PR c/68024
[official-gcc.git] / gcc / postreload.c
blob88d5234eef367da8eeb79050b1484965baa83fcd
1 /* Perform simple optimizations to clean up the result of reload.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "predict.h"
25 #include "tree.h"
26 #include "rtl.h"
27 #include "df.h"
29 #include "tm_p.h"
30 #include "insn-config.h"
31 #include "flags.h"
32 #include "alias.h"
33 #include "expmed.h"
34 #include "dojump.h"
35 #include "explow.h"
36 #include "calls.h"
37 #include "emit-rtl.h"
38 #include "varasm.h"
39 #include "stmt.h"
40 #include "expr.h"
41 #include "insn-codes.h"
42 #include "optabs.h"
43 #include "regs.h"
44 #include "cfgrtl.h"
45 #include "cfgbuild.h"
46 #include "cfgcleanup.h"
47 #include "reload.h"
48 #include "recog.h"
49 #include "alloc-pool.h"
50 #include "cselib.h"
51 #include "diagnostic-core.h"
52 #include "except.h"
53 #include "target.h"
54 #include "tree-pass.h"
55 #include "dbgcnt.h"
57 #ifndef LOAD_EXTEND_OP
58 #define LOAD_EXTEND_OP(M) UNKNOWN
59 #endif
61 static int reload_cse_noop_set_p (rtx);
62 static bool reload_cse_simplify (rtx_insn *, rtx);
63 static void reload_cse_regs_1 (void);
64 static int reload_cse_simplify_set (rtx, rtx_insn *);
65 static int reload_cse_simplify_operands (rtx_insn *, rtx);
67 static void reload_combine (void);
68 static void reload_combine_note_use (rtx *, rtx_insn *, int, rtx);
69 static void reload_combine_note_store (rtx, const_rtx, void *);
71 static bool reload_cse_move2add (rtx_insn *);
72 static void move2add_note_store (rtx, const_rtx, void *);
74 /* Call cse / combine like post-reload optimization phases.
75 FIRST is the first instruction. */
77 static void
78 reload_cse_regs (rtx_insn *first ATTRIBUTE_UNUSED)
80 bool moves_converted;
81 reload_cse_regs_1 ();
82 reload_combine ();
83 moves_converted = reload_cse_move2add (first);
84 if (flag_expensive_optimizations)
86 if (moves_converted)
87 reload_combine ();
88 reload_cse_regs_1 ();
92 /* See whether a single set SET is a noop. */
93 static int
94 reload_cse_noop_set_p (rtx set)
96 if (cselib_reg_set_mode (SET_DEST (set)) != GET_MODE (SET_DEST (set)))
97 return 0;
99 return rtx_equal_for_cselib_p (SET_DEST (set), SET_SRC (set));
102 /* Try to simplify INSN. Return true if the CFG may have changed. */
103 static bool
104 reload_cse_simplify (rtx_insn *insn, rtx testreg)
106 rtx body = PATTERN (insn);
107 basic_block insn_bb = BLOCK_FOR_INSN (insn);
108 unsigned insn_bb_succs = EDGE_COUNT (insn_bb->succs);
110 if (GET_CODE (body) == SET)
112 int count = 0;
114 /* Simplify even if we may think it is a no-op.
115 We may think a memory load of a value smaller than WORD_SIZE
116 is redundant because we haven't taken into account possible
117 implicit extension. reload_cse_simplify_set() will bring
118 this out, so it's safer to simplify before we delete. */
119 count += reload_cse_simplify_set (body, insn);
121 if (!count && reload_cse_noop_set_p (body))
123 rtx value = SET_DEST (body);
124 if (REG_P (value)
125 && ! REG_FUNCTION_VALUE_P (value))
126 value = 0;
127 if (check_for_inc_dec (insn))
128 delete_insn_and_edges (insn);
129 /* We're done with this insn. */
130 goto done;
133 if (count > 0)
134 apply_change_group ();
135 else
136 reload_cse_simplify_operands (insn, testreg);
138 else if (GET_CODE (body) == PARALLEL)
140 int i;
141 int count = 0;
142 rtx value = NULL_RTX;
144 /* Registers mentioned in the clobber list for an asm cannot be reused
145 within the body of the asm. Invalidate those registers now so that
146 we don't try to substitute values for them. */
147 if (asm_noperands (body) >= 0)
149 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
151 rtx part = XVECEXP (body, 0, i);
152 if (GET_CODE (part) == CLOBBER && REG_P (XEXP (part, 0)))
153 cselib_invalidate_rtx (XEXP (part, 0));
157 /* If every action in a PARALLEL is a noop, we can delete
158 the entire PARALLEL. */
159 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
161 rtx part = XVECEXP (body, 0, i);
162 if (GET_CODE (part) == SET)
164 if (! reload_cse_noop_set_p (part))
165 break;
166 if (REG_P (SET_DEST (part))
167 && REG_FUNCTION_VALUE_P (SET_DEST (part)))
169 if (value)
170 break;
171 value = SET_DEST (part);
174 else if (GET_CODE (part) != CLOBBER)
175 break;
178 if (i < 0)
180 if (check_for_inc_dec (insn))
181 delete_insn_and_edges (insn);
182 /* We're done with this insn. */
183 goto done;
186 /* It's not a no-op, but we can try to simplify it. */
187 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
188 if (GET_CODE (XVECEXP (body, 0, i)) == SET)
189 count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
191 if (count > 0)
192 apply_change_group ();
193 else
194 reload_cse_simplify_operands (insn, testreg);
197 done:
198 return (EDGE_COUNT (insn_bb->succs) != insn_bb_succs);
201 /* Do a very simple CSE pass over the hard registers.
203 This function detects no-op moves where we happened to assign two
204 different pseudo-registers to the same hard register, and then
205 copied one to the other. Reload will generate a useless
206 instruction copying a register to itself.
208 This function also detects cases where we load a value from memory
209 into two different registers, and (if memory is more expensive than
210 registers) changes it to simply copy the first register into the
211 second register.
213 Another optimization is performed that scans the operands of each
214 instruction to see whether the value is already available in a
215 hard register. It then replaces the operand with the hard register
216 if possible, much like an optional reload would. */
218 static void
219 reload_cse_regs_1 (void)
221 bool cfg_changed = false;
222 basic_block bb;
223 rtx_insn *insn;
224 rtx testreg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
226 cselib_init (CSELIB_RECORD_MEMORY);
227 init_alias_analysis ();
229 FOR_EACH_BB_FN (bb, cfun)
230 FOR_BB_INSNS (bb, insn)
232 if (INSN_P (insn))
233 cfg_changed |= reload_cse_simplify (insn, testreg);
235 cselib_process_insn (insn);
238 /* Clean up. */
239 end_alias_analysis ();
240 cselib_finish ();
241 if (cfg_changed)
242 cleanup_cfg (0);
245 /* Try to simplify a single SET instruction. SET is the set pattern.
246 INSN is the instruction it came from.
247 This function only handles one case: if we set a register to a value
248 which is not a register, we try to find that value in some other register
249 and change the set into a register copy. */
251 static int
252 reload_cse_simplify_set (rtx set, rtx_insn *insn)
254 int did_change = 0;
255 int dreg;
256 rtx src;
257 reg_class_t dclass;
258 int old_cost;
259 cselib_val *val;
260 struct elt_loc_list *l;
261 enum rtx_code extend_op = UNKNOWN;
262 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
264 dreg = true_regnum (SET_DEST (set));
265 if (dreg < 0)
266 return 0;
268 src = SET_SRC (set);
269 if (side_effects_p (src) || true_regnum (src) >= 0)
270 return 0;
272 dclass = REGNO_REG_CLASS (dreg);
274 /* When replacing a memory with a register, we need to honor assumptions
275 that combine made wrt the contents of sign bits. We'll do this by
276 generating an extend instruction instead of a reg->reg copy. Thus
277 the destination must be a register that we can widen. */
278 if (MEM_P (src)
279 && GET_MODE_BITSIZE (GET_MODE (src)) < BITS_PER_WORD
280 && (extend_op = LOAD_EXTEND_OP (GET_MODE (src))) != UNKNOWN
281 && !REG_P (SET_DEST (set)))
282 return 0;
284 val = cselib_lookup (src, GET_MODE (SET_DEST (set)), 0, VOIDmode);
285 if (! val)
286 return 0;
288 /* If memory loads are cheaper than register copies, don't change them. */
289 if (MEM_P (src))
290 old_cost = memory_move_cost (GET_MODE (src), dclass, true);
291 else if (REG_P (src))
292 old_cost = register_move_cost (GET_MODE (src),
293 REGNO_REG_CLASS (REGNO (src)), dclass);
294 else
295 old_cost = set_src_cost (src, GET_MODE (SET_DEST (set)), speed);
297 for (l = val->locs; l; l = l->next)
299 rtx this_rtx = l->loc;
300 int this_cost;
302 if (CONSTANT_P (this_rtx) && ! references_value_p (this_rtx, 0))
304 if (extend_op != UNKNOWN)
306 wide_int result;
308 if (!CONST_SCALAR_INT_P (this_rtx))
309 continue;
311 switch (extend_op)
313 case ZERO_EXTEND:
314 result = wide_int::from (std::make_pair (this_rtx,
315 GET_MODE (src)),
316 BITS_PER_WORD, UNSIGNED);
317 break;
318 case SIGN_EXTEND:
319 result = wide_int::from (std::make_pair (this_rtx,
320 GET_MODE (src)),
321 BITS_PER_WORD, SIGNED);
322 break;
323 default:
324 gcc_unreachable ();
326 this_rtx = immed_wide_int_const (result, word_mode);
329 this_cost = set_src_cost (this_rtx, GET_MODE (SET_DEST (set)), speed);
331 else if (REG_P (this_rtx))
333 if (extend_op != UNKNOWN)
335 this_rtx = gen_rtx_fmt_e (extend_op, word_mode, this_rtx);
336 this_cost = set_src_cost (this_rtx, word_mode, speed);
338 else
339 this_cost = register_move_cost (GET_MODE (this_rtx),
340 REGNO_REG_CLASS (REGNO (this_rtx)),
341 dclass);
343 else
344 continue;
346 /* If equal costs, prefer registers over anything else. That
347 tends to lead to smaller instructions on some machines. */
348 if (this_cost < old_cost
349 || (this_cost == old_cost
350 && REG_P (this_rtx)
351 && !REG_P (SET_SRC (set))))
353 if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set))) < BITS_PER_WORD
354 && extend_op != UNKNOWN
355 #ifdef CANNOT_CHANGE_MODE_CLASS
356 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
357 word_mode,
358 REGNO_REG_CLASS (REGNO (SET_DEST (set))))
359 #endif
362 rtx wide_dest = gen_rtx_REG (word_mode, REGNO (SET_DEST (set)));
363 ORIGINAL_REGNO (wide_dest) = ORIGINAL_REGNO (SET_DEST (set));
364 validate_change (insn, &SET_DEST (set), wide_dest, 1);
367 validate_unshare_change (insn, &SET_SRC (set), this_rtx, 1);
368 old_cost = this_cost, did_change = 1;
372 return did_change;
375 /* Try to replace operands in INSN with equivalent values that are already
376 in registers. This can be viewed as optional reloading.
