i386.h (ix86_tune_indices): Add X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL.
[official-gcc.git] / gcc / config / i386 / i386.h
blob4137ecc67288ea0c0210b45e1920bb524426dca9
1 /* Definitions of target machine for GCC for IA-32.
2 Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 Under Section 7 of GPL version 3, you are granted additional
19 permissions described in the GCC Runtime Library Exception, version
20 3.1, as published by the Free Software Foundation.
22 You should have received a copy of the GNU General Public License and
23 a copy of the GCC Runtime Library Exception along with this program;
24 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
25 <http://www.gnu.org/licenses/>. */
27 /* The purpose of this file is to define the characteristics of the i386,
28 independent of assembler syntax or operating system.
30 Three other files build on this one to describe a specific assembler syntax:
31 bsd386.h, att386.h, and sun386.h.
33 The actual tm.h file for a particular system should include
34 this file, and then the file for the appropriate assembler syntax.
36 Many macros that specify assembler syntax are omitted entirely from
37 this file because they really belong in the files for particular
38 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
39 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
40 that start with ASM_ or end in ASM_OP. */
42 /* Redefines for option macros. */
44 #define TARGET_64BIT OPTION_ISA_64BIT
45 #define TARGET_MMX OPTION_ISA_MMX
46 #define TARGET_3DNOW OPTION_ISA_3DNOW
47 #define TARGET_3DNOW_A OPTION_ISA_3DNOW_A
48 #define TARGET_SSE OPTION_ISA_SSE
49 #define TARGET_SSE2 OPTION_ISA_SSE2
50 #define TARGET_SSE3 OPTION_ISA_SSE3
51 #define TARGET_SSSE3 OPTION_ISA_SSSE3
52 #define TARGET_SSE4_1 OPTION_ISA_SSE4_1
53 #define TARGET_SSE4_2 OPTION_ISA_SSE4_2
54 #define TARGET_AVX OPTION_ISA_AVX
55 #define TARGET_FMA OPTION_ISA_FMA
56 #define TARGET_SSE4A OPTION_ISA_SSE4A
57 #define TARGET_FMA4 OPTION_ISA_FMA4
58 #define TARGET_XOP OPTION_ISA_XOP
59 #define TARGET_LWP OPTION_ISA_LWP
60 #define TARGET_ROUND OPTION_ISA_ROUND
61 #define TARGET_ABM OPTION_ISA_ABM
62 #define TARGET_BMI OPTION_ISA_BMI
63 #define TARGET_TBM OPTION_ISA_TBM
64 #define TARGET_POPCNT OPTION_ISA_POPCNT
65 #define TARGET_SAHF OPTION_ISA_SAHF
66 #define TARGET_MOVBE OPTION_ISA_MOVBE
67 #define TARGET_CRC32 OPTION_ISA_CRC32
68 #define TARGET_AES OPTION_ISA_AES
69 #define TARGET_PCLMUL OPTION_ISA_PCLMUL
70 #define TARGET_CMPXCHG16B OPTION_ISA_CX16
71 #define TARGET_FSGSBASE OPTION_ISA_FSGSBASE
72 #define TARGET_RDRND OPTION_ISA_RDRND
73 #define TARGET_F16C OPTION_ISA_F16C
76 /* SSE4.1 defines round instructions */
77 #define OPTION_MASK_ISA_ROUND OPTION_MASK_ISA_SSE4_1
78 #define OPTION_ISA_ROUND ((ix86_isa_flags & OPTION_MASK_ISA_ROUND) != 0)
80 #include "config/vxworks-dummy.h"
82 /* Algorithm to expand string function with. */
83 enum stringop_alg
85 no_stringop,
86 libcall,
87 rep_prefix_1_byte,
88 rep_prefix_4_byte,
89 rep_prefix_8_byte,
90 loop_1_byte,
91 loop,
92 unrolled_loop
95 #define MAX_STRINGOP_ALGS 4
97 /* Specify what algorithm to use for stringops on known size.
98 When size is unknown, the UNKNOWN_SIZE alg is used. When size is
99 known at compile time or estimated via feedback, the SIZE array
100 is walked in order until MAX is greater then the estimate (or -1
101 means infinity). Corresponding ALG is used then.
102 For example initializer:
103 {{256, loop}, {-1, rep_prefix_4_byte}}
104 will use loop for blocks smaller or equal to 256 bytes, rep prefix will
105 be used otherwise. */
106 struct stringop_algs
108 const enum stringop_alg unknown_size;
109 const struct stringop_strategy {
110 const int max;
111 const enum stringop_alg alg;
112 } size [MAX_STRINGOP_ALGS];
115 /* Define the specific costs for a given cpu */
117 struct processor_costs {
118 const int add; /* cost of an add instruction */
119 const int lea; /* cost of a lea instruction */
120 const int shift_var; /* variable shift costs */
121 const int shift_const; /* constant shift costs */
122 const int mult_init[5]; /* cost of starting a multiply
123 in QImode, HImode, SImode, DImode, TImode*/
124 const int mult_bit; /* cost of multiply per each bit set */
125 const int divide[5]; /* cost of a divide/mod
126 in QImode, HImode, SImode, DImode, TImode*/
127 int movsx; /* The cost of movsx operation. */
128 int movzx; /* The cost of movzx operation. */
129 const int large_insn; /* insns larger than this cost more */
130 const int move_ratio; /* The threshold of number of scalar
131 memory-to-memory move insns. */
132 const int movzbl_load; /* cost of loading using movzbl */
133 const int int_load[3]; /* cost of loading integer registers
134 in QImode, HImode and SImode relative
135 to reg-reg move (2). */
136 const int int_store[3]; /* cost of storing integer register
137 in QImode, HImode and SImode */
138 const int fp_move; /* cost of reg,reg fld/fst */
139 const int fp_load[3]; /* cost of loading FP register
140 in SFmode, DFmode and XFmode */
141 const int fp_store[3]; /* cost of storing FP register
142 in SFmode, DFmode and XFmode */
143 const int mmx_move; /* cost of moving MMX register. */
144 const int mmx_load[2]; /* cost of loading MMX register
145 in SImode and DImode */
146 const int mmx_store[2]; /* cost of storing MMX register
147 in SImode and DImode */
148 const int sse_move; /* cost of moving SSE register. */
149 const int sse_load[3]; /* cost of loading SSE register
150 in SImode, DImode and TImode*/
151 const int sse_store[3]; /* cost of storing SSE register
152 in SImode, DImode and TImode*/
153 const int mmxsse_to_integer; /* cost of moving mmxsse register to
154 integer and vice versa. */
155 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
156 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
157 const int prefetch_block; /* bytes moved to cache for prefetch. */
158 const int simultaneous_prefetches; /* number of parallel prefetch
159 operations. */
160 const int branch_cost; /* Default value for BRANCH_COST. */
161 const int fadd; /* cost of FADD and FSUB instructions. */
162 const int fmul; /* cost of FMUL instruction. */
163 const int fdiv; /* cost of FDIV instruction. */
164 const int fabs; /* cost of FABS instruction. */
165 const int fchs; /* cost of FCHS instruction. */
166 const int fsqrt; /* cost of FSQRT instruction. */
167 /* Specify what algorithm
168 to use for stringops on unknown size. */
169 struct stringop_algs memcpy[2], memset[2];
170 const int scalar_stmt_cost; /* Cost of any scalar operation, excluding
171 load and store. */
172 const int scalar_load_cost; /* Cost of scalar load. */
173 const int scalar_store_cost; /* Cost of scalar store. */
174 const int vec_stmt_cost; /* Cost of any vector operation, excluding
175 load, store, vector-to-scalar and
176 scalar-to-vector operation. */
177 const int vec_to_scalar_cost; /* Cost of vect-to-scalar operation. */
178 const int scalar_to_vec_cost; /* Cost of scalar-to-vector operation. */
179 const int vec_align_load_cost; /* Cost of aligned vector load. */
180 const int vec_unalign_load_cost; /* Cost of unaligned vector load. */
181 const int vec_store_cost; /* Cost of vector store. */
182 const int cond_taken_branch_cost; /* Cost of taken branch for vectorizer
183 cost model. */
184 const int cond_not_taken_branch_cost;/* Cost of not taken branch for
185 vectorizer cost model. */
188 extern const struct processor_costs *ix86_cost;
189 extern const struct processor_costs ix86_size_cost;
191 #define ix86_cur_cost() \
192 (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost)
194 /* Macros used in the machine description to test the flags. */
196 /* configure can arrange to make this 2, to force a 486. */
198 #ifndef TARGET_CPU_DEFAULT
199 #define TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT_generic
200 #endif
202 #ifndef TARGET_FPMATH_DEFAULT
203 #define TARGET_FPMATH_DEFAULT \
204 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
205 #endif
207 #define TARGET_FLOAT_RETURNS_IN_80387 TARGET_FLOAT_RETURNS
209 /* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
210 compile-time constant. */
211 #ifdef IN_LIBGCC2
212 #undef TARGET_64BIT
213 #ifdef __x86_64__
214 #define TARGET_64BIT 1
215 #else
216 #define TARGET_64BIT 0
217 #endif
218 #else
219 #ifndef TARGET_BI_ARCH
220 #undef TARGET_64BIT
221 #if TARGET_64BIT_DEFAULT
222 #define TARGET_64BIT 1
223 #else
224 #define TARGET_64BIT 0
225 #endif
226 #endif
227 #endif
229 #define HAS_LONG_COND_BRANCH 1
230 #define HAS_LONG_UNCOND_BRANCH 1
232 #define TARGET_386 (ix86_tune == PROCESSOR_I386)
233 #define TARGET_486 (ix86_tune == PROCESSOR_I486)
234 #define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
235 #define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
236 #define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
237 #define TARGET_K6 (ix86_tune == PROCESSOR_K6)
238 #define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
239 #define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
240 #define TARGET_K8 (ix86_tune == PROCESSOR_K8)
241 #define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
242 #define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
243 #define TARGET_CORE2_32 (ix86_tune == PROCESSOR_CORE2_32)
244 #define TARGET_CORE2_64 (ix86_tune == PROCESSOR_CORE2_64)
245 #define TARGET_CORE2 (TARGET_CORE2_32 || TARGET_CORE2_64)
246 #define TARGET_COREI7_32 (ix86_tune == PROCESSOR_COREI7_32)
247 #define TARGET_COREI7_64 (ix86_tune == PROCESSOR_COREI7_64)
248 #define TARGET_COREI7 (TARGET_COREI7_32 || TARGET_COREI7_64)
249 #define TARGET_GENERIC32 (ix86_tune == PROCESSOR_GENERIC32)
250 #define TARGET_GENERIC64 (ix86_tune == PROCESSOR_GENERIC64)
251 #define TARGET_GENERIC (TARGET_GENERIC32 || TARGET_GENERIC64)
252 #define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
253 #define TARGET_BDVER1 (ix86_tune == PROCESSOR_BDVER1)
254 #define TARGET_BTVER1 (ix86_tune == PROCESSOR_BTVER1)
255 #define TARGET_ATOM (ix86_tune == PROCESSOR_ATOM)
257 /* Feature tests against the various tunings. */
258 enum ix86_tune_indices {
259 X86_TUNE_USE_LEAVE,
260 X86_TUNE_PUSH_MEMORY,
