1 /* Optimize jump instructions, for GNU compiler.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This is the pathetic reminder of old fame of the jump-optimization pass
21 of the compiler. Now it contains basically a set of utility functions to
24 Each CODE_LABEL has a count of the times it is used
25 stored in the LABEL_NUSES internal field, and each JUMP_INSN
26 has one label that it refers to stored in the
27 JUMP_LABEL internal field. With this we can detect labels that
28 become unused because of the deletion of all the jumps that
29 formerly used them. The JUMP_LABEL info is sometimes looked
30 at by later passes. For return insns, it contains either a
31 RETURN or a SIMPLE_RETURN rtx.
33 The subroutines redirect_jump and invert_jump are used
34 from other passes as well. */
38 #include "coretypes.h"
45 #include "insn-config.h"
46 #include "insn-attr.h"
60 #include "diagnostic-core.h"
62 #include "tree-pass.h"
66 /* Optimize jump y; x: ... y: jumpif... x?
67 Don't know if it is worth bothering with. */
68 /* Optimize two cases of conditional jump to conditional jump?
69 This can never delete any instruction or make anything dead,
70 or even change what is live at any point.
71 So perhaps let combiner do it. */
73 static void init_label_info (rtx_insn
*);
74 static void mark_all_labels (rtx_insn
*);
75 static void mark_jump_label_1 (rtx
, rtx_insn
*, bool, bool);
76 static void mark_jump_label_asm (rtx
, rtx_insn
*);
77 static void redirect_exp_1 (rtx
*, rtx
, rtx
, rtx
);
78 static int invert_exp_1 (rtx
, rtx
);
80 /* Worker for rebuild_jump_labels and rebuild_jump_labels_chain. */
82 rebuild_jump_labels_1 (rtx_insn
*f
, bool count_forced
)
86 timevar_push (TV_REBUILD_JUMP
);
90 /* Keep track of labels used from static data; we don't track them
91 closely enough to delete them here, so make sure their reference
92 count doesn't drop to zero. */
95 for (insn
= forced_labels
; insn
; insn
= insn
->next ())
96 if (LABEL_P (insn
->insn ()))
97 LABEL_NUSES (insn
->insn ())++;
98 timevar_pop (TV_REBUILD_JUMP
);
101 /* This function rebuilds the JUMP_LABEL field and REG_LABEL_TARGET
102 notes in jumping insns and REG_LABEL_OPERAND notes in non-jumping
103 instructions and jumping insns that have labels as operands
104 (e.g. cbranchsi4). */
106 rebuild_jump_labels (rtx_insn
*f
)
108 rebuild_jump_labels_1 (f
, true);
111 /* This function is like rebuild_jump_labels, but doesn't run over
112 forced_labels. It can be used on insn chains that aren't the
113 main function chain. */
115 rebuild_jump_labels_chain (rtx_insn
*chain
)
117 rebuild_jump_labels_1 (chain
, false);
120 /* Some old code expects exactly one BARRIER as the NEXT_INSN of a
121 non-fallthru insn. This is not generally true, as multiple barriers
122 may have crept in, or the BARRIER may be separated from the last
123 real insn by one or more NOTEs.
125 This simple pass moves barriers and removes duplicates so that the
129 cleanup_barriers (void)
132 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
134 if (BARRIER_P (insn
))
136 rtx_insn
*prev
= prev_nonnote_insn (insn
);
142 /* Make sure we do not split a call and its corresponding
143 CALL_ARG_LOCATION note. */
144 rtx_insn
*next
= NEXT_INSN (prev
);
147 && NOTE_KIND (next
) == NOTE_INSN_CALL_ARG_LOCATION
)
151 if (BARRIER_P (prev
))
153 else if (prev
!= PREV_INSN (insn
))
155 basic_block bb
= BLOCK_FOR_INSN (prev
);
156 rtx_insn
*end
= PREV_INSN (insn
);
157 reorder_insns_nobb (insn
, insn
, prev
);
160 /* If the backend called in machine reorg compute_bb_for_insn
161 and didn't free_bb_for_insn again, preserve basic block
162 boundaries. Move the end of basic block to PREV since
163 it is followed by a barrier now, and clear BLOCK_FOR_INSN
164 on the following notes.
165 ??? Maybe the proper solution for the targets that have
166 cfg around after machine reorg is not to run cleanup_barriers
171 prev
= NEXT_INSN (prev
);
172 if (prev
!= insn
&& BLOCK_FOR_INSN (prev
) == bb
)
173 BLOCK_FOR_INSN (prev
) = NULL
;
185 const pass_data pass_data_cleanup_barriers
=
188 "barriers", /* name */
189 OPTGROUP_NONE
, /* optinfo_flags */
191 0, /* properties_required */
192 0, /* properties_provided */
193 0, /* properties_destroyed */
194 0, /* todo_flags_start */
195 0, /* todo_flags_finish */
198 class pass_cleanup_barriers
: public rtl_opt_pass
201 pass_cleanup_barriers (gcc::context
*ctxt
)
202 : rtl_opt_pass (pass_data_cleanup_barriers
, ctxt
)
205 /* opt_pass methods: */
206 virtual unsigned int execute (function
*) { return cleanup_barriers (); }
208 }; // class pass_cleanup_barriers
213 make_pass_cleanup_barriers (gcc::context
*ctxt
)
215 return new pass_cleanup_barriers (ctxt
);
219 /* Initialize LABEL_NUSES and JUMP_LABEL fields, add REG_LABEL_TARGET
220 for remaining targets for JUMP_P. Delete any REG_LABEL_OPERAND
221 notes whose labels don't occur in the insn any more. */
224 init_label_info (rtx_insn
*f
)
228 for (insn
= f
; insn
; insn
= NEXT_INSN (insn
))
231 LABEL_NUSES (insn
) = (LABEL_PRESERVE_P (insn
) != 0);
233 /* REG_LABEL_TARGET notes (including the JUMP_LABEL field) are
234 sticky and not reset here; that way we won't lose association
235 with a label when e.g. the source for a target register
236 disappears out of reach for targets that may use jump-target
237 registers. Jump transformations are supposed to transform
238 any REG_LABEL_TARGET notes. The target label reference in a
239 branch may disappear from the branch (and from the
240 instruction before it) for other reasons, like register
247 for (note
= REG_NOTES (insn
); note
; note
= next
)
249 next
= XEXP (note
, 1);
250 if (REG_NOTE_KIND (note
) == REG_LABEL_OPERAND
251 && ! reg_mentioned_p (XEXP (note
, 0), PATTERN (insn
)))
252 remove_note (insn
, note
);
258 /* A subroutine of mark_all_labels. Trivially propagate a simple label
259 load into a jump_insn that uses it. */
262 maybe_propagate_label_ref (rtx_insn
*jump_insn
, rtx_insn
*prev_nonjump_insn
)
264 rtx label_note
, pc
, pc_src
;
266 pc
= pc_set (jump_insn
);
267 pc_src
= pc
!= NULL
? SET_SRC (pc
) : NULL
;
268 label_note
= find_reg_note (prev_nonjump_insn
, REG_LABEL_OPERAND
, NULL
);
270 /* If the previous non-jump insn sets something to a label,
271 something that this jump insn uses, make that label the primary
272 target of this insn if we don't yet have any. That previous
273 insn must be a single_set and not refer to more than one label.
