Add D30V options
[official-gcc.git] / gcc / except.c
blobad2e31047f0be4e080367131f14619f9f0f07389
1 /* Implements exception handling.
2 Copyright (C) 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000 Free Software Foundation, Inc.
4 Contributed by Mike Stump <mrs@cygnus.com>.
6 This file is part of GNU CC.
8 GNU CC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
13 GNU CC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GNU CC; see the file COPYING. If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
24 /* An exception is an event that can be signaled from within a
25 function. This event can then be "caught" or "trapped" by the
26 callers of this function. This potentially allows program flow to
27 be transferred to any arbitrary code associated with a function call
28 several levels up the stack.
30 The intended use for this mechanism is for signaling "exceptional
31 events" in an out-of-band fashion, hence its name. The C++ language
32 (and many other OO-styled or functional languages) practically
33 requires such a mechanism, as otherwise it becomes very difficult
34 or even impossible to signal failure conditions in complex
35 situations. The traditional C++ example is when an error occurs in
36 the process of constructing an object; without such a mechanism, it
37 is impossible to signal that the error occurs without adding global
38 state variables and error checks around every object construction.
40 The act of causing this event to occur is referred to as "throwing
41 an exception". (Alternate terms include "raising an exception" or
42 "signaling an exception".) The term "throw" is used because control
43 is returned to the callers of the function that is signaling the
44 exception, and thus there is the concept of "throwing" the
45 exception up the call stack.
47 There are two major codegen options for exception handling. The
48 flag -fsjlj-exceptions can be used to select the setjmp/longjmp
49 approach, which is the default. -fno-sjlj-exceptions can be used to
50 get the PC range table approach. While this is a compile time
51 flag, an entire application must be compiled with the same codegen
52 option. The first is a PC range table approach, the second is a
53 setjmp/longjmp based scheme. We will first discuss the PC range
54 table approach, after that, we will discuss the setjmp/longjmp
55 based approach.
57 It is appropriate to speak of the "context of a throw". This
58 context refers to the address where the exception is thrown from,
59 and is used to determine which exception region will handle the
60 exception.
62 Regions of code within a function can be marked such that if it
63 contains the context of a throw, control will be passed to a
64 designated "exception handler". These areas are known as "exception
65 regions". Exception regions cannot overlap, but they can be nested
66 to any arbitrary depth. Also, exception regions cannot cross
67 function boundaries.
69 Exception handlers can either be specified by the user (which we
70 will call a "user-defined handler") or generated by the compiler
71 (which we will designate as a "cleanup"). Cleanups are used to
72 perform tasks such as destruction of objects allocated on the
73 stack.
75 In the current implementation, cleanups are handled by allocating an
76 exception region for the area that the cleanup is designated for,
77 and the handler for the region performs the cleanup and then
78 rethrows the exception to the outer exception region. From the
79 standpoint of the current implementation, there is little
80 distinction made between a cleanup and a user-defined handler, and
81 the phrase "exception handler" can be used to refer to either one
82 equally well. (The section "Future Directions" below discusses how
83 this will change).
85 Each object file that is compiled with exception handling contains
86 a static array of exception handlers named __EXCEPTION_TABLE__.
87 Each entry contains the starting and ending addresses of the
88 exception region, and the address of the handler designated for
89 that region.
91 If the target does not use the DWARF 2 frame unwind information, at
92 program startup each object file invokes a function named
93 __register_exceptions with the address of its local
94 __EXCEPTION_TABLE__. __register_exceptions is defined in libgcc2.c, and
95 is responsible for recording all of the exception regions into one list
96 (which is kept in a static variable named exception_table_list).
98 On targets that support crtstuff.c, the unwind information
99 is stored in a section named .eh_frame and the information for the
100 entire shared object or program is registered with a call to
101 __register_frame_info. On other targets, the information for each
102 translation unit is registered from the file generated by collect2.
103 __register_frame_info is defined in frame.c, and is responsible for
104 recording all of the unwind regions into one list (which is kept in a
105 static variable named unwind_table_list).
107 The function __throw is actually responsible for doing the
108 throw. On machines that have unwind info support, __throw is generated
109 by code in libgcc2.c, otherwise __throw is generated on a
110 per-object-file basis for each source file compiled with
111 -fexceptions by the C++ frontend. Before __throw is invoked,
112 the current context of the throw needs to be placed in the global
113 variable __eh_pc.
115 __throw attempts to find the appropriate exception handler for the
116 PC value stored in __eh_pc by calling __find_first_exception_table_match
117 (which is defined in libgcc2.c). If __find_first_exception_table_match
118 finds a relevant handler, __throw transfers control directly to it.
120 If a handler for the context being thrown from can't be found, __throw
121 walks (see Walking the stack below) the stack up the dynamic call chain to
122 continue searching for an appropriate exception handler based upon the
123 caller of the function it last sought a exception handler for. It stops
124 then either an exception handler is found, or when the top of the
125 call chain is reached.
127 If no handler is found, an external library function named
128 __terminate is called. If a handler is found, then we restart
129 our search for a handler at the end of the call chain, and repeat
130 the search process, but instead of just walking up the call chain,
131 we unwind the call chain as we walk up it.
133 Internal implementation details:
135 To associate a user-defined handler with a block of statements, the
136 function expand_start_try_stmts is used to mark the start of the
137 block of statements with which the handler is to be associated
138 (which is known as a "try block"). All statements that appear
139 afterwards will be associated with the try block.
141 A call to expand_start_all_catch marks the end of the try block,
142 and also marks the start of the "catch block" (the user-defined
143 handler) associated with the try block.
145 This user-defined handler will be invoked for *every* exception
146 thrown with the context of the try block. It is up to the handler
147 to decide whether or not it wishes to handle any given exception,
148 as there is currently no mechanism in this implementation for doing
149 this. (There are plans for conditionally processing an exception
150 based on its "type", which will provide a language-independent
151 mechanism).
153 If the handler chooses not to process the exception (perhaps by
154 looking at an "exception type" or some other additional data
155 supplied with the exception), it can fall through to the end of the
156 handler. expand_end_all_catch and expand_leftover_cleanups
157 add additional code to the end of each handler to take care of
158 rethrowing to the outer exception handler.
160 The handler also has the option to continue with "normal flow of
161 code", or in other words to resume executing at the statement
162 immediately after the end of the exception region. The variable
163 caught_return_label_stack contains a stack of labels, and jumping
164 to the topmost entry's label via expand_goto will resume normal
165 flow to the statement immediately after the end of the exception
166 region. If the handler falls through to the end, the exception will
167 be rethrown to the outer exception region.
169 The instructions for the catch block are kept as a separate
170 sequence, and will be emitted at the end of the function along with
171 the handlers specified via expand_eh_region_end. The end of the
172 catch block is marked with expand_end_all_catch.
174 Any data associated with the exception must currently be handled by
175 some external mechanism maintained in the frontend. For example,
176 the C++ exception mechanism passes an arbitrary value along with
177 the exception, and this is handled in the C++ frontend by using a
178 global variable to hold the value. (This will be changing in the
179 future.)
181 The mechanism in C++ for handling data associated with the
182 exception is clearly not thread-safe. For a thread-based
183 environment, another mechanism must be used (possibly using a
184 per-thread allocation mechanism if the size of the area that needs
185 to be allocated isn't known at compile time.)
187 Internally-generated exception regions (cleanups) are marked by
188 calling expand_eh_region_start to mark the start of the region,
189 and expand_eh_region_end (handler) is used to both designate the
190 end of the region and to associate a specified handler/cleanup with
191 the region. The rtl code in HANDLER will be invoked whenever an
192 exception occurs in the region between the calls to
193 expand_eh_region_start and expand_eh_region_end. After HANDLER is
194 executed, additional code is emitted to handle rethrowing the
195 exception to the outer exception handler. The code for HANDLER will
196 be emitted at the end of the function.
198 TARGET_EXPRs can also be used to designate exception regions. A
199 TARGET_EXPR gives an unwind-protect style interface commonly used
200 in functional languages such as LISP. The associated expression is
201 evaluated, and whether or not it (or any of the functions that it
202 calls) throws an exception, the protect expression is always
203 invoked. This implementation takes care of the details of
204 associating an exception table entry with the expression and
205 generating the necessary code (it actually emits the protect
206 expression twice, once for normal flow and once for the exception
207 case). As for the other handlers, the code for the exception case
208 will be emitted at the end of the function.
210 Cleanups can also be specified by using add_partial_entry (handler)
211 and end_protect_partials. add_partial_entry creates the start of
212 a new exception region; HANDLER will be invoked if an exception is
213 thrown with the context of the region between the calls to
214 add_partial_entry and end_protect_partials. end_protect_partials is
215 used to mark the end of these regions. add_partial_entry can be
216 called as many times as needed before calling end_protect_partials.
217 However, end_protect_partials should only be invoked once for each
218 group of calls to add_partial_entry as the entries are queued
219 and all of the outstanding entries are processed simultaneously
220 when end_protect_partials is invoked. Similarly to the other
221 handlers, the code for HANDLER will be emitted at the end of the
222 function.
224 The generated RTL for an exception region includes
225 NOTE_INSN_EH_REGION_BEG and NOTE_INSN_EH_REGION_END notes that mark
226 the start and end of the exception region. A unique label is also
227 generated at the start of the exception region, which is available
228 by looking at the ehstack variable. The topmost entry corresponds
229 to the current region.
231 In the current implementation, an exception can only be thrown from
232 a function call (since the mechanism used to actually throw an
233 exception involves calling __throw). If an exception region is
234 created but no function calls occur within that region, the region
235 can be safely optimized away (along with its exception handlers)
236 since no exceptions can ever be caught in that region. This
237 optimization is performed unless -fasynchronous-exceptions is
238 given. If the user wishes to throw from a signal handler, or other
239 asynchronous place, -fasynchronous-exceptions should be used when
240 compiling for maximally correct code, at the cost of additional
241 exception regions. Using -fasynchronous-exceptions only produces
242 code that is reasonably safe in such situations, but a correct
243 program cannot rely upon this working. It can be used in failsafe
244 code, where trying to continue on, and proceeding with potentially
245 incorrect results is better than halting the program.
248 Walking the stack:
250 The stack is walked by starting with a pointer to the current
251 frame, and finding the pointer to the callers frame. The unwind info
252 tells __throw how to find it.
254 Unwinding the stack:
256 When we use the term unwinding the stack, we mean undoing the
257 effects of the function prologue in a controlled fashion so that we
258 still have the flow of control. Otherwise, we could just return
259 (jump to the normal end of function epilogue).
261 This is done in __throw in libgcc2.c when we know that a handler exists
262 in a frame higher up the call stack than its immediate caller.
264 To unwind, we find the unwind data associated with the frame, if any.
265 If we don't find any, we call the library routine __terminate. If we do
266 find it, we use the information to copy the saved register values from
267 that frame into the register save area in the frame for __throw, return
268 into a stub which updates the stack pointer, and jump to the handler.
269 The normal function epilogue for __throw handles restoring the saved
270 values into registers.
272 When unwinding, we use this method if we know it will
273 work (if DWARF2_UNWIND_INFO is defined). Otherwise, we know that
274 an inline unwinder will have been emitted for any function that
275 __unwind_function cannot unwind. The inline unwinder appears as a
276 normal exception handler for the entire function, for any function
277 that we know cannot be unwound by __unwind_function. We inform the
278 compiler of whether a function can be unwound with
279 __unwind_function by having DOESNT_NEED_UNWINDER evaluate to true
280 when the unwinder isn't needed. __unwind_function is used as an
281 action of last resort. If no other method can be used for
282 unwinding, __unwind_function is used. If it cannot unwind, it
283 should call __terminate.
285 By default, if the target-specific backend doesn't supply a definition
286 for __unwind_function and doesn't support DWARF2_UNWIND_INFO, inlined
287 unwinders will be used instead. The main tradeoff here is in text space
288 utilization. Obviously, if inline unwinders have to be generated
289 repeatedly, this uses much more space than if a single routine is used.
291 However, it is simply not possible on some platforms to write a
292 generalized routine for doing stack unwinding without having some
293 form of additional data associated with each function. The current
294 implementation can encode this data in the form of additional
295 machine instructions or as static data in tabular form. The later
296 is called the unwind data.
298 The backend macro DOESNT_NEED_UNWINDER is used to conditionalize whether
299 or not per-function unwinders are needed. If DOESNT_NEED_UNWINDER is
300 defined and has a non-zero value, a per-function unwinder is not emitted
301 for the current function. If the static unwind data is supported, then
302 a per-function unwinder is not emitted.
304 On some platforms it is possible that neither __unwind_function
305 nor inlined unwinders are available. For these platforms it is not
306 possible to throw through a function call, and abort will be
307 invoked instead of performing the throw.
309 The reason the unwind data may be needed is that on some platforms
310 the order and types of data stored on the stack can vary depending
311 on the type of function, its arguments and returned values, and the
312 compilation options used (optimization versus non-optimization,
313 -fomit-frame-pointer, processor variations, etc).
315 Unfortunately, this also means that throwing through functions that
316 aren't compiled with exception handling support will still not be
317 possible on some platforms. This problem is currently being
318 investigated, but no solutions have been found that do not imply
319 some unacceptable performance penalties.
321 Future directions:
323 Currently __throw makes no differentiation between cleanups and
324 user-defined exception regions. While this makes the implementation
325 simple, it also implies that it is impossible to determine if a
326 user-defined exception handler exists for a given exception without
327 completely unwinding the stack in the process. This is undesirable
328 from the standpoint of debugging, as ideally it would be possible
329 to trap unhandled exceptions in the debugger before the process of
330 unwinding has even started.
332 This problem can be solved by marking user-defined handlers in a
333 special way (probably by adding additional bits to exception_table_list).
334 A two-pass scheme could then be used by __throw to iterate
335 through the table. The first pass would search for a relevant
336 user-defined handler for the current context of the throw, and if
337 one is found, the second pass would then invoke all needed cleanups
338 before jumping to the user-defined handler.
340 Many languages (including C++ and Ada) make execution of a
341 user-defined handler conditional on the "type" of the exception
342 thrown. (The type of the exception is actually the type of the data
343 that is thrown with the exception.) It will thus be necessary for
344 __throw to be able to determine if a given user-defined
345 exception handler will actually be executed, given the type of
346 exception.