261 X86_TUNE_ZERO_EXTEND_WITH_AND,
262 X86_TUNE_UNROLL_STRLEN,
263 X86_TUNE_DEEP_BRANCH_PREDICTION,
264 X86_TUNE_BRANCH_PREDICTION_HINTS,
265 X86_TUNE_DOUBLE_WITH_ADD,
266 X86_TUNE_USE_SAHF,
267 X86_TUNE_MOVX,
268 X86_TUNE_PARTIAL_REG_STALL,
269 X86_TUNE_PARTIAL_FLAG_REG_STALL,
270 X86_TUNE_USE_HIMODE_FIOP,
271 X86_TUNE_USE_SIMODE_FIOP,
272 X86_TUNE_USE_MOV0,
273 X86_TUNE_USE_CLTD,
274 X86_TUNE_USE_XCHGB,
275 X86_TUNE_SPLIT_LONG_MOVES,
276 X86_TUNE_READ_MODIFY_WRITE,
277 X86_TUNE_READ_MODIFY,
278 X86_TUNE_PROMOTE_QIMODE,
279 X86_TUNE_FAST_PREFIX,
280 X86_TUNE_SINGLE_STRINGOP,
281 X86_TUNE_QIMODE_MATH,
282 X86_TUNE_HIMODE_MATH,
283 X86_TUNE_PROMOTE_QI_REGS,
284 X86_TUNE_PROMOTE_HI_REGS,
285 X86_TUNE_SINGLE_POP,
286 X86_TUNE_DOUBLE_POP,
287 X86_TUNE_SINGLE_PUSH,
288 X86_TUNE_DOUBLE_PUSH,
289 X86_TUNE_INTEGER_DFMODE_MOVES,
290 X86_TUNE_PARTIAL_REG_DEPENDENCY,
291 X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY,
292 X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL,
293 X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL,
294 X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL,
295 X86_TUNE_SSE_SPLIT_REGS,
296 X86_TUNE_SSE_TYPELESS_STORES,
297 X86_TUNE_SSE_LOAD0_BY_PXOR,
298 X86_TUNE_MEMORY_MISMATCH_STALL,
299 X86_TUNE_PROLOGUE_USING_MOVE,
300 X86_TUNE_EPILOGUE_USING_MOVE,
301 X86_TUNE_SHIFT1,
302 X86_TUNE_USE_FFREEP,
303 X86_TUNE_INTER_UNIT_MOVES,
304 X86_TUNE_INTER_UNIT_CONVERSIONS,
305 X86_TUNE_FOUR_JUMP_LIMIT,
306 X86_TUNE_SCHEDULE,
307 X86_TUNE_USE_BT,
308 X86_TUNE_USE_INCDEC,
309 X86_TUNE_PAD_RETURNS,
310 X86_TUNE_PAD_SHORT_FUNCTION,
311 X86_TUNE_EXT_80387_CONSTANTS,
312 X86_TUNE_SHORTEN_X87_SSE,
313 X86_TUNE_AVOID_VECTOR_DECODE,
314 X86_TUNE_PROMOTE_HIMODE_IMUL,
315 X86_TUNE_SLOW_IMUL_IMM32_MEM,
316 X86_TUNE_SLOW_IMUL_IMM8,
317 X86_TUNE_MOVE_M1_VIA_OR,
318 X86_TUNE_NOT_UNPAIRABLE,
319 X86_TUNE_NOT_VECTORMODE,
320 X86_TUNE_USE_VECTOR_FP_CONVERTS,
321 X86_TUNE_USE_VECTOR_CONVERTS,
322 X86_TUNE_FUSE_CMP_AND_BRANCH,
323 X86_TUNE_OPT_AGU,
324 X86_TUNE_VECTORIZE_DOUBLE,
325 X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL,
327 X86_TUNE_LAST
330 extern unsigned char ix86_tune_features[X86_TUNE_LAST];
332 #define TARGET_USE_LEAVE ix86_tune_features[X86_TUNE_USE_LEAVE]
333 #define TARGET_PUSH_MEMORY ix86_tune_features[X86_TUNE_PUSH_MEMORY]
334 #define TARGET_ZERO_EXTEND_WITH_AND \
335 ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
336 #define TARGET_UNROLL_STRLEN ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
337 #define TARGET_DEEP_BRANCH_PREDICTION \
338 ix86_tune_features[X86_TUNE_DEEP_BRANCH_PREDICTION]
339 #define TARGET_BRANCH_PREDICTION_HINTS \
340 ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
341 #define TARGET_DOUBLE_WITH_ADD ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
342 #define TARGET_USE_SAHF ix86_tune_features[X86_TUNE_USE_SAHF]
343 #define TARGET_MOVX ix86_tune_features[X86_TUNE_MOVX]
344 #define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
345 #define TARGET_PARTIAL_FLAG_REG_STALL \
346 ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
347 #define TARGET_USE_HIMODE_FIOP ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
348 #define TARGET_USE_SIMODE_FIOP ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
349 #define TARGET_USE_MOV0 ix86_tune_features[X86_TUNE_USE_MOV0]
350 #define TARGET_USE_CLTD ix86_tune_features[X86_TUNE_USE_CLTD]
351 #define TARGET_USE_XCHGB ix86_tune_features[X86_TUNE_USE_XCHGB]
352 #define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
353 #define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
354 #define TARGET_READ_MODIFY ix86_tune_features[X86_TUNE_READ_MODIFY]
355 #define TARGET_PROMOTE_QImode ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
356 #define TARGET_FAST_PREFIX ix86_tune_features[X86_TUNE_FAST_PREFIX]
357 #define TARGET_SINGLE_STRINGOP ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
358 #define TARGET_QIMODE_MATH ix86_tune_features[X86_TUNE_QIMODE_MATH]
359 #define TARGET_HIMODE_MATH ix86_tune_features[X86_TUNE_HIMODE_MATH]
360 #define TARGET_PROMOTE_QI_REGS ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
361 #define TARGET_PROMOTE_HI_REGS ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
362 #define TARGET_SINGLE_POP ix86_tune_features[X86_TUNE_SINGLE_POP]
363 #define TARGET_DOUBLE_POP ix86_tune_features[X86_TUNE_DOUBLE_POP]
364 #define TARGET_SINGLE_PUSH ix86_tune_features[X86_TUNE_SINGLE_PUSH]
365 #define TARGET_DOUBLE_PUSH ix86_tune_features[X86_TUNE_DOUBLE_PUSH]
366 #define TARGET_INTEGER_DFMODE_MOVES \
367 ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
368 #define TARGET_PARTIAL_REG_DEPENDENCY \
369 ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
370 #define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
371 ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
372 #define TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
373 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL]
374 #define TARGET_SSE_UNALIGNED_STORE_OPTIMAL \
375 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL]
376 #define TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL \
377 ix86_tune_features[X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL]
378 #define TARGET_SSE_SPLIT_REGS ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
379 #define TARGET_SSE_TYPELESS_STORES \
380 ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
381 #define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
382 #define TARGET_MEMORY_MISMATCH_STALL \
383 ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
384 #define TARGET_PROLOGUE_USING_MOVE \
385 ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
386 #define TARGET_EPILOGUE_USING_MOVE \
387 ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
388 #define TARGET_SHIFT1 ix86_tune_features[X86_TUNE_SHIFT1]
389 #define TARGET_USE_FFREEP ix86_tune_features[X86_TUNE_USE_FFREEP]
390 #define TARGET_INTER_UNIT_MOVES ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES]
391 #define TARGET_INTER_UNIT_CONVERSIONS\
392 ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
393 #define TARGET_FOUR_JUMP_LIMIT ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
394 #define TARGET_SCHEDULE ix86_tune_features[X86_TUNE_SCHEDULE]
395 #define TARGET_USE_BT ix86_tune_features[X86_TUNE_USE_BT]
396 #define TARGET_USE_INCDEC ix86_tune_features[X86_TUNE_USE_INCDEC]
397 #define TARGET_PAD_RETURNS ix86_tune_features[X86_TUNE_PAD_RETURNS]
398 #define TARGET_PAD_SHORT_FUNCTION \
399 ix86_tune_features[X86_TUNE_PAD_SHORT_FUNCTION]
400 #define TARGET_EXT_80387_CONSTANTS \
401 ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
402 #define TARGET_SHORTEN_X87_SSE ix86_tune_features[X86_TUNE_SHORTEN_X87_SSE]
403 #define TARGET_AVOID_VECTOR_DECODE \
404 ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
405 #define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
406 ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
407 #define TARGET_SLOW_IMUL_IMM32_MEM \
408 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
409 #define TARGET_SLOW_IMUL_IMM8 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
410 #define TARGET_MOVE_M1_VIA_OR ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
411 #define TARGET_NOT_UNPAIRABLE ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
412 #define TARGET_NOT_VECTORMODE ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
413 #define TARGET_USE_VECTOR_FP_CONVERTS \
414 ix86_tune_features[X86_TUNE_USE_VECTOR_FP_CONVERTS]
415 #define TARGET_USE_VECTOR_CONVERTS \
416 ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
417 #define TARGET_FUSE_CMP_AND_BRANCH \
418 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH]
419 #define TARGET_OPT_AGU ix86_tune_features[X86_TUNE_OPT_AGU]
420 #define TARGET_VECTORIZE_DOUBLE \
421 ix86_tune_features[X86_TUNE_VECTORIZE_DOUBLE]
422 #define TARGET_SOFTWARE_PREFETCHING_BENEFICIAL \
423 ix86_tune_features[X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL]
425 /* Feature tests against the various architecture variations. */
426 enum ix86_arch_indices {
427 X86_ARCH_CMOVE, /* || TARGET_SSE */
428 X86_ARCH_CMPXCHG,
429 X86_ARCH_CMPXCHG8B,
430 X86_ARCH_XADD,
431 X86_ARCH_BSWAP,
433 X86_ARCH_LAST
436 extern unsigned char ix86_arch_features[X86_ARCH_LAST];
438 #define TARGET_CMOVE ix86_arch_features[X86_ARCH_CMOVE]
439 #define TARGET_CMPXCHG ix86_arch_features[X86_ARCH_CMPXCHG]
440 #define TARGET_CMPXCHG8B ix86_arch_features[X86_ARCH_CMPXCHG8B]
441 #define TARGET_XADD ix86_arch_features[X86_ARCH_XADD]
442 #define TARGET_BSWAP ix86_arch_features[X86_ARCH_BSWAP]
444 #define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
446 extern int x86_prefetch_sse;
448 #define TARGET_PREFETCH_SSE x86_prefetch_sse
450 #define ASSEMBLER_DIALECT (ix86_asm_dialect)
452 #define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
453 #define TARGET_MIX_SSE_I387 \
454 ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
456 #define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
457 #define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
458 #define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
459 #define TARGET_SUN_TLS 0
461 #ifndef TARGET_64BIT_DEFAULT
462 #define TARGET_64BIT_DEFAULT 0
463 #endif
464 #ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
465 #define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
466 #endif
468 /* Fence to use after loop using storent. */
470 extern tree x86_mfence;
471 #define FENCE_FOLLOWING_MOVNT x86_mfence
473 /* Once GDB has been enhanced to deal with functions without frame
474 pointers, we can change this to allow for elimination of
475 the frame pointer in leaf functions. */
476 #define TARGET_DEFAULT 0
478 /* Extra bits to force. */
479 #define TARGET_SUBTARGET_DEFAULT 0
480 #define TARGET_SUBTARGET_ISA_DEFAULT 0
482 /* Extra bits to force on w/ 32-bit mode. */
483 #define TARGET_SUBTARGET32_DEFAULT 0
484 #define TARGET_SUBTARGET32_ISA_DEFAULT 0
486 /* Extra bits to force on w/ 64-bit mode. */
487 #define TARGET_SUBTARGET64_DEFAULT 0
488 #define TARGET_SUBTARGET64_ISA_DEFAULT 0
490 /* Replace MACH-O, ifdefs by in-line tests, where possible.
