* pa.md (alternate dbra pattern): Remove incorrect pattern.
[official-gcc.git] / gcc / stupid.c
blob396799e5da83e639bc93ea8e7a64303877f0bfc8
1 /* Dummy data flow analysis for GNU compiler in nonoptimizing mode.
2 Copyright (C) 1987, 1991, 1994, 1995, 1996, 1997 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
22 /* This file performs stupid register allocation, which is used
23 when cc1 gets the -noreg switch (which is when cc does not get -O).
25 Stupid register allocation goes in place of the the flow_analysis,
26 local_alloc and global_alloc passes. combine_instructions cannot
27 be done with stupid allocation because the data flow info that it needs
28 is not computed here.
30 In stupid allocation, the only user-defined variables that can
31 go in registers are those declared "register". They are assumed
32 to have a life span equal to their scope. Other user variables
33 are given stack slots in the rtl-generation pass and are not
34 represented as pseudo regs. A compiler-generated temporary
35 is assumed to live from its first mention to its last mention.
37 Since each pseudo-reg's life span is just an interval, it can be
38 represented as a pair of numbers, each of which identifies an insn by
39 its position in the function (number of insns before it). The first
40 thing done for stupid allocation is to compute such a number for each
41 insn. It is called the suid. Then the life-interval of each
42 pseudo reg is computed. Then the pseudo regs are ordered by priority
43 and assigned hard regs in priority order. */
45 #include <stdio.h>
46 #include "config.h"
47 #include "rtl.h"
48 #include "hard-reg-set.h"
49 #include "regs.h"
50 #include "flags.h"
52 /* Vector mapping INSN_UIDs to suids.
53 The suids are like uids but increase monotonically always.
54 We use them to see whether a subroutine call came
55 between a variable's birth and its death. */
57 static int *uid_suid;
59 /* Get the suid of an insn. */
61 #define INSN_SUID(INSN) (uid_suid[INSN_UID (INSN)])
63 /* Record the suid of the last CALL_INSN
64 so we can tell whether a pseudo reg crosses any calls. */
66 static int last_call_suid;
68 /* Record the suid of the last NOTE_INSN_SETJMP
69 so we can tell whether a pseudo reg crosses any setjmp. */
71 static int last_setjmp_suid;
73 /* Element N is suid of insn where life span of pseudo reg N ends.
74 Element is 0 if register N has not been seen yet on backward scan. */
76 static int *reg_where_dead;
78 /* Element N is suid of insn where life span of pseudo reg N begins. */
80 static int *reg_where_born;
82 /* Numbers of pseudo-regs to be allocated, highest priority first. */
84 static int *reg_order;
86 /* Indexed by reg number (hard or pseudo), nonzero if register is live
87 at the current point in the instruction stream. */
89 static char *regs_live;
91 /* Indexed by reg number, nonzero if reg was used in a SUBREG that changes
92 its size. */
94 static char *regs_change_size;
96 /* Indexed by reg number, nonzero if reg crosses a setjmp. */
98 static char *regs_crosses_setjmp;
100 /* Indexed by insn's suid, the set of hard regs live after that insn. */
102 static HARD_REG_SET *after_insn_hard_regs;
104 /* Record that hard reg REGNO is live after insn INSN. */
106 #define MARK_LIVE_AFTER(INSN,REGNO) \
107 SET_HARD_REG_BIT (after_insn_hard_regs[INSN_SUID (INSN)], (REGNO))
109 static int stupid_reg_compare PROTO((const GENERIC_PTR,const GENERIC_PTR));
110 static int stupid_find_reg PROTO((int, enum reg_class, enum machine_mode,
111 int, int, int));
112 static void stupid_mark_refs PROTO((rtx, rtx));
114 /* Stupid life analysis is for the case where only variables declared
115 `register' go in registers. For this case, we mark all
116 pseudo-registers that belong to register variables as
117 dying in the last instruction of the function, and all other
118 pseudo registers as dying in the last place they are referenced.