348 One scheme is to add additional information to exception_table_list
349 as to the types of exceptions accepted by each handler. __throw
350 can do the type comparisons and then determine if the handler is
351 actually going to be executed.
353 There is currently no significant level of debugging support
354 available, other than to place a breakpoint on __throw. While
355 this is sufficient in most cases, it would be helpful to be able to
356 know where a given exception was going to be thrown to before it is
357 actually thrown, and to be able to choose between stopping before
358 every exception region (including cleanups), or just user-defined
359 exception regions. This should be possible to do in the two-pass
360 scheme by adding additional labels to __throw for appropriate
361 breakpoints, and additional debugger commands could be added to
362 query various state variables to determine what actions are to be
363 performed next.
365 Another major problem that is being worked on is the issue with stack
366 unwinding on various platforms. Currently the only platforms that have
367 support for the generation of a generic unwinder are the SPARC and MIPS.
368 All other ports require per-function unwinders, which produce large
369 amounts of code bloat.
371 For setjmp/longjmp based exception handling, some of the details
372 are as above, but there are some additional details. This section
373 discusses the details.
375 We don't use NOTE_INSN_EH_REGION_{BEG,END} pairs. We don't
376 optimize EH regions yet. We don't have to worry about machine
377 specific issues with unwinding the stack, as we rely upon longjmp
378 for all the machine specific details. There is no variable context
379 of a throw, just the one implied by the dynamic handler stack
380 pointed to by the dynamic handler chain. There is no exception
381 table, and no calls to __register_exceptions. __sjthrow is used
382 instead of __throw, and it works by using the dynamic handler
383 chain, and longjmp. -fasynchronous-exceptions has no effect, as
384 the elimination of trivial exception regions is not yet performed.
386 A frontend can set protect_cleanup_actions_with_terminate when all
387 the cleanup actions should be protected with an EH region that
388 calls terminate when an unhandled exception is throw. C++ does
389 this, Ada does not. */
392 #include "config.h"
393 #include "defaults.h"
394 #include "eh-common.h"
395 #include "system.h"
396 #include "rtl.h"
397 #include "tree.h"
398 #include "flags.h"
399 #include "except.h"
400 #include "function.h"
401 #include "insn-flags.h"
402 #include "expr.h"
403 #include "insn-codes.h"
404 #include "regs.h"
405 #include "hard-reg-set.h"
406 #include "insn-config.h"
407 #include "recog.h"
408 #include "output.h"
409 #include "toplev.h"
410 #include "intl.h"
411 #include "obstack.h"
412 #include "ggc.h"
413 #include "tm_p.h"
415 /* One to use setjmp/longjmp method of generating code for exception
416 handling. */
418 int exceptions_via_longjmp = 2;
420 /* One to enable asynchronous exception support. */
422 int asynchronous_exceptions = 0;
424 /* One to protect cleanup actions with a handler that calls
425 __terminate, zero otherwise. */
427 int protect_cleanup_actions_with_terminate;
429 /* A list of labels used for exception handlers. Created by
430 find_exception_handler_labels for the optimization passes. */
432 rtx exception_handler_labels;
434 /* Keeps track of the label used as the context of a throw to rethrow an
435 exception to the outer exception region. */
437 struct label_node *outer_context_label_stack = NULL;
439 /* Pseudos used to hold exception return data in the interim between
440 __builtin_eh_return and the end of the function. */
442 static rtx eh_return_context;
443 static rtx eh_return_stack_adjust;
444 static rtx eh_return_handler;
446 /* This is used for targets which can call rethrow with an offset instead
447 of an address. This is subtracted from the rethrow label we are
448 interested in. */
450 static rtx first_rethrow_symbol = NULL_RTX;
451 static rtx final_rethrow = NULL_RTX;
452 static rtx last_rethrow_symbol = NULL_RTX;
455 /* Prototypes for local functions. */
457 static void push_eh_entry PARAMS ((struct eh_stack *));
458 static struct eh_entry * pop_eh_entry PARAMS ((struct eh_stack *));
459 static void enqueue_eh_entry PARAMS ((struct eh_queue *, struct eh_entry *));
460 static struct eh_entry * dequeue_eh_entry PARAMS ((struct eh_queue *));
461 static rtx call_get_eh_context PARAMS ((void));
462 static void start_dynamic_cleanup PARAMS ((tree, tree));
463 static void start_dynamic_handler PARAMS ((void));
464 static void expand_rethrow PARAMS ((rtx));
465 static void output_exception_table_entry PARAMS ((FILE *, int));
466 static rtx scan_region PARAMS ((rtx, int, int *));
467 static void eh_regs PARAMS ((rtx *, rtx *, rtx *, int));
468 static void set_insn_eh_region PARAMS ((rtx *, int));
469 #ifdef DONT_USE_BUILTIN_SETJMP
470 static void jumpif_rtx PARAMS ((rtx, rtx));
471 #endif
472 static void find_exception_handler_labels_1 PARAMS ((rtx));
473 static void mark_eh_node PARAMS ((struct eh_node *));
474 static void mark_eh_stack PARAMS ((struct eh_stack *));
475 static void mark_eh_queue PARAMS ((struct eh_queue *));
476 static void mark_tree_label_node PARAMS ((struct label_node *));
477 static void mark_func_eh_entry PARAMS ((void *));
478 static rtx create_rethrow_ref PARAMS ((int));
479 static void push_entry PARAMS ((struct eh_stack *, struct eh_entry*));
480 static void receive_exception_label PARAMS ((rtx));
481 static int new_eh_region_entry PARAMS ((int, rtx));
482 static int find_func_region PARAMS ((int));
483 static int find_func_region_from_symbol PARAMS ((rtx));
484 static void clear_function_eh_region PARAMS ((void));
485 static void process_nestinfo PARAMS ((int, eh_nesting_info *, int *));
486 rtx expand_builtin_return_addr PARAMS ((enum built_in_function, int, rtx));
487 static void emit_cleanup_handler PARAMS ((struct eh_entry *));
488 static int eh_region_from_symbol PARAMS ((rtx));
491 /* Various support routines to manipulate the various data structures
492 used by the exception handling code. */
494 extern struct obstack permanent_obstack;
496 /* Generate a SYMBOL_REF for rethrow to use */
498 static rtx
499 create_rethrow_ref (region_num)
500 int region_num;
502 rtx def;
503 char *ptr;
504 char buf[60];
506 push_obstacks_nochange ();
507 end_temporary_allocation ();
509 ASM_GENERATE_INTERNAL_LABEL (buf, "LRTH", region_num);
510 ptr = ggc_alloc_string (buf, -1);
511 def = gen_rtx_SYMBOL_REF (Pmode, ptr);
512 SYMBOL_REF_NEED_ADJUST (def) = 1;
514 pop_obstacks ();
515 return def;
518 /* Push a label entry onto the given STACK. */
520 void
521 push_label_entry (stack, rlabel, tlabel)
522 struct label_node **stack;
523 rtx rlabel;
524 tree tlabel;
526 struct label_node *newnode
527 = (struct label_node *) xmalloc (sizeof (struct label_node));
529 if (rlabel)
530 newnode->u.rlabel = rlabel;
531 else
532 newnode->u.tlabel = tlabel;
533 newnode->chain = *stack;
534 *stack = newnode;
537 /* Pop a label entry from the given STACK. */
540 pop_label_entry (stack)
541 struct label_node **stack;
543 rtx label;
544 struct label_node *tempnode;
546 if (! *stack)
547 return NULL_RTX;
549 tempnode = *stack;
550 label = tempnode->u.rlabel;
551 *stack = (*stack)->chain;
552 free (tempnode);
554 return label;
557 /* Return the top element of the given STACK. */
559 tree
560 top_label_entry (stack)
561 struct label_node **stack;
563 if (! *stack)
564 return NULL_TREE;
566 return (*stack)->u.tlabel;
569 /* Get an exception label. */
572 gen_exception_label ()
574 rtx lab;
575 lab = gen_label_rtx ();
576 return lab;
579 /* Push a new eh_node entry onto STACK. */
581 static void
582 push_eh_entry (stack)
583 struct eh_stack *stack;
585 struct eh_node *node = (struct eh_node *) xmalloc (sizeof (struct eh_node));
586 struct eh_entry *entry = (struct eh_entry *) xmalloc (sizeof (struct eh_entry));
588 rtx rlab = gen_exception_label ();
589 entry->finalization = NULL_TREE;
590 entry->label_used = 0;
591 entry->exception_handler_label = rlab;
592 entry->false_label = NULL_RTX;
593 if (! flag_new_exceptions)
594 entry->outer_context = gen_label_rtx ();
595 else
596 entry->outer_context = create_rethrow_ref (CODE_LABEL_NUMBER (rlab));
597 entry->rethrow_label = entry->outer_context;
598 entry->goto_entry_p = 0;
600 node->entry = entry;
601 node->chain = stack->top;
602 stack->top = node;
605 /* Push an existing entry onto a stack. */
607 static void
608 push_entry (stack, entry)
609 struct eh_stack *stack;
610 struct eh_entry *entry;
612 struct eh_node *node = (struct eh_node *) xmalloc (sizeof (struct eh_node));
613 node->entry = entry;
614 node->chain = stack->top;
615 stack->top = node;
618 /* Pop an entry from the given STACK. */
620 static struct eh_entry *
621 pop_eh_entry (stack)
622 struct eh_stack *stack;
624 struct eh_node *tempnode;
625 struct eh_entry *tempentry;
627 tempnode = stack->top;
628 tempentry = tempnode->entry;
629 stack->top = stack->top->chain;
630 free (tempnode);
632 return tempentry;
635 /* Enqueue an ENTRY onto the given QUEUE. */
637 static void
638 enqueue_eh_entry (queue, entry)
639 struct eh_queue *queue;
640 struct eh_entry *entry;
642 struct eh_node *node = (struct eh_node *) xmalloc (sizeof (struct eh_node));
644 node->entry = entry;
645 node->chain = NULL;
647 if (queue->head == NULL)
648 queue->head = node;
649 else
650 queue->tail->chain = node;
651 queue->tail = node;
654 /* Dequeue an entry from the given QUEUE. */
656 static struct eh_entry *
657 dequeue_eh_entry (queue)
658 struct eh_queue *queue;
660 struct eh_node *tempnode;
661 struct eh_entry *tempentry;
663 if (queue->head == NULL)
664 return NULL;
666 tempnode = queue->head;
667 queue->head = queue->head->chain;
669 tempentry = tempnode->entry;
670 free (tempnode);
672 return tempentry;
675 static void
676 receive_exception_label (handler_label)
677 rtx handler_label;
679 emit_label (handler_label);
681 #ifdef HAVE_exception_receiver
682 if (! exceptions_via_longjmp)
683 if (HAVE_exception_receiver)
684 emit_insn (gen_exception_receiver ());
685 #endif
687 #ifdef HAVE_nonlocal_goto_receiver
688 if (! exceptions_via_longjmp)
689 if (HAVE_nonlocal_goto_receiver)
690 emit_insn (gen_nonlocal_goto_receiver ());
691 #endif
695 struct func_eh_entry
697 int range_number; /* EH region number from EH NOTE insn's. */
698 rtx rethrow_label; /* Label for rethrow. */
699 int rethrow_ref; /* Is rethrow_label referenced? */
700 int emitted; /* 1 if this entry has been emitted in assembly file. */
701 struct handler_info *handlers;
705 /* table of function eh regions */
706 static struct func_eh_entry *function_eh_regions = NULL;
707 static int num_func_eh_entries = 0;
708 static int current_func_eh_entry = 0;
710 #define SIZE_FUNC_EH(X) (sizeof (struct func_eh_entry) * X)
712 /* Add a new eh_entry for this function. The number returned is an
713 number which uniquely identifies this exception range. */
715 static int
716 new_eh_region_entry (note_eh_region, rethrow)
717 int note_eh_region;
718 rtx rethrow;
720 if (current_func_eh_entry == num_func_eh_entries)
722 if (num_func_eh_entries == 0)
724 function_eh_regions =
725 (struct func_eh_entry *) xmalloc (SIZE_FUNC_EH (50));
726 num_func_eh_entries = 50;
728 else
730 num_func_eh_entries = num_func_eh_entries * 3 / 2;
731 function_eh_regions = (struct func_eh_entry *)
732 xrealloc (function_eh_regions, SIZE_FUNC_EH (num_func_eh_entries));
735 function_eh_regions[current_func_eh_entry].range_number = note_eh_region;
736 if (rethrow == NULL_RTX)
737 function_eh_regions[current_func_eh_entry].rethrow_label =
738 create_rethrow_ref (note_eh_region);
739 else
740 function_eh_regions[current_func_eh_entry].rethrow_label = rethrow;
741 function_eh_regions[current_func_eh_entry].handlers = NULL;
742 function_eh_regions[current_func_eh_entry].emitted = 0;
744 return current_func_eh_entry++;
747 /* Add new handler information to an exception range. The first parameter
748 specifies the range number (returned from new_eh_entry()). The second
749 parameter specifies the handler. By default the handler is inserted at
750 the end of the list. A handler list may contain only ONE NULL_TREE
751 typeinfo entry. Regardless where it is positioned, a NULL_TREE entry
752 is always output as the LAST handler in the exception table for a region. */
754 void
755 add_new_handler (region, newhandler)
756 int region;
757 struct handler_info *newhandler;
759 struct handler_info *last;
761 /* If find_func_region returns -1, callers might attempt to pass us
762 this region number. If that happens, something has gone wrong;
763 -1 is never a valid region. */
764 if (region == -1)
765 abort ();
767 newhandler->next = NULL;
