stor-layout.c (layout_type): Move setting complex MODE to layout_type...
[official-gcc.git] / gcc / hash-table.h
blobe925e1e12d6e805faf9aff3e3445dc5e401731db
1 /* A type-safe hash table template.
2 Copyright (C) 2012-2016 Free Software Foundation, Inc.
3 Contributed by Lawrence Crowl <crowl@google.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 /* This file implements a typed hash table.
23 The implementation borrows from libiberty's htab_t in hashtab.h.
26 INTRODUCTION TO TYPES
28 Users of the hash table generally need to be aware of three types.
30 1. The type being placed into the hash table. This type is called
31 the value type.
33 2. The type used to describe how to handle the value type within
34 the hash table. This descriptor type provides the hash table with
35 several things.
37 - A typedef named 'value_type' to the value type (from above).
39 - A static member function named 'hash' that takes a value_type
40 (or 'const value_type &') and returns a hashval_t value.
42 - A typedef named 'compare_type' that is used to test when a value
43 is found. This type is the comparison type. Usually, it will be the
44 same as value_type. If it is not the same type, you must generally
45 explicitly compute hash values and pass them to the hash table.
47 - A static member function named 'equal' that takes a value_type
48 and a compare_type, and returns a bool. Both arguments can be
49 const references.
51 - A static function named 'remove' that takes an value_type pointer
52 and frees the memory allocated by it. This function is used when
53 individual elements of the table need to be disposed of (e.g.,
54 when deleting a hash table, removing elements from the table, etc).
56 - An optional static function named 'keep_cache_entry'. This
57 function is provided only for garbage-collected elements that
58 are not marked by the normal gc mark pass. It describes what
59 what should happen to the element at the end of the gc mark phase.
60 The return value should be:
61 - 0 if the element should be deleted
62 - 1 if the element should be kept and needs to be marked
63 - -1 if the element should be kept and is already marked.
64 Returning -1 rather than 1 is purely an optimization.
66 3. The type of the hash table itself. (More later.)
68 In very special circumstances, users may need to know about a fourth type.
70 4. The template type used to describe how hash table memory
71 is allocated. This type is called the allocator type. It is
72 parameterized on the value type. It provides two functions:
74 - A static member function named 'data_alloc'. This function
75 allocates the data elements in the table.
77 - A static member function named 'data_free'. This function
78 deallocates the data elements in the table.
80 Hash table are instantiated with two type arguments.
82 * The descriptor type, (2) above.
84 * The allocator type, (4) above. In general, you will not need to
85 provide your own allocator type. By default, hash tables will use
86 the class template xcallocator, which uses malloc/free for allocation.
89 DEFINING A DESCRIPTOR TYPE
91 The first task in using the hash table is to describe the element type.
92 We compose this into a few steps.
94 1. Decide on a removal policy for values stored in the table.
95 hash-traits.h provides class templates for the four most common
96 policies:
98 * typed_free_remove implements the static 'remove' member function
99 by calling free().
101 * typed_noop_remove implements the static 'remove' member function
102 by doing nothing.
104 * ggc_remove implements the static 'remove' member by doing nothing,
105 but instead provides routines for gc marking and for PCH streaming.
106 Use this for garbage-collected data that needs to be preserved across
107 collections.
109 * ggc_cache_remove is like ggc_remove, except that it does not
110 mark the entries during the normal gc mark phase. Instead it
111 uses 'keep_cache_entry' (described above) to keep elements that
112 were not collected and delete those that were. Use this for
113 garbage-collected caches that should not in themselves stop
114 the data from being collected.
116 You can use these policies by simply deriving the descriptor type
117 from one of those class template, with the appropriate argument.
119 Otherwise, you need to write the static 'remove' member function
120 in the descriptor class.
122 2. Choose a hash function. Write the static 'hash' member function.
124 3. Decide whether the lookup function should take as input an object
125 of type value_type or something more restricted. Define compare_type
126 accordingly.
128 4. Choose an equality testing function 'equal' that compares a value_type
129 and a compare_type.
131 If your elements are pointers, it is usually easiest to start with one
132 of the generic pointer descriptors described below and override the bits
133 you need to change.
135 AN EXAMPLE DESCRIPTOR TYPE
137 Suppose you want to put some_type into the hash table. You could define
138 the descriptor type as follows.