491 (a) Macros defined in config/i386/darwin.h */
492 #define TARGET_MACHO 0
493 #define TARGET_MACHO_BRANCH_ISLANDS 0
494 #define MACHOPIC_ATT_STUB 0
495 /* (b) Macros defined in config/darwin.h */
496 #define MACHO_DYNAMIC_NO_PIC_P 0
497 #define MACHOPIC_INDIRECT 0
498 #define MACHOPIC_PURE 0
500 /* For the Windows 64-bit ABI. */
501 #define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
503 /* For the Windows 32-bit ABI. */
504 #define TARGET_32BIT_MS_ABI (!TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
506 /* This is re-defined by cygming.h. */
507 #define TARGET_SEH 0
509 /* Available call abi. */
510 enum calling_abi
512 SYSV_ABI = 0,
513 MS_ABI = 1
516 /* The abi used by target. */
517 extern enum calling_abi ix86_abi;
519 /* The default abi used by target. */
520 #define DEFAULT_ABI SYSV_ABI
522 /* Subtargets may reset this to 1 in order to enable 96-bit long double
523 with the rounding mode forced to 53 bits. */
524 #define TARGET_96_ROUND_53_LONG_DOUBLE 0
526 /* -march=native handling only makes sense with compiler running on
527 an x86 or x86_64 chip. If changing this condition, also change
528 the condition in driver-i386.c. */
529 #if defined(__i386__) || defined(__x86_64__)
530 /* In driver-i386.c. */
531 extern const char *host_detect_local_cpu (int argc, const char **argv);
532 #define EXTRA_SPEC_FUNCTIONS \
533 { "local_cpu_detect", host_detect_local_cpu },
534 #define HAVE_LOCAL_CPU_DETECT
535 #endif
537 #if TARGET_64BIT_DEFAULT
538 #define OPT_ARCH64 "!m32"
539 #define OPT_ARCH32 "m32"
540 #else
541 #define OPT_ARCH64 "m64"
542 #define OPT_ARCH32 "!m64"
543 #endif
545 /* Support for configure-time defaults of some command line options.
546 The order here is important so that -march doesn't squash the
547 tune or cpu values. */
548 #define OPTION_DEFAULT_SPECS \
549 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
550 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
551 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
552 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
553 {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
554 {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
555 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
556 {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"}, \
557 {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"},
559 /* Specs for the compiler proper */
561 #ifndef CC1_CPU_SPEC
562 #define CC1_CPU_SPEC_1 ""
564 #ifndef HAVE_LOCAL_CPU_DETECT
565 #define CC1_CPU_SPEC CC1_CPU_SPEC_1
566 #else
567 #define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
568 "%{march=native:%>march=native %:local_cpu_detect(arch) \
569 %{!mtune=*:%>mtune=native %:local_cpu_detect(tune)}} \
570 %{mtune=native:%>mtune=native %:local_cpu_detect(tune)}"
571 #endif
572 #endif
574 /* Target CPU builtins. */
575 #define TARGET_CPU_CPP_BUILTINS() ix86_target_macros ()
577 /* Target Pragmas. */
578 #define REGISTER_TARGET_PRAGMAS() ix86_register_pragmas ()
580 enum target_cpu_default
582 TARGET_CPU_DEFAULT_generic = 0,
584 TARGET_CPU_DEFAULT_i386,
585 TARGET_CPU_DEFAULT_i486,
586 TARGET_CPU_DEFAULT_pentium,
587 TARGET_CPU_DEFAULT_pentium_mmx,
588 TARGET_CPU_DEFAULT_pentiumpro,
589 TARGET_CPU_DEFAULT_pentium2,
590 TARGET_CPU_DEFAULT_pentium3,
591 TARGET_CPU_DEFAULT_pentium4,
592 TARGET_CPU_DEFAULT_pentium_m,
593 TARGET_CPU_DEFAULT_prescott,
594 TARGET_CPU_DEFAULT_nocona,
595 TARGET_CPU_DEFAULT_core2,
596 TARGET_CPU_DEFAULT_corei7,
597 TARGET_CPU_DEFAULT_atom,
599 TARGET_CPU_DEFAULT_geode,
600 TARGET_CPU_DEFAULT_k6,
601 TARGET_CPU_DEFAULT_k6_2,
602 TARGET_CPU_DEFAULT_k6_3,
603 TARGET_CPU_DEFAULT_athlon,
604 TARGET_CPU_DEFAULT_athlon_sse,
605 TARGET_CPU_DEFAULT_k8,
606 TARGET_CPU_DEFAULT_amdfam10,
607 TARGET_CPU_DEFAULT_bdver1,
608 TARGET_CPU_DEFAULT_btver1,
610 TARGET_CPU_DEFAULT_max
613 #ifndef CC1_SPEC
614 #define CC1_SPEC "%(cc1_cpu) "
615 #endif
617 /* This macro defines names of additional specifications to put in the
618 specs that can be used in various specifications like CC1_SPEC. Its
619 definition is an initializer with a subgrouping for each command option.
621 Each subgrouping contains a string constant, that defines the
622 specification name, and a string constant that used by the GCC driver
623 program.
625 Do not define this macro if it does not need to do anything. */
627 #ifndef SUBTARGET_EXTRA_SPECS
628 #define SUBTARGET_EXTRA_SPECS
629 #endif
631 #define EXTRA_SPECS \
632 { "cc1_cpu", CC1_CPU_SPEC }, \
633 SUBTARGET_EXTRA_SPECS
636 /* Set the value of FLT_EVAL_METHOD in float.h. When using only the
637 FPU, assume that the fpcw is set to extended precision; when using
638 only SSE, rounding is correct; when using both SSE and the FPU,
639 the rounding precision is indeterminate, since either may be chosen
640 apparently at random. */
641 #define TARGET_FLT_EVAL_METHOD \
642 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
644 /* Whether to allow x87 floating-point arithmetic on MODE (one of
645 SFmode, DFmode and XFmode) in the current excess precision
646 configuration. */
647 #define X87_ENABLE_ARITH(MODE) \
648 (flag_excess_precision == EXCESS_PRECISION_FAST || (MODE) == XFmode)
650 /* Likewise, whether to allow direct conversions from integer mode
651 IMODE (HImode, SImode or DImode) to MODE. */
652 #define X87_ENABLE_FLOAT(MODE, IMODE) \
653 (flag_excess_precision == EXCESS_PRECISION_FAST \
654 || (MODE) == XFmode \
655 || ((MODE) == DFmode && (IMODE) == SImode) \
656 || (IMODE) == HImode)
658 /* target machine storage layout */
660 #define SHORT_TYPE_SIZE 16
661 #define INT_TYPE_SIZE 32
662 #define LONG_LONG_TYPE_SIZE 64
663 #define FLOAT_TYPE_SIZE 32
664 #define DOUBLE_TYPE_SIZE 64
665 #define LONG_DOUBLE_TYPE_SIZE 80
667 #define WIDEST_HARDWARE_FP_SIZE LONG_DOUBLE_TYPE_SIZE
669 #if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
670 #define MAX_BITS_PER_WORD 64
671 #else
672 #define MAX_BITS_PER_WORD 32
673 #endif
675 /* Define this if most significant byte of a word is the lowest numbered. */
676 /* That is true on the 80386. */
678 #define BITS_BIG_ENDIAN 0
680 /* Define this if most significant byte of a word is the lowest numbered. */
681 /* That is not true on the 80386. */
682 #define BYTES_BIG_ENDIAN 0
684 /* Define this if most significant word of a multiword number is the lowest
685 numbered. */
686 /* Not true for 80386 */
687 #define WORDS_BIG_ENDIAN 0
689 /* Width of a word, in units (bytes). */
690 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
692 #ifndef IN_LIBGCC2
693 #define MIN_UNITS_PER_WORD 4
694 #endif
696 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
697 #define PARM_BOUNDARY BITS_PER_WORD
699 /* Boundary (in *bits*) on which stack pointer should be aligned. */
700 #define STACK_BOUNDARY \
701 (TARGET_64BIT && ix86_abi == MS_ABI ? 128 : BITS_PER_WORD)
703 /* Stack boundary of the main function guaranteed by OS. */
704 #define MAIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
706 /* Minimum stack boundary. */
707 #define MIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
709 /* Boundary (in *bits*) on which the stack pointer prefers to be
710 aligned; the compiler cannot rely on having this alignment. */
711 #define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
713 /* It should be MIN_STACK_BOUNDARY. But we set it to 128 bits for
714 both 32bit and 64bit, to support codes that need 128 bit stack
715 alignment for SSE instructions, but can't realign the stack. */
716 #define PREFERRED_STACK_BOUNDARY_DEFAULT 128
718 /* 1 if -mstackrealign should be turned on by default. It will
719 generate an alternate prologue and epilogue that realigns the
720 runtime stack if nessary. This supports mixing codes that keep a
721 4-byte aligned stack, as specified by i386 psABI, with codes that
722 need a 16-byte aligned stack, as required by SSE instructions. */
723 #define STACK_REALIGN_DEFAULT 0
725 /* Boundary (in *bits*) on which the incoming stack is aligned. */
726 #define INCOMING_STACK_BOUNDARY ix86_incoming_stack_boundary
728 /* Target OS keeps a vector-aligned (128-bit, 16-byte) stack. This is
729 mandatory for the 64-bit ABI, and may or may not be true for other
730 operating systems. */
731 #define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
733 /* Minimum allocation boundary for the code of a function. */
734 #define FUNCTION_BOUNDARY 8
736 /* C++ stores the virtual bit in the lowest bit of function pointers. */
737 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
739 /* Minimum size in bits of the largest boundary to which any
740 and all fundamental data types supported by the hardware
741 might need to be aligned. No data type wants to be aligned
742 rounder than this.
744 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
745 and Pentium Pro XFmode values at 128 bit boundaries. */
747 #define BIGGEST_ALIGNMENT (TARGET_AVX ? 256 : 128)
749 /* Maximum stack alignment. */
750 #define MAX_STACK_ALIGNMENT MAX_OFILE_ALIGNMENT
752 /* Alignment value for attribute ((aligned)). It is a constant since
753 it is the part of the ABI. We shouldn't change it with -mavx. */
754 #define ATTRIBUTE_ALIGNED_VALUE 128
756 /* Decide whether a variable of mode MODE should be 128 bit aligned. */
757 #define ALIGN_MODE_128(MODE) \
758 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
760 /* The published ABIs say that doubles should be aligned on word
761 boundaries, so lower the alignment for structure fields unless
762 -malign-double is set. */
764 /* ??? Blah -- this macro is used directly by libobjc. Since it
765 supports no vector modes, cut out the complexity and fall back
766 on BIGGEST_FIELD_ALIGNMENT. */
767 #ifdef IN_TARGET_LIBS
768 #ifdef __x86_64__
769 #define BIGGEST_FIELD_ALIGNMENT 128
770 #else
771 #define BIGGEST_FIELD_ALIGNMENT 32
772 #endif
773 #else
774 #define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
775 x86_field_alignment (FIELD, COMPUTED)
776 #endif
778 /* If defined, a C expression to compute the alignment given to a
779 constant that is being placed in memory. EXP is the constant
780 and ALIGN is the alignment that the object would ordinarily have.
781 The value of this macro is used instead of that alignment to align
782 the object.
784 If this macro is not defined, then ALIGN is used.
786 The typical use of this macro is to increase alignment for string
787 constants to be word aligned so that `strcpy' calls that copy
788 constants can be done inline. */
790 #define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
792 /* If defined, a C expression to compute the alignment for a static
793 variable. TYPE is the data type, and ALIGN is the alignment that
794 the object would ordinarily have. The value of this macro is used
795 instead of that alignment to align the object.
797 If this macro is not defined, then ALIGN is used.
799 One use of this macro is to increase alignment of medium-size
800 data to make it all fit in fewer cache lines. Another is to
801 cause character arrays to be word-aligned so that `strcpy' calls
802 that copy constants to character arrays can be done inline. */
804 #define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
806 /* If defined, a C expression to compute the alignment for a local
807 variable. TYPE is the data type, and ALIGN is the alignment that
808 the object would ordinarily have. The value of this macro is used
809 instead of that alignment to align the object.