768 last = function_eh_regions[region].handlers;
769 if (last == NULL)
770 function_eh_regions[region].handlers = newhandler;
771 else
773 for ( ; ; last = last->next)
775 if (last->type_info == CATCH_ALL_TYPE)
776 pedwarn ("additional handler after ...");
777 if (last->next == NULL)
778 break;
780 last->next = newhandler;
784 /* Remove a handler label. The handler label is being deleted, so all
785 regions which reference this handler should have it removed from their
786 list of possible handlers. Any region which has the final handler
787 removed can be deleted. */
789 void remove_handler (removing_label)
790 rtx removing_label;
792 struct handler_info *handler, *last;
793 int x;
794 for (x = 0 ; x < current_func_eh_entry; ++x)
796 last = NULL;
797 handler = function_eh_regions[x].handlers;
798 for ( ; handler; last = handler, handler = handler->next)
799 if (handler->handler_label == removing_label)
801 if (last)
803 last->next = handler->next;
804 handler = last;
806 else
807 function_eh_regions[x].handlers = handler->next;
812 /* This function will return a malloc'd pointer to an array of
813 void pointer representing the runtime match values that
814 currently exist in all regions. */
816 int
817 find_all_handler_type_matches (array)
818 void ***array;
820 struct handler_info *handler, *last;
821 int x,y;
822 void *val;
823 void **ptr;
824 int max_ptr;
825 int n_ptr = 0;
827 *array = NULL;
829 if (!doing_eh (0) || ! flag_new_exceptions)
830 return 0;
832 max_ptr = 100;
833 ptr = (void **) xmalloc (max_ptr * sizeof (void *));
835 for (x = 0 ; x < current_func_eh_entry; x++)
837 last = NULL;
838 handler = function_eh_regions[x].handlers;
839 for ( ; handler; last = handler, handler = handler->next)
841 val = handler->type_info;
842 if (val != NULL && val != CATCH_ALL_TYPE)
844 /* See if this match value has already been found. */
845 for (y = 0; y < n_ptr; y++)
846 if (ptr[y] == val)
847 break;
849 /* If we break early, we already found this value. */
850 if (y < n_ptr)
851 continue;
853 /* Do we need to allocate more space? */
854 if (n_ptr >= max_ptr)
856 max_ptr += max_ptr / 2;
857 ptr = (void **) xrealloc (ptr, max_ptr * sizeof (void *));
859 ptr[n_ptr] = val;
860 n_ptr++;
865 if (n_ptr == 0)
867 free (ptr);
868 ptr = NULL;
870 *array = ptr;
871 return n_ptr;
874 /* Create a new handler structure initialized with the handler label and
875 typeinfo fields passed in. */
877 struct handler_info *
878 get_new_handler (handler, typeinfo)
879 rtx handler;
880 void *typeinfo;
882 struct handler_info* ptr;
883 ptr = (struct handler_info *) xmalloc (sizeof (struct handler_info));
884 ptr->handler_label = handler;
885 ptr->handler_number = CODE_LABEL_NUMBER (handler);
886 ptr->type_info = typeinfo;
887 ptr->next = NULL;
889 return ptr;
894 /* Find the index in function_eh_regions associated with a NOTE region. If
895 the region cannot be found, a -1 is returned. */
897 static int
898 find_func_region (insn_region)
899 int insn_region;
901 int x;
902 for (x = 0; x < current_func_eh_entry; x++)
903 if (function_eh_regions[x].range_number == insn_region)
904 return x;
906 return -1;
909 /* Get a pointer to the first handler in an exception region's list. */
911 struct handler_info *
912 get_first_handler (region)
913 int region;
915 int r = find_func_region (region);
916 if (r == -1)
917 abort ();
918 return function_eh_regions[r].handlers;
921 /* Clean out the function_eh_region table and free all memory */
923 static void
924 clear_function_eh_region ()
926 int x;
927 struct handler_info *ptr, *next;
928 for (x = 0; x < current_func_eh_entry; x++)
929 for (ptr = function_eh_regions[x].handlers; ptr != NULL; ptr = next)
931 next = ptr->next;
932 free (ptr);
934 if (function_eh_regions)
935 free (function_eh_regions);
936 num_func_eh_entries = 0;
937 current_func_eh_entry = 0;
940 /* Make a duplicate of an exception region by copying all the handlers
941 for an exception region. Return the new handler index. The final
942 parameter is a routine which maps old labels to new ones. */
944 int
945 duplicate_eh_handlers (old_note_eh_region, new_note_eh_region, map)
946 int old_note_eh_region, new_note_eh_region;
947 rtx (*map) PARAMS ((rtx));
949 struct handler_info *ptr, *new_ptr;
950 int new_region, region;
952 region = find_func_region (old_note_eh_region);
953 if (region == -1)
954 fatal ("Cannot duplicate non-existant exception region.");
956 /* duplicate_eh_handlers may have been called during a symbol remap. */
957 new_region = find_func_region (new_note_eh_region);
958 if (new_region != -1)
959 return (new_region);
961 new_region = new_eh_region_entry (new_note_eh_region, NULL_RTX);
963 ptr = function_eh_regions[region].handlers;
965 for ( ; ptr; ptr = ptr->next)
967 new_ptr = get_new_handler (map (ptr->handler_label), ptr->type_info);
968 add_new_handler (new_region, new_ptr);
971 return new_region;
975 /* Given a rethrow symbol, find the EH region number this is for. */
977 static int
978 eh_region_from_symbol (sym)
979 rtx sym;
981 int x;
982 if (sym == last_rethrow_symbol)
983 return 1;
984 for (x = 0; x < current_func_eh_entry; x++)
985 if (function_eh_regions[x].rethrow_label == sym)
986 return function_eh_regions[x].range_number;
987 return -1;
990 /* Like find_func_region, but using the rethrow symbol for the region
991 rather than the region number itself. */
993 static int
994 find_func_region_from_symbol (sym)
995 rtx sym;
997 return find_func_region (eh_region_from_symbol (sym));
1000 /* When inlining/unrolling, we have to map the symbols passed to
1001 __rethrow as well. This performs the remap. If a symbol isn't foiund,
1002 the original one is returned. This is not an efficient routine,
1003 so don't call it on everything!! */
1005 rtx
1006 rethrow_symbol_map (sym, map)
1007 rtx sym;
1008 rtx (*map) PARAMS ((rtx));
1010 int x, y;
1012 if (! flag_new_exceptions)
1013 return sym;
1015 for (x = 0; x < current_func_eh_entry; x++)
1016 if (function_eh_regions[x].rethrow_label == sym)
1018 /* We've found the original region, now lets determine which region
1019 this now maps to. */
1020 rtx l1 = function_eh_regions[x].handlers->handler_label;
1021 rtx l2 = map (l1);
1022 y = CODE_LABEL_NUMBER (l2); /* This is the new region number */
1023 x = find_func_region (y); /* Get the new permanent region */
1024 if (x == -1) /* Hmm, Doesn't exist yet */
1026 x = duplicate_eh_handlers (CODE_LABEL_NUMBER (l1), y, map);
1027 /* Since we're mapping it, it must be used. */
1028 function_eh_regions[x].rethrow_ref = 1;
1030 return function_eh_regions[x].rethrow_label;
1032 return sym;
1035 /* Returns nonzero if the rethrow label for REGION is referenced
1036 somewhere (i.e. we rethrow out of REGION or some other region
1037 masquerading as REGION). */
1039 int
1040 rethrow_used (region)
1041 int region;
1043 if (flag_new_exceptions)
1045 int ret = function_eh_regions[find_func_region (region)].rethrow_ref;
1046 return ret;
1048 return 0;
1052 /* Routine to see if exception handling is turned on.
1053 DO_WARN is non-zero if we want to inform the user that exception
1054 handling is turned off.
1056 This is used to ensure that -fexceptions has been specified if the
1057 compiler tries to use any exception-specific functions. */
1060 doing_eh (do_warn)
1061 int do_warn;
1063 if (! flag_exceptions)
1065 static int warned = 0;
1066 if (! warned && do_warn)
1068 error ("exception handling disabled, use -fexceptions to enable");
1069 warned = 1;
1071 return 0;
1073 return 1;
1076 /* Given a return address in ADDR, determine the address we should use
1077 to find the corresponding EH region. */
1080 eh_outer_context (addr)
1081 rtx addr;
1083 /* First mask out any unwanted bits. */
1084 #ifdef MASK_RETURN_ADDR
1085 expand_and (addr, MASK_RETURN_ADDR, addr);
1086 #endif
1088 /* Then adjust to find the real return address. */
1089 #if defined (RETURN_ADDR_OFFSET)
1090 addr = plus_constant (addr, RETURN_ADDR_OFFSET);
1091 #endif
1093 return addr;
1096 /* Start a new exception region for a region of code that has a
1097 cleanup action and push the HANDLER for the region onto
1098 protect_list. All of the regions created with add_partial_entry
1099 will be ended when end_protect_partials is invoked. */
1101 void
1102 add_partial_entry (handler)
1103 tree handler;
1105 expand_eh_region_start ();
1107 /* Make sure the entry is on the correct obstack. */
1108 push_obstacks_nochange ();
1109 resume_temporary_allocation ();
1111 /* Because this is a cleanup action, we may have to protect the handler
1112 with __terminate. */
1113 handler = protect_with_terminate (handler);
1115 /* For backwards compatibility, we allow callers to omit calls to
1116 begin_protect_partials for the outermost region. So, we must
1117 explicitly do so here. */
1118 if (!protect_list)
1119 begin_protect_partials ();
1121 /* Add this entry to the front of the list. */
1122 TREE_VALUE (protect_list)
1123 = tree_cons (NULL_TREE, handler, TREE_VALUE (protect_list));
1124 pop_obstacks ();
1127 /* Emit code to get EH context to current function. */
1129 static rtx
1130 call_get_eh_context ()
1132 static tree fn;
1133 tree expr;
1135 if (fn == NULL_TREE)
1137 tree fntype;
1138 fn = get_identifier ("__get_eh_context");
1139 push_obstacks_nochange ();
1140 end_temporary_allocation ();
1141 fntype = build_pointer_type (build_pointer_type
1142 (build_pointer_type (void_type_node)));
1143 fntype = build_function_type (fntype, NULL_TREE);
1144 fn = build_decl (FUNCTION_DECL, fn, fntype);
1145 DECL_EXTERNAL (fn) = 1;
1146 TREE_PUBLIC (fn) = 1;
1147 DECL_ARTIFICIAL (fn) = 1;
1148 TREE_READONLY (fn) = 1;
1149 make_decl_rtl (fn, NULL_PTR, 1);
1150 assemble_external (fn);
1151 pop_obstacks ();
1153 ggc_add_tree_root (&fn, 1);
1156 expr = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (fn)), fn);
1157 expr = build (CALL_EXPR, TREE_TYPE (TREE_TYPE (fn)),
1158 expr, NULL_TREE, NULL_TREE);
1159 TREE_SIDE_EFFECTS (expr) = 1;
1161 return copy_to_reg (expand_expr (expr, NULL_RTX, VOIDmode, 0));
1164 /* Get a reference to the EH context.
1165 We will only generate a register for the current function EH context here,
1166 and emit a USE insn to mark that this is a EH context register.
1168 Later, emit_eh_context will emit needed call to __get_eh_context
1169 in libgcc2, and copy the value to the register we have generated. */
1172 get_eh_context ()
1174 if (current_function_ehc == 0)
1176 rtx insn;
1178 current_function_ehc = gen_reg_rtx (Pmode);
1180 insn = gen_rtx_USE (GET_MODE (current_function_ehc),
1181 current_function_ehc);
1182 insn = emit_insn_before (insn, get_first_nonparm_insn ());
1184 REG_NOTES (insn)
1185 = gen_rtx_EXPR_LIST (REG_EH_CONTEXT, current_function_ehc,
1186 REG_NOTES (insn));
1188 return current_function_ehc;
1191 /* Get a reference to the dynamic handler chain. It points to the
1192 pointer to the next element in the dynamic handler chain. It ends
1193 when there are no more elements in the dynamic handler chain, when
1194 the value is &top_elt from libgcc2.c. Immediately after the
1195 pointer, is an area suitable for setjmp/longjmp when
1196 DONT_USE_BUILTIN_SETJMP is defined, and an area suitable for
1197 __builtin_setjmp/__builtin_longjmp when DONT_USE_BUILTIN_SETJMP
1198 isn't defined. */
1201 get_dynamic_handler_chain ()
1203 rtx ehc, dhc, result;
1205 ehc = get_eh_context ();
1207 /* This is the offset of dynamic_handler_chain in the eh_context struct
1208 declared in eh-common.h. If its location is change, change this offset */
1209 dhc = plus_constant (ehc, POINTER_SIZE / BITS_PER_UNIT);
1211 result = copy_to_reg (dhc);
1213 /* We don't want a copy of the dcc, but rather, the single dcc. */
1214 return gen_rtx_MEM (Pmode, result);
1217 /* Get a reference to the dynamic cleanup chain. It points to the
1218 pointer to the next element in the dynamic cleanup chain.
1219 Immediately after the pointer, are two Pmode variables, one for a
1220 pointer to a function that performs the cleanup action, and the
1221 second, the argument to pass to that function. */
1224 get_dynamic_cleanup_chain ()
1226 rtx dhc, dcc, result;
1228 dhc = get_dynamic_handler_chain ();
1229 dcc = plus_constant (dhc, POINTER_SIZE / BITS_PER_UNIT);
1231 result = copy_to_reg (dcc);
1233 /* We don't want a copy of the dcc, but rather, the single dcc. */
1234 return gen_rtx_MEM (Pmode, result);
1237 #ifdef DONT_USE_BUILTIN_SETJMP
1238 /* Generate code to evaluate X and jump to LABEL if the value is nonzero.
1239 LABEL is an rtx of code CODE_LABEL, in this function. */
1241 static void
1242 jumpif_rtx (x, label)
1243 rtx x;
1244 rtx label;
1246 jumpif (make_tree (type_for_mode (GET_MODE (x), 0), x), label);
1248 #endif
1250 /* Start a dynamic cleanup on the EH runtime dynamic cleanup stack.
1251 We just need to create an element for the cleanup list, and push it
1252 into the chain.
