2011-07-24 François Dumont <francois.cppdevs@free.fr>
[official-gcc.git] / libstdc++-v3 / include / bits / hashtable_policy.h
blobdf17855e9501a75a080b1daa353409e17203c77d
1 // Internal policy header for unordered_set and unordered_map -*- C++ -*-
3 // Copyright (C) 2010, 2011 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 // <http://www.gnu.org/licenses/>.
25 /** @file bits/hashtable_policy.h
26 * This is an internal header file, included by other library headers.
27 * Do not attempt to use it directly.
28 * @headername{unordered_map,unordered_set}
31 #ifndef _HASHTABLE_POLICY_H
32 #define _HASHTABLE_POLICY_H 1
34 namespace std _GLIBCXX_VISIBILITY(default)
36 namespace __detail
38 _GLIBCXX_BEGIN_NAMESPACE_VERSION
40 // Helper function: return distance(first, last) for forward
41 // iterators, or 0 for input iterators.
42 template<class _Iterator>
43 inline typename std::iterator_traits<_Iterator>::difference_type
44 __distance_fw(_Iterator __first, _Iterator __last,
45 std::input_iterator_tag)
46 { return 0; }
48 template<class _Iterator>
49 inline typename std::iterator_traits<_Iterator>::difference_type
50 __distance_fw(_Iterator __first, _Iterator __last,
51 std::forward_iterator_tag)
52 { return std::distance(__first, __last); }
54 template<class _Iterator>
55 inline typename std::iterator_traits<_Iterator>::difference_type
56 __distance_fw(_Iterator __first, _Iterator __last)
58 typedef typename std::iterator_traits<_Iterator>::iterator_category _Tag;
59 return __distance_fw(__first, __last, _Tag());
62 // Auxiliary types used for all instantiations of _Hashtable: nodes
63 // and iterators.
65 // Nodes, used to wrap elements stored in the hash table. A policy
66 // template parameter of class template _Hashtable controls whether
67 // nodes also store a hash code. In some cases (e.g. strings) this
68 // may be a performance win.
69 template<typename _Value, bool __cache_hash_code>
70 struct _Hash_node;
72 template<typename _Value>
73 struct _Hash_node<_Value, true>
75 _Value _M_v;
76 std::size_t _M_hash_code;
77 _Hash_node* _M_next;
79 template<typename... _Args>
80 _Hash_node(_Args&&... __args)
81 : _M_v(std::forward<_Args>(__args)...),
82 _M_hash_code(), _M_next() { }
85 template<typename _Value>
86 struct _Hash_node<_Value, false>
88 _Value _M_v;
89 _Hash_node* _M_next;
91 template<typename... _Args>
92 _Hash_node(_Args&&... __args)
93 : _M_v(std::forward<_Args>(__args)...),
94 _M_next() { }
97 // Local iterators, used to iterate within a bucket but not between
98 // buckets.
99 template<typename _Value, bool __cache>
100 struct _Node_iterator_base
102 _Node_iterator_base(_Hash_node<_Value, __cache>* __p)
103 : _M_cur(__p) { }
105 void
106 _M_incr()
107 { _M_cur = _M_cur->_M_next; }
109 _Hash_node<_Value, __cache>* _M_cur;
112 template<typename _Value, bool __cache>
113 inline bool
114 operator==(const _Node_iterator_base<_Value, __cache>& __x,
115 const _Node_iterator_base<_Value, __cache>& __y)
116 { return __x._M_cur == __y._M_cur; }
118 template<typename _Value, bool __cache>
119 inline bool
