recording_case_labels_p (void)
1235 return (edge_to_cases
!= NULL
);
1238 /* Stop recording information mapping edges to case labels and
1239 remove any information we have recorded. */
1241 end_recording_case_labels (void)
1245 edge_to_cases
->traverse
<void *, edge_to_cases_cleanup
> (NULL
);
1246 delete edge_to_cases
;
1247 edge_to_cases
= NULL
;
1248 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs
, 0, i
, bi
)
1250 basic_block bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
1253 gimple
*stmt
= last_stmt (bb
);
1254 if (stmt
&& gimple_code (stmt
) == GIMPLE_SWITCH
)
1255 group_case_labels_stmt (as_a
<gswitch
*> (stmt
));
1258 BITMAP_FREE (touched_switch_bbs
);
1261 /* If we are inside a {start,end}_recording_cases block, then return
1262 a chain of CASE_LABEL_EXPRs from T which reference E.
1264 Otherwise return NULL. */
1267 get_cases_for_edge (edge e
, gswitch
*t
)
1272 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
1273 chains available. Return NULL so the caller can detect this case. */
1274 if (!recording_case_labels_p ())
1277 slot
= edge_to_cases
->get (e
);
1281 /* If we did not find E in the hash table, then this must be the first
1282 time we have been queried for information about E & T. Add all the
1283 elements from T to the hash table then perform the query again. */
1285 n
= gimple_switch_num_labels (t
);
1286 for (i
= 0; i
< n
; i
++)
1288 tree elt
= gimple_switch_label (t
, i
);
1289 tree lab
= CASE_LABEL (elt
);
1290 basic_block label_bb
= label_to_block (lab
);
1291 edge this_edge
= find_edge (e
->src
, label_bb
);
1293 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
1295 tree
&s
= edge_to_cases
->get_or_insert (this_edge
);
1296 CASE_CHAIN (elt
) = s
;
1300 return *edge_to_cases
->get (e
);
1303 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
1306 make_gimple_switch_edges (gswitch
*entry
, basic_block bb
)
1310 n
= gimple_switch_num_labels (entry
);
1312 for (i
= 0; i
< n
; ++i
)
1314 tree lab
= CASE_LABEL (gimple_switch_label (entry
, i
));
1315 basic_block label_bb
= label_to_block (lab
);
1316 make_edge (bb
, label_bb
, 0);
1321 /* Return the basic block holding label DEST. */
1324 label_to_block_fn (struct function
*ifun
, tree dest
)
1326 int uid
= LABEL_DECL_UID (dest
);
1328 /* We would die hard when faced by an undefined label. Emit a label to
1329 the very first basic block. This will hopefully make even the dataflow
1330 and undefined variable warnings quite right. */
1331 if (seen_error () && uid
< 0)
1333 gimple_stmt_iterator gsi
=
1334 gsi_start_bb (BASIC_BLOCK_FOR_FN (cfun
, NUM_FIXED_BLOCKS
));
1337 stmt
= gimple_build_label (dest
);
1338 gsi_insert_before (&gsi
, stmt
, GSI_NEW_STMT
);
1339 uid
= LABEL_DECL_UID (dest
);
1341 if (vec_safe_length (ifun
->cfg
->x_label_to_block_map
) <= (unsigned int) uid
)
1343 return (*ifun
->cfg
->x_label_to_block_map
)[uid
];
1346 /* Create edges for a goto statement at block BB. Returns true
1347 if abnormal edges should be created. */
1350 make_goto_expr_edges (basic_block bb
)
1352 gimple_stmt_iterator last
= gsi_last_bb (bb
);
1353 gimple
*goto_t
= gsi_stmt (last
);
1355 /* A simple GOTO creates normal edges. */
1356 if (simple_goto_p (goto_t
))
1358 tree dest
= gimple_goto_dest (goto_t
);
1359 basic_block label_bb
= label_to_block (dest
);
1360 edge e
= make_edge (bb
, label_bb
, EDGE_FALLTHRU
);
1361 e
->goto_locus
= gimple_location (goto_t
);
1362 gsi_remove (&last
, true);
1366 /* A computed GOTO creates abnormal edges. */
1370 /* Create edges for an asm statement with labels at block BB. */
1373 make_gimple_asm_edges (basic_block bb
)
1375 gasm
*stmt
= as_a
<gasm
*> (last_stmt (bb
));
1376 int i
, n
= gimple_asm_nlabels (stmt
);
1378 for (i
= 0; i
< n
; ++i
)
1380 tree label
= TREE_VALUE (gimple_asm_label_op (stmt
, i
));
1381 basic_block label_bb
= label_to_block (label
);
1382 make_edge (bb
, label_bb
, 0);
1386 /*---------------------------------------------------------------------------
1388 ---------------------------------------------------------------------------*/
1390 /* Cleanup useless labels in basic blocks. This is something we wish
1391 to do early because it allows us to group case labels before creating
1392 the edges for the CFG, and it speeds up block statement iterators in
1393 all passes later on.
1394 We rerun this pass after CFG is created, to get rid of the labels that
1395 are no longer referenced. After then we do not run it any more, since
1396 (almost) no new labels should be created. */
1398 /* A map from basic block index to the leading label of that block. */
1399 static struct label_record
1404 /* True if the label is referenced from somewhere. */
1408 /* Given LABEL return the first label in the same basic block. */
1411 main_block_label (tree label
)
1413 basic_block bb
= label_to_block (label
);
1414 tree main_label
= label_for_bb
[bb
->index
].label
;
1416 /* label_to_block possibly inserted undefined label into the chain. */
1419 label_for_bb
[bb
->index
].label
= label
;
1423 label_for_bb
[bb
->index
].used
= true;
1427 /* Clean up redundant labels within the exception tree. */
1430 cleanup_dead_labels_eh (void)
1437 if (cfun
->eh
== NULL
)
1440 for (i
= 1; vec_safe_iterate (cfun
->eh
->lp_array
, i
, &lp
); ++i
)
1441 if (lp
&& lp
->post_landing_pad
)
1443 lab
= main_block_label (lp
->post_landing_pad
);
1444 if (lab
!= lp
->post_landing_pad
)
1446 EH_LANDING_PAD_NR (lp
->post_landing_pad
) = 0;
1447 EH_LANDING_PAD_NR (lab
) = lp
->index
;
1451 FOR_ALL_EH_REGION (r
)
1455 case ERT_MUST_NOT_THROW
:
1461 for (c
= r
->u
.eh_try
.first_catch
; c
; c
= c
->next_catch
)
1465 c
->label
= main_block_label (lab
);
1470 case ERT_ALLOWED_EXCEPTIONS
:
1471 lab
= r
->u
.allowed
.label
;
1473 r
->u
.allowed
.label
= main_block_label (lab
);
1479 /* Cleanup redundant labels. This is a three-step process:
1480 1) Find the leading label for each block.
1481 2) Redirect all references to labels to the leading labels.
1482 3) Cleanup all useless labels. */
1485 cleanup_dead_labels (void)
1488 label_for_bb
= XCNEWVEC (struct label_record
, last_basic_block_for_fn (cfun
));
1490 /* Find a suitable label for each block. We use the first user-defined
1491 label if there is one, or otherwise just the first label we see. */
1492 FOR_EACH_BB_FN (bb
, cfun
)
1494 gimple_stmt_iterator i
;
1496 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); gsi_next (&i
))
1499 glabel
*label_stmt
= dyn_cast
<glabel
*> (gsi_stmt (i
));
1504 label
= gimple_label_label (label_stmt
);
1506 /* If we have not yet seen a label for the current block,
1507 remember this one and see if there are more labels. */
1508 if (!label_for_bb
[bb
->index
].label
)
1510 label_for_bb
[bb
->index
].label
= label
;
1514 /* If we did see a label for the current block already, but it
1515 is an artificially created label, replace it if the current
1516 label is a user defined label. */
1517 if (!DECL_ARTIFICIAL (label
)
1518 && DECL_ARTIFICIAL (label_for_bb
[bb
->index
].label
))
1520 label_for_bb
[bb
->index
].label
= label
;
1526 /* Now redirect all jumps/branches to the selected label.
1527 First do so for each block ending in a control statement. */
1528 FOR_EACH_BB_FN (bb
, cfun
)
1530 gimple
*stmt
= last_stmt (bb
);
1531 tree label
, new_label
;
1536 switch (gimple_code (stmt
))
1540 gcond
*cond_stmt
= as_a
<gcond
*> (stmt
);
1541 label
= gimple_cond_true_label (cond_stmt
);
1544 new_label
= main_block_label (label
);
1545 if (new_label
!= label
)
1546 gimple_cond_set_true_label (cond_stmt
, new_label
);
1549 label
= gimple_cond_false_label (cond_stmt
);
1552 new_label
= main_block_label (label
);
1553 if (new_label
!= label
)
1554 gimple_cond_set_false_label (cond_stmt
, new_label
);
1561 gswitch
*switch_stmt
= as_a
<gswitch
*> (stmt
);
1562 size_t i
, n
= gimple_switch_num_labels (switch_stmt
);
1564 /* Replace all destination labels. */
1565 for (i
= 0; i
< n
; ++i
)
1567 tree case_label
= gimple_switch_label (switch_stmt
, i
);
1568 label
= CASE_LABEL (case_label
);
1569 new_label
= main_block_label (label
);
1570 if (new_label
!= label
)
1571 CASE_LABEL (case_label
) = new_label
;
1578 gasm
*asm_stmt
= as_a
<gasm
*> (stmt
);
1579 int i
, n
= gimple_asm_nlabels (asm_stmt
);
1581 for (i
= 0; i
< n
; ++i
)
1583 tree cons
= gimple_asm_label_op (asm_stmt
, i
);
1584 tree label
= main_block_label (TREE_VALUE (cons
));
1585 TREE_VALUE (cons
) = label
;
1590 /* We have to handle gotos until they're removed, and we don't
1591 remove them until after we've created the CFG edges. */
1593 if (!computed_goto_p (stmt
))
1595 ggoto
*goto_stmt
= as_a
<ggoto
*> (stmt
);
1596 label
= gimple_goto_dest (goto_stmt
);
1597 new_label
= main_block_label (label
);
1598 if (new_label
!= label
)
1599 gimple_goto_set_dest (goto_stmt
, new_label
);
1603 case GIMPLE_TRANSACTION
:
1605 gtransaction
*txn
= as_a
<gtransaction
*> (stmt
);
1607 label
= gimple_transaction_label_norm (txn
);
1610 new_label
= main_block_label (label
);
1611 if (new_label
!= label
)
1612 gimple_transaction_set_label_norm (txn
, new_label
);
1615 label
= gimple_transaction_label_uninst (txn
);
1618 new_label
= main_block_label (label
);
1619 if (new_label
!= label
)
1620 gimple_transaction_set_label_uninst (txn
, new_label
);
1623 label
= gimple_transaction_label_over (txn
);
1626 new_label
= main_block_label (label
);
1627 if (new_label
!= label
)
1628 gimple_transaction_set_label_over (txn
, new_label
);
1638 /* Do the same for the exception region tree labels. */
1639 cleanup_dead_labels_eh ();
1641 /* Finally, purge dead labels. All user-defined labels and labels that
1642 can be the target of non-local gotos and labels which have their
1643 address taken are preserved. */
1644 FOR_EACH_BB_FN (bb
, cfun
)
1646 gimple_stmt_iterator i
;
1647 tree label_for_this_bb
= label_for_bb
[bb
->index
].label
;
1649 if (!label_for_this_bb
)
1652 /* If the main label of the block is unused, we may still remove it. */
1653 if (!label_for_bb
[bb
->index
].used
)
1654 label_for_this_bb
= NULL
;
1656 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); )
1659 glabel
*label_stmt
= dyn_cast
<glabel
*> (gsi_stmt (i
));
1664 label
= gimple_label_label (label_stmt
);
1666 if (label
== label_for_this_bb
1667 || !DECL_ARTIFICIAL (label
)
1668 || DECL_NONLOCAL (label
)
1669 || FORCED_LABEL (label
))
1672 gsi_remove (&i
, true);
1676 free (label_for_bb
);
1679 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1680 the ones jumping to the same label.
1681 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1684 group_case_labels_stmt (gswitch
*stmt
)
1686 int old_size
= gimple_switch_num_labels (stmt
);
1687 int i
, next_index
, new_size
;
1688 basic_block default_bb
= NULL
;
1690 default_bb
= label_to_block (CASE_LABEL (gimple_switch_default_label (stmt
)));
1692 /* Look for possible opportunities to merge cases. */
1694 while (i
< old_size
)
1696 tree base_case
, base_high
;
1697 basic_block base_bb
;
1699 base_case
= gimple_switch_label (stmt
, i
);
1701 gcc_assert (base_case
);
1702 base_bb
= label_to_block (CASE_LABEL (base_case
));
1704 /* Discard cases that have the same destination as the default case or
1705 whose destiniation blocks have already been removed as unreachable. */
1706 if (base_bb
== NULL
|| base_bb
== default_bb
)
1712 base_high
= CASE_HIGH (base_case
)
1713 ? CASE_HIGH (base_case
)
1714 : CASE_LOW (base_case
);
1717 /* Try to merge case labels. Break out when we reach the end
1718 of the label vector or when we cannot merge the next case
1719 label with the current one. */
1720 while (next_index
< old_size
)
1722 tree merge_case
= gimple_switch_label (stmt
, next_index
);
1723 basic_block merge_bb
= label_to_block (CASE_LABEL (merge_case
));
1724 wide_int bhp1
= wi::add (base_high
, 1);
1726 /* Merge the cases if they jump to the same place,
1727 and their ranges are consecutive. */
1728 if (merge_bb
== base_bb
1729 && wi::eq_p (CASE_LOW (merge_case
), bhp1
))
1731 base_high
= CASE_HIGH (merge_case
) ?
1732 CASE_HIGH (merge_case
) : CASE_LOW (merge_case
);
1733 CASE_HIGH (base_case
) = base_high
;
1740 /* Discard cases that have an unreachable destination block. */
1741 if (EDGE_COUNT (base_bb
->succs
) == 0
1742 && gimple_seq_unreachable_p (bb_seq (base_bb
)))
1744 edge base_edge
= find_edge (gimple_bb (stmt
), base_bb
);
1745 if (base_edge
!= NULL
)
1746 remove_edge_and_dominated_blocks (base_edge
);
1752 gimple_switch_set_label (stmt
, new_size
,
1753 gimple_switch_label (stmt
, i
));
1758 gcc_assert (new_size
<= old_size
);
1760 if (new_size
< old_size
)
1761 gimple_switch_set_num_labels (stmt
, new_size
);
1763 return new_size
< old_size
;
1766 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1767 and scan the sorted vector of cases. Combine the ones jumping to the
1771 group_case_labels (void)
1774 bool changed
= false;
1776 FOR_EACH_BB_FN (bb
, cfun
)
1778 gimple
*stmt
= last_stmt (bb
);
1779 if (stmt
&& gimple_code (stmt
) == GIMPLE_SWITCH
)
1780 changed
|= group_case_labels_stmt (as_a
<gswitch
*> (stmt
));
1786 /* Checks whether we can merge block B into block A. */
1789 gimple_can_merge_blocks_p (basic_block a
, basic_block b
)
1793 if (!single_succ_p (a
))
1796 if (single_succ_edge (a
)->flags
& EDGE_COMPLEX
)
1799 if (single_succ (a
) != b
)
1802 if (!single_pred_p (b
))
1805 if (a
== ENTRY_BLOCK_PTR_FOR_FN (cfun
)
1806 || b
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
1809 /* If A ends by a statement causing exceptions or something similar, we
1810 cannot merge the blocks. */
1811 stmt
= last_stmt (a
);
1812 if (stmt
&& stmt_ends_bb_p (stmt
))
1815 /* Do not allow a block with only a non-local label to be merged. */
1817 if (glabel
*label_stmt
= dyn_cast
<glabel
*> (stmt
))
1818 if (DECL_NONLOCAL (gimple_label_label (label_stmt
)))
1821 /* Examine the labels at the beginning of B. */
1822 for (gimple_stmt_iterator gsi
= gsi_start_bb (b
); !gsi_end_p (gsi
);
1826 glabel
*label_stmt
= dyn_cast
<glabel
*> (gsi_stmt (gsi
));
1829 lab
= gimple_label_label (label_stmt
);
1831 /* Do not remove user forced labels or for -O0 any user labels. */
1832 if (!DECL_ARTIFICIAL (lab
) && (!optimize
|| FORCED_LABEL (lab
)))
1836 /* Protect simple loop latches. We only want to avoid merging
1837 the latch with the loop header or with a block in another
1838 loop in this case. */
1840 && b
->loop_father
->latch
== b
1841 && loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES
)
1842 && (b
->loop_father
->header
== a
1843 || b
->loop_father
!= a
->loop_father
))
1846 /* It must be possible to eliminate all phi nodes in B. If ssa form
1847 is not up-to-date and a name-mapping is registered, we cannot eliminate
1848 any phis. Symbols marked for renaming are never a problem though. */
1849 for (gphi_iterator gsi
= gsi_start_phis (b
); !gsi_end_p (gsi
);
1852 gphi
*phi
= gsi
.phi ();
1853 /* Technically only new names matter. */
1854 if (name_registered_for_update_p (PHI_RESULT (phi
)))
1858 /* When not optimizing, don't merge if we'd lose goto_locus. */
1860 && single_succ_edge (a
)->goto_locus
!= UNKNOWN_LOCATION
)
1862 location_t goto_locus
= single_succ_edge (a
)->goto_locus
;
1863 gimple_stmt_iterator prev
, next
;
1864 prev
= gsi_last_nondebug_bb (a
);
1865 next
= gsi_after_labels (b
);
1866 if (!gsi_end_p (next
) && is_gimple_debug (gsi_stmt (next
)))
1867 gsi_next_nondebug (&next
);
1868 if ((gsi_end_p (prev
)
1869 || gimple_location (gsi_stmt (prev
)) != goto_locus
)
1870 && (gsi_end_p (next
)
1871 || gimple_location (gsi_stmt (next
)) != goto_locus
))
1878 /* Replaces all uses of NAME by VAL. */
1881 replace_uses_by (tree name
, tree val
)
1883 imm_use_iterator imm_iter
;
1888 FOR_EACH_IMM_USE_STMT (stmt
, imm_iter
, name
)
1890 /* Mark the block if we change the last stmt in it. */
1891 if (cfgcleanup_altered_bbs
1892 && stmt_ends_bb_p (stmt
))
1893 bitmap_set_bit (cfgcleanup_altered_bbs
, gimple_bb (stmt
)->index
);
1895 FOR_EACH_IMM_USE_ON_STMT (use
, imm_iter
)
1897 replace_exp (use
, val
);
1899 if (gimple_code (stmt
) == GIMPLE_PHI
)
1901 e
= gimple_phi_arg_edge (as_a
<gphi
*> (stmt
),
1902 PHI_ARG_INDEX_FROM_USE (use
));
1903 if (e
->flags
& EDGE_ABNORMAL
1904 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val
))
1906 /* This can only occur for virtual operands, since
1907 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1908 would prevent replacement. */
1909 gcc_checking_assert (virtual_operand_p (name
));
1910 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val
) = 1;
1915 if (gimple_code (stmt
) != GIMPLE_PHI
)
1917 gimple_stmt_iterator gsi
= gsi_for_stmt (stmt
);
1918 gimple
*orig_stmt
= stmt
;
1921 /* FIXME. It shouldn't be required to keep TREE_CONSTANT
1922 on ADDR_EXPRs up-to-date on GIMPLE. Propagation will
1923 only change sth from non-invariant to invariant, and only
1924 when propagating constants. */
1925 if (is_gimple_min_invariant (val
))
1926 for (i
= 0; i
< gimple_num_ops (stmt
); i
++)
1928 tree op
= gimple_op (stmt
, i
);
1929 /* Operands may be empty here. For example, the labels
1930 of a GIMPLE_COND are nulled out following the creation
1931 of the corresponding CFG edges. */
1932 if (op
&& TREE_CODE (op
) == ADDR_EXPR
)
1933 recompute_tree_invariant_for_addr_expr (op
);
1936 if (fold_stmt (&gsi
))
1937 stmt
= gsi_stmt (gsi
);
1939 if (maybe_clean_or_replace_eh_stmt (orig_stmt
, stmt
))
1940 gimple_purge_dead_eh_edges (gimple_bb (stmt
));
1946 gcc_checking_assert (has_zero_uses (name
));
1948 /* Also update the trees stored in loop structures. */
1953 FOR_EACH_LOOP (loop
, 0)
1955 substitute_in_loop_info (loop
, name
, val
);
1960 /* Merge block B into block A. */
1963 gimple_merge_blocks (basic_block a
, basic_block b
)
1965 gimple_stmt_iterator last
, gsi
;
1969 fprintf (dump_file
, "Merging blocks %d and %d\n", a
->index
, b
->index
);
1971 /* Remove all single-valued PHI nodes from block B of the form
1972 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1973 gsi
= gsi_last_bb (a
);
1974 for (psi
= gsi_start_phis (b
); !gsi_end_p (psi
); )
1976 gimple
*phi
= gsi_stmt (psi
);
1977 tree def
= gimple_phi_result (phi
), use
= gimple_phi_arg_def (phi
, 0);
1979 bool may_replace_uses
= (virtual_operand_p (def
)
1980 || may_propagate_copy (def
, use
));
1982 /* In case we maintain loop closed ssa form, do not propagate arguments
1983 of loop exit phi nodes. */
1985 && loops_state_satisfies_p (LOOP_CLOSED_SSA
)
1986 && !virtual_operand_p (def
)
1987 && TREE_CODE (use
) == SSA_NAME
1988 && a
->loop_father
!= b
->loop_father
)
1989 may_replace_uses
= false;
1991 if (!may_replace_uses
)
1993 gcc_assert (!virtual_operand_p (def
));
1995 /* Note that just emitting the copies is fine -- there is no problem
1996 with ordering of phi nodes. This is because A is the single
1997 predecessor of B, therefore results of the phi nodes cannot
1998 appear as arguments of the phi nodes. */
1999 copy
= gimple_build_assign (def
, use
);
2000 gsi_insert_after (&gsi
, copy
, GSI_NEW_STMT
);
2001 remove_phi_node (&psi
, false);
2005 /* If we deal with a PHI for virtual operands, we can simply
2006 propagate these without fussing with folding or updating
2008 if (virtual_operand_p (def
))
2010 imm_use_iterator iter
;
2011 use_operand_p use_p
;
2014 FOR_EACH_IMM_USE_STMT (stmt
, iter
, def
)
2015 FOR_EACH_IMM_USE_ON_STMT (use_p
, iter
)
2016 SET_USE (use_p
, use
);
2018 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def
))
2019 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use
) = 1;
2022 replace_uses_by (def
, use
);
2024 remove_phi_node (&psi
, true);
2028 /* Ensure that B follows A. */
2029 move_block_after (b
, a
);
2031 gcc_assert (single_succ_edge (a
)->flags
& EDGE_FALLTHRU
);
2032 gcc_assert (!last_stmt (a
) || !stmt_ends_bb_p (last_stmt (a
)));
2034 /* Remove labels from B and set gimple_bb to A for other statements. */
2035 for (gsi
= gsi_start_bb (b
); !gsi_end_p (gsi
);)
2037 gimple
*stmt
= gsi_stmt (gsi
);
2038 if (glabel
*label_stmt
= dyn_cast
<glabel
*> (stmt
))
2040 tree label
= gimple_label_label (label_stmt
);
2043 gsi_remove (&gsi
, false);
2045 /* Now that we can thread computed gotos, we might have
2046 a situation where we have a forced label in block B
2047 However, the label at the start of block B might still be
2048 used in other ways (think about the runtime checking for
2049 Fortran assigned gotos). So we can not just delete the
2050 label. Instead we move the label to the start of block A. */
2051 if (FORCED_LABEL (label
))
2053 gimple_stmt_iterator dest_gsi
= gsi_start_bb (a
);
2054 gsi_insert_before (&dest_gsi
, stmt
, GSI_NEW_STMT
);
2056 /* Other user labels keep around in a form of a debug stmt. */
2057 else if (!DECL_ARTIFICIAL (label
) && MAY_HAVE_DEBUG_STMTS
)
2059 gimple
*dbg
= gimple_build_debug_bind (label
,
2062 gimple_debug_bind_reset_value (dbg
);
2063 gsi_insert_before (&gsi
, dbg
, GSI_SAME_STMT
);
2066 lp_nr
= EH_LANDING_PAD_NR (label
);
2069 eh_landing_pad lp
= get_eh_landing_pad_from_number (lp_nr
);
2070 lp
->post_landing_pad
= NULL
;
2075 gimple_set_bb (stmt
, a
);
2080 /* When merging two BBs, if their counts are different, the larger count
2081 is selected as the new bb count. This is to handle inconsistent
2083 if (a
->loop_father
== b
->loop_father
)
2085 a
->count
= a
->count
.merge (b
->count
);
2086 a
->frequency
= MAX (a
->frequency
, b
->frequency
);
2089 /* Merge the sequences. */
2090 last
= gsi_last_bb (a
);
2091 gsi_insert_seq_after (&last
, bb_seq (b
), GSI_NEW_STMT
);
2092 set_bb_seq (b
, NULL
);
2094 if (cfgcleanup_altered_bbs
)
2095 bitmap_set_bit (cfgcleanup_altered_bbs
, a
->index
);
2099 /* Return the one of two successors of BB that is not reachable by a
2100 complex edge, if there is one. Else, return BB. We use
2101 this in optimizations that use post-dominators for their heuristics,
2102 to catch the cases in C++ where function calls are involved. */
2105 single_noncomplex_succ (basic_block bb
)
2108 if (EDGE_COUNT (bb
->succs
) != 2)
2111 e0
= EDGE_SUCC (bb
, 0);
2112 e1
= EDGE_SUCC (bb
, 1);
2113 if (e0
->flags
& EDGE_COMPLEX
)
2115 if (e1
->flags
& EDGE_COMPLEX
)
2121 /* T is CALL_EXPR. Set current_function_calls_* flags. */
2124 notice_special_calls (gcall
*call
)
2126 int flags
= gimple_call_flags (call
);
2128 if (flags
& ECF_MAY_BE_ALLOCA
)
2129 cfun
->calls_alloca
= true;
2130 if (flags
& ECF_RETURNS_TWICE
)
2131 cfun
->calls_setjmp
= true;
2135 /* Clear flags set by notice_special_calls. Used by dead code removal
2136 to update the flags. */
2139 clear_special_calls (void)
2141 cfun
->calls_alloca
= false;
2142 cfun
->calls_setjmp
= false;
2145 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
2148 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb
)
2150 /* Since this block is no longer reachable, we can just delete all
2151 of its PHI nodes. */
2152 remove_phi_nodes (bb
);
2154 /* Remove edges to BB's successors. */
2155 while (EDGE_COUNT (bb
->succs
) > 0)
2156 remove_edge (EDGE_SUCC (bb
, 0));
2160 /* Remove statements of basic block BB. */
2163 remove_bb (basic_block bb
)
2165 gimple_stmt_iterator i
;
2169 fprintf (dump_file
, "Removing basic block %d\n", bb
->index
);
2170 if (dump_flags
& TDF_DETAILS
)
2172 dump_bb (dump_file
, bb
, 0, TDF_BLOCKS
);
2173 fprintf (dump_file
, "\n");
2179 struct loop
*loop
= bb
->loop_father
;
2181 /* If a loop gets removed, clean up the information associated
2183 if (loop
->latch
== bb
2184 || loop
->header
== bb
)
2185 free_numbers_of_iterations_estimates (loop
);
2188 /* Remove all the instructions in the block. */
2189 if (bb_seq (bb
) != NULL
)
2191 /* Walk backwards so as to get a chance to substitute all
2192 released DEFs into debug stmts. See
2193 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
2195 for (i
= gsi_last_bb (bb
); !gsi_end_p (i
);)
2197 gimple
*stmt
= gsi_stmt (i
);
2198 glabel
*label_stmt
= dyn_cast
<glabel
*> (stmt
);
2200 && (FORCED_LABEL (gimple_label_label (label_stmt
))
2201 || DECL_NONLOCAL (gimple_label_label (label_stmt
))))
2204 gimple_stmt_iterator new_gsi
;
2206 /* A non-reachable non-local label may still be referenced.
2207 But it no longer needs to carry the extra semantics of
2209 if (DECL_NONLOCAL (gimple_label_label (label_stmt
)))
2211 DECL_NONLOCAL (gimple_label_label (label_stmt
)) = 0;
2212 FORCED_LABEL (gimple_label_label (label_stmt
)) = 1;
2215 new_bb
= bb
->prev_bb
;
2216 new_gsi
= gsi_start_bb (new_bb
);
2217 gsi_remove (&i
, false);
2218 gsi_insert_before (&new_gsi
, stmt
, GSI_NEW_STMT
);
2222 /* Release SSA definitions. */
2223 release_defs (stmt
);
2224 gsi_remove (&i
, true);
2228 i
= gsi_last_bb (bb
);
2234 remove_phi_nodes_and_edges_for_unreachable_block (bb
);
2235 bb
->il
.gimple
.seq
= NULL
;
2236 bb
->il
.gimple
.phi_nodes
= NULL
;
2240 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
2241 predicate VAL, return the edge that will be taken out of the block.
2242 If VAL does not match a unique edge, NULL is returned. */
2245 find_taken_edge (basic_block bb
, tree val
)
2249 stmt
= last_stmt (bb
);
2251 gcc_assert (is_ctrl_stmt (stmt
));
2253 if (gimple_code (stmt
) == GIMPLE_COND
)
2254 return find_taken_edge_cond_expr (bb
, val
);
2256 if (gimple_code (stmt
) == GIMPLE_SWITCH
)
2257 return find_taken_edge_switch_expr (as_a
<gswitch
*> (stmt
), bb
, val
);
2259 if (computed_goto_p (stmt
))
2261 /* Only optimize if the argument is a label, if the argument is
2262 not a label then we can not construct a proper CFG.
