* Makefile.in (jcf-parse.o): Depend on $(PARSE_H).
[official-gcc.git] / gcc / stupid.c
blob73ec3573933841c851c7c4500ca7d9f0c5fe865e
1 /* Dummy data flow analysis for GNU compiler in nonoptimizing mode.
2 Copyright (C) 1987, 91, 94-96, 1998 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
22 /* This file performs stupid register allocation, which is used
23 when cc1 gets the -noreg switch (which is when cc does not get -O).
25 Stupid register allocation goes in place of the flow_analysis,
26 local_alloc and global_alloc passes. combine_instructions cannot
27 be done with stupid allocation because the data flow info that it needs
28 is not computed here.
30 In stupid allocation, the only user-defined variables that can
31 go in registers are those declared "register". They are assumed
32 to have a life span equal to their scope. Other user variables
33 are given stack slots in the rtl-generation pass and are not
34 represented as pseudo regs. A compiler-generated temporary
35 is assumed to live from its first mention to its last mention.
37 Since each pseudo-reg's life span is just an interval, it can be
38 represented as a pair of numbers, each of which identifies an insn by
39 its position in the function (number of insns before it). The first
40 thing done for stupid allocation is to compute such a number for each
41 insn. It is called the suid. Then the life-interval of each
42 pseudo reg is computed. Then the pseudo regs are ordered by priority
43 and assigned hard regs in priority order. */
45 #include "config.h"
46 #include "system.h"
48 #include "rtl.h"
49 #include "hard-reg-set.h"
50 #include "basic-block.h"
51 #include "regs.h"
52 #include "insn-config.h"
53 #include "reload.h"
54 #include "flags.h"
55 #include "toplev.h"
57 /* Vector mapping INSN_UIDs to suids.
58 The suids are like uids but increase monotonically always.
59 We use them to see whether a subroutine call came
60 between a variable's birth and its death. */
62 static int *uid_suid;
64 /* Get the suid of an insn. */
66 #define INSN_SUID(INSN) (uid_suid[INSN_UID (INSN)])
68 /* Record the suid of the last CALL_INSN
69 so we can tell whether a pseudo reg crosses any calls. */
71 static int last_call_suid;
73 /* Record the suid of the last NOTE_INSN_SETJMP
74 so we can tell whether a pseudo reg crosses any setjmp. */
76 static int last_setjmp_suid;
78 /* Element N is suid of insn where life span of pseudo reg N ends.
79 Element is 0 if register N has not been seen yet on backward scan. */
81 static int *reg_where_dead;
83 /* Likewise, but point to the insn_chain structure of the insn at which
84 the reg dies. */
85 static struct insn_chain **reg_where_dead_chain;
87 /* Element N is suid of insn where life span of pseudo reg N begins. */
88 static int *reg_where_born_exact;
90 /* Element N is 1 if the birth of pseudo reg N is due to a CLOBBER,
91 0 otherwise. */
92 static int *reg_where_born_clobber;
94 /* Return the suid of the insn where the register is born, or the suid
95 of the insn before if the birth is due to a CLOBBER. */
96 #define REG_WHERE_BORN(N) \
97 (reg_where_born_exact[(N)] - reg_where_born_clobber[(N)])
99 /* Numbers of pseudo-regs to be allocated, highest priority first. */
101 static int *reg_order;
103 /* Indexed by reg number (hard or pseudo), nonzero if register is live
104 at the current point in the instruction stream. */
106 static char *regs_live;
108 /* Indexed by reg number, nonzero if reg was used in a SUBREG that changes
109 its size. */
111 static char *regs_change_size;
113 /* Indexed by reg number, nonzero if reg crosses a setjmp. */
115 static char *regs_crosses_setjmp;
117 /* Indexed by insn's suid, the set of hard regs live after that insn. */
119 static HARD_REG_SET *after_insn_hard_regs;
121 /* Record that hard reg REGNO is live after insn INSN. */
123 #define MARK_LIVE_AFTER(INSN,REGNO) \
124 SET_HARD_REG_BIT (after_insn_hard_regs[INSN_SUID (INSN)], (REGNO))
126 static int stupid_reg_compare PROTO((const GENERIC_PTR,const GENERIC_PTR));
127 static int stupid_find_reg PROTO((int, enum reg_class, enum machine_mode,
128 int, int, int));
129 static void stupid_mark_refs PROTO((rtx, struct insn_chain *));