378 For each non-register operand in the insn, see if any hard regs are
379 known to be equivalent to that operand. Record the alternatives which
380 can accept these hard registers. Among all alternatives, select the
381 ones which are better or equal to the one currently matching, where
382 "better" is in terms of '?' and '!' constraints. Among the remaining
383 alternatives, select the one which replaces most operands with
384 hard registers. */
386 static int
387 reload_cse_simplify_operands (rtx_insn *insn, rtx testreg)
389 int i, j;
391 /* For each operand, all registers that are equivalent to it. */
392 HARD_REG_SET equiv_regs[MAX_RECOG_OPERANDS];
394 const char *constraints[MAX_RECOG_OPERANDS];
396 /* Vector recording how bad an alternative is. */
397 int *alternative_reject;
398 /* Vector recording how many registers can be introduced by choosing
399 this alternative. */
400 int *alternative_nregs;
401 /* Array of vectors recording, for each operand and each alternative,
402 which hard register to substitute, or -1 if the operand should be
403 left as it is. */
404 int *op_alt_regno[MAX_RECOG_OPERANDS];
405 /* Array of alternatives, sorted in order of decreasing desirability. */
406 int *alternative_order;
408 extract_constrain_insn (insn);
410 if (recog_data.n_alternatives == 0 || recog_data.n_operands == 0)
411 return 0;
413 alternative_reject = XALLOCAVEC (int, recog_data.n_alternatives);
414 alternative_nregs = XALLOCAVEC (int, recog_data.n_alternatives);
415 alternative_order = XALLOCAVEC (int, recog_data.n_alternatives);
416 memset (alternative_reject, 0, recog_data.n_alternatives * sizeof (int));
417 memset (alternative_nregs, 0, recog_data.n_alternatives * sizeof (int));
419 /* For each operand, find out which regs are equivalent. */
420 for (i = 0; i < recog_data.n_operands; i++)
422 cselib_val *v;
423 struct elt_loc_list *l;
424 rtx op;
426 CLEAR_HARD_REG_SET (equiv_regs[i]);
428 /* cselib blows up on CODE_LABELs. Trying to fix that doesn't seem
429 right, so avoid the problem here. Likewise if we have a constant
430 and the insn pattern doesn't tell us the mode we need. */
431 if (LABEL_P (recog_data.operand[i])
432 || (CONSTANT_P (recog_data.operand[i])
433 && recog_data.operand_mode[i] == VOIDmode))
434 continue;
436 op = recog_data.operand[i];
437 if (MEM_P (op)
438 && GET_MODE_BITSIZE (GET_MODE (op)) < BITS_PER_WORD
439 && LOAD_EXTEND_OP (GET_MODE (op)) != UNKNOWN)
441 rtx set = single_set (insn);
443 /* We might have multiple sets, some of which do implicit
444 extension. Punt on this for now. */
445 if (! set)
446 continue;
447 /* If the destination is also a MEM or a STRICT_LOW_PART, no
448 extension applies.
449 Also, if there is an explicit extension, we don't have to
450 worry about an implicit one. */
451 else if (MEM_P (SET_DEST (set))
452 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART
453 || GET_CODE (SET_SRC (set)) == ZERO_EXTEND
454 || GET_CODE (SET_SRC (set)) == SIGN_EXTEND)
455 ; /* Continue ordinary processing. */
456 #ifdef CANNOT_CHANGE_MODE_CLASS
457 /* If the register cannot change mode to word_mode, it follows that
458 it cannot have been used in word_mode. */
459 else if (REG_P (SET_DEST (set))
460 && CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
461 word_mode,
462 REGNO_REG_CLASS (REGNO (SET_DEST (set)))))
463 ; /* Continue ordinary processing. */
464 #endif
465 /* If this is a straight load, make the extension explicit. */
466 else if (REG_P (SET_DEST (set))
467 && recog_data.n_operands == 2
468 && SET_SRC (set) == op
469 && SET_DEST (set) == recog_data.operand[1-i])
471 validate_change (insn, recog_data.operand_loc[i],
472 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (op)),
473 word_mode, op),
475 validate_change (insn, recog_data.operand_loc[1-i],
476 gen_rtx_REG (word_mode, REGNO (SET_DEST (set))),
478 if (! apply_change_group ())
479 return 0;
480 return reload_cse_simplify_operands (insn, testreg);
482 else
483 /* ??? There might be arithmetic operations with memory that are
484 safe to optimize, but is it worth the trouble? */
485 continue;
488 if (side_effects_p (op))
489 continue;
490 v = cselib_lookup (op, recog_data.operand_mode[i], 0, VOIDmode);
491 if (! v)
492 continue;
494 for (l = v->locs; l; l = l->next)
495 if (REG_P (l->loc))
496 SET_HARD_REG_BIT (equiv_regs[i], REGNO (l->loc));
499 alternative_mask preferred = get_preferred_alternatives (insn);
500 for (i = 0; i < recog_data.n_operands; i++)
502 machine_mode mode;
503 int regno;
504 const char *p;
506 op_alt_regno[i] = XALLOCAVEC (int, recog_data.n_alternatives);
507 for (j = 0; j < recog_data.n_alternatives; j++)
508 op_alt_regno[i][j] = -1;
510 p = constraints[i] = recog_data.constraints[i];
511 mode = recog_data.operand_mode[i];
513 /* Add the reject values for each alternative given by the constraints
514 for this operand. */
515 j = 0;
516 while (*p != '\0')
518 char c = *p++;
519 if (c == ',')
520 j++;
521 else if (c == '?')
522 alternative_reject[j] += 3;
523 else if (c == '!')
524 alternative_reject[j] += 300;
527 /* We won't change operands which are already registers. We
528 also don't want to modify output operands. */
529 regno = true_regnum (recog_data.operand[i]);
530 if (regno >= 0
531 || constraints[i][0] == '='
532 || constraints[i][0] == '+')
533 continue;
535 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
537 enum reg_class rclass = NO_REGS;
539 if (! TEST_HARD_REG_BIT (equiv_regs[i], regno))
540 continue;
542 set_mode_and_regno (testreg, mode, regno);
544 /* We found a register equal to this operand. Now look for all
545 alternatives that can accept this register and have not been
546 assigned a register they can use yet. */
547 j = 0;
548 p = constraints[i];
549 for (;;)
551 char c = *p;
553 switch (c)
555 case 'g':
556 rclass = reg_class_subunion[rclass][GENERAL_REGS];
557 break;
559 default:
560 rclass
561 = (reg_class_subunion
562 [rclass]
563 [reg_class_for_constraint (lookup_constraint (p))]);
564 break;
566 case ',': case '\0':
567 /* See if REGNO fits this alternative, and set it up as the
568 replacement register if we don't have one for this
569 alternative yet and the operand being replaced is not
570 a cheap CONST_INT. */
571 if (op_alt_regno[i][j] == -1
572 && TEST_BIT (preferred, j)
573 && reg_fits_class_p (testreg, rclass, 0, mode)
574 && (!CONST_INT_P (recog_data.operand[i])
575 || (set_src_cost (recog_data.operand[i], mode,
576 optimize_bb_for_speed_p
577 (BLOCK_FOR_INSN (insn)))
578 > set_src_cost (testreg, mode,
579 optimize_bb_for_speed_p
580 (BLOCK_FOR_INSN (insn))))))
582 alternative_nregs[j]++;
583 op_alt_regno[i][j] = regno;
585 j++;
586 rclass = NO_REGS;
587 break;
589 p += CONSTRAINT_LEN (c, p);
591 if (c == '\0')
592 break;
597 /* Record all alternatives which are better or equal to the currently
598 matching one in the alternative_order array. */
599 for (i = j = 0; i < recog_data.n_alternatives; i++)
600 if (alternative_reject[i] <= alternative_reject[which_alternative])
601 alternative_order[j++] = i;
602 recog_data.n_alternatives = j;
604 /* Sort it. Given a small number of alternatives, a dumb algorithm
605 won't hurt too much. */
606 for (i = 0; i < recog_data.n_alternatives - 1; i++)
608 int best = i;
609 int best_reject = alternative_reject[alternative_order[i]];
610 int best_nregs = alternative_nregs[alternative_order[i]];
612 for (j = i + 1; j < recog_data.n_alternatives; j++)
614 int this_reject = alternative_reject[alternative_order[j]];
615 int this_nregs = alternative_nregs[alternative_order[j]];
617 if (this_reject < best_reject
618 || (this_reject == best_reject && this_nregs > best_nregs))
620 best = j;
621 best_reject = this_reject;
622 best_nregs = this_nregs;
626 std::swap (alternative_order[best], alternative_order[i]);
629 /* Substitute the operands as determined by op_alt_regno for the best
630 alternative. */
631 j = alternative_order[0];
633 for (i = 0; i < recog_data.n_operands; i++)
635 machine_mode mode = recog_data.operand_mode[i];
636 if (op_alt_regno[i][j] == -1)
637 continue;
639 validate_change (insn, recog_data.operand_loc[i],
640 gen_rtx_REG (mode, op_alt_regno[i][j]), 1);
643 for (i = recog_data.n_dups - 1; i >= 0; i--)
645 int op = recog_data.dup_num[i];
646 machine_mode mode = recog_data.operand_mode[op];
648 if (op_alt_regno[op][j] == -1)
649 continue;
651 validate_change (insn, recog_data.dup_loc[i],
652 gen_rtx_REG (mode, op_alt_regno[op][j]), 1);
655 return apply_change_group ();
658 /* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
659 addressing now.