120 operator!=(const _Node_iterator_base<_Value, __cache>& __x,
121 const _Node_iterator_base<_Value, __cache>& __y)
122 { return __x._M_cur != __y._M_cur; }
124 template<typename _Value, bool __constant_iterators, bool __cache>
125 struct _Node_iterator
126 : public _Node_iterator_base<_Value, __cache>
128 typedef _Value value_type;
129 typedef typename std::conditional<__constant_iterators,
130 const _Value*, _Value*>::type
131 pointer;
132 typedef typename std::conditional<__constant_iterators,
133 const _Value&, _Value&>::type
134 reference;
135 typedef std::ptrdiff_t difference_type;
136 typedef std::forward_iterator_tag iterator_category;
138 _Node_iterator()
139 : _Node_iterator_base<_Value, __cache>(0) { }
141 explicit
142 _Node_iterator(_Hash_node<_Value, __cache>* __p)
143 : _Node_iterator_base<_Value, __cache>(__p) { }
145 reference
146 operator*() const
147 { return this->_M_cur->_M_v; }
149 pointer
150 operator->() const
151 { return std::__addressof(this->_M_cur->_M_v); }
153 _Node_iterator&
154 operator++()
156 this->_M_incr();
157 return *this;
160 _Node_iterator
161 operator++(int)
163 _Node_iterator __tmp(*this);
164 this->_M_incr();
165 return __tmp;
169 template<typename _Value, bool __constant_iterators, bool __cache>
170 struct _Node_const_iterator
171 : public _Node_iterator_base<_Value, __cache>
173 typedef _Value value_type;
174 typedef const _Value* pointer;
175 typedef const _Value& reference;
176 typedef std::ptrdiff_t difference_type;
177 typedef std::forward_iterator_tag iterator_category;
179 _Node_const_iterator()
180 : _Node_iterator_base<_Value, __cache>(0) { }
182 explicit
183 _Node_const_iterator(_Hash_node<_Value, __cache>* __p)
184 : _Node_iterator_base<_Value, __cache>(__p) { }
186 _Node_const_iterator(const _Node_iterator<_Value, __constant_iterators,
187 __cache>& __x)
188 : _Node_iterator_base<_Value, __cache>(__x._M_cur) { }
190 reference
191 operator*() const
192 { return this->_M_cur->_M_v; }
194 pointer
195 operator->() const
196 { return std::__addressof(this->_M_cur->_M_v); }
198 _Node_const_iterator&
199 operator++()
201 this->_M_incr();
202 return *this;
205 _Node_const_iterator
206 operator++(int)
208 _Node_const_iterator __tmp(*this);
209 this->_M_incr();
210 return __tmp;
214 template<typename _Value, bool __cache>
215 struct _Hashtable_iterator_base
217 _Hashtable_iterator_base(_Hash_node<_Value, __cache>* __node,
218 _Hash_node<_Value, __cache>** __bucket)
219 : _M_cur_node(__node), _M_cur_bucket(__bucket) { }
221 void
222 _M_incr()
224 _M_cur_node = _M_cur_node->_M_next;
225 if (!_M_cur_node)
226 _M_incr_bucket();
229 void
230 _M_incr_bucket();
232 _Hash_node<_Value, __cache>* _M_cur_node;
233 _Hash_node<_Value, __cache>** _M_cur_bucket;
236 // Global iterators, used for arbitrary iteration within a hash
237 // table. Larger and more expensive than local iterators.
238 template<typename _Value, bool __cache>
239 void
240 _Hashtable_iterator_base<_Value, __cache>::
241 _M_incr_bucket()
243 ++_M_cur_bucket;
245 // This loop requires the bucket array to have a non-null sentinel.
