1 /* Emit RTL for the GNU C-Compiler expander.
2 Copyright (C) 1987, 88, 92-96, 1997 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
22 /* Middle-to-low level generation of rtx code and insns.
24 This file contains the functions `gen_rtx', `gen_reg_rtx'
25 and `gen_label_rtx' that are the usual ways of creating rtl
26 expressions for most purposes.
28 It also has the functions for creating insns and linking
29 them in the doubly-linked chain.
31 The patterns of the insns are created by machine-dependent
32 routines in insn-emit.c, which is generated automatically from
33 the machine description. These routines use `gen_rtx' to make
34 the individual rtx's of the pattern; what is machine dependent
35 is the kind of rtx's they make and what arguments they use. */
50 #include "insn-config.h"
56 #include "bc-opcode.h"
57 #include "bc-typecd.h"
64 #ifdef BCDEBUG_PRINT_CODE
67 #include "bc-opname.h"
74 /* Commonly used modes. */
76 enum machine_mode byte_mode
; /* Mode whose width is BITS_PER_UNIT. */
77 enum machine_mode word_mode
; /* Mode whose width is BITS_PER_WORD. */
78 enum machine_mode ptr_mode
; /* Mode whose width is POINTER_SIZE. */
80 /* This is reset to LAST_VIRTUAL_REGISTER + 1 at the start of each function.
81 After rtl generation, it is 1 plus the largest register number used. */
83 int reg_rtx_no
= LAST_VIRTUAL_REGISTER
+ 1;
85 /* This is *not* reset after each function. It gives each CODE_LABEL
86 in the entire compilation a unique label number. */
88 static int label_num
= 1;
90 /* Lowest label number in current function. */
92 static int first_label_num
;
94 /* Highest label number in current function.
95 Zero means use the value of label_num instead.
96 This is nonzero only when belatedly compiling an inline function. */
98 static int last_label_num
;
100 /* Value label_num had when set_new_first_and_last_label_number was called.
101 If label_num has not changed since then, last_label_num is valid. */
103 static int base_label_num
;
105 /* Nonzero means do not generate NOTEs for source line numbers. */
107 static int no_line_numbers
;
109 /* Commonly used rtx's, so that we only need space for one copy.
110 These are initialized once for the entire compilation.
111 All of these except perhaps the floating-point CONST_DOUBLEs
112 are unique; no other rtx-object will be equal to any of these. */
114 rtx pc_rtx
; /* (PC) */
115 rtx cc0_rtx
; /* (CC0) */
116 rtx cc1_rtx
; /* (CC1) (not actually used nowadays) */
117 rtx const0_rtx
; /* (CONST_INT 0) */
118 rtx const1_rtx
; /* (CONST_INT 1) */
119 rtx const2_rtx
; /* (CONST_INT 2) */
120 rtx constm1_rtx
; /* (CONST_INT -1) */
121 rtx const_true_rtx
; /* (CONST_INT STORE_FLAG_VALUE) */
123 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
124 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
125 record a copy of const[012]_rtx. */
127 rtx const_tiny_rtx
[3][(int) MAX_MACHINE_MODE
];
129 REAL_VALUE_TYPE dconst0
;
130 REAL_VALUE_TYPE dconst1
;
131 REAL_VALUE_TYPE dconst2
;
132 REAL_VALUE_TYPE dconstm1
;
134 /* All references to the following fixed hard registers go through
135 these unique rtl objects. On machines where the frame-pointer and
136 arg-pointer are the same register, they use the same unique object.
138 After register allocation, other rtl objects which used to be pseudo-regs
139 may be clobbered to refer to the frame-pointer register.
140 But references that were originally to the frame-pointer can be
141 distinguished from the others because they contain frame_pointer_rtx.
143 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
144 tricky: until register elimination has taken place hard_frame_pointer_rtx
145 should be used if it is being set, and frame_pointer_rtx otherwise. After
146 register elimination hard_frame_pointer_rtx should always be used.