274 The jump insn must not refer to other labels as jump targets
275 and must be a plain (set (pc) ...), maybe in a parallel, and
276 may refer to the item being set only directly or as one of the
277 arms in an IF_THEN_ELSE. */
279 if (label_note
!= NULL
&& pc_src
!= NULL
)
281 rtx label_set
= single_set (prev_nonjump_insn
);
282 rtx label_dest
= label_set
!= NULL
? SET_DEST (label_set
) : NULL
;
284 if (label_set
!= NULL
285 /* The source must be the direct LABEL_REF, not a
286 PLUS, UNSPEC, IF_THEN_ELSE etc. */
287 && GET_CODE (SET_SRC (label_set
)) == LABEL_REF
288 && (rtx_equal_p (label_dest
, pc_src
)
289 || (GET_CODE (pc_src
) == IF_THEN_ELSE
290 && (rtx_equal_p (label_dest
, XEXP (pc_src
, 1))
291 || rtx_equal_p (label_dest
, XEXP (pc_src
, 2))))))
293 /* The CODE_LABEL referred to in the note must be the
294 CODE_LABEL in the LABEL_REF of the "set". We can
295 conveniently use it for the marker function, which
296 requires a LABEL_REF wrapping. */
297 gcc_assert (XEXP (label_note
, 0) == LABEL_REF_LABEL (SET_SRC (label_set
)));
299 mark_jump_label_1 (label_set
, jump_insn
, false, true);
301 gcc_assert (JUMP_LABEL (jump_insn
) == XEXP (label_note
, 0));
306 /* Mark the label each jump jumps to.
307 Combine consecutive labels, and count uses of labels. */
310 mark_all_labels (rtx_insn
*f
)
314 if (current_ir_type () == IR_RTL_CFGLAYOUT
)
317 FOR_EACH_BB_FN (bb
, cfun
)
319 /* In cfglayout mode, we don't bother with trivial next-insn
320 propagation of LABEL_REFs into JUMP_LABEL. This will be
321 handled by other optimizers using better algorithms. */
322 FOR_BB_INSNS (bb
, insn
)
324 gcc_assert (! insn
->deleted ());
325 if (NONDEBUG_INSN_P (insn
))
326 mark_jump_label (PATTERN (insn
), insn
, 0);
329 /* In cfglayout mode, there may be non-insns between the
330 basic blocks. If those non-insns represent tablejump data,
331 they contain label references that we must record. */
332 for (insn
= BB_HEADER (bb
); insn
; insn
= NEXT_INSN (insn
))
333 if (JUMP_TABLE_DATA_P (insn
))
334 mark_jump_label (PATTERN (insn
), insn
, 0);
335 for (insn
= BB_FOOTER (bb
); insn
; insn
= NEXT_INSN (insn
))
336 if (JUMP_TABLE_DATA_P (insn
))
337 mark_jump_label (PATTERN (insn
), insn
, 0);
342 rtx_insn
*prev_nonjump_insn
= NULL
;
343 for (insn
= f
; insn
; insn
= NEXT_INSN (insn
))
345 if (insn
->deleted ())
347 else if (LABEL_P (insn
))
348 prev_nonjump_insn
= NULL
;
349 else if (JUMP_TABLE_DATA_P (insn
))
350 mark_jump_label (PATTERN (insn
), insn
, 0);
351 else if (NONDEBUG_INSN_P (insn
))
353 mark_jump_label (PATTERN (insn
), insn
, 0);
356 if (JUMP_LABEL (insn
) == NULL
&& prev_nonjump_insn
!= NULL
)
357 maybe_propagate_label_ref (insn
, prev_nonjump_insn
);
360 prev_nonjump_insn
= insn
;
366 /* Given a comparison (CODE ARG0 ARG1), inside an insn, INSN, return a code
367 of reversed comparison if it is possible to do so. Otherwise return UNKNOWN.
368 UNKNOWN may be returned in case we are having CC_MODE compare and we don't
369 know whether it's source is floating point or integer comparison. Machine
370 description should define REVERSIBLE_CC_MODE and REVERSE_CONDITION macros
371 to help this function avoid overhead in these cases. */
373 reversed_comparison_code_parts (enum rtx_code code
, const_rtx arg0
,
374 const_rtx arg1
, const_rtx insn
)
378 /* If this is not actually a comparison, we can't reverse it. */
379 if (GET_RTX_CLASS (code
) != RTX_COMPARE
380 && GET_RTX_CLASS (code
) != RTX_COMM_COMPARE
)
383 mode
= GET_MODE (arg0
);
384 if (mode
== VOIDmode
)
385 mode
= GET_MODE (arg1
);
387 /* First see if machine description supplies us way to reverse the
388 comparison. Give it priority over everything else to allow
389 machine description to do tricks. */
390 if (GET_MODE_CLASS (mode
) == MODE_CC
391 && REVERSIBLE_CC_MODE (mode
))
392 return REVERSE_CONDITION (code
, mode
);
394 /* Try a few special cases based on the comparison code. */
403 /* It is always safe to reverse EQ and NE, even for the floating
404 point. Similarly the unsigned comparisons are never used for
405 floating point so we can reverse them in the default way. */
406 return reverse_condition (code
);
411 /* In case we already see unordered comparison, we can be sure to
412 be dealing with floating point so we don't need any more tests. */
413 return reverse_condition_maybe_unordered (code
);
418 /* We don't have safe way to reverse these yet. */
424 if (GET_MODE_CLASS (mode
) == MODE_CC
|| CC0_P (arg0
))
426 /* Try to search for the comparison to determine the real mode.