811 If this macro is not defined, then ALIGN is used.
813 One use of this macro is to increase alignment of medium-size
814 data to make it all fit in fewer cache lines. */
816 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
817 ix86_local_alignment ((TYPE), VOIDmode, (ALIGN))
819 /* If defined, a C expression to compute the alignment for stack slot.
820 TYPE is the data type, MODE is the widest mode available, and ALIGN
821 is the alignment that the slot would ordinarily have. The value of
822 this macro is used instead of that alignment to align the slot.
824 If this macro is not defined, then ALIGN is used when TYPE is NULL,
825 Otherwise, LOCAL_ALIGNMENT will be used.
827 One use of this macro is to set alignment of stack slot to the
828 maximum alignment of all possible modes which the slot may have. */
830 #define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \
831 ix86_local_alignment ((TYPE), (MODE), (ALIGN))
833 /* If defined, a C expression to compute the alignment for a local
834 variable DECL.
836 If this macro is not defined, then
837 LOCAL_ALIGNMENT (TREE_TYPE (DECL), DECL_ALIGN (DECL)) will be used.
839 One use of this macro is to increase alignment of medium-size
840 data to make it all fit in fewer cache lines. */
842 #define LOCAL_DECL_ALIGNMENT(DECL) \
843 ix86_local_alignment ((DECL), VOIDmode, DECL_ALIGN (DECL))
845 /* If defined, a C expression to compute the minimum required alignment
846 for dynamic stack realignment purposes for EXP (a TYPE or DECL),
847 MODE, assuming normal alignment ALIGN.
849 If this macro is not defined, then (ALIGN) will be used. */
851 #define MINIMUM_ALIGNMENT(EXP, MODE, ALIGN) \
852 ix86_minimum_alignment (EXP, MODE, ALIGN)
855 /* Set this nonzero if move instructions will actually fail to work
856 when given unaligned data. */
857 #define STRICT_ALIGNMENT 0
859 /* If bit field type is int, don't let it cross an int,
860 and give entire struct the alignment of an int. */
861 /* Required on the 386 since it doesn't have bit-field insns. */
862 #define PCC_BITFIELD_TYPE_MATTERS 1
864 /* Standard register usage. */
866 /* This processor has special stack-like registers. See reg-stack.c
867 for details. */
869 #define STACK_REGS
871 #define IS_STACK_MODE(MODE) \
872 (((MODE) == SFmode && !(TARGET_SSE && TARGET_SSE_MATH)) \
873 || ((MODE) == DFmode && !(TARGET_SSE2 && TARGET_SSE_MATH)) \
874 || (MODE) == XFmode)
876 /* Number of actual hardware registers.
877 The hardware registers are assigned numbers for the compiler
878 from 0 to just below FIRST_PSEUDO_REGISTER.
879 All registers that the compiler knows about must be given numbers,
880 even those that are not normally considered general registers.
882 In the 80386 we give the 8 general purpose registers the numbers 0-7.
883 We number the floating point registers 8-15.
884 Note that registers 0-7 can be accessed as a short or int,
885 while only 0-3 may be used with byte `mov' instructions.
887 Reg 16 does not correspond to any hardware register, but instead
888 appears in the RTL as an argument pointer prior to reload, and is
889 eliminated during reloading in favor of either the stack or frame
890 pointer. */
892 #define FIRST_PSEUDO_REGISTER 53
894 /* Number of hardware registers that go into the DWARF-2 unwind info.
895 If not defined, equals FIRST_PSEUDO_REGISTER. */
897 #define DWARF_FRAME_REGISTERS 17
899 /* 1 for registers that have pervasive standard uses
900 and are not available for the register allocator.
901 On the 80386, the stack pointer is such, as is the arg pointer.
903 The value is zero if the register is not fixed on either 32 or
904 64 bit targets, one if the register if fixed on both 32 and 64
905 bit targets, two if it is only fixed on 32bit targets and three
906 if its only fixed on 64bit targets.
907 Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE.
909 #define FIXED_REGISTERS \
910 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
911 { 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
912 /*arg,flags,fpsr,fpcr,frame*/ \
913 1, 1, 1, 1, 1, \
914 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
915 0, 0, 0, 0, 0, 0, 0, 0, \
916 /* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
917 0, 0, 0, 0, 0, 0, 0, 0, \
918 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
919 2, 2, 2, 2, 2, 2, 2, 2, \
920 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
921 2, 2, 2, 2, 2, 2, 2, 2 }
924 /* 1 for registers not available across function calls.
925 These must include the FIXED_REGISTERS and also any
926 registers that can be used without being saved.
927 The latter must include the registers where values are returned
928 and the register where structure-value addresses are passed.
929 Aside from that, you can include as many other registers as you like.
931 The value is zero if the register is not call used on either 32 or
932 64 bit targets, one if the register if call used on both 32 and 64
933 bit targets, two if it is only call used on 32bit targets and three
934 if its only call used on 64bit targets.
935 Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE.
937 #define CALL_USED_REGISTERS \
938 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
939 { 1, 1, 1, 0, 3, 3, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
940 /*arg,flags,fpsr,fpcr,frame*/ \
941 1, 1, 1, 1, 1, \
942 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
943 1, 1, 1, 1, 1, 1, 1, 1, \
944 /* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
945 1, 1, 1, 1, 1, 1, 1, 1, \
946 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
947 1, 1, 1, 1, 2, 2, 2, 2, \
948 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
949 1, 1, 1, 1, 1, 1, 1, 1 }
951 /* Order in which to allocate registers. Each register must be
952 listed once, even those in FIXED_REGISTERS. List frame pointer
953 late and fixed registers last. Note that, in general, we prefer
954 registers listed in CALL_USED_REGISTERS, keeping the others
955 available for storage of persistent values.
957 The ADJUST_REG_ALLOC_ORDER actually overwrite the order,
958 so this is just empty initializer for array. */
960 #define REG_ALLOC_ORDER \
961 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
962 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
963 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
964 48, 49, 50, 51, 52 }
966 /* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
967 to be rearranged based on a particular function. When using sse math,
968 we want to allocate SSE before x87 registers and vice versa. */
970 #define ADJUST_REG_ALLOC_ORDER x86_order_regs_for_local_alloc ()
973 #define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL)
975 /* Return number of consecutive hard regs needed starting at reg REGNO
976 to hold something of mode MODE.
977 This is ordinarily the length in words of a value of mode MODE
978 but can be less for certain modes in special long registers.
980 Actually there are no two word move instructions for consecutive
981 registers. And only registers 0-3 may have mov byte instructions
982 applied to them. */
984 #define HARD_REGNO_NREGS(REGNO, MODE) \
985 (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
986 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
987 : ((MODE) == XFmode \
988 ? (TARGET_64BIT ? 2 : 3) \
989 : (MODE) == XCmode \
990 ? (TARGET_64BIT ? 4 : 6) \
991 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
993 #define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \
994 ((TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT) \
995 ? (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
996 ? 0 \
997 : ((MODE) == XFmode || (MODE) == XCmode)) \
998 : 0)
1000 #define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
1002 #define VALID_AVX256_REG_MODE(MODE) \
1003 ((MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
1004 || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode)
1006 #define VALID_SSE2_REG_MODE(MODE) \
1007 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1008 || (MODE) == V2DImode || (MODE) == DFmode)
1010 #define VALID_SSE_REG_MODE(MODE) \
1011 ((MODE) == V1TImode || (MODE) == TImode \
1012 || (MODE) == V4SFmode || (MODE) == V4SImode \
1013 || (MODE) == SFmode || (MODE) == TFmode)
1015 #define VALID_MMX_REG_MODE_3DNOW(MODE) \
1016 ((MODE) == V2SFmode || (MODE) == SFmode)
1018 #define VALID_MMX_REG_MODE(MODE) \
1019 ((MODE == V1DImode) || (MODE) == DImode \
1020 || (MODE) == V2SImode || (MODE) == SImode \
1021 || (MODE) == V4HImode || (MODE) == V8QImode)
1023 #define VALID_DFP_MODE_P(MODE) \
1024 ((MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode)
1026 #define VALID_FP_MODE_P(MODE) \
1027 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1028 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
1030 #define VALID_INT_MODE_P(MODE) \
1031 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1032 || (MODE) == DImode \
1033 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1034 || (MODE) == CDImode \
1035 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1036 || (MODE) == TFmode || (MODE) == TCmode)))
1038 /* Return true for modes passed in SSE registers. */
1039 #define SSE_REG_MODE_P(MODE) \
1040 ((MODE) == V1TImode || (MODE) == TImode || (MODE) == V16QImode \
1041 || (MODE) == TFmode || (MODE) == V8HImode || (MODE) == V2DFmode \
1042 || (MODE) == V2DImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1043 || (MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
1044 || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode)
1046 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
1048 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1049 ix86_hard_regno_mode_ok ((REGNO), (MODE))
1051 /* Value is 1 if it is a good idea to tie two pseudo registers
1052 when one has mode MODE1 and one has mode MODE2.
1053 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1054 for any hard reg, then this must be 0 for correct output. */
1056 #define MODES_TIEABLE_P(MODE1, MODE2) ix86_modes_tieable_p (MODE1, MODE2)
1058 /* It is possible to write patterns to move flags; but until someone
1059 does it, */
1060 #define AVOID_CCMODE_COPIES
1062 /* Specify the modes required to caller save a given hard regno.
1063 We do this on i386 to prevent flags from being saved at all.
1065 Kill any attempts to combine saving of modes. */
1067 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1068 (CC_REGNO_P (REGNO) ? VOIDmode \
1069 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
1070 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false) \
1071 : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \
1072 : (MODE) == QImode && (REGNO) > BX_REG && !TARGET_64BIT ? SImode \
1073 : (MODE))
1075 /* The only ABI that saves SSE registers across calls is Win64 (thus no
1076 need to check the current ABI here), and with AVX enabled Win64 only
1077 guarantees that the low 16 bytes are saved. */
1078 #define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
1079 (SSE_REGNO_P (REGNO) && GET_MODE_SIZE (MODE) > 16)
1081 /* Specify the registers used for certain standard purposes.
1082 The values of these macros are register numbers. */
1084 /* on the 386 the pc register is %eip, and is not usable as a general
1085 register. The ordinary mov instructions won't work */
1086 /* #define PC_REGNUM */
1088 /* Register to use for pushing function arguments. */
1089 #define STACK_POINTER_REGNUM 7
1091 /* Base register for access to local variables of the function. */
1092 #define HARD_FRAME_POINTER_REGNUM 6
1094 /* Base register for access to local variables of the function. */
1095 #define FRAME_POINTER_REGNUM 20
1097 /* First floating point reg */
1098 #define FIRST_FLOAT_REG 8
1100 /* First & last stack-like regs */
1101 #define FIRST_STACK_REG FIRST_FLOAT_REG
1102 #define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1104 #define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1105 #define LAST_SSE_REG (FIRST_SSE_REG + 7)
1107 #define FIRST_MMX_REG (LAST_SSE_REG + 1)
1108 #define LAST_MMX_REG (FIRST_MMX_REG + 7)
1110 #define FIRST_REX_INT_REG (LAST_MMX_REG + 1)
1111 #define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
1113 #define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1)
1114 #define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
1116 /* Override this in other tm.h files to cope with various OS lossage
1117 requiring a frame pointer. */
1118 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1119 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
1120 #endif
1122 /* Make sure we can access arbitrary call frames. */
1123 #define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
1125 /* Base register for access to arguments of the function. */
1126 #define ARG_POINTER_REGNUM 16
1128 /* Register to hold the addressing base for position independent
1129 code access to data items. We don't use PIC pointer for 64bit
1130 mode. Define the regnum to dummy value to prevent gcc from
1131 pessimizing code dealing with EBX.