119 Hard registers are marked as dying in the last reference before
120 the end or before each store into them. */
122 void
123 stupid_life_analysis (f, nregs, file)
124 rtx f;
125 int nregs;
126 FILE *file;
128 register int i;
129 register rtx last, insn;
130 int max_uid, max_suid;
132 bzero (regs_ever_live, sizeof regs_ever_live);
134 regs_live = (char *) alloca (nregs);
136 /* First find the last real insn, and count the number of insns,
137 and assign insns their suids. */
139 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
140 if (INSN_UID (insn) > i)
141 i = INSN_UID (insn);
143 max_uid = i + 1;
144 uid_suid = (int *) alloca ((i + 1) * sizeof (int));
146 /* Compute the mapping from uids to suids.
147 Suids are numbers assigned to insns, like uids,
148 except that suids increase monotonically through the code. */
150 last = 0; /* In case of empty function body */
151 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
153 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
154 last = insn;
156 INSN_SUID (insn) = ++i;
159 last_call_suid = i + 1;
160 last_setjmp_suid = i + 1;
161 max_suid = i + 1;
163 max_regno = nregs;
165 /* Allocate tables to record info about regs. */
167 reg_where_dead = (int *) alloca (nregs * sizeof (int));
168 bzero ((char *) reg_where_dead, nregs * sizeof (int));
170 reg_where_born = (int *) alloca (nregs * sizeof (int));
171 bzero ((char *) reg_where_born, nregs * sizeof (int));
173 reg_order = (int *) alloca (nregs * sizeof (int));
174 bzero ((char *) reg_order, nregs * sizeof (int));
176 regs_change_size = (char *) alloca (nregs * sizeof (char));
177 bzero ((char *) regs_change_size, nregs * sizeof (char));
179 regs_crosses_setjmp = (char *) alloca (nregs * sizeof (char));
180 bzero ((char *) regs_crosses_setjmp, nregs * sizeof (char));
182 /* Allocate the reg_renumber array */
183 allocate_reg_info (max_regno, FALSE, TRUE);
184 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
185 reg_renumber[i] = i;
187 after_insn_hard_regs
188 = (HARD_REG_SET *) alloca (max_suid * sizeof (HARD_REG_SET));
190 bzero ((char *) after_insn_hard_regs, max_suid * sizeof (HARD_REG_SET));
192 /* Allocate and zero out many data structures
193 that will record the data from lifetime analysis. */
195 allocate_for_life_analysis ();
197 for (i = 0; i < max_regno; i++)
198 REG_N_DEATHS (i) = 1;
200 bzero (regs_live, nregs);
202 /* Find where each pseudo register is born and dies,
203 by scanning all insns from the end to the start
204 and noting all mentions of the registers.
206 Also find where each hard register is live
207 and record that info in after_insn_hard_regs.
208 regs_live[I] is 1 if hard reg I is live
209 at the current point in the scan. */
211 for (insn = last; insn; insn = PREV_INSN (insn))
213 register HARD_REG_SET *p = after_insn_hard_regs + INSN_SUID (insn);
215 /* Copy the info in regs_live into the element of after_insn_hard_regs
216 for the current position in the rtl code. */
218 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
219 if (regs_live[i])
220 SET_HARD_REG_BIT (*p, i);
222 /* Update which hard regs are currently live
223 and also the birth and death suids of pseudo regs
224 based on the pattern of this insn. */
226 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
227 stupid_mark_refs (PATTERN (insn), insn);
229 if (GET_CODE (insn) == NOTE
230 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP)
231 last_setjmp_suid = INSN_SUID (insn);
233 /* Mark all call-clobbered regs as live after each call insn
234 so that a pseudo whose life span includes this insn
235 will not go in one of them.