660 This code might also be useful when reload gave up on reg+reg addressing
661 because of clashes between the return register and INDEX_REG_CLASS. */
663 /* The maximum number of uses of a register we can keep track of to
664 replace them with reg+reg addressing. */
665 #define RELOAD_COMBINE_MAX_USES 16
667 /* Describes a recorded use of a register. */
668 struct reg_use
670 /* The insn where a register has been used. */
671 rtx_insn *insn;
672 /* Points to the memory reference enclosing the use, if any, NULL_RTX
673 otherwise. */
674 rtx containing_mem;
675 /* Location of the register within INSN. */
676 rtx *usep;
677 /* The reverse uid of the insn. */
678 int ruid;
681 /* If the register is used in some unknown fashion, USE_INDEX is negative.
682 If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
683 indicates where it is first set or clobbered.
684 Otherwise, USE_INDEX is the index of the last encountered use of the
685 register (which is first among these we have seen since we scan backwards).
686 USE_RUID indicates the first encountered, i.e. last, of these uses.
687 If ALL_OFFSETS_MATCH is true, all encountered uses were inside a PLUS
688 with a constant offset; OFFSET contains this constant in that case.
689 STORE_RUID is always meaningful if we only want to use a value in a
690 register in a different place: it denotes the next insn in the insn
691 stream (i.e. the last encountered) that sets or clobbers the register.
692 REAL_STORE_RUID is similar, but clobbers are ignored when updating it. */
693 static struct
695 struct reg_use reg_use[RELOAD_COMBINE_MAX_USES];
696 rtx offset;
697 int use_index;
698 int store_ruid;
699 int real_store_ruid;
700 int use_ruid;
701 bool all_offsets_match;
702 } reg_state[FIRST_PSEUDO_REGISTER];
704 /* Reverse linear uid. This is increased in reload_combine while scanning
705 the instructions from last to first. It is used to set last_label_ruid
706 and the store_ruid / use_ruid fields in reg_state. */
707 static int reload_combine_ruid;
709 /* The RUID of the last label we encountered in reload_combine. */
710 static int last_label_ruid;
712 /* The RUID of the last jump we encountered in reload_combine. */
713 static int last_jump_ruid;
715 /* The register numbers of the first and last index register. A value of
716 -1 in LAST_INDEX_REG indicates that we've previously computed these
717 values and found no suitable index registers. */
718 static int first_index_reg = -1;
719 static int last_index_reg;
721 #define LABEL_LIVE(LABEL) \
722 (label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
724 /* Subroutine of reload_combine_split_ruids, called to fix up a single
725 ruid pointed to by *PRUID if it is higher than SPLIT_RUID. */
727 static inline void
728 reload_combine_split_one_ruid (int *pruid, int split_ruid)
730 if (*pruid > split_ruid)
731 (*pruid)++;
734 /* Called when we insert a new insn in a position we've already passed in
735 the scan. Examine all our state, increasing all ruids that are higher
736 than SPLIT_RUID by one in order to make room for a new insn. */
738 static void
739 reload_combine_split_ruids (int split_ruid)
741 unsigned i;
743 reload_combine_split_one_ruid (&reload_combine_ruid, split_ruid);
744 reload_combine_split_one_ruid (&last_label_ruid, split_ruid);
745 reload_combine_split_one_ruid (&last_jump_ruid, split_ruid);
747 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
749 int j, idx = reg_state[i].use_index;
750 reload_combine_split_one_ruid (&reg_state[i].use_ruid, split_ruid);
751 reload_combine_split_one_ruid (&reg_state[i].store_ruid, split_ruid);
752 reload_combine_split_one_ruid (&reg_state[i].real_store_ruid,
753 split_ruid);
754 if (idx < 0)
755 continue;
756 for (j = idx; j < RELOAD_COMBINE_MAX_USES; j++)
758 reload_combine_split_one_ruid (&reg_state[i].reg_use[j].ruid,
759 split_ruid);
764 /* Called when we are about to rescan a previously encountered insn with
765 reload_combine_note_use after modifying some part of it. This clears all
766 information about uses in that particular insn. */
768 static void
769 reload_combine_purge_insn_uses (rtx_insn *insn)
771 unsigned i;
773 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
775 int j, k, idx = reg_state[i].use_index;
776 if (idx < 0)
777 continue;
778 j = k = RELOAD_COMBINE_MAX_USES;
779 while (j-- > idx)
781 if (reg_state[i].reg_use[j].insn != insn)
783 k--;
784 if (k != j)
785 reg_state[i].reg_use[k] = reg_state[i].reg_use[j];
788 reg_state[i].use_index = k;
792 /* Called when we need to forget about all uses of REGNO after an insn
793 which is identified by RUID. */
795 static void
796 reload_combine_purge_reg_uses_after_ruid (unsigned regno, int ruid)
798 int j, k, idx = reg_state[regno].use_index;
799 if (idx < 0)
800 return;
801 j = k = RELOAD_COMBINE_MAX_USES;
802 while (j-- > idx)
804 if (reg_state[regno].reg_use[j].ruid >= ruid)
806 k--;
807 if (k != j)
808 reg_state[regno].reg_use[k] = reg_state[regno].reg_use[j];
811 reg_state[regno].use_index = k;
814 /* Find the use of REGNO with the ruid that is highest among those
815 lower than RUID_LIMIT, and return it if it is the only use of this
816 reg in the insn. Return NULL otherwise. */
818 static struct reg_use *
819 reload_combine_closest_single_use (unsigned regno, int ruid_limit)
821 int i, best_ruid = 0;
822 int use_idx = reg_state[regno].use_index;
823 struct reg_use *retval;
825 if (use_idx < 0)
826 return NULL;
827 retval = NULL;
828 for (i = use_idx; i < RELOAD_COMBINE_MAX_USES; i++)
830 struct reg_use *use = reg_state[regno].reg_use + i;
831 int this_ruid = use->ruid;
832 if (this_ruid >= ruid_limit)
833 continue;
834 if (this_ruid > best_ruid)
836 best_ruid = this_ruid;
837 retval = use;
839 else if (this_ruid == best_ruid)
840 retval = NULL;
842 if (last_label_ruid >= best_ruid)
843 return NULL;
844 return retval;
847 /* After we've moved an add insn, fix up any debug insns that occur
848 between the old location of the add and the new location. REG is
849 the destination register of the add insn; REPLACEMENT is the
850 SET_SRC of the add. FROM and TO specify the range in which we
851 should make this change on debug insns. */
853 static void
854 fixup_debug_insns (rtx reg, rtx replacement, rtx_insn *from, rtx_insn *to)
856 rtx_insn *insn;
857 for (insn = from; insn != to; insn = NEXT_INSN (insn))
859 rtx t;
861 if (!DEBUG_INSN_P (insn))
862 continue;
864 t = INSN_VAR_LOCATION_LOC (insn);
865 t = simplify_replace_rtx (t, reg, replacement);
866 validate_change (insn, &INSN_VAR_LOCATION_LOC (insn), t, 0);
870 /* Subroutine of reload_combine_recognize_const_pattern. Try to replace REG
871 with SRC in the insn described by USE, taking costs into account. Return
872 true if we made the replacement. */
874 static bool
875 try_replace_in_use (struct reg_use *use, rtx reg, rtx src)
877 rtx_insn *use_insn = use->insn;
878 rtx mem = use->containing_mem;
879 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn));
881 if (mem != NULL_RTX)
883 addr_space_t as = MEM_ADDR_SPACE (mem);
884 rtx oldaddr = XEXP (mem, 0);
885 rtx newaddr = NULL_RTX;
886 int old_cost = address_cost (oldaddr, GET_MODE (mem), as, speed);
887 int new_cost;
889 newaddr = simplify_replace_rtx (oldaddr, reg, src);
890 if (memory_address_addr_space_p (GET_MODE (mem), newaddr, as))
892 XEXP (mem, 0) = newaddr;
893 new_cost = address_cost (newaddr, GET_MODE (mem), as, speed);
894 XEXP (mem, 0) = oldaddr;
895 if (new_cost <= old_cost
896 && validate_change (use_insn,
897 &XEXP (mem, 0), newaddr, 0))
898 return true;
901 else
903 rtx new_set = single_set (use_insn);
904 if (new_set
905 && REG_P (SET_DEST (new_set))
906 && GET_CODE (SET_SRC (new_set)) == PLUS
907 && REG_P (XEXP (SET_SRC (new_set), 0))
908 && CONSTANT_P (XEXP (SET_SRC (new_set), 1)))
910 rtx new_src;
911 machine_mode mode = GET_MODE (SET_DEST (new_set));
912 int old_cost = set_src_cost (SET_SRC (new_set), mode, speed);
914 gcc_assert (rtx_equal_p (XEXP (SET_SRC (new_set), 0), reg));
915 new_src = simplify_replace_rtx (SET_SRC (new_set), reg, src);
917 if (set_src_cost (new_src, mode, speed) <= old_cost
918 && validate_change (use_insn, &SET_SRC (new_set),
919 new_src, 0))
920 return true;
923 return false;
926 /* Called by reload_combine when scanning INSN. This function tries to detect
927 patterns where a constant is added to a register, and the result is used
928 in an address.