1133 To avoid clobbering a call-saved register unnecessarily, we renumber
1134 the pic register when possible. The change is visible after the
1135 prologue has been emitted. */
1137 #define REAL_PIC_OFFSET_TABLE_REGNUM BX_REG
1139 #define PIC_OFFSET_TABLE_REGNUM \
1140 ((TARGET_64BIT && ix86_cmodel == CM_SMALL_PIC) \
1141 || !flag_pic ? INVALID_REGNUM \
1142 : reload_completed ? REGNO (pic_offset_table_rtx) \
1143 : REAL_PIC_OFFSET_TABLE_REGNUM)
1145 #define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1147 /* This is overridden by <cygwin.h>. */
1148 #define MS_AGGREGATE_RETURN 0
1150 /* This is overridden by <netware.h>. */
1151 #define KEEP_AGGREGATE_RETURN_POINTER 0
1153 /* Define the classes of registers for register constraints in the
1154 machine description. Also define ranges of constants.
1156 One of the classes must always be named ALL_REGS and include all hard regs.
1157 If there is more than one class, another class must be named NO_REGS
1158 and contain no registers.
1160 The name GENERAL_REGS must be the name of a class (or an alias for
1161 another name such as ALL_REGS). This is the class of registers
1162 that is allowed by "g" or "r" in a register constraint.
1163 Also, registers outside this class are allocated only when
1164 instructions express preferences for them.
1166 The classes must be numbered in nondecreasing order; that is,
1167 a larger-numbered class must never be contained completely
1168 in a smaller-numbered class.
1170 For any two classes, it is very desirable that there be another
1171 class that represents their union.
1173 It might seem that class BREG is unnecessary, since no useful 386
1174 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
1175 and the "b" register constraint is useful in asms for syscalls.
1177 The flags, fpsr and fpcr registers are in no class. */
1179 enum reg_class
1181 NO_REGS,
1182 AREG, DREG, CREG, BREG, SIREG, DIREG,
1183 AD_REGS, /* %eax/%edx for DImode */
1184 CLOBBERED_REGS, /* call-clobbered integers */
1185 Q_REGS, /* %eax %ebx %ecx %edx */
1186 NON_Q_REGS, /* %esi %edi %ebp %esp */
1187 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
1188 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1189 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp
1190 %r8 %r9 %r10 %r11 %r12 %r13 %r14 %r15 */
1191 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1192 FLOAT_REGS,
1193 SSE_FIRST_REG,
1194 SSE_REGS,
1195 MMX_REGS,
1196 FP_TOP_SSE_REGS,
1197 FP_SECOND_SSE_REGS,
1198 FLOAT_SSE_REGS,
1199 FLOAT_INT_REGS,
1200 INT_SSE_REGS,
1201 FLOAT_INT_SSE_REGS,
1202 ALL_REGS, LIM_REG_CLASSES
1205 #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1207 #define INTEGER_CLASS_P(CLASS) \
1208 reg_class_subset_p ((CLASS), GENERAL_REGS)
1209 #define FLOAT_CLASS_P(CLASS) \
1210 reg_class_subset_p ((CLASS), FLOAT_REGS)
1211 #define SSE_CLASS_P(CLASS) \
1212 reg_class_subset_p ((CLASS), SSE_REGS)
1213 #define MMX_CLASS_P(CLASS) \
1214 ((CLASS) == MMX_REGS)
1215 #define MAYBE_INTEGER_CLASS_P(CLASS) \
1216 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1217 #define MAYBE_FLOAT_CLASS_P(CLASS) \
1218 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1219 #define MAYBE_SSE_CLASS_P(CLASS) \
1220 reg_classes_intersect_p (SSE_REGS, (CLASS))
1221 #define MAYBE_MMX_CLASS_P(CLASS) \
1222 reg_classes_intersect_p (MMX_REGS, (CLASS))
1224 #define Q_CLASS_P(CLASS) \
1225 reg_class_subset_p ((CLASS), Q_REGS)
1227 /* Give names of register classes as strings for dump file. */
1229 #define REG_CLASS_NAMES \
1230 { "NO_REGS", \
1231 "AREG", "DREG", "CREG", "BREG", \
1232 "SIREG", "DIREG", \
1233 "AD_REGS", \
1234 "CLOBBERED_REGS", \
1235 "Q_REGS", "NON_Q_REGS", \
1236 "INDEX_REGS", \
1237 "LEGACY_REGS", \
1238 "GENERAL_REGS", \
1239 "FP_TOP_REG", "FP_SECOND_REG", \
1240 "FLOAT_REGS", \
1241 "SSE_FIRST_REG", \
1242 "SSE_REGS", \
1243 "MMX_REGS", \
1244 "FP_TOP_SSE_REGS", \
1245 "FP_SECOND_SSE_REGS", \
1246 "FLOAT_SSE_REGS", \
1247 "FLOAT_INT_REGS", \
1248 "INT_SSE_REGS", \
1249 "FLOAT_INT_SSE_REGS", \
1250 "ALL_REGS" }
1252 /* Define which registers fit in which classes. This is an initializer
1253 for a vector of HARD_REG_SET of length N_REG_CLASSES.
1255 Note that the default setting of CLOBBERED_REGS is for 32-bit; this
1256 is adjusted by TARGET_CONDITIONAL_REGISTER_USAGE for the 64-bit ABI
1257 in effect. */
1259 #define REG_CLASS_CONTENTS \
1260 { { 0x00, 0x0 }, \
1261 { 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \
1262 { 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \
1263 { 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \
1264 { 0x03, 0x0 }, /* AD_REGS */ \
1265 { 0x07, 0x0 }, /* CLOBBERED_REGS */ \
1266 { 0x0f, 0x0 }, /* Q_REGS */ \
1267 { 0x1100f0, 0x1fe0 }, /* NON_Q_REGS */ \
1268 { 0x7f, 0x1fe0 }, /* INDEX_REGS */ \
1269 { 0x1100ff, 0x0 }, /* LEGACY_REGS */ \
1270 { 0x1100ff, 0x1fe0 }, /* GENERAL_REGS */ \
1271 { 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1272 { 0xff00, 0x0 }, /* FLOAT_REGS */ \
1273 { 0x200000, 0x0 }, /* SSE_FIRST_REG */ \
1274 { 0x1fe00000,0x1fe000 }, /* SSE_REGS */ \
1275 { 0xe0000000, 0x1f }, /* MMX_REGS */ \
1276 { 0x1fe00100,0x1fe000 }, /* FP_TOP_SSE_REG */ \
1277 { 0x1fe00200,0x1fe000 }, /* FP_SECOND_SSE_REG */ \
1278 { 0x1fe0ff00,0x1fe000 }, /* FLOAT_SSE_REGS */ \
1279 { 0x1ffff, 0x1fe0 }, /* FLOAT_INT_REGS */ \
1280 { 0x1fe100ff,0x1fffe0 }, /* INT_SSE_REGS */ \
1281 { 0x1fe1ffff,0x1fffe0 }, /* FLOAT_INT_SSE_REGS */ \
1282 { 0xffffffff,0x1fffff } \
1285 /* The same information, inverted:
1286 Return the class number of the smallest class containing
1287 reg number REGNO. This could be a conditional expression
1288 or could index an array. */
1290 #define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1292 /* When this hook returns true for MODE, the compiler allows
1293 registers explicitly used in the rtl to be used as spill registers
1294 but prevents the compiler from extending the lifetime of these
1295 registers. */
1296 #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
1298 #define QI_REG_P(X) (REG_P (X) && REGNO (X) <= BX_REG)
1300 #define GENERAL_REGNO_P(N) \
1301 ((N) <= STACK_POINTER_REGNUM || REX_INT_REGNO_P (N))
1303 #define GENERAL_REG_P(X) \
1304 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
1306 #define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
1308 #define REX_INT_REGNO_P(N) \
1309 IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
1310 #define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1312 #define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
1313 #define FP_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
1314 #define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1315 #define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
1317 #define X87_FLOAT_MODE_P(MODE) \
1318 (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
1320 #define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
1321 #define SSE_REGNO_P(N) \
1322 (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG) \
1323 || REX_SSE_REGNO_P (N))
1325 #define REX_SSE_REGNO_P(N) \
1326 IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
1328 #define SSE_REGNO(N) \
1329 ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
1331 #define SSE_FLOAT_MODE_P(MODE) \
1332 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1334 #define FMA4_VEC_FLOAT_MODE_P(MODE) \
1335 (TARGET_FMA4 && ((MODE) == V4SFmode || (MODE) == V2DFmode \
1336 || (MODE) == V8SFmode || (MODE) == V4DFmode))
1338 #define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
1339 #define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
1341 #define STACK_REG_P(XOP) (REG_P (XOP) && STACK_REGNO_P (REGNO (XOP)))
1342 #define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
1344 #define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
1346 #define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1347 #define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1349 /* The class value for index registers, and the one for base regs. */
1351 #define INDEX_REG_CLASS INDEX_REGS
1352 #define BASE_REG_CLASS GENERAL_REGS
1354 /* Place additional restrictions on the register class to use when it
1355 is necessary to be able to hold a value of mode MODE in a reload
1356 register for which class CLASS would ordinarily be used. */
1358 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1359 ((MODE) == QImode && !TARGET_64BIT \
1360 && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS \
1361 || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS) \
1362 ? Q_REGS : (CLASS))
1364 /* If we are copying between general and FP registers, we need a memory
1365 location. The same is true for SSE and MMX registers. */
1366 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1367 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
1369 /* Get_secondary_mem widens integral modes to BITS_PER_WORD.
1370 There is no need to emit full 64 bit move on 64 bit targets
1371 for integral modes that can be moved using 32 bit move. */
1372 #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1373 (GET_MODE_BITSIZE (MODE) < 32 && INTEGRAL_MODE_P (MODE) \
1374 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
1375 : MODE)
1377 /* Return the maximum number of consecutive registers
1378 needed to represent mode MODE in a register of class CLASS. */
1379 /* On the 80386, this is the size of MODE in words,
1380 except in the FP regs, where a single reg is always enough. */
1381 #define CLASS_MAX_NREGS(CLASS, MODE) \
1382 (MAYBE_INTEGER_CLASS_P (CLASS) \
1383 ? ((MODE) == XFmode \
1384 ? (TARGET_64BIT ? 2 : 3) \
1385 : (MODE) == XCmode \
1386 ? (TARGET_64BIT ? 4 : 6) \
1387 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)) \
1388 : (COMPLEX_MODE_P (MODE) ? 2 : 1))
1390 /* Return a class of registers that cannot change FROM mode to TO mode. */
1392 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1393 ix86_cannot_change_mode_class (FROM, TO, CLASS)
1395 /* Stack layout; function entry, exit and calling. */
1397 /* Define this if pushing a word on the stack
1398 makes the stack pointer a smaller address. */
1399 #define STACK_GROWS_DOWNWARD
1401 /* Define this to nonzero if the nominal address of the stack frame
1402 is at the high-address end of the local variables;
1403 that is, each additional local variable allocated
1404 goes at a more negative offset in the frame. */
1405 #define FRAME_GROWS_DOWNWARD 1
1407 /* Offset within stack frame to start allocating local variables at.
1408 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1409 first local allocated. Otherwise, it is the offset to the BEGINNING
1410 of the first local allocated. */
1411 #define STARTING_FRAME_OFFSET 0
1413 /* If we generate an insn to push BYTES bytes, this says how many the stack
1414 pointer really advances by. On 386, we have pushw instruction that
1415 decrements by exactly 2 no matter what the position was, there is no pushb.