2264 It may be the case that we only need to allow the LABEL_REF to
2265 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
2266 appear inside a LABEL_EXPR just to be safe. */
2268 && (TREE_CODE (val
) == ADDR_EXPR
|| TREE_CODE (val
) == LABEL_EXPR
)
2269 && TREE_CODE (TREE_OPERAND (val
, 0)) == LABEL_DECL
)
2270 return find_taken_edge_computed_goto (bb
, TREE_OPERAND (val
, 0));
2277 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
2278 statement, determine which of the outgoing edges will be taken out of the
2279 block. Return NULL if either edge may be taken. */
2282 find_taken_edge_computed_goto (basic_block bb
, tree val
)
2287 dest
= label_to_block (val
);
2290 e
= find_edge (bb
, dest
);
2291 gcc_assert (e
!= NULL
);
2297 /* Given a constant value VAL and the entry block BB to a COND_EXPR
2298 statement, determine which of the two edges will be taken out of the
2299 block. Return NULL if either edge may be taken. */
2302 find_taken_edge_cond_expr (basic_block bb
, tree val
)
2304 edge true_edge
, false_edge
;
2307 || TREE_CODE (val
) != INTEGER_CST
)
2310 extract_true_false_edges_from_block (bb
, &true_edge
, &false_edge
);
2312 return (integer_zerop (val
) ? false_edge
: true_edge
);
2315 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
2316 statement, determine which edge will be taken out of the block. Return
2317 NULL if any edge may be taken. */
2320 find_taken_edge_switch_expr (gswitch
*switch_stmt
, basic_block bb
,
2323 basic_block dest_bb
;
2327 if (gimple_switch_num_labels (switch_stmt
) == 1)
2328 taken_case
= gimple_switch_default_label (switch_stmt
);
2329 else if (! val
|| TREE_CODE (val
) != INTEGER_CST
)
2332 taken_case
= find_case_label_for_value (switch_stmt
, val
);
2333 dest_bb
= label_to_block (CASE_LABEL (taken_case
));
2335 e
= find_edge (bb
, dest_bb
);
2341 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
2342 We can make optimal use here of the fact that the case labels are
2343 sorted: We can do a binary search for a case matching VAL. */
2346 find_case_label_for_value (gswitch
*switch_stmt
, tree val
)
2348 size_t low
, high
, n
= gimple_switch_num_labels (switch_stmt
);
2349 tree default_case
= gimple_switch_default_label (switch_stmt
);
2351 for (low
= 0, high
= n
; high
- low
> 1; )
2353 size_t i
= (high
+ low
) / 2;
2354 tree t
= gimple_switch_label (switch_stmt
, i
);
2357 /* Cache the result of comparing CASE_LOW and val. */
2358 cmp
= tree_int_cst_compare (CASE_LOW (t
), val
);
2365 if (CASE_HIGH (t
) == NULL
)
2367 /* A singe-valued case label. */
2373 /* A case range. We can only handle integer ranges. */
2374 if (cmp
<= 0 && tree_int_cst_compare (CASE_HIGH (t
), val
) >= 0)
2379 return default_case
;
2383 /* Dump a basic block on stderr. */
2386 gimple_debug_bb (basic_block bb
)
2388 dump_bb (stderr
, bb
, 0, TDF_VOPS
|TDF_MEMSYMS
|TDF_BLOCKS
);
2392 /* Dump basic block with index N on stderr. */
2395 gimple_debug_bb_n (int n
)
2397 gimple_debug_bb (BASIC_BLOCK_FOR_FN (cfun
, n
));
2398 return BASIC_BLOCK_FOR_FN (cfun
, n
);
2402 /* Dump the CFG on stderr.
2404 FLAGS are the same used by the tree dumping functions
2405 (see TDF_* in dumpfile.h). */
2408 gimple_debug_cfg (dump_flags_t flags
)
2410 gimple_dump_cfg (stderr
, flags
);
2414 /* Dump the program showing basic block boundaries on the given FILE.
2416 FLAGS are the same used by the tree dumping functions (see TDF_* in
2420 gimple_dump_cfg (FILE *file
, dump_flags_t flags
)
2422 if (flags
& TDF_DETAILS
)
2424 dump_function_header (file
, current_function_decl
, flags
);
2425 fprintf (file
, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2426 n_basic_blocks_for_fn (cfun
), n_edges_for_fn (cfun
),
2427 last_basic_block_for_fn (cfun
));
2429 brief_dump_cfg (file
, flags
);
2430 fprintf (file
, "\n");
2433 if (flags
& TDF_STATS
)
2434 dump_cfg_stats (file
);
2436 dump_function_to_file (current_function_decl
, file
, flags
| TDF_BLOCKS
);
2440 /* Dump CFG statistics on FILE. */
2443 dump_cfg_stats (FILE *file
)
2445 static long max_num_merged_labels
= 0;
2446 unsigned long size
, total
= 0;
2449 const char * const fmt_str
= "%-30s%-13s%12s\n";
2450 const char * const fmt_str_1
= "%-30s%13d%11lu%c\n";
2451 const char * const fmt_str_2
= "%-30s%13ld%11lu%c\n";
2452 const char * const fmt_str_3
= "%-43s%11lu%c\n";
2453 const char *funcname
= current_function_name ();
2455 fprintf (file
, "\nCFG Statistics for %s\n\n", funcname
);
2457 fprintf (file
, "---------------------------------------------------------\n");
2458 fprintf (file
, fmt_str
, "", " Number of ", "Memory");
2459 fprintf (file
, fmt_str
, "", " instances ", "used ");
2460 fprintf (file
, "---------------------------------------------------------\n");
2462 size
= n_basic_blocks_for_fn (cfun
) * sizeof (struct basic_block_def
);
2464 fprintf (file
, fmt_str_1
, "Basic blocks", n_basic_blocks_for_fn (cfun
),
2465 SCALE (size
), LABEL (size
));
2468 FOR_EACH_BB_FN (bb
, cfun
)
2469 num_edges
+= EDGE_COUNT (bb
->succs
);
2470 size
= num_edges
* sizeof (struct edge_def
);
2472 fprintf (file
, fmt_str_2
, "Edges", num_edges
, SCALE (size
), LABEL (size
));
2474 fprintf (file
, "---------------------------------------------------------\n");
2475 fprintf (file
, fmt_str_3
, "Total memory used by CFG data", SCALE (total
),
2477 fprintf (file
, "---------------------------------------------------------\n");
2478 fprintf (file
, "\n");
2480 if (cfg_stats
.num_merged_labels
> max_num_merged_labels
)
2481 max_num_merged_labels
= cfg_stats
.num_merged_labels
;
2483 fprintf (file
, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2484 cfg_stats
.num_merged_labels
, max_num_merged_labels
);
2486 fprintf (file
, "\n");
2490 /* Dump CFG statistics on stderr. Keep extern so that it's always
2491 linked in the final executable. */
2494 debug_cfg_stats (void)
2496 dump_cfg_stats (stderr
);
2499 /*---------------------------------------------------------------------------
2500 Miscellaneous helpers
2501 ---------------------------------------------------------------------------*/
2503 /* Return true if T, a GIMPLE_CALL, can make an abnormal transfer of control
2504 flow. Transfers of control flow associated with EH are excluded. */
2507 call_can_make_abnormal_goto (gimple
*t
)
2509 /* If the function has no non-local labels, then a call cannot make an
2510 abnormal transfer of control. */
2511 if (!cfun
->has_nonlocal_label
2512 && !cfun
->calls_setjmp
)
2515 /* Likewise if the call has no side effects. */
2516 if (!gimple_has_side_effects (t
))
2519 /* Likewise if the called function is leaf. */
2520 if (gimple_call_flags (t
) & ECF_LEAF
)
2527 /* Return true if T can make an abnormal transfer of control flow.
2528 Transfers of control flow associated with EH are excluded. */
2531 stmt_can_make_abnormal_goto (gimple
*t
)
2533 if (computed_goto_p (t
))
2535 if (is_gimple_call (t
))
2536 return call_can_make_abnormal_goto (t
);
2541 /* Return true if T represents a stmt that always transfers control. */
2544 is_ctrl_stmt (gimple
*t
)
2546 switch (gimple_code (t
))
2560 /* Return true if T is a statement that may alter the flow of control
2561 (e.g., a call to a non-returning function). */
2564 is_ctrl_altering_stmt (gimple
*t
)
2568 switch (gimple_code (t
))
2571 /* Per stmt call flag indicates whether the call could alter
2573 if (gimple_call_ctrl_altering_p (t
))
2577 case GIMPLE_EH_DISPATCH
:
2578 /* EH_DISPATCH branches to the individual catch handlers at
2579 this level of a try or allowed-exceptions region. It can
2580 fallthru to the next statement as well. */
2584 if (gimple_asm_nlabels (as_a
<gasm
*> (t
)) > 0)
2589 /* OpenMP directives alter control flow. */
2592 case GIMPLE_TRANSACTION
:
2593 /* A transaction start alters control flow. */
2600 /* If a statement can throw, it alters control flow. */
2601 return stmt_can_throw_internal (t
);
2605 /* Return true if T is a simple local goto. */
2608 simple_goto_p (gimple
*t
)
2610 return (gimple_code (t
) == GIMPLE_GOTO
2611 && TREE_CODE (gimple_goto_dest (t
)) == LABEL_DECL
);
2615 /* Return true if STMT should start a new basic block. PREV_STMT is
2616 the statement preceding STMT. It is used when STMT is a label or a
2617 case label. Labels should only start a new basic block if their
2618 previous statement wasn't a label. Otherwise, sequence of labels
2619 would generate unnecessary basic blocks that only contain a single
2623 stmt_starts_bb_p (gimple
*stmt
, gimple
*prev_stmt
)
2628 /* Labels start a new basic block only if the preceding statement
2629 wasn't a label of the same type. This prevents the creation of
2630 consecutive blocks that have nothing but a single label. */
2631 if (glabel
*label_stmt
= dyn_cast
<glabel
*> (stmt
))
2633 /* Nonlocal and computed GOTO targets always start a new block. */
2634 if (DECL_NONLOCAL (gimple_label_label (label_stmt
))
2635 || FORCED_LABEL (gimple_label_label (label_stmt
)))
2638 if (prev_stmt
&& gimple_code (prev_stmt
) == GIMPLE_LABEL
)
2640 if (DECL_NONLOCAL (gimple_label_label (
2641 as_a
<glabel
*> (prev_stmt
))))
2644 cfg_stats
.num_merged_labels
++;
2650 else if (gimple_code (stmt
) == GIMPLE_CALL
)
2652 if (gimple_call_flags (stmt
) & ECF_RETURNS_TWICE
)
2653 /* setjmp acts similar to a nonlocal GOTO target and thus should
2654 start a new block. */
2656 if (gimple_call_internal_p (stmt
, IFN_PHI
)
2658 && gimple_code (prev_stmt
) != GIMPLE_LABEL
2659 && (gimple_code (prev_stmt
) != GIMPLE_CALL
2660 || ! gimple_call_internal_p (prev_stmt
, IFN_PHI
)))
2661 /* PHI nodes start a new block unless preceeded by a label
2670 /* Return true if T should end a basic block. */
2673 stmt_ends_bb_p (gimple
*t
)
2675 return is_ctrl_stmt (t
) || is_ctrl_altering_stmt (t
);
2678 /* Remove block annotations and other data structures. */
2681 delete_tree_cfg_annotations (struct function
*fn
)
2683 vec_free (label_to_block_map_for_fn (fn
));
2686 /* Return the virtual phi in BB. */
2689 get_virtual_phi (basic_block bb
)
2691 for (gphi_iterator gsi
= gsi_start_phis (bb
);
2695 gphi
*phi
= gsi
.phi ();
2697 if (virtual_operand_p (PHI_RESULT (phi
)))
2704 /* Return the first statement in basic block BB. */
2707 first_stmt (basic_block bb
)
2709 gimple_stmt_iterator i
= gsi_start_bb (bb
);
2710 gimple
*stmt
= NULL
;
2712 while (!gsi_end_p (i
) && is_gimple_debug ((stmt
= gsi_stmt (i
))))
2720 /* Return the first non-label statement in basic block BB. */
2723 first_non_label_stmt (basic_block bb
)
2725 gimple_stmt_iterator i
= gsi_start_bb (bb
);
2726 while (!gsi_end_p (i
) && gimple_code (gsi_stmt (i
)) == GIMPLE_LABEL
)
2728 return !gsi_end_p (i
) ? gsi_stmt (i
) : NULL
;
2731 /* Return the last statement in basic block BB. */
2734 last_stmt (basic_block bb
)
2736 gimple_stmt_iterator i
= gsi_last_bb (bb
);
2737 gimple
*stmt
= NULL
;
2739 while (!gsi_end_p (i
) && is_gimple_debug ((stmt
= gsi_stmt (i
))))
2747 /* Return the last statement of an otherwise empty block. Return NULL
2748 if the block is totally empty, or if it contains more than one
2752 last_and_only_stmt (basic_block bb
)
2754 gimple_stmt_iterator i
= gsi_last_nondebug_bb (bb
);
2755 gimple
*last
, *prev
;
2760 last
= gsi_stmt (i
);
2761 gsi_prev_nondebug (&i
);
2765 /* Empty statements should no longer appear in the instruction stream.
2766 Everything that might have appeared before should be deleted by
2767 remove_useless_stmts, and the optimizers should just gsi_remove
2768 instead of smashing with build_empty_stmt.
2770 Thus the only thing that should appear here in a block containing
2771 one executable statement is a label. */
2772 prev
= gsi_stmt (i
);
2773 if (gimple_code (prev
) == GIMPLE_LABEL
)
2779 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2782 reinstall_phi_args (edge new_edge
, edge old_edge
)
2788 vec
<edge_var_map
> *v
= redirect_edge_var_map_vector (old_edge
);
2792 for (i
= 0, phis
= gsi_start_phis (new_edge
->dest
);
2793 v
->iterate (i
, &vm
) && !gsi_end_p (phis
);
2794 i
++, gsi_next (&phis
))
2796 gphi
*phi
= phis
.phi ();
2797 tree result
= redirect_edge_var_map_result (vm
);
2798 tree arg
= redirect_edge_var_map_def (vm
);
2800 gcc_assert (result
== gimple_phi_result (phi
));
2802 add_phi_arg (phi
, arg
, new_edge
, redirect_edge_var_map_location (vm
));
2805 redirect_edge_var_map_clear (old_edge
);
2808 /* Returns the basic block after which the new basic block created
2809 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2810 near its "logical" location. This is of most help to humans looking
2811 at debugging dumps. */
2814 split_edge_bb_loc (edge edge_in
)
2816 basic_block dest
= edge_in
->dest
;
2817 basic_block dest_prev
= dest
->prev_bb
;
2821 edge e
= find_edge (dest_prev
, dest
);
2822 if (e
&& !(e
->flags
& EDGE_COMPLEX
))
2823 return edge_in
->src
;
2828 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2829 Abort on abnormal edges. */
2832 gimple_split_edge (edge edge_in
)
2834 basic_block new_bb
, after_bb
, dest
;
2837 /* Abnormal edges cannot be split. */
2838 gcc_assert (!(edge_in
->flags
& EDGE_ABNORMAL
));
2840 dest
= edge_in
->dest
;
2842 after_bb
= split_edge_bb_loc (edge_in
);
2844 new_bb
= create_empty_bb (after_bb
);
2845 new_bb
->frequency
= EDGE_FREQUENCY (edge_in
);
2846 new_bb
->count
= edge_in
->count
;
2848 e
= redirect_edge_and_branch (edge_in
, new_bb
);
2849 gcc_assert (e
== edge_in
);
2851 new_edge
= make_single_succ_edge (new_bb
, dest
, EDGE_FALLTHRU
);
2852 reinstall_phi_args (new_edge
, e
);
2858 /* Verify properties of the address expression T with base object BASE. */
2861 verify_address (tree t
, tree base
)
2864 bool old_side_effects
;
2866 bool new_side_effects
;
2868 old_constant
= TREE_CONSTANT (t
);
2869 old_side_effects
= TREE_SIDE_EFFECTS (t
);
2871 recompute_tree_invariant_for_addr_expr (t
);
2872 new_side_effects
= TREE_SIDE_EFFECTS (t
);
2873 new_constant
= TREE_CONSTANT (t
);
2875 if (old_constant
!= new_constant
)
2877 error ("constant not recomputed when ADDR_EXPR changed");
2880 if (old_side_effects
!= new_side_effects
)
2882 error ("side effects not recomputed when ADDR_EXPR changed");
2887 || TREE_CODE (base
) == PARM_DECL
2888 || TREE_CODE (base
) == RESULT_DECL
))
2891 if (DECL_GIMPLE_REG_P (base
))
2893 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2900 /* Callback for walk_tree, check that all elements with address taken are
2901 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2902 inside a PHI node. */
2905 verify_expr (tree
*tp
, int *walk_subtrees
, void *data ATTRIBUTE_UNUSED
)
2912 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2913 #define CHECK_OP(N, MSG) \
2914 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2915 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2917 switch (TREE_CODE (t
))
2920 if (SSA_NAME_IN_FREE_LIST (t
))
2922 error ("SSA name in freelist but still referenced");
2931 tree context
= decl_function_context (t
);
2932 if (context
!= cfun
->decl
2933 && !SCOPE_FILE_SCOPE_P (context
)
2935 && !DECL_EXTERNAL (t
))
2937 error ("Local declaration from a different function");
2944 error ("INDIRECT_REF in gimple IL");
2948 x
= TREE_OPERAND (t
, 0);
2949 if (!POINTER_TYPE_P (TREE_TYPE (x
))
2950 || !is_gimple_mem_ref_addr (x
))
2952 error ("invalid first operand of MEM_REF");
2955 if (TREE_CODE (TREE_OPERAND (t
, 1)) != INTEGER_CST
2956 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t
, 1))))
2958 error ("invalid offset operand of MEM_REF");
2959 return TREE_OPERAND (t
, 1);
2961 if (TREE_CODE (x
) == ADDR_EXPR
)
2963 tree va
= verify_address (x
, TREE_OPERAND (x
, 0));
2966 x
= TREE_OPERAND (x
, 0);
2968 walk_tree (&x
, verify_expr
, data
, NULL
);
2973 x
= fold (ASSERT_EXPR_COND (t
));
2974 if (x
== boolean_false_node
)
2976 error ("ASSERT_EXPR with an always-false condition");
2982 error ("MODIFY_EXPR not expected while having tuples");
2989 gcc_assert (is_gimple_address (t
));
2991 /* Skip any references (they will be checked when we recurse down the
2992 tree) and ensure that any variable used as a prefix is marked
2994 for (x
= TREE_OPERAND (t
, 0);
2995 handled_component_p (x
);
2996 x
= TREE_OPERAND (x
, 0))
2999 if ((tem
= verify_address (t
, x
)))
3003 || TREE_CODE (x
) == PARM_DECL
3004 || TREE_CODE (x
) == RESULT_DECL
))
3007 if (!TREE_ADDRESSABLE (x
))
3009 error ("address taken, but ADDRESSABLE bit not set");
3017 x
= COND_EXPR_COND (t
);
3018 if (!INTEGRAL_TYPE_P (TREE_TYPE (x
)))
3020 error ("non-integral used in condition");
3023 if (!is_gimple_condexpr (x
))
3025 error ("invalid conditional operand");
3030 case NON_LVALUE_EXPR
:
3031 case TRUTH_NOT_EXPR
:
3035 case FIX_TRUNC_EXPR
:
3040 CHECK_OP (0, "invalid operand to unary operator");
3046 if (!is_gimple_reg_type (TREE_TYPE (t
)))
3048 error ("non-scalar BIT_FIELD_REF, IMAGPART_EXPR or REALPART_EXPR");
3052 if (TREE_CODE (t
) == BIT_FIELD_REF
)
3054 tree t0
= TREE_OPERAND (t
, 0);
3055 tree t1
= TREE_OPERAND (t
, 1);
3056 tree t2
= TREE_OPERAND (t
, 2);
3057 if (!tree_fits_uhwi_p (t1
)
3058 || !tree_fits_uhwi_p (t2
)
3059 || !types_compatible_p (bitsizetype
, TREE_TYPE (t1
))
3060 || !types_compatible_p (bitsizetype
, TREE_TYPE (t2
)))
3062 error ("invalid position or size operand to BIT_FIELD_REF");
3065 if (INTEGRAL_TYPE_P (TREE_TYPE (t
))
3066 && (TYPE_PRECISION (TREE_TYPE (t
))
3067 != tree_to_uhwi (t1
)))
3069 error ("integral result type precision does not match "
3070 "field size of BIT_FIELD_REF");
3073 else if (!INTEGRAL_TYPE_P (TREE_TYPE (t
))
3074 && TYPE_MODE (TREE_TYPE (t
)) != BLKmode
3075 && (GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t
)))
3076 != tree_to_uhwi (t1
)))
3078 error ("mode size of non-integral result does not "
3079 "match field size of BIT_FIELD_REF");
3082 if (!AGGREGATE_TYPE_P (TREE_TYPE (t0
))
3083 && (tree_to_uhwi (t1
) + tree_to_uhwi (t2
)
3084 > tree_to_uhwi (TYPE_SIZE (TREE_TYPE (t0
)))))
3086 error ("position plus size exceeds size of referenced object in "
3091 t
= TREE_OPERAND (t
, 0);
3096 case ARRAY_RANGE_REF
:
3097 case VIEW_CONVERT_EXPR
:
3098 /* We have a nest of references. Verify that each of the operands
3099 that determine where to reference is either a constant or a variable,
3100 verify that the base is valid, and then show we've already checked
3102 while (handled_component_p (t
))
3104 if (TREE_CODE (t
) == COMPONENT_REF
&& TREE_OPERAND (t
, 2))
3105 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
3106 else if (TREE_CODE (t
) == ARRAY_REF
3107 || TREE_CODE (t
) == ARRAY_RANGE_REF
)
3109 CHECK_OP (1, "invalid array index");
3110 if (TREE_OPERAND (t
, 2))
3111 CHECK_OP (2, "invalid array lower bound");
3112 if (TREE_OPERAND (t
, 3))
3113 CHECK_OP (3, "invalid array stride");
3115 else if (TREE_CODE (t
) == BIT_FIELD_REF
3116 || TREE_CODE (t
) == REALPART_EXPR
3117 || TREE_CODE (t
) == IMAGPART_EXPR
)
3119 error ("non-top-level BIT_FIELD_REF, IMAGPART_EXPR or "
3124 t
= TREE_OPERAND (t
, 0);
3127 if (!is_gimple_min_invariant (t
) && !is_gimple_lvalue (t
))
3129 error ("invalid reference prefix");
3132 walk_tree (&t
, verify_expr
, data
, NULL
);
3137 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
3138 POINTER_PLUS_EXPR. */
3139 if (POINTER_TYPE_P (TREE_TYPE (t
)))
3141 error ("invalid operand to plus/minus, type is a pointer");
3144 CHECK_OP (0, "invalid operand to binary operator");
3145 CHECK_OP (1, "invalid operand to binary operator");
3148 case POINTER_PLUS_EXPR
:
3149 /* Check to make sure the first operand is a pointer or reference type. */
3150 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t
, 0))))
3152 error ("invalid operand to pointer plus, first operand is not a pointer");
3155 /* Check to make sure the second operand is a ptrofftype. */
3156 if (!ptrofftype_p (TREE_TYPE (TREE_OPERAND (t
, 1))))
3158 error ("invalid operand to pointer plus, second operand is not an "
3159 "integer type of appropriate width");
3169 case UNORDERED_EXPR
:
3178 case TRUNC_DIV_EXPR
:
3180 case FLOOR_DIV_EXPR
:
3181 case ROUND_DIV_EXPR
:
3182 case TRUNC_MOD_EXPR
:
3184 case FLOOR_MOD_EXPR
:
3185 case ROUND_MOD_EXPR
:
3187 case EXACT_DIV_EXPR
:
3197 CHECK_OP (0, "invalid operand to binary operator");
3198 CHECK_OP (1, "invalid operand to binary operator");
3202 if (TREE_CONSTANT (t
) && TREE_CODE (TREE_TYPE (t
)) == VECTOR_TYPE
)
3206 case CASE_LABEL_EXPR
:
3209 error ("invalid CASE_CHAIN");
3223 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
3224 Returns true if there is an error, otherwise false. */
3227 verify_types_in_gimple_min_lval (tree expr
)
3231 if (is_gimple_id (expr
))
3234 if (TREE_CODE (expr
) != TARGET_MEM_REF
3235 && TREE_CODE (expr
) != MEM_REF
)
3237 error ("invalid expression for min lvalue");
3241 /* TARGET_MEM_REFs are strange beasts. */
3242 if (TREE_CODE (expr
) == TARGET_MEM_REF
)
3245 op
= TREE_OPERAND (expr
, 0);
3246 if (!is_gimple_val (op
))
3248 error ("invalid operand in indirect reference");
3249 debug_generic_stmt (op
);
3252 /* Memory references now generally can involve a value conversion. */
3257 /* Verify if EXPR is a valid GIMPLE reference expression. If
3258 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
3259 if there is an error, otherwise false. */
3262 verify_types_in_gimple_reference (tree expr
, bool require_lvalue
)
3264 while (handled_component_p (expr
))
3266 tree op
= TREE_OPERAND (expr
, 0);
3268 if (TREE_CODE (expr
) == ARRAY_REF
3269 || TREE_CODE (expr
) == ARRAY_RANGE_REF
)
3271 if (!is_gimple_val (TREE_OPERAND (expr
, 1))
3272 || (TREE_OPERAND (expr
, 2)
3273 && !is_gimple_val (TREE_OPERAND (expr
, 2)))
3274 || (TREE_OPERAND (expr
, 3)
3275 && !is_gimple_val (TREE_OPERAND (expr
, 3))))
3277 error ("invalid operands to array reference");
3278 debug_generic_stmt (expr
);
3283 /* Verify if the reference array element types are compatible. */
3284 if (TREE_CODE (expr
) == ARRAY_REF
3285 && !useless_type_conversion_p (TREE_TYPE (expr
),
3286 TREE_TYPE (TREE_TYPE (op
))))
3288 error ("type mismatch in array reference");
3289 debug_generic_stmt (TREE_TYPE (expr
));
3290 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op
)));
3293 if (TREE_CODE (expr
) == ARRAY_RANGE_REF
3294 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr
)),
3295 TREE_TYPE (TREE_TYPE (op
))))
3297 error ("type mismatch in array range reference");
3298 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr
)));
3299 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op
)));
3303 if ((TREE_CODE (expr
) == REALPART_EXPR
3304 || TREE_CODE (expr
) == IMAGPART_EXPR
)
3305 && !useless_type_conversion_p (TREE_TYPE (expr
),
3306 TREE_TYPE (TREE_TYPE (op
))))
3308 error ("type mismatch in real/imagpart reference");
3309 debug_generic_stmt (TREE_TYPE (expr
));
3310 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op
)));
3314 if (TREE_CODE (expr
) == COMPONENT_REF
3315 && !useless_type_conversion_p (TREE_TYPE (expr
),
3316 TREE_TYPE (TREE_OPERAND (expr
, 1))))
3318 error ("type mismatch in component reference");
3319 debug_generic_stmt (TREE_TYPE (expr
));
3320 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr
, 1)));
3324 if (TREE_CODE (expr
) == VIEW_CONVERT_EXPR
)
3326 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
3327 that their operand is not an SSA name or an invariant when
3328 requiring an lvalue (this usually means there is a SRA or IPA-SRA
3329 bug). Otherwise there is nothing to verify, gross mismatches at
3330 most invoke undefined behavior. */
3332 && (TREE_CODE (op
) == SSA_NAME
3333 || is_gimple_min_invariant (op
)))
3335 error ("conversion of an SSA_NAME on the left hand side");
3336 debug_generic_stmt (expr
);
3339 else if (TREE_CODE (op
) == SSA_NAME
3340 && TYPE_SIZE (TREE_TYPE (expr
)) != TYPE_SIZE (TREE_TYPE (op
)))
3342 error ("conversion of register to a different size");
3343 debug_generic_stmt (expr
);
3346 else if (!handled_component_p (op
))
3353 if (TREE_CODE (expr
) == MEM_REF
)
3355 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr
, 0)))
3357 error ("invalid address operand in MEM_REF");
3358 debug_generic_stmt (expr
);
3361 if (TREE_CODE (TREE_OPERAND (expr
, 1)) != INTEGER_CST
3362 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr
, 1))))
3364 error ("invalid offset operand in MEM_REF");
3365 debug_generic_stmt (expr
);
3369 else if (TREE_CODE (expr
) == TARGET_MEM_REF
)
3371 if (!TMR_BASE (expr
)
3372 || !is_gimple_mem_ref_addr (TMR_BASE (expr
)))
3374 error ("invalid address operand in TARGET_MEM_REF");
3377 if (!TMR_OFFSET (expr
)
3378 || TREE_CODE (TMR_OFFSET (expr
)) != INTEGER_CST
3379 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr
))))
3381 error ("invalid offset operand in TARGET_MEM_REF");
3382 debug_generic_stmt (expr
);
3387 return ((require_lvalue
|| !is_gimple_min_invariant (expr
))
3388 && verify_types_in_gimple_min_lval (expr
));
3391 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3392 list of pointer-to types that is trivially convertible to DEST. */
3395 one_pointer_to_useless_type_conversion_p (tree dest
, tree src_obj
)
3399 if (!TYPE_POINTER_TO (src_obj
))
3402 for (src
= TYPE_POINTER_TO (src_obj
); src
; src
= TYPE_NEXT_PTR_TO (src
))
3403 if (useless_type_conversion_p (dest
, src
))
3409 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3410 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3413 valid_fixed_convert_types_p (tree type1
, tree type2
)
3415 return (FIXED_POINT_TYPE_P (type1
)
3416 && (INTEGRAL_TYPE_P (type2
)
3417 || SCALAR_FLOAT_TYPE_P (type2
)
3418 || FIXED_POINT_TYPE_P (type2
)));
3421 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3422 is a problem, otherwise false. */
3425 verify_gimple_call (gcall
*stmt
)
3427 tree fn
= gimple_call_fn (stmt
);
3428 tree fntype
, fndecl
;
3431 if (gimple_call_internal_p (stmt
))
3435 error ("gimple call has two targets");
3436 debug_generic_stmt (fn
);
3439 /* FIXME : for passing label as arg in internal fn PHI from GIMPLE FE*/
3440 else if (gimple_call_internal_fn (stmt
) == IFN_PHI
)
3449 error ("gimple call has no target");
3454 if (fn
&& !is_gimple_call_addr (fn
))
3456 error ("invalid function in gimple call");
3457 debug_generic_stmt (fn
);
3462 && (!POINTER_TYPE_P (TREE_TYPE (fn
))
3463 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn
))) != FUNCTION_TYPE
3464 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn
))) != METHOD_TYPE
)))
3466 error ("non-function in gimple call");
3470 fndecl
= gimple_call_fndecl (stmt
);
3472 && TREE_CODE (fndecl
) == FUNCTION_DECL
3473 && DECL_LOOPING_CONST_OR_PURE_P (fndecl
)
3474 && !DECL_PURE_P (fndecl
)
3475 && !TREE_READONLY (fndecl
))
3477 error ("invalid pure const state for function");
3481 tree lhs
= gimple_call_lhs (stmt
);
3483 && (!is_gimple_lvalue (lhs
)
3484 || verify_types_in_gimple_reference (lhs
, true)))
3486 error ("invalid LHS in gimple call");
3490 if (gimple_call_ctrl_altering_p (stmt
)
3491 && gimple_call_noreturn_p (stmt
)
3492 && should_remove_lhs_p (lhs
))
3494 error ("LHS in noreturn call");
3498 fntype
= gimple_call_fntype (stmt
);
3501 && !useless_type_conversion_p (TREE_TYPE (lhs
), TREE_TYPE (fntype
))
3502 /* ??? At least C++ misses conversions at assignments from
3503 void * call results.