140 struct some_type_hasher : nofree_ptr_hash <some_type>
141 // Deriving from nofree_ptr_hash means that we get a 'remove' that does
142 // nothing. This choice is good for raw values.
144 static inline hashval_t hash (const value_type *);
145 static inline bool equal (const value_type *, const compare_type *);
148 inline hashval_t
149 some_type_hasher::hash (const value_type *e)
150 { ... compute and return a hash value for E ... }
152 inline bool
153 some_type_hasher::equal (const value_type *p1, const compare_type *p2)
154 { ... compare P1 vs P2. Return true if they are the 'same' ... }
157 AN EXAMPLE HASH_TABLE DECLARATION
159 To instantiate a hash table for some_type:
161 hash_table <some_type_hasher> some_type_hash_table;
163 There is no need to mention some_type directly, as the hash table will
164 obtain it using some_type_hasher::value_type.
166 You can then use any of the functions in hash_table's public interface.
167 See hash_table for details. The interface is very similar to libiberty's
168 htab_t.
171 EASY DESCRIPTORS FOR POINTERS
173 There are four descriptors for pointer elements, one for each of
174 the removal policies above:
176 * nofree_ptr_hash (based on typed_noop_remove)
177 * free_ptr_hash (based on typed_free_remove)
178 * ggc_ptr_hash (based on ggc_remove)
179 * ggc_cache_ptr_hash (based on ggc_cache_remove)
181 These descriptors hash and compare elements by their pointer value,
182 rather than what they point to. So, to instantiate a hash table over
183 pointers to whatever_type, without freeing the whatever_types, use:
185 hash_table <nofree_ptr_hash <whatever_type> > whatever_type_hash_table;
188 HASH TABLE ITERATORS
190 The hash table provides standard C++ iterators. For example, consider a
191 hash table of some_info. We wish to consume each element of the table:
193 extern void consume (some_info *);
195 We define a convenience typedef and the hash table:
197 typedef hash_table <some_info_hasher> info_table_type;
198 info_table_type info_table;
200 Then we write the loop in typical C++ style:
202 for (info_table_type::iterator iter = info_table.begin ();
203 iter != info_table.end ();
204 ++iter)
205 if ((*iter).status == INFO_READY)
206 consume (&*iter);
208 Or with common sub-expression elimination:
210 for (info_table_type::iterator iter = info_table.begin ();
211 iter != info_table.end ();
212 ++iter)
214 some_info &elem = *iter;
215 if (elem.status == INFO_READY)
216 consume (&elem);
219 One can also use a more typical GCC style:
221 typedef some_info *some_info_p;
222 some_info *elem_ptr;
223 info_table_type::iterator iter;
224 FOR_EACH_HASH_TABLE_ELEMENT (info_table, elem_ptr, some_info_p, iter)
225 if (elem_ptr->status == INFO_READY)
226 consume (elem_ptr);
231 #ifndef TYPED_HASHTAB_H
232 #define TYPED_HASHTAB_H
234 #include "statistics.h"
235 #include "ggc.h"
236 #include "vec.h"
237 #include "hashtab.h"
238 #include "inchash.h"
239 #include "mem-stats-traits.h"
240 #include "hash-traits.h"
241 #include "hash-map-traits.h"
243 template<typename, typename, typename> class hash_map;
244 template<typename, typename> class hash_set;
246 /* The ordinary memory allocator. */
247 /* FIXME (crowl): This allocator may be extracted for wider sharing later. */
249 template <typename Type>
250 struct xcallocator
252 static Type *data_alloc (size_t count);
253 static void data_free (Type *memory);
257 /* Allocate memory for COUNT data blocks. */
259 template <typename Type>
260 inline Type *
261 xcallocator <Type>::data_alloc (size_t count)
263 return static_cast <Type *> (xcalloc (count, sizeof (Type)));
267 /* Free memory for data blocks. */
269 template <typename Type>
270 inline void
271 xcallocator <Type>::data_free (Type *memory)
273 return ::free (memory);
277 /* Table of primes and their inversion information. */
279 struct prime_ent
281 hashval_t prime;
282 hashval_t inv;
283 hashval_t inv_m2; /* inverse of prime-2 */
284 hashval_t shift;
287 extern struct prime_ent const prime_tab[];
290 /* Functions for computing hash table indexes. */
292 extern unsigned int hash_table_higher_prime_index (unsigned long n)
293 ATTRIBUTE_PURE;
295 /* Return X % Y using multiplicative inverse values INV and SHIFT.