246 while (!*_M_cur_bucket)
247 ++_M_cur_bucket;
248 _M_cur_node = *_M_cur_bucket;
251 template<typename _Value, bool __cache>
252 inline bool
253 operator==(const _Hashtable_iterator_base<_Value, __cache>& __x,
254 const _Hashtable_iterator_base<_Value, __cache>& __y)
255 { return __x._M_cur_node == __y._M_cur_node; }
257 template<typename _Value, bool __cache>
258 inline bool
259 operator!=(const _Hashtable_iterator_base<_Value, __cache>& __x,
260 const _Hashtable_iterator_base<_Value, __cache>& __y)
261 { return __x._M_cur_node != __y._M_cur_node; }
263 template<typename _Value, bool __constant_iterators, bool __cache>
264 struct _Hashtable_iterator
265 : public _Hashtable_iterator_base<_Value, __cache>
267 typedef _Value value_type;
268 typedef typename std::conditional<__constant_iterators,
269 const _Value*, _Value*>::type
270 pointer;
271 typedef typename std::conditional<__constant_iterators,
272 const _Value&, _Value&>::type
273 reference;
274 typedef std::ptrdiff_t difference_type;
275 typedef std::forward_iterator_tag iterator_category;
277 _Hashtable_iterator()
278 : _Hashtable_iterator_base<_Value, __cache>(0, 0) { }
280 _Hashtable_iterator(_Hash_node<_Value, __cache>* __p,
281 _Hash_node<_Value, __cache>** __b)
282 : _Hashtable_iterator_base<_Value, __cache>(__p, __b) { }
284 explicit
285 _Hashtable_iterator(_Hash_node<_Value, __cache>** __b)
286 : _Hashtable_iterator_base<_Value, __cache>(*__b, __b) { }
288 reference
289 operator*() const
290 { return this->_M_cur_node->_M_v; }
292 pointer
293 operator->() const
294 { return std::__addressof(this->_M_cur_node->_M_v); }
296 _Hashtable_iterator&
297 operator++()
299 this->_M_incr();
300 return *this;
303 _Hashtable_iterator
304 operator++(int)
306 _Hashtable_iterator __tmp(*this);
307 this->_M_incr();
308 return __tmp;
312 template<typename _Value, bool __constant_iterators, bool __cache>
313 struct _Hashtable_const_iterator
314 : public _Hashtable_iterator_base<_Value, __cache>
316 typedef _Value value_type;
317 typedef const _Value* pointer;
318 typedef const _Value& reference;
319 typedef std::ptrdiff_t difference_type;
320 typedef std::forward_iterator_tag iterator_category;
322 _Hashtable_const_iterator()
323 : _Hashtable_iterator_base<_Value, __cache>(0, 0) { }
325 _Hashtable_const_iterator(_Hash_node<_Value, __cache>* __p,
326 _Hash_node<_Value, __cache>** __b)
327 : _Hashtable_iterator_base<_Value, __cache>(__p, __b) { }
329 explicit
330 _Hashtable_const_iterator(_Hash_node<_Value, __cache>** __b)
331 : _Hashtable_iterator_base<_Value, __cache>(*__b, __b) { }
333 _Hashtable_const_iterator(const _Hashtable_iterator<_Value,
334 __constant_iterators, __cache>& __x)
335 : _Hashtable_iterator_base<_Value, __cache>(__x._M_cur_node,
336 __x._M_cur_bucket) { }
338 reference
339 operator*() const
340 { return this->_M_cur_node->_M_v; }
342 pointer
343 operator->() const
344 { return std::__addressof(this->_M_cur_node->_M_v); }
346 _Hashtable_const_iterator&
347 operator++()
349 this->_M_incr();
350 return *this;
353 _Hashtable_const_iterator
354 operator++(int)
356 _Hashtable_const_iterator __tmp(*this);
357 this->_M_incr();
358 return __tmp;
363 // Many of class template _Hashtable's template parameters are policy
364 // classes. These are defaults for the policies.
366 // Default range hashing function: use division to fold a large number
367 // into the range [0, N).
368 struct _Mod_range_hashing
370 typedef std::size_t first_argument_type;
371 typedef std::size_t second_argument_type;
372 typedef std::size_t result_type;
374 result_type
375 operator()(first_argument_type __num, second_argument_type __den) const
376 { return __num % __den; }
379 // Default ranged hash function H. In principle it should be a
380 // function object composed from objects of type H1 and H2 such that
381 // h(k, N) = h2(h1(k), N), but that would mean making extra copies of
382 // h1 and h2. So instead we'll just use a tag to tell class template
383 // hashtable to do that composition.
384 struct _Default_ranged_hash { };
386 // Default value for rehash policy. Bucket size is (usually) the
387 // smallest prime that keeps the load factor small enough.
388 struct _Prime_rehash_policy
390 _Prime_rehash_policy(float __z = 1.0)
391 : _M_max_load_factor(__z), _M_growth_factor(2.f), _M_next_resize(0) { }
393 float
394 max_load_factor() const noexcept
395 { return _M_max_load_factor; }
397 // Return a bucket size no smaller than n.
398 std::size_t
399 _M_next_bkt(std::size_t __n) const;
401 // Return a bucket count appropriate for n elements
402 std::size_t
403 _M_bkt_for_elements(std::size_t __n) const;
405 // __n_bkt is current bucket count, __n_elt is current element count,
406 // and __n_ins is number of elements to be inserted. Do we need to
407 // increase bucket count? If so, return make_pair(true, n), where n
408 // is the new bucket count. If not, return make_pair(false, 0).