3504 For now simply allow arbitrary pointer type conversions. */
3505 && !(POINTER_TYPE_P (TREE_TYPE (lhs
))
3506 && POINTER_TYPE_P (TREE_TYPE (fntype
))))
3508 error ("invalid conversion in gimple call");
3509 debug_generic_stmt (TREE_TYPE (lhs
));
3510 debug_generic_stmt (TREE_TYPE (fntype
));
3514 if (gimple_call_chain (stmt
)
3515 && !is_gimple_val (gimple_call_chain (stmt
)))
3517 error ("invalid static chain in gimple call");
3518 debug_generic_stmt (gimple_call_chain (stmt
));
3522 /* If there is a static chain argument, the call should either be
3523 indirect, or the decl should have DECL_STATIC_CHAIN set. */
3524 if (gimple_call_chain (stmt
)
3526 && !DECL_STATIC_CHAIN (fndecl
))
3528 error ("static chain with function that doesn%'t use one");
3532 if (fndecl
&& DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
)
3534 switch (DECL_FUNCTION_CODE (fndecl
))
3536 case BUILT_IN_UNREACHABLE
:
3538 if (gimple_call_num_args (stmt
) > 0)
3540 /* Built-in unreachable with parameters might not be caught by
3541 undefined behavior sanitizer. Front-ends do check users do not
3542 call them that way but we also produce calls to
3543 __builtin_unreachable internally, for example when IPA figures
3544 out a call cannot happen in a legal program. In such cases,
3545 we must make sure arguments are stripped off. */
3546 error ("__builtin_unreachable or __builtin_trap call with "
3556 /* ??? The C frontend passes unpromoted arguments in case it
3557 didn't see a function declaration before the call. So for now
3558 leave the call arguments mostly unverified. Once we gimplify
3559 unit-at-a-time we have a chance to fix this. */
3561 for (i
= 0; i
< gimple_call_num_args (stmt
); ++i
)
3563 tree arg
= gimple_call_arg (stmt
, i
);
3564 if ((is_gimple_reg_type (TREE_TYPE (arg
))
3565 && !is_gimple_val (arg
))
3566 || (!is_gimple_reg_type (TREE_TYPE (arg
))
3567 && !is_gimple_lvalue (arg
)))
3569 error ("invalid argument to gimple call");
3570 debug_generic_expr (arg
);
3578 /* Verifies the gimple comparison with the result type TYPE and
3579 the operands OP0 and OP1, comparison code is CODE. */
3582 verify_gimple_comparison (tree type
, tree op0
, tree op1
, enum tree_code code
)
3584 tree op0_type
= TREE_TYPE (op0
);
3585 tree op1_type
= TREE_TYPE (op1
);
3587 if (!is_gimple_val (op0
) || !is_gimple_val (op1
))
3589 error ("invalid operands in gimple comparison");
3593 /* For comparisons we do not have the operations type as the
3594 effective type the comparison is carried out in. Instead
3595 we require that either the first operand is trivially
3596 convertible into the second, or the other way around.
3597 Because we special-case pointers to void we allow
3598 comparisons of pointers with the same mode as well. */
3599 if (!useless_type_conversion_p (op0_type
, op1_type
)
3600 && !useless_type_conversion_p (op1_type
, op0_type
)
3601 && (!POINTER_TYPE_P (op0_type
)
3602 || !POINTER_TYPE_P (op1_type
)
3603 || TYPE_MODE (op0_type
) != TYPE_MODE (op1_type
)))
3605 error ("mismatching comparison operand types");
3606 debug_generic_expr (op0_type
);
3607 debug_generic_expr (op1_type
);
3611 /* The resulting type of a comparison may be an effective boolean type. */
3612 if (INTEGRAL_TYPE_P (type
)
3613 && (TREE_CODE (type
) == BOOLEAN_TYPE
3614 || TYPE_PRECISION (type
) == 1))
3616 if ((TREE_CODE (op0_type
) == VECTOR_TYPE
3617 || TREE_CODE (op1_type
) == VECTOR_TYPE
)
3618 && code
!= EQ_EXPR
&& code
!= NE_EXPR
3619 && !VECTOR_BOOLEAN_TYPE_P (op0_type
)
3620 && !VECTOR_INTEGER_TYPE_P (op0_type
))
3622 error ("unsupported operation or type for vector comparison"
3623 " returning a boolean");
3624 debug_generic_expr (op0_type
);
3625 debug_generic_expr (op1_type
);
3629 /* Or a boolean vector type with the same element count
3630 as the comparison operand types. */
3631 else if (TREE_CODE (type
) == VECTOR_TYPE
3632 && TREE_CODE (TREE_TYPE (type
)) == BOOLEAN_TYPE
)
3634 if (TREE_CODE (op0_type
) != VECTOR_TYPE
3635 || TREE_CODE (op1_type
) != VECTOR_TYPE
)
3637 error ("non-vector operands in vector comparison");
3638 debug_generic_expr (op0_type
);
3639 debug_generic_expr (op1_type
);
3643 if (TYPE_VECTOR_SUBPARTS (type
) != TYPE_VECTOR_SUBPARTS (op0_type
))
3645 error ("invalid vector comparison resulting type");
3646 debug_generic_expr (type
);
3652 error ("bogus comparison result type");
3653 debug_generic_expr (type
);
3660 /* Verify a gimple assignment statement STMT with an unary rhs.
3661 Returns true if anything is wrong. */
3664 verify_gimple_assign_unary (gassign
*stmt
)
3666 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
3667 tree lhs
= gimple_assign_lhs (stmt
);
3668 tree lhs_type
= TREE_TYPE (lhs
);
3669 tree rhs1
= gimple_assign_rhs1 (stmt
);
3670 tree rhs1_type
= TREE_TYPE (rhs1
);
3672 if (!is_gimple_reg (lhs
))
3674 error ("non-register as LHS of unary operation");
3678 if (!is_gimple_val (rhs1
))
3680 error ("invalid operand in unary operation");
3684 /* First handle conversions. */
3689 /* Allow conversions from pointer type to integral type only if
3690 there is no sign or zero extension involved.
3691 For targets were the precision of ptrofftype doesn't match that
3692 of pointers we need to allow arbitrary conversions to ptrofftype. */
3693 if ((POINTER_TYPE_P (lhs_type
)
3694 && INTEGRAL_TYPE_P (rhs1_type
))
3695 || (POINTER_TYPE_P (rhs1_type
)
3696 && INTEGRAL_TYPE_P (lhs_type
)
3697 && (TYPE_PRECISION (rhs1_type
) >= TYPE_PRECISION (lhs_type
)
3698 || ptrofftype_p (sizetype
))))
3701 /* Allow conversion from integral to offset type and vice versa. */
3702 if ((TREE_CODE (lhs_type
) == OFFSET_TYPE
3703 && INTEGRAL_TYPE_P (rhs1_type
))
3704 || (INTEGRAL_TYPE_P (lhs_type
)
3705 && TREE_CODE (rhs1_type
) == OFFSET_TYPE
))
3708 /* Otherwise assert we are converting between types of the
3710 if (INTEGRAL_TYPE_P (lhs_type
) != INTEGRAL_TYPE_P (rhs1_type
))
3712 error ("invalid types in nop conversion");
3713 debug_generic_expr (lhs_type
);
3714 debug_generic_expr (rhs1_type
);
3721 case ADDR_SPACE_CONVERT_EXPR
:
3723 if (!POINTER_TYPE_P (rhs1_type
) || !POINTER_TYPE_P (lhs_type
)
3724 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type
))
3725 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type
))))
3727 error ("invalid types in address space conversion");
3728 debug_generic_expr (lhs_type
);
3729 debug_generic_expr (rhs1_type
);
3736 case FIXED_CONVERT_EXPR
:
3738 if (!valid_fixed_convert_types_p (lhs_type
, rhs1_type
)
3739 && !valid_fixed_convert_types_p (rhs1_type
, lhs_type
))
3741 error ("invalid types in fixed-point conversion");
3742 debug_generic_expr (lhs_type
);
3743 debug_generic_expr (rhs1_type
);
3752 if ((!INTEGRAL_TYPE_P (rhs1_type
) || !SCALAR_FLOAT_TYPE_P (lhs_type
))
3753 && (!VECTOR_INTEGER_TYPE_P (rhs1_type
)
3754 || !VECTOR_FLOAT_TYPE_P (lhs_type
)))
3756 error ("invalid types in conversion to floating point");
3757 debug_generic_expr (lhs_type
);
3758 debug_generic_expr (rhs1_type
);
3765 case FIX_TRUNC_EXPR
:
3767 if ((!INTEGRAL_TYPE_P (lhs_type
) || !SCALAR_FLOAT_TYPE_P (rhs1_type
))
3768 && (!VECTOR_INTEGER_TYPE_P (lhs_type
)
3769 || !VECTOR_FLOAT_TYPE_P (rhs1_type
)))
3771 error ("invalid types in conversion to integer");
3772 debug_generic_expr (lhs_type
);
3773 debug_generic_expr (rhs1_type
);
3779 case REDUC_MAX_EXPR
:
3780 case REDUC_MIN_EXPR
:
3781 case REDUC_PLUS_EXPR
:
3782 if (!VECTOR_TYPE_P (rhs1_type
)
3783 || !useless_type_conversion_p (lhs_type
, TREE_TYPE (rhs1_type
)))
3785 error ("reduction should convert from vector to element type");
3786 debug_generic_expr (lhs_type
);
3787 debug_generic_expr (rhs1_type
);
3792 case VEC_UNPACK_HI_EXPR
:
3793 case VEC_UNPACK_LO_EXPR
:
3794 case VEC_UNPACK_FLOAT_HI_EXPR
:
3795 case VEC_UNPACK_FLOAT_LO_EXPR
:
3810 /* For the remaining codes assert there is no conversion involved. */
3811 if (!useless_type_conversion_p (lhs_type
, rhs1_type
))
3813 error ("non-trivial conversion in unary operation");
3814 debug_generic_expr (lhs_type
);
3815 debug_generic_expr (rhs1_type
);
3822 /* Verify a gimple assignment statement STMT with a binary rhs.
3823 Returns true if anything is wrong. */
3826 verify_gimple_assign_binary (gassign
*stmt
)
3828 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
3829 tree lhs
= gimple_assign_lhs (stmt
);
3830 tree lhs_type
= TREE_TYPE (lhs
);
3831 tree rhs1
= gimple_assign_rhs1 (stmt
);
3832 tree rhs1_type
= TREE_TYPE (rhs1
);
3833 tree rhs2
= gimple_assign_rhs2 (stmt
);
3834 tree rhs2_type
= TREE_TYPE (rhs2
);
3836 if (!is_gimple_reg (lhs
))
3838 error ("non-register as LHS of binary operation");
3842 if (!is_gimple_val (rhs1
)
3843 || !is_gimple_val (rhs2
))
3845 error ("invalid operands in binary operation");
3849 /* First handle operations that involve different types. */
3854 if (TREE_CODE (lhs_type
) != COMPLEX_TYPE
3855 || !(INTEGRAL_TYPE_P (rhs1_type
)
3856 || SCALAR_FLOAT_TYPE_P (rhs1_type
))
3857 || !(INTEGRAL_TYPE_P (rhs2_type
)
3858 || SCALAR_FLOAT_TYPE_P (rhs2_type
)))
3860 error ("type mismatch in complex expression");
3861 debug_generic_expr (lhs_type
);
3862 debug_generic_expr (rhs1_type
);
3863 debug_generic_expr (rhs2_type
);
3875 /* Shifts and rotates are ok on integral types, fixed point
3876 types and integer vector types. */
3877 if ((!INTEGRAL_TYPE_P (rhs1_type
)
3878 && !FIXED_POINT_TYPE_P (rhs1_type
)
3879 && !(TREE_CODE (rhs1_type
) == VECTOR_TYPE
3880 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))))
3881 || (!INTEGRAL_TYPE_P (rhs2_type
)
3882 /* Vector shifts of vectors are also ok. */
3883 && !(TREE_CODE (rhs1_type
) == VECTOR_TYPE
3884 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
3885 && TREE_CODE (rhs2_type
) == VECTOR_TYPE
3886 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type
))))
3887 || !useless_type_conversion_p (lhs_type
, rhs1_type
))
3889 error ("type mismatch in shift expression");
3890 debug_generic_expr (lhs_type
);
3891 debug_generic_expr (rhs1_type
);
3892 debug_generic_expr (rhs2_type
);
3899 case WIDEN_LSHIFT_EXPR
:
3901 if (!INTEGRAL_TYPE_P (lhs_type
)
3902 || !INTEGRAL_TYPE_P (rhs1_type
)
3903 || TREE_CODE (rhs2
) != INTEGER_CST
3904 || (2 * TYPE_PRECISION (rhs1_type
) > TYPE_PRECISION (lhs_type
)))
3906 error ("type mismatch in widening vector shift expression");
3907 debug_generic_expr (lhs_type
);
3908 debug_generic_expr (rhs1_type
);
3909 debug_generic_expr (rhs2_type
);
3916 case VEC_WIDEN_LSHIFT_HI_EXPR
:
3917 case VEC_WIDEN_LSHIFT_LO_EXPR
:
3919 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
3920 || TREE_CODE (lhs_type
) != VECTOR_TYPE
3921 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
3922 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs_type
))
3923 || TREE_CODE (rhs2
) != INTEGER_CST
3924 || (2 * TYPE_PRECISION (TREE_TYPE (rhs1_type
))
3925 > TYPE_PRECISION (TREE_TYPE (lhs_type
))))
3927 error ("type mismatch in widening vector shift expression");
3928 debug_generic_expr (lhs_type
);
3929 debug_generic_expr (rhs1_type
);
3930 debug_generic_expr (rhs2_type
);
3940 tree lhs_etype
= lhs_type
;
3941 tree rhs1_etype
= rhs1_type
;
3942 tree rhs2_etype
= rhs2_type
;
3943 if (TREE_CODE (lhs_type
) == VECTOR_TYPE
)
3945 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
3946 || TREE_CODE (rhs2_type
) != VECTOR_TYPE
)
3948 error ("invalid non-vector operands to vector valued plus");
3951 lhs_etype
= TREE_TYPE (lhs_type
);
3952 rhs1_etype
= TREE_TYPE (rhs1_type
);
3953 rhs2_etype
= TREE_TYPE (rhs2_type
);
3955 if (POINTER_TYPE_P (lhs_etype
)
3956 || POINTER_TYPE_P (rhs1_etype
)
3957 || POINTER_TYPE_P (rhs2_etype
))
3959 error ("invalid (pointer) operands to plus/minus");
3963 /* Continue with generic binary expression handling. */
3967 case POINTER_PLUS_EXPR
:
3969 if (!POINTER_TYPE_P (rhs1_type
)
3970 || !useless_type_conversion_p (lhs_type
, rhs1_type
)
3971 || !ptrofftype_p (rhs2_type
))
3973 error ("type mismatch in pointer plus expression");
3974 debug_generic_stmt (lhs_type
);
3975 debug_generic_stmt (rhs1_type
);
3976 debug_generic_stmt (rhs2_type
);
3983 case TRUTH_ANDIF_EXPR
:
3984 case TRUTH_ORIF_EXPR
:
3985 case TRUTH_AND_EXPR
:
3987 case TRUTH_XOR_EXPR
:
3997 case UNORDERED_EXPR
:
4005 /* Comparisons are also binary, but the result type is not
4006 connected to the operand types. */
4007 return verify_gimple_comparison (lhs_type
, rhs1
, rhs2
, rhs_code
);
4009 case WIDEN_MULT_EXPR
:
4010 if (TREE_CODE (lhs_type
) != INTEGER_TYPE
)
4012 return ((2 * TYPE_PRECISION (rhs1_type
) > TYPE_PRECISION (lhs_type
))
4013 || (TYPE_PRECISION (rhs1_type
) != TYPE_PRECISION (rhs2_type
)));
4015 case WIDEN_SUM_EXPR
:
4016 case VEC_WIDEN_MULT_HI_EXPR
:
4017 case VEC_WIDEN_MULT_LO_EXPR
:
4018 case VEC_WIDEN_MULT_EVEN_EXPR
:
4019 case VEC_WIDEN_MULT_ODD_EXPR
:
4020 case VEC_PACK_TRUNC_EXPR
:
4021 case VEC_PACK_SAT_EXPR
:
4022 case VEC_PACK_FIX_TRUNC_EXPR
:
4027 case MULT_HIGHPART_EXPR
:
4028 case TRUNC_DIV_EXPR
:
4030 case FLOOR_DIV_EXPR
:
4031 case ROUND_DIV_EXPR
:
4032 case TRUNC_MOD_EXPR
:
4034 case FLOOR_MOD_EXPR
:
4035 case ROUND_MOD_EXPR
:
4037 case EXACT_DIV_EXPR
:
4043 /* Continue with generic binary expression handling. */
4050 if (!useless_type_conversion_p (lhs_type
, rhs1_type
)
4051 || !useless_type_conversion_p (lhs_type
, rhs2_type
))
4053 error ("type mismatch in binary expression");
4054 debug_generic_stmt (lhs_type
);
4055 debug_generic_stmt (rhs1_type
);
4056 debug_generic_stmt (rhs2_type
);
4063 /* Verify a gimple assignment statement STMT with a ternary rhs.
4064 Returns true if anything is wrong. */
4067 verify_gimple_assign_ternary (gassign
*stmt
)
4069 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
4070 tree lhs
= gimple_assign_lhs (stmt
);
4071 tree lhs_type
= TREE_TYPE (lhs
);
4072 tree rhs1
= gimple_assign_rhs1 (stmt
);
4073 tree rhs1_type
= TREE_TYPE (rhs1
);
4074 tree rhs2
= gimple_assign_rhs2 (stmt
);
4075 tree rhs2_type
= TREE_TYPE (rhs2
);
4076 tree rhs3
= gimple_assign_rhs3 (stmt
);
4077 tree rhs3_type
= TREE_TYPE (rhs3
);
4079 if (!is_gimple_reg (lhs
))
4081 error ("non-register as LHS of ternary operation");
4085 if (((rhs_code
== VEC_COND_EXPR
|| rhs_code
== COND_EXPR
)
4086 ? !is_gimple_condexpr (rhs1
) : !is_gimple_val (rhs1
))
4087 || !is_gimple_val (rhs2
)
4088 || !is_gimple_val (rhs3
))
4090 error ("invalid operands in ternary operation");
4094 /* First handle operations that involve different types. */
4097 case WIDEN_MULT_PLUS_EXPR
:
4098 case WIDEN_MULT_MINUS_EXPR
:
4099 if ((!INTEGRAL_TYPE_P (rhs1_type
)
4100 && !FIXED_POINT_TYPE_P (rhs1_type
))
4101 || !useless_type_conversion_p (rhs1_type
, rhs2_type
)
4102 || !useless_type_conversion_p (lhs_type
, rhs3_type
)
4103 || 2 * TYPE_PRECISION (rhs1_type
) > TYPE_PRECISION (lhs_type
)
4104 || TYPE_PRECISION (rhs1_type
) != TYPE_PRECISION (rhs2_type
))
4106 error ("type mismatch in widening multiply-accumulate expression");
4107 debug_generic_expr (lhs_type
);
4108 debug_generic_expr (rhs1_type
);
4109 debug_generic_expr (rhs2_type
);
4110 debug_generic_expr (rhs3_type
);
4116 if (!useless_type_conversion_p (lhs_type
, rhs1_type
)
4117 || !useless_type_conversion_p (lhs_type
, rhs2_type
)
4118 || !useless_type_conversion_p (lhs_type
, rhs3_type
))
4120 error ("type mismatch in fused multiply-add expression");
4121 debug_generic_expr (lhs_type
);
4122 debug_generic_expr (rhs1_type
);
4123 debug_generic_expr (rhs2_type
);
4124 debug_generic_expr (rhs3_type
);
4130 if (!VECTOR_BOOLEAN_TYPE_P (rhs1_type
)
4131 || TYPE_VECTOR_SUBPARTS (rhs1_type
)
4132 != TYPE_VECTOR_SUBPARTS (lhs_type
))
4134 error ("the first argument of a VEC_COND_EXPR must be of a "
4135 "boolean vector type of the same number of elements "
4137 debug_generic_expr (lhs_type
);
4138 debug_generic_expr (rhs1_type
);
4143 if (!useless_type_conversion_p (lhs_type
, rhs2_type
)
4144 || !useless_type_conversion_p (lhs_type
, rhs3_type
))
4146 error ("type mismatch in conditional expression");
4147 debug_generic_expr (lhs_type
);
4148 debug_generic_expr (rhs2_type
);
4149 debug_generic_expr (rhs3_type
);
4155 if (!useless_type_conversion_p (lhs_type
, rhs1_type
)
4156 || !useless_type_conversion_p (lhs_type
, rhs2_type
))
4158 error ("type mismatch in vector permute expression");
4159 debug_generic_expr (lhs_type
);
4160 debug_generic_expr (rhs1_type
);
4161 debug_generic_expr (rhs2_type
);
4162 debug_generic_expr (rhs3_type
);
4166 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
4167 || TREE_CODE (rhs2_type
) != VECTOR_TYPE
4168 || TREE_CODE (rhs3_type
) != VECTOR_TYPE
)
4170 error ("vector types expected in vector permute expression");
4171 debug_generic_expr (lhs_type
);
4172 debug_generic_expr (rhs1_type
);
4173 debug_generic_expr (rhs2_type
);
4174 debug_generic_expr (rhs3_type
);
4178 if (TYPE_VECTOR_SUBPARTS (rhs1_type
) != TYPE_VECTOR_SUBPARTS (rhs2_type
)
4179 || TYPE_VECTOR_SUBPARTS (rhs2_type
)
4180 != TYPE_VECTOR_SUBPARTS (rhs3_type
)
4181 || TYPE_VECTOR_SUBPARTS (rhs3_type
)
4182 != TYPE_VECTOR_SUBPARTS (lhs_type
))
4184 error ("vectors with different element number found "
4185 "in vector permute expression");
4186 debug_generic_expr (lhs_type
);
4187 debug_generic_expr (rhs1_type
);
4188 debug_generic_expr (rhs2_type
);
4189 debug_generic_expr (rhs3_type
);
4193 if (TREE_CODE (TREE_TYPE (rhs3_type
)) != INTEGER_TYPE
4194 || GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs3_type
)))
4195 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type
))))
4197 error ("invalid mask type in vector permute expression");
4198 debug_generic_expr (lhs_type
);
4199 debug_generic_expr (rhs1_type
);
4200 debug_generic_expr (rhs2_type
);
4201 debug_generic_expr (rhs3_type
);
4208 if (!useless_type_conversion_p (rhs1_type
, rhs2_type
)
4209 || !useless_type_conversion_p (lhs_type
, rhs3_type
)
4210 || 2 * GET_MODE_UNIT_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type
)))
4211 > GET_MODE_UNIT_BITSIZE (TYPE_MODE (TREE_TYPE (lhs_type
))))
4213 error ("type mismatch in sad expression");
4214 debug_generic_expr (lhs_type
);
4215 debug_generic_expr (rhs1_type
);
4216 debug_generic_expr (rhs2_type
);
4217 debug_generic_expr (rhs3_type
);
4221 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
4222 || TREE_CODE (rhs2_type
) != VECTOR_TYPE
4223 || TREE_CODE (rhs3_type
) != VECTOR_TYPE
)
4225 error ("vector types expected in sad expression");
4226 debug_generic_expr (lhs_type
);
4227 debug_generic_expr (rhs1_type
);
4228 debug_generic_expr (rhs2_type
);
4229 debug_generic_expr (rhs3_type
);
4235 case BIT_INSERT_EXPR
:
4236 if (! useless_type_conversion_p (lhs_type
, rhs1_type
))
4238 error ("type mismatch in BIT_INSERT_EXPR");
4239 debug_generic_expr (lhs_type
);
4240 debug_generic_expr (rhs1_type
);
4243 if (! ((INTEGRAL_TYPE_P (rhs1_type
)
4244 && INTEGRAL_TYPE_P (rhs2_type
))
4245 || (VECTOR_TYPE_P (rhs1_type
)
4246 && types_compatible_p (TREE_TYPE (rhs1_type
), rhs2_type
))))
4248 error ("not allowed type combination in BIT_INSERT_EXPR");
4249 debug_generic_expr (rhs1_type
);
4250 debug_generic_expr (rhs2_type
);
4253 if (! tree_fits_uhwi_p (rhs3
)
4254 || ! types_compatible_p (bitsizetype
, TREE_TYPE (rhs3
))
4255 || ! tree_fits_uhwi_p (TYPE_SIZE (rhs2_type
)))
4257 error ("invalid position or size in BIT_INSERT_EXPR");
4260 if (INTEGRAL_TYPE_P (rhs1_type
))
4262 unsigned HOST_WIDE_INT bitpos
= tree_to_uhwi (rhs3
);
4263 if (bitpos
>= TYPE_PRECISION (rhs1_type
)
4264 || (bitpos
+ TYPE_PRECISION (rhs2_type
)
4265 > TYPE_PRECISION (rhs1_type
)))
4267 error ("insertion out of range in BIT_INSERT_EXPR");
4271 else if (VECTOR_TYPE_P (rhs1_type
))
4273 unsigned HOST_WIDE_INT bitpos
= tree_to_uhwi (rhs3
);
4274 unsigned HOST_WIDE_INT bitsize
= tree_to_uhwi (TYPE_SIZE (rhs2_type
));
4275 if (bitpos
% bitsize
!= 0)
4277 error ("vector insertion not at element boundary");
4284 case REALIGN_LOAD_EXPR
:
4294 /* Verify a gimple assignment statement STMT with a single rhs.
4295 Returns true if anything is wrong. */
4298 verify_gimple_assign_single (gassign
*stmt
)
4300 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
4301 tree lhs
= gimple_assign_lhs (stmt
);
4302 tree lhs_type
= TREE_TYPE (lhs
);
4303 tree rhs1
= gimple_assign_rhs1 (stmt
);
4304 tree rhs1_type
= TREE_TYPE (rhs1
);
4307 if (!useless_type_conversion_p (lhs_type
, rhs1_type
))
4309 error ("non-trivial conversion at assignment");
4310 debug_generic_expr (lhs_type
);
4311 debug_generic_expr (rhs1_type
);
4315 if (gimple_clobber_p (stmt
)
4316 && !(DECL_P (lhs
) || TREE_CODE (lhs
) == MEM_REF
))
4318 error ("non-decl/MEM_REF LHS in clobber statement");
4319 debug_generic_expr (lhs
);
4323 if (handled_component_p (lhs
)
4324 || TREE_CODE (lhs
) == MEM_REF
4325 || TREE_CODE (lhs
) == TARGET_MEM_REF
)
4326 res
|= verify_types_in_gimple_reference (lhs
, true);
4328 /* Special codes we cannot handle via their class. */
4333 tree op
= TREE_OPERAND (rhs1
, 0);
4334 if (!is_gimple_addressable (op
))
4336 error ("invalid operand in unary expression");
4340 /* Technically there is no longer a need for matching types, but
4341 gimple hygiene asks for this check. In LTO we can end up
4342 combining incompatible units and thus end up with addresses
4343 of globals that change their type to a common one. */
4345 && !types_compatible_p (TREE_TYPE (op
),
4346 TREE_TYPE (TREE_TYPE (rhs1
)))
4347 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1
),
4350 error ("type mismatch in address expression");
4351 debug_generic_stmt (TREE_TYPE (rhs1
));
4352 debug_generic_stmt (TREE_TYPE (op
));
4356 return verify_types_in_gimple_reference (op
, true);
4361 error ("INDIRECT_REF in gimple IL");
4367 case ARRAY_RANGE_REF
:
4368 case VIEW_CONVERT_EXPR
:
4371 case TARGET_MEM_REF
:
4373 if (!is_gimple_reg (lhs
)
4374 && is_gimple_reg_type (TREE_TYPE (lhs
)))
4376 error ("invalid rhs for gimple memory store");
4377 debug_generic_stmt (lhs
);
4378 debug_generic_stmt (rhs1
);
4381 return res
|| verify_types_in_gimple_reference (rhs1
, false);
4393 /* tcc_declaration */
4398 if (!is_gimple_reg (lhs
)
4399 && !is_gimple_reg (rhs1
)
4400 && is_gimple_reg_type (TREE_TYPE (lhs
)))
4402 error ("invalid rhs for gimple memory store");
4403 debug_generic_stmt (lhs
);
4404 debug_generic_stmt (rhs1
);
4410 if (TREE_CODE (rhs1_type
) == VECTOR_TYPE
)
4413 tree elt_i
, elt_v
, elt_t
= NULL_TREE
;
4415 if (CONSTRUCTOR_NELTS (rhs1
) == 0)
4417 /* For vector CONSTRUCTORs we require that either it is empty
4418 CONSTRUCTOR, or it is a CONSTRUCTOR of smaller vector elements
4419 (then the element count must be correct to cover the whole
4420 outer vector and index must be NULL on all elements, or it is
4421 a CONSTRUCTOR of scalar elements, where we as an exception allow
4422 smaller number of elements (assuming zero filling) and
4423 consecutive indexes as compared to NULL indexes (such
4424 CONSTRUCTORs can appear in the IL from FEs). */
4425 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (rhs1
), i
, elt_i
, elt_v
)
4427 if (elt_t
== NULL_TREE
)
4429 elt_t
= TREE_TYPE (elt_v
);
4430 if (TREE_CODE (elt_t
) == VECTOR_TYPE
)
4432 tree elt_t
= TREE_TYPE (elt_v
);
4433 if (!useless_type_conversion_p (TREE_TYPE (rhs1_type
),
4436 error ("incorrect type of vector CONSTRUCTOR"
4438 debug_generic_stmt (rhs1
);
4441 else if (CONSTRUCTOR_NELTS (rhs1
)
4442 * TYPE_VECTOR_SUBPARTS (elt_t
)
4443 != TYPE_VECTOR_SUBPARTS (rhs1_type
))
4445 error ("incorrect number of vector CONSTRUCTOR"
4447 debug_generic_stmt (rhs1
);
4451 else if (!useless_type_conversion_p (TREE_TYPE (rhs1_type
),
4454 error ("incorrect type of vector CONSTRUCTOR elements");
4455 debug_generic_stmt (rhs1
);
4458 else if (CONSTRUCTOR_NELTS (rhs1
)
4459 > TYPE_VECTOR_SUBPARTS (rhs1_type
))
4461 error ("incorrect number of vector CONSTRUCTOR elements");
4462 debug_generic_stmt (rhs1
);
4466 else if (!useless_type_conversion_p (elt_t
, TREE_TYPE (elt_v
)))
4468 error ("incorrect type of vector CONSTRUCTOR elements");
4469 debug_generic_stmt (rhs1
);
4472 if (elt_i
!= NULL_TREE
4473 && (TREE_CODE (elt_t
) == VECTOR_TYPE
4474 || TREE_CODE (elt_i
) != INTEGER_CST
4475 || compare_tree_int (elt_i
, i
) != 0))
4477 error ("vector CONSTRUCTOR with non-NULL element index");
4478 debug_generic_stmt (rhs1
);
4481 if (!is_gimple_val (elt_v
))
4483 error ("vector CONSTRUCTOR element is not a GIMPLE value");
4484 debug_generic_stmt (rhs1
);
4489 else if (CONSTRUCTOR_NELTS (rhs1
) != 0)
4491 error ("non-vector CONSTRUCTOR with elements");
4492 debug_generic_stmt (rhs1
);
4498 case WITH_SIZE_EXPR
:
4508 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
4509 is a problem, otherwise false. */
4512 verify_gimple_assign (gassign
*stmt
)
4514 switch (gimple_assign_rhs_class (stmt
))
4516 case GIMPLE_SINGLE_RHS
:
4517 return verify_gimple_assign_single (stmt
);
4519 case GIMPLE_UNARY_RHS
:
4520 return verify_gimple_assign_unary (stmt
);
4522 case GIMPLE_BINARY_RHS
:
4523 return verify_gimple_assign_binary (stmt
);
4525 case GIMPLE_TERNARY_RHS
:
4526 return verify_gimple_assign_ternary (stmt
);
4533 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
4534 is a problem, otherwise false. */
4537 verify_gimple_return (greturn
*stmt
)
4539 tree op
= gimple_return_retval (stmt
);
4540 tree restype
= TREE_TYPE (TREE_TYPE (cfun
->decl
));
4542 /* We cannot test for present return values as we do not fix up missing
4543 return values from the original source. */
4547 if (!is_gimple_val (op
)
4548 && TREE_CODE (op
) != RESULT_DECL
)
4550 error ("invalid operand in return statement");
4551 debug_generic_stmt (op
);
4555 if ((TREE_CODE (op
) == RESULT_DECL
4556 && DECL_BY_REFERENCE (op
))
4557 || (TREE_CODE (op
) == SSA_NAME
4558 && SSA_NAME_VAR (op
)
4559 && TREE_CODE (SSA_NAME_VAR (op
)) == RESULT_DECL
4560 && DECL_BY_REFERENCE (SSA_NAME_VAR (op
))))
4561 op
= TREE_TYPE (op
);
4563 if (!useless_type_conversion_p (restype
, TREE_TYPE (op
)))
4565 error ("invalid conversion in return statement");
4566 debug_generic_stmt (restype
);
4567 debug_generic_stmt (TREE_TYPE (op
));
4575 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
4576 is a problem, otherwise false. */
4579 verify_gimple_goto (ggoto
*stmt
)
4581 tree dest
= gimple_goto_dest (stmt
);
4583 /* ??? We have two canonical forms of direct goto destinations, a
4584 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
4585 if (TREE_CODE (dest
) != LABEL_DECL
4586 && (!is_gimple_val (dest
)
4587 || !POINTER_TYPE_P (TREE_TYPE (dest
))))
4589 error ("goto destination is neither a label nor a pointer");
4596 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
4597 is a problem, otherwise false. */
4600 verify_gimple_switch (gswitch
*stmt
)
4603 tree elt
, prev_upper_bound
= NULL_TREE
;
4604 tree index_type
, elt_type
= NULL_TREE
;
4606 if (!is_gimple_val (gimple_switch_index (stmt
)))
4608 error ("invalid operand to switch statement");
4609 debug_generic_stmt (gimple_switch_index (stmt
));
4613 index_type
= TREE_TYPE (gimple_switch_index (stmt
));
4614 if (! INTEGRAL_TYPE_P (index_type
))
4616 error ("non-integral type switch statement");
4617 debug_generic_expr (index_type
);
4621 elt
= gimple_switch_label (stmt
, 0);
4622 if (CASE_LOW (elt
) != NULL_TREE
|| CASE_HIGH (elt
) != NULL_TREE
)
4624 error ("invalid default case label in switch statement");
4625 debug_generic_expr (elt
);
4629 n
= gimple_switch_num_labels (stmt
);
4630 for (i
= 1; i
< n
; i
++)
4632 elt
= gimple_switch_label (stmt
, i
);
4634 if (! CASE_LOW (elt
))
4636 error ("invalid case label in switch statement");
4637 debug_generic_expr (elt
);
4641 && ! tree_int_cst_lt (CASE_LOW (elt
), CASE_HIGH (elt
)))
4643 error ("invalid case range in switch statement");
4644 debug_generic_expr (elt
);
4650 if (TREE_TYPE (CASE_LOW (elt
)) != elt_type
4651 || (CASE_HIGH (elt
) && TREE_TYPE (CASE_HIGH (elt
)) != elt_type
))
4653 error ("type mismatch for case label in switch statement");
4654 debug_generic_expr (elt
);
4660 elt_type
= TREE_TYPE (CASE_LOW (elt
));
4661 if (TYPE_PRECISION (index_type
) < TYPE_PRECISION (elt_type
))
4663 error ("type precision mismatch in switch statement");
4668 if (prev_upper_bound
)
4670 if (! tree_int_cst_lt (prev_upper_bound
, CASE_LOW (elt
)))
4672 error ("case labels not sorted in switch statement");
4677 prev_upper_bound
= CASE_HIGH (elt
);
4678 if (! prev_upper_bound
)
4679 prev_upper_bound
= CASE_LOW (elt
);
4685 /* Verify a gimple debug statement STMT.