427 This code is expensive, but with sane machine description it
428 will be never used, since REVERSIBLE_CC_MODE will return true
433 /* These CONST_CAST's are okay because prev_nonnote_insn just
434 returns its argument and we assign it to a const_rtx
436 for (rtx_insn
*prev
= prev_nonnote_insn (CONST_CAST_RTX (insn
));
437 prev
!= 0 && !LABEL_P (prev
);
438 prev
= prev_nonnote_insn (prev
))
440 const_rtx set
= set_of (arg0
, prev
);
441 if (set
&& GET_CODE (set
) == SET
442 && rtx_equal_p (SET_DEST (set
), arg0
))
444 rtx src
= SET_SRC (set
);
446 if (GET_CODE (src
) == COMPARE
)
448 rtx comparison
= src
;
449 arg0
= XEXP (src
, 0);
450 mode
= GET_MODE (arg0
);
451 if (mode
== VOIDmode
)
452 mode
= GET_MODE (XEXP (comparison
, 1));
455 /* We can get past reg-reg moves. This may be useful for model
456 of i387 comparisons that first move flag registers around. */
463 /* If register is clobbered in some ununderstandable way,
470 /* Test for an integer condition, or a floating-point comparison
471 in which NaNs can be ignored. */
472 if (CONST_INT_P (arg0
)
473 || (GET_MODE (arg0
) != VOIDmode
474 && GET_MODE_CLASS (mode
) != MODE_CC
475 && !HONOR_NANS (mode
)))
476 return reverse_condition (code
);
481 /* A wrapper around the previous function to take COMPARISON as rtx
482 expression. This simplifies many callers. */
484 reversed_comparison_code (const_rtx comparison
, const_rtx insn
)
486 if (!COMPARISON_P (comparison
))
488 return reversed_comparison_code_parts (GET_CODE (comparison
),
489 XEXP (comparison
, 0),
490 XEXP (comparison
, 1), insn
);
493 /* Return comparison with reversed code of EXP.
494 Return NULL_RTX in case we fail to do the reversal. */
496 reversed_comparison (const_rtx exp
, machine_mode mode
)
498 enum rtx_code reversed_code
= reversed_comparison_code (exp
, NULL_RTX
);
499 if (reversed_code
== UNKNOWN
)
502 return simplify_gen_relational (reversed_code
, mode
, VOIDmode
,
503 XEXP (exp
, 0), XEXP (exp
, 1));
507 /* Given an rtx-code for a comparison, return the code for the negated
508 comparison. If no such code exists, return UNKNOWN.
510 WATCH OUT! reverse_condition is not safe to use on a jump that might
511 be acting on the results of an IEEE floating point comparison, because
512 of the special treatment of non-signaling nans in comparisons.
513 Use reversed_comparison_code instead. */
516 reverse_condition (enum rtx_code code
)
558 /* Similar, but we're allowed to generate unordered comparisons, which
559 makes it safe for IEEE floating-point. Of course, we have to recognize
560 that the target will support them too... */
563 reverse_condition_maybe_unordered (enum rtx_code code
)
601 /* Similar, but return the code when two operands of a comparison are swapped.
602 This IS safe for IEEE floating-point. */
605 swap_condition (enum rtx_code code
)
647 /* Given a comparison CODE, return the corresponding unsigned comparison.
648 If CODE is an equality comparison or already an unsigned comparison,
652 unsigned_condition (enum rtx_code code
)
678 /* Similarly, return the signed version of a comparison. */
681 signed_condition (enum rtx_code code
)
707 /* Return nonzero if CODE1 is more strict than CODE2, i.e., if the
708 truth of CODE1 implies the truth of CODE2. */
711 comparison_dominates_p (enum rtx_code code1
, enum rtx_code code2
)
713 /* UNKNOWN comparison codes can happen as a result of trying to revert
715 They can't match anything, so we have to reject them here. */
716 if (code1
== UNKNOWN
|| code2
== UNKNOWN
)
725 if (code2
== UNLE
|| code2
== UNGE
)
730 if (code2
== LE
|| code2
== LEU
|| code2
== GE
|| code2
== GEU
736 if (code2
== UNLE
|| code2
== NE
)
741 if (code2
== LE
|| code2
== NE
|| code2
== ORDERED
|| code2
== LTGT
)
746 if (code2
== UNGE
|| code2
== NE
)
751 if (code2
== GE
|| code2
== NE
|| code2
== ORDERED
|| code2
== LTGT
)
757 if (code2
== ORDERED
)
762 if (code2
== NE
|| code2
== ORDERED
)
767 if (code2
== LEU
|| code2
== NE
)
772 if (code2
== GEU
|| code2
== NE
)
777 if (code2
== NE
|| code2
== UNEQ
|| code2
== UNLE
|| code2
== UNLT
778 || code2
== UNGE
|| code2
== UNGT
)
789 /* Return 1 if INSN is an unconditional jump and nothing else. */
792 simplejump_p (const rtx_insn
*insn
)
794 return (JUMP_P (insn
)
795 && GET_CODE (PATTERN (insn
)) == SET
796 && GET_CODE (SET_DEST (PATTERN (insn
))) == PC
797 && GET_CODE (SET_SRC (PATTERN (insn
))) == LABEL_REF
);
800 /* Return nonzero if INSN is a (possibly) conditional jump
803 Use of this function is deprecated, since we need to support combined
804 branch and compare insns. Use any_condjump_p instead whenever possible. */
807 condjump_p (const rtx_insn
*insn
)
809 const_rtx x