929 Return true if no further processing is needed on INSN; false if it wasn't
930 recognized and should be handled normally. */
932 static bool
933 reload_combine_recognize_const_pattern (rtx_insn *insn)
935 int from_ruid = reload_combine_ruid;
936 rtx set, pat, reg, src, addreg;
937 unsigned int regno;
938 struct reg_use *use;
939 bool must_move_add;
940 rtx_insn *add_moved_after_insn = NULL;
941 int add_moved_after_ruid = 0;
942 int clobbered_regno = -1;
944 set = single_set (insn);
945 if (set == NULL_RTX)
946 return false;
948 reg = SET_DEST (set);
949 src = SET_SRC (set);
950 if (!REG_P (reg)
951 || REG_NREGS (reg) != 1
952 || GET_MODE (reg) != Pmode
953 || reg == stack_pointer_rtx)
954 return false;
956 regno = REGNO (reg);
958 /* We look for a REG1 = REG2 + CONSTANT insn, followed by either
959 uses of REG1 inside an address, or inside another add insn. If
960 possible and profitable, merge the addition into subsequent
961 uses. */
962 if (GET_CODE (src) != PLUS
963 || !REG_P (XEXP (src, 0))
964 || !CONSTANT_P (XEXP (src, 1)))
965 return false;
967 addreg = XEXP (src, 0);
968 must_move_add = rtx_equal_p (reg, addreg);
970 pat = PATTERN (insn);
971 if (must_move_add && set != pat)
973 /* We have to be careful when moving the add; apart from the
974 single_set there may also be clobbers. Recognize one special
975 case, that of one clobber alongside the set (likely a clobber
976 of the CC register). */
977 gcc_assert (GET_CODE (PATTERN (insn)) == PARALLEL);
978 if (XVECLEN (pat, 0) != 2 || XVECEXP (pat, 0, 0) != set
979 || GET_CODE (XVECEXP (pat, 0, 1)) != CLOBBER
980 || !REG_P (XEXP (XVECEXP (pat, 0, 1), 0)))
981 return false;
982 clobbered_regno = REGNO (XEXP (XVECEXP (pat, 0, 1), 0));
987 use = reload_combine_closest_single_use (regno, from_ruid);
989 if (use)
990 /* Start the search for the next use from here. */
991 from_ruid = use->ruid;
993 if (use && GET_MODE (*use->usep) == Pmode)
995 bool delete_add = false;
996 rtx_insn *use_insn = use->insn;
997 int use_ruid = use->ruid;
999 /* Avoid moving the add insn past a jump. */
1000 if (must_move_add && use_ruid <= last_jump_ruid)
1001 break;
1003 /* If the add clobbers another hard reg in parallel, don't move
1004 it past a real set of this hard reg. */
1005 if (must_move_add && clobbered_regno >= 0
1006 && reg_state[clobbered_regno].real_store_ruid >= use_ruid)
1007 break;
1009 /* Do not separate cc0 setter and cc0 user on HAVE_cc0 targets. */
1010 if (HAVE_cc0 && must_move_add && sets_cc0_p (PATTERN (use_insn)))
1011 break;
1013 gcc_assert (reg_state[regno].store_ruid <= use_ruid);
1014 /* Avoid moving a use of ADDREG past a point where it is stored. */
1015 if (reg_state[REGNO (addreg)].store_ruid > use_ruid)
1016 break;
1018 /* We also must not move the addition past an insn that sets
1019 the same register, unless we can combine two add insns. */
1020 if (must_move_add && reg_state[regno].store_ruid == use_ruid)
1022 if (use->containing_mem == NULL_RTX)
1023 delete_add = true;
1024 else
1025 break;
1028 if (try_replace_in_use (use, reg, src))
1030 reload_combine_purge_insn_uses (use_insn);
1031 reload_combine_note_use (&PATTERN (use_insn), use_insn,
1032 use_ruid, NULL_RTX);
1034 if (delete_add)
1036 fixup_debug_insns (reg, src, insn, use_insn);
1037 delete_insn (insn);
1038 return true;
1040 if (must_move_add)
1042 add_moved_after_insn = use_insn;
1043 add_moved_after_ruid = use_ruid;
1045 continue;
1048 /* If we get here, we couldn't handle this use. */
1049 if (must_move_add)
1050 break;
1052 while (use);
1054 if (!must_move_add || add_moved_after_insn == NULL_RTX)
1055 /* Process the add normally. */
1056 return false;
1058 fixup_debug_insns (reg, src, insn, add_moved_after_insn);
1060 reorder_insns (insn, insn, add_moved_after_insn);
1061 reload_combine_purge_reg_uses_after_ruid (regno, add_moved_after_ruid);
1062 reload_combine_split_ruids (add_moved_after_ruid - 1);
1063 reload_combine_note_use (&PATTERN (insn), insn,
1064 add_moved_after_ruid, NULL_RTX);
1065 reg_state[regno].store_ruid = add_moved_after_ruid;
1067 return true;
1070 /* Called by reload_combine when scanning INSN. Try to detect a pattern we
1071 can handle and improve. Return true if no further processing is needed on
1072 INSN; false if it wasn't recognized and should be handled normally. */
1074 static bool
1075 reload_combine_recognize_pattern (rtx_insn *insn)
1077 rtx set, reg, src;
1078 unsigned int regno;
1080 set = single_set (insn);
1081 if (set == NULL_RTX)
1082 return false;
1084 reg = SET_DEST (set);
1085 src = SET_SRC (set);
1086 if (!REG_P (reg) || REG_NREGS (reg) != 1)
1087 return false;
1089 regno = REGNO (reg);
1091 /* Look for (set (REGX) (CONST_INT))
1092 (set (REGX) (PLUS (REGX) (REGY)))
1094 ... (MEM (REGX)) ...
1095 and convert it to
1096 (set (REGZ) (CONST_INT))
1098 ... (MEM (PLUS (REGZ) (REGY)))... .
1100 First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
1101 and that we know all uses of REGX before it dies.
1102 Also, explicitly check that REGX != REGY; our life information
1103 does not yet show whether REGY changes in this insn. */
1105 if (GET_CODE (src) == PLUS
1106 && reg_state[regno].all_offsets_match
1107 && last_index_reg != -1
1108 && REG_P (XEXP (src, 1))
1109 && rtx_equal_p (XEXP (src, 0), reg)
1110 && !rtx_equal_p (XEXP (src, 1), reg)
1111 && reg_state[regno].use_index >= 0
1112 && reg_state[regno].use_index < RELOAD_COMBINE_MAX_USES
1113 && last_label_ruid < reg_state[regno].use_ruid)
1115 rtx base = XEXP (src, 1);
1116 rtx_insn *prev = prev_nonnote_nondebug_insn (insn);
1117 rtx prev_set = prev ? single_set (prev) : NULL_RTX;
1118 rtx index_reg = NULL_RTX;
1119 rtx reg_sum = NULL_RTX;
1120 int i;
1122 /* Now we need to set INDEX_REG to an index register (denoted as
1123 REGZ in the illustration above) and REG_SUM to the expression
1124 register+register that we want to use to substitute uses of REG
1125 (typically in MEMs) with. First check REG and BASE for being
1126 index registers; we can use them even if they are not dead. */
1127 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], regno)
1128 || TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
1129 REGNO (base)))
1131 index_reg = reg;
1132 reg_sum = src;
1134 else
1136 /* Otherwise, look for a free index register. Since we have
1137 checked above that neither REG nor BASE are index registers,
1138 if we find anything at all, it will be different from these
1139 two registers. */
1140 for (i = first_index_reg; i <= last_index_reg; i++)
1142 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], i)
1143 && reg_state[i].use_index == RELOAD_COMBINE_MAX_USES
1144 && reg_state[i].store_ruid <= reg_state[regno].use_ruid
1145 && (call_used_regs[i] || df_regs_ever_live_p (i))
1146 && (!frame_pointer_needed || i != HARD_FRAME_POINTER_REGNUM)
1147 && !fixed_regs[i] && !global_regs[i]
1148 && hard_regno_nregs[i][GET_MODE (reg)] == 1
1149 && targetm.hard_regno_scratch_ok (i))
1151 index_reg = gen_rtx_REG (GET_MODE (reg), i);
1152 reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base);
1153 break;
1158 /* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
1159 (REGY), i.e. BASE, is not clobbered before the last use we'll
1160 create. */
1161 if (reg_sum
1162 && prev_set
1163 && CONST_INT_P (SET_SRC (prev_set))
1164 && rtx_equal_p (SET_DEST (prev_set), reg)
1165 && (reg_state[REGNO (base)].store_ruid
1166 <= reg_state[regno].use_ruid))
1168 /* Change destination register and, if necessary, the constant
1169 value in PREV, the constant loading instruction. */
1170 validate_change (prev, &SET_DEST (prev_set), index_reg, 1);
1171 if (reg_state[regno].offset != const0_rtx)
1172 validate_change (prev,
1173 &SET_SRC (prev_set),
1174 GEN_INT (INTVAL (SET_SRC (prev_set))
1175 + INTVAL (reg_state[regno].offset)),
1178 /* Now for every use of REG that we have recorded, replace REG
1179 with REG_SUM. */
1180 for (i = reg_state[regno].use_index;
1181 i < RELOAD_COMBINE_MAX_USES; i++)
1182 validate_unshare_change (reg_state[regno].reg_use[i].insn,
1183 reg_state[regno].reg_use[i].usep,
1184 /* Each change must have its own
1185 replacement. */
1186 reg_sum, 1);
1188 if (apply_change_group ())
1190 struct reg_use *lowest_ruid = NULL;
1192 /* For every new use of REG_SUM, we have to record the use
1193 of BASE therein, i.e. operand 1. */
1194 for (i = reg_state[regno].use_index;
1195 i < RELOAD_COMBINE_MAX_USES; i++)