409 std::pair<bool, std::size_t>
410 _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt,
411 std::size_t __n_ins) const;
413 enum { _S_n_primes = sizeof(unsigned long) != 8 ? 256 : 256 + 48 };
415 float _M_max_load_factor;
416 float _M_growth_factor;
417 mutable std::size_t _M_next_resize;
420 extern const unsigned long __prime_list[];
422 // XXX This is a hack. There's no good reason for any of
423 // _Prime_rehash_policy's member functions to be inline.
425 // Return a prime no smaller than n.
426 inline std::size_t
427 _Prime_rehash_policy::
428 _M_next_bkt(std::size_t __n) const
430 const unsigned long __p = *std::lower_bound(__prime_list, __prime_list
431 + _S_n_primes, __n);
432 _M_next_resize =
433 static_cast<std::size_t>(__builtin_floor(__p * _M_max_load_factor));
434 return *__p;
437 // Return the smallest prime p such that alpha p >= n, where alpha
438 // is the load factor.
439 inline std::size_t
440 _Prime_rehash_policy::
441 _M_bkt_for_elements(std::size_t __n) const
443 const float __min_bkts = __n / _M_max_load_factor;
444 const unsigned long __p = *std::lower_bound(__prime_list, __prime_list
445 + _S_n_primes, __min_bkts);
446 _M_next_resize =
447 static_cast<std::size_t>(__builtin_floor(__p * _M_max_load_factor));
448 return *__p;
451 // Finds the smallest prime p such that alpha p > __n_elt + __n_ins.
452 // If p > __n_bkt, return make_pair(true, p); otherwise return
453 // make_pair(false, 0). In principle this isn't very different from
454 // _M_bkt_for_elements.
456 // The only tricky part is that we're caching the element count at
457 // which we need to rehash, so we don't have to do a floating-point
458 // multiply for every insertion.
460 inline std::pair<bool, std::size_t>
461 _Prime_rehash_policy::
462 _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt,
463 std::size_t __n_ins) const
465 if (__n_elt + __n_ins > _M_next_resize)
467 float __min_bkts = ((float(__n_ins) + float(__n_elt))
468 / _M_max_load_factor);
469 if (__min_bkts > __n_bkt)
471 __min_bkts = std::max(__min_bkts, _M_growth_factor * __n_bkt);
472 const unsigned long __p =
473 *std::lower_bound(__prime_list, __prime_list + _S_n_primes,
474 __min_bkts);
475 _M_next_resize = static_cast<std::size_t>
476 (__builtin_floor(__p * _M_max_load_factor));
477 return std::make_pair(true, *__p);
479 else
481 _M_next_resize = static_cast<std::size_t>
482 (__builtin_floor(__n_bkt * _M_max_load_factor));
483 return std::make_pair(false, 0);
486 else
487 return std::make_pair(false, 0);
490 // Base classes for std::_Hashtable. We define these base classes
491 // because in some cases we want to do different things depending
492 // on the value of a policy class. In some cases the policy class
493 // affects which member functions and nested typedefs are defined;
494 // we handle that by specializing base class templates. Several of
495 // the base class templates need to access other members of class
496 // template _Hashtable, so we use the "curiously recurring template
497 // pattern" for them.
499 // class template _Map_base. If the hashtable has a value type of
500 // the form pair<T1, T2> and a key extraction policy that returns the
501 // first part of the pair, the hashtable gets a mapped_type typedef.
502 // If it satisfies those criteria and also has unique keys, then it
503 // also gets an operator[].
504 template<typename _Key, typename _Value, typename _Ex, bool __unique,
505 typename _Hashtable>
506 struct _Map_base { };
508 template<typename _Key, typename _Pair, typename _Hashtable>
509 struct _Map_base<_Key, _Pair, std::_Select1st<_Pair>, false, _Hashtable>
511 typedef typename _Pair::second_type mapped_type;
514 template<typename _Key, typename _Pair, typename _Hashtable>
515 struct _Map_base<_Key, _Pair, std::_Select1st<_Pair>, true, _Hashtable>
517 typedef typename _Pair::second_type mapped_type;
519 mapped_type&
520 operator[](const _Key& __k);
522 mapped_type&
523 operator[](_Key&& __k);
525 // _GLIBCXX_RESOLVE_LIB_DEFECTS
526 // DR 761. unordered_map needs an at() member function.