297 The multiplicative inverses computed above are for 32-bit types,
298 and requires that we be able to compute a highpart multiply.
300 FIX: I am not at all convinced that
301 3 loads, 2 multiplications, 3 shifts, and 3 additions
302 will be faster than
303 1 load and 1 modulus
304 on modern systems running a compiler. */
306 inline hashval_t
307 mul_mod (hashval_t x, hashval_t y, hashval_t inv, int shift)
309 hashval_t t1, t2, t3, t4, q, r;
311 t1 = ((uint64_t)x * inv) >> 32;
312 t2 = x - t1;
313 t3 = t2 >> 1;
314 t4 = t1 + t3;
315 q = t4 >> shift;
316 r = x - (q * y);
318 return r;
321 /* Compute the primary table index for HASH given current prime index. */
323 inline hashval_t
324 hash_table_mod1 (hashval_t hash, unsigned int index)
326 const struct prime_ent *p = &prime_tab[index];
327 gcc_checking_assert (sizeof (hashval_t) * CHAR_BIT <= 32);
328 return mul_mod (hash, p->prime, p->inv, p->shift);
331 /* Compute the secondary table index for HASH given current prime index. */
333 inline hashval_t
334 hash_table_mod2 (hashval_t hash, unsigned int index)
336 const struct prime_ent *p = &prime_tab[index];
337 gcc_checking_assert (sizeof (hashval_t) * CHAR_BIT <= 32);
338 return 1 + mul_mod (hash, p->prime - 2, p->inv_m2, p->shift);
341 class mem_usage;
343 /* User-facing hash table type.
345 The table stores elements of type Descriptor::value_type and uses
346 the static descriptor functions described at the top of the file
347 to hash, compare and remove elements.
349 Specify the template Allocator to allocate and free memory.
350 The default is xcallocator.
352 Storage is an implementation detail and should not be used outside the
353 hash table code.
356 template <typename Descriptor,
357 template<typename Type> class Allocator = xcallocator>
358 class hash_table
360 typedef typename Descriptor::value_type value_type;
361 typedef typename Descriptor::compare_type compare_type;
363 public:
364 explicit hash_table (size_t, bool ggc = false,
365 bool gather_mem_stats = GATHER_STATISTICS,
366 mem_alloc_origin origin = HASH_TABLE_ORIGIN
367 CXX_MEM_STAT_INFO);
368 explicit hash_table (const hash_table &, bool ggc = false,
369 bool gather_mem_stats = GATHER_STATISTICS,
370 mem_alloc_origin origin = HASH_TABLE_ORIGIN
371 CXX_MEM_STAT_INFO);
372 ~hash_table ();
374 /* Create a hash_table in gc memory. */
375 static hash_table *
376 create_ggc (size_t n CXX_MEM_STAT_INFO)
378 hash_table *table = ggc_alloc<hash_table> ();
379 new (table) hash_table (n, true, GATHER_STATISTICS,
380 HASH_TABLE_ORIGIN PASS_MEM_STAT);
381 return table;
384 /* Current size (in entries) of the hash table. */
385 size_t size () const { return m_size; }
387 /* Return the current number of elements in this hash table. */
388 size_t elements () const { return m_n_elements - m_n_deleted; }
390 /* Return the current number of elements in this hash table. */
391 size_t elements_with_deleted () const { return m_n_elements; }
393 /* This function clears all entries in this hash table. */
394 void empty () { if (elements ()) empty_slow (); }
396 /* This function clears a specified SLOT in a hash table. It is
397 useful when you've already done the lookup and don't want to do it
398 again. */
399 void clear_slot (value_type *);
401 /* This function searches for a hash table entry equal to the given
402 COMPARABLE element starting with the given HASH value. It cannot
403 be used to insert or delete an element. */
404 value_type &find_with_hash (const compare_type &, hashval_t);
406 /* Like find_slot_with_hash, but compute the hash value from the element. */
407 value_type &find (const value_type &value)
409 return find_with_hash (value, Descriptor::hash (value));
412 value_type *find_slot (const value_type &value, insert_option insert)
414 return find_slot_with_hash (value, Descriptor::hash (value), insert);
417 /* This function searches for a hash table slot containing an entry
418 equal to the given COMPARABLE element and starting with the given
419 HASH. To delete an entry, call this with insert=NO_INSERT, then
420 call clear_slot on the slot returned (possibly after doing some
421 checks). To insert an entry, call this with insert=INSERT, then
422 write the value you want into the returned slot. When inserting an
423 entry, NULL may be returned if memory allocation fails. */
424 value_type *find_slot_with_hash (const compare_type &comparable,
425 hashval_t hash, enum insert_option insert);
427 /* This function deletes an element with the given COMPARABLE value
428 from hash table starting with the given HASH. If there is no
429 matching element in the hash table, this function does nothing. */
430 void remove_elt_with_hash (const compare_type &, hashval_t);
432 /* Like remove_elt_with_hash, but compute the hash value from the
433 element. */
434 void remove_elt (const value_type &value)
436 remove_elt_with_hash (value, Descriptor::hash (value));
439 /* This function scans over the entire hash table calling CALLBACK for
440 each live entry. If CALLBACK returns false, the iteration stops.