1254 A dynamic cleanup is a cleanup action implied by the presence of an
1255 element on the EH runtime dynamic cleanup stack that is to be
1256 performed when an exception is thrown. The cleanup action is
1257 performed by __sjthrow when an exception is thrown. Only certain
1258 actions can be optimized into dynamic cleanup actions. For the
1259 restrictions on what actions can be performed using this routine,
1260 see expand_eh_region_start_tree. */
1262 static void
1263 start_dynamic_cleanup (func, arg)
1264 tree func;
1265 tree arg;
1267 rtx dcc;
1268 rtx new_func, new_arg;
1269 rtx x, buf;
1270 int size;
1272 /* We allocate enough room for a pointer to the function, and
1273 one argument. */
1274 size = 2;
1276 /* XXX, FIXME: The stack space allocated this way is too long lived,
1277 but there is no allocation routine that allocates at the level of
1278 the last binding contour. */
1279 buf = assign_stack_local (BLKmode,
1280 GET_MODE_SIZE (Pmode)*(size+1),
1283 buf = change_address (buf, Pmode, NULL_RTX);
1285 /* Store dcc into the first word of the newly allocated buffer. */
1287 dcc = get_dynamic_cleanup_chain ();
1288 emit_move_insn (buf, dcc);
1290 /* Store func and arg into the cleanup list element. */
1292 new_func = gen_rtx_MEM (Pmode, plus_constant (XEXP (buf, 0),
1293 GET_MODE_SIZE (Pmode)));
1294 new_arg = gen_rtx_MEM (Pmode, plus_constant (XEXP (buf, 0),
1295 GET_MODE_SIZE (Pmode)*2));
1296 x = expand_expr (func, new_func, Pmode, 0);
1297 if (x != new_func)
1298 emit_move_insn (new_func, x);
1300 x = expand_expr (arg, new_arg, Pmode, 0);
1301 if (x != new_arg)
1302 emit_move_insn (new_arg, x);
1304 /* Update the cleanup chain. */
1306 x = force_operand (XEXP (buf, 0), dcc);
1307 if (x != dcc)
1308 emit_move_insn (dcc, x);
1311 /* Emit RTL to start a dynamic handler on the EH runtime dynamic
1312 handler stack. This should only be used by expand_eh_region_start
1313 or expand_eh_region_start_tree. */
1315 static void
1316 start_dynamic_handler ()
1318 rtx dhc, dcc;
1319 rtx x, arg, buf;
1320 int size;
1322 #ifndef DONT_USE_BUILTIN_SETJMP
1323 /* The number of Pmode words for the setjmp buffer, when using the
1324 builtin setjmp/longjmp, see expand_builtin, case BUILT_IN_LONGJMP. */
1325 /* We use 2 words here before calling expand_builtin_setjmp.
1326 expand_builtin_setjmp uses 2 words, and then calls emit_stack_save.
1327 emit_stack_save needs space of size STACK_SAVEAREA_MODE (SAVE_NONLOCAL).
1328 Subtract one, because the assign_stack_local call below adds 1. */
1329 size = (2 + 2 + (GET_MODE_SIZE (STACK_SAVEAREA_MODE (SAVE_NONLOCAL))
1330 / GET_MODE_SIZE (Pmode))
1331 - 1);
1332 #else
1333 #ifdef JMP_BUF_SIZE
1334 size = JMP_BUF_SIZE;
1335 #else
1336 /* Should be large enough for most systems, if it is not,
1337 JMP_BUF_SIZE should be defined with the proper value. It will
1338 also tend to be larger than necessary for most systems, a more
1339 optimal port will define JMP_BUF_SIZE. */
1340 size = FIRST_PSEUDO_REGISTER+2;
1341 #endif
1342 #endif
1343 /* XXX, FIXME: The stack space allocated this way is too long lived,
1344 but there is no allocation routine that allocates at the level of
1345 the last binding contour. */
1346 arg = assign_stack_local (BLKmode,
1347 GET_MODE_SIZE (Pmode)*(size+1),
1350 arg = change_address (arg, Pmode, NULL_RTX);
1352 /* Store dhc into the first word of the newly allocated buffer. */
1354 dhc = get_dynamic_handler_chain ();
1355 dcc = gen_rtx_MEM (Pmode, plus_constant (XEXP (arg, 0),
1356 GET_MODE_SIZE (Pmode)));
1357 emit_move_insn (arg, dhc);
1359 /* Zero out the start of the cleanup chain. */
1360 emit_move_insn (dcc, const0_rtx);
1362 /* The jmpbuf starts two words into the area allocated. */
1363 buf = plus_constant (XEXP (arg, 0), GET_MODE_SIZE (Pmode)*2);
1365 #ifdef DONT_USE_BUILTIN_SETJMP
1366 x = emit_library_call_value (setjmp_libfunc, NULL_RTX, 1,
1367 TYPE_MODE (integer_type_node), 1,
1368 buf, Pmode);
1369 /* If we come back here for a catch, transfer control to the handler. */
1370 jumpif_rtx (x, ehstack.top->entry->exception_handler_label);
1371 #else
1373 /* A label to continue execution for the no exception case. */
1374 rtx noex = gen_label_rtx();
1375 x = expand_builtin_setjmp (buf, NULL_RTX, noex,
1376 ehstack.top->entry->exception_handler_label);
1377 emit_label (noex);
1379 #endif
1381 /* We are committed to this, so update the handler chain. */
1383 emit_move_insn (dhc, force_operand (XEXP (arg, 0), NULL_RTX));
1386 /* Start an exception handling region for the given cleanup action.
1387 All instructions emitted after this point are considered to be part
1388 of the region until expand_eh_region_end is invoked. CLEANUP is
1389 the cleanup action to perform. The return value is true if the
1390 exception region was optimized away. If that case,
1391 expand_eh_region_end does not need to be called for this cleanup,
1392 nor should it be.
1394 This routine notices one particular common case in C++ code
1395 generation, and optimizes it so as to not need the exception
1396 region. It works by creating a dynamic cleanup action, instead of
1397 a using an exception region. */
1400 expand_eh_region_start_tree (decl, cleanup)
1401 tree decl;
1402 tree cleanup;
1404 /* This is the old code. */
1405 if (! doing_eh (0))
1406 return 0;
1408 /* The optimization only applies to actions protected with
1409 terminate, and only applies if we are using the setjmp/longjmp
1410 codegen method. */
1411 if (exceptions_via_longjmp
1412 && protect_cleanup_actions_with_terminate)
1414 tree func, arg;
1415 tree args;
1417 /* Ignore any UNSAVE_EXPR. */
1418 if (TREE_CODE (cleanup) == UNSAVE_EXPR)
1419 cleanup = TREE_OPERAND (cleanup, 0);
1421 /* Further, it only applies if the action is a call, if there
1422 are 2 arguments, and if the second argument is 2. */
1424 if (TREE_CODE (cleanup) == CALL_EXPR
1425 && (args = TREE_OPERAND (cleanup, 1))
1426 && (func = TREE_OPERAND (cleanup, 0))
1427 && (arg = TREE_VALUE (args))
1428 && (args = TREE_CHAIN (args))
1430 /* is the second argument 2? */
1431 && TREE_CODE (TREE_VALUE (args)) == INTEGER_CST
1432 && compare_tree_int (TREE_VALUE (args), 2) == 0
1434 /* Make sure there are no other arguments. */
1435 && TREE_CHAIN (args) == NULL_TREE)
1437 /* Arrange for returns and gotos to pop the entry we make on the
1438 dynamic cleanup stack. */
1439 expand_dcc_cleanup (decl);
1440 start_dynamic_cleanup (func, arg);
1441 return 1;
1445 expand_eh_region_start_for_decl (decl);
1446 ehstack.top->entry->finalization = cleanup;
1448 return 0;
1451 /* Just like expand_eh_region_start, except if a cleanup action is
1452 entered on the cleanup chain, the TREE_PURPOSE of the element put
1453 on the chain is DECL. DECL should be the associated VAR_DECL, if
1454 any, otherwise it should be NULL_TREE. */
1456 void
1457 expand_eh_region_start_for_decl (decl)
1458 tree decl;
1460 rtx note;
1462 /* This is the old code. */
1463 if (! doing_eh (0))
1464 return;
1466 /* We need a new block to record the start and end of the
1467 dynamic handler chain. We also want to prevent jumping into
1468 a try block. */
1469 expand_start_bindings (2);
1471 /* But we don't need or want a new temporary level. */
1472 pop_temp_slots ();
1474 /* Mark this block as created by expand_eh_region_start. This
1475 is so that we can pop the block with expand_end_bindings
1476 automatically. */
1477 mark_block_as_eh_region ();
1479 if (exceptions_via_longjmp)
1481 /* Arrange for returns and gotos to pop the entry we make on the
1482 dynamic handler stack. */
1483 expand_dhc_cleanup (decl);
1486 push_eh_entry (&ehstack);
1487 note = emit_note (NULL_PTR, NOTE_INSN_EH_REGION_BEG);
1488 NOTE_EH_HANDLER (note)
1489 = CODE_LABEL_NUMBER (ehstack.top->entry->exception_handler_label);
1490 if (exceptions_via_longjmp)
1491 start_dynamic_handler ();
1494 /* Start an exception handling region. All instructions emitted after
1495 this point are considered to be part of the region until
1496 expand_eh_region_end is invoked. */
1498 void
1499 expand_eh_region_start ()
1501 expand_eh_region_start_for_decl (NULL_TREE);
1504 /* End an exception handling region. The information about the region
1505 is found on the top of ehstack.
1507 HANDLER is either the cleanup for the exception region, or if we're
1508 marking the end of a try block, HANDLER is integer_zero_node.
1510 HANDLER will be transformed to rtl when expand_leftover_cleanups
1511 is invoked. */
1513 void
1514 expand_eh_region_end (handler)
1515 tree handler;
1517 struct eh_entry *entry;
1518 struct eh_node *node;
1519 rtx note;
1520 int ret, r;
1522 if (! doing_eh (0))
1523 return;
1525 entry = pop_eh_entry (&ehstack);
1527 note = emit_note (NULL_PTR, NOTE_INSN_EH_REGION_END);
1528 ret = NOTE_EH_HANDLER (note)
1529 = CODE_LABEL_NUMBER (entry->exception_handler_label);
1530 if (exceptions_via_longjmp == 0 && ! flag_new_exceptions
1531 /* We share outer_context between regions; only emit it once. */
1532 && INSN_UID (entry->outer_context) == 0)
1534 rtx label;
1536 label = gen_label_rtx ();
1537 emit_jump (label);
1539 /* Emit a label marking the end of this exception region that
1540 is used for rethrowing into the outer context. */
1541 emit_label (entry->outer_context);
1542 expand_internal_throw ();
1544 emit_label (label);
1547 entry->finalization = handler;
1549 /* create region entry in final exception table */
1550 r = new_eh_region_entry (NOTE_EH_HANDLER (note), entry->rethrow_label);
1552 enqueue_eh_entry (ehqueue, entry);
1554 /* If we have already started ending the bindings, don't recurse. */
1555 if (is_eh_region ())
1557 /* Because we don't need or want a new temporary level and
1558 because we didn't create one in expand_eh_region_start,
1559 create a fake one now to avoid removing one in
1560 expand_end_bindings. */
1561 push_temp_slots ();
1563 mark_block_as_not_eh_region ();
1565 expand_end_bindings (NULL_TREE, 0, 0);
1568 /* Go through the goto handlers in the queue, emitting their
1569 handlers if we now have enough information to do so. */
1570 for (node = ehqueue->head; node; node = node->chain)
1571 if (node->entry->goto_entry_p
1572 && node->entry->outer_context == entry->rethrow_label)
1573 emit_cleanup_handler (node->entry);
1575 /* We can't emit handlers for goto entries until their scopes are
1576 complete because we don't know where they need to rethrow to,
1577 yet. */
1578 if (entry->finalization != integer_zero_node
1579 && (!entry->goto_entry_p
1580 || find_func_region_from_symbol (entry->outer_context) != -1))
1581 emit_cleanup_handler (entry);
1584 /* End the EH region for a goto fixup. We only need them in the region-based
1585 EH scheme. */
1587 void
1588 expand_fixup_region_start ()
1590 if (! doing_eh (0) || exceptions_via_longjmp)
1591 return;
1593 expand_eh_region_start ();
1594 /* Mark this entry as the entry for a goto. */
1595 ehstack.top->entry->goto_entry_p = 1;
1598 /* End the EH region for a goto fixup. CLEANUP is the cleanup we just
1599 expanded; to avoid running it twice if it throws, we look through the
1600 ehqueue for a matching region and rethrow from its outer_context. */
1602 void
1603 expand_fixup_region_end (cleanup)
1604 tree cleanup;
1606 struct eh_node *node;
1607 int dont_issue;
1609 if (! doing_eh (0) || exceptions_via_longjmp)
1610 return;
1612 for (node = ehstack.top; node && node->entry->finalization != cleanup; )
1613 node = node->chain;
1614 if (node == 0)
1615 for (node = ehqueue->head; node && node->entry->finalization != cleanup; )
1616 node = node->chain;
1617 if (node == 0)
1618 abort ();
1620 /* If the outer context label has not been issued yet, we don't want
1621 to issue it as a part of this region, unless this is the
1622 correct region for the outer context. If we did, then the label for
1623 the outer context will be WITHIN the begin/end labels,
1624 and we could get an infinte loop when it tried to rethrow, or just
1625 generally incorrect execution following a throw. */
1627 if (flag_new_exceptions)
1628 dont_issue = 0;
1629 else
1630 dont_issue = ((INSN_UID (node->entry->outer_context) == 0)
1631 && (ehstack.top->entry != node->entry));
1633 ehstack.top->entry->outer_context = node->entry->outer_context;
1635 /* Since we are rethrowing to the OUTER region, we know we don't need
1636 a jump around sequence for this region, so we'll pretend the outer
1637 context label has been issued by setting INSN_UID to 1, then clearing
1638 it again afterwards. */
1640 if (dont_issue)
1641 INSN_UID (node->entry->outer_context) = 1;
1643 /* Just rethrow. size_zero_node is just a NOP. */
1644 expand_eh_region_end (size_zero_node);
1646 if (dont_issue)
1647 INSN_UID (node->entry->outer_context) = 0;
1650 /* If we are using the setjmp/longjmp EH codegen method, we emit a
1651 call to __sjthrow. Otherwise, we emit a call to __throw. */
1653 void
1654 emit_throw ()
1656 if (exceptions_via_longjmp)
1658 emit_library_call (sjthrow_libfunc, 0, VOIDmode, 0);
1660 else
1662 #ifdef JUMP_TO_THROW
1663 emit_indirect_jump (throw_libfunc);
1664 #else
1665 emit_library_call (throw_libfunc, 0, VOIDmode, 0);
1666 #endif
1668 emit_barrier ();
1671 /* Throw the current exception. If appropriate, this is done by jumping
1672 to the next handler. */
1674 void
1675 expand_internal_throw ()
1677 emit_throw ();
1680 /* Called from expand_exception_blocks and expand_end_catch_block to