147 On machines where the two registers are same (most) then these are the
150 In an inline procedure, the stack and frame pointer rtxs may not be
151 used for anything else. */
152 rtx stack_pointer_rtx
; /* (REG:Pmode STACK_POINTER_REGNUM) */
153 rtx frame_pointer_rtx
; /* (REG:Pmode FRAME_POINTER_REGNUM) */
154 rtx hard_frame_pointer_rtx
; /* (REG:Pmode HARD_FRAME_POINTER_REGNUM) */
155 rtx arg_pointer_rtx
; /* (REG:Pmode ARG_POINTER_REGNUM) */
156 rtx struct_value_rtx
; /* (REG:Pmode STRUCT_VALUE_REGNUM) */
157 rtx struct_value_incoming_rtx
; /* (REG:Pmode STRUCT_VALUE_INCOMING_REGNUM) */
158 rtx static_chain_rtx
; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
159 rtx static_chain_incoming_rtx
; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
160 rtx pic_offset_table_rtx
; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
162 /* This is used to implement __builtin_return_address for some machines.
163 See for instance the MIPS port. */
164 rtx return_address_pointer_rtx
; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
166 rtx virtual_incoming_args_rtx
; /* (REG:Pmode VIRTUAL_INCOMING_ARGS_REGNUM) */
167 rtx virtual_stack_vars_rtx
; /* (REG:Pmode VIRTUAL_STACK_VARS_REGNUM) */
168 rtx virtual_stack_dynamic_rtx
; /* (REG:Pmode VIRTUAL_STACK_DYNAMIC_REGNUM) */
169 rtx virtual_outgoing_args_rtx
; /* (REG:Pmode VIRTUAL_OUTGOING_ARGS_REGNUM) */
171 /* We make one copy of (const_int C) where C is in
172 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
173 to save space during the compilation and simplify comparisons of
176 #define MAX_SAVED_CONST_INT 64
178 static rtx const_int_rtx
[MAX_SAVED_CONST_INT
* 2 + 1];
180 /* The ends of the doubly-linked chain of rtl for the current function.
181 Both are reset to null at the start of rtl generation for the function.
183 start_sequence saves both of these on `sequence_stack' along with
184 `sequence_rtl_expr' and then starts a new, nested sequence of insns. */
186 static rtx first_insn
= NULL
;
187 static rtx last_insn
= NULL
;
189 /* RTL_EXPR within which the current sequence will be placed. Use to
190 prevent reuse of any temporaries within the sequence until after the
191 RTL_EXPR is emitted. */
193 tree sequence_rtl_expr
= NULL
;
195 /* INSN_UID for next insn emitted.
196 Reset to 1 for each function compiled. */
198 static int cur_insn_uid
= 1;
200 /* Line number and source file of the last line-number NOTE emitted.
201 This is used to avoid generating duplicates. */
203 static int last_linenum
= 0;
204 static char *last_filename
= 0;
206 /* A vector indexed by pseudo reg number. The allocated length
207 of this vector is regno_pointer_flag_length. Since this
208 vector is needed during the expansion phase when the total
209 number of registers in the function is not yet known,
210 it is copied and made bigger when necessary. */
212 char *regno_pointer_flag
;
213 int regno_pointer_flag_length
;
215 /* Indexed by pseudo register number, if nonzero gives the known alignment
216 for that pseudo (if regno_pointer_flag is set).
217 Allocated in parallel with regno_pointer_flag. */
218 char *regno_pointer_align
;
220 /* Indexed by pseudo register number, gives the rtx for that pseudo.
221 Allocated in parallel with regno_pointer_flag. */
225 /* Stack of pending (incomplete) sequences saved by `start_sequence'.
226 Each element describes one pending sequence.
227 The main insn-chain is saved in the last element of the chain,
228 unless the chain is empty. */
230 struct sequence_stack
*sequence_stack
;
232 /* start_sequence and gen_sequence can make a lot of rtx expressions which are
233 shortly thrown away. We use two mechanisms to prevent this waste:
235 First, we keep a list of the expressions used to represent the sequence
236 stack in sequence_element_free_list.
238 Second, for sizes up to 5 elements, we keep a SEQUENCE and its associated
239 rtvec for use by gen_sequence. One entry for each size is sufficient
240 because most cases are calls to gen_sequence followed by immediately
241 emitting the SEQUENCE. Reuse is safe since emitting a sequence is
242 destructive on the insn in it anyway and hence can't be redone.