1197 struct reg_use *use = reg_state[regno].reg_use + i;
1198 reload_combine_note_use (&XEXP (*use->usep, 1), use->insn,
1199 use->ruid, use->containing_mem);
1200 if (lowest_ruid == NULL || use->ruid < lowest_ruid->ruid)
1201 lowest_ruid = use;
1204 fixup_debug_insns (reg, reg_sum, insn, lowest_ruid->insn);
1206 /* Delete the reg-reg addition. */
1207 delete_insn (insn);
1209 if (reg_state[regno].offset != const0_rtx)
1210 /* Previous REG_EQUIV / REG_EQUAL notes for PREV
1211 are now invalid. */
1212 remove_reg_equal_equiv_notes (prev);
1214 reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
1215 return true;
1219 return false;
1222 static void
1223 reload_combine (void)
1225 rtx_insn *insn, *prev;
1226 basic_block bb;
1227 unsigned int r;
1228 int min_labelno, n_labels;
1229 HARD_REG_SET ever_live_at_start, *label_live;
1231 /* To avoid wasting too much time later searching for an index register,
1232 determine the minimum and maximum index register numbers. */
1233 if (INDEX_REG_CLASS == NO_REGS)
1234 last_index_reg = -1;
1235 else if (first_index_reg == -1 && last_index_reg == 0)
1237 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1238 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], r))
1240 if (first_index_reg == -1)
1241 first_index_reg = r;
1243 last_index_reg = r;
1246 /* If no index register is available, we can quit now. Set LAST_INDEX_REG
1247 to -1 so we'll know to quit early the next time we get here. */
1248 if (first_index_reg == -1)
1250 last_index_reg = -1;
1251 return;
1255 /* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime
1256 information is a bit fuzzy immediately after reload, but it's
1257 still good enough to determine which registers are live at a jump
1258 destination. */
1259 min_labelno = get_first_label_num ();
1260 n_labels = max_label_num () - min_labelno;
1261 label_live = XNEWVEC (HARD_REG_SET, n_labels);
1262 CLEAR_HARD_REG_SET (ever_live_at_start);
1264 FOR_EACH_BB_REVERSE_FN (bb, cfun)
1266 insn = BB_HEAD (bb);
1267 if (LABEL_P (insn))
1269 HARD_REG_SET live;
1270 bitmap live_in = df_get_live_in (bb);
1272 REG_SET_TO_HARD_REG_SET (live, live_in);
1273 compute_use_by_pseudos (&live, live_in);
1274 COPY_HARD_REG_SET (LABEL_LIVE (insn), live);
1275 IOR_HARD_REG_SET (ever_live_at_start, live);
1279 /* Initialize last_label_ruid, reload_combine_ruid and reg_state. */
1280 last_label_ruid = last_jump_ruid = reload_combine_ruid = 0;
1281 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1283 reg_state[r].store_ruid = 0;
1284 reg_state[r].real_store_ruid = 0;
1285 if (fixed_regs[r])
1286 reg_state[r].use_index = -1;
1287 else
1288 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1291 for (insn = get_last_insn (); insn; insn = prev)
1293 bool control_flow_insn;
1294 rtx note;
1296 prev = PREV_INSN (insn);
1298 /* We cannot do our optimization across labels. Invalidating all the use
1299 information we have would be costly, so we just note where the label
1300 is and then later disable any optimization that would cross it. */
1301 if (LABEL_P (insn))
1302 last_label_ruid = reload_combine_ruid;
1303 else if (BARRIER_P (insn))
1305 /* Crossing a barrier resets all the use information. */
1306 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1307 if (! fixed_regs[r])
1308 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1310 else if (INSN_P (insn) && volatile_insn_p (PATTERN (insn)))
1311 /* Optimizations across insns being marked as volatile must be
1312 prevented. All the usage information is invalidated
1313 here. */
1314 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1315 if (! fixed_regs[r]
1316 && reg_state[r].use_index != RELOAD_COMBINE_MAX_USES)
1317 reg_state[r].use_index = -1;
1319 if (! NONDEBUG_INSN_P (insn))
1320 continue;
1322 reload_combine_ruid++;
1324 control_flow_insn = control_flow_insn_p (insn);
1325 if (control_flow_insn)
1326 last_jump_ruid = reload_combine_ruid;
1328 if (reload_combine_recognize_const_pattern (insn)
1329 || reload_combine_recognize_pattern (insn))
1330 continue;
1332 note_stores (PATTERN (insn), reload_combine_note_store, NULL);
1334 if (CALL_P (insn))
1336 rtx link;
1337 HARD_REG_SET used_regs;
1339 get_call_reg_set_usage (insn, &used_regs, call_used_reg_set);
1341 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1342 if (TEST_HARD_REG_BIT (used_regs, r))
1344 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1345 reg_state[r].store_ruid = reload_combine_ruid;
1348 for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
1349 link = XEXP (link, 1))
1351 rtx setuse = XEXP (link, 0);
1352 rtx usage_rtx = XEXP (setuse, 0);
1353 if ((GET_CODE (setuse) == USE || GET_CODE (setuse) == CLOBBER)
1354 && REG_P (usage_rtx))
1356 unsigned int end_regno = END_REGNO (usage_rtx);
1357 for (unsigned int i = REGNO (usage_rtx); i < end_regno; ++i)
1358 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
1360 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
1361 reg_state[i].store_ruid = reload_combine_ruid;
1363 else
1364 reg_state[i].use_index = -1;
1369 if (control_flow_insn && !ANY_RETURN_P (PATTERN (insn)))
1371 /* Non-spill registers might be used at the call destination in
1372 some unknown fashion, so we have to mark the unknown use. */
1373 HARD_REG_SET *live;
1375 if ((condjump_p (insn) || condjump_in_parallel_p (insn))
1376 && JUMP_LABEL (insn))
1378 if (ANY_RETURN_P (JUMP_LABEL (insn)))
1379 live = NULL;
1380 else
1381 live = &LABEL_LIVE (JUMP_LABEL (insn));
1383 else
1384 live = &ever_live_at_start;
1386 if (live)
1387 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1388 if (TEST_HARD_REG_BIT (*live, r))
1389 reg_state[r].use_index = -1;
1392 reload_combine_note_use (&PATTERN (insn), insn, reload_combine_ruid,
1393 NULL_RTX);
1395 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1397 if (REG_NOTE_KIND (note) == REG_INC && REG_P (XEXP (note, 0)))
1399 int regno = REGNO (XEXP (note, 0));
1400 reg_state[regno].store_ruid = reload_combine_ruid;
1401 reg_state[regno].real_store_ruid = reload_combine_ruid;
1402 reg_state[regno].use_index = -1;
1407 free (label_live);
1410 /* Check if DST is a register or a subreg of a register; if it is,
1411 update store_ruid, real_store_ruid and use_index in the reg_state
1412 structure accordingly. Called via note_stores from reload_combine. */
1414 static void
1415 reload_combine_note_store (rtx dst, const_rtx set, void *data ATTRIBUTE_UNUSED)
1417 int regno = 0;
1418 int i;
1419 machine_mode mode = GET_MODE (dst);
1421 if (GET_CODE (dst) == SUBREG)
1423 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
1424 GET_MODE (SUBREG_REG (dst)),
1425 SUBREG_BYTE (dst),
1426 GET_MODE (dst));
1427 dst = SUBREG_REG (dst);
1430 /* Some targets do argument pushes without adding REG_INC notes. */
1432 if (MEM_P (dst))
1434 dst = XEXP (dst, 0);
1435 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
1436 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC
1437 || GET_CODE (dst) == PRE_MODIFY || GET_CODE (dst) == POST_MODIFY)
1439 unsigned int end_regno = END_REGNO (XEXP (dst, 0));
1440 for (unsigned int i = REGNO (XEXP (dst, 0)); i < end_regno; ++i)
1442 /* We could probably do better, but for now mark the register
1443 as used in an unknown fashion and set/clobbered at this
1444 insn. */
1445 reg_state[i].use_index = -1;
1446 reg_state[i].store_ruid = reload_combine_ruid;
1447 reg_state[i].real_store_ruid = reload_combine_ruid;
1450 else
1451 return;
1454 if (!REG_P (dst))
1455 return;
1456 regno += REGNO (dst);
1458 /* note_stores might have stripped a STRICT_LOW_PART, so we have to be
1459 careful with registers / register parts that are not full words.
1460 Similarly for ZERO_EXTRACT. */
1461 if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT
1462 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
1464 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
1466 reg_state[i].use_index = -1;
1467 reg_state[i].store_ruid = reload_combine_ruid;
1468 reg_state[i].real_store_ruid = reload_combine_ruid;
1471 else
1473 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
1475 reg_state[i].store_ruid = reload_combine_ruid;
1476 if (GET_CODE (set) == SET)
1477 reg_state[i].real_store_ruid = reload_combine_ruid;
1478 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
1483 /* XP points to a piece of rtl that has to be checked for any uses of
1484 registers.
1485 *XP is the pattern of INSN, or a part of it.