4686 Returns true if anything is wrong. */
4689 verify_gimple_debug (gimple
*stmt ATTRIBUTE_UNUSED
)
4691 /* There isn't much that could be wrong in a gimple debug stmt. A
4692 gimple debug bind stmt, for example, maps a tree, that's usually
4693 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
4694 component or member of an aggregate type, to another tree, that
4695 can be an arbitrary expression. These stmts expand into debug
4696 insns, and are converted to debug notes by var-tracking.c. */
4700 /* Verify a gimple label statement STMT.
4701 Returns true if anything is wrong. */
4704 verify_gimple_label (glabel
*stmt
)
4706 tree decl
= gimple_label_label (stmt
);
4710 if (TREE_CODE (decl
) != LABEL_DECL
)
4712 if (!DECL_NONLOCAL (decl
) && !FORCED_LABEL (decl
)
4713 && DECL_CONTEXT (decl
) != current_function_decl
)
4715 error ("label's context is not the current function decl");
4719 uid
= LABEL_DECL_UID (decl
);
4722 || (*label_to_block_map_for_fn (cfun
))[uid
] != gimple_bb (stmt
)))
4724 error ("incorrect entry in label_to_block_map");
4728 uid
= EH_LANDING_PAD_NR (decl
);
4731 eh_landing_pad lp
= get_eh_landing_pad_from_number (uid
);
4732 if (decl
!= lp
->post_landing_pad
)
4734 error ("incorrect setting of landing pad number");
4742 /* Verify a gimple cond statement STMT.
4743 Returns true if anything is wrong. */
4746 verify_gimple_cond (gcond
*stmt
)
4748 if (TREE_CODE_CLASS (gimple_cond_code (stmt
)) != tcc_comparison
)
4750 error ("invalid comparison code in gimple cond");
4753 if (!(!gimple_cond_true_label (stmt
)
4754 || TREE_CODE (gimple_cond_true_label (stmt
)) == LABEL_DECL
)
4755 || !(!gimple_cond_false_label (stmt
)
4756 || TREE_CODE (gimple_cond_false_label (stmt
)) == LABEL_DECL
))
4758 error ("invalid labels in gimple cond");
4762 return verify_gimple_comparison (boolean_type_node
,
4763 gimple_cond_lhs (stmt
),
4764 gimple_cond_rhs (stmt
),
4765 gimple_cond_code (stmt
));
4768 /* Verify the GIMPLE statement STMT. Returns true if there is an
4769 error, otherwise false. */
4772 verify_gimple_stmt (gimple
*stmt
)
4774 switch (gimple_code (stmt
))
4777 return verify_gimple_assign (as_a
<gassign
*> (stmt
));
4780 return verify_gimple_label (as_a
<glabel
*> (stmt
));
4783 return verify_gimple_call (as_a
<gcall
*> (stmt
));
4786 return verify_gimple_cond (as_a
<gcond
*> (stmt
));
4789 return verify_gimple_goto (as_a
<ggoto
*> (stmt
));
4792 return verify_gimple_switch (as_a
<gswitch
*> (stmt
));
4795 return verify_gimple_return (as_a
<greturn
*> (stmt
));
4800 case GIMPLE_TRANSACTION
:
4801 return verify_gimple_transaction (as_a
<gtransaction
*> (stmt
));
4803 /* Tuples that do not have tree operands. */
4805 case GIMPLE_PREDICT
:
4807 case GIMPLE_EH_DISPATCH
:
4808 case GIMPLE_EH_MUST_NOT_THROW
:
4812 /* OpenMP directives are validated by the FE and never operated
4813 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4814 non-gimple expressions when the main index variable has had
4815 its address taken. This does not affect the loop itself
4816 because the header of an GIMPLE_OMP_FOR is merely used to determine
4817 how to setup the parallel iteration. */
4821 return verify_gimple_debug (stmt
);
4828 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
4829 and false otherwise. */
4832 verify_gimple_phi (gimple
*phi
)
4836 tree phi_result
= gimple_phi_result (phi
);
4841 error ("invalid PHI result");
4845 virtual_p
= virtual_operand_p (phi_result
);
4846 if (TREE_CODE (phi_result
) != SSA_NAME
4848 && SSA_NAME_VAR (phi_result
) != gimple_vop (cfun
)))
4850 error ("invalid PHI result");
4854 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
4856 tree t
= gimple_phi_arg_def (phi
, i
);
4860 error ("missing PHI def");
4864 /* Addressable variables do have SSA_NAMEs but they
4865 are not considered gimple values. */
4866 else if ((TREE_CODE (t
) == SSA_NAME
4867 && virtual_p
!= virtual_operand_p (t
))
4869 && (TREE_CODE (t
) != SSA_NAME
4870 || SSA_NAME_VAR (t
) != gimple_vop (cfun
)))
4872 && !is_gimple_val (t
)))
4874 error ("invalid PHI argument");
4875 debug_generic_expr (t
);
4878 #ifdef ENABLE_TYPES_CHECKING
4879 if (!useless_type_conversion_p (TREE_TYPE (phi_result
), TREE_TYPE (t
)))
4881 error ("incompatible types in PHI argument %u", i
);
4882 debug_generic_stmt (TREE_TYPE (phi_result
));
4883 debug_generic_stmt (TREE_TYPE (t
));
4892 /* Verify the GIMPLE statements inside the sequence STMTS. */
4895 verify_gimple_in_seq_2 (gimple_seq stmts
)
4897 gimple_stmt_iterator ittr
;
4900 for (ittr
= gsi_start (stmts
); !gsi_end_p (ittr
); gsi_next (&ittr
))
4902 gimple
*stmt
= gsi_stmt (ittr
);
4904 switch (gimple_code (stmt
))
4907 err
|= verify_gimple_in_seq_2 (
4908 gimple_bind_body (as_a
<gbind
*> (stmt
)));
4912 err
|= verify_gimple_in_seq_2 (gimple_try_eval (stmt
));
4913 err
|= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt
));
4916 case GIMPLE_EH_FILTER
:
4917 err
|= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt
));
4920 case GIMPLE_EH_ELSE
:
4922 geh_else
*eh_else
= as_a
<geh_else
*> (stmt
);
4923 err
|= verify_gimple_in_seq_2 (gimple_eh_else_n_body (eh_else
));
4924 err
|= verify_gimple_in_seq_2 (gimple_eh_else_e_body (eh_else
));
4929 err
|= verify_gimple_in_seq_2 (gimple_catch_handler (
4930 as_a
<gcatch
*> (stmt
)));
4933 case GIMPLE_TRANSACTION
:
4934 err
|= verify_gimple_transaction (as_a
<gtransaction
*> (stmt
));
4939 bool err2
= verify_gimple_stmt (stmt
);
4941 debug_gimple_stmt (stmt
);
4950 /* Verify the contents of a GIMPLE_TRANSACTION. Returns true if there
4951 is a problem, otherwise false. */
4954 verify_gimple_transaction (gtransaction
*stmt
)
4958 lab
= gimple_transaction_label_norm (stmt
);
4959 if (lab
!= NULL
&& TREE_CODE (lab
) != LABEL_DECL
)
4961 lab
= gimple_transaction_label_uninst (stmt
);
4962 if (lab
!= NULL
&& TREE_CODE (lab
) != LABEL_DECL
)
4964 lab
= gimple_transaction_label_over (stmt
);
4965 if (lab
!= NULL
&& TREE_CODE (lab
) != LABEL_DECL
)
4968 return verify_gimple_in_seq_2 (gimple_transaction_body (stmt
));
4972 /* Verify the GIMPLE statements inside the statement list STMTS. */
4975 verify_gimple_in_seq (gimple_seq stmts
)
4977 timevar_push (TV_TREE_STMT_VERIFY
);
4978 if (verify_gimple_in_seq_2 (stmts
))
4979 internal_error ("verify_gimple failed");
4980 timevar_pop (TV_TREE_STMT_VERIFY
);
4983 /* Return true when the T can be shared. */
4986 tree_node_can_be_shared (tree t
)
4988 if (IS_TYPE_OR_DECL_P (t
)
4989 || is_gimple_min_invariant (t
)
4990 || TREE_CODE (t
) == SSA_NAME
4991 || t
== error_mark_node
4992 || TREE_CODE (t
) == IDENTIFIER_NODE
)
4995 if (TREE_CODE (t
) == CASE_LABEL_EXPR
)
5004 /* Called via walk_tree. Verify tree sharing. */
5007 verify_node_sharing_1 (tree
*tp
, int *walk_subtrees
, void *data
)
5009 hash_set
<void *> *visited
= (hash_set
<void *> *) data
;
5011 if (tree_node_can_be_shared (*tp
))
5013 *walk_subtrees
= false;
5017 if (visited
->add (*tp
))
5023 /* Called via walk_gimple_stmt. Verify tree sharing. */
5026 verify_node_sharing (tree
*tp
, int *walk_subtrees
, void *data
)
5028 struct walk_stmt_info
*wi
= (struct walk_stmt_info
*) data
;
5029 return verify_node_sharing_1 (tp
, walk_subtrees
, wi
->info
);
5032 static bool eh_error_found
;
5034 verify_eh_throw_stmt_node (gimple
*const &stmt
, const int &,
5035 hash_set
<gimple
*> *visited
)
5037 if (!visited
->contains (stmt
))
5039 error ("dead STMT in EH table");
5040 debug_gimple_stmt (stmt
);
5041 eh_error_found
= true;
5046 /* Verify if the location LOCs block is in BLOCKS. */
5049 verify_location (hash_set
<tree
> *blocks
, location_t loc
)
5051 tree block
= LOCATION_BLOCK (loc
);
5052 if (block
!= NULL_TREE
5053 && !blocks
->contains (block
))
5055 error ("location references block not in block tree");
5058 if (block
!= NULL_TREE
)
5059 return verify_location (blocks
, BLOCK_SOURCE_LOCATION (block
));
5063 /* Called via walk_tree. Verify that expressions have no blocks. */
5066 verify_expr_no_block (tree
*tp
, int *walk_subtrees
, void *)
5070 *walk_subtrees
= false;
5074 location_t loc
= EXPR_LOCATION (*tp
);
5075 if (LOCATION_BLOCK (loc
) != NULL
)
5081 /* Called via walk_tree. Verify locations of expressions. */
5084 verify_expr_location_1 (tree
*tp
, int *walk_subtrees
, void *data
)
5086 hash_set
<tree
> *blocks
= (hash_set
<tree
> *) data
;
5088 if (VAR_P (*tp
) && DECL_HAS_DEBUG_EXPR_P (*tp
))
5090 tree t
= DECL_DEBUG_EXPR (*tp
);
5091 tree addr
= walk_tree (&t
, verify_expr_no_block
, NULL
, NULL
);
5096 || TREE_CODE (*tp
) == PARM_DECL
5097 || TREE_CODE (*tp
) == RESULT_DECL
)
5098 && DECL_HAS_VALUE_EXPR_P (*tp
))
5100 tree t
= DECL_VALUE_EXPR (*tp
);
5101 tree addr
= walk_tree (&t
, verify_expr_no_block
, NULL
, NULL
);
5108 *walk_subtrees
= false;
5112 location_t loc
= EXPR_LOCATION (*tp
);
5113 if (verify_location (blocks
, loc
))
5119 /* Called via walk_gimple_op. Verify locations of expressions. */
5122 verify_expr_location (tree
*tp
, int *walk_subtrees
, void *data
)
5124 struct walk_stmt_info
*wi
= (struct walk_stmt_info
*) data
;
5125 return verify_expr_location_1 (tp
, walk_subtrees
, wi
->info
);
5128 /* Insert all subblocks of BLOCK into BLOCKS and recurse. */
5131 collect_subblocks (hash_set
<tree
> *blocks
, tree block
)
5134 for (t
= BLOCK_SUBBLOCKS (block
); t
; t
= BLOCK_CHAIN (t
))
5137 collect_subblocks (blocks
, t
);
5141 /* Verify the GIMPLE statements in the CFG of FN. */
5144 verify_gimple_in_cfg (struct function
*fn
, bool verify_nothrow
)
5149 timevar_push (TV_TREE_STMT_VERIFY
);
5150 hash_set
<void *> visited
;
5151 hash_set
<gimple
*> visited_stmts
;
5153 /* Collect all BLOCKs referenced by the BLOCK tree of FN. */
5154 hash_set
<tree
> blocks
;
5155 if (DECL_INITIAL (fn
->decl
))
5157 blocks
.add (DECL_INITIAL (fn
->decl
));
5158 collect_subblocks (&blocks
, DECL_INITIAL (fn
->decl
));
5161 FOR_EACH_BB_FN (bb
, fn
)
5163 gimple_stmt_iterator gsi
;
5165 for (gphi_iterator gpi
= gsi_start_phis (bb
);
5169 gphi
*phi
= gpi
.phi ();
5173 visited_stmts
.add (phi
);
5175 if (gimple_bb (phi
) != bb
)
5177 error ("gimple_bb (phi) is set to a wrong basic block");
5181 err2
|= verify_gimple_phi (phi
);
5183 /* Only PHI arguments have locations. */
5184 if (gimple_location (phi
) != UNKNOWN_LOCATION
)
5186 error ("PHI node with location");
5190 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
5192 tree arg
= gimple_phi_arg_def (phi
, i
);
5193 tree addr
= walk_tree (&arg
, verify_node_sharing_1
,
5197 error ("incorrect sharing of tree nodes");
5198 debug_generic_expr (addr
);
5201 location_t loc
= gimple_phi_arg_location (phi
, i
);
5202 if (virtual_operand_p (gimple_phi_result (phi
))
5203 && loc
!= UNKNOWN_LOCATION
)
5205 error ("virtual PHI with argument locations");
5208 addr
= walk_tree (&arg
, verify_expr_location_1
, &blocks
, NULL
);
5211 debug_generic_expr (addr
);
5214 err2
|= verify_location (&blocks
, loc
);
5218 debug_gimple_stmt (phi
);
5222 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5224 gimple
*stmt
= gsi_stmt (gsi
);
5226 struct walk_stmt_info wi
;
5230 visited_stmts
.add (stmt
);
5232 if (gimple_bb (stmt
) != bb
)
5234 error ("gimple_bb (stmt) is set to a wrong basic block");
5238 err2
|= verify_gimple_stmt (stmt
);
5239 err2
|= verify_location (&blocks
, gimple_location (stmt
));
5241 memset (&wi
, 0, sizeof (wi
));
5242 wi
.info
= (void *) &visited
;
5243 addr
= walk_gimple_op (stmt
, verify_node_sharing
, &wi
);
5246 error ("incorrect sharing of tree nodes");
5247 debug_generic_expr (addr
);
5251 memset (&wi
, 0, sizeof (wi
));
5252 wi
.info
= (void *) &blocks
;
5253 addr
= walk_gimple_op (stmt
, verify_expr_location
, &wi
);
5256 debug_generic_expr (addr
);
5260 /* ??? Instead of not checking these stmts at all the walker
5261 should know its context via wi. */
5262 if (!is_gimple_debug (stmt
)
5263 && !is_gimple_omp (stmt
))
5265 memset (&wi
, 0, sizeof (wi
));
5266 addr
= walk_gimple_op (stmt
, verify_expr
, &wi
);
5269 debug_generic_expr (addr
);
5270 inform (gimple_location (stmt
), "in statement");
5275 /* If the statement is marked as part of an EH region, then it is
5276 expected that the statement could throw. Verify that when we
5277 have optimizations that simplify statements such that we prove
5278 that they cannot throw, that we update other data structures
5280 lp_nr
= lookup_stmt_eh_lp (stmt
);
5283 if (!stmt_could_throw_p (stmt
))
5287 error ("statement marked for throw, but doesn%'t");
5291 else if (!gsi_one_before_end_p (gsi
))
5293 error ("statement marked for throw in middle of block");
5299 debug_gimple_stmt (stmt
);
5304 eh_error_found
= false;
5305 hash_map
<gimple
*, int> *eh_table
= get_eh_throw_stmt_table (cfun
);
5307 eh_table
->traverse
<hash_set
<gimple
*> *, verify_eh_throw_stmt_node
>
5310 if (err
|| eh_error_found
)
5311 internal_error ("verify_gimple failed");
5313 verify_histograms ();
5314 timevar_pop (TV_TREE_STMT_VERIFY
);
5318 /* Verifies that the flow information is OK. */
5321 gimple_verify_flow_info (void)
5325 gimple_stmt_iterator gsi
;
5330 if (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->il
.gimple
.seq
5331 || ENTRY_BLOCK_PTR_FOR_FN (cfun
)->il
.gimple
.phi_nodes
)
5333 error ("ENTRY_BLOCK has IL associated with it");
5337 if (EXIT_BLOCK_PTR_FOR_FN (cfun
)->il
.gimple
.seq
5338 || EXIT_BLOCK_PTR_FOR_FN (cfun
)->il
.gimple
.phi_nodes
)
5340 error ("EXIT_BLOCK has IL associated with it");
5344 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR_FOR_FN (cfun
)->preds
)
5345 if (e
->flags
& EDGE_FALLTHRU
)
5347 error ("fallthru to exit from bb %d", e
->src
->index
);
5351 FOR_EACH_BB_FN (bb
, cfun
)
5353 bool found_ctrl_stmt
= false;
5357 /* Skip labels on the start of basic block. */
5358 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5361 gimple
*prev_stmt
= stmt
;
5363 stmt
= gsi_stmt (gsi
);
5365 if (gimple_code (stmt
) != GIMPLE_LABEL
)
5368 label
= gimple_label_label (as_a
<glabel
*> (stmt
));
5369 if (prev_stmt
&& DECL_NONLOCAL (label
))
5371 error ("nonlocal label ");
5372 print_generic_expr (stderr
, label
);
5373 fprintf (stderr
, " is not first in a sequence of labels in bb %d",
5378 if (prev_stmt
&& EH_LANDING_PAD_NR (label
) != 0)
5380 error ("EH landing pad label ");
5381 print_generic_expr (stderr
, label
);
5382 fprintf (stderr
, " is not first in a sequence of labels in bb %d",
5387 if (label_to_block (label
) != bb
)
5390 print_generic_expr (stderr
, label
);
5391 fprintf (stderr
, " to block does not match in bb %d",
5396 if (decl_function_context (label
) != current_function_decl
)
5399 print_generic_expr (stderr
, label
);
5400 fprintf (stderr
, " has incorrect context in bb %d",
5406 /* Verify that body of basic block BB is free of control flow. */
5407 for (; !gsi_end_p (gsi
); gsi_next (&gsi
))
5409 gimple
*stmt
= gsi_stmt (gsi
);
5411 if (found_ctrl_stmt
)
5413 error ("control flow in the middle of basic block %d",
5418 if (stmt_ends_bb_p (stmt
))
5419 found_ctrl_stmt
= true;
5421 if (glabel
*label_stmt
= dyn_cast
<glabel
*> (stmt
))
5424 print_generic_expr (stderr
, gimple_label_label (label_stmt
));
5425 fprintf (stderr
, " in the middle of basic block %d", bb
->index
);
5430 gsi
= gsi_last_bb (bb
);
5431 if (gsi_end_p (gsi
))
5434 stmt
= gsi_stmt (gsi
);
5436 if (gimple_code (stmt
) == GIMPLE_LABEL
)
5439 err
|= verify_eh_edges (stmt
);
5441 if (is_ctrl_stmt (stmt
))
5443 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5444 if (e
->flags
& EDGE_FALLTHRU
)
5446 error ("fallthru edge after a control statement in bb %d",
5452 if (gimple_code (stmt
) != GIMPLE_COND
)
5454 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
5455 after anything else but if statement. */
5456 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5457 if (e
->flags
& (EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
))
5459 error ("true/false edge after a non-GIMPLE_COND in bb %d",
5465 switch (gimple_code (stmt
))
5472 extract_true_false_edges_from_block (bb
, &true_edge
, &false_edge
);
5476 || !(true_edge
->flags
& EDGE_TRUE_VALUE
)
5477 || !(false_edge
->flags
& EDGE_FALSE_VALUE
)
5478 || (true_edge
->flags
& (EDGE_FALLTHRU
| EDGE_ABNORMAL
))
5479 || (false_edge
->flags
& (EDGE_FALLTHRU
| EDGE_ABNORMAL
))
5480 || EDGE_COUNT (bb
->succs
) >= 3)
5482 error ("wrong outgoing edge flags at end of bb %d",
5490 if (simple_goto_p (stmt
))
5492 error ("explicit goto at end of bb %d", bb
->index
);
5497 /* FIXME. We should double check that the labels in the
5498 destination blocks have their address taken. */
5499 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5500 if ((e
->flags
& (EDGE_FALLTHRU
| EDGE_TRUE_VALUE
5501 | EDGE_FALSE_VALUE
))
5502 || !(e
->flags
& EDGE_ABNORMAL
))
5504 error ("wrong outgoing edge flags at end of bb %d",
5512 if (!gimple_call_builtin_p (stmt
, BUILT_IN_RETURN
))
5516 if (!single_succ_p (bb
)
5517 || (single_succ_edge (bb
)->flags
5518 & (EDGE_FALLTHRU
| EDGE_ABNORMAL
5519 | EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
)))
5521 error ("wrong outgoing edge flags at end of bb %d", bb
->index
);
5524 if (single_succ (bb
) != EXIT_BLOCK_PTR_FOR_FN (cfun
))
5526 error ("return edge does not point to exit in bb %d",
5534 gswitch
*switch_stmt
= as_a
<gswitch
*> (stmt
);
5539 n
= gimple_switch_num_labels (switch_stmt
);
5541 /* Mark all the destination basic blocks. */
5542 for (i
= 0; i
< n
; ++i
)
5544 tree lab
= CASE_LABEL (gimple_switch_label (switch_stmt
, i
));
5545 basic_block label_bb
= label_to_block (lab
);
5546 gcc_assert (!label_bb
->aux
|| label_bb
->aux
== (void *)1);
5547 label_bb
->aux
= (void *)1;
5550 /* Verify that the case labels are sorted. */
5551 prev
= gimple_switch_label (switch_stmt
, 0);
5552 for (i
= 1; i
< n
; ++i
)
5554 tree c
= gimple_switch_label (switch_stmt
, i
);
5557 error ("found default case not at the start of "
5563 && !tree_int_cst_lt (CASE_LOW (prev
), CASE_LOW (c
)))
5565 error ("case labels not sorted: ");
5566 print_generic_expr (stderr
, prev
);
5567 fprintf (stderr
," is greater than ");
5568 print_generic_expr (stderr
, c
);
5569 fprintf (stderr
," but comes before it.\n");
5574 /* VRP will remove the default case if it can prove it will
5575 never be executed. So do not verify there always exists
5576 a default case here. */
5578 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5582 error ("extra outgoing edge %d->%d",
5583 bb
->index
, e
->dest
->index
);
5587 e
->dest
->aux
= (void *)2;
5588 if ((e
->flags
& (EDGE_FALLTHRU
| EDGE_ABNORMAL
5589 | EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
)))
5591 error ("wrong outgoing edge flags at end of bb %d",
5597 /* Check that we have all of them. */
5598 for (i
= 0; i
< n
; ++i
)
5600 tree lab
= CASE_LABEL (gimple_switch_label (switch_stmt
, i
));
5601 basic_block label_bb
= label_to_block (lab
);
5603 if (label_bb
->aux
!= (void *)2)
5605 error ("missing edge %i->%i", bb
->index
, label_bb
->index
);
5610 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5611 e
->dest
->aux
= (void *)0;
5615 case GIMPLE_EH_DISPATCH
:
5616 err
|= verify_eh_dispatch_edge (as_a
<geh_dispatch
*> (stmt
));
5624 if (dom_info_state (CDI_DOMINATORS
) >= DOM_NO_FAST_QUERY
)
5625 verify_dominators (CDI_DOMINATORS
);
5631 /* Updates phi nodes after creating a forwarder block joined
5632 by edge FALLTHRU. */
5635 gimple_make_forwarder_block (edge fallthru
)
5639 basic_block dummy
, bb
;
5643 dummy
= fallthru
->src
;
5644 bb
= fallthru
->dest
;
5646 if (single_pred_p (bb
))
5649 /* If we redirected a branch we must create new PHI nodes at the
5651 for (gsi
= gsi_start_phis (dummy
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5653 gphi
*phi
, *new_phi
;
5656 var
= gimple_phi_result (phi
);
5657 new_phi
= create_phi_node (var
, bb
);
5658 gimple_phi_set_result (phi
, copy_ssa_name (var
, phi
));
5659 add_phi_arg (new_phi
, gimple_phi_result (phi
), fallthru
,
5663 /* Add the arguments we have stored on edges. */
5664 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
5669 flush_pending_stmts (e
);
5674 /* Return a non-special label in the head of basic block BLOCK.
5675 Create one if it doesn't exist. */
5678 gimple_block_label (basic_block bb
)
5680 gimple_stmt_iterator i
, s
= gsi_start_bb (bb
);
5685 for (i
= s
; !gsi_end_p (i
); first
= false, gsi_next (&i
))
5687 stmt
= dyn_cast
<glabel
*> (gsi_stmt (i
));
5690 label
= gimple_label_label (stmt
);
5691 if (!DECL_NONLOCAL (label
))
5694 gsi_move_before (&i
, &s
);
5699 label
= create_artificial_label (UNKNOWN_LOCATION
);
5700 stmt
= gimple_build_label (label
);
5701 gsi_insert_before (&s
, stmt
, GSI_NEW_STMT
);
5706 /* Attempt to perform edge redirection by replacing a possibly complex
5707 jump instruction by a goto or by removing the jump completely.