244 We do not bother to save this cached data over nested function calls.
245 Instead, we just reinitialize them. */
247 #define SEQUENCE_RESULT_SIZE 5
249 static struct sequence_stack
*sequence_element_free_list
;
250 static rtx sequence_result
[SEQUENCE_RESULT_SIZE
];
252 /* During RTL generation, we also keep a list of free INSN rtl codes. */
253 static rtx free_insn
;
255 extern int rtx_equal_function_value_matters
;
257 /* Filename and line number of last line-number note,
258 whether we actually emitted it or not. */
259 extern char *emit_filename
;
260 extern int emit_lineno
;
262 /* rtx gen_rtx (code, mode, [element1, ..., elementn])
264 ** This routine generates an RTX of the size specified by
265 ** <code>, which is an RTX code. The RTX structure is initialized
266 ** from the arguments <element1> through <elementn>, which are
267 ** interpreted according to the specific RTX type's format. The
268 ** special machine mode associated with the rtx (if any) is specified
271 ** gen_rtx can be invoked in a way which resembles the lisp-like
272 ** rtx it will generate. For example, the following rtx structure:
274 ** (plus:QI (mem:QI (reg:SI 1))
275 ** (mem:QI (plusw:SI (reg:SI 2) (reg:SI 3))))
277 ** ...would be generated by the following C code:
279 ** gen_rtx (PLUS, QImode,
280 ** gen_rtx (MEM, QImode,
281 ** gen_rtx (REG, SImode, 1)),
282 ** gen_rtx (MEM, QImode,
283 ** gen_rtx (PLUS, SImode,
284 ** gen_rtx (REG, SImode, 2),
285 ** gen_rtx (REG, SImode, 3)))),
290 gen_rtx
VPROTO((enum rtx_code code
, enum machine_mode mode
, ...))
294 enum machine_mode mode
;
297 register int i
; /* Array indices... */
298 register char *fmt
; /* Current rtx's format... */
299 register rtx rt_val
; /* RTX to return to caller... */
304 code
= va_arg (p
, enum rtx_code
);
305 mode
= va_arg (p
, enum machine_mode
);
308 if (code
== CONST_INT
)
310 HOST_WIDE_INT arg
= va_arg (p
, HOST_WIDE_INT
);
312 if (arg
>= - MAX_SAVED_CONST_INT
&& arg
<= MAX_SAVED_CONST_INT
)
313 return const_int_rtx
[arg
+ MAX_SAVED_CONST_INT
];
315 if (const_true_rtx
&& arg
== STORE_FLAG_VALUE
)
316 return const_true_rtx
;
318 rt_val
= rtx_alloc (code
);
319 INTVAL (rt_val
) = arg
;
321 else if (code
== REG
)
323 int regno
= va_arg (p
, int);
325 /* In case the MD file explicitly references the frame pointer, have
326 all such references point to the same frame pointer. This is used
327 during frame pointer elimination to distinguish the explicit
328 references to these registers from pseudos that happened to be
331 If we have eliminated the frame pointer or arg pointer, we will
332 be using it as a normal register, for example as a spill register.