1486 Called from reload_combine, and recursively by itself. */
1487 static void
1488 reload_combine_note_use (rtx *xp, rtx_insn *insn, int ruid, rtx containing_mem)
1490 rtx x = *xp;
1491 enum rtx_code code = x->code;
1492 const char *fmt;
1493 int i, j;
1494 rtx offset = const0_rtx; /* For the REG case below. */
1496 switch (code)
1498 case SET:
1499 if (REG_P (SET_DEST (x)))
1501 reload_combine_note_use (&SET_SRC (x), insn, ruid, NULL_RTX);
1502 return;
1504 break;
1506 case USE:
1507 /* If this is the USE of a return value, we can't change it. */
1508 if (REG_P (XEXP (x, 0)) && REG_FUNCTION_VALUE_P (XEXP (x, 0)))
1510 /* Mark the return register as used in an unknown fashion. */
1511 rtx reg = XEXP (x, 0);
1512 unsigned int end_regno = END_REGNO (reg);
1513 for (unsigned int regno = REGNO (reg); regno < end_regno; ++regno)
1514 reg_state[regno].use_index = -1;
1515 return;
1517 break;
1519 case CLOBBER:
1520 if (REG_P (SET_DEST (x)))
1522 /* No spurious CLOBBERs of pseudo registers may remain. */
1523 gcc_assert (REGNO (SET_DEST (x)) < FIRST_PSEUDO_REGISTER);
1524 return;
1526 break;
1528 case PLUS:
1529 /* We are interested in (plus (reg) (const_int)) . */
1530 if (!REG_P (XEXP (x, 0))
1531 || !CONST_INT_P (XEXP (x, 1)))
1532 break;
1533 offset = XEXP (x, 1);
1534 x = XEXP (x, 0);
1535 /* Fall through. */
1536 case REG:
1538 int regno = REGNO (x);
1539 int use_index;
1540 int nregs;
1542 /* No spurious USEs of pseudo registers may remain. */
1543 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
1545 nregs = REG_NREGS (x);
1547 /* We can't substitute into multi-hard-reg uses. */
1548 if (nregs > 1)
1550 while (--nregs >= 0)
1551 reg_state[regno + nregs].use_index = -1;
1552 return;
1555 /* We may be called to update uses in previously seen insns.
1556 Don't add uses beyond the last store we saw. */
1557 if (ruid < reg_state[regno].store_ruid)
1558 return;
1560 /* If this register is already used in some unknown fashion, we
1561 can't do anything.
1562 If we decrement the index from zero to -1, we can't store more
1563 uses, so this register becomes used in an unknown fashion. */
1564 use_index = --reg_state[regno].use_index;
1565 if (use_index < 0)
1566 return;
1568 if (use_index == RELOAD_COMBINE_MAX_USES - 1)
1570 /* This is the first use of this register we have seen since we
1571 marked it as dead. */
1572 reg_state[regno].offset = offset;
1573 reg_state[regno].all_offsets_match = true;
1574 reg_state[regno].use_ruid = ruid;
1576 else
1578 if (reg_state[regno].use_ruid > ruid)
1579 reg_state[regno].use_ruid = ruid;
1581 if (! rtx_equal_p (offset, reg_state[regno].offset))
1582 reg_state[regno].all_offsets_match = false;
1585 reg_state[regno].reg_use[use_index].insn = insn;
1586 reg_state[regno].reg_use[use_index].ruid = ruid;
1587 reg_state[regno].reg_use[use_index].containing_mem = containing_mem;
1588 reg_state[regno].reg_use[use_index].usep = xp;
1589 return;
1592 case MEM:
1593 containing_mem = x;
1594 break;
1596 default:
1597 break;
1600 /* Recursively process the components of X. */
1601 fmt = GET_RTX_FORMAT (code);
1602 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1604 if (fmt[i] == 'e')
1605 reload_combine_note_use (&XEXP (x, i), insn, ruid, containing_mem);
1606 else if (fmt[i] == 'E')
1608 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1609 reload_combine_note_use (&XVECEXP (x, i, j), insn, ruid,
1610 containing_mem);
1615 /* See if we can reduce the cost of a constant by replacing a move
1616 with an add. We track situations in which a register is set to a
1617 constant or to a register plus a constant. */
1618 /* We cannot do our optimization across labels. Invalidating all the
1619 information about register contents we have would be costly, so we
1620 use move2add_last_label_luid to note where the label is and then
1621 later disable any optimization that would cross it.
1622 reg_offset[n] / reg_base_reg[n] / reg_symbol_ref[n] / reg_mode[n]
1623 are only valid if reg_set_luid[n] is greater than
1624 move2add_last_label_luid.
1625 For a set that established a new (potential) base register with
1626 non-constant value, we use move2add_luid from the place where the
1627 setting insn is encountered; registers based off that base then
1628 get the same reg_set_luid. Constants all get
1629 move2add_last_label_luid + 1 as their reg_set_luid. */
1630 static int reg_set_luid[FIRST_PSEUDO_REGISTER];
1632 /* If reg_base_reg[n] is negative, register n has been set to
1633 reg_offset[n] or reg_symbol_ref[n] + reg_offset[n] in mode reg_mode[n].
1634 If reg_base_reg[n] is non-negative, register n has been set to the
1635 sum of reg_offset[n] and the value of register reg_base_reg[n]
1636 before reg_set_luid[n], calculated in mode reg_mode[n] .
1637 For multi-hard-register registers, all but the first one are
1638 recorded as BLKmode in reg_mode. Setting reg_mode to VOIDmode
1639 marks it as invalid. */
1640 static HOST_WIDE_INT reg_offset[FIRST_PSEUDO_REGISTER];
1641 static int reg_base_reg[FIRST_PSEUDO_REGISTER];
1642 static rtx reg_symbol_ref[FIRST_PSEUDO_REGISTER];
1643 static machine_mode reg_mode[FIRST_PSEUDO_REGISTER];
1645 /* move2add_luid is linearly increased while scanning the instructions
1646 from first to last. It is used to set reg_set_luid in
1647 reload_cse_move2add and move2add_note_store. */
1648 static int move2add_luid;
1650 /* move2add_last_label_luid is set whenever a label is found. Labels
1651 invalidate all previously collected reg_offset data. */
1652 static int move2add_last_label_luid;
1654 /* ??? We don't know how zero / sign extension is handled, hence we
1655 can't go from a narrower to a wider mode. */
1656 #define MODES_OK_FOR_MOVE2ADD(OUTMODE, INMODE) \
1657 (GET_MODE_SIZE (OUTMODE) == GET_MODE_SIZE (INMODE) \
1658 || (GET_MODE_SIZE (OUTMODE) <= GET_MODE_SIZE (INMODE) \
1659 && TRULY_NOOP_TRUNCATION_MODES_P (OUTMODE, INMODE)))
1661 /* Record that REG is being set to a value with the mode of REG. */
1663 static void
1664 move2add_record_mode (rtx reg)
1666 int regno, nregs;
1667 machine_mode mode = GET_MODE (reg);
1669 if (GET_CODE (reg) == SUBREG)
1671 regno = subreg_regno (reg);
1672 nregs = subreg_nregs (reg);
1674 else if (REG_P (reg))
1676 regno = REGNO (reg);
1677 nregs = REG_NREGS (reg);
1679 else
1680 gcc_unreachable ();
1681 for (int i = nregs - 1; i > 0; i--)
1682 reg_mode[regno + i] = BLKmode;
1683 reg_mode[regno] = mode;
1686 /* Record that REG is being set to the sum of SYM and OFF. */
1688 static void
1689 move2add_record_sym_value (rtx reg, rtx sym, rtx off)
1691 int regno = REGNO (reg);
1693 move2add_record_mode (reg);
1694 reg_set_luid[regno] = move2add_luid;
1695 reg_base_reg[regno] = -1;
1696 reg_symbol_ref[regno] = sym;
1697 reg_offset[regno] = INTVAL (off);
1700 /* Check if REGNO contains a valid value in MODE. */
1702 static bool
1703 move2add_valid_value_p (int regno, machine_mode mode)
1705 if (reg_set_luid[regno] <= move2add_last_label_luid)
1706 return false;
1708 if (mode != reg_mode[regno])
1710 if (!MODES_OK_FOR_MOVE2ADD (mode, reg_mode[regno]))
1711 return false;
1712 /* The value loaded into regno in reg_mode[regno] is also valid in
1713 mode after truncation only if (REG:mode regno) is the lowpart of
1714 (REG:reg_mode[regno] regno). Now, for big endian, the starting
1715 regno of the lowpart might be different. */
1716 int s_off = subreg_lowpart_offset (mode, reg_mode[regno]);
1717 s_off = subreg_regno_offset (regno, reg_mode[regno], s_off, mode);
1718 if (s_off != 0)
1719 /* We could in principle adjust regno, check reg_mode[regno] to be
1720 BLKmode, and return s_off to the caller (vs. -1 for failure),
1721 but we currently have no callers that could make use of this
1722 information. */
1723 return false;
1726 for (int i = hard_regno_nregs[regno][mode] - 1; i > 0; i--)
1727 if (reg_mode[regno + i] != BLKmode)
1728 return false;
1729 return true;
1732 /* This function is called with INSN that sets REG to (SYM + OFF),
1733 while REG is known to already have value (SYM + offset).
1734 This function tries to change INSN into an add instruction
1735 (set (REG) (plus (REG) (OFF - offset))) using the known value.
1736 It also updates the information about REG's known value.
1737 Return true if we made a change. */
1739 static bool
1740 move2add_use_add2_insn (rtx reg, rtx sym, rtx off, rtx_insn *insn)
1742 rtx pat = PATTERN (insn);
1743 rtx src = SET_SRC (pat);
1744 int regno = REGNO (reg);
1745 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[regno],
1746 GET_MODE (reg));
1747 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1748 bool changed = false;
1750 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1751 use (set (reg) (reg)) instead.