5708 This can apply only if all edges now point to the same block. The
5709 parameters and return values are equivalent to
5710 redirect_edge_and_branch. */
5713 gimple_try_redirect_by_replacing_jump (edge e
, basic_block target
)
5715 basic_block src
= e
->src
;
5716 gimple_stmt_iterator i
;
5719 /* We can replace or remove a complex jump only when we have exactly
5721 if (EDGE_COUNT (src
->succs
) != 2
5722 /* Verify that all targets will be TARGET. Specifically, the
5723 edge that is not E must also go to TARGET. */
5724 || EDGE_SUCC (src
, EDGE_SUCC (src
, 0) == e
)->dest
!= target
)
5727 i
= gsi_last_bb (src
);
5731 stmt
= gsi_stmt (i
);
5733 if (gimple_code (stmt
) == GIMPLE_COND
|| gimple_code (stmt
) == GIMPLE_SWITCH
)
5735 gsi_remove (&i
, true);
5736 e
= ssa_redirect_edge (e
, target
);
5737 e
->flags
= EDGE_FALLTHRU
;
5745 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
5746 edge representing the redirected branch. */
5749 gimple_redirect_edge_and_branch (edge e
, basic_block dest
)
5751 basic_block bb
= e
->src
;
5752 gimple_stmt_iterator gsi
;
5756 if (e
->flags
& EDGE_ABNORMAL
)
5759 if (e
->dest
== dest
)
5762 if (e
->flags
& EDGE_EH
)
5763 return redirect_eh_edge (e
, dest
);
5765 if (e
->src
!= ENTRY_BLOCK_PTR_FOR_FN (cfun
))
5767 ret
= gimple_try_redirect_by_replacing_jump (e
, dest
);
5772 gsi
= gsi_last_bb (bb
);
5773 stmt
= gsi_end_p (gsi
) ? NULL
: gsi_stmt (gsi
);
5775 switch (stmt
? gimple_code (stmt
) : GIMPLE_ERROR_MARK
)
5778 /* For COND_EXPR, we only need to redirect the edge. */
5782 /* No non-abnormal edges should lead from a non-simple goto, and
5783 simple ones should be represented implicitly. */
5788 gswitch
*switch_stmt
= as_a
<gswitch
*> (stmt
);
5789 tree label
= gimple_block_label (dest
);
5790 tree cases
= get_cases_for_edge (e
, switch_stmt
);
5792 /* If we have a list of cases associated with E, then use it
5793 as it's a lot faster than walking the entire case vector. */
5796 edge e2
= find_edge (e
->src
, dest
);
5803 CASE_LABEL (cases
) = label
;
5804 cases
= CASE_CHAIN (cases
);
5807 /* If there was already an edge in the CFG, then we need
5808 to move all the cases associated with E to E2. */
5811 tree cases2
= get_cases_for_edge (e2
, switch_stmt
);
5813 CASE_CHAIN (last
) = CASE_CHAIN (cases2
);
5814 CASE_CHAIN (cases2
) = first
;
5816 bitmap_set_bit (touched_switch_bbs
, gimple_bb (stmt
)->index
);
5820 size_t i
, n
= gimple_switch_num_labels (switch_stmt
);
5822 for (i
= 0; i
< n
; i
++)
5824 tree elt
= gimple_switch_label (switch_stmt
, i
);
5825 if (label_to_block (CASE_LABEL (elt
)) == e
->dest
)
5826 CASE_LABEL (elt
) = label
;
5834 gasm
*asm_stmt
= as_a
<gasm
*> (stmt
);
5835 int i
, n
= gimple_asm_nlabels (asm_stmt
);
5838 for (i
= 0; i
< n
; ++i
)
5840 tree cons
= gimple_asm_label_op (asm_stmt
, i
);
5841 if (label_to_block (TREE_VALUE (cons
)) == e
->dest
)
5844 label
= gimple_block_label (dest
);
5845 TREE_VALUE (cons
) = label
;
5849 /* If we didn't find any label matching the former edge in the
5850 asm labels, we must be redirecting the fallthrough
5852 gcc_assert (label
|| (e
->flags
& EDGE_FALLTHRU
));
5857 gsi_remove (&gsi
, true);
5858 e
->flags
|= EDGE_FALLTHRU
;
5861 case GIMPLE_OMP_RETURN
:
5862 case GIMPLE_OMP_CONTINUE
:
5863 case GIMPLE_OMP_SECTIONS_SWITCH
:
5864 case GIMPLE_OMP_FOR
:
5865 /* The edges from OMP constructs can be simply redirected. */
5868 case GIMPLE_EH_DISPATCH
:
5869 if (!(e
->flags
& EDGE_FALLTHRU
))
5870 redirect_eh_dispatch_edge (as_a
<geh_dispatch
*> (stmt
), e
, dest
);
5873 case GIMPLE_TRANSACTION
:
5874 if (e
->flags
& EDGE_TM_ABORT
)
5875 gimple_transaction_set_label_over (as_a
<gtransaction
*> (stmt
),
5876 gimple_block_label (dest
));
5877 else if (e
->flags
& EDGE_TM_UNINSTRUMENTED
)
5878 gimple_transaction_set_label_uninst (as_a
<gtransaction
*> (stmt
),
5879 gimple_block_label (dest
));
5881 gimple_transaction_set_label_norm (as_a
<gtransaction
*> (stmt
),
5882 gimple_block_label (dest
));
5886 /* Otherwise it must be a fallthru edge, and we don't need to
5887 do anything besides redirecting it. */
5888 gcc_assert (e
->flags
& EDGE_FALLTHRU
);
5892 /* Update/insert PHI nodes as necessary. */
5894 /* Now update the edges in the CFG. */
5895 e
= ssa_redirect_edge (e
, dest
);
5900 /* Returns true if it is possible to remove edge E by redirecting
5901 it to the destination of the other edge from E->src. */
5904 gimple_can_remove_branch_p (const_edge e
)
5906 if (e
->flags
& (EDGE_ABNORMAL
| EDGE_EH
))
5912 /* Simple wrapper, as we can always redirect fallthru edges. */
5915 gimple_redirect_edge_and_branch_force (edge e
, basic_block dest
)
5917 e
= gimple_redirect_edge_and_branch (e
, dest
);
5924 /* Splits basic block BB after statement STMT (but at least after the
5925 labels). If STMT is NULL, BB is split just after the labels. */
5928 gimple_split_block (basic_block bb
, void *stmt
)
5930 gimple_stmt_iterator gsi
;
5931 gimple_stmt_iterator gsi_tgt
;
5937 new_bb
= create_empty_bb (bb
);
5939 /* Redirect the outgoing edges. */
5940 new_bb
->succs
= bb
->succs
;
5942 FOR_EACH_EDGE (e
, ei
, new_bb
->succs
)
5945 /* Get a stmt iterator pointing to the first stmt to move. */
5946 if (!stmt
|| gimple_code ((gimple
*) stmt
) == GIMPLE_LABEL
)
5947 gsi
= gsi_after_labels (bb
);
5950 gsi
= gsi_for_stmt ((gimple
*) stmt
);
5954 /* Move everything from GSI to the new basic block. */
5955 if (gsi_end_p (gsi
))
5958 /* Split the statement list - avoid re-creating new containers as this
5959 brings ugly quadratic memory consumption in the inliner.
5960 (We are still quadratic since we need to update stmt BB pointers,
5962 gsi_split_seq_before (&gsi
, &list
);
5963 set_bb_seq (new_bb
, list
);
5964 for (gsi_tgt
= gsi_start (list
);
5965 !gsi_end_p (gsi_tgt
); gsi_next (&gsi_tgt
))
5966 gimple_set_bb (gsi_stmt (gsi_tgt
), new_bb
);
5972 /* Moves basic block BB after block AFTER. */
5975 gimple_move_block_after (basic_block bb
, basic_block after
)
5977 if (bb
->prev_bb
== after
)
5981 link_block (bb
, after
);
5987 /* Return TRUE if block BB has no executable statements, otherwise return
5991 gimple_empty_block_p (basic_block bb
)
5993 /* BB must have no executable statements. */
5994 gimple_stmt_iterator gsi
= gsi_after_labels (bb
);
5997 if (gsi_end_p (gsi
))
5999 if (is_gimple_debug (gsi_stmt (gsi
)))
6000 gsi_next_nondebug (&gsi
);
6001 return gsi_end_p (gsi
);
6005 /* Split a basic block if it ends with a conditional branch and if the
6006 other part of the block is not empty. */
6009 gimple_split_block_before_cond_jump (basic_block bb
)
6011 gimple
*last
, *split_point
;
6012 gimple_stmt_iterator gsi
= gsi_last_nondebug_bb (bb
);
6013 if (gsi_end_p (gsi
))
6015 last
= gsi_stmt (gsi
);
6016 if (gimple_code (last
) != GIMPLE_COND
6017 && gimple_code (last
) != GIMPLE_SWITCH
)
6020 split_point
= gsi_stmt (gsi
);
6021 return split_block (bb
, split_point
)->dest
;
6025 /* Return true if basic_block can be duplicated. */
6028 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED
)
6033 /* Create a duplicate of the basic block BB. NOTE: This does not
6034 preserve SSA form. */
6037 gimple_duplicate_bb (basic_block bb
)
6040 gimple_stmt_iterator gsi_tgt
;
6042 new_bb
= create_empty_bb (EXIT_BLOCK_PTR_FOR_FN (cfun
)->prev_bb
);
6044 /* Copy the PHI nodes. We ignore PHI node arguments here because
6045 the incoming edges have not been setup yet. */
6046 for (gphi_iterator gpi
= gsi_start_phis (bb
);
6052 copy
= create_phi_node (NULL_TREE
, new_bb
);
6053 create_new_def_for (gimple_phi_result (phi
), copy
,
6054 gimple_phi_result_ptr (copy
));
6055 gimple_set_uid (copy
, gimple_uid (phi
));
6058 gsi_tgt
= gsi_start_bb (new_bb
);
6059 for (gimple_stmt_iterator gsi
= gsi_start_bb (bb
);
6063 def_operand_p def_p
;
6064 ssa_op_iter op_iter
;
6066 gimple
*stmt
, *copy
;
6068 stmt
= gsi_stmt (gsi
);
6069 if (gimple_code (stmt
) == GIMPLE_LABEL
)
6072 /* Don't duplicate label debug stmts. */
6073 if (gimple_debug_bind_p (stmt
)
6074 && TREE_CODE (gimple_debug_bind_get_var (stmt
))
6078 /* Create a new copy of STMT and duplicate STMT's virtual
6080 copy
= gimple_copy (stmt
);
6081 gsi_insert_after (&gsi_tgt
, copy
, GSI_NEW_STMT
);
6083 maybe_duplicate_eh_stmt (copy
, stmt
);
6084 gimple_duplicate_stmt_histograms (cfun
, copy
, cfun
, stmt
);
6086 /* When copying around a stmt writing into a local non-user
6087 aggregate, make sure it won't share stack slot with other
6089 lhs
= gimple_get_lhs (stmt
);
6090 if (lhs
&& TREE_CODE (lhs
) != SSA_NAME
)
6092 tree base
= get_base_address (lhs
);
6094 && (VAR_P (base
) || TREE_CODE (base
) == RESULT_DECL
)
6095 && DECL_IGNORED_P (base
)
6096 && !TREE_STATIC (base
)
6097 && !DECL_EXTERNAL (base
)
6098 && (!VAR_P (base
) || !DECL_HAS_VALUE_EXPR_P (base
)))
6099 DECL_NONSHAREABLE (base
) = 1;
6102 /* Create new names for all the definitions created by COPY and
6103 add replacement mappings for each new name. */
6104 FOR_EACH_SSA_DEF_OPERAND (def_p
, copy
, op_iter
, SSA_OP_ALL_DEFS
)
6105 create_new_def_for (DEF_FROM_PTR (def_p
), copy
, def_p
);
6111 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
6114 add_phi_args_after_copy_edge (edge e_copy
)
6116 basic_block bb
, bb_copy
= e_copy
->src
, dest
;
6119 gphi
*phi
, *phi_copy
;
6121 gphi_iterator psi
, psi_copy
;
6123 if (gimple_seq_empty_p (phi_nodes (e_copy
->dest
)))
6126 bb
= bb_copy
->flags
& BB_DUPLICATED
? get_bb_original (bb_copy
) : bb_copy
;
6128 if (e_copy
->dest
->flags
& BB_DUPLICATED
)
6129 dest
= get_bb_original (e_copy
->dest
);
6131 dest
= e_copy
->dest
;
6133 e
= find_edge (bb
, dest
);
6136 /* During loop unrolling the target of the latch edge is copied.
6137 In this case we are not looking for edge to dest, but to
6138 duplicated block whose original was dest. */
6139 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
6141 if ((e
->dest
->flags
& BB_DUPLICATED
)
6142 && get_bb_original (e
->dest
) == dest
)
6146 gcc_assert (e
!= NULL
);
6149 for (psi
= gsi_start_phis (e
->dest
),
6150 psi_copy
= gsi_start_phis (e_copy
->dest
);
6152 gsi_next (&psi
), gsi_next (&psi_copy
))
6155 phi_copy
= psi_copy
.phi ();
6156 def
= PHI_ARG_DEF_FROM_EDGE (phi
, e
);
6157 add_phi_arg (phi_copy
, def
, e_copy
,
6158 gimple_phi_arg_location_from_edge (phi
, e
));
6163 /* Basic block BB_COPY was created by code duplication. Add phi node
6164 arguments for edges going out of BB_COPY. The blocks that were
6165 duplicated have BB_DUPLICATED set. */
6168 add_phi_args_after_copy_bb (basic_block bb_copy
)
6173 FOR_EACH_EDGE (e_copy
, ei
, bb_copy
->succs
)
6175 add_phi_args_after_copy_edge (e_copy
);
6179 /* Blocks in REGION_COPY array of length N_REGION were created by
6180 duplication of basic blocks. Add phi node arguments for edges
6181 going from these blocks. If E_COPY is not NULL, also add
6182 phi node arguments for its destination.*/
6185 add_phi_args_after_copy (basic_block
*region_copy
, unsigned n_region
,
6190 for (i
= 0; i
< n_region
; i
++)
6191 region_copy
[i
]->flags
|= BB_DUPLICATED
;
6193 for (i
= 0; i
< n_region
; i
++)
6194 add_phi_args_after_copy_bb (region_copy
[i
]);
6196 add_phi_args_after_copy_edge (e_copy
);
6198 for (i
= 0; i
< n_region
; i
++)
6199 region_copy
[i
]->flags
&= ~BB_DUPLICATED
;
6202 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
6203 important exit edge EXIT. By important we mean that no SSA name defined
6204 inside region is live over the other exit edges of the region. All entry
6205 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
6206 to the duplicate of the region. Dominance and loop information is
6207 updated if UPDATE_DOMINANCE is true, but not the SSA web. If
6208 UPDATE_DOMINANCE is false then we assume that the caller will update the
6209 dominance information after calling this function. The new basic
6210 blocks are stored to REGION_COPY in the same order as they had in REGION,
6211 provided that REGION_COPY is not NULL.
6212 The function returns false if it is unable to copy the region,
6216 gimple_duplicate_sese_region (edge entry
, edge exit
,
6217 basic_block
*region
, unsigned n_region
,
6218 basic_block
*region_copy
,
6219 bool update_dominance
)
6222 bool free_region_copy
= false, copying_header
= false;
6223 struct loop
*loop
= entry
->dest
->loop_father
;
6225 vec
<basic_block
> doms
;
6227 int total_freq
= 0, entry_freq
= 0;
6228 profile_count total_count
= profile_count::uninitialized ();
6229 profile_count entry_count
= profile_count::uninitialized ();
6231 if (!can_copy_bbs_p (region
, n_region
))
6234 /* Some sanity checking. Note that we do not check for all possible
6235 missuses of the functions. I.e. if you ask to copy something weird,
6236 it will work, but the state of structures probably will not be
6238 for (i
= 0; i
< n_region
; i
++)
6240 /* We do not handle subloops, i.e. all the blocks must belong to the
6242 if (region
[i
]->loop_father
!= loop
)
6245 if (region
[i
] != entry
->dest
6246 && region
[i
] == loop
->header
)
6250 /* In case the function is used for loop header copying (which is the primary
6251 use), ensure that EXIT and its copy will be new latch and entry edges. */
6252 if (loop
->header
== entry
->dest
)
6254 copying_header
= true;
6256 if (!dominated_by_p (CDI_DOMINATORS
, loop
->latch
, exit
->src
))
6259 for (i
= 0; i
< n_region
; i
++)
6260 if (region
[i
] != exit
->src
6261 && dominated_by_p (CDI_DOMINATORS
, region
[i
], exit
->src
))
6265 initialize_original_copy_tables ();
6268 set_loop_copy (loop
, loop_outer (loop
));
6270 set_loop_copy (loop
, loop
);
6274 region_copy
= XNEWVEC (basic_block
, n_region
);
6275 free_region_copy
= true;
6278 /* Record blocks outside the region that are dominated by something
6280 if (update_dominance
)
6283 doms
= get_dominated_by_region (CDI_DOMINATORS
, region
, n_region
);
6286 if (entry
->dest
->count
.initialized_p ())
6288 total_count
= entry
->dest
->count
;
6289 entry_count
= entry
->count
;
6290 /* Fix up corner cases, to avoid division by zero or creation of negative
6292 if (entry_count
> total_count
)
6293 entry_count
= total_count
;
6295 if (!(total_count
> 0) || !(entry_count
> 0))
6297 total_freq
= entry
->dest
->frequency
;
6298 entry_freq
= EDGE_FREQUENCY (entry
);
6299 /* Fix up corner cases, to avoid division by zero or creation of negative
6301 if (total_freq
== 0)
6303 else if (entry_freq
> total_freq
)
6304 entry_freq
= total_freq
;
6307 copy_bbs (region
, n_region
, region_copy
, &exit
, 1, &exit_copy
, loop
,
6308 split_edge_bb_loc (entry
), update_dominance
);
6309 if (total_count
> 0 && entry_count
> 0)
6311 scale_bbs_frequencies_profile_count (region
, n_region
,
6312 total_count
- entry_count
,
6314 scale_bbs_frequencies_profile_count (region_copy
, n_region
, entry_count
,
6319 scale_bbs_frequencies_int (region
, n_region
, total_freq
- entry_freq
,
6321 scale_bbs_frequencies_int (region_copy
, n_region
, entry_freq
, total_freq
);
6326 loop
->header
= exit
->dest
;
6327 loop
->latch
= exit
->src
;
6330 /* Redirect the entry and add the phi node arguments. */
6331 redirected
= redirect_edge_and_branch (entry
, get_bb_copy (entry
->dest
));
6332 gcc_assert (redirected
!= NULL
);
6333 flush_pending_stmts (entry
);
6335 /* Concerning updating of dominators: We must recount dominators
6336 for entry block and its copy. Anything that is outside of the
6337 region, but was dominated by something inside needs recounting as
6339 if (update_dominance
)
6341 set_immediate_dominator (CDI_DOMINATORS
, entry
->dest
, entry
->src
);
6342 doms
.safe_push (get_bb_original (entry
->dest
));
6343 iterate_fix_dominators (CDI_DOMINATORS
, doms
, false);
6347 /* Add the other PHI node arguments. */
6348 add_phi_args_after_copy (region_copy
, n_region
, NULL
);
6350 if (free_region_copy
)
6353 free_original_copy_tables ();
6357 /* Checks if BB is part of the region defined by N_REGION BBS. */
6359 bb_part_of_region_p (basic_block bb
, basic_block
* bbs
, unsigned n_region
)
6363 for (n
= 0; n
< n_region
; n
++)
6371 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
6372 are stored to REGION_COPY in the same order in that they appear
6373 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
6374 the region, EXIT an exit from it. The condition guarding EXIT
6375 is moved to ENTRY. Returns true if duplication succeeds, false
6401 gimple_duplicate_sese_tail (edge entry
, edge exit
,
6402 basic_block
*region
, unsigned n_region
,
6403 basic_block
*region_copy
)
6406 bool free_region_copy
= false;
6407 struct loop
*loop
= exit
->dest
->loop_father
;
6408 struct loop
*orig_loop
= entry
->dest
->loop_father
;
6409 basic_block switch_bb
, entry_bb
, nentry_bb
;
6410 vec
<basic_block
> doms
;
6411 int total_freq
= 0, exit_freq
= 0;
6412 profile_count total_count
= profile_count::uninitialized (),
6413 exit_count
= profile_count::uninitialized ();
6414 edge exits
[2], nexits
[2], e
;
6415 gimple_stmt_iterator gsi
;
6418 basic_block exit_bb
;
6422 struct loop
*target
, *aloop
, *cloop
;
6424 gcc_assert (EDGE_COUNT (exit
->src
->succs
) == 2);
6426 exits
[1] = EDGE_SUCC (exit
->src
, EDGE_SUCC (exit
->src
, 0) == exit
);
6428 if (!can_copy_bbs_p (region
, n_region
))
6431 initialize_original_copy_tables ();
6432 set_loop_copy (orig_loop
, loop
);
6435 for (aloop
= orig_loop
->inner
; aloop
; aloop
= aloop
->next
)
6437 if (bb_part_of_region_p (aloop
->header
, region
, n_region
))
6439 cloop
= duplicate_loop (aloop
, target
);
6440 duplicate_subloops (aloop
, cloop
);
6446 region_copy
= XNEWVEC (basic_block
, n_region
);
6447 free_region_copy
= true;
6450 gcc_assert (!need_ssa_update_p (cfun
));
6452 /* Record blocks outside the region that are dominated by something
6454 doms
= get_dominated_by_region (CDI_DOMINATORS
, region
, n_region
);
6456 if (exit
->src
->count
> 0)
6458 total_count
= exit
->src
->count
;
6459 exit_count
= exit
->count
;
6460 /* Fix up corner cases, to avoid division by zero or creation of negative
6462 if (exit_count
> total_count
)
6463 exit_count
= total_count
;
6467 total_freq
= exit
->src
->frequency
;
6468 exit_freq
= EDGE_FREQUENCY (exit
);
6469 /* Fix up corner cases, to avoid division by zero or creation of negative
6471 if (total_freq
== 0)
6473 if (exit_freq
> total_freq
)
6474 exit_freq
= total_freq
;
6477 copy_bbs (region
, n_region
, region_copy
, exits
, 2, nexits
, orig_loop
,
6478 split_edge_bb_loc (exit
), true);
6479 if (total_count
.initialized_p ())
6481 scale_bbs_frequencies_profile_count (region
, n_region
,
6482 total_count
- exit_count
,
6484 scale_bbs_frequencies_profile_count (region_copy
, n_region
, exit_count
,
6489 scale_bbs_frequencies_int (region
, n_region
, total_freq
- exit_freq
,
6491 scale_bbs_frequencies_int (region_copy
, n_region
, exit_freq
, total_freq
);
6494 /* Create the switch block, and put the exit condition to it. */
6495 entry_bb
= entry
->dest
;
6496 nentry_bb
= get_bb_copy (entry_bb
);
6497 if (!last_stmt (entry
->src
)
6498 || !stmt_ends_bb_p (last_stmt (entry
->src
)))
6499 switch_bb
= entry
->src
;
6501 switch_bb
= split_edge (entry
);
6502 set_immediate_dominator (CDI_DOMINATORS
, nentry_bb
, switch_bb
);
6504 gsi
= gsi_last_bb (switch_bb
);
6505 cond_stmt
= last_stmt (exit
->src
);
6506 gcc_assert (gimple_code (cond_stmt
) == GIMPLE_COND
);
6507 cond_stmt
= gimple_copy (cond_stmt
);
6509 gsi_insert_after (&gsi
, cond_stmt
, GSI_NEW_STMT
);
6511 sorig
= single_succ_edge (switch_bb
);
6512 sorig
->flags
= exits
[1]->flags
;
6513 sorig
->probability
= exits
[1]->probability
;
6514 sorig
->count
= exits
[1]->count
;
6515 snew
= make_edge (switch_bb
, nentry_bb
, exits
[0]->flags
);
6516 snew
->probability
= exits
[0]->probability
;
6517 snew
->count
= exits
[1]->count
;
6520 /* Register the new edge from SWITCH_BB in loop exit lists. */
6521 rescan_loop_exit (snew
, true, false);
6523 /* Add the PHI node arguments. */
6524 add_phi_args_after_copy (region_copy
, n_region
, snew
);
6526 /* Get rid of now superfluous conditions and associated edges (and phi node
6528 exit_bb
= exit
->dest
;
6530 e
= redirect_edge_and_branch (exits
[0], exits
[1]->dest
);
6531 PENDING_STMT (e
) = NULL
;
6533 /* The latch of ORIG_LOOP was copied, and so was the backedge
6534 to the original header. We redirect this backedge to EXIT_BB. */
6535 for (i
= 0; i
< n_region
; i
++)
6536 if (get_bb_original (region_copy
[i
]) == orig_loop
->latch
)
6538 gcc_assert (single_succ_edge (region_copy
[i
]));
6539 e
= redirect_edge_and_branch (single_succ_edge (region_copy
[i
]), exit_bb
);
6540 PENDING_STMT (e
) = NULL
;
6541 for (psi
= gsi_start_phis (exit_bb
);
6546 def
= PHI_ARG_DEF (phi
, nexits
[0]->dest_idx
);
6547 add_phi_arg (phi
, def
, e
, gimple_phi_arg_location_from_edge (phi
, e
));
6550 e
= redirect_edge_and_branch (nexits
[1], nexits
[0]->dest
);
6551 PENDING_STMT (e
) = NULL
;
6553 /* Anything that is outside of the region, but was dominated by something
6554 inside needs to update dominance info. */
6555 iterate_fix_dominators (CDI_DOMINATORS
, doms
, false);
6557 /* Update the SSA web. */
6558 update_ssa (TODO_update_ssa
);
6560 if (free_region_copy
)
6563 free_original_copy_tables ();
6567 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
6568 adding blocks when the dominator traversal reaches EXIT. This
6569 function silently assumes that ENTRY strictly dominates EXIT. */
6572 gather_blocks_in_sese_region (basic_block entry
, basic_block exit
,
6573 vec
<basic_block
> *bbs_p
)
6577 for (son
= first_dom_son (CDI_DOMINATORS
, entry
);
6579 son
= next_dom_son (CDI_DOMINATORS
, son
))
6581 bbs_p
->safe_push (son
);
6583 gather_blocks_in_sese_region (son
, exit
, bbs_p
);
6587 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
6588 The duplicates are recorded in VARS_MAP. */
6591 replace_by_duplicate_decl (tree
*tp
, hash_map
<tree
, tree
> *vars_map
,
6594 tree t
= *tp
, new_t
;
6595 struct function
*f
= DECL_STRUCT_FUNCTION (to_context
);
6597 if (DECL_CONTEXT (t
) == to_context
)
6601 tree
&loc
= vars_map
->get_or_insert (t
, &existed
);
6607 new_t
= copy_var_decl (t
, DECL_NAME (t
), TREE_TYPE (t
));
6608 add_local_decl (f
, new_t
);
6612 gcc_assert (TREE_CODE (t
) == CONST_DECL
);
6613 new_t
= copy_node (t
);
6615 DECL_CONTEXT (new_t
) = to_context
;
6626 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
6627 VARS_MAP maps old ssa names and var_decls to the new ones. */
6630 replace_ssa_name (tree name
, hash_map
<tree
, tree
> *vars_map
,
6635 gcc_assert (!virtual_operand_p (name
));
6637 tree
*loc
= vars_map
->get (name
);
6641 tree decl
= SSA_NAME_VAR (name
);
6644 gcc_assert (!SSA_NAME_IS_DEFAULT_DEF (name
));
6645 replace_by_duplicate_decl (&decl
, vars_map
, to_context
);
6646 new_name
= make_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context
),
6647 decl
, SSA_NAME_DEF_STMT (name
));
6650 new_name
= copy_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context
),
6651 name
, SSA_NAME_DEF_STMT (name
));
6653 /* Now that we've used the def stmt to define new_name, make sure it
6654 doesn't define name anymore. */
6655 SSA_NAME_DEF_STMT (name
) = NULL
;
6657 vars_map
->put (name
, new_name
);
6671 hash_map
<tree
, tree
> *vars_map
;
6672 htab_t new_label_map
;
6673 hash_map
<void *, void *> *eh_map
;
6677 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
6678 contained in *TP if it has been ORIG_BLOCK previously and change the
6679 DECL_CONTEXT of every local variable referenced in *TP. */
6682 move_stmt_op (tree
*tp
, int *walk_subtrees
, void *data
)
6684 struct walk_stmt_info
*wi
= (struct walk_stmt_info
*) data
;
6685 struct move_stmt_d
*p
= (struct move_stmt_d
*) wi
->info
;
6690 tree block
= TREE_BLOCK (t
);
6691 if (block
== NULL_TREE
)
6693 else if (block
== p
->orig_block
6694 || p
->orig_block
== NULL_TREE
)
6695 TREE_SET_BLOCK (t
, p
->new_block
);
6696 else if (flag_checking
)
6698 while (block
&& TREE_CODE (block
) == BLOCK
&& block
!= p
->orig_block
)
6699 block
= BLOCK_SUPERCONTEXT (block
);
6700 gcc_assert (block
== p
->orig_block
);
6703 else if (DECL_P (t
) || TREE_CODE (t
) == SSA_NAME
)
6705 if (TREE_CODE (t
) == SSA_NAME
)
6706 *tp
= replace_ssa_name (t
, p
->vars_map
, p
->to_context
);
6707 else if (TREE_CODE (t
) == PARM_DECL
6708 && gimple_in_ssa_p (cfun
))
6709 *tp
= *(p
->vars_map
->get (t
));
6710 else if (TREE_CODE (t
) == LABEL_DECL
)
6712 if (p
->new_label_map
)
6714 struct tree_map in
, *out
;
6716 out
= (struct tree_map
*)
6717 htab_find_with_hash (p
->new_label_map
, &in
, DECL_UID (t
));
6722 /* For FORCED_LABELs we can end up with references from other
6723 functions if some SESE regions are outlined. It is UB to
6724 jump in between them, but they could be used just for printing
6725 addresses etc. In that case, DECL_CONTEXT on the label should
6726 be the function containing the glabel stmt with that LABEL_DECL,
6727 rather than whatever function a reference to the label was seen
6729 if (!FORCED_LABEL (t
) && !DECL_NONLOCAL (t
))
6730 DECL_CONTEXT (t
) = p
->to_context
;
6732 else if (p
->remap_decls_p
)
6734 /* Replace T with its duplicate. T should no longer appear in the
6735 parent function, so this looks wasteful; however, it may appear
6736 in referenced_vars, and more importantly, as virtual operands of
6737 statements, and in alias lists of other variables. It would be
6738 quite difficult to expunge it from all those places. ??? It might
6739 suffice to do this for addressable variables. */
6740 if ((VAR_P (t
) && !is_global_var (t
))
6741 || TREE_CODE (t
) == CONST_DECL
)
6742 replace_by_duplicate_decl (tp
, p
->vars_map
, p
->to_context
);
6746 else if (TYPE_P (t
))
6752 /* Helper for move_stmt_r. Given an EH region number for the source
6753 function, map that to the duplicate EH regio number in the dest. */
6756 move_stmt_eh_region_nr (int old_nr
, struct move_stmt_d
*p
)
6758 eh_region old_r
, new_r
;
6760 old_r
= get_eh_region_from_number (old_nr
);
6761 new_r
= static_cast<eh_region
> (*p
->eh_map
->get (old_r
));
6763 return new_r
->index
;
6766 /* Similar, but operate on INTEGER_CSTs. */
6769 move_stmt_eh_region_tree_nr (tree old_t_nr
, struct move_stmt_d
*p
)
6773 old_nr
= tree_to_shwi (old_t_nr
);
6774 new_nr
= move_stmt_eh_region_nr (old_nr
, p
);
6776 return build_int_cst (integer_type_node
, new_nr
);
6779 /* Like move_stmt_op, but for gimple statements.