527 mapped_type&
528 at(const _Key& __k);
530 const mapped_type&
531 at(const _Key& __k) const;
534 template<typename _Key, typename _Pair, typename _Hashtable>
535 typename _Map_base<_Key, _Pair, std::_Select1st<_Pair>,
536 true, _Hashtable>::mapped_type&
537 _Map_base<_Key, _Pair, std::_Select1st<_Pair>, true, _Hashtable>::
538 operator[](const _Key& __k)
540 _Hashtable* __h = static_cast<_Hashtable*>(this);
541 typename _Hashtable::_Hash_code_type __code = __h->_M_hash_code(__k);
542 std::size_t __n = __h->_M_bucket_index(__k, __code,
543 __h->_M_bucket_count);
545 typename _Hashtable::_Node* __p =
546 __h->_M_find_node(__h->_M_buckets[__n], __k, __code);
547 if (!__p)
548 return __h->_M_insert_bucket(std::make_pair(__k, mapped_type()),
549 __n, __code)->second;
550 return (__p->_M_v).second;
553 template<typename _Key, typename _Pair, typename _Hashtable>
554 typename _Map_base<_Key, _Pair, std::_Select1st<_Pair>,
555 true, _Hashtable>::mapped_type&
556 _Map_base<_Key, _Pair, std::_Select1st<_Pair>, true, _Hashtable>::
557 operator[](_Key&& __k)
559 _Hashtable* __h = static_cast<_Hashtable*>(this);
560 typename _Hashtable::_Hash_code_type __code = __h->_M_hash_code(__k);
561 std::size_t __n = __h->_M_bucket_index(__k, __code,
562 __h->_M_bucket_count);
564 typename _Hashtable::_Node* __p =
565 __h->_M_find_node(__h->_M_buckets[__n], __k, __code);
566 if (!__p)
567 return __h->_M_insert_bucket(std::make_pair(std::move(__k),
568 mapped_type()),
569 __n, __code)->second;
570 return (__p->_M_v).second;
573 template<typename _Key, typename _Pair, typename _Hashtable>
574 typename _Map_base<_Key, _Pair, std::_Select1st<_Pair>,
575 true, _Hashtable>::mapped_type&
576 _Map_base<_Key, _Pair, std::_Select1st<_Pair>, true, _Hashtable>::
577 at(const _Key& __k)
579 _Hashtable* __h = static_cast<_Hashtable*>(this);
580 typename _Hashtable::_Hash_code_type __code = __h->_M_hash_code(__k);
581 std::size_t __n = __h->_M_bucket_index(__k, __code,
582 __h->_M_bucket_count);
584 typename _Hashtable::_Node* __p =
585 __h->_M_find_node(__h->_M_buckets[__n], __k, __code);
586 if (!__p)
587 __throw_out_of_range(__N("_Map_base::at"));
588 return (__p->_M_v).second;
591 template<typename _Key, typename _Pair, typename _Hashtable>
592 const typename _Map_base<_Key, _Pair, std::_Select1st<_Pair>,
593 true, _Hashtable>::mapped_type&
594 _Map_base<_Key, _Pair, std::_Select1st<_Pair>, true, _Hashtable>::
595 at(const _Key& __k) const
597 const _Hashtable* __h = static_cast<const _Hashtable*>(this);
598 typename _Hashtable::_Hash_code_type __code = __h->_M_hash_code(__k);
599 std::size_t __n = __h->_M_bucket_index(__k, __code,
600 __h->_M_bucket_count);
602 typename _Hashtable::_Node* __p =
603 __h->_M_find_node(__h->_M_buckets[__n], __k, __code);
604 if (!__p)
605 __throw_out_of_range(__N("_Map_base::at"));
606 return (__p->_M_v).second;
609 // class template _Rehash_base. Give hashtable the max_load_factor
610 // functions and reserve iff the rehash policy is _Prime_rehash_policy.