1752 We don't delete this insn, nor do we convert it into a
1753 note, to avoid losing register notes or the return
1754 value flag. jump2 already knows how to get rid of
1755 no-op moves. */
1756 if (new_src == const0_rtx)
1758 /* If the constants are different, this is a
1759 truncation, that, if turned into (set (reg)
1760 (reg)), would be discarded. Maybe we should
1761 try a truncMN pattern? */
1762 if (INTVAL (off) == reg_offset [regno])
1763 changed = validate_change (insn, &SET_SRC (pat), reg, 0);
1765 else
1767 struct full_rtx_costs oldcst, newcst;
1768 rtx tem = gen_rtx_PLUS (GET_MODE (reg), reg, new_src);
1770 get_full_set_rtx_cost (pat, &oldcst);
1771 SET_SRC (pat) = tem;
1772 get_full_set_rtx_cost (pat, &newcst);
1773 SET_SRC (pat) = src;
1775 if (costs_lt_p (&newcst, &oldcst, speed)
1776 && have_add2_insn (reg, new_src))
1777 changed = validate_change (insn, &SET_SRC (pat), tem, 0);
1778 else if (sym == NULL_RTX && GET_MODE (reg) != BImode)
1780 machine_mode narrow_mode;
1781 for (narrow_mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1782 narrow_mode != VOIDmode
1783 && narrow_mode != GET_MODE (reg);
1784 narrow_mode = GET_MODE_WIDER_MODE (narrow_mode))
1786 if (have_insn_for (STRICT_LOW_PART, narrow_mode)
1787 && ((reg_offset[regno] & ~GET_MODE_MASK (narrow_mode))
1788 == (INTVAL (off) & ~GET_MODE_MASK (narrow_mode))))
1790 rtx narrow_reg = gen_lowpart_common (narrow_mode, reg);
1791 rtx narrow_src = gen_int_mode (INTVAL (off),
1792 narrow_mode);
1793 rtx new_set
1794 = gen_rtx_SET (gen_rtx_STRICT_LOW_PART (VOIDmode,
1795 narrow_reg),
1796 narrow_src);
1797 get_full_set_rtx_cost (new_set, &newcst);
1798 if (costs_lt_p (&newcst, &oldcst, speed))
1800 changed = validate_change (insn, &PATTERN (insn),
1801 new_set, 0);
1802 if (changed)
1803 break;
1809 move2add_record_sym_value (reg, sym, off);
1810 return changed;
1814 /* This function is called with INSN that sets REG to (SYM + OFF),
1815 but REG doesn't have known value (SYM + offset). This function
1816 tries to find another register which is known to already have
1817 value (SYM + offset) and change INSN into an add instruction
1818 (set (REG) (plus (the found register) (OFF - offset))) if such
1819 a register is found. It also updates the information about
1820 REG's known value.
1821 Return true iff we made a change. */
1823 static bool
1824 move2add_use_add3_insn (rtx reg, rtx sym, rtx off, rtx_insn *insn)
1826 rtx pat = PATTERN (insn);
1827 rtx src = SET_SRC (pat);
1828 int regno = REGNO (reg);
1829 int min_regno = 0;
1830 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1831 int i;
1832 bool changed = false;
1833 struct full_rtx_costs oldcst, newcst, mincst;
1834 rtx plus_expr;
1836 init_costs_to_max (&mincst);
1837 get_full_set_rtx_cost (pat, &oldcst);
1839 plus_expr = gen_rtx_PLUS (GET_MODE (reg), reg, const0_rtx);
1840 SET_SRC (pat) = plus_expr;
1842 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1843 if (move2add_valid_value_p (i, GET_MODE (reg))
1844 && reg_base_reg[i] < 0
1845 && reg_symbol_ref[i] != NULL_RTX
1846 && rtx_equal_p (sym, reg_symbol_ref[i]))
1848 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[i],
1849 GET_MODE (reg));
1850 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1851 use (set (reg) (reg)) instead.
1852 We don't delete this insn, nor do we convert it into a
1853 note, to avoid losing register notes or the return
1854 value flag. jump2 already knows how to get rid of
1855 no-op moves. */
1856 if (new_src == const0_rtx)
1858 init_costs_to_zero (&mincst);
1859 min_regno = i;
1860 break;
1862 else
1864 XEXP (plus_expr, 1) = new_src;
1865 get_full_set_rtx_cost (pat, &newcst);
1867 if (costs_lt_p (&newcst, &mincst, speed))
1869 mincst = newcst;
1870 min_regno = i;
1874 SET_SRC (pat) = src;
1876 if (costs_lt_p (&mincst, &oldcst, speed))
1878 rtx tem;
1880 tem = gen_rtx_REG (GET_MODE (reg), min_regno);
1881 if (i != min_regno)
1883 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[min_regno],
1884 GET_MODE (reg));
1885 tem = gen_rtx_PLUS (GET_MODE (reg), tem, new_src);
1887 if (validate_change (insn, &SET_SRC (pat), tem, 0))
1888 changed = true;
1890 reg_set_luid[regno] = move2add_luid;
1891 move2add_record_sym_value (reg, sym, off);
1892 return changed;
1895 /* Convert move insns with constant inputs to additions if they are cheaper.
1896 Return true if any changes were made. */
1897 static bool
1898 reload_cse_move2add (rtx_insn *first)
1900 int i;
1901 rtx_insn *insn;
1902 bool changed = false;
1904 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
1906 reg_set_luid[i] = 0;
1907 reg_offset[i] = 0;
1908 reg_base_reg[i] = 0;
1909 reg_symbol_ref[i] = NULL_RTX;
1910 reg_mode[i] = VOIDmode;
1913 move2add_last_label_luid = 0;
1914 move2add_luid = 2;
1915 for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++)
1917 rtx pat, note;
1919 if (LABEL_P (insn))
1921 move2add_last_label_luid = move2add_luid;
1922 /* We're going to increment move2add_luid twice after a
1923 label, so that we can use move2add_last_label_luid + 1 as
1924 the luid for constants. */
1925 move2add_luid++;
1926 continue;
1928 if (! INSN_P (insn))
1929 continue;
1930 pat = PATTERN (insn);
1931 /* For simplicity, we only perform this optimization on
1932 straightforward SETs. */
1933 if (GET_CODE (pat) == SET
1934 && REG_P (SET_DEST (pat)))
1936 rtx reg = SET_DEST (pat);
1937 int regno = REGNO (reg);
1938 rtx src = SET_SRC (pat);
1940 /* Check if we have valid information on the contents of this
1941 register in the mode of REG. */
1942 if (move2add_valid_value_p (regno, GET_MODE (reg))
1943 && dbg_cnt (cse2_move2add))
1945 /* Try to transform (set (REGX) (CONST_INT A))
1947 (set (REGX) (CONST_INT B))
1949 (set (REGX) (CONST_INT A))
1951 (set (REGX) (plus (REGX) (CONST_INT B-A)))
1953 (set (REGX) (CONST_INT A))
1955 (set (STRICT_LOW_PART (REGX)) (CONST_INT B))
1958 if (CONST_INT_P (src)
1959 && reg_base_reg[regno] < 0
1960 && reg_symbol_ref[regno] == NULL_RTX)
1962 changed |= move2add_use_add2_insn (reg, NULL_RTX, src, insn);
1963 continue;
1966 /* Try to transform (set (REGX) (REGY))
1967 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1969 (set (REGX) (REGY))
1970 (set (REGX) (PLUS (REGX) (CONST_INT B)))
1972 (set (REGX) (REGY))
1973 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1975 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
1976 else if (REG_P (src)
1977 && reg_set_luid[regno] == reg_set_luid[REGNO (src)]
1978 && reg_base_reg[regno] == reg_base_reg[REGNO (src)]
1979 && move2add_valid_value_p (REGNO (src), GET_MODE (reg)))
1981 rtx_insn *next = next_nonnote_nondebug_insn (insn);
1982 rtx set = NULL_RTX;
1983 if (next)
1984 set = single_set (next);
1985 if (set
1986 && SET_DEST (set) == reg
1987 && GET_CODE (SET_SRC (set)) == PLUS
1988 && XEXP (SET_SRC (set), 0) == reg
1989 && CONST_INT_P (XEXP (SET_SRC (set), 1)))
1991 rtx src3 = XEXP (SET_SRC (set), 1);
1992 unsigned HOST_WIDE_INT added_offset = UINTVAL (src3);
1993 HOST_WIDE_INT base_offset = reg_offset[REGNO (src)];
1994 HOST_WIDE_INT regno_offset = reg_offset[regno];
1995 rtx new_src =
1996 gen_int_mode (added_offset
1997 + base_offset
1998 - regno_offset,
1999 GET_MODE (reg));
2000 bool success = false;
2001 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
2003 if (new_src == const0_rtx)
2004 /* See above why we create (set (reg) (reg)) here. */
2005 success
2006 = validate_change (next, &SET_SRC (set), reg, 0);
2007 else
2009 rtx old_src = SET_SRC (set);
2010 struct full_rtx_costs oldcst, newcst;
2011 rtx tem = gen_rtx_PLUS (GET_MODE (reg), reg, new_src);
2013 get_full_set_rtx_cost (set, &oldcst);
2014 SET_SRC (set) = tem;
2015 get_full_set_src_cost (tem, GET_MODE (reg), &newcst);
2016 SET_SRC (set) = old_src;
2017 costs_add_n_insns (&oldcst, 1);
2019 if (costs_lt_p (&newcst, &oldcst, speed)
2020 && have_add2_insn (reg, new_src))
2022 rtx newpat = gen_rtx_SET (reg, tem);
2023 success
2024 = validate_change (next, &PATTERN (next),
2025 newpat, 0);
2028 if (success)
2029 delete_insn (insn);
2030 changed |= success;
2031 insn = next;
2032 move2add_record_mode (reg);
2033 reg_offset[regno]
2034 = trunc_int_for_mode (added_offset + base_offset,
2035 GET_MODE (reg));
2036 continue;
2041 /* Try to transform
2042 (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
2044 (set (REGY) (CONST (PLUS (SYMBOL_REF) (CONST_INT B))))
2046 (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
2048 (set (REGY) (CONST (PLUS (REGX) (CONST_INT B-A)))) */