6781 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
6782 contained in the current statement in *GSI_P and change the
6783 DECL_CONTEXT of every local variable referenced in the current
6787 move_stmt_r (gimple_stmt_iterator
*gsi_p
, bool *handled_ops_p
,
6788 struct walk_stmt_info
*wi
)
6790 struct move_stmt_d
*p
= (struct move_stmt_d
*) wi
->info
;
6791 gimple
*stmt
= gsi_stmt (*gsi_p
);
6792 tree block
= gimple_block (stmt
);
6794 if (block
== p
->orig_block
6795 || (p
->orig_block
== NULL_TREE
6796 && block
!= NULL_TREE
))
6797 gimple_set_block (stmt
, p
->new_block
);
6799 switch (gimple_code (stmt
))
6802 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
6804 tree r
, fndecl
= gimple_call_fndecl (stmt
);
6805 if (fndecl
&& DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
)
6806 switch (DECL_FUNCTION_CODE (fndecl
))
6808 case BUILT_IN_EH_COPY_VALUES
:
6809 r
= gimple_call_arg (stmt
, 1);
6810 r
= move_stmt_eh_region_tree_nr (r
, p
);
6811 gimple_call_set_arg (stmt
, 1, r
);
6814 case BUILT_IN_EH_POINTER
:
6815 case BUILT_IN_EH_FILTER
:
6816 r
= gimple_call_arg (stmt
, 0);
6817 r
= move_stmt_eh_region_tree_nr (r
, p
);
6818 gimple_call_set_arg (stmt
, 0, r
);
6829 gresx
*resx_stmt
= as_a
<gresx
*> (stmt
);
6830 int r
= gimple_resx_region (resx_stmt
);
6831 r
= move_stmt_eh_region_nr (r
, p
);
6832 gimple_resx_set_region (resx_stmt
, r
);
6836 case GIMPLE_EH_DISPATCH
:
6838 geh_dispatch
*eh_dispatch_stmt
= as_a
<geh_dispatch
*> (stmt
);
6839 int r
= gimple_eh_dispatch_region (eh_dispatch_stmt
);
6840 r
= move_stmt_eh_region_nr (r
, p
);
6841 gimple_eh_dispatch_set_region (eh_dispatch_stmt
, r
);
6845 case GIMPLE_OMP_RETURN
:
6846 case GIMPLE_OMP_CONTINUE
:
6851 /* For FORCED_LABEL, move_stmt_op doesn't adjust DECL_CONTEXT,
6852 so that such labels can be referenced from other regions.
6853 Make sure to update it when seeing a GIMPLE_LABEL though,
6854 that is the owner of the label. */
6855 walk_gimple_op (stmt
, move_stmt_op
, wi
);
6856 *handled_ops_p
= true;
6857 tree label
= gimple_label_label (as_a
<glabel
*> (stmt
));
6858 if (FORCED_LABEL (label
) || DECL_NONLOCAL (label
))
6859 DECL_CONTEXT (label
) = p
->to_context
;
6864 if (is_gimple_omp (stmt
))
6866 /* Do not remap variables inside OMP directives. Variables
6867 referenced in clauses and directive header belong to the
6868 parent function and should not be moved into the child
6870 bool save_remap_decls_p
= p
->remap_decls_p
;
6871 p
->remap_decls_p
= false;
6872 *handled_ops_p
= true;
6874 walk_gimple_seq_mod (gimple_omp_body_ptr (stmt
), move_stmt_r
,
6877 p
->remap_decls_p
= save_remap_decls_p
;
6885 /* Move basic block BB from function CFUN to function DEST_FN. The
6886 block is moved out of the original linked list and placed after
6887 block AFTER in the new list. Also, the block is removed from the
6888 original array of blocks and placed in DEST_FN's array of blocks.
6889 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
6890 updated to reflect the moved edges.
6892 The local variables are remapped to new instances, VARS_MAP is used
6893 to record the mapping. */
6896 move_block_to_fn (struct function
*dest_cfun
, basic_block bb
,
6897 basic_block after
, bool update_edge_count_p
,
6898 struct move_stmt_d
*d
)
6900 struct control_flow_graph
*cfg
;
6903 gimple_stmt_iterator si
;
6904 unsigned old_len
, new_len
;
6906 /* Remove BB from dominance structures. */
6907 delete_from_dominance_info (CDI_DOMINATORS
, bb
);
6909 /* Move BB from its current loop to the copy in the new function. */
6912 struct loop
*new_loop
= (struct loop
*)bb
->loop_father
->aux
;
6914 bb
->loop_father
= new_loop
;
6917 /* Link BB to the new linked list. */
6918 move_block_after (bb
, after
);
6920 /* Update the edge count in the corresponding flowgraphs. */
6921 if (update_edge_count_p
)
6922 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
6924 cfun
->cfg
->x_n_edges
--;
6925 dest_cfun
->cfg
->x_n_edges
++;
6928 /* Remove BB from the original basic block array. */
6929 (*cfun
->cfg
->x_basic_block_info
)[bb
->index
] = NULL
;
6930 cfun
->cfg
->x_n_basic_blocks
--;
6932 /* Grow DEST_CFUN's basic block array if needed. */
6933 cfg
= dest_cfun
->cfg
;
6934 cfg
->x_n_basic_blocks
++;
6935 if (bb
->index
>= cfg
->x_last_basic_block
)
6936 cfg
->x_last_basic_block
= bb
->index
+ 1;
6938 old_len
= vec_safe_length (cfg
->x_basic_block_info
);
6939 if ((unsigned) cfg
->x_last_basic_block
>= old_len
)
6941 new_len
= cfg
->x_last_basic_block
+ (cfg
->x_last_basic_block
+ 3) / 4;
6942 vec_safe_grow_cleared (cfg
->x_basic_block_info
, new_len
);
6945 (*cfg
->x_basic_block_info
)[bb
->index
] = bb
;
6947 /* Remap the variables in phi nodes. */
6948 for (gphi_iterator psi
= gsi_start_phis (bb
);
6951 gphi
*phi
= psi
.phi ();
6953 tree op
= PHI_RESULT (phi
);
6957 if (virtual_operand_p (op
))
6959 /* Remove the phi nodes for virtual operands (alias analysis will be
6960 run for the new function, anyway). */
6961 remove_phi_node (&psi
, true);
6965 SET_PHI_RESULT (phi
,
6966 replace_ssa_name (op
, d
->vars_map
, dest_cfun
->decl
));
6967 FOR_EACH_PHI_ARG (use
, phi
, oi
, SSA_OP_USE
)
6969 op
= USE_FROM_PTR (use
);
6970 if (TREE_CODE (op
) == SSA_NAME
)
6971 SET_USE (use
, replace_ssa_name (op
, d
->vars_map
, dest_cfun
->decl
));
6974 for (i
= 0; i
< EDGE_COUNT (bb
->preds
); i
++)
6976 location_t locus
= gimple_phi_arg_location (phi
, i
);
6977 tree block
= LOCATION_BLOCK (locus
);
6979 if (locus
== UNKNOWN_LOCATION
)
6981 if (d
->orig_block
== NULL_TREE
|| block
== d
->orig_block
)
6983 locus
= set_block (locus
, d
->new_block
);
6984 gimple_phi_arg_set_location (phi
, i
, locus
);
6991 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
6993 gimple
*stmt
= gsi_stmt (si
);
6994 struct walk_stmt_info wi
;
6996 memset (&wi
, 0, sizeof (wi
));
6998 walk_gimple_stmt (&si
, move_stmt_r
, move_stmt_op
, &wi
);
7000 if (glabel
*label_stmt
= dyn_cast
<glabel
*> (stmt
))
7002 tree label
= gimple_label_label (label_stmt
);
7003 int uid
= LABEL_DECL_UID (label
);
7005 gcc_assert (uid
> -1);
7007 old_len
= vec_safe_length (cfg
->x_label_to_block_map
);
7008 if (old_len
<= (unsigned) uid
)
7010 new_len
= 3 * uid
/ 2 + 1;
7011 vec_safe_grow_cleared (cfg
->x_label_to_block_map
, new_len
);
7014 (*cfg
->x_label_to_block_map
)[uid
] = bb
;
7015 (*cfun
->cfg
->x_label_to_block_map
)[uid
] = NULL
;
7017 gcc_assert (DECL_CONTEXT (label
) == dest_cfun
->decl
);
7019 if (uid
>= dest_cfun
->cfg
->last_label_uid
)
7020 dest_cfun
->cfg
->last_label_uid
= uid
+ 1;
7023 maybe_duplicate_eh_stmt_fn (dest_cfun
, stmt
, cfun
, stmt
, d
->eh_map
, 0);
7024 remove_stmt_from_eh_lp_fn (cfun
, stmt
);
7026 gimple_duplicate_stmt_histograms (dest_cfun
, stmt
, cfun
, stmt
);
7027 gimple_remove_stmt_histograms (cfun
, stmt
);
7029 /* We cannot leave any operands allocated from the operand caches of
7030 the current function. */
7031 free_stmt_operands (cfun
, stmt
);
7032 push_cfun (dest_cfun
);
7037 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
7038 if (e
->goto_locus
!= UNKNOWN_LOCATION
)
7040 tree block
= LOCATION_BLOCK (e
->goto_locus
);
7041 if (d
->orig_block
== NULL_TREE
7042 || block
== d
->orig_block
)
7043 e
->goto_locus
= set_block (e
->goto_locus
, d
->new_block
);
7047 /* Examine the statements in BB (which is in SRC_CFUN); find and return
7048 the outermost EH region. Use REGION as the incoming base EH region. */
7051 find_outermost_region_in_block (struct function
*src_cfun
,
7052 basic_block bb
, eh_region region
)
7054 gimple_stmt_iterator si
;
7056 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
7058 gimple
*stmt
= gsi_stmt (si
);
7059 eh_region stmt_region
;
7062 lp_nr
= lookup_stmt_eh_lp_fn (src_cfun
, stmt
);
7063 stmt_region
= get_eh_region_from_lp_number_fn (src_cfun
, lp_nr
);
7067 region
= stmt_region
;
7068 else if (stmt_region
!= region
)
7070 region
= eh_region_outermost (src_cfun
, stmt_region
, region
);
7071 gcc_assert (region
!= NULL
);
7080 new_label_mapper (tree decl
, void *data
)
7082 htab_t hash
= (htab_t
) data
;
7086 gcc_assert (TREE_CODE (decl
) == LABEL_DECL
);
7088 m
= XNEW (struct tree_map
);
7089 m
->hash
= DECL_UID (decl
);
7090 m
->base
.from
= decl
;
7091 m
->to
= create_artificial_label (UNKNOWN_LOCATION
);
7092 LABEL_DECL_UID (m
->to
) = LABEL_DECL_UID (decl
);
7093 if (LABEL_DECL_UID (m
->to
) >= cfun
->cfg
->last_label_uid
)
7094 cfun
->cfg
->last_label_uid
= LABEL_DECL_UID (m
->to
) + 1;
7096 slot
= htab_find_slot_with_hash (hash
, m
, m
->hash
, INSERT
);
7097 gcc_assert (*slot
== NULL
);
7104 /* Tree walker to replace the decls used inside value expressions by
7108 replace_block_vars_by_duplicates_1 (tree
*tp
, int *walk_subtrees
, void *data
)
7110 struct replace_decls_d
*rd
= (struct replace_decls_d
*)data
;
7112 switch (TREE_CODE (*tp
))
7117 replace_by_duplicate_decl (tp
, rd
->vars_map
, rd
->to_context
);
7123 if (IS_TYPE_OR_DECL_P (*tp
))
7124 *walk_subtrees
= false;
7129 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
7133 replace_block_vars_by_duplicates (tree block
, hash_map
<tree
, tree
> *vars_map
,
7138 for (tp
= &BLOCK_VARS (block
); *tp
; tp
= &DECL_CHAIN (*tp
))
7141 if (!VAR_P (t
) && TREE_CODE (t
) != CONST_DECL
)
7143 replace_by_duplicate_decl (&t
, vars_map
, to_context
);
7146 if (VAR_P (*tp
) && DECL_HAS_VALUE_EXPR_P (*tp
))
7148 tree x
= DECL_VALUE_EXPR (*tp
);
7149 struct replace_decls_d rd
= { vars_map
, to_context
};
7151 walk_tree (&x
, replace_block_vars_by_duplicates_1
, &rd
, NULL
);
7152 SET_DECL_VALUE_EXPR (t
, x
);
7153 DECL_HAS_VALUE_EXPR_P (t
) = 1;
7155 DECL_CHAIN (t
) = DECL_CHAIN (*tp
);
7160 for (block
= BLOCK_SUBBLOCKS (block
); block
; block
= BLOCK_CHAIN (block
))
7161 replace_block_vars_by_duplicates (block
, vars_map
, to_context
);
7164 /* Fixup the loop arrays and numbers after moving LOOP and its subloops
7168 fixup_loop_arrays_after_move (struct function
*fn1
, struct function
*fn2
,
7171 /* Discard it from the old loop array. */
7172 (*get_loops (fn1
))[loop
->num
] = NULL
;
7174 /* Place it in the new loop array, assigning it a new number. */
7175 loop
->num
= number_of_loops (fn2
);
7176 vec_safe_push (loops_for_fn (fn2
)->larray
, loop
);
7178 /* Recurse to children. */
7179 for (loop
= loop
->inner
; loop
; loop
= loop
->next
)
7180 fixup_loop_arrays_after_move (fn1
, fn2
, loop
);
7183 /* Verify that the blocks in BBS_P are a single-entry, single-exit region
7184 delimited by ENTRY_BB and EXIT_BB, possibly containing noreturn blocks. */
7187 verify_sese (basic_block entry
, basic_block exit
, vec
<basic_block
> *bbs_p
)
7192 bitmap bbs
= BITMAP_ALLOC (NULL
);
7195 gcc_assert (entry
!= NULL
);
7196 gcc_assert (entry
!= exit
);
7197 gcc_assert (bbs_p
!= NULL
);
7199 gcc_assert (bbs_p
->length () > 0);
7201 FOR_EACH_VEC_ELT (*bbs_p
, i
, bb
)
7202 bitmap_set_bit (bbs
, bb
->index
);
7204 gcc_assert (bitmap_bit_p (bbs
, entry
->index
));
7205 gcc_assert (exit
== NULL
|| bitmap_bit_p (bbs
, exit
->index
));
7207 FOR_EACH_VEC_ELT (*bbs_p
, i
, bb
)
7211 gcc_assert (single_pred_p (entry
));
7212 gcc_assert (!bitmap_bit_p (bbs
, single_pred (entry
)->index
));
7215 for (ei
= ei_start (bb
->preds
); !ei_end_p (ei
); ei_next (&ei
))
7218 gcc_assert (bitmap_bit_p (bbs
, e
->src
->index
));
7223 gcc_assert (single_succ_p (exit
));
7224 gcc_assert (!bitmap_bit_p (bbs
, single_succ (exit
)->index
));
7227 for (ei
= ei_start (bb
->succs
); !ei_end_p (ei
); ei_next (&ei
))
7230 gcc_assert (bitmap_bit_p (bbs
, e
->dest
->index
));
7237 /* If FROM is an SSA_NAME, mark the version in bitmap DATA. */
7240 gather_ssa_name_hash_map_from (tree
const &from
, tree
const &, void *data
)
7242 bitmap release_names
= (bitmap
)data
;
7244 if (TREE_CODE (from
) != SSA_NAME
)
7247 bitmap_set_bit (release_names
, SSA_NAME_VERSION (from
));
7251 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
7252 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
7253 single basic block in the original CFG and the new basic block is
7254 returned. DEST_CFUN must not have a CFG yet.
7256 Note that the region need not be a pure SESE region. Blocks inside
7257 the region may contain calls to abort/exit. The only restriction
7258 is that ENTRY_BB should be the only entry point and it must
7261 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
7262 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
7263 to the new function.
7265 All local variables referenced in the region are assumed to be in
7266 the corresponding BLOCK_VARS and unexpanded variable lists
7267 associated with DEST_CFUN.
7269 TODO: investigate whether we can reuse gimple_duplicate_sese_region to
7270 reimplement move_sese_region_to_fn by duplicating the region rather than
7274 move_sese_region_to_fn (struct function
*dest_cfun
, basic_block entry_bb
,
7275 basic_block exit_bb
, tree orig_block
)
7277 vec
<basic_block
> bbs
, dom_bbs
;
7278 basic_block dom_entry
= get_immediate_dominator (CDI_DOMINATORS
, entry_bb
);
7279 basic_block after
, bb
, *entry_pred
, *exit_succ
, abb
;
7280 struct function
*saved_cfun
= cfun
;
7281 int *entry_flag
, *exit_flag
;
7282 profile_probability
*entry_prob
, *exit_prob
;
7283 unsigned i
, num_entry_edges
, num_exit_edges
, num_nodes
;
7286 htab_t new_label_map
;
7287 hash_map
<void *, void *> *eh_map
;
7288 struct loop
*loop
= entry_bb
->loop_father
;
7289 struct loop
*loop0
= get_loop (saved_cfun
, 0);
7290 struct move_stmt_d d
;
7292 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
7294 gcc_assert (entry_bb
!= exit_bb
7296 || dominated_by_p (CDI_DOMINATORS
, exit_bb
, entry_bb
)));
7298 /* Collect all the blocks in the region. Manually add ENTRY_BB
7299 because it won't be added by dfs_enumerate_from. */
7301 bbs
.safe_push (entry_bb
);
7302 gather_blocks_in_sese_region (entry_bb
, exit_bb
, &bbs
);
7305 verify_sese (entry_bb
, exit_bb
, &bbs
);
7307 /* The blocks that used to be dominated by something in BBS will now be
7308 dominated by the new block. */
7309 dom_bbs
= get_dominated_by_region (CDI_DOMINATORS
,
7313 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
7314 the predecessor edges to ENTRY_BB and the successor edges to
7315 EXIT_BB so that we can re-attach them to the new basic block that
7316 will replace the region. */
7317 num_entry_edges
= EDGE_COUNT (entry_bb
->preds
);
7318 entry_pred
= XNEWVEC (basic_block
, num_entry_edges
);
7319 entry_flag
= XNEWVEC (int, num_entry_edges
);
7320 entry_prob
= XNEWVEC (profile_probability
, num_entry_edges
);
7322 for (ei
= ei_start (entry_bb
->preds
); (e
= ei_safe_edge (ei
)) != NULL
;)
7324 entry_prob
[i
] = e
->probability
;
7325 entry_flag
[i
] = e
->flags
;
7326 entry_pred
[i
++] = e
->src
;
7332 num_exit_edges
= EDGE_COUNT (exit_bb
->succs
);
7333 exit_succ
= XNEWVEC (basic_block
, num_exit_edges
);
7334 exit_flag
= XNEWVEC (int, num_exit_edges
);
7335 exit_prob
= XNEWVEC (profile_probability
, num_exit_edges
);
7337 for (ei
= ei_start (exit_bb
->succs
); (e
= ei_safe_edge (ei
)) != NULL
;)
7339 exit_prob
[i
] = e
->probability
;
7340 exit_flag
[i
] = e
->flags
;
7341 exit_succ
[i
++] = e
->dest
;
7353 /* Switch context to the child function to initialize DEST_FN's CFG. */
7354 gcc_assert (dest_cfun
->cfg
== NULL
);
7355 push_cfun (dest_cfun
);
7357 init_empty_tree_cfg ();
7359 /* Initialize EH information for the new function. */
7361 new_label_map
= NULL
;
7364 eh_region region
= NULL
;
7366 FOR_EACH_VEC_ELT (bbs
, i
, bb
)
7367 region
= find_outermost_region_in_block (saved_cfun
, bb
, region
);
7369 init_eh_for_function ();
7372 new_label_map
= htab_create (17, tree_map_hash
, tree_map_eq
, free
);
7373 eh_map
= duplicate_eh_regions (saved_cfun
, region
, 0,
7374 new_label_mapper
, new_label_map
);
7378 /* Initialize an empty loop tree. */
7379 struct loops
*loops
= ggc_cleared_alloc
<struct loops
> ();
7380 init_loops_structure (dest_cfun
, loops
, 1);
7381 loops
->state
= LOOPS_MAY_HAVE_MULTIPLE_LATCHES
;
7382 set_loops_for_fn (dest_cfun
, loops
);
7384 /* Move the outlined loop tree part. */
7385 num_nodes
= bbs
.length ();
7386 FOR_EACH_VEC_ELT (bbs
, i
, bb
)
7388 if (bb
->loop_father
->header
== bb
)
7390 struct loop
*this_loop
= bb
->loop_father
;
7391 struct loop
*outer
= loop_outer (this_loop
);
7393 /* If the SESE region contains some bbs ending with
7394 a noreturn call, those are considered to belong
7395 to the outermost loop in saved_cfun, rather than
7396 the entry_bb's loop_father. */
7400 num_nodes
-= this_loop
->num_nodes
;
7401 flow_loop_tree_node_remove (bb
->loop_father
);
7402 flow_loop_tree_node_add (get_loop (dest_cfun
, 0), this_loop
);
7403 fixup_loop_arrays_after_move (saved_cfun
, cfun
, this_loop
);
7406 else if (bb
->loop_father
== loop0
&& loop0
!= loop
)
7409 /* Remove loop exits from the outlined region. */
7410 if (loops_for_fn (saved_cfun
)->exits
)
7411 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
7413 struct loops
*l
= loops_for_fn (saved_cfun
);
7415 = l
->exits
->find_slot_with_hash (e
, htab_hash_pointer (e
),
7418 l
->exits
->clear_slot (slot
);
7423 /* Adjust the number of blocks in the tree root of the outlined part. */
7424 get_loop (dest_cfun
, 0)->num_nodes
= bbs
.length () + 2;
7426 /* Setup a mapping to be used by move_block_to_fn. */
7427 loop
->aux
= current_loops
->tree_root
;
7428 loop0
->aux
= current_loops
->tree_root
;
7432 /* Move blocks from BBS into DEST_CFUN. */
7433 gcc_assert (bbs
.length () >= 2);
7434 after
= dest_cfun
->cfg
->x_entry_block_ptr
;
7435 hash_map
<tree
, tree
> vars_map
;
7437 memset (&d
, 0, sizeof (d
));
7438 d
.orig_block
= orig_block
;
7439 d
.new_block
= DECL_INITIAL (dest_cfun
->decl
);
7440 d
.from_context
= cfun
->decl
;
7441 d
.to_context
= dest_cfun
->decl
;
7442 d
.vars_map
= &vars_map
;
7443 d
.new_label_map
= new_label_map
;
7445 d
.remap_decls_p
= true;
7447 if (gimple_in_ssa_p (cfun
))
7448 for (tree arg
= DECL_ARGUMENTS (d
.to_context
); arg
; arg
= DECL_CHAIN (arg
))
7450 tree narg
= make_ssa_name_fn (dest_cfun
, arg
, gimple_build_nop ());
7451 set_ssa_default_def (dest_cfun
, arg
, narg
);
7452 vars_map
.put (arg
, narg
);
7455 FOR_EACH_VEC_ELT (bbs
, i
, bb
)
7457 /* No need to update edge counts on the last block. It has
7458 already been updated earlier when we detached the region from
7459 the original CFG. */
7460 move_block_to_fn (dest_cfun
, bb
, after
, bb
!= exit_bb
, &d
);
7466 /* Loop sizes are no longer correct, fix them up. */
7467 loop
->num_nodes
-= num_nodes
;
7468 for (struct loop
*outer
= loop_outer (loop
);
7469 outer
; outer
= loop_outer (outer
))
7470 outer
->num_nodes
-= num_nodes
;
7471 loop0
->num_nodes
-= bbs
.length () - num_nodes
;
7473 if (saved_cfun
->has_simduid_loops
|| saved_cfun
->has_force_vectorize_loops
)
7476 for (i
= 0; vec_safe_iterate (loops
->larray
, i
, &aloop
); i
++)
7481 replace_by_duplicate_decl (&aloop
->simduid
, d
.vars_map
,
7483 dest_cfun
->has_simduid_loops
= true;
7485 if (aloop
->force_vectorize
)
7486 dest_cfun
->has_force_vectorize_loops
= true;
7490 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
7494 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun
->decl
))
7496 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun
->decl
))
7497 = BLOCK_SUBBLOCKS (orig_block
);
7498 for (block
= BLOCK_SUBBLOCKS (orig_block
);
7499 block
; block
= BLOCK_CHAIN (block
))
7500 BLOCK_SUPERCONTEXT (block
) = DECL_INITIAL (dest_cfun
->decl
);
7501 BLOCK_SUBBLOCKS (orig_block
) = NULL_TREE
;
7504 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun
->decl
),
7505 &vars_map
, dest_cfun
->decl
);
7508 htab_delete (new_label_map
);
7512 if (gimple_in_ssa_p (cfun
))
7514 /* We need to release ssa-names in a defined order, so first find them,
7515 and then iterate in ascending version order. */
7516 bitmap release_names
= BITMAP_ALLOC (NULL
);
7517 vars_map
.traverse
<void *, gather_ssa_name_hash_map_from
> (release_names
);
7520 EXECUTE_IF_SET_IN_BITMAP (release_names
, 0, i
, bi
)
7521 release_ssa_name (ssa_name (i
));
7522 BITMAP_FREE (release_names
);
7525 /* Rewire the entry and exit blocks. The successor to the entry
7526 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
7527 the child function. Similarly, the predecessor of DEST_FN's
7528 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
7529 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
7530 various CFG manipulation function get to the right CFG.