333 In such cases, we might be accessing it in a mode that is not
334 Pmode and therefore cannot use the pre-allocated rtx.
336 Also don't do this when we are making new REGs in reload,
337 since we don't want to get confused with the real pointers. */
339 if (frame_pointer_rtx
&& regno
== FRAME_POINTER_REGNUM
&& mode
== Pmode
340 && ! reload_in_progress
)
341 return frame_pointer_rtx
;
342 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
343 if (hard_frame_pointer_rtx
&& regno
== HARD_FRAME_POINTER_REGNUM
344 && mode
== Pmode
&& ! reload_in_progress
)
345 return hard_frame_pointer_rtx
;
347 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
348 if (arg_pointer_rtx
&& regno
== ARG_POINTER_REGNUM
&& mode
== Pmode
349 && ! reload_in_progress
)
350 return arg_pointer_rtx
;
352 #ifdef RETURN_ADDRESS_POINTER_REGNUM
353 if (return_address_pointer_rtx
&& regno
== RETURN_ADDRESS_POINTER_REGNUM
354 && mode
== Pmode
&& ! reload_in_progress
)
355 return return_address_pointer_rtx
;
357 if (stack_pointer_rtx
&& regno
== STACK_POINTER_REGNUM
&& mode
== Pmode
358 && ! reload_in_progress
)
359 return stack_pointer_rtx
;
362 rt_val
= rtx_alloc (code
);
364 REGNO (rt_val
) = regno
;
370 rt_val
= rtx_alloc (code
); /* Allocate the storage space. */
371 rt_val
->mode
= mode
; /* Store the machine mode... */
373 fmt
= GET_RTX_FORMAT (code
); /* Find the right format... */
374 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
378 case '0': /* Unused field. */
381 case 'i': /* An integer? */
382 XINT (rt_val
, i
) = va_arg (p
, int);
385 case 'w': /* A wide integer? */
386 XWINT (rt_val
, i
) = va_arg (p
, HOST_WIDE_INT
);
389 case 's': /* A string? */
390 XSTR (rt_val
, i
) = va_arg (p
, char *);
393 case 'e': /* An expression? */
394 case 'u': /* An insn? Same except when printing. */
395 XEXP (rt_val
, i
) = va_arg (p
, rtx
);
398 case 'E': /* An RTX vector? */
399 XVEC (rt_val
, i
) = va_arg (p
, rtvec
);
408 return rt_val
; /* Return the new RTX... */
411 /* gen_rtvec (n, [rt1, ..., rtn])
413 ** This routine creates an rtvec and stores within it the
414 ** pointers to rtx's which are its arguments.
419 gen_rtvec
VPROTO((int n
, ...))
435 return NULL_RTVEC
; /* Don't allocate an empty rtvec... */
437 vector
= (rtx
*) alloca (n
* sizeof (rtx
));
439 for (i
= 0; i
< n
; i
++)
440 vector
[i
] = va_arg (p
, rtx
);
443 return gen_rtvec_v (n
, vector
);
447 gen_rtvec_v (n
, argp
)
452 register rtvec rt_val
;
455 return NULL_RTVEC
; /* Don't allocate an empty rtvec... */
457 rt_val
= rtvec_alloc (n
); /* Allocate an rtvec... */
459 for (i
= 0; i
< n
; i
++)
460 rt_val
->elem
[i
].rtx
= *argp
++;
466 gen_rtvec_vv (n
, argp
)
471 register rtvec rt_val
;
474 return NULL_RTVEC
; /* Don't allocate an empty rtvec... */
476 rt_val
= rtvec_alloc (n
); /* Allocate an rtvec... */
478 for (i
= 0; i
< n
; i
++)
479 rt_val
->elem
[i
].rtx
= (argp
++)->rtx
;
484 /* Generate a REG rtx for a new pseudo register of mode MODE.
485 This pseudo is assigned the next sequential register number. */
489 enum machine_mode mode
;
493 /* Don't let anything called by or after reload create new registers
494 (actually, registers can't be created after flow, but this is a good
497 if (reload_in_progress
|| reload_completed
)
500 if (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
501 || GET_MODE_CLASS (mode
) == MODE_COMPLEX_INT
)
503 /* For complex modes, don't make a single pseudo.
504 Instead, make a CONCAT of two pseudos.
505 This allows noncontiguous allocation of the real and imaginary parts,
506 which makes much better code. Besides, allocating DCmode
507 pseudos overstrains reload on some machines like the 386. */
508 rtx realpart
, imagpart
;
509 int size
= GET_MODE_UNIT_SIZE (mode
);
510 enum machine_mode partmode
511 = mode_for_size (size
* BITS_PER_UNIT
,
512 (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
513 ? MODE_FLOAT
: MODE_INT
),
516 realpart
= gen_reg_rtx (partmode
);
517 imagpart
= gen_reg_rtx (partmode
);
518 return gen_rtx (CONCAT
, mode
, realpart
, imagpart
);
521 /* Make sure regno_pointer_flag and regno_reg_rtx are large
522 enough to have an element for this pseudo reg number. */
524 if (reg_rtx_no
== regno_pointer_flag_length
)
528 (char *) savealloc (regno_pointer_flag_length
* 2);
529 bcopy (regno_pointer_flag
, new, regno_pointer_flag_length
);
530 bzero (&new[regno_pointer_flag_length
], regno_pointer_flag_length
);
531 regno_pointer_flag
= new;
533 new = (char *) savealloc (regno_pointer_flag_length
* 2);
534 bcopy (regno_pointer_align
, new, regno_pointer_flag_length
);
535 bzero (&new[regno_pointer_flag_length
], regno_pointer_flag_length
);
536 regno_pointer_align
= new;
538 new1
= (rtx
*) savealloc (regno_pointer_flag_length
* 2 * sizeof (rtx
));
539 bcopy ((char *) regno_reg_rtx
, (char *) new1
,
540 regno_pointer_flag_length
* sizeof (rtx
));
541 bzero ((char *) &new1
[regno_pointer_flag_length
],
542 regno_pointer_flag_length
* sizeof (rtx
));
543 regno_reg_rtx
= new1
;
545 regno_pointer_flag_length
*= 2;
548 val
= gen_rtx (REG
, mode
, reg_rtx_no
);
549 regno_reg_rtx
[reg_rtx_no
++] = val
;
553 /* Identify REG (which may be a CONCAT) as a user register. */
559 if (GET_CODE (reg
) == CONCAT
)
561 REG_USERVAR_P (XEXP (reg
, 0)) = 1;
562 REG_USERVAR_P (XEXP (reg
, 1)) = 1;
564 else if (GET_CODE (reg
) == REG
)
565 REG_USERVAR_P (reg
) = 1;
570 /* Identify REG as a probable pointer register and show its alignment
571 as ALIGN, if nonzero. */
574 mark_reg_pointer (reg
, align
)
578 REGNO_POINTER_FLAG (REGNO (reg
)) = 1;
581 REGNO_POINTER_ALIGN (REGNO (reg
)) = align
;
584 /* Return 1 plus largest pseudo reg number used in the current function. */
592 /* Return 1 + the largest label number used so far in the current function. */
597 if (last_label_num
&& label_num
== base_label_num
)
598 return last_label_num
;
602 /* Return first label number used in this function (if any were used). */
605 get_first_label_num ()
607 return first_label_num
;
610 /* Return a value representing some low-order bits of X, where the number
611 of low-order bits is given by MODE. Note that no conversion is done
612 between floating-point and fixed-point values, rather, the bit
613 representation is returned.
615 This function handles the cases in common between gen_lowpart, below,
616 and two variants in cse.c and combine.c. These are the cases that can
617 be safely handled at all points in the compilation.
619 If this is not a case we can handle, return 0. */
622 gen_lowpart_common (mode
, x
)
623 enum machine_mode mode
;
628 if (GET_MODE (x
) == mode
)
631 /* MODE must occupy no more words than the mode of X. */
632 if (GET_MODE (x
) != VOIDmode
633 && ((GET_MODE_SIZE (mode
) + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
634 > ((GET_MODE_SIZE (GET_MODE (x
)) + (UNITS_PER_WORD
- 1))
638 if (WORDS_BIG_ENDIAN
&& GET_MODE_SIZE (GET_MODE (x
)) > UNITS_PER_WORD
)
639 word
= ((GET_MODE_SIZE (GET_MODE (x
))
640 - MAX (GET_MODE_SIZE (mode
), UNITS_PER_WORD
))
643 if ((GET_CODE (x
) == ZERO_EXTEND
|| GET_CODE (x
) == SIGN_EXTEND
)
644 && (GET_MODE_CLASS (mode
) == MODE_INT
645 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
))
647 /* If we are getting the low-order part of something that has been
648 sign- or zero-extended, we can either just use the object being
649 extended or make a narrower extension. If we want an even smaller
650 piece than the size of the object being extended, call ourselves
653 This case is used mostly by combine and cse. */
655 if (GET_MODE (XEXP (x
, 0)) == mode
)
657 else if (GET_MODE_SIZE (mode
) < GET_MODE_SIZE (GET_MODE (XEXP (x
, 0))))
658 return gen_lowpart_common (mode
, XEXP (x
, 0));
659 else if (GET_MODE_SIZE (mode
) < GET_MODE_SIZE (GET_MODE (x
)))
660 return gen_rtx (GET_CODE (x
), mode
, XEXP (x
, 0));
662 else if (GET_CODE (x
) == SUBREG
663 && (GET_MODE_SIZE (mode
) <= UNITS_PER_WORD
664 || GET_MODE_SIZE (mode
) == GET_MODE_UNIT_SIZE (GET_MODE (x
))))
665 return (GET_MODE (SUBREG_REG (x
)) == mode
&& SUBREG_WORD (x
) == 0
667 : gen_rtx (SUBREG
, mode
, SUBREG_REG (x
), SUBREG_WORD (x
)));
668 else if (GET_CODE (x
) == REG
)
670 /* If the register is not valid for MODE, return 0. If we don't
671 do this, there is no way to fix up the resulting REG later.