441 ARGUMENT is passed as CALLBACK's second argument. */
442 template <typename Argument,
443 int (*Callback) (value_type *slot, Argument argument)>
444 void traverse_noresize (Argument argument);
446 /* Like traverse_noresize, but does resize the table when it is too empty
447 to improve effectivity of subsequent calls. */
448 template <typename Argument,
449 int (*Callback) (value_type *slot, Argument argument)>
450 void traverse (Argument argument);
452 class iterator
454 public:
455 iterator () : m_slot (NULL), m_limit (NULL) {}
457 iterator (value_type *slot, value_type *limit) :
458 m_slot (slot), m_limit (limit) {}
460 inline value_type &operator * () { return *m_slot; }
461 void slide ();
462 inline iterator &operator ++ ();
463 bool operator != (const iterator &other) const
465 return m_slot != other.m_slot || m_limit != other.m_limit;
468 private:
469 value_type *m_slot;
470 value_type *m_limit;
473 iterator begin () const
475 iterator iter (m_entries, m_entries + m_size);
476 iter.slide ();
477 return iter;
480 iterator end () const { return iterator (); }
482 double collisions () const
484 return m_searches ? static_cast <double> (m_collisions) / m_searches : 0;
487 private:
488 template<typename T> friend void gt_ggc_mx (hash_table<T> *);
489 template<typename T> friend void gt_pch_nx (hash_table<T> *);
490 template<typename T> friend void
491 hashtab_entry_note_pointers (void *, void *, gt_pointer_operator, void *);
492 template<typename T, typename U, typename V> friend void
493 gt_pch_nx (hash_map<T, U, V> *, gt_pointer_operator, void *);
494 template<typename T, typename U> friend void gt_pch_nx (hash_set<T, U> *,
495 gt_pointer_operator,
496 void *);
497 template<typename T> friend void gt_pch_nx (hash_table<T> *,
498 gt_pointer_operator, void *);
500 template<typename T> friend void gt_cleare_cache (hash_table<T> *);
502 void empty_slow ();
504 value_type *alloc_entries (size_t n CXX_MEM_STAT_INFO) const;
505 value_type *find_empty_slot_for_expand (hashval_t);
506 void expand ();
507 static bool is_deleted (value_type &v)
509 return Descriptor::is_deleted (v);
512 static bool is_empty (value_type &v)
514 return Descriptor::is_empty (v);
517 static void mark_deleted (value_type &v)
519 Descriptor::mark_deleted (v);
522 static void mark_empty (value_type &v)
524 Descriptor::mark_empty (v);
527 /* Table itself. */
528 typename Descriptor::value_type *m_entries;
530 size_t m_size;
532 /* Current number of elements including also deleted elements. */
533 size_t m_n_elements;
535 /* Current number of deleted elements in the table. */
536 size_t m_n_deleted;
538 /* The following member is used for debugging. Its value is number
539 of all calls of `htab_find_slot' for the hash table. */
540 unsigned int m_searches;
542 /* The following member is used for debugging. Its value is number
543 of collisions fixed for time of work with the hash table. */
544 unsigned int m_collisions;
546 /* Current size (in entries) of the hash table, as an index into the
547 table of primes. */
548 unsigned int m_size_prime_index;
550 /* if m_entries is stored in ggc memory. */
551 bool m_ggc;
553 /* If we should gather memory statistics for the table. */
554 bool m_gather_mem_stats;
557 /* As mem-stats.h heavily utilizes hash maps (hash tables), we have to include