130 static void find_clobbered_regs PROTO((rtx, rtx));
132 /* For communication between stupid_life_analysis and find_clobbered_regs. */
133 static struct insn_chain *current_chain;
135 /* This function, called via note_stores, marks any hard registers that are
136 clobbered in an insn as being live in the live_after and live_before fields
137 of the appropriate insn_chain structure. */
139 static void
140 find_clobbered_regs (reg, setter)
141 rtx reg, setter;
143 int regno, nregs;
144 if (setter == 0 || GET_CODE (setter) != CLOBBER)
145 return;
147 if (GET_CODE (reg) == SUBREG)
148 reg = SUBREG_REG (reg);
150 if (GET_CODE (reg) != REG)
151 return;
152 regno = REGNO (reg);
153 if (regno >= FIRST_PSEUDO_REGISTER)
154 return;
156 if (GET_MODE (reg) == VOIDmode)
157 abort ();
158 else
159 nregs = HARD_REGNO_NREGS (regno, GET_MODE (reg));
160 while (nregs-- > 0)
162 SET_REGNO_REG_SET (current_chain->live_after, regno);
163 SET_REGNO_REG_SET (current_chain->live_before, regno++);
167 /* Stupid life analysis is for the case where only variables declared
168 `register' go in registers. For this case, we mark all
169 pseudo-registers that belong to register variables as
170 dying in the last instruction of the function, and all other
171 pseudo registers as dying in the last place they are referenced.
172 Hard registers are marked as dying in the last reference before
173 the end or before each store into them. */
175 void
176 stupid_life_analysis (f, nregs, file)
177 rtx f;
178 int nregs;
179 FILE *file;
181 register int i;
182 register rtx last, insn;
183 int max_uid, max_suid;
185 current_function_has_computed_jump = 0;
187 bzero (regs_ever_live, sizeof regs_ever_live);
189 regs_live = (char *) xmalloc (nregs);
191 /* First find the last real insn, and count the number of insns,
192 and assign insns their suids. */
194 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
195 if (INSN_UID (insn) > i)
196 i = INSN_UID (insn);
198 max_uid = i + 1;
199 uid_suid = (int *) xmalloc ((i + 1) * sizeof (int));
201 /* Compute the mapping from uids to suids.
202 Suids are numbers assigned to insns, like uids,
203 except that suids increase monotonically through the code. */
205 last = 0; /* In case of empty function body */
206 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
208 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
209 last = insn;
211 INSN_SUID (insn) = ++i;
214 last_call_suid = i + 1;
215 last_setjmp_suid = i + 1;
216 max_suid = i + 1;
218 max_regno = nregs;
220 /* Allocate tables to record info about regs. */
222 reg_where_dead = (int *) xmalloc (nregs * sizeof (int));
223 bzero ((char *) reg_where_dead, nregs * sizeof (int));
225 reg_where_born_exact = (int *) xmalloc (nregs * sizeof (int));
226 bzero ((char *) reg_where_born_exact, nregs * sizeof (int));
228 reg_where_born_clobber = (int *) xmalloc (nregs * sizeof (int));
229 bzero ((char *) reg_where_born_clobber, nregs * sizeof (int));
231 reg_where_dead_chain = (struct insn_chain **) xmalloc (nregs * sizeof (struct insn_chain *));
232 bzero ((char *) reg_where_dead_chain, nregs * sizeof (struct insn_chain *));
234 reg_order = (int *) xmalloc (nregs * sizeof (int));
235 bzero ((char *) reg_order, nregs * sizeof (int));
237 regs_change_size = (char *) xmalloc (nregs * sizeof (char));
238 bzero ((char *) regs_change_size, nregs * sizeof (char));
240 regs_crosses_setjmp = (char *) xmalloc (nregs * sizeof (char));
241 bzero ((char *) regs_crosses_setjmp, nregs * sizeof (char));
243 /* Allocate the reg_renumber array */
244 allocate_reg_info (max_regno, FALSE, TRUE);
245 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
246 reg_renumber[i] = i;
248 after_insn_hard_regs
249 = (HARD_REG_SET *) xmalloc (max_suid * sizeof (HARD_REG_SET));
251 bzero ((char *) after_insn_hard_regs, max_suid * sizeof (HARD_REG_SET));
253 /* Allocate and zero out many data structures
254 that will record the data from lifetime analysis. */
256 allocate_for_life_analysis ();
258 for (i = 0; i < max_regno; i++)
259 REG_N_DEATHS (i) = 1;
261 bzero (regs_live, nregs);
263 /* Find where each pseudo register is born and dies,
264 by scanning all insns from the end to the start
265 and noting all mentions of the registers.