611 template<typename _RehashPolicy, typename _Hashtable>
612 struct _Rehash_base { };
614 template<typename _Hashtable>
615 struct _Rehash_base<_Prime_rehash_policy, _Hashtable>
617 float
618 max_load_factor() const noexcept
620 const _Hashtable* __this = static_cast<const _Hashtable*>(this);
621 return __this->__rehash_policy().max_load_factor();
624 void
625 max_load_factor(float __z)
627 _Hashtable* __this = static_cast<_Hashtable*>(this);
628 __this->__rehash_policy(_Prime_rehash_policy(__z));
631 void
632 reserve(std::size_t __n)
634 _Hashtable* __this = static_cast<_Hashtable*>(this);
635 __this->rehash(__builtin_ceil(__n / max_load_factor()));
639 // Class template _Hash_code_base. Encapsulates two policy issues that
640 // aren't quite orthogonal.
641 // (1) the difference between using a ranged hash function and using
642 // the combination of a hash function and a range-hashing function.
643 // In the former case we don't have such things as hash codes, so
644 // we have a dummy type as placeholder.
645 // (2) Whether or not we cache hash codes. Caching hash codes is
646 // meaningless if we have a ranged hash function.
647 // We also put the key extraction and equality comparison function
648 // objects here, for convenience.
650 // Primary template: unused except as a hook for specializations.
651 template<typename _Key, typename _Value,
652 typename _ExtractKey, typename _Equal,
653 typename _H1, typename _H2, typename _Hash,
654 bool __cache_hash_code>
655 struct _Hash_code_base;
657 // Specialization: ranged hash function, no caching hash codes. H1
658 // and H2 are provided but ignored. We define a dummy hash code type.
659 template<typename _Key, typename _Value,
660 typename _ExtractKey, typename _Equal,
661 typename _H1, typename _H2, typename _Hash>
662 struct _Hash_code_base<_Key, _Value, _ExtractKey, _Equal, _H1, _H2,
663 _Hash, false>
665 protected:
666 _Hash_code_base(const _ExtractKey& __ex, const _Equal& __eq,
667 const _H1&, const _H2&, const _Hash& __h)
668 : _M_extract(__ex), _M_eq(__eq), _M_ranged_hash(__h) { }
670 typedef void* _Hash_code_type;
672 _Hash_code_type
673 _M_hash_code(const _Key& __key) const
674 { return 0; }
676 std::size_t
677 _M_bucket_index(const _Key& __k, _Hash_code_type,
678 std::size_t __n) const
679 { return _M_ranged_hash(__k, __n); }
681 std::size_t
682 _M_bucket_index(const _Hash_node<_Value, false>* __p,
683 std::size_t __n) const
684 { return _M_ranged_hash(_M_extract(__p->_M_v), __n); }
686 bool
687 _M_compare(const _Key& __k, _Hash_code_type,
688 _Hash_node<_Value, false>* __n) const
689 { return _M_eq(__k, _M_extract(__n->_M_v)); }
691 void
692 _M_store_code(_Hash_node<_Value, false>*, _Hash_code_type) const
695 void
696 _M_copy_code(_Hash_node<_Value, false>*,
697 const _Hash_node<_Value, false>*) const
700 void
701 _M_swap(_Hash_code_base& __x)
703 std::swap(_M_extract, __x._M_extract);
704 std::swap(_M_eq, __x._M_eq);
705 std::swap(_M_ranged_hash, __x._M_ranged_hash);
708 protected:
709 _ExtractKey _M_extract;
710 _Equal _M_eq;
711 _Hash _M_ranged_hash;
715 // No specialization for ranged hash function while caching hash codes.
716 // That combination is meaningless, and trying to do it is an error.
719 // Specialization: ranged hash function, cache hash codes. This
720 // combination is meaningless, so we provide only a declaration
721 // and no definition.
722 template<typename _Key, typename _Value,
723 typename _ExtractKey, typename _Equal,
724 typename _H1, typename _H2, typename _Hash>
725 struct _Hash_code_base<_Key, _Value, _ExtractKey, _Equal, _H1, _H2,
726 _Hash, true>;
728 // Specialization: hash function and range-hashing function, no
729 // caching of hash codes. H is provided but ignored. Provides
730 // typedef and accessor required by TR1.