1681 emit any pending handlers/cleanups queued from expand_eh_region_end. */
1683 void
1684 expand_leftover_cleanups ()
1686 struct eh_entry *entry;
1688 for (entry = dequeue_eh_entry (ehqueue);
1689 entry;
1690 entry = dequeue_eh_entry (ehqueue))
1692 /* A leftover try block. Shouldn't be one here. */
1693 if (entry->finalization == integer_zero_node)
1694 abort ();
1696 free (entry);
1700 /* Called at the start of a block of try statements. */
1701 void
1702 expand_start_try_stmts ()
1704 if (! doing_eh (1))
1705 return;
1707 expand_eh_region_start ();
1710 /* Called to begin a catch clause. The parameter is the object which
1711 will be passed to the runtime type check routine. */
1712 void
1713 start_catch_handler (rtime)
1714 tree rtime;
1716 rtx handler_label;
1717 int insn_region_num;
1718 int eh_region_entry;
1720 if (! doing_eh (1))
1721 return;
1723 handler_label = catchstack.top->entry->exception_handler_label;
1724 insn_region_num = CODE_LABEL_NUMBER (handler_label);
1725 eh_region_entry = find_func_region (insn_region_num);
1727 /* If we've already issued this label, pick a new one */
1728 if (catchstack.top->entry->label_used)
1729 handler_label = gen_exception_label ();
1730 else
1731 catchstack.top->entry->label_used = 1;
1733 receive_exception_label (handler_label);
1735 add_new_handler (eh_region_entry, get_new_handler (handler_label, rtime));
1737 if (flag_new_exceptions && ! exceptions_via_longjmp)
1738 return;
1740 /* Under the old mechanism, as well as setjmp/longjmp, we need to
1741 issue code to compare 'rtime' to the value in eh_info, via the
1742 matching function in eh_info. If its is false, we branch around
1743 the handler we are about to issue. */
1745 if (rtime != NULL_TREE && rtime != CATCH_ALL_TYPE)
1747 rtx call_rtx, rtime_address;
1749 if (catchstack.top->entry->false_label != NULL_RTX)
1751 error ("Never issued previous false_label");
1752 abort ();
1754 catchstack.top->entry->false_label = gen_exception_label ();
1756 rtime_address = expand_expr (rtime, NULL_RTX, Pmode, EXPAND_INITIALIZER);
1757 #ifdef POINTERS_EXTEND_UNSIGNED
1758 rtime_address = convert_memory_address (Pmode, rtime_address);
1759 #endif
1760 rtime_address = force_reg (Pmode, rtime_address);
1762 /* Now issue the call, and branch around handler if needed */
1763 call_rtx = emit_library_call_value (eh_rtime_match_libfunc, NULL_RTX,
1764 0, TYPE_MODE (integer_type_node),
1765 1, rtime_address, Pmode);
1767 /* Did the function return true? */
1768 emit_cmp_and_jump_insns (call_rtx, const0_rtx, EQ, NULL_RTX,
1769 GET_MODE (call_rtx), 0, 0,
1770 catchstack.top->entry->false_label);
1774 /* Called to end a catch clause. If we aren't using the new exception
1775 model tabel mechanism, we need to issue the branch-around label
1776 for the end of the catch block. */
1778 void
1779 end_catch_handler ()
1781 if (! doing_eh (1))
1782 return;
1784 if (flag_new_exceptions && ! exceptions_via_longjmp)
1786 emit_barrier ();
1787 return;
1790 /* A NULL label implies the catch clause was a catch all or cleanup */
1791 if (catchstack.top->entry->false_label == NULL_RTX)
1792 return;
1794 emit_label (catchstack.top->entry->false_label);
1795 catchstack.top->entry->false_label = NULL_RTX;
1798 /* Save away the current ehqueue. */
1800 void
1801 push_ehqueue ()
1803 struct eh_queue *q;
1804 q = (struct eh_queue *) xcalloc (1, sizeof (struct eh_queue));
1805 q->next = ehqueue;
1806 ehqueue = q;
1809 /* Restore a previously pushed ehqueue. */
1811 void
1812 pop_ehqueue ()
1814 struct eh_queue *q;
1815 expand_leftover_cleanups ();
1816 q = ehqueue->next;
1817 free (ehqueue);
1818 ehqueue = q;
1821 /* Emit the handler specified by ENTRY. */
1823 static void
1824 emit_cleanup_handler (entry)
1825 struct eh_entry *entry;
1827 rtx prev;
1828 rtx handler_insns;
1830 /* Since the cleanup could itself contain try-catch blocks, we
1831 squirrel away the current queue and replace it when we are done
1832 with this function. */
1833 push_ehqueue ();
1835 /* Put these handler instructions in a sequence. */
1836 do_pending_stack_adjust ();
1837 start_sequence ();
1839 /* Emit the label for the cleanup handler for this region, and
1840 expand the code for the handler.
1842 Note that a catch region is handled as a side-effect here; for a
1843 try block, entry->finalization will contain integer_zero_node, so
1844 no code will be generated in the expand_expr call below. But, the
1845 label for the handler will still be emitted, so any code emitted
1846 after this point will end up being the handler. */
1848 receive_exception_label (entry->exception_handler_label);
1850 /* register a handler for this cleanup region */
1851 add_new_handler (find_func_region (CODE_LABEL_NUMBER (entry->exception_handler_label)),
1852 get_new_handler (entry->exception_handler_label, NULL));
1854 /* And now generate the insns for the cleanup handler. */
1855 expand_expr (entry->finalization, const0_rtx, VOIDmode, 0);
1857 prev = get_last_insn ();
1858 if (prev == NULL || GET_CODE (prev) != BARRIER)
1859 /* Code to throw out to outer context when we fall off end of the
1860 handler. We can't do this here for catch blocks, so it's done
1861 in expand_end_all_catch instead. */
1862 expand_rethrow (entry->outer_context);
1864 /* Finish this sequence. */
1865 do_pending_stack_adjust ();
1866 handler_insns = get_insns ();
1867 end_sequence ();
1869 /* And add it to the CATCH_CLAUSES. */
1870 push_to_full_sequence (catch_clauses, catch_clauses_last);
1871 emit_insns (handler_insns);
1872 end_full_sequence (&catch_clauses, &catch_clauses_last);
1874 /* Now we've left the handler. */
1875 pop_ehqueue ();
1878 /* Generate RTL for the start of a group of catch clauses.
1880 It is responsible for starting a new instruction sequence for the
1881 instructions in the catch block, and expanding the handlers for the
1882 internally-generated exception regions nested within the try block
1883 corresponding to this catch block. */
1885 void
1886 expand_start_all_catch ()
1888 struct eh_entry *entry;
1889 tree label;
1890 rtx outer_context;
1892 if (! doing_eh (1))
1893 return;
1895 outer_context = ehstack.top->entry->outer_context;
1897 /* End the try block. */
1898 expand_eh_region_end (integer_zero_node);
1900 emit_line_note (input_filename, lineno);
1901 label = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE);
1903 /* The label for the exception handling block that we will save.
1904 This is Lresume in the documentation. */
1905 expand_label (label);
1907 /* Push the label that points to where normal flow is resumed onto
1908 the top of the label stack. */
1909 push_label_entry (&caught_return_label_stack, NULL_RTX, label);
1911 /* Start a new sequence for all the catch blocks. We will add this
1912 to the global sequence catch_clauses when we have completed all
1913 the handlers in this handler-seq. */
1914 start_sequence ();
1916 /* Throw away entries in the queue that we won't need anymore. We
1917 need entries for regions that have ended but to which there might
1918 still be gotos pending. */
1919 for (entry = dequeue_eh_entry (ehqueue);
1920 entry->finalization != integer_zero_node;
1921 entry = dequeue_eh_entry (ehqueue))
1922 free (entry);
1924 /* At this point, all the cleanups are done, and the ehqueue now has
1925 the current exception region at its head. We dequeue it, and put it
1926 on the catch stack. */
1927 push_entry (&catchstack, entry);
1929 /* If we are not doing setjmp/longjmp EH, because we are reordered
1930 out of line, we arrange to rethrow in the outer context. We need to
1931 do this because we are not physically within the region, if any, that
1932 logically contains this catch block. */
1933 if (! exceptions_via_longjmp)
1935 expand_eh_region_start ();
1936 ehstack.top->entry->outer_context = outer_context;
1941 /* Finish up the catch block. At this point all the insns for the
1942 catch clauses have already been generated, so we only have to add
1943 them to the catch_clauses list. We also want to make sure that if
1944 we fall off the end of the catch clauses that we rethrow to the
1945 outer EH region. */
1947 void
1948 expand_end_all_catch ()
1950 rtx new_catch_clause;
1951 struct eh_entry *entry;
1953 if (! doing_eh (1))
1954 return;
1956 /* Dequeue the current catch clause region. */
1957 entry = pop_eh_entry (&catchstack);
1958 free (entry);
1960 if (! exceptions_via_longjmp)
1962 rtx outer_context = ehstack.top->entry->outer_context;
1964 /* Finish the rethrow region. size_zero_node is just a NOP. */
1965 expand_eh_region_end (size_zero_node);
1966 /* New exceptions handling models will never have a fall through
1967 of a catch clause */
1968 if (!flag_new_exceptions)
1969 expand_rethrow (outer_context);
1971 else
1972 expand_rethrow (NULL_RTX);
1974 /* Code to throw out to outer context, if we fall off end of catch
1975 handlers. This is rethrow (Lresume, same id, same obj) in the
1976 documentation. We use Lresume because we know that it will throw
1977 to the correct context.
1979 In other words, if the catch handler doesn't exit or return, we
1980 do a "throw" (using the address of Lresume as the point being
1981 thrown from) so that the outer EH region can then try to process
1982 the exception. */
1984 /* Now we have the complete catch sequence. */
1985 new_catch_clause = get_insns ();
1986 end_sequence ();
1988 /* This level of catch blocks is done, so set up the successful
1989 catch jump label for the next layer of catch blocks. */
1990 pop_label_entry (&caught_return_label_stack);
1991 pop_label_entry (&outer_context_label_stack);
1993 /* Add the new sequence of catches to the main one for this function. */
1994 push_to_full_sequence (catch_clauses, catch_clauses_last);
1995 emit_insns (new_catch_clause);
1996 end_full_sequence (&catch_clauses, &catch_clauses_last);
1998 /* Here we fall through into the continuation code. */
2001 /* Rethrow from the outer context LABEL. */
2003 static void
2004 expand_rethrow (label)
2005 rtx label;
2007 if (exceptions_via_longjmp)
2008 emit_throw ();
2009 else
2010 if (flag_new_exceptions)
2012 rtx insn;
2013 int region;
2014 if (label == NULL_RTX)
2015 label = last_rethrow_symbol;
2016 emit_library_call (rethrow_libfunc, 0, VOIDmode, 1, label, Pmode);
2017 region = find_func_region (eh_region_from_symbol (label));
2018 /* If the region is -1, it doesn't exist yet. We shouldn't be
2019 trying to rethrow there yet. */
2020 if (region == -1)
2021 abort ();
2022 function_eh_regions[region].rethrow_ref = 1;
2024 /* Search backwards for the actual call insn. */
2025 insn = get_last_insn ();
2026 while (GET_CODE (insn) != CALL_INSN)
2027 insn = PREV_INSN (insn);
2028 delete_insns_since (insn);
2030 /* Mark the label/symbol on the call. */
2031 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EH_RETHROW, label,
2032 REG_NOTES (insn));
2033 emit_barrier ();
2035 else
2036 emit_jump (label);
2039 /* Begin a region that will contain entries created with
2040 add_partial_entry. */
2042 void
2043 begin_protect_partials ()
2045 /* Put the entry on the function obstack. */
2046 push_obstacks_nochange ();
2047 resume_temporary_allocation ();
2049 /* Push room for a new list. */
2050 protect_list = tree_cons (NULL_TREE, NULL_TREE, protect_list);
2052 /* We're done with the function obstack now. */
2053 pop_obstacks ();
2056 /* End all the pending exception regions on protect_list. The handlers
2057 will be emitted when expand_leftover_cleanups is invoked. */
2059 void
2060 end_protect_partials ()
2062 tree t;
2064 /* For backwards compatibility, we allow callers to omit the call to
2065 begin_protect_partials for the outermost region. So,
2066 PROTECT_LIST may be NULL. */
2067 if (!protect_list)
2068 return;
2070 /* End all the exception regions. */
2071 for (t = TREE_VALUE (protect_list); t; t = TREE_CHAIN (t))
2072 expand_eh_region_end (TREE_VALUE (t));
2074 /* Pop the topmost entry. */
2075 protect_list = TREE_CHAIN (protect_list);
2079 /* Arrange for __terminate to be called if there is an unhandled throw
2080 from within E. */
2082 tree
2083 protect_with_terminate (e)
2084 tree e;
2086 /* We only need to do this when using setjmp/longjmp EH and the
2087 language requires it, as otherwise we protect all of the handlers
2088 at once, if we need to. */
2089 if (exceptions_via_longjmp && protect_cleanup_actions_with_terminate)
2091 tree handler, result;
2093 /* All cleanups must be on the function_obstack. */
2094 push_obstacks_nochange ();
2095 resume_temporary_allocation ();
2097 handler = make_node (RTL_EXPR);
2098 TREE_TYPE (handler) = void_type_node;
2099 RTL_EXPR_RTL (handler) = const0_rtx;
2100 TREE_SIDE_EFFECTS (handler) = 1;
2101 start_sequence_for_rtl_expr (handler);
2103 emit_library_call (terminate_libfunc, 0, VOIDmode, 0);
2104 emit_barrier ();
2106 RTL_EXPR_SEQUENCE (handler) = get_insns ();
2107 end_sequence ();
2109 result = build (TRY_CATCH_EXPR, TREE_TYPE (e), e, handler);
2110 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
2111 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
2112 TREE_READONLY (result) = TREE_READONLY (e);
2114 pop_obstacks ();
2116 e = result;
2119 return e;
2122 /* The exception table that we build that is used for looking up and
2123 dispatching exceptions, the current number of entries, and its
2124 maximum size before we have to extend it.