236 Then mark those regs as all dead for the continuing scan
237 of the insns before the call. */
239 if (GET_CODE (insn) == CALL_INSN)
241 last_call_suid = INSN_SUID (insn);
242 IOR_HARD_REG_SET (after_insn_hard_regs[last_call_suid],
243 call_used_reg_set);
245 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
246 if (call_used_regs[i])
247 regs_live[i] = 0;
249 /* It is important that this be done after processing the insn's
250 pattern because we want the function result register to still
251 be live if it's also used to pass arguments. */
252 stupid_mark_refs (CALL_INSN_FUNCTION_USAGE (insn), insn);
256 /* Now decide the order in which to allocate the pseudo registers. */
258 for (i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
259 reg_order[i] = i;
261 qsort (&reg_order[LAST_VIRTUAL_REGISTER + 1],
262 max_regno - LAST_VIRTUAL_REGISTER - 1, sizeof (int),
263 stupid_reg_compare);
265 /* Now, in that order, try to find hard registers for those pseudo regs. */
267 for (i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
269 register int r = reg_order[i];
271 /* Some regnos disappear from the rtl. Ignore them to avoid crash.
272 Also don't allocate registers that cross a setjmp. */
273 if (regno_reg_rtx[r] == 0 || regs_crosses_setjmp[r])
274 continue;
276 /* Now find the best hard-register class for this pseudo register */
277 if (N_REG_CLASSES > 1)
278 reg_renumber[r] = stupid_find_reg (REG_N_CALLS_CROSSED (r),
279 reg_preferred_class (r),
280 PSEUDO_REGNO_MODE (r),
281 reg_where_born[r],
282 reg_where_dead[r],
283 regs_change_size[r]);
285 /* If no reg available in that class, try alternate class. */
286 if (reg_renumber[r] == -1 && reg_alternate_class (r) != NO_REGS)
287 reg_renumber[r] = stupid_find_reg (REG_N_CALLS_CROSSED (r),
288 reg_alternate_class (r),
289 PSEUDO_REGNO_MODE (r),
290 reg_where_born[r],
291 reg_where_dead[r],
292 regs_change_size[r]);
295 if (file)
296 dump_flow_info (file);
299 /* Comparison function for qsort.
300 Returns -1 (1) if register *R1P is higher priority than *R2P. */
302 static int
303 stupid_reg_compare (r1p, r2p)
304 const GENERIC_PTR r1p;
305 const GENERIC_PTR r2p;
307 register int r1 = *(int *)r1p, r2 = *(int *)r2p;
308 register int len1 = reg_where_dead[r1] - reg_where_born[r1];
309 register int len2 = reg_where_dead[r2] - reg_where_born[r2];
310 int tem;
312 tem = len2 - len1;
313 if (tem != 0)
314 return tem;
316 tem = REG_N_REFS (r1) - REG_N_REFS (r2);
317 if (tem != 0)
318 return tem;
320 /* If regs are equally good, sort by regno,
321 so that the results of qsort leave nothing to chance. */
322 return r1 - r2;
325 /* Find a block of SIZE words of hard registers in reg_class CLASS
326 that can hold a value of machine-mode MODE
327 (but actually we test only the first of the block for holding MODE)
328 currently free from after insn whose suid is BORN_INSN
329 through the insn whose suid is DEAD_INSN,
330 and return the number of the first of them.
331 Return -1 if such a block cannot be found.
333 If CALL_PRESERVED is nonzero, insist on registers preserved
334 over subroutine calls, and return -1 if cannot find such.
336 If CHANGES_SIZE is nonzero, it means this register was used as the
337 operand of a SUBREG that changes its size. */
339 static int
340 stupid_find_reg (call_preserved, class, mode,
341 born_insn, dead_insn, changes_size)
342 int call_preserved;
343 enum reg_class class;
344 enum machine_mode mode;
345 int born_insn, dead_insn;
346 int changes_size;
348 register int i, ins;
349 #ifdef HARD_REG_SET
350 register /* Declare them register if they are scalars. */
351 #endif
352 HARD_REG_SET used, this_reg;
353 #ifdef ELIMINABLE_REGS
354 static struct {int from, to; } eliminables[] = ELIMINABLE_REGS;
355 #endif
357 /* If this register's life is more than 5,000 insns, we probably
358 can't allocate it, so don't waste the time trying. This avoids
359 quadratic behavior on programs that have regularly-occurring
360 SAVE_EXPRs. */
361 if (dead_insn > born_insn + 5000)
362 return -1;
364 COPY_HARD_REG_SET (used,
365 call_preserved ? call_used_reg_set : fixed_reg_set);
367 #ifdef ELIMINABLE_REGS
368 for (i = 0; i < sizeof eliminables / sizeof eliminables[0]; i++)
369 SET_HARD_REG_BIT (used, eliminables[i].from);
370 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
371 SET_HARD_REG_BIT (used, HARD_FRAME_POINTER_REGNUM);
372 #endif
373 #else
374 SET_HARD_REG_BIT (used, FRAME_POINTER_REGNUM);
375 #endif
377 for (ins = born_insn; ins < dead_insn; ins++)
378 IOR_HARD_REG_SET (used, after_insn_hard_regs[ins]);
380 IOR_COMPL_HARD_REG_SET (used, reg_class_contents[(int) class]);
382 #ifdef CLASS_CANNOT_CHANGE_SIZE
383 if (changes_size)
384 IOR_HARD_REG_SET (used,
385 reg_class_contents[(int) CLASS_CANNOT_CHANGE_SIZE]);
386 #endif
388 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
390 #ifdef REG_ALLOC_ORDER
391 int regno = reg_alloc_order[i];
392 #else
393 int regno = i;
394 #endif
396 /* If a register has screwy overlap problems,
397 don't use it at all if not optimizing.
398 Actually this is only for the 387 stack register,
399 and it's because subsequent code won't work. */
400 #ifdef OVERLAPPING_REGNO_P
401 if (OVERLAPPING_REGNO_P (regno))
402 continue;
403 #endif
405 if (! TEST_HARD_REG_BIT (used, regno)
406 && HARD_REGNO_MODE_OK (regno, mode))
408 register int j;
409 register int size1 = HARD_REGNO_NREGS (regno, mode);
410 for (j = 1; j < size1 && ! TEST_HARD_REG_BIT (used, regno + j); j++);
411 if (j == size1)
413 CLEAR_HARD_REG_SET (this_reg);
414 while (--j >= 0)
415 SET_HARD_REG_BIT (this_reg, regno + j);
416 for (ins = born_insn; ins < dead_insn; ins++)
418 IOR_HARD_REG_SET (after_insn_hard_regs[ins], this_reg);
420 return regno;
422 #ifndef REG_ALLOC_ORDER
423 i += j; /* Skip starting points we know will lose */
424 #endif
428 return -1;
431 /* Walk X, noting all assignments and references to registers
432 and recording what they imply about life spans.
433 INSN is the current insn, supplied so we can find its suid. */
435 static void
436 stupid_mark_refs (x, insn)
437 rtx x, insn;
439 register RTX_CODE code;
440 register char *fmt;
441 register int regno, i;
443 if (x == 0)
444 return;
446 code = GET_CODE (x);
448 if (code == SET || code == CLOBBER)
450 if (SET_DEST (x) != 0
451 && (GET_CODE (SET_DEST (x)) == REG
452 || (GET_CODE (SET_DEST (x)) == SUBREG
453 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG
454 && (REGNO (SUBREG_REG (SET_DEST (x)))
455 >= FIRST_PSEUDO_REGISTER))))
457 /* Register is being assigned. */
458 /* If setting a SUBREG, we treat the entire reg as being set. */
459 if (GET_CODE (SET_DEST (x)) == SUBREG)
460 regno = REGNO (SUBREG_REG (SET_DEST (x)));
461 else
462 regno = REGNO (SET_DEST (x));
464 /* For hard regs, update the where-live info. */
465 if (regno < FIRST_PSEUDO_REGISTER)
467 register int j
468 = HARD_REGNO_NREGS (regno, GET_MODE (SET_DEST (x)));
470 while (--j >= 0)
472 regs_ever_live[regno+j] = 1;
473 regs_live[regno+j] = 0;
475 /* The following line is for unused outputs;
476 they do get stored even though never used again. */
477 MARK_LIVE_AFTER (insn, regno+j);
479 /* When a hard reg is clobbered, mark it in use
480 just before this insn, so it is live all through. */
481 if (code == CLOBBER && INSN_SUID (insn) > 0)
482 SET_HARD_REG_BIT (after_insn_hard_regs[INSN_SUID (insn) - 1],
483 regno+j);
486 /* For pseudo regs, record where born, where dead, number of
487 times used, and whether live across a call. */
488 else
490 /* Update the life-interval bounds of this pseudo reg. */
492 /* When a pseudo-reg is CLOBBERed, it is born just before
493 the clobbering insn. When setting, just after. */
494 int where_born = INSN_SUID (insn) - (code == CLOBBER);
496 reg_where_born[regno] = where_born;
498 /* The reg must live at least one insn even
499 in it is never again used--because it has to go
500 in SOME hard reg. Mark it as dying after the current
501 insn so that it will conflict with any other outputs of
502 this insn. */
503 if (reg_where_dead[regno] < where_born + 2)
505 reg_where_dead[regno] = where_born + 2;
506 regs_live[regno] = 1;
509 /* Count the refs of this reg. */
510 REG_N_REFS (regno)++;
512 if (last_call_suid < reg_where_dead[regno])
513 REG_N_CALLS_CROSSED (regno) += 1;
515 if (last_setjmp_suid < reg_where_dead[regno])
516 regs_crosses_setjmp[regno] = 1;
520 /* Record references from the value being set,
521 or from addresses in the place being set if that's not a reg.
522 If setting a SUBREG, we treat the entire reg as *used*. */
523 if (code == SET)
525 stupid_mark_refs (SET_SRC (x), insn);
526 if (GET_CODE (SET_DEST (x)) != REG)
527 stupid_mark_refs (SET_DEST (x), insn);
529 return;
532 else if (code == SUBREG
533 && GET_CODE (SUBREG_REG (x)) == REG
534 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER
535 && (GET_MODE_SIZE (GET_MODE (x))
536 != GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
537 && (INTEGRAL_MODE_P (GET_MODE (x))
538 || INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (x)))))
539 regs_change_size[REGNO (SUBREG_REG (x))] = 1;
541 /* Register value being used, not set. */
543 else if (code == REG)
545 regno = REGNO (x);
546 if (regno < FIRST_PSEUDO_REGISTER)
548 /* Hard reg: mark it live for continuing scan of previous insns. */
549 register int j = HARD_REGNO_NREGS (regno, GET_MODE (x));
550 while (--j >= 0)
552 regs_ever_live[regno+j] = 1;
553 regs_live[regno+j] = 1;
556 else
558 /* Pseudo reg: record first use, last use and number of uses. */
560 reg_where_born[regno] = INSN_SUID (insn);
561 REG_N_REFS (regno)++;
562 if (regs_live[regno] == 0)
564 regs_live[regno] = 1;
565 reg_where_dead[regno] = INSN_SUID (insn);
568 return;
571 /* Recursive scan of all other rtx's. */
573 fmt = GET_RTX_FORMAT (code);
574 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
576 if (fmt[i] == 'e')
577 stupid_mark_refs (XEXP (x, i), insn);
578 if (fmt[i] == 'E')
580 register int j;
581 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
582 stupid_mark_refs (XVECEXP (x, i, j), insn);