731 template<typename _Key, typename _Value,
732 typename _ExtractKey, typename _Equal,
733 typename _H1, typename _H2>
734 struct _Hash_code_base<_Key, _Value, _ExtractKey, _Equal, _H1, _H2,
735 _Default_ranged_hash, false>
737 typedef _H1 hasher;
739 hasher
740 hash_function() const
741 { return _M_h1; }
743 protected:
744 _Hash_code_base(const _ExtractKey& __ex, const _Equal& __eq,
745 const _H1& __h1, const _H2& __h2,
746 const _Default_ranged_hash&)
747 : _M_extract(__ex), _M_eq(__eq), _M_h1(__h1), _M_h2(__h2) { }
749 typedef std::size_t _Hash_code_type;
751 _Hash_code_type
752 _M_hash_code(const _Key& __k) const
753 { return _M_h1(__k); }
755 std::size_t
756 _M_bucket_index(const _Key&, _Hash_code_type __c,
757 std::size_t __n) const
758 { return _M_h2(__c, __n); }
760 std::size_t
761 _M_bucket_index(const _Hash_node<_Value, false>* __p,
762 std::size_t __n) const
763 { return _M_h2(_M_h1(_M_extract(__p->_M_v)), __n); }
765 bool
766 _M_compare(const _Key& __k, _Hash_code_type,
767 _Hash_node<_Value, false>* __n) const
768 { return _M_eq(__k, _M_extract(__n->_M_v)); }
770 void
771 _M_store_code(_Hash_node<_Value, false>*, _Hash_code_type) const
774 void
775 _M_copy_code(_Hash_node<_Value, false>*,
776 const _Hash_node<_Value, false>*) const
779 void
780 _M_swap(_Hash_code_base& __x)
782 std::swap(_M_extract, __x._M_extract);
783 std::swap(_M_eq, __x._M_eq);
784 std::swap(_M_h1, __x._M_h1);
785 std::swap(_M_h2, __x._M_h2);
788 protected:
789 _ExtractKey _M_extract;
790 _Equal _M_eq;
791 _H1 _M_h1;
792 _H2 _M_h2;
795 // Specialization: hash function and range-hashing function,
796 // caching hash codes. H is provided but ignored. Provides
797 // typedef and accessor required by TR1.
798 template<typename _Key, typename _Value,
799 typename _ExtractKey, typename _Equal,
800 typename _H1, typename _H2>
801 struct _Hash_code_base<_Key, _Value, _ExtractKey, _Equal, _H1, _H2,
802 _Default_ranged_hash, true>
804 typedef _H1 hasher;
806 hasher
807 hash_function() const
808 { return _M_h1; }
810 protected:
811 _Hash_code_base(const _ExtractKey& __ex, const _Equal& __eq,
812 const _H1& __h1, const _H2& __h2,
813 const _Default_ranged_hash&)
814 : _M_extract(__ex), _M_eq(__eq), _M_h1(__h1), _M_h2(__h2) { }
816 typedef std::size_t _Hash_code_type;
818 _Hash_code_type
819 _M_hash_code(const _Key& __k) const
820 { return _M_h1(__k); }
822 std::size_t
823 _M_bucket_index(const _Key&, _Hash_code_type __c,
824 std::size_t __n) const
825 { return _M_h2(__c, __n); }
827 std::size_t
828 _M_bucket_index(const _Hash_node<_Value, true>* __p,
829 std::size_t __n) const
830 { return _M_h2(__p->_M_hash_code, __n); }
832 bool
833 _M_compare(const _Key& __k, _Hash_code_type __c,
834 _Hash_node<_Value, true>* __n) const
835 { return __c == __n->_M_hash_code && _M_eq(__k, _M_extract(__n->_M_v)); }
837 void
838 _M_store_code(_Hash_node<_Value, true>* __n, _Hash_code_type __c) const
839 { __n->_M_hash_code = __c; }
841 void
842 _M_copy_code(_Hash_node<_Value, true>* __to,
843 const _Hash_node<_Value, true>* __from) const
844 { __to->_M_hash_code = __from->_M_hash_code; }
846 void
847 _M_swap(_Hash_code_base& __x)
849 std::swap(_M_extract, __x._M_extract);
850 std::swap(_M_eq, __x._M_eq);
851 std::swap(_M_h1, __x._M_h1);
852 std::swap(_M_h2, __x._M_h2);
855 protected:
856 _ExtractKey _M_extract;
857 _Equal _M_eq;
858 _H1 _M_h1;
859 _H2 _M_h2;
863 // Class template _Equality_base. This is for implementing equality
864 // comparison for unordered containers, per N3068, by John Lakos and
865 // Pablo Halpern. Algorithmically, we follow closely the reference
866 // implementations therein.