2126 The number in eh_table is the code label number of the exception
2127 handler for the region. This is added by add_eh_table_entry and
2128 used by output_exception_table_entry. */
2130 static int *eh_table = NULL;
2131 static int eh_table_size = 0;
2132 static int eh_table_max_size = 0;
2134 /* Note the need for an exception table entry for region N. If we
2135 don't need to output an explicit exception table, avoid all of the
2136 extra work.
2138 Called from final_scan_insn when a NOTE_INSN_EH_REGION_BEG is seen.
2139 (Or NOTE_INSN_EH_REGION_END sometimes)
2140 N is the NOTE_EH_HANDLER of the note, which comes from the code
2141 label number of the exception handler for the region. */
2143 void
2144 add_eh_table_entry (n)
2145 int n;
2147 #ifndef OMIT_EH_TABLE
2148 if (eh_table_size >= eh_table_max_size)
2150 if (eh_table)
2152 eh_table_max_size += eh_table_max_size>>1;
2154 if (eh_table_max_size < 0)
2155 abort ();
2157 eh_table = (int *) xrealloc (eh_table,
2158 eh_table_max_size * sizeof (int));
2160 else
2162 eh_table_max_size = 252;
2163 eh_table = (int *) xmalloc (eh_table_max_size * sizeof (int));
2166 eh_table[eh_table_size++] = n;
2168 if (flag_new_exceptions)
2170 /* We will output the exception table late in the compilation. That
2171 references type_info objects which should have already been output
2172 by that time. We explicitly mark those objects as being
2173 referenced now so we know to emit them. */
2174 struct handler_info *handler = get_first_handler (n);
2176 for (; handler; handler = handler->next)
2177 if (handler->type_info && handler->type_info != CATCH_ALL_TYPE)
2179 tree tinfo = (tree)handler->type_info;
2181 tinfo = TREE_OPERAND (tinfo, 0);
2182 TREE_SYMBOL_REFERENCED (DECL_ASSEMBLER_NAME (tinfo)) = 1;
2185 #endif
2188 /* Return a non-zero value if we need to output an exception table.
2190 On some platforms, we don't have to output a table explicitly.
2191 This routine doesn't mean we don't have one. */
2194 exception_table_p ()
2196 if (eh_table)
2197 return 1;
2199 return 0;
2202 /* Output the entry of the exception table corresponding to the
2203 exception region numbered N to file FILE.
2205 N is the code label number corresponding to the handler of the
2206 region. */
2208 static void
2209 output_exception_table_entry (file, n)
2210 FILE *file;
2211 int n;
2213 char buf[256];
2214 rtx sym;
2215 struct handler_info *handler = get_first_handler (n);
2216 int index = find_func_region (n);
2217 rtx rethrow;
2219 /* Form and emit the rethrow label, if needed */
2220 if (flag_new_exceptions
2221 && (handler || function_eh_regions[index].rethrow_ref))
2222 rethrow = function_eh_regions[index].rethrow_label;
2223 else
2224 rethrow = NULL_RTX;
2226 if (function_eh_regions[index].emitted)
2227 return;
2228 function_eh_regions[index].emitted = 1;
2230 for ( ; handler != NULL || rethrow != NULL_RTX; handler = handler->next)
2232 /* rethrow label should indicate the LAST entry for a region */
2233 if (rethrow != NULL_RTX && (handler == NULL || handler->next == NULL))
2235 ASM_GENERATE_INTERNAL_LABEL (buf, "LRTH", n);
2236 assemble_eh_label(buf);
2237 rethrow = NULL_RTX;
2240 ASM_GENERATE_INTERNAL_LABEL (buf, "LEHB", n);
2241 sym = gen_rtx_SYMBOL_REF (Pmode, buf);
2242 assemble_eh_integer (sym, POINTER_SIZE / BITS_PER_UNIT, 1);
2244 ASM_GENERATE_INTERNAL_LABEL (buf, "LEHE", n);
2245 sym = gen_rtx_SYMBOL_REF (Pmode, buf);
2246 assemble_eh_integer (sym, POINTER_SIZE / BITS_PER_UNIT, 1);
2248 if (handler == NULL)
2249 assemble_eh_integer (GEN_INT (0), POINTER_SIZE / BITS_PER_UNIT, 1);
2250 else
2252 ASM_GENERATE_INTERNAL_LABEL (buf, "L", handler->handler_number);
2253 sym = gen_rtx_SYMBOL_REF (Pmode, buf);
2254 assemble_eh_integer (sym, POINTER_SIZE / BITS_PER_UNIT, 1);
2257 if (flag_new_exceptions)
2259 if (handler == NULL || handler->type_info == NULL)
2260 assemble_eh_integer (const0_rtx, POINTER_SIZE / BITS_PER_UNIT, 1);
2261 else
2262 if (handler->type_info == CATCH_ALL_TYPE)
2263 assemble_eh_integer (GEN_INT (CATCH_ALL_TYPE),
2264 POINTER_SIZE / BITS_PER_UNIT, 1);
2265 else
2266 output_constant ((tree)(handler->type_info),
2267 POINTER_SIZE / BITS_PER_UNIT);
2269 putc ('\n', file); /* blank line */
2270 /* We only output the first label under the old scheme */
2271 if (! flag_new_exceptions || handler == NULL)
2272 break;
2276 /* Output the exception table if we have and need one. */
2278 static short language_code = 0;
2279 static short version_code = 0;
2281 /* This routine will set the language code for exceptions. */
2282 void
2283 set_exception_lang_code (code)
2284 int code;
2286 language_code = code;
2289 /* This routine will set the language version code for exceptions. */
2290 void
2291 set_exception_version_code (code)
2292 int code;
2294 version_code = code;
2297 /* Free the EH table structures. */
2298 void
2299 free_exception_table ()
2301 if (eh_table)
2302 free (eh_table);
2303 clear_function_eh_region ();
2306 /* Output the common content of an exception table. */
2307 void
2308 output_exception_table_data ()
2310 int i;
2311 char buf[256];
2312 extern FILE *asm_out_file;
2314 if (flag_new_exceptions)
2316 assemble_eh_integer (GEN_INT (NEW_EH_RUNTIME),
2317 POINTER_SIZE / BITS_PER_UNIT, 1);
2318 assemble_eh_integer (GEN_INT (language_code), 2 , 1);
2319 assemble_eh_integer (GEN_INT (version_code), 2 , 1);
2321 /* Add enough padding to make sure table aligns on a pointer boundry. */
2322 i = GET_MODE_ALIGNMENT (ptr_mode) / BITS_PER_UNIT - 4;
2323 for ( ; i < 0; i = i + GET_MODE_ALIGNMENT (ptr_mode) / BITS_PER_UNIT)
2325 if (i != 0)
2326 assemble_eh_integer (const0_rtx, i , 1);
2328 /* Generate the label for offset calculations on rethrows. */
2329 ASM_GENERATE_INTERNAL_LABEL (buf, "LRTH", 0);
2330 assemble_eh_label(buf);
2333 for (i = 0; i < eh_table_size; ++i)
2334 output_exception_table_entry (asm_out_file, eh_table[i]);
2338 /* Output an exception table for the entire compilation unit. */
2339 void
2340 output_exception_table ()
2342 char buf[256];
2343 extern FILE *asm_out_file;
2345 if (! doing_eh (0) || ! eh_table)
2346 return;
2348 exception_section ();
2350 /* Beginning marker for table. */
2351 assemble_eh_align (GET_MODE_ALIGNMENT (ptr_mode));
2352 assemble_eh_label ("__EXCEPTION_TABLE__");
2354 output_exception_table_data ();
2356 /* Ending marker for table. */
2357 /* Generate the label for end of table. */
2358 ASM_GENERATE_INTERNAL_LABEL (buf, "LRTH", CODE_LABEL_NUMBER (final_rethrow));
2359 assemble_eh_label(buf);
2360 assemble_eh_integer (constm1_rtx, POINTER_SIZE / BITS_PER_UNIT, 1);
2362 /* For binary compatibility, the old __throw checked the second
2363 position for a -1, so we should output at least 2 -1's */
2364 if (! flag_new_exceptions)
2365 assemble_eh_integer (constm1_rtx, POINTER_SIZE / BITS_PER_UNIT, 1);
2367 putc ('\n', asm_out_file); /* blank line */
2370 /* Used by the ia64 unwind format to output data for an individual
2371 function. */
2372 void
2373 output_function_exception_table ()
2375 extern FILE *asm_out_file;
2377 if (! doing_eh (0) || ! eh_table)
2378 return;
2380 #ifdef HANDLER_SECTION
2381 HANDLER_SECTION;
2382 #endif
2384 output_exception_table_data ();
2386 /* Ending marker for table. */
2387 assemble_eh_integer (constm1_rtx, POINTER_SIZE / BITS_PER_UNIT, 1);
2389 putc ('\n', asm_out_file); /* blank line */
2393 /* Emit code to get EH context.
2395 We have to scan thru the code to find possible EH context registers.
2396 Inlined functions may use it too, and thus we'll have to be able
2397 to change them too.
2399 This is done only if using exceptions_via_longjmp. */
2401 void
2402 emit_eh_context ()
2404 rtx insn;
2405 rtx ehc = 0;
2407 if (! doing_eh (0))
2408 return;
2410 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2411 if (GET_CODE (insn) == INSN
2412 && GET_CODE (PATTERN (insn)) == USE)
2414 rtx reg = find_reg_note (insn, REG_EH_CONTEXT, 0);
2415 if (reg)
2417 rtx insns;
2419 start_sequence ();
2421 /* If this is the first use insn, emit the call here. This
2422 will always be at the top of our function, because if
2423 expand_inline_function notices a REG_EH_CONTEXT note, it
2424 adds a use insn to this function as well. */
2425 if (ehc == 0)
2426 ehc = call_get_eh_context ();
2428 emit_move_insn (XEXP (reg, 0), ehc);
2429 insns = get_insns ();
2430 end_sequence ();
2432 emit_insns_before (insns, insn);
2437 /* Scan the insn chain F and build a list of handler labels. The
2438 resulting list is placed in the global variable exception_handler_labels. */
2440 static void
2441 find_exception_handler_labels_1 (f)
2442 rtx f;
2444 rtx insn;
2446 /* For each start of a region, add its label to the list. */
2448 for (insn = f; insn; insn = NEXT_INSN (insn))
2450 struct handler_info* ptr;
2451 if (GET_CODE (insn) == NOTE
2452 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
2454 ptr = get_first_handler (NOTE_EH_HANDLER (insn));
2455 for ( ; ptr; ptr = ptr->next)
2457 /* make sure label isn't in the list already */
2458 rtx x;
2459 for (x = exception_handler_labels; x; x = XEXP (x, 1))
2460 if (XEXP (x, 0) == ptr->handler_label)
2461 break;
2462 if (! x)
2463 exception_handler_labels = gen_rtx_EXPR_LIST (VOIDmode,
2464 ptr->handler_label, exception_handler_labels);
2467 else if (GET_CODE (insn) == CALL_INSN
2468 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
2470 find_exception_handler_labels_1 (XEXP (PATTERN (insn), 0));
2471 find_exception_handler_labels_1 (XEXP (PATTERN (insn), 1));
2472 find_exception_handler_labels_1 (XEXP (PATTERN (insn), 2));
2477 /* Scan the current insns and build a list of handler labels. The
2478 resulting list is placed in the global variable exception_handler_labels.
2480 It is called after the last exception handling region is added to
2481 the current function (when the rtl is almost all built for the
2482 current function) and before the jump optimization pass. */
2483 void
2484 find_exception_handler_labels ()
2486 exception_handler_labels = NULL_RTX;
2488 /* If we aren't doing exception handling, there isn't much to check. */
2489 if (! doing_eh (0))
2490 return;
2492 find_exception_handler_labels_1 (get_insns ());
2495 /* Return a value of 1 if the parameter label number is an exception handler
2496 label. Return 0 otherwise. */
2499 is_exception_handler_label (lab)
2500 int lab;
2502 rtx x;
2503 for (x = exception_handler_labels ; x ; x = XEXP (x, 1))
2504 if (lab == CODE_LABEL_NUMBER (XEXP (x, 0)))
2505 return 1;
2506 return 0;
2509 /* Perform sanity checking on the exception_handler_labels list.