1417 But as CIE data alignment factor on this arch is -4 for 32bit targets
1418 and -8 for 64bit targets, we need to make sure all stack pointer adjustments
1419 are in multiple of 4 for 32bit targets and 8 for 64bit targets. */
1421 #define PUSH_ROUNDING(BYTES) \
1422 (((BYTES) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD)
1424 /* If defined, the maximum amount of space required for outgoing arguments
1425 will be computed and placed into the variable `crtl->outgoing_args_size'.
1426 No space will be pushed onto the stack for each call; instead, the
1427 function prologue should increase the stack frame size by this amount.
1429 64-bit MS ABI seem to require 16 byte alignment everywhere except for
1430 function prologue and apilogue. This is not possible without
1431 ACCUMULATE_OUTGOING_ARGS. */
1433 #define ACCUMULATE_OUTGOING_ARGS \
1434 (TARGET_ACCUMULATE_OUTGOING_ARGS || TARGET_64BIT_MS_ABI)
1436 /* If defined, a C expression whose value is nonzero when we want to use PUSH
1437 instructions to pass outgoing arguments. */
1439 #define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1441 /* We want the stack and args grow in opposite directions, even if
1442 PUSH_ARGS is 0. */
1443 #define PUSH_ARGS_REVERSED 1
1445 /* Offset of first parameter from the argument pointer register value. */
1446 #define FIRST_PARM_OFFSET(FNDECL) 0
1448 /* Define this macro if functions should assume that stack space has been
1449 allocated for arguments even when their values are passed in registers.
1451 The value of this macro is the size, in bytes, of the area reserved for
1452 arguments passed in registers for the function represented by FNDECL.
1454 This space can be allocated by the caller, or be a part of the
1455 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1456 which. */
1457 #define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL)
1459 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) \
1460 (TARGET_64BIT && ix86_function_type_abi (FNTYPE) == MS_ABI)
1462 /* Define how to find the value returned by a library function
1463 assuming the value has mode MODE. */
1465 #define LIBCALL_VALUE(MODE) ix86_libcall_value (MODE)
1467 /* Define the size of the result block used for communication between
1468 untyped_call and untyped_return. The block contains a DImode value
1469 followed by the block used by fnsave and frstor. */
1471 #define APPLY_RESULT_SIZE (8+108)
1473 /* 1 if N is a possible register number for function argument passing. */
1474 #define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
1476 /* Define a data type for recording info about an argument list
1477 during the scan of that argument list. This data type should
1478 hold all necessary information about the function itself
1479 and about the args processed so far, enough to enable macros
1480 such as FUNCTION_ARG to determine where the next arg should go. */
1482 typedef struct ix86_args {
1483 int words; /* # words passed so far */
1484 int nregs; /* # registers available for passing */
1485 int regno; /* next available register number */
1486 int fastcall; /* fastcall or thiscall calling convention
1487 is used */
1488 int sse_words; /* # sse words passed so far */
1489 int sse_nregs; /* # sse registers available for passing */
1490 int warn_avx; /* True when we want to warn about AVX ABI. */
1491 int warn_sse; /* True when we want to warn about SSE ABI. */
1492 int warn_mmx; /* True when we want to warn about MMX ABI. */
1493 int sse_regno; /* next available sse register number */
1494 int mmx_words; /* # mmx words passed so far */
1495 int mmx_nregs; /* # mmx registers available for passing */
1496 int mmx_regno; /* next available mmx register number */
1497 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
1498 int caller; /* true if it is caller. */
1499 int float_in_sse; /* Set to 1 or 2 for 32bit targets if
1500 SFmode/DFmode arguments should be passed
1501 in SSE registers. Otherwise 0. */
1502 enum calling_abi call_abi; /* Set to SYSV_ABI for sysv abi. Otherwise
1503 MS_ABI for ms abi. */
1504 } CUMULATIVE_ARGS;
1506 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1507 for a call to a function whose data type is FNTYPE.
1508 For a library call, FNTYPE is 0. */
1510 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1511 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL), \
1512 (N_NAMED_ARGS) != -1)
1514 /* Output assembler code to FILE to increment profiler label # LABELNO
1515 for profiling a function entry. */
1517 #define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1519 #define MCOUNT_NAME "_mcount"
1521 #define MCOUNT_NAME_BEFORE_PROLOGUE "__fentry__"
1523 #define PROFILE_COUNT_REGISTER "edx"
1525 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1526 the stack pointer does not matter. The value is tested only in
1527 functions that have frame pointers.
1528 No definition is equivalent to always zero. */
1529 /* Note on the 386 it might be more efficient not to define this since
1530 we have to restore it ourselves from the frame pointer, in order to
1531 use pop */
1533 #define EXIT_IGNORE_STACK 1
1535 /* Output assembler code for a block containing the constant parts
1536 of a trampoline, leaving space for the variable parts. */
1538 /* On the 386, the trampoline contains two instructions:
1539 mov #STATIC,ecx
1540 jmp FUNCTION
1541 The trampoline is generated entirely at runtime. The operand of JMP
1542 is the address of FUNCTION relative to the instruction following the
1543 JMP (which is 5 bytes long). */
1545 /* Length in units of the trampoline for entering a nested function. */
1547 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 24 : 10)
1549 /* Definitions for register eliminations.
1551 This is an array of structures. Each structure initializes one pair
1552 of eliminable registers. The "from" register number is given first,
1553 followed by "to". Eliminations of the same "from" register are listed
1554 in order of preference.
1556 There are two registers that can always be eliminated on the i386.
1557 The frame pointer and the arg pointer can be replaced by either the
1558 hard frame pointer or to the stack pointer, depending upon the
1559 circumstances. The hard frame pointer is not used before reload and
1560 so it is not eligible for elimination. */
1562 #define ELIMINABLE_REGS \
1563 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1564 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1565 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1566 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
1568 /* Define the offset between two registers, one to be eliminated, and the other
1569 its replacement, at the start of a routine. */
1571 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1572 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
1574 /* Addressing modes, and classification of registers for them. */
1576 /* Macros to check register numbers against specific register classes. */
1578 /* These assume that REGNO is a hard or pseudo reg number.
1579 They give nonzero only if REGNO is a hard reg of the suitable class
1580 or a pseudo reg currently allocated to a suitable hard reg.
1581 Since they use reg_renumber, they are safe only once reg_renumber
1582 has been allocated, which happens in local-alloc.c. */
1584 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1585 ((REGNO) < STACK_POINTER_REGNUM \
1586 || REX_INT_REGNO_P (REGNO) \
1587 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \
1588 || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
1590 #define REGNO_OK_FOR_BASE_P(REGNO) \
1591 (GENERAL_REGNO_P (REGNO) \
1592 || (REGNO) == ARG_POINTER_REGNUM \
1593 || (REGNO) == FRAME_POINTER_REGNUM \
1594 || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
1596 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1597 and check its validity for a certain class.
1598 We have two alternate definitions for each of them.
1599 The usual definition accepts all pseudo regs; the other rejects
1600 them unless they have been allocated suitable hard regs.
1601 The symbol REG_OK_STRICT causes the latter definition to be used.
1603 Most source files want to accept pseudo regs in the hope that
1604 they will get allocated to the class that the insn wants them to be in.
1605 Source files for reload pass need to be strict.
1606 After reload, it makes no difference, since pseudo regs have
1607 been eliminated by then. */
1610 /* Non strict versions, pseudos are ok. */
1611 #define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1612 (REGNO (X) < STACK_POINTER_REGNUM \
1613 || REX_INT_REGNO_P (REGNO (X)) \
1614 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1616 #define REG_OK_FOR_BASE_NONSTRICT_P(X) \
1617 (GENERAL_REGNO_P (REGNO (X)) \
1618 || REGNO (X) == ARG_POINTER_REGNUM \
1619 || REGNO (X) == FRAME_POINTER_REGNUM \
1620 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1622 /* Strict versions, hard registers only */
1623 #define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1624 #define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1626 #ifndef REG_OK_STRICT
1627 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1628 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
1630 #else
1631 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1632 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
1633 #endif
1635 /* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression
1636 that is a valid memory address for an instruction.
1637 The MODE argument is the machine mode for the MEM expression
1638 that wants to use this address.
1640 The other macros defined here are used only in TARGET_LEGITIMATE_ADDRESS_P,
1641 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1643 See legitimize_pic_address in i386.c for details as to what
1644 constitutes a legitimate address when -fpic is used. */
1646 #define MAX_REGS_PER_ADDRESS 2
1648 #define CONSTANT_ADDRESS_P(X) constant_address_p (X)
1650 /* If defined, a C expression to determine the base term of address X.
1651 This macro is used in only one place: `find_base_term' in alias.c.
1653 It is always safe for this macro to not be defined. It exists so
1654 that alias analysis can understand machine-dependent addresses.
1656 The typical use of this macro is to handle addresses containing
1657 a label_ref or symbol_ref within an UNSPEC. */
1659 #define FIND_BASE_TERM(X) ix86_find_base_term (X)
1661 /* Nonzero if the constant value X is a legitimate general operand
1662 when generating PIC code. It is given that flag_pic is on and
1663 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1665 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
1667 #define SYMBOLIC_CONST(X) \
1668 (GET_CODE (X) == SYMBOL_REF \
1669 || GET_CODE (X) == LABEL_REF \
1670 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
1672 /* Max number of args passed in registers. If this is more than 3, we will
1673 have problems with ebx (register #4), since it is a caller save register and
1674 is also used as the pic register in ELF. So for now, don't allow more than
1675 3 registers to be passed in registers. */
1677 /* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */
1678 #define X86_64_REGPARM_MAX 6
1679 #define X86_64_MS_REGPARM_MAX 4
1681 #define X86_32_REGPARM_MAX 3
1683 #define REGPARM_MAX \
1684 (TARGET_64BIT \
1685 ? (TARGET_64BIT_MS_ABI \
1686 ? X86_64_MS_REGPARM_MAX \
1687 : X86_64_REGPARM_MAX) \
1688 : X86_32_REGPARM_MAX)
1690 #define X86_64_SSE_REGPARM_MAX 8
1691 #define X86_64_MS_SSE_REGPARM_MAX 4
1693 #define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? (TARGET_MACHO ? 4 : 3) : 0)
1695 #define SSE_REGPARM_MAX \
1696 (TARGET_64BIT \
1697 ? (TARGET_64BIT_MS_ABI \
1698 ? X86_64_MS_SSE_REGPARM_MAX \
1699 : X86_64_SSE_REGPARM_MAX) \
1700 : X86_32_SSE_REGPARM_MAX)
1702 #define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
1704 /* Specify the machine mode that this machine uses
1705 for the index in the tablejump instruction. */
1706 #define CASE_VECTOR_MODE \
1707 (!TARGET_64BIT || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
1709 /* Define this as 1 if `char' should by default be signed; else as 0. */
1710 #define DEFAULT_SIGNED_CHAR 1
1712 /* Max number of bytes we can move from memory to memory
1713 in one reasonably fast instruction. */
1714 #define MOVE_MAX 16
1716 /* MOVE_MAX_PIECES is the number of bytes at a time which we can
1717 move efficiently, as opposed to MOVE_MAX which is the maximum
1718 number of bytes we can move with a single instruction. */
1719 #define MOVE_MAX_PIECES UNITS_PER_WORD
1721 /* If a memory-to-memory move would take MOVE_RATIO or more simple
1722 move-instruction pairs, we will do a movmem or libcall instead.
1723 Increasing the value will always make code faster, but eventually
1724 incurs high cost in increased code size.