= PATTERN (insn
);
811 if (GET_CODE (x
) != SET
812 || GET_CODE (SET_DEST (x
)) != PC
)
816 if (GET_CODE (x
) == LABEL_REF
)
819 return (GET_CODE (x
) == IF_THEN_ELSE
820 && ((GET_CODE (XEXP (x
, 2)) == PC
821 && (GET_CODE (XEXP (x
, 1)) == LABEL_REF
822 || ANY_RETURN_P (XEXP (x
, 1))))
823 || (GET_CODE (XEXP (x
, 1)) == PC
824 && (GET_CODE (XEXP (x
, 2)) == LABEL_REF
825 || ANY_RETURN_P (XEXP (x
, 2))))));
828 /* Return nonzero if INSN is a (possibly) conditional jump inside a
831 Use this function is deprecated, since we need to support combined
832 branch and compare insns. Use any_condjump_p instead whenever possible. */
835 condjump_in_parallel_p (const rtx_insn
*insn
)
837 const_rtx x
= PATTERN (insn
);
839 if (GET_CODE (x
) != PARALLEL
)
842 x
= XVECEXP (x
, 0, 0);
844 if (GET_CODE (x
) != SET
)
846 if (GET_CODE (SET_DEST (x
)) != PC
)
848 if (GET_CODE (SET_SRC (x
)) == LABEL_REF
)
850 if (GET_CODE (SET_SRC (x
)) != IF_THEN_ELSE
)
852 if (XEXP (SET_SRC (x
), 2) == pc_rtx
853 && (GET_CODE (XEXP (SET_SRC (x
), 1)) == LABEL_REF
854 || ANY_RETURN_P (XEXP (SET_SRC (x
), 1))))
856 if (XEXP (SET_SRC (x
), 1) == pc_rtx
857 && (GET_CODE (XEXP (SET_SRC (x
), 2)) == LABEL_REF
858 || ANY_RETURN_P (XEXP (SET_SRC (x
), 2))))
863 /* Return set of PC, otherwise NULL. */
866 pc_set (const rtx_insn
*insn
)
871 pat
= PATTERN (insn
);
873 /* The set is allowed to appear either as the insn pattern or
874 the first set in a PARALLEL. */
875 if (GET_CODE (pat
) == PARALLEL
)
876 pat
= XVECEXP (pat
, 0, 0);
877 if (GET_CODE (pat
) == SET
&& GET_CODE (SET_DEST (pat
)) == PC
)
883 /* Return true when insn is an unconditional direct jump,
884 possibly bundled inside a PARALLEL. */
887 any_uncondjump_p (const rtx_insn
*insn
)
889 const_rtx x
= pc_set (insn
);
892 if (GET_CODE (SET_SRC (x
)) != LABEL_REF
)
894 if (find_reg_note (insn
, REG_NON_LOCAL_GOTO
, NULL_RTX
))
899 /* Return true when insn is a conditional jump. This function works for
900 instructions containing PC sets in PARALLELs. The instruction may have
901 various other effects so before removing the jump you must verify
904 Note that unlike condjump_p it returns false for unconditional jumps. */
907 any_condjump_p (const rtx_insn
*insn
)
909 const_rtx x
= pc_set (insn
);
914 if (GET_CODE (SET_SRC (x
)) != IF_THEN_ELSE
)
917 a
= GET_CODE (XEXP (SET_SRC (x
), 1));
918 b
= GET_CODE (XEXP (SET_SRC (x
), 2));
920 return ((b
== PC
&& (a
== LABEL_REF
|| a
== RETURN
|| a
== SIMPLE_RETURN
))
922 && (b
== LABEL_REF
|| b
== RETURN
|| b
== SIMPLE_RETURN
)));
925 /* Return the label of a conditional jump. */
928 condjump_label (const rtx_insn
*insn
)
930 rtx x
= pc_set (insn
);
935 if (GET_CODE (x
) == LABEL_REF
)
937 if (GET_CODE (x
) != IF_THEN_ELSE
)
939 if (XEXP (x
, 2) == pc_rtx
&& GET_CODE (XEXP (x
, 1)) == LABEL_REF
)
941 if (XEXP (x
, 1) == pc_rtx
&& GET_CODE (XEXP (x
, 2)) == LABEL_REF
)
946 /* Return TRUE if INSN is a return jump. */
949 returnjump_p (const rtx_insn
*insn
)
953 subrtx_iterator::array_type array
;
954 FOR_EACH_SUBRTX (iter
, array
, PATTERN (insn
), NONCONST
)
957 switch (GET_CODE (x
))
965 if (SET_IS_RETURN_P (x
))
977 /* Return true if INSN is a (possibly conditional) return insn. */
980 eh_returnjump_p (rtx_insn
*insn
)
984 subrtx_iterator::array_type array
;
985 FOR_EACH_SUBRTX (iter
, array
, PATTERN (insn
), NONCONST
)
986 if (GET_CODE (*iter
) == EH_RETURN
)
992 /* Return true if INSN is a jump that only transfers control and
996 onlyjump_p (const rtx_insn
*insn
)
1003 set
= single_set (insn
);
1006 if (GET_CODE (SET_DEST (set
)) != PC
)
1008 if (side_effects_p (SET_SRC (set
)))
1014 /* Return true iff INSN is a jump and its JUMP_LABEL is a label, not
1015 NULL or a return. */
1017 jump_to_label_p (const rtx_insn
*insn
)
1019 return (JUMP_P (insn
)
1020 && JUMP_LABEL (insn
) != NULL
&& !ANY_RETURN_P (JUMP_LABEL (insn
)));
1023 /* Return nonzero if X is an RTX that only sets the condition codes
1024 and has no side effects. */
1027 only_sets_cc0_p (const_rtx x
)
1035 return sets_cc0_p (x
) == 1 && ! side_effects_p (x
);
1038 /* Return 1 if X is an RTX that does nothing but set the condition codes
1039 and CLOBBER or USE registers.
1040 Return -1 if X does explicitly set the condition codes,
1041 but also does other things. */
1044 sets_cc0_p (const_rtx x
)
1052 if (GET_CODE (x
) == SET
&& SET_DEST (x
) == cc0_rtx
)
1054 if (GET_CODE (x
) == PARALLEL
)
1058 int other_things
= 0;
1059 for (i
= XVECLEN (x
, 0) - 1; i
>= 0; i
--)
1061 if (GET_CODE (XVECEXP (x
, 0, i
)) == SET
1062 && SET_DEST (XVECEXP (x
, 0, i
)) == cc0_rtx
)
1064 else if (GET_CODE (XVECEXP (x
, 0, i
)) == SET
)
1067 return ! sets_cc0
? 0 : other_things
? -1 : 1;
1072 /* Find all CODE_LABELs referred to in X, and increment their use
1073 counts. If INSN is a JUMP_INSN and there is at least one
1074 CODE_LABEL referenced in INSN as a jump target, then store the last
1075 one in JUMP_LABEL (INSN). For a tablejump, this must be the label
1076 for the ADDR_VEC. Store any other jump targets as REG_LABEL_TARGET
1077 notes. If INSN is an INSN or a CALL_INSN or non-target operands of
1078 a JUMP_INSN, and there is at least one CODE_LABEL referenced in
1079 INSN, add a REG_LABEL_OPERAND note containing that label to INSN.
1080 For returnjumps, the JUMP_LABEL will also be set as appropriate.
1082 Note that two labels separated by a loop-beginning note
1083 must be kept distinct if we have not yet done loop-optimization,
1084 because the gap between them is where loop-optimize
1085 will want to move invariant code to. CROSS_JUMP tells us
1086 that loop-optimization is done with. */
1089 mark_jump_label (rtx x
, rtx_insn
*insn
, int in_mem
)
1091 rtx asmop
= extract_asm_operands (x
);
1093 mark_jump_label_asm (asmop
, insn
);
1095 mark_jump_label_1 (x
, insn
, in_mem
!= 0,
1096 (insn
!= NULL
&& x
== PATTERN (insn
) && JUMP_P (insn
)));
1099 /* Worker function for mark_jump_label. IN_MEM is TRUE when X occurs
1100 within a (MEM ...). IS_TARGET is TRUE when X is to be treated as a
1101 jump-target; when the JUMP_LABEL field of INSN should be set or a
1102 REG_LABEL_TARGET note should be added, not a REG_LABEL_OPERAND
1106 mark_jump_label_1 (rtx x
, rtx_insn
*insn
, bool in_mem
, bool is_target
)
1108 RTX_CODE code
= GET_CODE (x
);
1125 gcc_assert (JUMP_LABEL (insn
) == NULL
|| JUMP_LABEL (insn
) == x
);
1126 JUMP_LABEL (insn
) = x
;
1136 rtx_sequence
*seq
= as_a
<rtx_sequence
*> (x
);
1137 for (i
= 0; i
< seq
->len (); i
++)
1138 mark_jump_label (PATTERN (seq
->insn (i
)),
1147 /* If this is a constant-pool reference, see if it is a label. */
1148 if (CONSTANT_POOL_ADDRESS_P (x
))
1149 mark_jump_label_1 (get_pool_constant (x
), insn
, in_mem
, is_target
);
1152 /* Handle operands in the condition of an if-then-else as for a
1157 mark_jump_label_1 (XEXP (x
, 0), insn
, in_mem
, false);
1158 mark_jump_label_1 (XEXP (x
, 1), insn
, in_mem
, true);
1159 mark_jump_label_1 (XEXP (x
, 2), insn
, in_mem
, true);
1164 rtx label
= LABEL_REF_LABEL (x
);
1166 /* Ignore remaining references to unreachable labels that
1167 have been deleted. */
1169 && NOTE_KIND (label
) == NOTE_INSN_DELETED_LABEL
)
1172 gcc_assert (LABEL_P (label
));
1174 /* Ignore references to labels of containing functions. */
1175 if (LABEL_REF_NONLOCAL_P (x
))
1178 LABEL_REF_LABEL (x
) = label
;
1179 if (! insn
|| ! insn
->deleted ())
1180 ++LABEL_NUSES (label
);
1185 /* Do not change a previous setting of JUMP_LABEL. If the
1186 JUMP_LABEL slot is occupied by a different label,
1187 create a note for this label. */
1188 && (JUMP_LABEL (insn
) == NULL
|| JUMP_LABEL (insn
) == label
))
1189 JUMP_LABEL (insn
) = label
;
1193 = is_target
? REG_LABEL_TARGET
: REG_LABEL_OPERAND
;
1195 /* Add a REG_LABEL_OPERAND or REG_LABEL_TARGET note
1196 for LABEL unless there already is one. All uses of
1197 a label, except for the primary target of a jump,
1198 must have such a note. */
1199 if (! find_reg_note (insn
, kind
, label
))
1200 add_reg_note (insn
, kind
, label
);
1206 /* Do walk the labels in a vector, but not the first operand of an
1207 ADDR_DIFF_VEC. Don't set the JUMP_LABEL of a vector. */
1210 if (! insn
->deleted ())
1212 int eltnum
= code
== ADDR_DIFF_VEC
? 1 : 0;
1214 for (i
= 0; i
< XVECLEN (x
, eltnum
); i
++)
1215 mark_jump_label_1 (XVECEXP (x
, eltnum
, i
), NULL
, in_mem
,
1224 fmt
= GET_RTX_FORMAT (code
);
1226 /* The primary target of a tablejump is the label of the ADDR_VEC,
1227 which is canonically mentioned *last* in the insn. To get it
1228 marked as JUMP_LABEL, we iterate over items in reverse order. */
1229 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1232 mark_jump_label_1 (XEXP (x
, i
), insn
, in_mem
, is_target
);
1233 else if (fmt
[i
] == 'E')
1237 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
1238 mark_jump_label_1 (XVECEXP (x
, i
, j
), insn
, in_mem
,
1244 /* Worker function for mark_jump_label. Handle asm insns specially.
1245 In particular, output operands need not be considered so we can
1246 avoid re-scanning the replicated asm_operand. Also, the asm_labels
1247 need to be considered targets. */
1250 mark_jump_label_asm (rtx asmop
, rtx_insn
*insn
)
1254 for (i
= ASM_OPERANDS_INPUT_LENGTH (asmop
) - 1; i
>= 0; --i
)
1255 mark_jump_label_1 (ASM_OPERANDS_INPUT (asmop
, i
), insn
, false, false);
1257 for (i
= ASM_OPERANDS_LABEL_LENGTH (asmop
) - 1; i
>= 0; --i
)
1258 mark_jump_label_1 (ASM_OPERANDS_LABEL (asmop
, i
), insn
, false, true);
1261 /* Delete insn INSN from the chain of insns and update label ref counts
1262 and delete insns now unreachable.
1264 Returns the first insn after INSN that was not deleted.
1266 Usage of this instruction is deprecated. Use delete_insn instead and
1267 subsequent cfg_cleanup pass to delete unreachable code if needed. */
1270 delete_related_insns (rtx uncast_insn
)
1272 rtx_insn
*insn
= as_a
<rtx_insn
*> (uncast_insn
);
1273 int was_code_label
= (LABEL_P (insn
));
1275 rtx_insn
*next
= NEXT_INSN (insn
), *prev
= PREV_INSN (insn
);
1277 while (next
&& next
->deleted ())
1278 next
= NEXT_INSN (next
);
1280 /* This insn is already deleted => return first following nondeleted. */
1281 if (insn
->deleted ())
1286 /* If instruction is followed by a barrier,
1287 delete the barrier too. */
1289 if (next
!= 0 && BARRIER_P (next
))
1292 /* If this is a call, then we have to remove the var tracking note
1293 for the call arguments. */
1296 || (NONJUMP_INSN_P (insn
)
1297 && GET_CODE (PATTERN (insn
)) == SEQUENCE
1298 && CALL_P (XVECEXP (PATTERN (insn
), 0, 0))))
1302 for (p
= next
&& next
->deleted () ? NEXT_INSN (next
) : next
;
1305 if (NOTE_KIND (p
) == NOTE_INSN_CALL_ARG_LOCATION
)
1312 /* If deleting a jump, decrement the count of the label,
1313 and delete the label if it is now unused. */
1315 if (jump_to_label_p (insn
))
1317 rtx lab
= JUMP_LABEL (insn
);
1318 rtx_jump_table_data
*lab_next
;
1320 if (LABEL_NUSES (lab
) == 0)
1321 /* This can delete NEXT or PREV,
1322 either directly if NEXT is JUMP_LABEL (INSN),
1323 or indirectly through more levels of jumps. */
1324 delete_related_insns (lab
);
1325 else if (tablejump_p (insn
, NULL
, &lab_next
))
1327 /* If we're deleting the tablejump, delete the dispatch table.
1328 We may not be able to kill the label immediately preceding
1329 just yet, as it might be referenced in code leading up to
1331 delete_related_insns (lab_next
);
1335 /* Likewise if we're deleting a dispatch table. */
1337 if (rtx_jump_table_data
*table
= dyn_cast
<rtx_jump_table_data
*> (insn
))
1339 rtvec labels
= table
->get_labels ();
1341 int len
= GET_NUM_ELEM (labels
);
1343 for (i
= 0; i
< len
; i
++)
1344 if (LABEL_NUSES (XEXP (RTVEC_ELT (labels
, i
), 0)) == 0)
1345 delete_related_insns (XEXP (RTVEC_ELT (labels
, i
), 0));
1346 while (next
&& next
->deleted ())
1347 next
= NEXT_INSN (next
);
1351 /* Likewise for any JUMP_P / INSN / CALL_INSN with a
1352 REG_LABEL_OPERAND or REG_LABEL_TARGET note. */
1354 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
1355 if ((REG_NOTE_KIND (note
) == REG_LABEL_OPERAND
1356 || REG_NOTE_KIND (note
) == REG_LABEL_TARGET
)
1357 /* This could also be a NOTE_INSN_DELETED_LABEL note. */
1358 && LABEL_P (XEXP (note
, 0)))
1359 if (LABEL_NUSES (XEXP (note
, 0)) == 0)
1360 delete_related_insns (XEXP (note
, 0));
1362 while (prev
&& (prev
->deleted () || NOTE_P (prev
)))
1363 prev
= PREV_INSN (prev
);
1365 /* If INSN was a label and a dispatch table follows it,
1366 delete the dispatch table. The tablejump must have gone already.
1367 It isn't useful to fall through into a table. */
1370 && NEXT_INSN (insn
) != 0
1371 && JUMP_TABLE_DATA_P (NEXT_INSN (insn
)))
1372 next
= delete_related_insns (NEXT_INSN (insn
));
1374 /* If INSN was a label, delete insns following it if now unreachable. */
1376 if (was_code_label
&& prev
&& BARRIER_P (prev
))
1381 code
= GET_CODE (next
);
1383 next
= NEXT_INSN (next
);
1384 /* Keep going past other deleted labels to delete what follows. */
1385 else if (code
== CODE_LABEL
&& next
->deleted ())
1386 next
= NEXT_INSN (next
);
1387 /* Keep the (use (insn))s created by dbr_schedule, which needs
1388 them in order to track liveness relative to a previous
1390 else if (INSN_P (next
)
1391 && GET_CODE (PATTERN (next
)) == USE
1392 && INSN_P (XEXP (PATTERN (next
), 0)))
1393 next
= NEXT_INSN (next
);
1394 else if (code
== BARRIER
|| INSN_P (next
))
1395 /* Note: if this deletes a jump, it can cause more
1396 deletion of unreachable code, after a different label.
1397 As long as the value from this recursive call is correct,
1398 this invocation functions correctly. */
1399 next
= delete_related_insns (next
);
1405 /* I feel a little doubtful about this loop,
1406 but I see no clean and sure alternative way
1407 to find the first insn after INSN that is not now deleted.
1408 I hope this works. */
1409 while (next
&& next
->deleted ())
1410 next
= NEXT_INSN (next
);
1414 /* Delete a range of insns from FROM to TO, inclusive.
1415 This is for the sake of peephole optimization, so assume
1416 that whatever these insns do will still be done by a new
1417 peephole insn that will replace them. */
1420 delete_for_peephole (rtx_insn
*from
, rtx_insn
*to
)
1422 rtx_insn
*insn
= from
;
1426 rtx_insn
*next
= NEXT_INSN (insn
);
1427 rtx_insn
*prev
= PREV_INSN (insn
);
1431 insn
->set_deleted();
1433 /* Patch this insn out of the chain. */
1434 /* We don't do this all at once, because we
1435 must preserve all NOTEs. */
1437 SET_NEXT_INSN (prev
) = next
;
1440 SET_PREV_INSN (next
) = prev
;
1448 /* Note that if TO is an unconditional jump
1449 we *do not* delete the BARRIER that follows,
1450 since the peephole that replaces this sequence
1451 is also an unconditional jump in that case. */
1454 /* A helper function for redirect_exp_1; examines its input X and returns
1455 either a LABEL_REF around a label, or a RETURN if X was NULL. */
1457 redirect_target (rtx x
)
1461 if (!ANY_RETURN_P (x
))
1462 return gen_rtx_LABEL_REF (Pmode
, x
);
1466 /* Throughout LOC, redirect OLABEL to NLABEL. Treat null OLABEL or
1467 NLABEL as a return. Accrue modifications into the change group. */
1470 redirect_exp_1 (rtx
*loc
, rtx olabel
, rtx nlabel
, rtx insn
)
1473 RTX_CODE code
= GET_CODE (x
);
1477 if ((code
== LABEL_REF
&& LABEL_REF_LABEL (x
) == olabel
)
1480 x
= redirect_target (nlabel
);
1481 if (GET_CODE (x
) == LABEL_REF
&& loc
== &PATTERN (insn
))
1482 x
= gen_rtx_SET (pc_rtx
, x
);
1483 validate_change (insn
, loc
, x
, 1);
1487 if (code
== SET
&& SET_DEST (x
) == pc_rtx
1488 && ANY_RETURN_P (nlabel
)
1489 && GET_CODE (SET_SRC (x
)) == LABEL_REF
1490 && LABEL_REF_LABEL (SET_SRC (x
)) == olabel
)
1492 validate_change (insn
, loc
, nlabel
, 1);
1496 if (code
== IF_THEN_ELSE
)
1498 /* Skip the condition of an IF_THEN_ELSE. We only want to
1499 change jump destinations, not eventual label comparisons. */
1500 redirect_exp_1 (&XEXP (x
, 1), olabel
, nlabel
, insn
);
1501 redirect_exp_1 (&XEXP (x
, 2), olabel
, nlabel
, insn
);
1505 fmt
= GET_RTX_FORMAT (code
);
1506 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1509 redirect_exp_1 (&XEXP (x
, i
), olabel
, nlabel
, insn
);
1510 else if (fmt
[i
] == 'E')
1513 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1514 redirect_exp_1 (&XVECEXP (x
, i
, j
), olabel
, nlabel
, insn
);
1519 /* Make JUMP go to NLABEL instead of where it jumps now. Accrue
1520 the modifications into the change group. Return false if we did
1521 not see how to do that. */
1524 redirect_jump_1 (rtx_insn
*jump
, rtx nlabel
)
1526 int ochanges
= num_validated_changes ();
1529 gcc_assert (nlabel
!= NULL_RTX
);
1530 asmop
= extract_asm_operands (PATTERN (jump
));
1535 gcc_assert (ASM_OPERANDS_LABEL_LENGTH (asmop
) == 1);
1536 loc
= &ASM_OPERANDS_LABEL (asmop
, 0);
1538 else if (GET_CODE (PATTERN (jump
)) == PARALLEL
)
1539 loc
= &XVECEXP (PATTERN (jump
), 0, 0);
1541 loc
= &PATTERN (jump
);
1543 redirect_exp_1 (loc
, JUMP_LABEL (jump
), nlabel
, jump
);
1544 return num_validated_changes () > ochanges
;
1547 /* Make JUMP go to NLABEL instead of where it jumps now. If the old
1548 jump target label is unused as a result, it and the code following
1551 Normally, NLABEL will be a label, but it may also be a RETURN rtx;
1552 in that case we are to turn the jump into a (possibly conditional)
1555 The return value will be 1 if the change was made, 0 if it wasn't
1556 (this can only occur when trying to produce return insns). */
1559 redirect_jump (rtx_jump_insn
*jump
, rtx nlabel
, int delete_unused
)
1561 rtx olabel
= jump
->jump_label ();
1565 /* If there is no label, we are asked to redirect to the EXIT block.
1566 When before the epilogue is emitted, return/simple_return cannot be
1567 created so we return 0 immediately. After the epilogue is emitted,
1568 we always expect a label, either a non-null label, or a
1569 return/simple_return RTX. */
1571 if (!epilogue_completed
)
1576 if (nlabel
== olabel
)
1579 if (! redirect_jump_1 (jump
, nlabel
) || ! apply_change_group ())
1582 redirect_jump_2 (jump
, olabel
, nlabel
, delete_unused
, 0);
1586 /* Fix up JUMP_LABEL and label ref counts after OLABEL has been replaced with
1588 If DELETE_UNUSED is positive, delete related insn to OLABEL if its ref
1589 count has dropped to zero. */
1591 redirect_jump_2 (rtx_jump_insn
*jump
, rtx olabel
, rtx nlabel
, int delete_unused
,
1596 gcc_assert (JUMP_LABEL (jump
) == olabel
);
1598 /* Negative DELETE_UNUSED used to be used to signalize behavior on
1599 moving FUNCTION_END note. Just sanity check that no user still worry
1601 gcc_assert (delete_unused
>= 0);
1602 JUMP_LABEL (jump
) = nlabel
;
1603 if (!ANY_RETURN_P (nlabel
))
1604 ++LABEL_NUSES (nlabel
);
1606 /* Update labels in any REG_EQUAL note. */
1607 if ((note
= find_reg_note (jump
, REG_EQUAL
, NULL_RTX
)) != NULL_RTX
)
1609 if (ANY_RETURN_P (nlabel
)
1610 || (invert
&& !invert_exp_1 (XEXP (note
, 0), jump
)))
1611 remove_note (jump
, note
);
1614 redirect_exp_1 (&XEXP (note
, 0), olabel
, nlabel
, jump
);
1615 confirm_change_group ();
1619 /* Handle the case where we had a conditional crossing jump to a return
1620 label and are now changing it into a direct conditional return.
1621 The jump is no longer crossing in that case. */
1622 if (ANY_RETURN_P (nlabel
))
1623 CROSSING_JUMP_P (jump
) = 0;
1625 if (!ANY_RETURN_P (olabel
)
1626 && --LABEL_NUSES (olabel
) == 0 && delete_unused
> 0
1627 /* Undefined labels will remain outside the insn stream. */
1628 && INSN_UID (olabel
))
1629 delete_related_insns (olabel
);
1631 invert_br_probabilities (jump
);
1634 /* Invert the jump condition X contained in jump insn INSN. Accrue the
1635 modifications into the change group. Return nonzero for success. */
1637 invert_exp_1 (rtx x
, rtx insn
)
1639 RTX_CODE code
= GET_CODE (x
);
1641 if (code
== IF_THEN_ELSE
)
1643 rtx comp
= XEXP (x
, 0);
1645 enum rtx_code reversed_code
;
1647 /* We can do this in two ways: The preferable way, which can only
1648 be done if this is not an integer comparison, is to reverse
1649 the comparison code. Otherwise, swap the THEN-part and ELSE-part
1650 of the IF_THEN_ELSE. If we can't do either, fail. */
1652 reversed_code
= reversed_comparison_code (comp
, insn
);
1654 if (reversed_code
!= UNKNOWN
)
1656 validate_change (insn
, &XEXP (x
, 0),
1657 gen_rtx_fmt_ee (reversed_code
,
1658 GET_MODE (comp
), XEXP (comp
, 0),
1665 validate_change (insn
, &XEXP (x
, 1), XEXP (x
, 2), 1);
1666 validate_change (insn
, &XEXP (x
, 2), tem
, 1);
1673 /* Invert the condition of the jump JUMP, and make it jump to label
1674 NLABEL instead of where it jumps now. Accrue changes into the
1675 change group. Return false if we didn't see how to perform the
1676 inversion and redirection. */
1679 invert_jump_1 (rtx_jump_insn
*jump
, rtx nlabel
)
1681 rtx x
= pc_set (jump
);
1685 ochanges
= num_validated_changes ();
1688 ok
= invert_exp_1 (SET_SRC (x
), jump
);
1691 if (num_validated_changes () == ochanges
)
1694 /* redirect_jump_1 will fail of nlabel == olabel, and the current use is
1695 in Pmode, so checking this is not merely an optimization. */
1696 return nlabel
== JUMP_LABEL (jump
) || redirect_jump_1 (jump
, nlabel
);
1699 /* Invert the condition of the jump JUMP, and make it jump to label
1700 NLABEL instead of where it jumps now. Return true if successful. */
1703 invert_jump (rtx_jump_insn
*jump
, rtx nlabel
, int delete_unused
)
1705 rtx olabel
= JUMP_LABEL (jump
);
1707 if (invert_jump_1 (jump
, nlabel
) && apply_change_group ())
1709 redirect_jump_2 (jump
, olabel
, nlabel
, delete_unused
, 1);
1717 /* Like rtx_equal_p except that it considers two REGs as equal
1718 if they renumber to the same value and considers two commutative
1719 operations to be the same if the order of the operands has been
1723 rtx_renumbered_equal_p (const_rtx x
, const_rtx y
)
1726 const enum rtx_code code
= GET_CODE (x
);
1732 if ((code
== REG
|| (code
== SUBREG
&& REG_P (SUBREG_REG (x
))))
1733 && (REG_P (y
) || (GET_CODE (y
) == SUBREG
1734 && REG_P (SUBREG_REG (y
)))))
1736 int reg_x
= -1, reg_y
= -1;
1737 int byte_x
= 0, byte_y
= 0;
1738 struct subreg_info info
;
1740 if (GET_MODE (x
) != GET_MODE (y
))
1743 /* If we haven't done any renumbering, don't
1744 make any assumptions. */
1745 if (reg_renumber
== 0)
1746 return rtx_equal_p (x
, y
);
1750 reg_x
= REGNO (SUBREG_REG (x
));
1751 byte_x
= SUBREG_BYTE (x
);
1753 if (reg_renumber
[reg_x
] >= 0)
1755 subreg_get_info (reg_renumber
[reg_x
],
1756 GET_MODE (SUBREG_REG (x
)), byte_x
,
1757 GET_MODE (x
), &info
);
1758 if (!info
.representable_p
)
1760 reg_x
= info
.offset
;
1767 if (reg_renumber
[reg_x
] >= 0)
1768 reg_x
= reg_renumber
[reg_x
];
1771 if (GET_CODE (y
) == SUBREG
)
1773 reg_y
= REGNO (SUBREG_REG (y
));
1774 byte_y
= SUBREG_BYTE (y
);
1776 if (reg_renumber
[reg_y
] >= 0)
1778 subreg_get_info (reg_renumber
[reg_y
],
1779 GET_MODE (SUBREG_REG (y
)), byte_y
,
1780 GET_MODE (y
), &info
);
1781 if (!info
.representable_p
)
1783 reg_y
= info
.offset
;
1790 if (reg_renumber
[reg_y
] >= 0)
1791 reg_y
= reg_renumber
[reg_y
];
1794 return reg_x
>= 0 && reg_x
== reg_y
&& byte_x
== byte_y
;
1797 /* Now we have disposed of all the cases
1798 in which different rtx codes can match. */
1799 if (code
!= GET_CODE (y
))
1812 /* We can't assume nonlocal labels have their following insns yet. */
1813 if (LABEL_REF_NONLOCAL_P (x
) || LABEL_REF_NONLOCAL_P (y
))
1814 return LABEL_REF_LABEL (x
) == LABEL_REF_LABEL (y
);
1816 /* Two label-refs are equivalent if they point at labels
1817 in the same position in the instruction stream. */
1818 return (next_real_insn (LABEL_REF_LABEL (x
))
1819 == next_real_insn (LABEL_REF_LABEL (y
)));
1822 return XSTR (x
, 0) == XSTR (y
, 0);
1825 /* If we didn't match EQ equality above, they aren't the same. */
1832 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
1834 if (GET_MODE (x
) != GET_MODE (y
))
1837 /* MEMs referring to different address space are not equivalent. */
1838 if (code
== MEM
&& MEM_ADDR_SPACE (x
) != MEM_ADDR_SPACE (y
))
1841 /* For commutative operations, the RTX match if the operand match in any
1842 order. Also handle the simple binary and unary cases without a loop. */
1843 if (targetm
.commutative_p (x
, UNKNOWN
))
1844 return ((rtx_renumbered_equal_p (XEXP (x
, 0), XEXP (y
, 0))
1845 && rtx_renumbered_equal_p (XEXP (x
, 1), XEXP (y
, 1)))
1846 || (rtx_renumbered_equal_p (XEXP (x
, 0), XEXP (y
, 1))
1847 && rtx_renumbered_equal_p (XEXP (x
, 1), XEXP (y
, 0))));
1848 else if (NON_COMMUTATIVE_P (x
))
1849 return (rtx_renumbered_equal_p (XEXP (x
, 0), XEXP (y
, 0))
1850 && rtx_renumbered_equal_p (XEXP (x
, 1), XEXP (y
, 1)));
1851 else if (UNARY_P (x
))
1852 return rtx_renumbered_equal_p (XEXP (x
, 0), XEXP (y
, 0));
1854 /* Compare the elements. If any pair of corresponding elements
1855 fail to match, return 0 for the whole things. */
1857 fmt
= GET_RTX_FORMAT (code
);
1858 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1864 if (XWINT (x
, i
) != XWINT (y
, i
))
1869 if (XINT (x
, i
) != XINT (y
, i
))
1871 if (((code
== ASM_OPERANDS
&& i
== 6)
1872 || (code
== ASM_INPUT
&& i
== 1)))
1879 if (XTREE (x
, i
) != XTREE (y
, i
))
1884 if (strcmp (XSTR (x
, i
), XSTR (y
, i
)))
1889 if (! rtx_renumbered_equal_p (XEXP (x
, i
), XEXP (y
, i
)))
1894 if (XEXP (x
, i
) != XEXP (y
, i
))
1901 if (XVECLEN (x
, i
) != XVECLEN (y
, i
))
1903 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
1904 if (!rtx_renumbered_equal_p (XVECEXP (x
, i
, j
), XVECEXP (y
, i
, j
)))
1915 /* If X is a hard register or equivalent to one or a subregister of one,
1916 return the hard register number. If X is a pseudo register that was not
1917 assigned a hard register, return the pseudo register number. Otherwise,
1918 return -1. Any rtx is valid for X. */
1921 true_regnum (const_rtx x
)
1925 if (REGNO (x
) >= FIRST_PSEUDO_REGISTER
1926 && (lra_in_progress
|| reg_renumber
[REGNO (x
)] >= 0))
1927 return reg_renumber
[REGNO (x
)];
1930 if (GET_CODE (x
) == SUBREG
)
1932 int base
= true_regnum (SUBREG_REG (x
));
1934 && base
< FIRST_PSEUDO_REGISTER
)
1936 struct subreg_info info
;
1938 subreg_get_info (lra_in_progress
1939 ? (unsigned) base
: REGNO (SUBREG_REG (x
)),
1940 GET_MODE (SUBREG_REG (x
)),
1941 SUBREG_BYTE (x
), GET_MODE (x
), &info
);
1943 if (info
.representable_p
)
1944 return base
+ info
.offset
;
1950 /* Return regno of the register REG and handle subregs too. */
1952 reg_or_subregno (const_rtx reg
)
1954 if (GET_CODE (reg
) == SUBREG
)
1955 reg
= SUBREG_REG (reg
);
1956 gcc_assert (REG_P (reg
));