2511 Can be called after find_exception_handler_labels is called to
2512 build the list of exception handlers for the current function and
2513 before we finish processing the current function. */
2515 void
2516 check_exception_handler_labels ()
2518 rtx insn, insn2;
2520 /* If we aren't doing exception handling, there isn't much to check. */
2521 if (! doing_eh (0))
2522 return;
2524 /* Make sure there is no more than 1 copy of a label */
2525 for (insn = exception_handler_labels; insn; insn = XEXP (insn, 1))
2527 int count = 0;
2528 for (insn2 = exception_handler_labels; insn2; insn2 = XEXP (insn2, 1))
2529 if (XEXP (insn, 0) == XEXP (insn2, 0))
2530 count++;
2531 if (count != 1)
2532 warning ("Counted %d copies of EH region %d in list.\n", count,
2533 CODE_LABEL_NUMBER (insn));
2538 /* Mark the children of NODE for GC. */
2540 static void
2541 mark_eh_node (node)
2542 struct eh_node *node;
2544 while (node)
2546 if (node->entry)
2548 ggc_mark_rtx (node->entry->outer_context);
2549 ggc_mark_rtx (node->entry->exception_handler_label);
2550 ggc_mark_tree (node->entry->finalization);
2551 ggc_mark_rtx (node->entry->false_label);
2552 ggc_mark_rtx (node->entry->rethrow_label);
2554 node = node ->chain;
2558 /* Mark S for GC. */
2560 static void
2561 mark_eh_stack (s)
2562 struct eh_stack *s;
2564 if (s)
2565 mark_eh_node (s->top);
2568 /* Mark Q for GC. */
2570 static void
2571 mark_eh_queue (q)
2572 struct eh_queue *q;
2574 while (q)
2576 mark_eh_node (q->head);
2577 q = q->next;
2581 /* Mark NODE for GC. A label_node contains a union containing either
2582 a tree or an rtx. This label_node will contain a tree. */
2584 static void
2585 mark_tree_label_node (node)
2586 struct label_node *node;
2588 while (node)
2590 ggc_mark_tree (node->u.tlabel);
2591 node = node->chain;
2595 /* Mark EH for GC. */
2597 void
2598 mark_eh_status (eh)
2599 struct eh_status *eh;
2601 if (eh == 0)
2602 return;
2604 mark_eh_stack (&eh->x_ehstack);
2605 mark_eh_stack (&eh->x_catchstack);
2606 mark_eh_queue (eh->x_ehqueue);
2607 ggc_mark_rtx (eh->x_catch_clauses);
2609 lang_mark_false_label_stack (eh->x_false_label_stack);
2610 mark_tree_label_node (eh->x_caught_return_label_stack);
2612 ggc_mark_tree (eh->x_protect_list);
2613 ggc_mark_rtx (eh->ehc);
2614 ggc_mark_rtx (eh->x_eh_return_stub_label);
2617 /* Mark ARG (which is really a struct func_eh_entry**) for GC. */
2619 static void
2620 mark_func_eh_entry (arg)
2621 void *arg;
2623 struct func_eh_entry *fee;
2624 struct handler_info *h;
2625 int i;
2627 fee = *((struct func_eh_entry **) arg);
2629 for (i = 0; i < current_func_eh_entry; ++i)
2631 ggc_mark_rtx (fee->rethrow_label);
2632 for (h = fee->handlers; h; h = h->next)
2634 ggc_mark_rtx (h->handler_label);
2635 if (h->type_info != CATCH_ALL_TYPE)
2636 ggc_mark_tree ((tree) h->type_info);
2639 /* Skip to the next entry in the array. */
2640 ++fee;
2644 /* This group of functions initializes the exception handling data
2645 structures at the start of the compilation, initializes the data
2646 structures at the start of a function, and saves and restores the
2647 exception handling data structures for the start/end of a nested
2648 function. */
2650 /* Toplevel initialization for EH things. */
2652 void
2653 init_eh ()
2655 first_rethrow_symbol = create_rethrow_ref (0);
2656 final_rethrow = gen_exception_label ();
2657 last_rethrow_symbol = create_rethrow_ref (CODE_LABEL_NUMBER (final_rethrow));
2659 ggc_add_rtx_root (&exception_handler_labels, 1);
2660 ggc_add_rtx_root (&eh_return_context, 1);
2661 ggc_add_rtx_root (&eh_return_stack_adjust, 1);
2662 ggc_add_rtx_root (&eh_return_handler, 1);
2663 ggc_add_rtx_root (&first_rethrow_symbol, 1);
2664 ggc_add_rtx_root (&final_rethrow, 1);
2665 ggc_add_rtx_root (&last_rethrow_symbol, 1);
2666 ggc_add_root (&function_eh_regions, 1, sizeof (function_eh_regions),
2667 mark_func_eh_entry);
2670 /* Initialize the per-function EH information. */
2672 void
2673 init_eh_for_function ()
2675 cfun->eh = (struct eh_status *) xcalloc (1, sizeof (struct eh_status));
2676 ehqueue = (struct eh_queue *) xcalloc (1, sizeof (struct eh_queue));
2677 eh_return_context = NULL_RTX;
2678 eh_return_stack_adjust = NULL_RTX;
2679 eh_return_handler = NULL_RTX;
2682 void
2683 free_eh_status (f)
2684 struct function *f;
2686 free (f->eh->x_ehqueue);
2687 free (f->eh);
2688 f->eh = NULL;
2691 /* This section is for the exception handling specific optimization
2692 pass. */
2694 /* Determine if the given INSN can throw an exception. */
2697 can_throw (insn)
2698 rtx insn;
2700 if (GET_CODE (insn) == INSN
2701 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2702 insn = XVECEXP (PATTERN (insn), 0, 0);
2704 /* Calls can always potentially throw exceptions, unless they have
2705 a REG_EH_REGION note with a value of 0 or less. */
2706 if (GET_CODE (insn) == CALL_INSN)
2708 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
2709 if (!note || INTVAL (XEXP (note, 0)) > 0)
2710 return 1;
2713 if (asynchronous_exceptions)
2715 /* If we wanted asynchronous exceptions, then everything but NOTEs
2716 and CODE_LABELs could throw. */
2717 if (GET_CODE (insn) != NOTE && GET_CODE (insn) != CODE_LABEL)
2718 return 1;
2721 return 0;
2724 /* Return nonzero if nothing in this function can throw. */
2727 nothrow_function_p ()
2729 rtx insn;
2731 if (! flag_exceptions)
2732 return 1;
2734 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2735 if (can_throw (insn))
2736 return 0;
2737 for (insn = current_function_epilogue_delay_list; insn;
2738 insn = XEXP (insn, 1))
2739 if (can_throw (insn))
2740 return 0;
2742 return 1;
2745 /* Scan a exception region looking for the matching end and then
2746 remove it if possible. INSN is the start of the region, N is the
2747 region number, and DELETE_OUTER is to note if anything in this
2748 region can throw.
2750 Regions are removed if they cannot possibly catch an exception.
2751 This is determined by invoking can_throw on each insn within the
2752 region; if can_throw returns true for any of the instructions, the
2753 region can catch an exception, since there is an insn within the
2754 region that is capable of throwing an exception.
2756 Returns the NOTE_INSN_EH_REGION_END corresponding to this region, or
2757 calls abort if it can't find one.
2759 Can abort if INSN is not a NOTE_INSN_EH_REGION_BEGIN, or if N doesn't
2760 correspond to the region number, or if DELETE_OUTER is NULL. */
2762 static rtx
2763 scan_region (insn, n, delete_outer)
2764 rtx insn;
2765 int n;
2766 int *delete_outer;
2768 rtx start = insn;
2770 /* Assume we can delete the region. */
2771 int delete = 1;
2773 /* Can't delete something which is rethrown from. */
2774 if (rethrow_used (n))
2775 delete = 0;
2777 if (insn == NULL_RTX
2778 || GET_CODE (insn) != NOTE
2779 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_EH_REGION_BEG
2780 || NOTE_EH_HANDLER (insn) != n
2781 || delete_outer == NULL)
2782 abort ();
2784 insn = NEXT_INSN (insn);
2786 /* Look for the matching end. */
2787 while (! (GET_CODE (insn) == NOTE
2788 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END))
2790 /* If anything can throw, we can't remove the region. */
2791 if (delete && can_throw (insn))
2793 delete = 0;
2796 /* Watch out for and handle nested regions. */
2797 if (GET_CODE (insn) == NOTE
2798 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
2800 insn = scan_region (insn, NOTE_EH_HANDLER (insn), &delete);
2803 insn = NEXT_INSN (insn);
2806 /* The _BEG/_END NOTEs must match and nest. */
2807 if (NOTE_EH_HANDLER (insn) != n)
2808 abort ();
2810 /* If anything in this exception region can throw, we can throw. */
2811 if (! delete)
2812 *delete_outer = 0;
2813 else
2815 /* Delete the start and end of the region. */
2816 delete_insn (start);
2817 delete_insn (insn);
2819 /* We no longer removed labels here, since flow will now remove any
2820 handler which cannot be called any more. */
2822 #if 0
2823 /* Only do this part if we have built the exception handler
2824 labels. */
2825 if (exception_handler_labels)
2827 rtx x, *prev = &exception_handler_labels;
2829 /* Find it in the list of handlers. */
2830 for (x = exception_handler_labels; x; x = XEXP (x, 1))
2832 rtx label = XEXP (x, 0);
2833 if (CODE_LABEL_NUMBER (label) == n)
2835 /* If we are the last reference to the handler,
2836 delete it. */
2837 if (--LABEL_NUSES (label) == 0)
2838 delete_insn (label);
2840 if (optimize)
2842 /* Remove it from the list of exception handler
2843 labels, if we are optimizing. If we are not, then
2844 leave it in the list, as we are not really going to
2845 remove the region. */
2846 *prev = XEXP (x, 1);
2847 XEXP (x, 1) = 0;
2848 XEXP (x, 0) = 0;
2851 break;
2853 prev = &XEXP (x, 1);
2856 #endif
2858 return insn;
2861 /* Perform various interesting optimizations for exception handling
2862 code.
2864 We look for empty exception regions and make them go (away). The
2865 jump optimization code will remove the handler if nothing else uses
2866 it. */
2868 void
2869 exception_optimize ()
2871 rtx insn;
2872 int n;
2874 /* Remove empty regions. */
2875 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2877 if (GET_CODE (insn) == NOTE
2878 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
2880 /* Since scan_region will return the NOTE_INSN_EH_REGION_END
2881 insn, we will indirectly skip through all the insns
2882 inbetween. We are also guaranteed that the value of insn
2883 returned will be valid, as otherwise scan_region won't
2884 return. */
2885 insn = scan_region (insn, NOTE_EH_HANDLER (insn), &n);
2890 /* This function determines whether the rethrow labels for any of the
2891 exception regions in the current function are used or not, and set
2892 the reference flag according. */
2894 void
2895 update_rethrow_references ()
2897 rtx insn;
2898 int x, region;
2899 int *saw_region, *saw_rethrow;
2901 if (!flag_new_exceptions)
2902 return;
2904 saw_region = (int *) xcalloc (current_func_eh_entry, sizeof (int));
2905 saw_rethrow = (int *) xcalloc (current_func_eh_entry, sizeof (int));
2907 /* Determine what regions exist, and whether there are any rethrows
2908 from those regions or not. */
2909 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2910 if (GET_CODE (insn) == CALL_INSN)
2912 rtx note = find_reg_note (insn, REG_EH_RETHROW, NULL_RTX);
2913 if (note)
2915 region = eh_region_from_symbol (XEXP (note, 0));
2916 region = find_func_region (region);
2917 saw_rethrow[region] = 1;
2920 else
2921 if (GET_CODE (insn) == NOTE)
2923 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
2925 region = find_func_region (NOTE_EH_HANDLER (insn));
2926 saw_region[region] = 1;
2930 /* For any regions we did see, set the referenced flag. */
2931 for (x = 0; x < current_func_eh_entry; x++)
2932 if (saw_region[x])
2933 function_eh_regions[x].rethrow_ref = saw_rethrow[x];
2935 /* Clean up. */
2936 free (saw_region);
2937 free (saw_rethrow);
2940 /* Various hooks for the DWARF 2 __throw routine. */
2942 /* Do any necessary initialization to access arbitrary stack frames.
2943 On the SPARC, this means flushing the register windows. */
2945 void
2946 expand_builtin_unwind_init ()
2948 /* Set this so all the registers get saved in our frame; we need to be
2949 able to copy the saved values for any registers from frames we unwind. */
2950 current_function_has_nonlocal_label = 1;
2952 #ifdef SETUP_FRAME_ADDRESSES
2953 SETUP_FRAME_ADDRESSES ();
2954 #endif
2957 /* Given a value extracted from the return address register or stack slot,
2958 return the actual address encoded in that value. */
2961 expand_builtin_extract_return_addr (addr_tree)
2962 tree addr_tree;
2964 rtx addr = expand_expr (addr_tree, NULL_RTX, Pmode, 0);
2965 return eh_outer_context (addr);
2968 /* Given an actual address in addr_tree, do any necessary encoding
2969 and return the value to be stored in the return address register or
2970 stack slot so the epilogue will return to that address. */
2973 expand_builtin_frob_return_addr (addr_tree)
2974 tree addr_tree;
2976 rtx addr = expand_expr (addr_tree, NULL_RTX, Pmode, 0);
2977 #ifdef RETURN_ADDR_OFFSET
2978 addr = plus_constant (addr, -RETURN_ADDR_OFFSET);
2979 #endif
2980 return addr;
2983 /* Choose three registers for communication between the main body of
2984 __throw and the epilogue (or eh stub) and the exception handler.
2985 We must do this with hard registers because the epilogue itself
2986 will be generated after reload, at which point we may not reference
2987 pseudos at all.
2989 The first passes the exception context to the handler. For this
2990 we use the return value register for a void*.
2992 The second holds the stack pointer value to be restored. For this
2993 we use the static chain register if it exists, is different from
2994 the previous, and is call-clobbered; otherwise some arbitrary
2995 call-clobbered register.