1726 If you don't define this, a reasonable default is used. */
1728 #define MOVE_RATIO(speed) ((speed) ? ix86_cost->move_ratio : 3)
1730 /* If a clear memory operation would take CLEAR_RATIO or more simple
1731 move-instruction sequences, we will do a clrmem or libcall instead. */
1733 #define CLEAR_RATIO(speed) ((speed) ? MIN (6, ix86_cost->move_ratio) : 2)
1735 /* Define if shifts truncate the shift count which implies one can
1736 omit a sign-extension or zero-extension of a shift count.
1738 On i386, shifts do truncate the count. But bit test instructions
1739 take the modulo of the bit offset operand. */
1741 /* #define SHIFT_COUNT_TRUNCATED */
1743 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1744 is done just by pretending it is already truncated. */
1745 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1747 /* A macro to update M and UNSIGNEDP when an object whose type is
1748 TYPE and which has the specified mode and signedness is to be
1749 stored in a register. This macro is only called when TYPE is a
1750 scalar type.
1752 On i386 it is sometimes useful to promote HImode and QImode
1753 quantities to SImode. The choice depends on target type. */
1755 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
1756 do { \
1757 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
1758 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
1759 (MODE) = SImode; \
1760 } while (0)
1762 /* Specify the machine mode that pointers have.
1763 After generation of rtl, the compiler makes no further distinction
1764 between pointers and any other objects of this machine mode. */
1765 #define Pmode (TARGET_64BIT ? DImode : SImode)
1767 /* A function address in a call instruction
1768 is a byte address (for indexing purposes)
1769 so give the MEM rtx a byte's mode. */
1770 #define FUNCTION_MODE QImode
1773 /* A C expression for the cost of a branch instruction. A value of 1
1774 is the default; other values are interpreted relative to that. */
1776 #define BRANCH_COST(speed_p, predictable_p) \
1777 (!(speed_p) ? 2 : (predictable_p) ? 0 : ix86_branch_cost)
1779 /* Define this macro as a C expression which is nonzero if accessing
1780 less than a word of memory (i.e. a `char' or a `short') is no
1781 faster than accessing a word of memory, i.e., if such access
1782 require more than one instruction or if there is no difference in
1783 cost between byte and (aligned) word loads.
1785 When this macro is not defined, the compiler will access a field by
1786 finding the smallest containing object; when it is defined, a
1787 fullword load will be used if alignment permits. Unless bytes
1788 accesses are faster than word accesses, using word accesses is
1789 preferable since it may eliminate subsequent memory access if
1790 subsequent accesses occur to other fields in the same word of the
1791 structure, but to different bytes. */
1793 #define SLOW_BYTE_ACCESS 0
1795 /* Nonzero if access to memory by shorts is slow and undesirable. */
1796 #define SLOW_SHORT_ACCESS 0
1798 /* Define this macro to be the value 1 if unaligned accesses have a
1799 cost many times greater than aligned accesses, for example if they
1800 are emulated in a trap handler.
1802 When this macro is nonzero, the compiler will act as if
1803 `STRICT_ALIGNMENT' were nonzero when generating code for block
1804 moves. This can cause significantly more instructions to be
1805 produced. Therefore, do not set this macro nonzero if unaligned
1806 accesses only add a cycle or two to the time for a memory access.
1808 If the value of this macro is always zero, it need not be defined. */
1810 /* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
1812 /* Define this macro if it is as good or better to call a constant
1813 function address than to call an address kept in a register.
1815 Desirable on the 386 because a CALL with a constant address is
1816 faster than one with a register address. */
1818 #define NO_FUNCTION_CSE
1820 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1821 return the mode to be used for the comparison.
1823 For floating-point equality comparisons, CCFPEQmode should be used.
1824 VOIDmode should be used in all other cases.
1826 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
1827 possible, to allow for more combinations. */
1829 #define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
1831 /* Return nonzero if MODE implies a floating point inequality can be
1832 reversed. */
1834 #define REVERSIBLE_CC_MODE(MODE) 1
1836 /* A C expression whose value is reversed condition code of the CODE for
1837 comparison done in CC_MODE mode. */
1838 #define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
1841 /* Control the assembler format that we output, to the extent
1842 this does not vary between assemblers. */
1844 /* How to refer to registers in assembler output.
1845 This sequence is indexed by compiler's hard-register-number (see above). */
1847 /* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
1848 For non floating point regs, the following are the HImode names.
1850 For float regs, the stack top is sometimes referred to as "%st(0)"
1851 instead of just "%st". TARGET_PRINT_OPERAND handles this with the
1852 "y" code. */
1854 #define HI_REGISTER_NAMES \
1855 {"ax","dx","cx","bx","si","di","bp","sp", \
1856 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
1857 "argp", "flags", "fpsr", "fpcr", "frame", \
1858 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
1859 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \
1860 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
1861 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
1863 #define REGISTER_NAMES HI_REGISTER_NAMES
1865 /* Table of additional register names to use in user input. */
1867 #define ADDITIONAL_REGISTER_NAMES \
1868 { { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
1869 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
1870 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
1871 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
1872 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
1873 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 } }
1875 /* Note we are omitting these since currently I don't know how
1876 to get gcc to use these, since they want the same but different
1877 number as al, and ax.
1880 #define QI_REGISTER_NAMES \
1881 {"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
1883 /* These parallel the array above, and can be used to access bits 8:15
1884 of regs 0 through 3. */
1886 #define QI_HIGH_REGISTER_NAMES \
1887 {"ah", "dh", "ch", "bh", }
1889 /* How to renumber registers for dbx and gdb. */
1891 #define DBX_REGISTER_NUMBER(N) \
1892 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
1894 extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
1895 extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
1896 extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
1898 /* Before the prologue, RA is at 0(%esp). */
1899 #define INCOMING_RETURN_ADDR_RTX \
1900 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
1902 /* After the prologue, RA is at -4(AP) in the current frame. */
1903 #define RETURN_ADDR_RTX(COUNT, FRAME) \
1904 ((COUNT) == 0 \
1905 ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
1906 : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
1908 /* PC is dbx register 8; let's use that column for RA. */
1909 #define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
1911 /* Before the prologue, the top of the frame is at 4(%esp). */
1912 #define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
1914 /* Describe how we implement __builtin_eh_return. */
1915 #define EH_RETURN_DATA_REGNO(N) ((N) <= DX_REG ? (N) : INVALID_REGNUM)
1916 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, CX_REG)
1919 /* Select a format to encode pointers in exception handling data. CODE
1920 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
1921 true if the symbol may be affected by dynamic relocations.
1923 ??? All x86 object file formats are capable of representing this.
1924 After all, the relocation needed is the same as for the call insn.
1925 Whether or not a particular assembler allows us to enter such, I
1926 guess we'll have to see. */
1927 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
1928 asm_preferred_eh_data_format ((CODE), (GLOBAL))
1930 /* This is how to output an insn to push a register on the stack.
1931 It need not be very fast code. */
1933 #define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
1934 do { \
1935 if (TARGET_64BIT) \
1936 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
1937 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
1938 else \
1939 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
1940 } while (0)
1942 /* This is how to output an insn to pop a register from the stack.
1943 It need not be very fast code. */
1945 #define ASM_OUTPUT_REG_POP(FILE, REGNO) \
1946 do { \
1947 if (TARGET_64BIT) \
1948 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
1949 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
1950 else \
1951 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
1952 } while (0)
1954 /* This is how to output an element of a case-vector that is absolute. */
1956 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1957 ix86_output_addr_vec_elt ((FILE), (VALUE))
1959 /* This is how to output an element of a case-vector that is relative. */
1961 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1962 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
1964 /* When we see %v, we will print the 'v' prefix if TARGET_AVX is true. */
1966 #define ASM_OUTPUT_AVX_PREFIX(STREAM, PTR) \
1968 if ((PTR)[0] == '%' && (PTR)[1] == 'v') \
1969 (PTR) += TARGET_AVX ? 1 : 2; \
1972 /* A C statement or statements which output an assembler instruction
1973 opcode to the stdio stream STREAM. The macro-operand PTR is a
1974 variable of type `char *' which points to the opcode name in
1975 its "internal" form--the form that is written in the machine
1976 description. */
1978 #define ASM_OUTPUT_OPCODE(STREAM, PTR) \
1979 ASM_OUTPUT_AVX_PREFIX ((STREAM), (PTR))
1981 /* A C statement to output to the stdio stream FILE an assembler
1982 command to pad the location counter to a multiple of 1<<LOG
1983 bytes if it is within MAX_SKIP bytes. */
1985 #ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
1986 #undef ASM_OUTPUT_MAX_SKIP_PAD
1987 #define ASM_OUTPUT_MAX_SKIP_PAD(FILE, LOG, MAX_SKIP) \
1988 if ((LOG) != 0) \
1990 if ((MAX_SKIP) == 0) \
1991 fprintf ((FILE), "\t.p2align %d\n", (LOG)); \
1992 else \
1993 fprintf ((FILE), "\t.p2align %d,,%d\n", (LOG), (MAX_SKIP)); \
1995 #endif
1997 /* Write the extra assembler code needed to declare a function
1998 properly. */
2000 #undef ASM_OUTPUT_FUNCTION_LABEL
2001 #define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \
2002 ix86_asm_output_function_label (FILE, NAME, DECL)
2004 /* Under some conditions we need jump tables in the text section,
2005 because the assembler cannot handle label differences between
2006 sections. This is the case for x86_64 on Mach-O for example. */
2008 #define JUMP_TABLES_IN_TEXT_SECTION \
2009 (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2010 || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
2012 /* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2013 and switch back. For x86 we do this only to save a few bytes that
2014 would otherwise be unused in the text section. */
2015 #define CRT_MKSTR2(VAL) #VAL
2016 #define CRT_MKSTR(x) CRT_MKSTR2(x)
2018 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2019 asm (SECTION_OP "\n\t" \
2020 "call " CRT_MKSTR(__USER_LABEL_PREFIX__) #FUNC "\n" \
2021 TEXT_SECTION_ASM_OP);
2023 /* Which processor to tune code generation for. */
2025 enum processor_type
2027 PROCESSOR_I386 = 0, /* 80386 */
2028 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2029 PROCESSOR_PENTIUM,
2030 PROCESSOR_PENTIUMPRO,
2031 PROCESSOR_GEODE,
2032 PROCESSOR_K6,
2033 PROCESSOR_ATHLON,
2034 PROCESSOR_PENTIUM4,
2035 PROCESSOR_K8,
2036 PROCESSOR_NOCONA,
2037 PROCESSOR_CORE2_32,
2038 PROCESSOR_CORE2_64,
2039 PROCESSOR_COREI7_32,
2040 PROCESSOR_COREI7_64,
2041 PROCESSOR_GENERIC32,
2042 PROCESSOR_GENERIC64,
2043 PROCESSOR_AMDFAM10,
2044 PROCESSOR_BDVER1,
2045 PROCESSOR_BTVER1,
2046 PROCESSOR_ATOM,
2047 PROCESSOR_max
2050 extern enum processor_type ix86_tune;
2051 extern enum processor_type ix86_arch;
2053 enum fpmath_unit
2055 FPMATH_387 = 1,
2056 FPMATH_SSE = 2
2059 extern enum fpmath_unit ix86_fpmath;
2061 enum tls_dialect
2063 TLS_DIALECT_GNU,
2064 TLS_DIALECT_GNU2,
2065 TLS_DIALECT_SUN
2068 extern enum tls_dialect ix86_tls_dialect;
2070 enum cmodel {
2071 CM_32, /* The traditional 32-bit ABI. */
2072 CM_SMALL, /* Assumes all code and data fits in the low 31 bits. */
2073 CM_KERNEL, /* Assumes all code and data fits in the high 31 bits. */
2074 CM_MEDIUM, /* Assumes code fits in the low 31 bits; data unlimited. */
2075 CM_LARGE, /* No assumptions. */
2076 CM_SMALL_PIC, /* Assumes code+data+got/plt fits in a 31 bit region. */
2077 CM_MEDIUM_PIC,/* Assumes code+got/plt fits in a 31 bit region. */
2078 CM_LARGE_PIC /* No assumptions. */
2081 extern enum cmodel ix86_cmodel;
2083 /* Size of the RED_ZONE area. */
2084 #define RED_ZONE_SIZE 128
2085 /* Reserved area of the red zone for temporaries. */
2086 #define RED_ZONE_RESERVE 8
2088 enum asm_dialect {
2089 ASM_ATT,
2090 ASM_INTEL
2093 extern enum asm_dialect ix86_asm_dialect;
2094 extern unsigned int ix86_preferred_stack_boundary;
2095 extern unsigned int ix86_incoming_stack_boundary;
2096 extern int ix86_branch_cost, ix86_section_threshold;
2098 /* Smallest class containing REGNO. */
2099 extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2101 enum ix86_fpcmp_strategy {
2102 IX86_FPCMP_SAHF,
2103 IX86_FPCMP_COMI,
2104 IX86_FPCMP_ARITH
2107 /* To properly truncate FP values into integers, we need to set i387 control
2108 word. We can't emit proper mode switching code before reload, as spills
2109 generated by reload may truncate values incorrectly, but we still can avoid
2110 redundant computation of new control word by the mode switching pass.