558 mem-stats.h after hash_table declaration. */
560 #include "mem-stats.h"
561 #include "hash-map.h"
563 extern mem_alloc_description<mem_usage> hash_table_usage;
565 /* Support function for statistics. */
566 extern void dump_hash_table_loc_statistics (void);
568 template<typename Descriptor, template<typename Type> class Allocator>
569 hash_table<Descriptor, Allocator>::hash_table (size_t size, bool ggc, bool
570 gather_mem_stats,
571 mem_alloc_origin origin
572 MEM_STAT_DECL) :
573 m_n_elements (0), m_n_deleted (0), m_searches (0), m_collisions (0),
574 m_ggc (ggc), m_gather_mem_stats (gather_mem_stats)
576 unsigned int size_prime_index;
578 size_prime_index = hash_table_higher_prime_index (size);
579 size = prime_tab[size_prime_index].prime;
581 if (m_gather_mem_stats)
582 hash_table_usage.register_descriptor (this, origin, ggc
583 FINAL_PASS_MEM_STAT);
585 m_entries = alloc_entries (size PASS_MEM_STAT);
586 m_size = size;
587 m_size_prime_index = size_prime_index;
590 template<typename Descriptor, template<typename Type> class Allocator>
591 hash_table<Descriptor, Allocator>::hash_table (const hash_table &h, bool ggc,
592 bool gather_mem_stats,
593 mem_alloc_origin origin
594 MEM_STAT_DECL) :
595 m_n_elements (h.m_n_elements), m_n_deleted (h.m_n_deleted),
596 m_searches (0), m_collisions (0), m_ggc (ggc),
597 m_gather_mem_stats (gather_mem_stats)
599 size_t size = h.m_size;
601 if (m_gather_mem_stats)
602 hash_table_usage.register_descriptor (this, origin, ggc
603 FINAL_PASS_MEM_STAT);
605 value_type *nentries = alloc_entries (size PASS_MEM_STAT);
606 for (size_t i = 0; i < size; ++i)
608 value_type &entry = h.m_entries[i];
609 if (is_deleted (entry))
610 mark_deleted (nentries[i]);
611 else if (!is_empty (entry))
612 nentries[i] = entry;
614 m_entries = nentries;
615 m_size = size;
616 m_size_prime_index = h.m_size_prime_index;
619 template<typename Descriptor, template<typename Type> class Allocator>
620 hash_table<Descriptor, Allocator>::~hash_table ()
622 for (size_t i = m_size - 1; i < m_size; i--)
623 if (!is_empty (m_entries[i]) && !is_deleted (m_entries[i]))
624 Descriptor::remove (m_entries[i]);
626 if (!m_ggc)
627 Allocator <value_type> ::data_free (m_entries);
628 else
629 ggc_free (m_entries);
631 if (m_gather_mem_stats)
632 hash_table_usage.release_instance_overhead (this,
633 sizeof (value_type) * m_size,
634 true);
637 /* This function returns an array of empty hash table elements. */
639 template<typename Descriptor, template<typename Type> class Allocator>
640 inline typename hash_table<Descriptor, Allocator>::value_type *
641 hash_table<Descriptor, Allocator>::alloc_entries (size_t n MEM_STAT_DECL) const
643 value_type *nentries;
645 if (m_gather_mem_stats)
646 hash_table_usage.register_instance_overhead (sizeof (value_type) * n, this);
648 if (!m_ggc)
649 nentries = Allocator <value_type> ::data_alloc (n);
650 else
651 nentries = ::ggc_cleared_vec_alloc<value_type> (n PASS_MEM_STAT);
653 gcc_assert (nentries != NULL);
654 for (size_t i = 0; i < n; i++)
655 mark_empty (nentries[i]);
657 return nentries;
660 /* Similar to find_slot, but without several unwanted side effects:
661 - Does not call equal when it finds an existing entry.
662 - Does not change the count of elements/searches/collisions in the
663 hash table.
664 This function also assumes there are no deleted entries in the table.
665 HASH is the hash value for the element to be inserted. */
667 template<typename Descriptor, template<typename Type> class Allocator>
668 typename hash_table<Descriptor, Allocator>::value_type *
669 hash_table<Descriptor, Allocator>::find_empty_slot_for_expand (hashval_t hash)
671 hashval_t index = hash_table_mod1 (hash, m_size_prime_index);
672 size_t size = m_size;
673 value_type *slot = m_entries + index;
674 hashval_t hash2;
676 if (is_empty (*slot))
677 return slot;
678 gcc_checking_assert (!is_deleted (*slot));
680 hash2 = hash_table_mod2 (hash, m_size_prime_index);
681 for (;;)
683 index += hash2;
684 if (index >= size)
685 index -= size;
687 slot = m_entries + index;
688 if (is_empty (*slot))
689 return slot;
690 gcc_checking_assert (!is_deleted (*slot));
694 /* The following function changes size of memory allocated for the
695 entries and repeatedly inserts the table elements. The occupancy
696 of the table after the call will be about 50%. Naturally the hash
697 table must already exist. Remember also that the place of the
698 table entries is changed. If memory allocation fails, this function
699 will abort. */
701 template<typename Descriptor, template<typename Type> class Allocator>
702 void
703 hash_table<Descriptor, Allocator>::expand ()
705 value_type *oentries = m_entries;
706 unsigned int oindex = m_size_prime_index;
707 size_t osize = size ();
708 value_type *olimit = oentries + osize;
709 size_t elts = elements ();
711 /* Resize only when table after removal of unused elements is either
712 too full or too empty. */
713 unsigned int nindex;
714 size_t nsize;
715 if (elts * 2 > osize || (elts * 8 < osize && osize > 32))
717 nindex = hash_table_higher_prime_index (elts * 2);
718 nsize = prime_tab[nindex].prime;
720 else
722 nindex = oindex;
723 nsize = osize;
726 value_type *nentries = alloc_entries (nsize);
728 if (m_gather_mem_stats)
729 hash_table_usage.release_instance_overhead (this, sizeof (value_type)
730 * osize);
732 m_entries = nentries;
733 m_size = nsize;
734 m_size_prime_index = nindex;
735 m_n_elements -= m_n_deleted;
736 m_n_deleted = 0;
738 value_type *p = oentries;
741 value_type &x = *p;
743 if (!is_empty (x) && !is_deleted (x))
745 value_type *q = find_empty_slot_for_expand (Descriptor::hash (x));
747 *q = x;
750 p++;
752 while (p < olimit);
754 if (!m_ggc)
755 Allocator <value_type> ::data_free (oentries);
756 else
757 ggc_free (oentries);
760 /* Implements empty() in cases where it isn't a no-op. */
762 template<typename Descriptor, template<typename Type> class Allocator>
763 void
764 hash_table<Descriptor, Allocator>::empty_slow ()
766 size_t size = m_size;
767 value_type *entries = m_entries;
768 int i;
770 for (i = size - 1; i >= 0; i--)
771 if (!is_empty (entries[i]) && !is_deleted (entries[i]))
772 Descriptor::remove (entries[i]);
774 /* Instead of clearing megabyte, downsize the table. */
775 if (size > 1024*1024 / sizeof (PTR))
777 int nindex = hash_table_higher_prime_index (1024 / sizeof (PTR));
778 int nsize = prime_tab[nindex].prime;
780 if (!m_ggc)
781 Allocator <value_type> ::data_free (m_entries);
782 else
783 ggc_free (m_entries);
785 m_entries = alloc_entries (nsize);
786 m_size = nsize;
787 m_size_prime_index = nindex;
789 else
790 memset (entries, 0, size * sizeof (value_type));
791 m_n_deleted = 0;
792 m_n_elements = 0;
795 /* This function clears a specified SLOT in a hash table. It is
796 useful when you've already done the lookup and don't want to do it
797 again. */
799 template<typename Descriptor, template<typename Type> class Allocator>
800 void
801 hash_table<Descriptor, Allocator>::clear_slot (value_type *slot)
803 gcc_checking_assert (!(slot < m_entries || slot >= m_entries + size ()
804 || is_empty (*slot) || is_deleted (*slot)));
806 Descriptor::remove (*slot);
808 mark_deleted (*slot);
809 m_n_deleted++;
812 /* This function searches for a hash table entry equal to the given
813 COMPARABLE element starting with the given HASH value. It cannot
814 be used to insert or delete an element. */
816 template<typename Descriptor, template<typename Type> class Allocator>
817 typename hash_table<Descriptor, Allocator>::value_type &
818 hash_table<Descriptor, Allocator>
819 ::find_with_hash (const compare_type &comparable, hashval_t hash)
821 m_searches++;
822 size_t size = m_size;
823 hashval_t index = hash_table_mod1 (hash, m_size_prime_index);
825 value_type *entry = &m_entries[index];
826 if (is_empty (*entry)
827 || (!is_deleted (*entry) && Descriptor::equal (*entry, comparable)))
828 return *entry;
830 hashval_t hash2 = hash_table_mod2 (hash, m_size_prime_index);
831 for (;;)
833 m_collisions++;
834 index += hash2;
835 if (index >= size)
836 index -= size;
838 entry = &m_entries[index];
839 if (is_empty (*entry)
840 || (!is_deleted (*entry) && Descriptor::equal (*entry, comparable)))
841 return *entry;
845 /* This function searches for a hash table slot containing an entry
846 equal to the given COMPARABLE element and starting with the given
847 HASH. To delete an entry, call this with insert=NO_INSERT, then
848 call clear_slot on the slot returned (possibly after doing some
849 checks). To insert an entry, call this with insert=INSERT, then
850 write the value you want into the returned slot. When inserting an
851 entry, NULL may be returned if memory allocation fails. */
853 template<typename Descriptor, template<typename Type> class Allocator>
854 typename hash_table<Descriptor, Allocator>::value_type *
855 hash_table<Descriptor, Allocator>
856 ::find_slot_with_hash (const compare_type &comparable, hashval_t hash,
857 enum insert_option insert)
859 if (insert == INSERT && m_size * 3 <= m_n_elements * 4)
860 expand ();
862 m_searches++;
864 value_type *first_deleted_slot = NULL;
865 hashval_t index = hash_table_mod1 (hash, m_size_prime_index);
866 hashval_t hash2 = hash_table_mod2 (hash, m_size_prime_index);
867 value_type *entry = &m_entries[index];
868 size_t size = m_size;
869 if (is_empty (*entry))
870 goto empty_entry;
871 else if (is_deleted (*entry))
872 first_deleted_slot = &m_entries[index];
873 else if (Descriptor::equal (*entry, comparable))
874 return &m_entries[index];
876 for (;;)
878 m_collisions++;
879 index += hash2;
880 if (index >= size)
881 index -= size;
883 entry = &m_entries[index];
884 if (is_empty (*entry))
885 goto empty_entry;
886 else if (is_deleted (*entry))
888 if (!first_deleted_slot)
889 first_deleted_slot = &m_entries[index];
891 else if (Descriptor::equal (*entry, comparable))
892 return &m_entries[index];
895 empty_entry:
896 if (insert == NO_INSERT)
897 return NULL;
899 if (first_deleted_slot)
901 m_n_deleted--;
902 mark_empty (*first_deleted_slot);
903 return first_deleted_slot;
906 m_n_elements++;
907 return &m_entries[index];
910 /* This function deletes an element with the given COMPARABLE value
911 from hash table starting with the given HASH. If there is no
912 matching element in the hash table, this function does nothing. */
914 template<typename Descriptor, template<typename Type> class Allocator>
915 void
916 hash_table<Descriptor, Allocator>
917 ::remove_elt_with_hash (const compare_type &comparable, hashval_t hash)
919 value_type *slot = find_slot_with_hash (comparable, hash, NO_INSERT);
920 if (is_empty (*slot))
921 return;
923 Descriptor::remove (*slot);
925 mark_deleted (*slot);
926 m_n_deleted++;
929 /* This function scans over the entire hash table calling CALLBACK for
930 each live entry. If CALLBACK returns false, the iteration stops.
931 ARGUMENT is passed as CALLBACK's second argument. */
933 template<typename Descriptor,
934 template<typename Type> class Allocator>
935 template<typename Argument,
936 int (*Callback)
937 (typename hash_table<Descriptor, Allocator>::value_type *slot,
938 Argument argument)>
939 void
940 hash_table<Descriptor, Allocator>::traverse_noresize (Argument argument)
942 value_type *slot = m_entries;
943 value_type *limit = slot + size ();
947 value_type &x = *slot;
949 if (!is_empty (x) && !is_deleted (x))
950 if (! Callback (slot, argument))
951 break;
953 while (++slot < limit);
956 /* Like traverse_noresize, but does resize the table when it is too empty
957 to improve effectivity of subsequent calls. */
959 template <typename Descriptor,
960 template <typename Type> class Allocator>
961 template <typename Argument,
962 int (*Callback)
963 (typename hash_table<Descriptor, Allocator>::value_type *slot,
964 Argument argument)>
965 void
966 hash_table<Descriptor, Allocator>::traverse (Argument argument)
968 size_t size = m_size;
969 if (elements () * 8 < size && size > 32)
970 expand ();
972 traverse_noresize <Argument, Callback> (argument);
975 /* Slide down the iterator slots until an active entry is found. */
977 template<typename Descriptor, template<typename Type> class Allocator>
978 void
979 hash_table<Descriptor, Allocator>::iterator::slide ()
981 for ( ; m_slot < m_limit; ++m_slot )
983 value_type &x = *m_slot;
984 if (!is_empty (x) && !is_deleted (x))
985 return;
987 m_slot = NULL;
988 m_limit = NULL;
991 /* Bump the iterator. */
993 template<typename Descriptor, template<typename Type> class Allocator>
994 inline typename hash_table<Descriptor, Allocator>::iterator &
995 hash_table<Descriptor, Allocator>::iterator::operator ++ ()
997 ++m_slot;
998 slide ();
999 return *this;
1003 /* Iterate through the elements of hash_table HTAB,
1004 using hash_table <....>::iterator ITER,
1005 storing each element in RESULT, which is of type TYPE. */
1007 #define FOR_EACH_HASH_TABLE_ELEMENT(HTAB, RESULT, TYPE, ITER) \
1008 for ((ITER) = (HTAB).begin (); \
1009 (ITER) != (HTAB).end () ? (RESULT = *(ITER) , true) : false; \
1010 ++(ITER))
1012 /* ggc walking routines. */
1014 template<typename E>
1015 static inline void
1016 gt_ggc_mx (hash_table<E> *h)
1018 typedef hash_table<E> table;
1020 if (!ggc_test_and_set_mark (h->m_entries))
1021 return;
1023 for (size_t i = 0; i < h->m_size; i++)
1025 if (table::is_empty (h->m_entries[i])
1026 || table::is_deleted (h->m_entries[i]))
1027 continue;
1029 E::ggc_mx (h->m_entries[i]);
1033 template<typename D>
1034 static inline void
1035 hashtab_entry_note_pointers (void *obj, void *h, gt_pointer_operator op,
1036 void *cookie)
1038 hash_table<D> *map = static_cast<hash_table<D> *> (h);
1039 gcc_checking_assert (map->m_entries == obj);
1040 for (size_t i = 0; i < map->m_size; i++)
1042 typedef hash_table<D> table;
1043 if (table::is_empty (map->m_entries[i])
1044 || table::is_deleted (map->m_entries[i]))
1045 continue;
1047 D::pch_nx (map->m_entries[i], op, cookie);
1051 template<typename D>
1052 static void
1053 gt_pch_nx (hash_table<D> *h)
1055 bool success
1056 = gt_pch_note_object (h->m_entries, h, hashtab_entry_note_pointers<D>);
1057 gcc_checking_assert (success);
1058 for (size_t i = 0; i < h->m_size; i++)
1060 if (hash_table<D>::is_empty (h->m_entries[i])
1061 || hash_table<D>::is_deleted (h->m_entries[i]))
1062 continue;
1064 D::pch_nx (h->m_entries[i]);
1068 template<typename D>
1069 static inline void
1070 gt_pch_nx (hash_table<D> *h, gt_pointer_operator op, void *cookie)
1072 op (&h->m_entries, cookie);
1075 template<typename H>
1076 inline void
1077 gt_cleare_cache (hash_table<H> *h)
1079 extern void gt_ggc_mx (typename H::value_type &t);
1080 typedef hash_table<H> table;
1081 if (!h)
1082 return;
1084 for (typename table::iterator iter = h->begin (); iter != h->end (); ++iter)
1085 if (!table::is_empty (*iter) && !table::is_deleted (*iter))
1087 int res = H::keep_cache_entry (*iter);
1088 if (res == 0)
1089 h->clear_slot (&*iter);
1090 else if (res != -1)
1091 gt_ggc_mx (*iter);
1095 #endif /* TYPED_HASHTAB_H */