2997 The third holds the address of the handler itself. Here we use
2998 some arbitrary call-clobbered register. */
3000 static void
3001 eh_regs (pcontext, psp, pra, outgoing)
3002 rtx *pcontext, *psp, *pra;
3003 int outgoing ATTRIBUTE_UNUSED;
3005 rtx rcontext, rsp, rra;
3006 unsigned int i;
3008 #ifdef FUNCTION_OUTGOING_VALUE
3009 if (outgoing)
3010 rcontext = FUNCTION_OUTGOING_VALUE (build_pointer_type (void_type_node),
3011 current_function_decl);
3012 else
3013 #endif
3014 rcontext = FUNCTION_VALUE (build_pointer_type (void_type_node),
3015 current_function_decl);
3017 #ifdef STATIC_CHAIN_REGNUM
3018 if (outgoing)
3019 rsp = static_chain_incoming_rtx;
3020 else
3021 rsp = static_chain_rtx;
3022 if (REGNO (rsp) == REGNO (rcontext)
3023 || ! call_used_regs [REGNO (rsp)])
3024 #endif /* STATIC_CHAIN_REGNUM */
3025 rsp = NULL_RTX;
3027 if (rsp == NULL_RTX)
3029 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
3030 if (call_used_regs[i] && ! fixed_regs[i] && i != REGNO (rcontext))
3031 break;
3032 if (i == FIRST_PSEUDO_REGISTER)
3033 abort();
3035 rsp = gen_rtx_REG (Pmode, i);
3038 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
3039 if (call_used_regs[i] && ! fixed_regs[i]
3040 && i != REGNO (rcontext) && i != REGNO (rsp))
3041 break;
3042 if (i == FIRST_PSEUDO_REGISTER)
3043 abort();
3045 rra = gen_rtx_REG (Pmode, i);
3047 *pcontext = rcontext;
3048 *psp = rsp;
3049 *pra = rra;
3052 /* Retrieve the register which contains the pointer to the eh_context
3053 structure set the __throw. */
3055 #if 0
3056 rtx
3057 get_reg_for_handler ()
3059 rtx reg1;
3060 reg1 = FUNCTION_VALUE (build_pointer_type (void_type_node),
3061 current_function_decl);
3062 return reg1;
3064 #endif
3066 /* Set up the epilogue with the magic bits we'll need to return to the
3067 exception handler. */
3069 void
3070 expand_builtin_eh_return (context, stack, handler)
3071 tree context, stack, handler;
3073 if (eh_return_context)
3074 error("Duplicate call to __builtin_eh_return");
3076 eh_return_context
3077 = copy_to_reg (expand_expr (context, NULL_RTX, VOIDmode, 0));
3078 eh_return_stack_adjust
3079 = copy_to_reg (expand_expr (stack, NULL_RTX, VOIDmode, 0));
3080 eh_return_handler
3081 = copy_to_reg (expand_expr (handler, NULL_RTX, VOIDmode, 0));
3084 void
3085 expand_eh_return ()
3087 rtx reg1, reg2, reg3;
3088 rtx stub_start, after_stub;
3089 rtx ra, tmp;
3091 if (!eh_return_context)
3092 return;
3094 current_function_cannot_inline = N_("function uses __builtin_eh_return");
3096 eh_regs (&reg1, &reg2, &reg3, 1);
3097 #ifdef POINTERS_EXTEND_UNSIGNED
3098 eh_return_context = convert_memory_address (Pmode, eh_return_context);
3099 eh_return_stack_adjust =
3100 convert_memory_address (Pmode, eh_return_stack_adjust);
3101 eh_return_handler = convert_memory_address (Pmode, eh_return_handler);
3102 #endif
3103 emit_move_insn (reg1, eh_return_context);
3104 emit_move_insn (reg2, eh_return_stack_adjust);
3105 emit_move_insn (reg3, eh_return_handler);
3107 /* Talk directly to the target's epilogue code when possible. */
3109 #ifdef HAVE_eh_epilogue
3110 if (HAVE_eh_epilogue)
3112 emit_insn (gen_eh_epilogue (reg1, reg2, reg3));
3113 return;
3115 #endif
3117 /* Otherwise, use the same stub technique we had before. */
3119 eh_return_stub_label = stub_start = gen_label_rtx ();
3120 after_stub = gen_label_rtx ();
3122 /* Set the return address to the stub label. */
3124 ra = expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
3125 0, hard_frame_pointer_rtx);
3126 if (GET_CODE (ra) == REG && REGNO (ra) >= FIRST_PSEUDO_REGISTER)
3127 abort();
3129 tmp = memory_address (Pmode, gen_rtx_LABEL_REF (Pmode, stub_start));
3130 #ifdef RETURN_ADDR_OFFSET
3131 tmp = plus_constant (tmp, -RETURN_ADDR_OFFSET);
3132 #endif
3133 tmp = force_operand (tmp, ra);
3134 if (tmp != ra)
3135 emit_move_insn (ra, tmp);
3137 /* Indicate that the registers are in fact used. */
3138 emit_insn (gen_rtx_USE (VOIDmode, reg1));
3139 emit_insn (gen_rtx_USE (VOIDmode, reg2));
3140 emit_insn (gen_rtx_USE (VOIDmode, reg3));
3141 if (GET_CODE (ra) == REG)
3142 emit_insn (gen_rtx_USE (VOIDmode, ra));
3144 /* Generate the stub. */
3146 emit_jump (after_stub);
3147 emit_label (stub_start);
3149 eh_regs (&reg1, &reg2, &reg3, 0);
3150 adjust_stack (reg2);
3151 emit_indirect_jump (reg3);
3153 emit_label (after_stub);
3157 /* This contains the code required to verify whether arbitrary instructions
3158 are in the same exception region. */
3160 static int *insn_eh_region = (int *)0;
3161 static int maximum_uid;
3163 static void
3164 set_insn_eh_region (first, region_num)
3165 rtx *first;
3166 int region_num;
3168 rtx insn;
3169 int rnum;
3171 for (insn = *first; insn; insn = NEXT_INSN (insn))
3173 if ((GET_CODE (insn) == NOTE)
3174 && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG))
3176 rnum = NOTE_EH_HANDLER (insn);
3177 insn_eh_region[INSN_UID (insn)] = rnum;
3178 insn = NEXT_INSN (insn);
3179 set_insn_eh_region (&insn, rnum);
3180 /* Upon return, insn points to the EH_REGION_END of nested region */
3181 continue;
3183 insn_eh_region[INSN_UID (insn)] = region_num;
3184 if ((GET_CODE (insn) == NOTE) &&
3185 (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END))
3186 break;
3188 *first = insn;
3191 /* Free the insn table, an make sure it cannot be used again. */
3193 void
3194 free_insn_eh_region ()
3196 if (!doing_eh (0))
3197 return;
3199 if (insn_eh_region)
3201 free (insn_eh_region);
3202 insn_eh_region = (int *)0;
3206 /* Initialize the table. max_uid must be calculated and handed into
3207 this routine. If it is unavailable, passing a value of 0 will
3208 cause this routine to calculate it as well. */
3210 void
3211 init_insn_eh_region (first, max_uid)
3212 rtx first;
3213 int max_uid;
3215 rtx insn;
3217 if (!doing_eh (0))
3218 return;
3220 if (insn_eh_region)
3221 free_insn_eh_region();
3223 if (max_uid == 0)
3224 for (insn = first; insn; insn = NEXT_INSN (insn))
3225 if (INSN_UID (insn) > max_uid) /* find largest UID */
3226 max_uid = INSN_UID (insn);
3228 maximum_uid = max_uid;
3229 insn_eh_region = (int *) xmalloc ((max_uid + 1) * sizeof (int));
3230 insn = first;
3231 set_insn_eh_region (&insn, 0);
3235 /* Check whether 2 instructions are within the same region. */
3237 int
3238 in_same_eh_region (insn1, insn2)
3239 rtx insn1, insn2;
3241 int ret, uid1, uid2;
3243 /* If no exceptions, instructions are always in same region. */
3244 if (!doing_eh (0))
3245 return 1;
3247 /* If the table isn't allocated, assume the worst. */
3248 if (!insn_eh_region)
3249 return 0;
3251 uid1 = INSN_UID (insn1);
3252 uid2 = INSN_UID (insn2);
3254 /* if instructions have been allocated beyond the end, either
3255 the table is out of date, or this is a late addition, or
3256 something... Assume the worst. */
3257 if (uid1 > maximum_uid || uid2 > maximum_uid)
3258 return 0;
3260 ret = (insn_eh_region[uid1] == insn_eh_region[uid2]);
3261 return ret;
3265 /* This function will initialize the handler list for a specified block.
3266 It may recursively call itself if the outer block hasn't been processed
3267 yet. At some point in the future we can trim out handlers which we
3268 know cannot be called. (ie, if a block has an INT type handler,
3269 control will never be passed to an outer INT type handler). */
3271 static void
3272 process_nestinfo (block, info, nested_eh_region)
3273 int block;
3274 eh_nesting_info *info;
3275 int *nested_eh_region;
3277 handler_info *ptr, *last_ptr = NULL;
3278 int x, y, count = 0;
3279 int extra = 0;
3280 handler_info **extra_handlers = 0;
3281 int index = info->region_index[block];
3283 /* If we've already processed this block, simply return. */
3284 if (info->num_handlers[index] > 0)
3285 return;
3287 for (ptr = get_first_handler (block); ptr; last_ptr = ptr, ptr = ptr->next)
3288 count++;
3290 /* pick up any information from the next outer region. It will already
3291 contain a summary of itself and all outer regions to it. */
3293 if (nested_eh_region [block] != 0)
3295 int nested_index = info->region_index[nested_eh_region[block]];
3296 process_nestinfo (nested_eh_region[block], info, nested_eh_region);
3297 extra = info->num_handlers[nested_index];
3298 extra_handlers = info->handlers[nested_index];
3299 info->outer_index[index] = nested_index;
3302 /* If the last handler is either a CATCH_ALL or a cleanup, then we
3303 won't use the outer ones since we know control will not go past the
3304 catch-all or cleanup. */
3306 if (last_ptr != NULL && (last_ptr->type_info == NULL
3307 || last_ptr->type_info == CATCH_ALL_TYPE))
3308 extra = 0;
3310 info->num_handlers[index] = count + extra;
3311 info->handlers[index] = (handler_info **) xmalloc ((count + extra)
3312 * sizeof (handler_info **));
3314 /* First put all our handlers into the list. */
3315 ptr = get_first_handler (block);
3316 for (x = 0; x < count; x++)
3318 info->handlers[index][x] = ptr;
3319 ptr = ptr->next;
3322 /* Now add all the outer region handlers, if they aren't they same as
3323 one of the types in the current block. We won't worry about
3324 derived types yet, we'll just look for the exact type. */
3325 for (y =0, x = 0; x < extra ; x++)
3327 int i, ok;
3328 ok = 1;
3329 /* Check to see if we have a type duplication. */
3330 for (i = 0; i < count; i++)
3331 if (info->handlers[index][i]->type_info == extra_handlers[x]->type_info)
3333 ok = 0;
3334 /* Record one less handler. */
3335 (info->num_handlers[index])--;
3336 break;
3338 if (ok)
3340 info->handlers[index][y + count] = extra_handlers[x];
3341 y++;
3346 /* This function will allocate and initialize an eh_nesting_info structure.
3347 It returns a pointer to the completed data structure. If there are
3348 no exception regions, a NULL value is returned. */
3350 eh_nesting_info *
3351 init_eh_nesting_info ()
3353 int *nested_eh_region;
3354 int region_count = 0;
3355 rtx eh_note = NULL_RTX;
3356 eh_nesting_info *info;
3357 rtx insn;
3358 int x;
3360 if (! flag_exceptions)
3361 return 0;
3363 info = (eh_nesting_info *) xmalloc (sizeof (eh_nesting_info));
3364 info->region_index = (int *) xcalloc ((max_label_num () + 1), sizeof (int));
3365 nested_eh_region = (int *) xcalloc (max_label_num () + 1, sizeof (int));
3367 /* Create the nested_eh_region list. If indexed with a block number, it
3368 returns the block number of the next outermost region, if any.
3369 We can count the number of regions and initialize the region_index
3370 vector at the same time. */
3371 for (insn = get_insns(); insn; insn = NEXT_INSN (insn))
3373 if (GET_CODE (insn) == NOTE)
3375 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
3377 int block = NOTE_EH_HANDLER (insn);
3378 region_count++;
3379 info->region_index[block] = region_count;
3380 if (eh_note)
3381 nested_eh_region [block] =
3382 NOTE_EH_HANDLER (XEXP (eh_note, 0));
3383 else
3384 nested_eh_region [block] = 0;
3385 eh_note = gen_rtx_EXPR_LIST (VOIDmode, insn, eh_note);
3387 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END)
3388 eh_note = XEXP (eh_note, 1);
3392 /* If there are no regions, wrap it up now. */
3393 if (region_count == 0)
3395 free (info->region_index);
3396 free (info);
3397 free (nested_eh_region);
3398 return NULL;
3401 region_count++;
3402 info->handlers = (handler_info ***) xcalloc (region_count,
3403 sizeof (handler_info ***));
3404 info->num_handlers = (int *) xcalloc (region_count, sizeof (int));
3405 info->outer_index = (int *) xcalloc (region_count, sizeof (int));
3407 /* Now initialize the handler lists for all exception blocks. */
3408 for (x = 0; x <= max_label_num (); x++)
3410 if (info->region_index[x] != 0)
3411 process_nestinfo (x, info, nested_eh_region);
3413 info->region_count = region_count;
3415 /* Clean up. */
3416 free (nested_eh_region);
3418 return info;
3422 /* This function is used to retreive the vector of handlers which
3423 can be reached by a given insn in a given exception region.
3424 BLOCK is the exception block the insn is in.
3425 INFO is the eh_nesting_info structure.
3426 INSN is the (optional) insn within the block. If insn is not NULL_RTX,
3427 it may contain reg notes which modify its throwing behavior, and
3428 these will be obeyed. If NULL_RTX is passed, then we simply return the
3429 handlers for block.
3430 HANDLERS is the address of a pointer to a vector of handler_info pointers.
3431 Upon return, this will have the handlers which can be reached by block.
3432 This function returns the number of elements in the handlers vector. */
3434 int
3435 reachable_handlers (block, info, insn, handlers)
3436 int block;
3437 eh_nesting_info *info;
3438 rtx insn ;
3439 handler_info ***handlers;
3441 int index = 0;
3442 *handlers = NULL;
3444 if (info == NULL)
3445 return 0;
3446 if (block > 0)
3447 index = info->region_index[block];
3449 if (insn && GET_CODE (insn) == CALL_INSN)
3451 /* RETHROWs specify a region number from which we are going to rethrow.
3452 This means we won't pass control to handlers in the specified
3453 region, but rather any region OUTSIDE the specified region.
3454 We accomplish this by setting block to the outer_index of the
3455 specified region. */
3456 rtx note = find_reg_note (insn, REG_EH_RETHROW, NULL_RTX);
3457 if (note)
3459 index = eh_region_from_symbol (XEXP (note, 0));
3460 index = info->region_index[index];
3461 if (index)
3462 index = info->outer_index[index];
3464 else
3466 /* If there is no rethrow, we look for a REG_EH_REGION, and
3467 we'll throw from that block. A value of 0 or less
3468 indicates that this insn cannot throw. */
3469 note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
3470 if (note)
3472 int b = INTVAL (XEXP (note, 0));
3473 if (b <= 0)
3474 index = 0;
3475 else
3476 index = info->region_index[b];
3480 /* If we reach this point, and index is 0, there is no throw. */
3481 if (index == 0)
3482 return 0;
3484 *handlers = info->handlers[index];
3485 return info->num_handlers[index];
3489 /* This function will free all memory associated with the eh_nesting info. */
3491 void
3492 free_eh_nesting_info (info)
3493 eh_nesting_info *info;
3495 int x;
3496 if (info != NULL)
3498 if (info->region_index)
3499 free (info->region_index);
3500 if (info->num_handlers)
3501 free (info->num_handlers);
3502 if (info->outer_index)
3503 free (info->outer_index);
3504 if (info->handlers)
3506 for (x = 0; x < info->region_count; x++)
3507 if (info->handlers[x])
3508 free (info->handlers[x]);
3509 free (info->handlers);
3511 free (info);