2111 The fldcw instructions are still emitted redundantly, but this is probably
2112 not going to be noticeable problem, as most CPUs do have fast path for
2113 the sequence.
2115 The machinery is to emit simple truncation instructions and split them
2116 before reload to instructions having USEs of two memory locations that
2117 are filled by this code to old and new control word.
2119 Post-reload pass may be later used to eliminate the redundant fildcw if
2120 needed. */
2122 enum ix86_entity
2124 I387_TRUNC = 0,
2125 I387_FLOOR,
2126 I387_CEIL,
2127 I387_MASK_PM,
2128 MAX_386_ENTITIES
2131 enum ix86_stack_slot
2133 SLOT_VIRTUAL = 0,
2134 SLOT_TEMP,
2135 SLOT_CW_STORED,
2136 SLOT_CW_TRUNC,
2137 SLOT_CW_FLOOR,
2138 SLOT_CW_CEIL,
2139 SLOT_CW_MASK_PM,
2140 MAX_386_STACK_LOCALS
2143 /* Define this macro if the port needs extra instructions inserted
2144 for mode switching in an optimizing compilation. */
2146 #define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2147 ix86_optimize_mode_switching[(ENTITY)]
2149 /* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2150 initializer for an array of integers. Each initializer element N
2151 refers to an entity that needs mode switching, and specifies the
2152 number of different modes that might need to be set for this
2153 entity. The position of the initializer in the initializer -
2154 starting counting at zero - determines the integer that is used to
2155 refer to the mode-switched entity in question. */
2157 #define NUM_MODES_FOR_MODE_SWITCHING \
2158 { I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
2160 /* ENTITY is an integer specifying a mode-switched entity. If
2161 `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
2162 return an integer value not larger than the corresponding element
2163 in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
2164 must be switched into prior to the execution of INSN. */
2166 #define MODE_NEEDED(ENTITY, I) ix86_mode_needed ((ENTITY), (I))
2168 /* This macro specifies the order in which modes for ENTITY are
2169 processed. 0 is the highest priority. */
2171 #define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
2173 /* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE
2174 is the set of hard registers live at the point where the insn(s)
2175 are to be inserted. */
2177 #define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
2178 ((MODE) != I387_CW_ANY && (MODE) != I387_CW_UNINITIALIZED \
2179 ? emit_i387_cw_initialization (MODE), 0 \
2180 : 0)
2183 /* Avoid renaming of stack registers, as doing so in combination with
2184 scheduling just increases amount of live registers at time and in
2185 the turn amount of fxch instructions needed.
2187 ??? Maybe Pentium chips benefits from renaming, someone can try.... */
2189 #define HARD_REGNO_RENAME_OK(SRC, TARGET) \
2190 (! IN_RANGE ((SRC), FIRST_STACK_REG, LAST_STACK_REG))
2193 #define FASTCALL_PREFIX '@'
2195 /* Machine specific frame tracking during prologue/epilogue generation. */
2197 #ifndef USED_FOR_TARGET
2198 struct GTY(()) machine_frame_state
2200 /* This pair tracks the currently active CFA as reg+offset. When reg
2201 is drap_reg, we don't bother trying to record here the real CFA when
2202 it might really be a DW_CFA_def_cfa_expression. */
2203 rtx cfa_reg;
2204 HOST_WIDE_INT cfa_offset;
2206 /* The current offset (canonically from the CFA) of ESP and EBP.
2207 When stack frame re-alignment is active, these may not be relative
2208 to the CFA. However, in all cases they are relative to the offsets
2209 of the saved registers stored in ix86_frame. */
2210 HOST_WIDE_INT sp_offset;
2211 HOST_WIDE_INT fp_offset;
2213 /* The size of the red-zone that may be assumed for the purposes of
2214 eliding register restore notes in the epilogue. This may be zero
2215 if no red-zone is in effect, or may be reduced from the real
2216 red-zone value by a maximum runtime stack re-alignment value. */
2217 int red_zone_offset;
2219 /* Indicate whether each of ESP, EBP or DRAP currently holds a valid
2220 value within the frame. If false then the offset above should be
2221 ignored. Note that DRAP, if valid, *always* points to the CFA and
2222 thus has an offset of zero. */
2223 BOOL_BITFIELD sp_valid : 1;
2224 BOOL_BITFIELD fp_valid : 1;
2225 BOOL_BITFIELD drap_valid : 1;
2227 /* Indicate whether the local stack frame has been re-aligned. When
2228 set, the SP/FP offsets above are relative to the aligned frame
2229 and not the CFA. */
2230 BOOL_BITFIELD realigned : 1;
2233 /* Private to winnt.c. */
2234 struct seh_frame_state;
2236 struct GTY(()) machine_function {
2237 struct stack_local_entry *stack_locals;
2238 const char *some_ld_name;
2239 int varargs_gpr_size;
2240 int varargs_fpr_size;
2241 int optimize_mode_switching[MAX_386_ENTITIES];
2243 /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE
2244 has been computed for. */
2245 int use_fast_prologue_epilogue_nregs;
2247 /* For -fsplit-stack support: A stack local which holds a pointer to
2248 the stack arguments for a function with a variable number of
2249 arguments. This is set at the start of the function and is used
2250 to initialize the overflow_arg_area field of the va_list
2251 structure. */
2252 rtx split_stack_varargs_pointer;
2254 /* This value is used for amd64 targets and specifies the current abi
2255 to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi. */
2256 ENUM_BITFIELD(calling_abi) call_abi : 8;
2258 /* Nonzero if the function accesses a previous frame. */
2259 BOOL_BITFIELD accesses_prev_frame : 1;
2261 /* Nonzero if the function requires a CLD in the prologue. */
2262 BOOL_BITFIELD needs_cld : 1;
2264 /* Set by ix86_compute_frame_layout and used by prologue/epilogue
2265 expander to determine the style used. */
2266 BOOL_BITFIELD use_fast_prologue_epilogue : 1;
2268 /* If true, the current function needs the default PIC register, not
2269 an alternate register (on x86) and must not use the red zone (on
2270 x86_64), even if it's a leaf function. We don't want the
2271 function to be regarded as non-leaf because TLS calls need not
2272 affect register allocation. This flag is set when a TLS call
2273 instruction is expanded within a function, and never reset, even
2274 if all such instructions are optimized away. Use the
2275 ix86_current_function_calls_tls_descriptor macro for a better
2276 approximation. */
2277 BOOL_BITFIELD tls_descriptor_call_expanded_p : 1;
2279 /* If true, the current function has a STATIC_CHAIN is placed on the
2280 stack below the return address. */
2281 BOOL_BITFIELD static_chain_on_stack : 1;
2283 /* Nonzero if caller passes 256bit AVX modes. */
2284 BOOL_BITFIELD caller_pass_avx256_p : 1;
2286 /* Nonzero if caller returns 256bit AVX modes. */
2287 BOOL_BITFIELD caller_return_avx256_p : 1;
2289 /* Nonzero if the current callee passes 256bit AVX modes. */
2290 BOOL_BITFIELD callee_pass_avx256_p : 1;
2292 /* Nonzero if the current callee returns 256bit AVX modes. */
2293 BOOL_BITFIELD callee_return_avx256_p : 1;
2295 /* Nonzero if rescan vzerouppers in the current function is needed. */
2296 BOOL_BITFIELD rescan_vzeroupper_p : 1;
2298 /* During prologue/epilogue generation, the current frame state.
2299 Otherwise, the frame state at the end of the prologue. */
2300 struct machine_frame_state fs;
2302 /* During SEH output, this is non-null. */
2303 struct seh_frame_state * GTY((skip(""))) seh;
2305 #endif
2307 #define ix86_stack_locals (cfun->machine->stack_locals)
2308 #define ix86_varargs_gpr_size (cfun->machine->varargs_gpr_size)
2309 #define ix86_varargs_fpr_size (cfun->machine->varargs_fpr_size)
2310 #define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
2311 #define ix86_current_function_needs_cld (cfun->machine->needs_cld)
2312 #define ix86_tls_descriptor_calls_expanded_in_cfun \
2313 (cfun->machine->tls_descriptor_call_expanded_p)
2314 /* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2315 calls are optimized away, we try to detect cases in which it was
2316 optimized away. Since such instructions (use (reg REG_SP)), we can
2317 verify whether there's any such instruction live by testing that
2318 REG_SP is live. */
2319 #define ix86_current_function_calls_tls_descriptor \
2320 (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
2321 #define ix86_static_chain_on_stack (cfun->machine->static_chain_on_stack)
2323 /* Control behavior of x86_file_start. */
2324 #define X86_FILE_START_VERSION_DIRECTIVE false
2325 #define X86_FILE_START_FLTUSED false
2327 /* Flag to mark data that is in the large address area. */
2328 #define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2329 #define SYMBOL_REF_FAR_ADDR_P(X) \
2330 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
2332 /* Flags to mark dllimport/dllexport. Used by PE ports, but handy to
2333 have defined always, to avoid ifdefing. */
2334 #define SYMBOL_FLAG_DLLIMPORT (SYMBOL_FLAG_MACH_DEP << 1)
2335 #define SYMBOL_REF_DLLIMPORT_P(X) \
2336 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
2338 #define SYMBOL_FLAG_DLLEXPORT (SYMBOL_FLAG_MACH_DEP << 2)
2339 #define SYMBOL_REF_DLLEXPORT_P(X) \
2340 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
2342 extern void debug_ready_dispatch (void);
2343 extern void debug_dispatch_window (int);
2345 /* The value at zero is only defined for the BMI instructions
2346 LZCNT and TZCNT, not the BSR/BSF insns in the original isa. */
2347 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2348 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_BMI)
2349 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2350 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_BMI)
2353 /* Flags returned by ix86_get_callcvt (). */
2354 #define IX86_CALLCVT_CDECL 0x1
2355 #define IX86_CALLCVT_STDCALL 0x2
2356 #define IX86_CALLCVT_FASTCALL 0x4
2357 #define IX86_CALLCVT_THISCALL 0x8
2358 #define IX86_CALLCVT_REGPARM 0x10
2359 #define IX86_CALLCVT_SSEREGPARM 0x20
2361 #define IX86_BASE_CALLCVT(FLAGS) \
2362 ((FLAGS) & (IX86_CALLCVT_CDECL | IX86_CALLCVT_STDCALL \
2363 | IX86_CALLCVT_FASTCALL | IX86_CALLCVT_THISCALL))
2366 Local variables:
2367 version-control: t
2368 End: