1 /* A type-safe hash table template.
2 Copyright (C) 2012-2016 Free Software Foundation, Inc.
3 Contributed by Lawrence Crowl <crowl@google.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 /* This file implements a typed hash table.
23 The implementation borrows from libiberty's htab_t in hashtab.h.
28 Users of the hash table generally need to be aware of three types.
30 1. The type being placed into the hash table. This type is called
33 2. The type used to describe how to handle the value type within
34 the hash table. This descriptor type provides the hash table with
37 - A typedef named 'value_type' to the value type (from above).
39 - A static member function named 'hash' that takes a value_type
40 (or 'const value_type &') and returns a hashval_t value.
42 - A typedef named 'compare_type' that is used to test when a value
43 is found. This type is the comparison type. Usually, it will be the
44 same as value_type. If it is not the same type, you must generally
45 explicitly compute hash values and pass them to the hash table.
47 - A static member function named 'equal' that takes a value_type
48 and a compare_type, and returns a bool. Both arguments can be
51 - A static function named 'remove' that takes an value_type pointer
52 and frees the memory allocated by it. This function is used when
53 individual elements of the table need to be disposed of (e.g.,
54 when deleting a hash table, removing elements from the table, etc).
56 - An optional static function named 'keep_cache_entry'. This
57 function is provided only for garbage-collected elements that
58 are not marked by the normal gc mark pass. It describes what
59 what should happen to the element at the end of the gc mark phase.
60 The return value should be:
61 - 0 if the element should be deleted
62 - 1 if the element should be kept and needs to be marked
63 - -1 if the element should be kept and is already marked.
64 Returning -1 rather than 1 is purely an optimization.
66 3. The type of the hash table itself. (More later.)
68 In very special circumstances, users may need to know about a fourth type.
70 4. The template type used to describe how hash table memory
71 is allocated. This type is called the allocator type. It is
72 parameterized on the value type. It provides two functions:
74 - A static member function named 'data_alloc'. This function
75 allocates the data elements in the table.
77 - A static member function named 'data_free'. This function
78 deallocates the data elements in the table.
80 Hash table are instantiated with two type arguments.
82 * The descriptor type, (2) above.
84 * The allocator type, (4) above. In general, you will not need to
85 provide your own allocator type. By default, hash tables will use
86 the class template xcallocator, which uses malloc/free for allocation.
89 DEFINING A DESCRIPTOR TYPE
91 The first task in using the hash table is to describe the element type.
92 We compose this into a few steps.
94 1. Decide on a removal policy for values stored in the table.
95 hash-traits.h provides class templates for the four most common
98 * typed_free_remove implements the static 'remove' member function
101 * typed_noop_remove implements the static 'remove' member function
104 * ggc_remove implements the static 'remove' member by doing nothing,
105 but instead provides routines for gc marking and for PCH streaming.
106 Use this for garbage-collected data that needs to be preserved across
109 * ggc_cache_remove is like ggc_remove, except that it does not
110 mark the entries during the normal gc mark phase. Instead it
111 uses 'keep_cache_entry' (described above) to keep elements that
112 were not collected and delete those that were. Use this for
113 garbage-collected caches that should not in themselves stop
114 the data from being collected.
116 You can use these policies by simply deriving the descriptor type
117 from one of those class template, with the appropriate argument.
119 Otherwise, you need to write the static 'remove' member function
120 in the descriptor class.
122 2. Choose a hash function. Write the static 'hash' member function.
124 3. Decide whether the lookup function should take as input an object
125 of type value_type or something more restricted. Define compare_type
128 4. Choose an equality testing function 'equal' that compares a value_type
131 If your elements are pointers, it is usually easiest to start with one
132 of the generic pointer descriptors described below and override the bits
135 AN EXAMPLE DESCRIPTOR TYPE
137 Suppose you want to put some_type into the hash table. You could define
138 the descriptor type as follows.
140 struct some_type_hasher : nofree_ptr_hash <some_type>
141 // Deriving from nofree_ptr_hash means that we get a 'remove' that does
142 // nothing. This choice is good for raw values.
144 static inline hashval_t hash (const value_type *);
145 static inline bool equal (const value_type *, const compare_type *);
149 some_type_hasher::hash (const value_type *e)
150 { ... compute and return a hash value for E ... }
153 some_type_hasher::equal (const value_type *p1, const compare_type *p2)
154 { ... compare P1 vs P2. Return true if they are the 'same' ... }
157 AN EXAMPLE HASH_TABLE DECLARATION
159 To instantiate a hash table for some_type:
161 hash_table <some_type_hasher> some_type_hash_table;
163 There is no need to mention some_type directly, as the hash table will
164 obtain it using some_type_hasher::value_type.
166 You can then use any of the functions in hash_table's public interface.
167 See hash_table for details. The interface is very similar to libiberty's
171 EASY DESCRIPTORS FOR POINTERS
173 There are four descriptors for pointer elements, one for each of
174 the removal policies above:
176 * nofree_ptr_hash (based on typed_noop_remove)
177 * free_ptr_hash (based on typed_free_remove)
178 * ggc_ptr_hash (based on ggc_remove)
179 * ggc_cache_ptr_hash (based on ggc_cache_remove)
181 These descriptors hash and compare elements by their pointer value,
182 rather than what they point to. So, to instantiate a hash table over
183 pointers to whatever_type, without freeing the whatever_types, use:
185 hash_table <nofree_ptr_hash <whatever_type> > whatever_type_hash_table;
190 The hash table provides standard C++ iterators. For example, consider a
191 hash table of some_info. We wish to consume each element of the table:
193 extern void consume (some_info *);
195 We define a convenience typedef and the hash table:
197 typedef hash_table <some_info_hasher> info_table_type;
198 info_table_type info_table;
200 Then we write the loop in typical C++ style:
202 for (info_table_type::iterator iter = info_table.begin ();
203 iter != info_table.end ();
205 if ((*iter).status == INFO_READY)
208 Or with common sub-expression elimination:
210 for (info_table_type::iterator iter = info_table.begin ();
211 iter != info_table.end ();
214 some_info &elem = *iter;
215 if (elem.status == INFO_READY)
219 One can also use a more typical GCC style:
221 typedef some_info *some_info_p;
223 info_table_type::iterator iter;
224 FOR_EACH_HASH_TABLE_ELEMENT (info_table, elem_ptr, some_info_p, iter)
225 if (elem_ptr->status == INFO_READY)
231 #ifndef TYPED_HASHTAB_H
232 #define TYPED_HASHTAB_H
234 #include "statistics.h"
239 #include "mem-stats-traits.h"
240 #include "hash-traits.h"
241 #include "hash-map-traits.h"
243 template<typename
, typename
, typename
> class hash_map
;
244 template<typename
, typename
> class hash_set
;
246 /* The ordinary memory allocator. */
247 /* FIXME (crowl): This allocator may be extracted for wider sharing later. */
249 template <typename Type
>
252 static Type
*data_alloc (size_t count
);
253 static void data_free (Type
*memory
);
257 /* Allocate memory for COUNT data blocks. */
259 template <typename Type
>
261 xcallocator
<Type
>::data_alloc (size_t count
)
263 return static_cast <Type
*> (xcalloc (count
, sizeof (Type
)));
267 /* Free memory for data blocks. */
269 template <typename Type
>
271 xcallocator
<Type
>::data_free (Type
*memory
)
273 return ::free (memory
);
277 /* Table of primes and their inversion information. */
283 hashval_t inv_m2
; /* inverse of prime-2 */
287 extern struct prime_ent
const prime_tab
[];
290 /* Functions for computing hash table indexes. */
292 extern unsigned int hash_table_higher_prime_index (unsigned long n
)
295 /* Return X % Y using multiplicative inverse values INV and SHIFT.
297 The multiplicative inverses computed above are for 32-bit types,
298 and requires that we be able to compute a highpart multiply.
300 FIX: I am not at all convinced that
301 3 loads, 2 multiplications, 3 shifts, and 3 additions
304 on modern systems running a compiler. */
307 mul_mod (hashval_t x
, hashval_t y
, hashval_t inv
, int shift
)
309 hashval_t t1
, t2
, t3
, t4
, q
, r
;
311 t1
= ((uint64_t)x
* inv
) >> 32;
321 /* Compute the primary table index for HASH given current prime index. */
324 hash_table_mod1 (hashval_t hash
, unsigned int index
)
326 const struct prime_ent
*p
= &prime_tab
[index
];
327 gcc_checking_assert (sizeof (hashval_t
) * CHAR_BIT
<= 32);
328 return mul_mod (hash
, p
->prime
, p
->inv
, p
->shift
);
331 /* Compute the secondary table index for HASH given current prime index. */
334 hash_table_mod2 (hashval_t hash
, unsigned int index
)
336 const struct prime_ent
*p
= &prime_tab
[index
];
337 gcc_checking_assert (sizeof (hashval_t
) * CHAR_BIT
<= 32);
338 return 1 + mul_mod (hash
, p
->prime
- 2, p
->inv_m2
, p
->shift
);
343 /* User-facing hash table type.
345 The table stores elements of type Descriptor::value_type and uses
346 the static descriptor functions described at the top of the file
347 to hash, compare and remove elements.
349 Specify the template Allocator to allocate and free memory.
350 The default is xcallocator.
352 Storage is an implementation detail and should not be used outside the
356 template <typename Descriptor
,
357 template<typename Type
> class Allocator
= xcallocator
>
360 typedef typename
Descriptor::value_type value_type
;
361 typedef typename
Descriptor::compare_type compare_type
;
364 explicit hash_table (size_t, bool ggc
= false,
365 bool gather_mem_stats
= GATHER_STATISTICS
,
366 mem_alloc_origin origin
= HASH_TABLE_ORIGIN
368 explicit hash_table (const hash_table
&, bool ggc
= false,
369 bool gather_mem_stats
= GATHER_STATISTICS
,
370 mem_alloc_origin origin
= HASH_TABLE_ORIGIN
374 /* Create a hash_table in gc memory. */
376 create_ggc (size_t n CXX_MEM_STAT_INFO
)
378 hash_table
*table
= ggc_alloc
<hash_table
> ();
379 new (table
) hash_table (n
, true, GATHER_STATISTICS
,
380 HASH_TABLE_ORIGIN PASS_MEM_STAT
);
384 /* Current size (in entries) of the hash table. */
385 size_t size () const { return m_size
; }
387 /* Return the current number of elements in this hash table. */
388 size_t elements () const { return m_n_elements
- m_n_deleted
; }
390 /* Return the current number of elements in this hash table. */
391 size_t elements_with_deleted () const { return m_n_elements
; }
393 /* This function clears all entries in this hash table. */
394 void empty () { if (elements ()) empty_slow (); }
396 /* This function clears a specified SLOT in a hash table. It is
397 useful when you've already done the lookup and don't want to do it
399 void clear_slot (value_type
*);
401 /* This function searches for a hash table entry equal to the given
402 COMPARABLE element starting with the given HASH value. It cannot
403 be used to insert or delete an element. */
404 value_type
&find_with_hash (const compare_type
&, hashval_t
);
406 /* Like find_slot_with_hash, but compute the hash value from the element. */
407 value_type
&find (const value_type
&value
)
409 return find_with_hash (value
, Descriptor::hash (value
));
412 value_type
*find_slot (const value_type
&value
, insert_option insert
)
414 return find_slot_with_hash (value
, Descriptor::hash (value
), insert
);
417 /* This function searches for a hash table slot containing an entry
418 equal to the given COMPARABLE element and starting with the given
419 HASH. To delete an entry, call this with insert=NO_INSERT, then
420 call clear_slot on the slot returned (possibly after doing some
421 checks). To insert an entry, call this with insert=INSERT, then
422 write the value you want into the returned slot. When inserting an
423 entry, NULL may be returned if memory allocation fails. */
424 value_type
*find_slot_with_hash (const compare_type
&comparable
,
425 hashval_t hash
, enum insert_option insert
);
427 /* This function deletes an element with the given COMPARABLE value
428 from hash table starting with the given HASH. If there is no
429 matching element in the hash table, this function does nothing. */
430 void remove_elt_with_hash (const compare_type
&, hashval_t
);
432 /* Like remove_elt_with_hash, but compute the hash value from the
434 void remove_elt (const value_type
&value
)
436 remove_elt_with_hash (value
, Descriptor::hash (value
));
439 /* This function scans over the entire hash table calling CALLBACK for
440 each live entry. If CALLBACK returns false, the iteration stops.
441 ARGUMENT is passed as CALLBACK's second argument. */
442 template <typename Argument
,
443 int (*Callback
) (value_type
*slot
, Argument argument
)>
444 void traverse_noresize (Argument argument
);
446 /* Like traverse_noresize, but does resize the table when it is too empty
447 to improve effectivity of subsequent calls. */
448 template <typename Argument
,
449 int (*Callback
) (value_type
*slot
, Argument argument
)>
450 void traverse (Argument argument
);
455 iterator () : m_slot (NULL
), m_limit (NULL
) {}
457 iterator (value_type
*slot
, value_type
*limit
) :
458 m_slot (slot
), m_limit (limit
) {}
460 inline value_type
&operator * () { return *m_slot
; }
462 inline iterator
&operator ++ ();
463 bool operator != (const iterator
&other
) const
465 return m_slot
!= other
.m_slot
|| m_limit
!= other
.m_limit
;
473 iterator
begin () const
475 iterator
iter (m_entries
, m_entries
+ m_size
);
480 iterator
end () const { return iterator (); }
482 double collisions () const
484 return m_searches
? static_cast <double> (m_collisions
) / m_searches
: 0;
488 template<typename T
> friend void gt_ggc_mx (hash_table
<T
> *);
489 template<typename T
> friend void gt_pch_nx (hash_table
<T
> *);
490 template<typename T
> friend void
491 hashtab_entry_note_pointers (void *, void *, gt_pointer_operator
, void *);
492 template<typename T
, typename U
, typename V
> friend void
493 gt_pch_nx (hash_map
<T
, U
, V
> *, gt_pointer_operator
, void *);
494 template<typename T
, typename U
> friend void gt_pch_nx (hash_set
<T
, U
> *,
497 template<typename T
> friend void gt_pch_nx (hash_table
<T
> *,
498 gt_pointer_operator
, void *);
500 template<typename T
> friend void gt_cleare_cache (hash_table
<T
> *);
504 value_type
*alloc_entries (size_t n CXX_MEM_STAT_INFO
) const;
505 value_type
*find_empty_slot_for_expand (hashval_t
);
507 static bool is_deleted (value_type
&v
)
509 return Descriptor::is_deleted (v
);
512 static bool is_empty (value_type
&v
)
514 return Descriptor::is_empty (v
);
517 static void mark_deleted (value_type
&v
)
519 Descriptor::mark_deleted (v
);
522 static void mark_empty (value_type
&v
)
524 Descriptor::mark_empty (v
);
528 typename
Descriptor::value_type
*m_entries
;
532 /* Current number of elements including also deleted elements. */
535 /* Current number of deleted elements in the table. */
538 /* The following member is used for debugging. Its value is number
539 of all calls of `htab_find_slot' for the hash table. */
540 unsigned int m_searches
;
542 /* The following member is used for debugging. Its value is number
543 of collisions fixed for time of work with the hash table. */
544 unsigned int m_collisions
;
546 /* Current size (in entries) of the hash table, as an index into the
548 unsigned int m_size_prime_index
;
550 /* if m_entries is stored in ggc memory. */
553 /* If we should gather memory statistics for the table. */
554 bool m_gather_mem_stats
;
557 /* As mem-stats.h heavily utilizes hash maps (hash tables), we have to include
558 mem-stats.h after hash_table declaration. */
560 #include "mem-stats.h"
561 #include "hash-map.h"
563 extern mem_alloc_description
<mem_usage
> hash_table_usage
;
565 /* Support function for statistics. */
566 extern void dump_hash_table_loc_statistics (void);
568 template<typename Descriptor
, template<typename Type
> class Allocator
>
569 hash_table
<Descriptor
, Allocator
>::hash_table (size_t size
, bool ggc
, bool
571 mem_alloc_origin origin
573 m_n_elements (0), m_n_deleted (0), m_searches (0), m_collisions (0),
574 m_ggc (ggc
), m_gather_mem_stats (gather_mem_stats
)
576 unsigned int size_prime_index
;
578 size_prime_index
= hash_table_higher_prime_index (size
);
579 size
= prime_tab
[size_prime_index
].prime
;
581 if (m_gather_mem_stats
)
582 hash_table_usage
.register_descriptor (this, origin
, ggc
583 FINAL_PASS_MEM_STAT
);
585 m_entries
= alloc_entries (size PASS_MEM_STAT
);
587 m_size_prime_index
= size_prime_index
;
590 template<typename Descriptor
, template<typename Type
> class Allocator
>
591 hash_table
<Descriptor
, Allocator
>::hash_table (const hash_table
&h
, bool ggc
,
592 bool gather_mem_stats
,
593 mem_alloc_origin origin
595 m_n_elements (h
.m_n_elements
), m_n_deleted (h
.m_n_deleted
),
596 m_searches (0), m_collisions (0), m_ggc (ggc
),
597 m_gather_mem_stats (gather_mem_stats
)
599 size_t size
= h
.m_size
;
601 if (m_gather_mem_stats
)
602 hash_table_usage
.register_descriptor (this, origin
, ggc
603 FINAL_PASS_MEM_STAT
);
605 value_type
*nentries
= alloc_entries (size PASS_MEM_STAT
);
606 for (size_t i
= 0; i
< size
; ++i
)
608 value_type
&entry
= h
.m_entries
[i
];
609 if (is_deleted (entry
))
610 mark_deleted (nentries
[i
]);
611 else if (!is_empty (entry
))
614 m_entries
= nentries
;
616 m_size_prime_index
= h
.m_size_prime_index
;
619 template<typename Descriptor
, template<typename Type
> class Allocator
>
620 hash_table
<Descriptor
, Allocator
>::~hash_table ()
622 for (size_t i
= m_size
- 1; i
< m_size
; i
--)
623 if (!is_empty (m_entries
[i
]) && !is_deleted (m_entries
[i
]))
624 Descriptor::remove (m_entries
[i
]);
627 Allocator
<value_type
> ::data_free (m_entries
);
629 ggc_free (m_entries
);
631 if (m_gather_mem_stats
)
632 hash_table_usage
.release_instance_overhead (this,
633 sizeof (value_type
) * m_size
,
637 /* This function returns an array of empty hash table elements. */
639 template<typename Descriptor
, template<typename Type
> class Allocator
>
640 inline typename hash_table
<Descriptor
, Allocator
>::value_type
*
641 hash_table
<Descriptor
, Allocator
>::alloc_entries (size_t n MEM_STAT_DECL
) const
643 value_type
*nentries
;
645 if (m_gather_mem_stats
)
646 hash_table_usage
.register_instance_overhead (sizeof (value_type
) * n
, this);
649 nentries
= Allocator
<value_type
> ::data_alloc (n
);
651 nentries
= ::ggc_cleared_vec_alloc
<value_type
> (n PASS_MEM_STAT
);
653 gcc_assert (nentries
!= NULL
);
654 for (size_t i
= 0; i
< n
; i
++)
655 mark_empty (nentries
[i
]);
660 /* Similar to find_slot, but without several unwanted side effects:
661 - Does not call equal when it finds an existing entry.
662 - Does not change the count of elements/searches/collisions in the
664 This function also assumes there are no deleted entries in the table.
665 HASH is the hash value for the element to be inserted. */
667 template<typename Descriptor
, template<typename Type
> class Allocator
>
668 typename hash_table
<Descriptor
, Allocator
>::value_type
*
669 hash_table
<Descriptor
, Allocator
>::find_empty_slot_for_expand (hashval_t hash
)
671 hashval_t index
= hash_table_mod1 (hash
, m_size_prime_index
);
672 size_t size
= m_size
;
673 value_type
*slot
= m_entries
+ index
;
676 if (is_empty (*slot
))
678 gcc_checking_assert (!is_deleted (*slot
));
680 hash2
= hash_table_mod2 (hash
, m_size_prime_index
);
687 slot
= m_entries
+ index
;
688 if (is_empty (*slot
))
690 gcc_checking_assert (!is_deleted (*slot
));
694 /* The following function changes size of memory allocated for the
695 entries and repeatedly inserts the table elements. The occupancy
696 of the table after the call will be about 50%. Naturally the hash
697 table must already exist. Remember also that the place of the
698 table entries is changed. If memory allocation fails, this function
701 template<typename Descriptor
, template<typename Type
> class Allocator
>
703 hash_table
<Descriptor
, Allocator
>::expand ()
705 value_type
*oentries
= m_entries
;
706 unsigned int oindex
= m_size_prime_index
;
707 size_t osize
= size ();
708 value_type
*olimit
= oentries
+ osize
;
709 size_t elts
= elements ();
711 /* Resize only when table after removal of unused elements is either
712 too full or too empty. */
715 if (elts
* 2 > osize
|| (elts
* 8 < osize
&& osize
> 32))
717 nindex
= hash_table_higher_prime_index (elts
* 2);
718 nsize
= prime_tab
[nindex
].prime
;
726 value_type
*nentries
= alloc_entries (nsize
);
728 if (m_gather_mem_stats
)
729 hash_table_usage
.release_instance_overhead (this, sizeof (value_type
)
732 m_entries
= nentries
;
734 m_size_prime_index
= nindex
;
735 m_n_elements
-= m_n_deleted
;
738 value_type
*p
= oentries
;
743 if (!is_empty (x
) && !is_deleted (x
))
745 value_type
*q
= find_empty_slot_for_expand (Descriptor::hash (x
));
755 Allocator
<value_type
> ::data_free (oentries
);
760 /* Implements empty() in cases where it isn't a no-op. */
762 template<typename Descriptor
, template<typename Type
> class Allocator
>
764 hash_table
<Descriptor
, Allocator
>::empty_slow ()
766 size_t size
= m_size
;
767 value_type
*entries
= m_entries
;
770 for (i
= size
- 1; i
>= 0; i
--)
771 if (!is_empty (entries
[i
]) && !is_deleted (entries
[i
]))
772 Descriptor::remove (entries
[i
]);
774 /* Instead of clearing megabyte, downsize the table. */
775 if (size
> 1024*1024 / sizeof (PTR
))
777 int nindex
= hash_table_higher_prime_index (1024 / sizeof (PTR
));
778 int nsize
= prime_tab
[nindex
].prime
;
781 Allocator
<value_type
> ::data_free (m_entries
);
783 ggc_free (m_entries
);
785 m_entries
= alloc_entries (nsize
);
787 m_size_prime_index
= nindex
;
790 memset (entries
, 0, size
* sizeof (value_type
));
795 /* This function clears a specified SLOT in a hash table. It is
796 useful when you've already done the lookup and don't want to do it
799 template<typename Descriptor
, template<typename Type
> class Allocator
>
801 hash_table
<Descriptor
, Allocator
>::clear_slot (value_type
*slot
)
803 gcc_checking_assert (!(slot
< m_entries
|| slot
>= m_entries
+ size ()
804 || is_empty (*slot
) || is_deleted (*slot
)));
806 Descriptor::remove (*slot
);
808 mark_deleted (*slot
);
812 /* This function searches for a hash table entry equal to the given
813 COMPARABLE element starting with the given HASH value. It cannot
814 be used to insert or delete an element. */
816 template<typename Descriptor
, template<typename Type
> class Allocator
>
817 typename hash_table
<Descriptor
, Allocator
>::value_type
&
818 hash_table
<Descriptor
, Allocator
>
819 ::find_with_hash (const compare_type
&comparable
, hashval_t hash
)
822 size_t size
= m_size
;
823 hashval_t index
= hash_table_mod1 (hash
, m_size_prime_index
);
825 value_type
*entry
= &m_entries
[index
];
826 if (is_empty (*entry
)
827 || (!is_deleted (*entry
) && Descriptor::equal (*entry
, comparable
)))
830 hashval_t hash2
= hash_table_mod2 (hash
, m_size_prime_index
);
838 entry
= &m_entries
[index
];
839 if (is_empty (*entry
)
840 || (!is_deleted (*entry
) && Descriptor::equal (*entry
, comparable
)))
845 /* This function searches for a hash table slot containing an entry
846 equal to the given COMPARABLE element and starting with the given
847 HASH. To delete an entry, call this with insert=NO_INSERT, then
848 call clear_slot on the slot returned (possibly after doing some
849 checks). To insert an entry, call this with insert=INSERT, then
850 write the value you want into the returned slot. When inserting an
851 entry, NULL may be returned if memory allocation fails. */
853 template<typename Descriptor
, template<typename Type
> class Allocator
>
854 typename hash_table
<Descriptor
, Allocator
>::value_type
*
855 hash_table
<Descriptor
, Allocator
>
856 ::find_slot_with_hash (const compare_type
&comparable
, hashval_t hash
,
857 enum insert_option insert
)
859 if (insert
== INSERT
&& m_size
* 3 <= m_n_elements
* 4)
864 value_type
*first_deleted_slot
= NULL
;
865 hashval_t index
= hash_table_mod1 (hash
, m_size_prime_index
);
866 hashval_t hash2
= hash_table_mod2 (hash
, m_size_prime_index
);
867 value_type
*entry
= &m_entries
[index
];
868 size_t size
= m_size
;
869 if (is_empty (*entry
))
871 else if (is_deleted (*entry
))
872 first_deleted_slot
= &m_entries
[index
];
873 else if (Descriptor::equal (*entry
, comparable
))
874 return &m_entries
[index
];
883 entry
= &m_entries
[index
];
884 if (is_empty (*entry
))
886 else if (is_deleted (*entry
))
888 if (!first_deleted_slot
)
889 first_deleted_slot
= &m_entries
[index
];
891 else if (Descriptor::equal (*entry
, comparable
))
892 return &m_entries
[index
];
896 if (insert
== NO_INSERT
)
899 if (first_deleted_slot
)
902 mark_empty (*first_deleted_slot
);
903 return first_deleted_slot
;
907 return &m_entries
[index
];
910 /* This function deletes an element with the given COMPARABLE value
911 from hash table starting with the given HASH. If there is no
912 matching element in the hash table, this function does nothing. */
914 template<typename Descriptor
, template<typename Type
> class Allocator
>
916 hash_table
<Descriptor
, Allocator
>
917 ::remove_elt_with_hash (const compare_type
&comparable
, hashval_t hash
)
919 value_type
*slot
= find_slot_with_hash (comparable
, hash
, NO_INSERT
);
920 if (is_empty (*slot
))
923 Descriptor::remove (*slot
);
925 mark_deleted (*slot
);
929 /* This function scans over the entire hash table calling CALLBACK for
930 each live entry. If CALLBACK returns false, the iteration stops.
931 ARGUMENT is passed as CALLBACK's second argument. */
933 template<typename Descriptor
,
934 template<typename Type
> class Allocator
>
935 template<typename Argument
,
937 (typename hash_table
<Descriptor
, Allocator
>::value_type
*slot
,
940 hash_table
<Descriptor
, Allocator
>::traverse_noresize (Argument argument
)
942 value_type
*slot
= m_entries
;
943 value_type
*limit
= slot
+ size ();
947 value_type
&x
= *slot
;
949 if (!is_empty (x
) && !is_deleted (x
))
950 if (! Callback (slot
, argument
))
953 while (++slot
< limit
);
956 /* Like traverse_noresize, but does resize the table when it is too empty
957 to improve effectivity of subsequent calls. */
959 template <typename Descriptor
,
960 template <typename Type
> class Allocator
>
961 template <typename Argument
,
963 (typename hash_table
<Descriptor
, Allocator
>::value_type
*slot
,
966 hash_table
<Descriptor
, Allocator
>::traverse (Argument argument
)
968 size_t size
= m_size
;
969 if (elements () * 8 < size
&& size
> 32)
972 traverse_noresize
<Argument
, Callback
> (argument
);
975 /* Slide down the iterator slots until an active entry is found. */
977 template<typename Descriptor
, template<typename Type
> class Allocator
>
979 hash_table
<Descriptor
, Allocator
>::iterator::slide ()
981 for ( ; m_slot
< m_limit
; ++m_slot
)
983 value_type
&x
= *m_slot
;
984 if (!is_empty (x
) && !is_deleted (x
))
991 /* Bump the iterator. */
993 template<typename Descriptor
, template<typename Type
> class Allocator
>
994 inline typename hash_table
<Descriptor
, Allocator
>::iterator
&
995 hash_table
<Descriptor
, Allocator
>::iterator::operator ++ ()
1003 /* Iterate through the elements of hash_table HTAB,
1004 using hash_table <....>::iterator ITER,
1005 storing each element in RESULT, which is of type TYPE. */
1007 #define FOR_EACH_HASH_TABLE_ELEMENT(HTAB, RESULT, TYPE, ITER) \
1008 for ((ITER) = (HTAB).begin (); \
1009 (ITER) != (HTAB).end () ? (RESULT = *(ITER) , true) : false; \
1012 /* ggc walking routines. */
1014 template<typename E
>
1016 gt_ggc_mx (hash_table
<E
> *h
)
1018 typedef hash_table
<E
> table
;
1020 if (!ggc_test_and_set_mark (h
->m_entries
))
1023 for (size_t i
= 0; i
< h
->m_size
; i
++)
1025 if (table::is_empty (h
->m_entries
[i
])
1026 || table::is_deleted (h
->m_entries
[i
]))
1029 E::ggc_mx (h
->m_entries
[i
]);
1033 template<typename D
>
1035 hashtab_entry_note_pointers (void *obj
, void *h
, gt_pointer_operator op
,
1038 hash_table
<D
> *map
= static_cast<hash_table
<D
> *> (h
);
1039 gcc_checking_assert (map
->m_entries
== obj
);
1040 for (size_t i
= 0; i
< map
->m_size
; i
++)
1042 typedef hash_table
<D
> table
;
1043 if (table::is_empty (map
->m_entries
[i
])
1044 || table::is_deleted (map
->m_entries
[i
]))
1047 D::pch_nx (map
->m_entries
[i
], op
, cookie
);
1051 template<typename D
>
1053 gt_pch_nx (hash_table
<D
> *h
)
1056 = gt_pch_note_object (h
->m_entries
, h
, hashtab_entry_note_pointers
<D
>);
1057 gcc_checking_assert (success
);
1058 for (size_t i
= 0; i
< h
->m_size
; i
++)
1060 if (hash_table
<D
>::is_empty (h
->m_entries
[i
])
1061 || hash_table
<D
>::is_deleted (h
->m_entries
[i
]))
1064 D::pch_nx (h
->m_entries
[i
]);
1068 template<typename D
>
1070 gt_pch_nx (hash_table
<D
> *h
, gt_pointer_operator op
, void *cookie
)
1072 op (&h
->m_entries
, cookie
);
1075 template<typename H
>
1077 gt_cleare_cache (hash_table
<H
> *h
)
1079 extern void gt_ggc_mx (typename
H::value_type
&t
);
1080 typedef hash_table
<H
> table
;
1084 for (typename
table::iterator iter
= h
->begin (); iter
!= h
->end (); ++iter
)
1085 if (!table::is_empty (*iter
) && !table::is_deleted (*iter
))
1087 int res
= H::keep_cache_entry (*iter
);
1089 h
->clear_slot (&*iter
);
1095 #endif /* TYPED_HASHTAB_H */