267 Also find where each hard register is live
268 and record that info in after_insn_hard_regs.
269 regs_live[I] is 1 if hard reg I is live
270 at the current point in the scan.
272 Build reload_insn_chain while we're walking the insns. */
274 reload_insn_chain = 0;
275 for (insn = last; insn; insn = PREV_INSN (insn))
277 register HARD_REG_SET *p = after_insn_hard_regs + INSN_SUID (insn);
278 struct insn_chain *chain;
280 /* Copy the info in regs_live into the element of after_insn_hard_regs
281 for the current position in the rtl code. */
283 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
284 if (regs_live[i])
285 SET_HARD_REG_BIT (*p, i);
287 if (GET_CODE (insn) != NOTE && GET_CODE (insn) != BARRIER)
289 chain = new_insn_chain ();
290 if (reload_insn_chain)
291 reload_insn_chain->prev = chain;
292 chain->next = reload_insn_chain;
293 chain->prev = 0;
294 reload_insn_chain = chain;
295 chain->block = 0;
296 chain->insn = insn;
297 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
298 if (regs_live[i])
299 SET_REGNO_REG_SET (chain->live_before, i);
302 /* Update which hard regs are currently live
303 and also the birth and death suids of pseudo regs
304 based on the pattern of this insn. */
306 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
307 stupid_mark_refs (PATTERN (insn), chain);
309 if (GET_CODE (insn) == NOTE
310 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP)
311 last_setjmp_suid = INSN_SUID (insn);
313 /* Mark all call-clobbered regs as dead after each call insn so that
314 a pseudo whose life span includes this insn will not go in one of
315 them. If the function contains a non-local goto, mark all hard
316 registers dead (except for stack related bits).
318 Then mark those regs as all dead for the continuing scan
319 of the insns before the call. */
321 if (GET_CODE (insn) == CALL_INSN)
323 last_call_suid = INSN_SUID (insn);
325 if (current_function_has_nonlocal_label)
327 IOR_COMPL_HARD_REG_SET (after_insn_hard_regs[last_call_suid],
328 fixed_reg_set);
329 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
330 if (! fixed_regs[i])
331 regs_live[i] = 0;
333 else
335 IOR_HARD_REG_SET (after_insn_hard_regs[last_call_suid],
336 call_used_reg_set);
337 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
338 if (call_used_regs[i])
339 regs_live[i] = 0;
342 /* It is important that this be done after processing the insn's
343 pattern because we want the function result register to still
344 be live if it's also used to pass arguments. */
345 stupid_mark_refs (CALL_INSN_FUNCTION_USAGE (insn), chain);
348 if (GET_CODE (insn) != NOTE && GET_CODE (insn) != BARRIER)
350 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
351 if (regs_live[i])
352 SET_REGNO_REG_SET (chain->live_after, i);
354 /* The regs_live array doesn't say anything about hard registers
355 clobbered by this insn. So we need an extra pass over the
356 pattern. */
357 current_chain = chain;
358 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
359 note_stores (PATTERN (insn), find_clobbered_regs);
362 if (GET_CODE (insn) == JUMP_INSN && computed_jump_p (insn))
363 current_function_has_computed_jump = 1;
366 /* Now decide the order in which to allocate the pseudo registers. */
368 for (i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
369 reg_order[i] = i;
371 qsort (&reg_order[LAST_VIRTUAL_REGISTER + 1],
372 max_regno - LAST_VIRTUAL_REGISTER - 1, sizeof (int),
373 stupid_reg_compare);
375 /* Now, in that order, try to find hard registers for those pseudo regs. */
377 for (i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
379 register int r = reg_order[i];
381 /* Some regnos disappear from the rtl. Ignore them to avoid crash.
382 Also don't allocate registers that cross a setjmp, or live across
383 a call if this function receives a nonlocal goto.
384 Also ignore registers we didn't see during the scan. */
385 if (regno_reg_rtx[r] == 0 || regs_crosses_setjmp[r]
386 || (reg_where_born_exact[r] == 0 && reg_where_dead[r] == 0)
387 || (REG_N_CALLS_CROSSED (r) > 0
388 && current_function_has_nonlocal_label))
389 continue;
391 /* Now find the best hard-register class for this pseudo register */
392 if (N_REG_CLASSES > 1)
393 reg_renumber[r] = stupid_find_reg (REG_N_CALLS_CROSSED (r),
394 reg_preferred_class (r),
395 PSEUDO_REGNO_MODE (r),
396 REG_WHERE_BORN (r),
397 reg_where_dead[r],
398 regs_change_size[r]);
400 /* If no reg available in that class, try alternate class. */
401 if (reg_renumber[r] == -1 && reg_alternate_class (r) != NO_REGS)
402 reg_renumber[r] = stupid_find_reg (REG_N_CALLS_CROSSED (r),
403 reg_alternate_class (r),
404 PSEUDO_REGNO_MODE (r),
405 REG_WHERE_BORN (r),
406 reg_where_dead[r],
407 regs_change_size[r]);
410 /* Fill in the pseudo reg life information into the insn chain. */
411 for (i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
413 struct insn_chain *chain;
414 int regno;
416 regno = reg_renumber[i];
417 if (regno < 0)
418 continue;
420 chain = reg_where_dead_chain[i];
421 if (reg_where_dead[i] > INSN_SUID (chain->insn))
422 SET_REGNO_REG_SET (chain->live_after, i);
424 while (INSN_SUID (chain->insn) > reg_where_born_exact[i])
426 SET_REGNO_REG_SET (chain->live_before, i);
427 chain = chain->prev;
428 if (!chain)
429 break;
430 SET_REGNO_REG_SET (chain->live_after, i);
433 if (INSN_SUID (chain->insn) == reg_where_born_exact[i]
434 && reg_where_born_clobber[i])
435 SET_REGNO_REG_SET (chain->live_before, i);
438 if (file)
439 dump_flow_info (file);
441 free (regs_live);
442 free (uid_suid);
443 free (reg_where_dead);
444 free (reg_where_born_exact);
445 free (reg_where_born_clobber);
446 free (reg_where_dead_chain);
447 free (reg_order);
448 free (regs_change_size);
449 free (regs_crosses_setjmp);
450 free (after_insn_hard_regs);
453 /* Comparison function for qsort.
454 Returns -1 (1) if register *R1P is higher priority than *R2P. */
456 static int
457 stupid_reg_compare (r1p, r2p)
458 const GENERIC_PTR r1p;
459 const GENERIC_PTR r2p;
461 register int r1 = *(int *)r1p, r2 = *(int *)r2p;
462 register int len1 = reg_where_dead[r1] - REG_WHERE_BORN (r1);
463 register int len2 = reg_where_dead[r2] - REG_WHERE_BORN (r2);
464 int tem;
466 tem = len2 - len1;
467 if (tem != 0)
468 return tem;
470 tem = REG_N_REFS (r1) - REG_N_REFS (r2);
471 if (tem != 0)
472 return tem;
474 /* If regs are equally good, sort by regno,
475 so that the results of qsort leave nothing to chance. */
476 return r1 - r2;
479 /* Find a block of SIZE words of hard registers in reg_class CLASS
480 that can hold a value of machine-mode MODE
481 (but actually we test only the first of the block for holding MODE)
482 currently free from after insn whose suid is BORN_INSN
483 through the insn whose suid is DEAD_INSN,
484 and return the number of the first of them.
485 Return -1 if such a block cannot be found.
487 If CALL_PRESERVED is nonzero, insist on registers preserved
488 over subroutine calls, and return -1 if cannot find such.
490 If CHANGES_SIZE is nonzero, it means this register was used as the
491 operand of a SUBREG that changes its size. */
493 static int
494 stupid_find_reg (call_preserved, class, mode,
495 born_insn, dead_insn, changes_size)
496 int call_preserved;
497 enum reg_class class;
498 enum machine_mode mode;
499 int born_insn, dead_insn;
500 int changes_size ATTRIBUTE_UNUSED;
502 register int i, ins;
503 #ifdef HARD_REG_SET
504 register /* Declare them register if they are scalars. */
505 #endif
506 HARD_REG_SET used, this_reg;
507 #ifdef ELIMINABLE_REGS
508 static struct {int from, to; } eliminables[] = ELIMINABLE_REGS;
509 #endif
511 /* If this register's life is more than 5,000 insns, we probably
512 can't allocate it, so don't waste the time trying. This avoids
513 quadratic behavior on programs that have regularly-occurring
514 SAVE_EXPRs. */
515 if (dead_insn > born_insn + 5000)
516 return -1;
518 COPY_HARD_REG_SET (used,
519 call_preserved ? call_used_reg_set : fixed_reg_set);
521 #ifdef ELIMINABLE_REGS
522 for (i = 0; i < (int)(sizeof eliminables / sizeof eliminables[0]); i++)
523 SET_HARD_REG_BIT (used, eliminables[i].from);
524 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
525 SET_HARD_REG_BIT (used, HARD_FRAME_POINTER_REGNUM);
526 #endif
527 #else
528 SET_HARD_REG_BIT (used, FRAME_POINTER_REGNUM);
529 #endif
531 for (ins = born_insn; ins < dead_insn; ins++)
532 IOR_HARD_REG_SET (used, after_insn_hard_regs[ins]);
534 #ifdef STACK_REGS
535 if (current_function_has_computed_jump)
536 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
537 SET_HARD_REG_BIT (used, i);
538 #endif
540 IOR_COMPL_HARD_REG_SET (used, reg_class_contents[(int) class]);
542 #ifdef CLASS_CANNOT_CHANGE_SIZE
543 if (changes_size)
544 IOR_HARD_REG_SET (used,
545 reg_class_contents[(int) CLASS_CANNOT_CHANGE_SIZE]);
546 #endif
548 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
550 #ifdef REG_ALLOC_ORDER
551 int regno = reg_alloc_order[i];
552 #else
553 int regno = i;
554 #endif
556 /* If a register has screwy overlap problems,
557 don't use it at all if not optimizing.
558 Actually this is only for the 387 stack register,
559 and it's because subsequent code won't work. */
560 #ifdef OVERLAPPING_REGNO_P
561 if (OVERLAPPING_REGNO_P (regno))
562 continue;
563 #endif
565 if (! TEST_HARD_REG_BIT (used, regno)
566 && HARD_REGNO_MODE_OK (regno, mode))
568 register int j;
569 register int size1 = HARD_REGNO_NREGS (regno, mode);
570 for (j = 1; j < size1 && ! TEST_HARD_REG_BIT (used, regno + j); j++);
571 if (j == size1)
573 CLEAR_HARD_REG_SET (this_reg);
574 while (--j >= 0)
575 SET_HARD_REG_BIT (this_reg, regno + j);
576 for (ins = born_insn; ins < dead_insn; ins++)
578 IOR_HARD_REG_SET (after_insn_hard_regs[ins], this_reg);
580 return regno;
582 #ifndef REG_ALLOC_ORDER
583 i += j; /* Skip starting points we know will lose */
584 #endif
588 return -1;
591 /* Walk X, noting all assignments and references to registers
592 and recording what they imply about life spans.
593 INSN is the current insn, supplied so we can find its suid. */
595 static void
596 stupid_mark_refs (x, chain)
597 rtx x;
598 struct insn_chain *chain;
600 register RTX_CODE code;
601 register char *fmt;
602 register int regno, i;
603 rtx insn = chain->insn;
605 if (x == 0)
606 return;
608 code = GET_CODE (x);
610 if (code == SET || code == CLOBBER)
612 if (SET_DEST (x) != 0
613 && (GET_CODE (SET_DEST (x)) == REG
614 || (GET_CODE (SET_DEST (x)) == SUBREG
615 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG
616 && (REGNO (SUBREG_REG (SET_DEST (x)))
617 >= FIRST_PSEUDO_REGISTER))))
619 /* Register is being assigned. */
620 /* If setting a SUBREG, we treat the entire reg as being set. */
621 if (GET_CODE (SET_DEST (x)) == SUBREG)
622 regno = REGNO (SUBREG_REG (SET_DEST (x)));
623 else
624 regno = REGNO (SET_DEST (x));
626 /* For hard regs, update the where-live info. */
627 if (regno < FIRST_PSEUDO_REGISTER)
629 register int j
630 = HARD_REGNO_NREGS (regno, GET_MODE (SET_DEST (x)));
632 while (--j >= 0)
634 regs_ever_live[regno+j] = 1;
635 regs_live[regno+j] = 0;
637 /* The following line is for unused outputs;
638 they do get stored even though never used again. */
639 MARK_LIVE_AFTER (insn, regno+j);
641 /* When a hard reg is clobbered, mark it in use
642 just before this insn, so it is live all through. */
643 if (code == CLOBBER && INSN_SUID (insn) > 0)
644 SET_HARD_REG_BIT (after_insn_hard_regs[INSN_SUID (insn) - 1],
645 regno+j);
648 /* For pseudo regs, record where born, where dead, number of
649 times used, and whether live across a call. */
650 else
652 /* Update the life-interval bounds of this pseudo reg. */
654 /* When a pseudo-reg is CLOBBERed, it is born just before
655 the clobbering insn. When setting, just after. */
656 int where_born = INSN_SUID (insn) - (code == CLOBBER);
658 reg_where_born_exact[regno] = INSN_SUID (insn);
659 reg_where_born_clobber[regno] = (code == CLOBBER);
661 if (reg_where_dead_chain[regno] == 0)
662 reg_where_dead_chain[regno] = chain;
664 /* The reg must live at least one insn even
665 in it is never again used--because it has to go
666 in SOME hard reg. Mark it as dying after the current
667 insn so that it will conflict with any other outputs of
668 this insn. */
669 if (reg_where_dead[regno] < where_born + 2)
671 reg_where_dead[regno] = where_born + 2;
672 regs_live[regno] = 1;
675 /* Count the refs of this reg. */
676 REG_N_REFS (regno)++;
678 if (last_call_suid < reg_where_dead[regno])
679 REG_N_CALLS_CROSSED (regno) += 1;
681 if (last_setjmp_suid < reg_where_dead[regno])
682 regs_crosses_setjmp[regno] = 1;
684 /* If this register is only used in this insn and is only
685 set, mark it unused. We have to do this even when not
686 optimizing so that MD patterns which count on this
687 behavior (e.g., it not causing an output reload on
688 an insn setting CC) will operate correctly. */
689 if (GET_CODE (SET_DEST (x)) == REG
690 && REGNO_FIRST_UID (regno) == INSN_UID (insn)
691 && REGNO_LAST_UID (regno) == INSN_UID (insn)
692 && (code == CLOBBER || ! reg_mentioned_p (SET_DEST (x),
693 SET_SRC (x))))
694 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_UNUSED,
695 SET_DEST (x),
696 REG_NOTES (insn));
700 /* Record references from the value being set,
701 or from addresses in the place being set if that's not a reg.
702 If setting a SUBREG, we treat the entire reg as *used*. */
703 if (code == SET)
705 stupid_mark_refs (SET_SRC (x), chain);
706 if (GET_CODE (SET_DEST (x)) != REG)
707 stupid_mark_refs (SET_DEST (x), chain);
709 return;
712 else if (code == SUBREG
713 && GET_CODE (SUBREG_REG (x)) == REG
714 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER
715 && (GET_MODE_SIZE (GET_MODE (x))
716 != GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
717 && (INTEGRAL_MODE_P (GET_MODE (x))
718 || INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (x)))))
719 regs_change_size[REGNO (SUBREG_REG (x))] = 1;
721 /* Register value being used, not set. */
723 else if (code == REG)
725 regno = REGNO (x);
726 if (regno < FIRST_PSEUDO_REGISTER)
728 /* Hard reg: mark it live for continuing scan of previous insns. */
729 register int j = HARD_REGNO_NREGS (regno, GET_MODE (x));
730 while (--j >= 0)
732 regs_ever_live[regno+j] = 1;
733 regs_live[regno+j] = 1;
736 else
738 /* Pseudo reg: record first use, last use and number of uses. */
740 reg_where_born_exact[regno] = INSN_SUID (insn);
741 reg_where_born_clobber[regno] = 0;
742 REG_N_REFS (regno)++;
743 if (regs_live[regno] == 0)
745 regs_live[regno] = 1;
746 reg_where_dead[regno] = INSN_SUID (insn);
747 reg_where_dead_chain[regno] = chain;
750 return;
753 /* Recursive scan of all other rtx's. */
755 fmt = GET_RTX_FORMAT (code);
756 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
758 if (fmt[i] == 'e')
759 stupid_mark_refs (XEXP (x, i), chain);
760 if (fmt[i] == 'E')
762 register int j;
763 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
764 stupid_mark_refs (XVECEXP (x, i, j), chain);