867 template<typename _ExtractKey, bool __unique_keys,
868 typename _Hashtable>
869 struct _Equality_base;
871 template<typename _ExtractKey, typename _Hashtable>
872 struct _Equality_base<_ExtractKey, true, _Hashtable>
874 bool _M_equal(const _Hashtable&) const;
877 template<typename _ExtractKey, typename _Hashtable>
878 bool
879 _Equality_base<_ExtractKey, true, _Hashtable>::
880 _M_equal(const _Hashtable& __other) const
882 const _Hashtable* __this = static_cast<const _Hashtable*>(this);
884 if (__this->size() != __other.size())
885 return false;
887 for (auto __itx = __this->begin(); __itx != __this->end(); ++__itx)
889 const auto __ity = __other.find(_ExtractKey()(*__itx));
890 if (__ity == __other.end() || *__ity != *__itx)
891 return false;
893 return true;
896 template<typename _ExtractKey, typename _Hashtable>
897 struct _Equality_base<_ExtractKey, false, _Hashtable>
899 bool _M_equal(const _Hashtable&) const;
901 private:
902 template<typename _Uiterator>
903 static bool
904 _S_is_permutation(_Uiterator, _Uiterator, _Uiterator);
907 // See std::is_permutation in N3068.
908 template<typename _ExtractKey, typename _Hashtable>
909 template<typename _Uiterator>
910 bool
911 _Equality_base<_ExtractKey, false, _Hashtable>::
912 _S_is_permutation(_Uiterator __first1, _Uiterator __last1,
913 _Uiterator __first2)
915 for (; __first1 != __last1; ++__first1, ++__first2)
916 if (!(*__first1 == *__first2))
917 break;
919 if (__first1 == __last1)
920 return true;
922 _Uiterator __last2 = __first2;
923 std::advance(__last2, std::distance(__first1, __last1));
925 for (_Uiterator __it1 = __first1; __it1 != __last1; ++__it1)
927 _Uiterator __tmp = __first1;
928 while (__tmp != __it1 && !(*__tmp == *__it1))
929 ++__tmp;
931 // We've seen this one before.
932 if (__tmp != __it1)
933 continue;
935 std::ptrdiff_t __n2 = 0;
936 for (__tmp = __first2; __tmp != __last2; ++__tmp)
937 if (*__tmp == *__it1)
938 ++__n2;
940 if (!__n2)
941 return false;
943 std::ptrdiff_t __n1 = 0;
944 for (__tmp = __it1; __tmp != __last1; ++__tmp)
945 if (*__tmp == *__it1)
946 ++__n1;
948 if (__n1 != __n2)
949 return false;
951 return true;
954 template<typename _ExtractKey, typename _Hashtable>
955 bool
956 _Equality_base<_ExtractKey, false, _Hashtable>::
957 _M_equal(const _Hashtable& __other) const
959 const _Hashtable* __this = static_cast<const _Hashtable*>(this);
961 if (__this->size() != __other.size())
962 return false;
964 for (auto __itx = __this->begin(); __itx != __this->end();)
966 const auto __xrange = __this->equal_range(_ExtractKey()(*__itx));
967 const auto __yrange = __other.equal_range(_ExtractKey()(*__itx));
969 if (std::distance(__xrange.first, __xrange.second)
970 != std::distance(__yrange.first, __yrange.second))
971 return false;
973 if (!_S_is_permutation(__xrange.first,
974 __xrange.second,
975 __yrange.first))
976 return false;
978 __itx = __xrange.second;
980 return true;
983 _GLIBCXX_END_NAMESPACE_VERSION
984 } // namespace __detail
985 } // namespace std
987 #endif // _HASHTABLE_POLICY_H