2049 if ((GET_CODE (src) == SYMBOL_REF
2050 || (GET_CODE (src) == CONST
2051 && GET_CODE (XEXP (src, 0)) == PLUS
2052 && GET_CODE (XEXP (XEXP (src, 0), 0)) == SYMBOL_REF
2053 && CONST_INT_P (XEXP (XEXP (src, 0), 1))))
2054 && dbg_cnt (cse2_move2add))
2056 rtx sym, off;
2058 if (GET_CODE (src) == SYMBOL_REF)
2060 sym = src;
2061 off = const0_rtx;
2063 else
2065 sym = XEXP (XEXP (src, 0), 0);
2066 off = XEXP (XEXP (src, 0), 1);
2069 /* If the reg already contains the value which is sum of
2070 sym and some constant value, we can use an add2 insn. */
2071 if (move2add_valid_value_p (regno, GET_MODE (reg))
2072 && reg_base_reg[regno] < 0
2073 && reg_symbol_ref[regno] != NULL_RTX
2074 && rtx_equal_p (sym, reg_symbol_ref[regno]))
2075 changed |= move2add_use_add2_insn (reg, sym, off, insn);
2077 /* Otherwise, we have to find a register whose value is sum
2078 of sym and some constant value. */
2079 else
2080 changed |= move2add_use_add3_insn (reg, sym, off, insn);
2082 continue;
2086 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2088 if (REG_NOTE_KIND (note) == REG_INC
2089 && REG_P (XEXP (note, 0)))
2091 /* Reset the information about this register. */
2092 int regno = REGNO (XEXP (note, 0));
2093 if (regno < FIRST_PSEUDO_REGISTER)
2095 move2add_record_mode (XEXP (note, 0));
2096 reg_mode[regno] = VOIDmode;
2100 note_stores (PATTERN (insn), move2add_note_store, insn);
2102 /* If INSN is a conditional branch, we try to extract an
2103 implicit set out of it. */
2104 if (any_condjump_p (insn))
2106 rtx cnd = fis_get_condition (insn);
2108 if (cnd != NULL_RTX
2109 && GET_CODE (cnd) == NE
2110 && REG_P (XEXP (cnd, 0))
2111 && !reg_set_p (XEXP (cnd, 0), insn)
2112 /* The following two checks, which are also in
2113 move2add_note_store, are intended to reduce the
2114 number of calls to gen_rtx_SET to avoid memory
2115 allocation if possible. */
2116 && SCALAR_INT_MODE_P (GET_MODE (XEXP (cnd, 0)))
2117 && REG_NREGS (XEXP (cnd, 0)) == 1
2118 && CONST_INT_P (XEXP (cnd, 1)))
2120 rtx implicit_set =
2121 gen_rtx_SET (XEXP (cnd, 0), XEXP (cnd, 1));
2122 move2add_note_store (SET_DEST (implicit_set), implicit_set, insn);
2126 /* If this is a CALL_INSN, all call used registers are stored with
2127 unknown values. */
2128 if (CALL_P (insn))
2130 rtx link;
2132 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
2134 if (call_used_regs[i])
2135 /* Reset the information about this register. */
2136 reg_mode[i] = VOIDmode;
2139 for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
2140 link = XEXP (link, 1))
2142 rtx setuse = XEXP (link, 0);
2143 rtx usage_rtx = XEXP (setuse, 0);
2144 if (GET_CODE (setuse) == CLOBBER
2145 && REG_P (usage_rtx))
2147 unsigned int end_regno = END_REGNO (usage_rtx);
2148 for (unsigned int r = REGNO (usage_rtx); r < end_regno; ++r)
2149 /* Reset the information about this register. */
2150 reg_mode[r] = VOIDmode;
2155 return changed;
2158 /* SET is a SET or CLOBBER that sets DST. DATA is the insn which
2159 contains SET.
2160 Update reg_set_luid, reg_offset and reg_base_reg accordingly.
2161 Called from reload_cse_move2add via note_stores. */
2163 static void
2164 move2add_note_store (rtx dst, const_rtx set, void *data)
2166 rtx_insn *insn = (rtx_insn *) data;
2167 unsigned int regno = 0;
2168 machine_mode mode = GET_MODE (dst);
2170 /* Some targets do argument pushes without adding REG_INC notes. */
2172 if (MEM_P (dst))
2174 dst = XEXP (dst, 0);
2175 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
2176 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC)
2177 reg_mode[REGNO (XEXP (dst, 0))] = VOIDmode;
2178 return;
2181 if (GET_CODE (dst) == SUBREG)
2182 regno = subreg_regno (dst);
2183 else if (REG_P (dst))
2184 regno = REGNO (dst);
2185 else
2186 return;
2188 if (SCALAR_INT_MODE_P (mode)
2189 && GET_CODE (set) == SET)
2191 rtx note, sym = NULL_RTX;
2192 rtx off;
2194 note = find_reg_equal_equiv_note (insn);
2195 if (note && GET_CODE (XEXP (note, 0)) == SYMBOL_REF)
2197 sym = XEXP (note, 0);
2198 off = const0_rtx;
2200 else if (note && GET_CODE (XEXP (note, 0)) == CONST
2201 && GET_CODE (XEXP (XEXP (note, 0), 0)) == PLUS
2202 && GET_CODE (XEXP (XEXP (XEXP (note, 0), 0), 0)) == SYMBOL_REF
2203 && CONST_INT_P (XEXP (XEXP (XEXP (note, 0), 0), 1)))
2205 sym = XEXP (XEXP (XEXP (note, 0), 0), 0);
2206 off = XEXP (XEXP (XEXP (note, 0), 0), 1);
2209 if (sym != NULL_RTX)
2211 move2add_record_sym_value (dst, sym, off);
2212 return;
2216 if (SCALAR_INT_MODE_P (mode)
2217 && GET_CODE (set) == SET
2218 && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
2219 && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
2221 rtx src = SET_SRC (set);
2222 rtx base_reg;
2223 unsigned HOST_WIDE_INT offset;
2224 int base_regno;
2226 switch (GET_CODE (src))
2228 case PLUS:
2229 if (REG_P (XEXP (src, 0)))
2231 base_reg = XEXP (src, 0);
2233 if (CONST_INT_P (XEXP (src, 1)))
2234 offset = UINTVAL (XEXP (src, 1));
2235 else if (REG_P (XEXP (src, 1))
2236 && move2add_valid_value_p (REGNO (XEXP (src, 1)), mode))
2238 if (reg_base_reg[REGNO (XEXP (src, 1))] < 0
2239 && reg_symbol_ref[REGNO (XEXP (src, 1))] == NULL_RTX)
2240 offset = reg_offset[REGNO (XEXP (src, 1))];
2241 /* Maybe the first register is known to be a
2242 constant. */
2243 else if (move2add_valid_value_p (REGNO (base_reg), mode)
2244 && reg_base_reg[REGNO (base_reg)] < 0
2245 && reg_symbol_ref[REGNO (base_reg)] == NULL_RTX)
2247 offset = reg_offset[REGNO (base_reg)];
2248 base_reg = XEXP (src, 1);
2250 else
2251 goto invalidate;
2253 else
2254 goto invalidate;
2256 break;
2259 goto invalidate;
2261 case REG:
2262 base_reg = src;
2263 offset = 0;
2264 break;
2266 case CONST_INT:
2267 /* Start tracking the register as a constant. */
2268 reg_base_reg[regno] = -1;
2269 reg_symbol_ref[regno] = NULL_RTX;
2270 reg_offset[regno] = INTVAL (SET_SRC (set));
2271 /* We assign the same luid to all registers set to constants. */
2272 reg_set_luid[regno] = move2add_last_label_luid + 1;
2273 move2add_record_mode (dst);
2274 return;
2276 default:
2277 goto invalidate;
2280 base_regno = REGNO (base_reg);
2281 /* If information about the base register is not valid, set it
2282 up as a new base register, pretending its value is known
2283 starting from the current insn. */
2284 if (!move2add_valid_value_p (base_regno, mode))
2286 reg_base_reg[base_regno] = base_regno;
2287 reg_symbol_ref[base_regno] = NULL_RTX;
2288 reg_offset[base_regno] = 0;
2289 reg_set_luid[base_regno] = move2add_luid;
2290 gcc_assert (GET_MODE (base_reg) == mode);
2291 move2add_record_mode (base_reg);
2294 /* Copy base information from our base register. */
2295 reg_set_luid[regno] = reg_set_luid[base_regno];
2296 reg_base_reg[regno] = reg_base_reg[base_regno];
2297 reg_symbol_ref[regno] = reg_symbol_ref[base_regno];
2299 /* Compute the sum of the offsets or constants. */
2300 reg_offset[regno]
2301 = trunc_int_for_mode (offset + reg_offset[base_regno], mode);
2303 move2add_record_mode (dst);
2305 else
2307 invalidate:
2308 /* Invalidate the contents of the register. */
2309 move2add_record_mode (dst);
2310 reg_mode[regno] = VOIDmode;
2314 namespace {
2316 const pass_data pass_data_postreload_cse =
2318 RTL_PASS, /* type */
2319 "postreload", /* name */
2320 OPTGROUP_NONE, /* optinfo_flags */
2321 TV_RELOAD_CSE_REGS, /* tv_id */
2322 0, /* properties_required */
2323 0, /* properties_provided */
2324 0, /* properties_destroyed */
2325 0, /* todo_flags_start */
2326 TODO_df_finish, /* todo_flags_finish */
2329 class pass_postreload_cse : public rtl_opt_pass
2331 public:
2332 pass_postreload_cse (gcc::context *ctxt)
2333 : rtl_opt_pass (pass_data_postreload_cse, ctxt)
2336 /* opt_pass methods: */
2337 virtual bool gate (function *) { return (optimize > 0 && reload_completed); }
2339 virtual unsigned int execute (function *);
2341 }; // class pass_postreload_cse
2343 unsigned int
2344 pass_postreload_cse::execute (function *fun)
2346 if (!dbg_cnt (postreload_cse))
2347 return 0;
2349 /* Do a very simple CSE pass over just the hard registers. */
2350 reload_cse_regs (get_insns ());
2351 /* Reload_cse_regs can eliminate potentially-trapping MEMs.
2352 Remove any EH edges associated with them. */
2353 if (fun->can_throw_non_call_exceptions
2354 && purge_all_dead_edges ())
2355 cleanup_cfg (0);
2357 return 0;
2360 } // anon namespace
2362 rtl_opt_pass *
2363 make_pass_postreload_cse (gcc::context *ctxt)
2365 return new pass_postreload_cse (ctxt);