7532 FIXME, this is silly. The CFG ought to become a parameter to
7534 push_cfun (dest_cfun
);
7535 make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun
), entry_bb
, EDGE_FALLTHRU
);
7537 make_edge (exit_bb
, EXIT_BLOCK_PTR_FOR_FN (cfun
), 0);
7540 /* Back in the original function, the SESE region has disappeared,
7541 create a new basic block in its place. */
7542 bb
= create_empty_bb (entry_pred
[0]);
7544 add_bb_to_loop (bb
, loop
);
7545 for (i
= 0; i
< num_entry_edges
; i
++)
7547 e
= make_edge (entry_pred
[i
], bb
, entry_flag
[i
]);
7548 e
->probability
= entry_prob
[i
];
7551 for (i
= 0; i
< num_exit_edges
; i
++)
7553 e
= make_edge (bb
, exit_succ
[i
], exit_flag
[i
]);
7554 e
->probability
= exit_prob
[i
];
7557 set_immediate_dominator (CDI_DOMINATORS
, bb
, dom_entry
);
7558 FOR_EACH_VEC_ELT (dom_bbs
, i
, abb
)
7559 set_immediate_dominator (CDI_DOMINATORS
, abb
, bb
);
7576 /* Dump default def DEF to file FILE using FLAGS and indentation
7580 dump_default_def (FILE *file
, tree def
, int spc
, dump_flags_t flags
)
7582 for (int i
= 0; i
< spc
; ++i
)
7583 fprintf (file
, " ");
7584 dump_ssaname_info_to_file (file
, def
, spc
);
7586 print_generic_expr (file
, TREE_TYPE (def
), flags
);
7587 fprintf (file
, " ");
7588 print_generic_expr (file
, def
, flags
);
7589 fprintf (file
, " = ");
7590 print_generic_expr (file
, SSA_NAME_VAR (def
), flags
);
7591 fprintf (file
, ";\n");
7594 /* Print no_sanitize attribute to FILE for a given attribute VALUE. */
7597 print_no_sanitize_attr_value (FILE *file
, tree value
)
7599 unsigned int flags
= tree_to_uhwi (value
);
7601 for (int i
= 0; sanitizer_opts
[i
].name
!= NULL
; ++i
)
7603 if ((sanitizer_opts
[i
].flag
& flags
) == sanitizer_opts
[i
].flag
)
7606 fprintf (file
, " | ");
7607 fprintf (file
, "%s", sanitizer_opts
[i
].name
);
7613 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in dumpfile.h)
7617 dump_function_to_file (tree fndecl
, FILE *file
, dump_flags_t flags
)
7619 tree arg
, var
, old_current_fndecl
= current_function_decl
;
7620 struct function
*dsf
;
7621 bool ignore_topmost_bind
= false, any_var
= false;
7624 bool tmclone
= (TREE_CODE (fndecl
) == FUNCTION_DECL
7625 && decl_is_tm_clone (fndecl
));
7626 struct function
*fun
= DECL_STRUCT_FUNCTION (fndecl
);
7628 if (DECL_ATTRIBUTES (fndecl
) != NULL_TREE
)
7630 fprintf (file
, "__attribute__((");
7634 for (chain
= DECL_ATTRIBUTES (fndecl
); chain
;
7635 first
= false, chain
= TREE_CHAIN (chain
))
7638 fprintf (file
, ", ");
7640 tree name
= get_attribute_name (chain
);
7641 print_generic_expr (file
, name
, dump_flags
);
7642 if (TREE_VALUE (chain
) != NULL_TREE
)
7644 fprintf (file
, " (");
7646 if (strstr (IDENTIFIER_POINTER (name
), "no_sanitize"))
7647 print_no_sanitize_attr_value (file
, TREE_VALUE (chain
));
7649 print_generic_expr (file
, TREE_VALUE (chain
), dump_flags
);
7650 fprintf (file
, ")");
7654 fprintf (file
, "))\n");
7657 current_function_decl
= fndecl
;
7658 if (flags
& TDF_GIMPLE
)
7660 print_generic_expr (file
, TREE_TYPE (TREE_TYPE (fndecl
)),
7661 dump_flags
| TDF_SLIM
);
7662 fprintf (file
, " __GIMPLE ()\n%s (", function_name (fun
));
7665 fprintf (file
, "%s %s(", function_name (fun
), tmclone
? "[tm-clone] " : "");
7667 arg
= DECL_ARGUMENTS (fndecl
);
7670 print_generic_expr (file
, TREE_TYPE (arg
), dump_flags
);
7671 fprintf (file
, " ");
7672 print_generic_expr (file
, arg
, dump_flags
);
7673 if (DECL_CHAIN (arg
))
7674 fprintf (file
, ", ");
7675 arg
= DECL_CHAIN (arg
);
7677 fprintf (file
, ")\n");
7679 dsf
= DECL_STRUCT_FUNCTION (fndecl
);
7680 if (dsf
&& (flags
& TDF_EH
))
7681 dump_eh_tree (file
, dsf
);
7683 if (flags
& TDF_RAW
&& !gimple_has_body_p (fndecl
))
7685 dump_node (fndecl
, TDF_SLIM
| flags
, file
);
7686 current_function_decl
= old_current_fndecl
;
7690 /* When GIMPLE is lowered, the variables are no longer available in
7691 BIND_EXPRs, so display them separately. */
7692 if (fun
&& fun
->decl
== fndecl
&& (fun
->curr_properties
& PROP_gimple_lcf
))
7695 ignore_topmost_bind
= true;
7697 fprintf (file
, "{\n");
7698 if (gimple_in_ssa_p (fun
)
7699 && (flags
& TDF_ALIAS
))
7701 for (arg
= DECL_ARGUMENTS (fndecl
); arg
!= NULL
;
7702 arg
= DECL_CHAIN (arg
))
7704 tree def
= ssa_default_def (fun
, arg
);
7706 dump_default_def (file
, def
, 2, flags
);
7709 tree res
= DECL_RESULT (fun
->decl
);
7710 if (res
!= NULL_TREE
7711 && DECL_BY_REFERENCE (res
))
7713 tree def
= ssa_default_def (fun
, res
);
7715 dump_default_def (file
, def
, 2, flags
);
7718 tree static_chain
= fun
->static_chain_decl
;
7719 if (static_chain
!= NULL_TREE
)
7721 tree def
= ssa_default_def (fun
, static_chain
);
7723 dump_default_def (file
, def
, 2, flags
);
7727 if (!vec_safe_is_empty (fun
->local_decls
))
7728 FOR_EACH_LOCAL_DECL (fun
, ix
, var
)
7730 print_generic_decl (file
, var
, flags
);
7731 fprintf (file
, "\n");
7738 if (gimple_in_ssa_p (cfun
))
7739 FOR_EACH_SSA_NAME (ix
, name
, cfun
)
7741 if (!SSA_NAME_VAR (name
))
7743 fprintf (file
, " ");
7744 print_generic_expr (file
, TREE_TYPE (name
), flags
);
7745 fprintf (file
, " ");
7746 print_generic_expr (file
, name
, flags
);
7747 fprintf (file
, ";\n");
7754 if (fun
&& fun
->decl
== fndecl
7756 && basic_block_info_for_fn (fun
))
7758 /* If the CFG has been built, emit a CFG-based dump. */
7759 if (!ignore_topmost_bind
)
7760 fprintf (file
, "{\n");
7762 if (any_var
&& n_basic_blocks_for_fn (fun
))
7763 fprintf (file
, "\n");
7765 FOR_EACH_BB_FN (bb
, fun
)
7766 dump_bb (file
, bb
, 2, flags
);
7768 fprintf (file
, "}\n");
7770 else if (fun
->curr_properties
& PROP_gimple_any
)
7772 /* The function is now in GIMPLE form but the CFG has not been
7773 built yet. Emit the single sequence of GIMPLE statements
7774 that make up its body. */
7775 gimple_seq body
= gimple_body (fndecl
);
7777 if (gimple_seq_first_stmt (body
)
7778 && gimple_seq_first_stmt (body
) == gimple_seq_last_stmt (body
)
7779 && gimple_code (gimple_seq_first_stmt (body
)) == GIMPLE_BIND
)
7780 print_gimple_seq (file
, body
, 0, flags
);
7783 if (!ignore_topmost_bind
)
7784 fprintf (file
, "{\n");
7787 fprintf (file
, "\n");
7789 print_gimple_seq (file
, body
, 2, flags
);
7790 fprintf (file
, "}\n");
7797 /* Make a tree based dump. */
7798 chain
= DECL_SAVED_TREE (fndecl
);
7799 if (chain
&& TREE_CODE (chain
) == BIND_EXPR
)
7801 if (ignore_topmost_bind
)
7803 chain
= BIND_EXPR_BODY (chain
);
7811 if (!ignore_topmost_bind
)
7813 fprintf (file
, "{\n");
7814 /* No topmost bind, pretend it's ignored for later. */
7815 ignore_topmost_bind
= true;
7821 fprintf (file
, "\n");
7823 print_generic_stmt_indented (file
, chain
, flags
, indent
);
7824 if (ignore_topmost_bind
)
7825 fprintf (file
, "}\n");
7828 if (flags
& TDF_ENUMERATE_LOCALS
)
7829 dump_enumerated_decls (file
, flags
);
7830 fprintf (file
, "\n\n");
7832 current_function_decl
= old_current_fndecl
;
7835 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
7838 debug_function (tree fn
, dump_flags_t flags
)
7840 dump_function_to_file (fn
, stderr
, flags
);
7844 /* Print on FILE the indexes for the predecessors of basic_block BB. */
7847 print_pred_bbs (FILE *file
, basic_block bb
)
7852 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
7853 fprintf (file
, "bb_%d ", e
->src
->index
);
7857 /* Print on FILE the indexes for the successors of basic_block BB. */
7860 print_succ_bbs (FILE *file
, basic_block bb
)
7865 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
7866 fprintf (file
, "bb_%d ", e
->dest
->index
);
7869 /* Print to FILE the basic block BB following the VERBOSITY level. */
7872 print_loops_bb (FILE *file
, basic_block bb
, int indent
, int verbosity
)
7874 char *s_indent
= (char *) alloca ((size_t) indent
+ 1);
7875 memset ((void *) s_indent
, ' ', (size_t) indent
);
7876 s_indent
[indent
] = '\0';
7878 /* Print basic_block's header. */
7881 fprintf (file
, "%s bb_%d (preds = {", s_indent
, bb
->index
);
7882 print_pred_bbs (file
, bb
);
7883 fprintf (file
, "}, succs = {");
7884 print_succ_bbs (file
, bb
);
7885 fprintf (file
, "})\n");
7888 /* Print basic_block's body. */
7891 fprintf (file
, "%s {\n", s_indent
);
7892 dump_bb (file
, bb
, indent
+ 4, TDF_VOPS
|TDF_MEMSYMS
);
7893 fprintf (file
, "%s }\n", s_indent
);
7897 static void print_loop_and_siblings (FILE *, struct loop
*, int, int);
7899 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
7900 VERBOSITY level this outputs the contents of the loop, or just its
7904 print_loop (FILE *file
, struct loop
*loop
, int indent
, int verbosity
)
7912 s_indent
= (char *) alloca ((size_t) indent
+ 1);
7913 memset ((void *) s_indent
, ' ', (size_t) indent
);
7914 s_indent
[indent
] = '\0';
7916 /* Print loop's header. */
7917 fprintf (file
, "%sloop_%d (", s_indent
, loop
->num
);
7919 fprintf (file
, "header = %d", loop
->header
->index
);
7922 fprintf (file
, "deleted)\n");
7926 fprintf (file
, ", latch = %d", loop
->latch
->index
);
7928 fprintf (file
, ", multiple latches");
7929 fprintf (file
, ", niter = ");
7930 print_generic_expr (file
, loop
->nb_iterations
);
7932 if (loop
->any_upper_bound
)
7934 fprintf (file
, ", upper_bound = ");
7935 print_decu (loop
->nb_iterations_upper_bound
, file
);
7937 if (loop
->any_likely_upper_bound
)
7939 fprintf (file
, ", likely_upper_bound = ");
7940 print_decu (loop
->nb_iterations_likely_upper_bound
, file
);
7943 if (loop
->any_estimate
)
7945 fprintf (file
, ", estimate = ");
7946 print_decu (loop
->nb_iterations_estimate
, file
);
7948 fprintf (file
, ")\n");
7950 /* Print loop's body. */
7953 fprintf (file
, "%s{\n", s_indent
);
7954 FOR_EACH_BB_FN (bb
, cfun
)
7955 if (bb
->loop_father
== loop
)
7956 print_loops_bb (file
, bb
, indent
, verbosity
);
7958 print_loop_and_siblings (file
, loop
->inner
, indent
+ 2, verbosity
);
7959 fprintf (file
, "%s}\n", s_indent
);
7963 /* Print the LOOP and its sibling loops on FILE, indented INDENT
7964 spaces. Following VERBOSITY level this outputs the contents of the
7965 loop, or just its structure. */
7968 print_loop_and_siblings (FILE *file
, struct loop
*loop
, int indent
,
7974 print_loop (file
, loop
, indent
, verbosity
);
7975 print_loop_and_siblings (file
, loop
->next
, indent
, verbosity
);
7978 /* Follow a CFG edge from the entry point of the program, and on entry
7979 of a loop, pretty print the loop structure on FILE. */
7982 print_loops (FILE *file
, int verbosity
)
7986 bb
= ENTRY_BLOCK_PTR_FOR_FN (cfun
);
7987 fprintf (file
, "\nLoops in function: %s\n", current_function_name ());
7988 if (bb
&& bb
->loop_father
)
7989 print_loop_and_siblings (file
, bb
->loop_father
, 0, verbosity
);
7995 debug (struct loop
&ref
)
7997 print_loop (stderr
, &ref
, 0, /*verbosity*/0);
8001 debug (struct loop
*ptr
)
8006 fprintf (stderr
, "<nil>\n");
8009 /* Dump a loop verbosely. */
8012 debug_verbose (struct loop
&ref
)
8014 print_loop (stderr
, &ref
, 0, /*verbosity*/3);
8018 debug_verbose (struct loop
*ptr
)
8023 fprintf (stderr
, "<nil>\n");
8027 /* Debugging loops structure at tree level, at some VERBOSITY level. */
8030 debug_loops (int verbosity
)
8032 print_loops (stderr
, verbosity
);
8035 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
8038 debug_loop (struct loop
*loop
, int verbosity
)
8040 print_loop (stderr
, loop
, 0, verbosity
);
8043 /* Print on stderr the code of loop number NUM, at some VERBOSITY
8047 debug_loop_num (unsigned num
, int verbosity
)
8049 debug_loop (get_loop (cfun
, num
), verbosity
);
8052 /* Return true if BB ends with a call, possibly followed by some
8053 instructions that must stay with the call. Return false,
8057 gimple_block_ends_with_call_p (basic_block bb
)
8059 gimple_stmt_iterator gsi
= gsi_last_nondebug_bb (bb
);
8060 return !gsi_end_p (gsi
) && is_gimple_call (gsi_stmt (gsi
));
8064 /* Return true if BB ends with a conditional branch. Return false,
8068 gimple_block_ends_with_condjump_p (const_basic_block bb
)
8070 gimple
*stmt
= last_stmt (CONST_CAST_BB (bb
));
8071 return (stmt
&& gimple_code (stmt
) == GIMPLE_COND
);
8075 /* Return true if statement T may terminate execution of BB in ways not
8076 explicitly represtented in the CFG. */
8079 stmt_can_terminate_bb_p (gimple
*t
)
8081 tree fndecl
= NULL_TREE
;
8084 /* Eh exception not handled internally terminates execution of the whole
8086 if (stmt_can_throw_external (t
))
8089 /* NORETURN and LONGJMP calls already have an edge to exit.
8090 CONST and PURE calls do not need one.
8091 We don't currently check for CONST and PURE here, although
8092 it would be a good idea, because those attributes are
8093 figured out from the RTL in mark_constant_function, and
8094 the counter incrementation code from -fprofile-arcs
8095 leads to different results from -fbranch-probabilities. */
8096 if (is_gimple_call (t
))
8098 fndecl
= gimple_call_fndecl (t
);
8099 call_flags
= gimple_call_flags (t
);
8102 if (is_gimple_call (t
)
8104 && DECL_BUILT_IN (fndecl
)
8105 && (call_flags
& ECF_NOTHROW
)
8106 && !(call_flags
& ECF_RETURNS_TWICE
)
8107 /* fork() doesn't really return twice, but the effect of
8108 wrapping it in __gcov_fork() which calls __gcov_flush()
8109 and clears the counters before forking has the same
8110 effect as returning twice. Force a fake edge. */
8111 && !(DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
8112 && DECL_FUNCTION_CODE (fndecl
) == BUILT_IN_FORK
))
8115 if (is_gimple_call (t
))
8121 if (call_flags
& (ECF_PURE
| ECF_CONST
)
8122 && !(call_flags
& ECF_LOOPING_CONST_OR_PURE
))
8125 /* Function call may do longjmp, terminate program or do other things.
8126 Special case noreturn that have non-abnormal edges out as in this case
8127 the fact is sufficiently represented by lack of edges out of T. */
8128 if (!(call_flags
& ECF_NORETURN
))
8132 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
8133 if ((e
->flags
& EDGE_FAKE
) == 0)
8137 if (gasm
*asm_stmt
= dyn_cast
<gasm
*> (t
))
8138 if (gimple_asm_volatile_p (asm_stmt
) || gimple_asm_input_p (asm_stmt
))
8145 /* Add fake edges to the function exit for any non constant and non
8146 noreturn calls (or noreturn calls with EH/abnormal edges),
8147 volatile inline assembly in the bitmap of blocks specified by BLOCKS
8148 or to the whole CFG if BLOCKS is zero. Return the number of blocks
8151 The goal is to expose cases in which entering a basic block does
8152 not imply that all subsequent instructions must be executed. */
8155 gimple_flow_call_edges_add (sbitmap blocks
)
8158 int blocks_split
= 0;
8159 int last_bb
= last_basic_block_for_fn (cfun
);
8160 bool check_last_block
= false;
8162 if (n_basic_blocks_for_fn (cfun
) == NUM_FIXED_BLOCKS
)
8166 check_last_block
= true;
8168 check_last_block
= bitmap_bit_p (blocks
,
8169 EXIT_BLOCK_PTR_FOR_FN (cfun
)->prev_bb
->index
);
8171 /* In the last basic block, before epilogue generation, there will be
8172 a fallthru edge to EXIT. Special care is required if the last insn
8173 of the last basic block is a call because make_edge folds duplicate
8174 edges, which would result in the fallthru edge also being marked
8175 fake, which would result in the fallthru edge being removed by
8176 remove_fake_edges, which would result in an invalid CFG.
8178 Moreover, we can't elide the outgoing fake edge, since the block
8179 profiler needs to take this into account in order to solve the minimal
8180 spanning tree in the case that the call doesn't return.
8182 Handle this by adding a dummy instruction in a new last basic block. */
8183 if (check_last_block
)
8185 basic_block bb
= EXIT_BLOCK_PTR_FOR_FN (cfun
)->prev_bb
;
8186 gimple_stmt_iterator gsi
= gsi_last_nondebug_bb (bb
);
8189 if (!gsi_end_p (gsi
))
8192 if (t
&& stmt_can_terminate_bb_p (t
))
8196 e
= find_edge (bb
, EXIT_BLOCK_PTR_FOR_FN (cfun
));
8199 gsi_insert_on_edge (e
, gimple_build_nop ());
8200 gsi_commit_edge_inserts ();
8205 /* Now add fake edges to the function exit for any non constant
8206 calls since there is no way that we can determine if they will
8208 for (i
= 0; i
< last_bb
; i
++)
8210 basic_block bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
8211 gimple_stmt_iterator gsi
;
8212 gimple
*stmt
, *last_stmt
;
8217 if (blocks
&& !bitmap_bit_p (blocks
, i
))
8220 gsi
= gsi_last_nondebug_bb (bb
);
8221 if (!gsi_end_p (gsi
))
8223 last_stmt
= gsi_stmt (gsi
);
8226 stmt
= gsi_stmt (gsi
);
8227 if (stmt_can_terminate_bb_p (stmt
))
8231 /* The handling above of the final block before the
8232 epilogue should be enough to verify that there is
8233 no edge to the exit block in CFG already.
8234 Calling make_edge in such case would cause us to
8235 mark that edge as fake and remove it later. */
8236 if (flag_checking
&& stmt
== last_stmt
)
8238 e
= find_edge (bb
, EXIT_BLOCK_PTR_FOR_FN (cfun
));
8239 gcc_assert (e
== NULL
);
8242 /* Note that the following may create a new basic block
8243 and renumber the existing basic blocks. */
8244 if (stmt
!= last_stmt
)
8246 e
= split_block (bb
, stmt
);
8250 e
= make_edge (bb
, EXIT_BLOCK_PTR_FOR_FN (cfun
), EDGE_FAKE
);
8251 e
->probability
= profile_probability::guessed_never ();
8252 e
->count
= profile_count::guessed_zero ();
8256 while (!gsi_end_p (gsi
));
8261 checking_verify_flow_info ();
8263 return blocks_split
;
8266 /* Removes edge E and all the blocks dominated by it, and updates dominance
8267 information. The IL in E->src needs to be updated separately.
8268 If dominance info is not available, only the edge E is removed.*/
8271 remove_edge_and_dominated_blocks (edge e
)
8273 vec
<basic_block
> bbs_to_remove
= vNULL
;
8274 vec
<basic_block
> bbs_to_fix_dom
= vNULL
;
8277 bool none_removed
= false;
8279 basic_block bb
, dbb
;
8282 /* If we are removing a path inside a non-root loop that may change
8283 loop ownership of blocks or remove loops. Mark loops for fixup. */
8285 && loop_outer (e
->src
->loop_father
) != NULL
8286 && e
->src
->loop_father
== e
->dest
->loop_father
)
8287 loops_state_set (LOOPS_NEED_FIXUP
);
8289 if (!dom_info_available_p (CDI_DOMINATORS
))
8295 /* No updating is needed for edges to exit. */
8296 if (e
->dest
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
8298 if (cfgcleanup_altered_bbs
)
8299 bitmap_set_bit (cfgcleanup_altered_bbs
, e
->src
->index
);
8304 /* First, we find the basic blocks to remove. If E->dest has a predecessor
8305 that is not dominated by E->dest, then this set is empty. Otherwise,
8306 all the basic blocks dominated by E->dest are removed.
8308 Also, to DF_IDOM we store the immediate dominators of the blocks in
8309 the dominance frontier of E (i.e., of the successors of the
8310 removed blocks, if there are any, and of E->dest otherwise). */
8311 FOR_EACH_EDGE (f
, ei
, e
->dest
->preds
)
8316 if (!dominated_by_p (CDI_DOMINATORS
, f
->src
, e
->dest
))
8318 none_removed
= true;
8323 auto_bitmap df
, df_idom
;
8325 bitmap_set_bit (df_idom
,
8326 get_immediate_dominator (CDI_DOMINATORS
, e
->dest
)->index
);
8329 bbs_to_remove
= get_all_dominated_blocks (CDI_DOMINATORS
, e
->dest
);
8330 FOR_EACH_VEC_ELT (bbs_to_remove
, i
, bb
)
8332 FOR_EACH_EDGE (f
, ei
, bb
->succs
)
8334 if (f
->dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
))
8335 bitmap_set_bit (df
, f
->dest
->index
);
8338 FOR_EACH_VEC_ELT (bbs_to_remove
, i
, bb
)
8339 bitmap_clear_bit (df
, bb
->index
);
8341 EXECUTE_IF_SET_IN_BITMAP (df
, 0, i
, bi
)
8343 bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
8344 bitmap_set_bit (df_idom
,
8345 get_immediate_dominator (CDI_DOMINATORS
, bb
)->index
);
8349 if (cfgcleanup_altered_bbs
)
8351 /* Record the set of the altered basic blocks. */
8352 bitmap_set_bit (cfgcleanup_altered_bbs
, e
->src
->index
);
8353 bitmap_ior_into (cfgcleanup_altered_bbs
, df
);
8356 /* Remove E and the cancelled blocks. */
8361 /* Walk backwards so as to get a chance to substitute all
8362 released DEFs into debug stmts. See
8363 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
8365 for (i
= bbs_to_remove
.length (); i
-- > 0; )
8366 delete_basic_block (bbs_to_remove
[i
]);
8369 /* Update the dominance information. The immediate dominator may change only
8370 for blocks whose immediate dominator belongs to DF_IDOM:
8372 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
8373 removal. Let Z the arbitrary block such that idom(Z) = Y and
8374 Z dominates X after the removal. Before removal, there exists a path P
8375 from Y to X that avoids Z. Let F be the last edge on P that is
8376 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
8377 dominates W, and because of P, Z does not dominate W), and W belongs to
8378 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
8379 EXECUTE_IF_SET_IN_BITMAP (df_idom
, 0, i
, bi
)
8381 bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
8382 for (dbb
= first_dom_son (CDI_DOMINATORS
, bb
);
8384 dbb
= next_dom_son (CDI_DOMINATORS
, dbb
))
8385 bbs_to_fix_dom
.safe_push (dbb
);
8388 iterate_fix_dominators (CDI_DOMINATORS
, bbs_to_fix_dom
, true);
8390 bbs_to_remove
.release ();
8391 bbs_to_fix_dom
.release ();
8394 /* Purge dead EH edges from basic block BB. */
8397 gimple_purge_dead_eh_edges (basic_block bb
)
8399 bool changed
= false;
8402 gimple
*stmt
= last_stmt (bb
);
8404 if (stmt
&& stmt_can_throw_internal (stmt
))
8407 for (ei
= ei_start (bb
->succs
); (e
= ei_safe_edge (ei
)); )
8409 if (e
->flags
& EDGE_EH
)
8411 remove_edge_and_dominated_blocks (e
);
8421 /* Purge dead EH edges from basic block listed in BLOCKS. */
8424 gimple_purge_all_dead_eh_edges (const_bitmap blocks
)
8426 bool changed
= false;
8430 EXECUTE_IF_SET_IN_BITMAP (blocks
, 0, i
, bi
)
8432 basic_block bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
8434 /* Earlier gimple_purge_dead_eh_edges could have removed
8435 this basic block already. */
8436 gcc_assert (bb
|| changed
);
8438 changed
|= gimple_purge_dead_eh_edges (bb
);
8444 /* Purge dead abnormal call edges from basic block BB. */
8447 gimple_purge_dead_abnormal_call_edges (basic_block bb
)
8449 bool changed
= false;
8452 gimple
*stmt
= last_stmt (bb
);
8454 if (!cfun
->has_nonlocal_label
8455 && !cfun
->calls_setjmp
)
8458 if (stmt
&& stmt_can_make_abnormal_goto (stmt
))
8461 for (ei
= ei_start (bb
->succs
); (e
= ei_safe_edge (ei
)); )
8463 if (e
->flags
& EDGE_ABNORMAL
)
8465 if (e
->flags
& EDGE_FALLTHRU
)
8466 e
->flags
&= ~EDGE_ABNORMAL
;
8468 remove_edge_and_dominated_blocks (e
);
8478 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
8481 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks
)
8483 bool changed
= false;
8487 EXECUTE_IF_SET_IN_BITMAP (blocks
, 0, i
, bi
)
8489 basic_block bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
8491 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
8492 this basic block already. */
8493 gcc_assert (bb
|| changed
);
8495 changed
|= gimple_purge_dead_abnormal_call_edges (bb
);
8501 /* This function is called whenever a new edge is created or
8505 gimple_execute_on_growing_pred (edge e
)
8507 basic_block bb
= e
->dest
;
8509 if (!gimple_seq_empty_p (phi_nodes (bb
)))
8510 reserve_phi_args_for_new_edge (bb
);
8513 /* This function is called immediately before edge E is removed from
8514 the edge vector E->dest->preds. */
8517 gimple_execute_on_shrinking_pred (edge e
)
8519 if (!gimple_seq_empty_p (phi_nodes (e
->dest
)))
8520 remove_phi_args (e
);
8523 /*---------------------------------------------------------------------------
8524 Helper functions for Loop versioning
8525 ---------------------------------------------------------------------------*/
8527 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
8528 of 'first'. Both of them are dominated by 'new_head' basic block. When
8529 'new_head' was created by 'second's incoming edge it received phi arguments
8530 on the edge by split_edge(). Later, additional edge 'e' was created to
8531 connect 'new_head' and 'first'. Now this routine adds phi args on this
8532 additional edge 'e' that new_head to second edge received as part of edge
8536 gimple_lv_adjust_loop_header_phi (basic_block first
, basic_block second
,
8537 basic_block new_head
, edge e
)
8540 gphi_iterator psi1
, psi2
;
8542 edge e2
= find_edge (new_head
, second
);
8544 /* Because NEW_HEAD has been created by splitting SECOND's incoming
8545 edge, we should always have an edge from NEW_HEAD to SECOND. */
8546 gcc_assert (e2
!= NULL
);
8548 /* Browse all 'second' basic block phi nodes and add phi args to
8549 edge 'e' for 'first' head. PHI args are always in correct order. */
8551 for (psi2
= gsi_start_phis (second
),
8552 psi1
= gsi_start_phis (first
);
8553 !gsi_end_p (psi2
) && !gsi_end_p (psi1
);
8554 gsi_next (&psi2
), gsi_next (&psi1
))
8558 def
= PHI_ARG_DEF (phi2
, e2
->dest_idx
);
8559 add_phi_arg (phi1
, def
, e
, gimple_phi_arg_location_from_edge (phi2
, e2
));
8564 /* Adds a if else statement to COND_BB with condition COND_EXPR.
8565 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
8566 the destination of the ELSE part. */
8569 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED
,
8570 basic_block second_head ATTRIBUTE_UNUSED
,
8571 basic_block cond_bb
, void *cond_e
)
8573 gimple_stmt_iterator gsi
;
8574 gimple
*new_cond_expr
;
8575 tree cond_expr
= (tree
) cond_e
;
8578 /* Build new conditional expr */
8579 new_cond_expr
= gimple_build_cond_from_tree (cond_expr
,
8580 NULL_TREE
, NULL_TREE
);
8582 /* Add new cond in cond_bb. */
8583 gsi
= gsi_last_bb (cond_bb
);
8584 gsi_insert_after (&gsi
, new_cond_expr
, GSI_NEW_STMT
);
8586 /* Adjust edges appropriately to connect new head with first head
8587 as well as second head. */
8588 e0
= single_succ_edge (cond_bb
);
8589 e0
->flags
&= ~EDGE_FALLTHRU
;
8590 e0
->flags
|= EDGE_FALSE_VALUE
;
8594 /* Do book-keeping of basic block BB for the profile consistency checker.
8595 If AFTER_PASS is 0, do pre-pass accounting, or if AFTER_PASS is 1
8596 then do post-pass accounting. Store the counting in RECORD. */
8598 gimple_account_profile_record (basic_block bb
, int after_pass
,
8599 struct profile_record
*record
)
8601 gimple_stmt_iterator i
;
8602 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); gsi_next (&i
))
8604 record
->size
[after_pass
]
8605 += estimate_num_insns (gsi_stmt (i
), &eni_size_weights
);
8606 if (bb
->count
.initialized_p ())
8607 record
->time
[after_pass
]
8608 += estimate_num_insns (gsi_stmt (i
),
8609 &eni_time_weights
) * bb
->count
.to_gcov_type ();
8610 else if (profile_status_for_fn (cfun
) == PROFILE_GUESSED
)
8611 record
->time
[after_pass
]
8612 += estimate_num_insns (gsi_stmt (i
),
8613 &eni_time_weights
) * bb
->frequency
;
8617 struct cfg_hooks gimple_cfg_hooks
= {
8619 gimple_verify_flow_info
,
8620 gimple_dump_bb
, /* dump_bb */
8621 gimple_dump_bb_for_graph
, /* dump_bb_for_graph */
8622 create_bb
, /* create_basic_block */
8623 gimple_redirect_edge_and_branch
, /* redirect_edge_and_branch */
8624 gimple_redirect_edge_and_branch_force
, /* redirect_edge_and_branch_force */
8625 gimple_can_remove_branch_p
, /* can_remove_branch_p */
8626 remove_bb
, /* delete_basic_block */
8627 gimple_split_block
, /* split_block */
8628 gimple_move_block_after
, /* move_block_after */
8629 gimple_can_merge_blocks_p
, /* can_merge_blocks_p */
8630 gimple_merge_blocks
, /* merge_blocks */
8631 gimple_predict_edge
, /* predict_edge */
8632 gimple_predicted_by_p
, /* predicted_by_p */
8633 gimple_can_duplicate_bb_p
, /* can_duplicate_block_p */
8634 gimple_duplicate_bb
, /* duplicate_block */
8635 gimple_split_edge
, /* split_edge */
8636 gimple_make_forwarder_block
, /* make_forward_block */
8637 NULL
, /* tidy_fallthru_edge */
8638 NULL
, /* force_nonfallthru */
8639 gimple_block_ends_with_call_p
,/* block_ends_with_call_p */
8640 gimple_block_ends_with_condjump_p
, /* block_ends_with_condjump_p */
8641 gimple_flow_call_edges_add
, /* flow_call_edges_add */
8642 gimple_execute_on_growing_pred
, /* execute_on_growing_pred */
8643 gimple_execute_on_shrinking_pred
, /* execute_on_shrinking_pred */
8644 gimple_duplicate_loop_to_header_edge
, /* duplicate loop for trees */
8645 gimple_lv_add_condition_to_bb
, /* lv_add_condition_to_bb */
8646 gimple_lv_adjust_loop_header_phi
, /* lv_adjust_loop_header_phi*/
8647 extract_true_false_edges_from_block
, /* extract_cond_bb_edges */
8648 flush_pending_stmts
, /* flush_pending_stmts */
8649 gimple_empty_block_p
, /* block_empty_p */
8650 gimple_split_block_before_cond_jump
, /* split_block_before_cond_jump */
8651 gimple_account_profile_record
,
8655 /* Split all critical edges. */
8658 split_critical_edges (void)
8664 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
8665 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
8666 mappings around the calls to split_edge. */
8667 start_recording_case_labels ();
8668 FOR_ALL_BB_FN (bb
, cfun
)
8670 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
8672 if (EDGE_CRITICAL_P (e
) && !(e
->flags
& EDGE_ABNORMAL
))
8674 /* PRE inserts statements to edges and expects that
8675 since split_critical_edges was done beforehand, committing edge
8676 insertions will not split more edges. In addition to critical
8677 edges we must split edges that have multiple successors and
8678 end by control flow statements, such as RESX.
8679 Go ahead and split them too. This matches the logic in
8680 gimple_find_edge_insert_loc. */
8681 else if ((!single_pred_p (e
->dest
)
8682 || !gimple_seq_empty_p (phi_nodes (e
->dest
))
8683 || e
->dest
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
8684 && e
->src
!= ENTRY_BLOCK_PTR_FOR_FN (cfun
)
8685 && !(e
->flags
& EDGE_ABNORMAL
))
8687 gimple_stmt_iterator gsi
;
8689 gsi
= gsi_last_bb (e
->src
);
8690 if (!gsi_end_p (gsi
)
8691 && stmt_ends_bb_p (gsi_stmt (gsi
))
8692 && (gimple_code (gsi_stmt (gsi
)) != GIMPLE_RETURN
8693 && !gimple_call_builtin_p (gsi_stmt (gsi
),
8699 end_recording_case_labels ();
8705 const pass_data pass_data_split_crit_edges
=
8707 GIMPLE_PASS
, /* type */
8708 "crited", /* name */
8709 OPTGROUP_NONE
, /* optinfo_flags */
8710 TV_TREE_SPLIT_EDGES
, /* tv_id */
8711 PROP_cfg
, /* properties_required */
8712 PROP_no_crit_edges
, /* properties_provided */
8713 0, /* properties_destroyed */
8714 0, /* todo_flags_start */
8715 0, /* todo_flags_finish */
8718 class pass_split_crit_edges
: public gimple_opt_pass
8721 pass_split_crit_edges (gcc::context
*ctxt
)
8722 : gimple_opt_pass (pass_data_split_crit_edges
, ctxt
)
8725 /* opt_pass methods: */
8726 virtual unsigned int execute (function
*) { return split_critical_edges (); }
8728 opt_pass
* clone () { return new pass_split_crit_edges (m_ctxt
); }
8729 }; // class pass_split_crit_edges
8734 make_pass_split_crit_edges (gcc::context
*ctxt
)
8736 return new pass_split_crit_edges (ctxt
);
8740 /* Insert COND expression which is GIMPLE_COND after STMT
8741 in basic block BB with appropriate basic block split
8742 and creation of a new conditionally executed basic block.
8743 Update profile so the new bb is visited with probability PROB.
8744 Return created basic block. */
8746 insert_cond_bb (basic_block bb
, gimple
*stmt
, gimple
*cond
,
8747 profile_probability prob
)
8749 edge fall
= split_block (bb
, stmt
);
8750 gimple_stmt_iterator iter
= gsi_last_bb (bb
);
8753 /* Insert cond statement. */
8754 gcc_assert (gimple_code (cond
) == GIMPLE_COND
);
8755 if (gsi_end_p (iter
))
8756 gsi_insert_before (&iter
, cond
, GSI_CONTINUE_LINKING
);
8758 gsi_insert_after (&iter
, cond
, GSI_CONTINUE_LINKING
);
8760 /* Create conditionally executed block. */
8761 new_bb
= create_empty_bb (bb
);
8762 edge e
= make_edge (bb
, new_bb
, EDGE_TRUE_VALUE
);
8763 e
->probability
= prob
;
8764 e
->count
= bb
->count
.apply_probability (prob
);
8765 new_bb
->count
= e
->count
;
8766 new_bb
->frequency
= prob
.apply (bb
->frequency
);
8767 make_single_succ_edge (new_bb
, fall
->dest
, EDGE_FALLTHRU
);
8769 /* Fix edge for split bb. */
8770 fall
->flags
= EDGE_FALSE_VALUE
;
8771 fall
->count
-= e
->count
;
8772 fall
->probability
-= e
->probability
;
8774 /* Update dominance info. */
8775 if (dom_info_available_p (CDI_DOMINATORS
))
8777 set_immediate_dominator (CDI_DOMINATORS
, new_bb
, bb
);
8778 set_immediate_dominator (CDI_DOMINATORS
, fall
->dest
, bb
);
8781 /* Update loop info. */
8783 add_bb_to_loop (new_bb
, bb
->loop_father
);
8788 /* Build a ternary operation and gimplify it. Emit code before GSI.
8789 Return the gimple_val holding the result. */
8792 gimplify_build3 (gimple_stmt_iterator
*gsi
, enum tree_code code
,
8793 tree type
, tree a
, tree b
, tree c
)
8796 location_t loc
= gimple_location (gsi_stmt (*gsi
));
8798 ret
= fold_build3_loc (loc
, code
, type
, a
, b
, c
);
8801 return force_gimple_operand_gsi (gsi
, ret
, true, NULL
, true,
8805 /* Build a binary operation and gimplify it. Emit code before GSI.
8806 Return the gimple_val holding the result. */
8809 gimplify_build2 (gimple_stmt_iterator
*gsi
, enum tree_code code
,
8810 tree type
, tree a
, tree b
)
8814 ret
= fold_build2_loc (gimple_location (gsi_stmt (*gsi
)), code
, type
, a
, b
);
8817 return force_gimple_operand_gsi (gsi
, ret
, true, NULL
, true,
8821 /* Build a unary operation and gimplify it. Emit code before GSI.
8822 Return the gimple_val holding the result. */
8825 gimplify_build1 (gimple_stmt_iterator
*gsi
, enum tree_code code
, tree type
,
8830 ret
= fold_build1_loc (gimple_location (gsi_stmt (*gsi
)), code
, type
, a
);
8833 return force_gimple_operand_gsi (gsi
, ret
, true, NULL
, true,
8839 /* Given a basic block B which ends with a conditional and has
8840 precisely two successors, determine which of the edges is taken if
8841 the conditional is true and which is taken if the conditional is
8842 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
8845 extract_true_false_edges_from_block (basic_block b
,
8849 edge e
= EDGE_SUCC (b
, 0);
8851 if (e
->flags
& EDGE_TRUE_VALUE
)
8854 *false_edge
= EDGE_SUCC (b
, 1);
8859 *true_edge
= EDGE_SUCC (b
, 1);
8864 /* From a controlling predicate in the immediate dominator DOM of
8865 PHIBLOCK determine the edges into PHIBLOCK that are chosen if the
8866 predicate evaluates to true and false and store them to
8867 *TRUE_CONTROLLED_EDGE and *FALSE_CONTROLLED_EDGE if
8868 they are non-NULL. Returns true if the edges can be determined,
8869 else return false. */
8872 extract_true_false_controlled_edges (basic_block dom
, basic_block phiblock
,
8873 edge
*true_controlled_edge
,
8874 edge
*false_controlled_edge
)
8876 basic_block bb
= phiblock
;
8877 edge true_edge
, false_edge
, tem
;
8878 edge e0
= NULL
, e1
= NULL
;
8880 /* We have to verify that one edge into the PHI node is dominated
8881 by the true edge of the predicate block and the other edge
8882 dominated by the false edge. This ensures that the PHI argument
8883 we are going to take is completely determined by the path we
8884 take from the predicate block.
8885 We can only use BB dominance checks below if the destination of
8886 the true/false edges are dominated by their edge, thus only
8887 have a single predecessor. */
8888 extract_true_false_edges_from_block (dom
, &true_edge
, &false_edge
);
8889 tem
= EDGE_PRED (bb
, 0);
8890 if (tem
== true_edge
8891 || (single_pred_p (true_edge
->dest
)
8892 && (tem
->src
== true_edge
->dest
8893 || dominated_by_p (CDI_DOMINATORS
,
8894 tem
->src
, true_edge
->dest
))))
8896 else if (tem
== false_edge
8897 || (single_pred_p (false_edge
->dest
)
8898 && (tem
->src
== false_edge
->dest
8899 || dominated_by_p (CDI_DOMINATORS
,
8900 tem
->src
, false_edge
->dest
))))
8904 tem
= EDGE_PRED (bb
, 1);
8905 if (tem
== true_edge
8906 || (single_pred_p (true_edge
->dest
)
8907 && (tem
->src
== true_edge
->dest
8908 || dominated_by_p (CDI_DOMINATORS
,
8909 tem
->src
, true_edge
->dest
))))
8911 else if (tem
== false_edge
8912 || (single_pred_p (false_edge
->dest
)
8913 && (tem
->src
== false_edge
->dest
8914 || dominated_by_p (CDI_DOMINATORS
,
8915 tem
->src
, false_edge
->dest
))))
8922 if (true_controlled_edge
)
8923 *true_controlled_edge
= e0
;
8924 if (false_controlled_edge
)
8925 *false_controlled_edge
= e1
;
8932 /* Emit return warnings. */
8936 const pass_data pass_data_warn_function_return
=
8938 GIMPLE_PASS
, /* type */
8939 "*warn_function_return", /* name */
8940 OPTGROUP_NONE
, /* optinfo_flags */
8941 TV_NONE
, /* tv_id */
8942 PROP_cfg
, /* properties_required */
8943 0, /* properties_provided */
8944 0, /* properties_destroyed */
8945 0, /* todo_flags_start */
8946 0, /* todo_flags_finish */
8949 class pass_warn_function_return
: public gimple_opt_pass
8952 pass_warn_function_return (gcc::context
*ctxt
)
8953 : gimple_opt_pass (pass_data_warn_function_return
, ctxt
)
8956 /* opt_pass methods: */
8957 virtual unsigned int execute (function
*);
8959 }; // class pass_warn_function_return
8962 pass_warn_function_return::execute (function
*fun
)
8964 source_location location
;
8969 if (!targetm
.warn_func_return (fun
->decl
))
8972 /* If we have a path to EXIT, then we do return. */
8973 if (TREE_THIS_VOLATILE (fun
->decl
)
8974 && EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (fun
)->preds
) > 0)
8976 location
= UNKNOWN_LOCATION
;
8977 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR_FOR_FN (fun
)->preds
)
8979 last
= last_stmt (e
->src
);
8980 if ((gimple_code (last
) == GIMPLE_RETURN
8981 || gimple_call_builtin_p (last
, BUILT_IN_RETURN
))
8982 && (location
= gimple_location (last
)) != UNKNOWN_LOCATION
)
8985 if (location
== UNKNOWN_LOCATION
)
8986 location
= cfun
->function_end_locus
;
8987 warning_at (location
, 0, "%<noreturn%> function does return");
8990 /* If we see "return;" in some basic block, then we do reach the end
8991 without returning a value. */
8992 else if (warn_return_type
8993 && !TREE_NO_WARNING (fun
->decl
)
8994 && EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (fun
)->preds
) > 0
8995 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (fun
->decl
))))
8997 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR_FOR_FN (fun
)->preds
)
8999 gimple
*last
= last_stmt (e
->src
);
9000 greturn
*return_stmt
= dyn_cast
<greturn
*> (last
);
9002 && gimple_return_retval (return_stmt
) == NULL
9003 && !gimple_no_warning_p (last
))
9005 location
= gimple_location (last
);
9006 if (location
== UNKNOWN_LOCATION
)
9007 location
= fun
->function_end_locus
;
9008 warning_at (location
, OPT_Wreturn_type
, "control reaches end of non-void function");
9009 TREE_NO_WARNING (fun
->decl
) = 1;
9020 make_pass_warn_function_return (gcc::context
*ctxt
)
9022 return new pass_warn_function_return (ctxt
);
9025 /* Walk a gimplified function and warn for functions whose return value is
9026 ignored and attribute((warn_unused_result)) is set. This is done before
9027 inlining, so we don't have to worry about that. */
9030 do_warn_unused_result (gimple_seq seq
)
9033 gimple_stmt_iterator i
;
9035 for (i
= gsi_start (seq
); !gsi_end_p (i
); gsi_next (&i
))
9037 gimple
*g
= gsi_stmt (i
);
9039 switch (gimple_code (g
))
9042 do_warn_unused_result (gimple_bind_body (as_a
<gbind
*>(g
)));
9045 do_warn_unused_result (gimple_try_eval (g
));
9046 do_warn_unused_result (gimple_try_cleanup (g
));
9049 do_warn_unused_result (gimple_catch_handler (
9050 as_a
<gcatch
*> (g
)));
9052 case GIMPLE_EH_FILTER
:
9053 do_warn_unused_result (gimple_eh_filter_failure (g
));
9057 if (gimple_call_lhs (g
))
9059 if (gimple_call_internal_p (g
))
9062 /* This is a naked call, as opposed to a GIMPLE_CALL with an
9063 LHS. All calls whose value is ignored should be
9064 represented like this. Look for the attribute. */
9065 fdecl
= gimple_call_fndecl (g
);
9066 ftype
= gimple_call_fntype (g
);
9068 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype
)))
9070 location_t loc
= gimple_location (g
);
9073 warning_at (loc
, OPT_Wunused_result
,
9074 "ignoring return value of %qD, "
9075 "declared with attribute warn_unused_result",
9078 warning_at (loc
, OPT_Wunused_result
,
9079 "ignoring return value of function "
9080 "declared with attribute warn_unused_result");
9085 /* Not a container, not a call, or a call whose value is used. */
9093 const pass_data pass_data_warn_unused_result
=
9095 GIMPLE_PASS
, /* type */
9096 "*warn_unused_result", /* name */
9097 OPTGROUP_NONE
, /* optinfo_flags */
9098 TV_NONE
, /* tv_id */
9099 PROP_gimple_any
, /* properties_required */
9100 0, /* properties_provided */
9101 0, /* properties_destroyed */
9102 0, /* todo_flags_start */
9103 0, /* todo_flags_finish */
9106 class pass_warn_unused_result
: public gimple_opt_pass
9109 pass_warn_unused_result (gcc::context
*ctxt
)
9110 : gimple_opt_pass (pass_data_warn_unused_result
, ctxt
)
9113 /* opt_pass methods: */
9114 virtual bool gate (function
*) { return flag_warn_unused_result
; }
9115 virtual unsigned int execute (function
*)
9117 do_warn_unused_result (gimple_body (current_function_decl
));
9121 }; // class pass_warn_unused_result
9126 make_pass_warn_unused_result (gcc::context
*ctxt
)
9128 return new pass_warn_unused_result (ctxt
);
9131 /* IPA passes, compilation of earlier functions or inlining
9132 might have changed some properties, such as marked functions nothrow,
9133 pure, const or noreturn.
9134 Remove redundant edges and basic blocks, and create new ones if necessary.
9136 This pass can't be executed as stand alone pass from pass manager, because
9137 in between inlining and this fixup the verify_flow_info would fail. */
9140 execute_fixup_cfg (void)
9143 gimple_stmt_iterator gsi
;
9147 cgraph_node
*node
= cgraph_node::get (current_function_decl
);
9148 profile_count num
= node
->count
;
9149 profile_count den
= ENTRY_BLOCK_PTR_FOR_FN (cfun
)->count
;
9150 bool scale
= num
.initialized_p ()
9151 && (den
> 0 || num
== profile_count::zero ())
9156 ENTRY_BLOCK_PTR_FOR_FN (cfun
)->count
= node
->count
;
9157 EXIT_BLOCK_PTR_FOR_FN (cfun
)->count
9158 = EXIT_BLOCK_PTR_FOR_FN (cfun
)->count
.apply_scale (num
, den
);
9160 FOR_EACH_EDGE (e
, ei
, ENTRY_BLOCK_PTR_FOR_FN (cfun
)->succs
)
9161 e
->count
= e
->count
.apply_scale (num
, den
);
9164 FOR_EACH_BB_FN (bb
, cfun
)
9167 bb
->count
= bb
->count
.apply_scale (num
, den
);
9168 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
);)
9170 gimple
*stmt
= gsi_stmt (gsi
);
9171 tree decl
= is_gimple_call (stmt
)
9172 ? gimple_call_fndecl (stmt
)
9176 int flags
= gimple_call_flags (stmt
);
9177 if (flags
& (ECF_CONST
| ECF_PURE
| ECF_LOOPING_CONST_OR_PURE
))
9179 if (gimple_purge_dead_abnormal_call_edges (bb
))
9180 todo
|= TODO_cleanup_cfg
;
9182 if (gimple_in_ssa_p (cfun
))
9184 todo
|= TODO_update_ssa
| TODO_cleanup_cfg
;
9189 if (flags
& ECF_NORETURN
9190 && fixup_noreturn_call (stmt
))
9191 todo
|= TODO_cleanup_cfg
;
9194 /* Remove stores to variables we marked write-only.
9195 Keep access when store has side effect, i.e. in case when source
9197 if (gimple_store_p (stmt
)
9198 && !gimple_has_side_effects (stmt
))
9200 tree lhs
= get_base_address (gimple_get_lhs (stmt
));
9203 && (TREE_STATIC (lhs
) || DECL_EXTERNAL (lhs
))
9204 && varpool_node::get (lhs
)->writeonly
)
9206 unlink_stmt_vdef (stmt
);
9207 gsi_remove (&gsi
, true);
9208 release_defs (stmt
);
9209 todo
|= TODO_update_ssa
| TODO_cleanup_cfg
;
9213 /* For calls we can simply remove LHS when it is known
9214 to be write-only. */
9215 if (is_gimple_call (stmt
)
9216 && gimple_get_lhs (stmt
))
9218 tree lhs
= get_base_address (gimple_get_lhs (stmt
));
9221 && (TREE_STATIC (lhs
) || DECL_EXTERNAL (lhs
))
9222 && varpool_node::get (lhs
)->writeonly
)
9224 gimple_call_set_lhs (stmt
, NULL
);
9226 todo
|= TODO_update_ssa
| TODO_cleanup_cfg
;
9230 if (maybe_clean_eh_stmt (stmt
)
9231 && gimple_purge_dead_eh_edges (bb
))
9232 todo
|= TODO_cleanup_cfg
;
9237 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
9238 e
->count
= e
->count
.apply_scale (num
, den
);
9240 /* If we have a basic block with no successors that does not
9241 end with a control statement or a noreturn call end it with
9242 a call to __builtin_unreachable. This situation can occur
9243 when inlining a noreturn call that does in fact return. */
9244 if (EDGE_COUNT (bb
->succs
) == 0)
9246 gimple
*stmt
= last_stmt (bb
);
9248 || (!is_ctrl_stmt (stmt
)
9249 && (!is_gimple_call (stmt
)
9250 || !gimple_call_noreturn_p (stmt
))))
9252 if (stmt
&& is_gimple_call (stmt
))
9253 gimple_call_set_ctrl_altering (stmt
, false);
9254 tree fndecl
= builtin_decl_implicit (BUILT_IN_UNREACHABLE
);
9255 stmt
= gimple_build_call (fndecl
, 0);
9256 gimple_stmt_iterator gsi
= gsi_last_bb (bb
);
9257 gsi_insert_after (&gsi
, stmt
, GSI_NEW_STMT
);
9258 if (!cfun
->after_inlining
)
9260 gcall
*call_stmt
= dyn_cast
<gcall
*> (stmt
);
9262 = compute_call_stmt_bb_frequency (current_function_decl
,
9264 node
->create_edge (cgraph_node::get_create (fndecl
),
9265 call_stmt
, bb
->count
, freq
);
9271 compute_function_frequency ();
9274 && (todo
& TODO_cleanup_cfg
))
9275 loops_state_set (LOOPS_NEED_FIXUP
);
9282 const pass_data pass_data_fixup_cfg
=
9284 GIMPLE_PASS
, /* type */
9285 "fixup_cfg", /* name */
9286 OPTGROUP_NONE
, /* optinfo_flags */
9287 TV_NONE
, /* tv_id */
9288 PROP_cfg
, /* properties_required */
9289 0, /* properties_provided */
9290 0, /* properties_destroyed */
9291 0, /* todo_flags_start */
9292 0, /* todo_flags_finish */
9295 class pass_fixup_cfg
: public gimple_opt_pass
9298 pass_fixup_cfg (gcc::context
*ctxt
)
9299 : gimple_opt_pass (pass_data_fixup_cfg
, ctxt
)
9302 /* opt_pass methods: */
9303 opt_pass
* clone () { return new pass_fixup_cfg (m_ctxt
); }
9304 virtual unsigned int execute (function
*) { return execute_fixup_cfg (); }
9306 }; // class pass_fixup_cfg
9311 make_pass_fixup_cfg (gcc::context
*ctxt
)
9313 return new pass_fixup_cfg (ctxt
);
9316 /* Garbage collection support for edge_def. */
9318 extern void gt_ggc_mx (tree
&);
9319 extern void gt_ggc_mx (gimple
*&);
9320 extern void gt_ggc_mx (rtx
&);
9321 extern void gt_ggc_mx (basic_block
&);
9324 gt_ggc_mx (rtx_insn
*& x
)
9327 gt_ggc_mx_rtx_def ((void *) x
);
9331 gt_ggc_mx (edge_def
*e
)
9333 tree block
= LOCATION_BLOCK (e
->goto_locus
);
9335 gt_ggc_mx (e
->dest
);
9336 if (current_ir_type () == IR_GIMPLE
)
9337 gt_ggc_mx (e
->insns
.g
);
9339 gt_ggc_mx (e
->insns
.r
);
9343 /* PCH support for edge_def. */
9345 extern void gt_pch_nx (tree
&);
9346 extern void gt_pch_nx (gimple
*&);
9347 extern void gt_pch_nx (rtx
&);
9348 extern void gt_pch_nx (basic_block
&);
9351 gt_pch_nx (rtx_insn
*& x
)
9354 gt_pch_nx_rtx_def ((void *) x
);
9358 gt_pch_nx (edge_def
*e
)
9360 tree block
= LOCATION_BLOCK (e
->goto_locus
);
9362 gt_pch_nx (e
->dest
);
9363 if (current_ir_type () == IR_GIMPLE
)
9364 gt_pch_nx (e
->insns
.g
);
9366 gt_pch_nx (e
->insns
.r
);
9371 gt_pch_nx (edge_def
*e
, gt_pointer_operator op
, void *cookie
)
9373 tree block
= LOCATION_BLOCK (e
->goto_locus
);
9374 op (&(e
->src
), cookie
);
9375 op (&(e
->dest
), cookie
);
9376 if (current_ir_type () == IR_GIMPLE
)
9377 op (&(e
->insns
.g
), cookie
);
9379 op (&(e
->insns
.r
), cookie
);
9380 op (&(block
), cookie
);
9385 namespace selftest
{
9387 /* Helper function for CFG selftests: create a dummy function decl
9388 and push it as cfun. */
9391 push_fndecl (const char *name
)
9393 tree fn_type
= build_function_type_array (integer_type_node
, 0, NULL
);
9394 /* FIXME: this uses input_location: */
9395 tree fndecl
= build_fn_decl (name
, fn_type
);
9396 tree retval
= build_decl (UNKNOWN_LOCATION
, RESULT_DECL
,
9397 NULL_TREE
, integer_type_node
);
9398 DECL_RESULT (fndecl
) = retval
;
9399 push_struct_function (fndecl
);
9400 function
*fun
= DECL_STRUCT_FUNCTION (fndecl
);
9401 ASSERT_TRUE (fun
!= NULL
);
9402 init_empty_tree_cfg_for_function (fun
);
9403 ASSERT_EQ (2, n_basic_blocks_for_fn (fun
));
9404 ASSERT_EQ (0, n_edges_for_fn (fun
));
9408 /* These tests directly create CFGs.
9409 Compare with the static fns within tree-cfg.c:
9411 - make_blocks: calls create_basic_block (seq, bb);
9414 /* Verify a simple cfg of the form:
9415 ENTRY -> A -> B -> C -> EXIT. */
9418 test_linear_chain ()
9420 gimple_register_cfg_hooks ();
9422 tree fndecl
= push_fndecl ("cfg_test_linear_chain");
9423 function
*fun
= DECL_STRUCT_FUNCTION (fndecl
);
9425 /* Create some empty blocks. */
9426 basic_block bb_a
= create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun
));
9427 basic_block bb_b
= create_empty_bb (bb_a
);
9428 basic_block bb_c
= create_empty_bb (bb_b
);
9430 ASSERT_EQ (5, n_basic_blocks_for_fn (fun
));
9431 ASSERT_EQ (0, n_edges_for_fn (fun
));
9433 /* Create some edges: a simple linear chain of BBs. */
9434 make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun
), bb_a
, EDGE_FALLTHRU
);
9435 make_edge (bb_a
, bb_b
, 0);
9436 make_edge (bb_b
, bb_c
, 0);
9437 make_edge (bb_c
, EXIT_BLOCK_PTR_FOR_FN (fun
), 0);
9439 /* Verify the edges. */
9440 ASSERT_EQ (4, n_edges_for_fn (fun
));
9441 ASSERT_EQ (NULL
, ENTRY_BLOCK_PTR_FOR_FN (fun
)->preds
);
9442 ASSERT_EQ (1, ENTRY_BLOCK_PTR_FOR_FN (fun
)->succs
->length ());
9443 ASSERT_EQ (1, bb_a
->preds
->length ());
9444 ASSERT_EQ (1, bb_a
->succs
->length ());
9445 ASSERT_EQ (1, bb_b
->preds
->length ());
9446 ASSERT_EQ (1, bb_b
->succs
->length ());
9447 ASSERT_EQ (1, bb_c
->preds
->length ());
9448 ASSERT_EQ (1, bb_c
->succs
->length ());
9449 ASSERT_EQ (1, EXIT_BLOCK_PTR_FOR_FN (fun
)->preds
->length ());
9450 ASSERT_EQ (NULL
, EXIT_BLOCK_PTR_FOR_FN (fun
)->succs
);
9452 /* Verify the dominance information
9453 Each BB in our simple chain should be dominated by the one before
9455 calculate_dominance_info (CDI_DOMINATORS
);
9456 ASSERT_EQ (bb_a
, get_immediate_dominator (CDI_DOMINATORS
, bb_b
));
9457 ASSERT_EQ (bb_b
, get_immediate_dominator (CDI_DOMINATORS
, bb_c
));
9458 vec
<basic_block
> dom_by_b
= get_dominated_by (CDI_DOMINATORS
, bb_b
);
9459 ASSERT_EQ (1, dom_by_b
.length ());
9460 ASSERT_EQ (bb_c
, dom_by_b
[0]);
9461 free_dominance_info (CDI_DOMINATORS
);
9462 dom_by_b
.release ();
9464 /* Similarly for post-dominance: each BB in our chain is post-dominated
9465 by the one after it. */
9466 calculate_dominance_info (CDI_POST_DOMINATORS
);
9467 ASSERT_EQ (bb_b
, get_immediate_dominator (CDI_POST_DOMINATORS
, bb_a
));
9468 ASSERT_EQ (bb_c
, get_immediate_dominator (CDI_POST_DOMINATORS
, bb_b
));
9469 vec
<basic_block
> postdom_by_b
= get_dominated_by (CDI_POST_DOMINATORS
, bb_b
);
9470 ASSERT_EQ (1, postdom_by_b
.length ());
9471 ASSERT_EQ (bb_a
, postdom_by_b
[0]);
9472 free_dominance_info (CDI_POST_DOMINATORS
);
9473 postdom_by_b
.release ();
9478 /* Verify a simple CFG of the form:
9494 gimple_register_cfg_hooks ();
9496 tree fndecl
= push_fndecl ("cfg_test_diamond");
9497 function
*fun
= DECL_STRUCT_FUNCTION (fndecl
);
9499 /* Create some empty blocks. */
9500 basic_block bb_a
= create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun
));
9501 basic_block bb_b
= create_empty_bb (bb_a
);
9502 basic_block bb_c
= create_empty_bb (bb_a
);
9503 basic_block bb_d
= create_empty_bb (bb_b
);
9505 ASSERT_EQ (6, n_basic_blocks_for_fn (fun
));
9506 ASSERT_EQ (0, n_edges_for_fn (fun
));
9508 /* Create the edges. */
9509 make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun
), bb_a
, EDGE_FALLTHRU
);
9510 make_edge (bb_a
, bb_b
, EDGE_TRUE_VALUE
);
9511 make_edge (bb_a
, bb_c
, EDGE_FALSE_VALUE
);
9512 make_edge (bb_b
, bb_d
, 0);
9513 make_edge (bb_c
, bb_d
, 0);
9514 make_edge (bb_d
, EXIT_BLOCK_PTR_FOR_FN (fun
), 0);
9516 /* Verify the edges. */
9517 ASSERT_EQ (6, n_edges_for_fn (fun
));
9518 ASSERT_EQ (1, bb_a
->preds
->length ());
9519 ASSERT_EQ (2, bb_a
->succs
->length ());
9520 ASSERT_EQ (1, bb_b
->preds
->length ());
9521 ASSERT_EQ (1, bb_b
->succs
->length ());
9522 ASSERT_EQ (1, bb_c
->preds
->length ());
9523 ASSERT_EQ (1, bb_c
->succs
->length ());
9524 ASSERT_EQ (2, bb_d
->preds
->length ());
9525 ASSERT_EQ (1, bb_d
->succs
->length ());
9527 /* Verify the dominance information. */
9528 calculate_dominance_info (CDI_DOMINATORS
);
9529 ASSERT_EQ (bb_a
, get_immediate_dominator (CDI_DOMINATORS
, bb_b
));
9530 ASSERT_EQ (bb_a
, get_immediate_dominator (CDI_DOMINATORS
, bb_c
));
9531 ASSERT_EQ (bb_a
, get_immediate_dominator (CDI_DOMINATORS
, bb_d
));
9532 vec
<basic_block
> dom_by_a
= get_dominated_by (CDI_DOMINATORS
, bb_a
);
9533 ASSERT_EQ (3, dom_by_a
.length ()); /* B, C, D, in some order. */
9534 dom_by_a
.release ();
9535 vec
<basic_block
> dom_by_b
= get_dominated_by (CDI_DOMINATORS
, bb_b
);
9536 ASSERT_EQ (0, dom_by_b
.length ());
9537 dom_by_b
.release ();
9538 free_dominance_info (CDI_DOMINATORS
);
9540 /* Similarly for post-dominance. */
9541 calculate_dominance_info (CDI_POST_DOMINATORS
);
9542 ASSERT_EQ (bb_d
, get_immediate_dominator (CDI_POST_DOMINATORS
, bb_a
));
9543 ASSERT_EQ (bb_d
, get_immediate_dominator (CDI_POST_DOMINATORS
, bb_b
));
9544 ASSERT_EQ (bb_d
, get_immediate_dominator (CDI_POST_DOMINATORS
, bb_c
));
9545 vec
<basic_block
> postdom_by_d
= get_dominated_by (CDI_POST_DOMINATORS
, bb_d
);
9546 ASSERT_EQ (3, postdom_by_d
.length ()); /* A, B, C in some order. */
9547 postdom_by_d
.release ();
9548 vec
<basic_block
> postdom_by_b
= get_dominated_by (CDI_POST_DOMINATORS
, bb_b
);
9549 ASSERT_EQ (0, postdom_by_b
.length ());
9550 postdom_by_b
.release ();
9551 free_dominance_info (CDI_POST_DOMINATORS
);
9556 /* Verify that we can handle a CFG containing a "complete" aka
9557 fully-connected subgraph (where A B C D below all have edges
9558 pointing to each other node, also to themselves).
9576 test_fully_connected ()
9578 gimple_register_cfg_hooks ();
9580 tree fndecl
= push_fndecl ("cfg_fully_connected");
9581 function
*fun
= DECL_STRUCT_FUNCTION (fndecl
);
9585 /* Create some empty blocks. */
9586 auto_vec
<basic_block
> subgraph_nodes
;
9587 for (int i
= 0; i
< n
; i
++)
9588 subgraph_nodes
.safe_push (create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun
)));
9590 ASSERT_EQ (n
+ 2, n_basic_blocks_for_fn (fun
));
9591 ASSERT_EQ (0, n_edges_for_fn (fun
));
9593 /* Create the edges. */
9594 make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun
), subgraph_nodes
[0], EDGE_FALLTHRU
);
9595 make_edge (subgraph_nodes
[0], EXIT_BLOCK_PTR_FOR_FN (fun
), 0);
9596 for (int i
= 0; i
< n
; i
++)
9597 for (int j
= 0; j
< n
; j
++)
9598 make_edge (subgraph_nodes
[i
], subgraph_nodes
[j
], 0);
9600 /* Verify the edges. */
9601 ASSERT_EQ (2 + (n
* n
), n_edges_for_fn (fun
));
9602 /* The first one is linked to ENTRY/EXIT as well as itself and
9604 ASSERT_EQ (n
+ 1, subgraph_nodes
[0]->preds
->length ());
9605 ASSERT_EQ (n
+ 1, subgraph_nodes
[0]->succs
->length ());
9606 /* The other ones in the subgraph are linked to everything in
9607 the subgraph (including themselves). */
9608 for (int i
= 1; i
< n
; i
++)
9610 ASSERT_EQ (n
, subgraph_nodes
[i
]->preds
->length ());
9611 ASSERT_EQ (n
, subgraph_nodes
[i
]->succs
->length ());
9614 /* Verify the dominance information. */
9615 calculate_dominance_info (CDI_DOMINATORS
);
9616 /* The initial block in the subgraph should be dominated by ENTRY. */
9617 ASSERT_EQ (ENTRY_BLOCK_PTR_FOR_FN (fun
),
9618 get_immediate_dominator (CDI_DOMINATORS
,
9619 subgraph_nodes
[0]));
9620 /* Every other block in the subgraph should be dominated by the
9622 for (int i
= 1; i
< n
; i
++)
9623 ASSERT_EQ (subgraph_nodes
[0],
9624 get_immediate_dominator (CDI_DOMINATORS
,
9625 subgraph_nodes
[i
]));
9626 free_dominance_info (CDI_DOMINATORS
);
9628 /* Similarly for post-dominance. */
9629 calculate_dominance_info (CDI_POST_DOMINATORS
);
9630 /* The initial block in the subgraph should be postdominated by EXIT. */
9631 ASSERT_EQ (EXIT_BLOCK_PTR_FOR_FN (fun
),
9632 get_immediate_dominator (CDI_POST_DOMINATORS
,
9633 subgraph_nodes
[0]));
9634 /* Every other block in the subgraph should be postdominated by the
9635 initial block, since that leads to EXIT. */
9636 for (int i
= 1; i
< n
; i
++)
9637 ASSERT_EQ (subgraph_nodes
[0],
9638 get_immediate_dominator (CDI_POST_DOMINATORS
,
9639 subgraph_nodes
[i
]));
9640 free_dominance_info (CDI_POST_DOMINATORS
);
9645 /* Run all of the selftests within this file. */
9650 test_linear_chain ();
9652 test_fully_connected ();
9655 } // namespace selftest
9657 /* TODO: test the dominator/postdominator logic with various graphs/nodes:
9660 - switch statement (a block with many out-edges)
9661 - something that jumps to itself
9664 #endif /* CHECKING_P */