672 But we do do this if the current REG is not valid for its
673 mode. This latter is a kludge, but is required due to the
674 way that parameters are passed on some machines, most
676 if (REGNO (x
) < FIRST_PSEUDO_REGISTER
677 && ! HARD_REGNO_MODE_OK (REGNO (x
) + word
, mode
)
678 && HARD_REGNO_MODE_OK (REGNO (x
), GET_MODE (x
)))
680 else if (REGNO (x
) < FIRST_PSEUDO_REGISTER
681 /* integrate.c can't handle parts of a return value register. */
682 && (! REG_FUNCTION_VALUE_P (x
)
683 || ! rtx_equal_function_value_matters
)
684 /* We want to keep the stack, frame, and arg pointers
686 && x
!= frame_pointer_rtx
687 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
688 && x
!= arg_pointer_rtx
690 && x
!= stack_pointer_rtx
)
691 return gen_rtx (REG
, mode
, REGNO (x
) + word
);
693 return gen_rtx (SUBREG
, mode
, x
, word
);
695 /* If X is a CONST_INT or a CONST_DOUBLE, extract the appropriate bits
696 from the low-order part of the constant. */
697 else if ((GET_MODE_CLASS (mode
) == MODE_INT
698 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
)
699 && GET_MODE (x
) == VOIDmode
700 && (GET_CODE (x
) == CONST_INT
|| GET_CODE (x
) == CONST_DOUBLE
))
702 /* If MODE is twice the host word size, X is already the desired
703 representation. Otherwise, if MODE is wider than a word, we can't
704 do this. If MODE is exactly a word, return just one CONST_INT.
705 If MODE is smaller than a word, clear the bits that don't belong
706 in our mode, unless they and our sign bit are all one. So we get
707 either a reasonable negative value or a reasonable unsigned value
710 if (GET_MODE_BITSIZE (mode
) >= 2 * HOST_BITS_PER_WIDE_INT
)
712 else if (GET_MODE_BITSIZE (mode
) > HOST_BITS_PER_WIDE_INT
)
714 else if (GET_MODE_BITSIZE (mode
) == HOST_BITS_PER_WIDE_INT
)
715 return (GET_CODE (x
) == CONST_INT
? x
716 : GEN_INT (CONST_DOUBLE_LOW (x
)));
719 /* MODE must be narrower than HOST_BITS_PER_INT. */
720 int width
= GET_MODE_BITSIZE (mode
);
721 HOST_WIDE_INT val
= (GET_CODE (x
) == CONST_INT
? INTVAL (x
)
722 : CONST_DOUBLE_LOW (x
));
724 if (((val
& ((HOST_WIDE_INT
) (-1) << (width
- 1)))
725 != ((HOST_WIDE_INT
) (-1) << (width
- 1))))
726 val
&= ((HOST_WIDE_INT
) 1 << width
) - 1;
728 return (GET_CODE (x
) == CONST_INT
&& INTVAL (x
) == val
? x
733 /* If X is an integral constant but we want it in floating-point, it
734 must be the case that we have a union of an integer and a floating-point
735 value. If the machine-parameters allow it, simulate that union here
736 and return the result. The two-word and single-word cases are
739 else if (((HOST_FLOAT_FORMAT
== TARGET_FLOAT_FORMAT
740 && HOST_BITS_PER_WIDE_INT
== BITS_PER_WORD
)
741 || flag_pretend_float
)
742 && GET_MODE_CLASS (mode
) == MODE_FLOAT
743 && GET_MODE_SIZE (mode
) == UNITS_PER_WORD
744 && GET_CODE (x
) == CONST_INT
745 && sizeof (float) * HOST_BITS_PER_CHAR
== HOST_BITS_PER_WIDE_INT
)
746 #ifdef REAL_ARITHMETIC
752 r
= REAL_VALUE_FROM_TARGET_SINGLE (i
);
753 return CONST_DOUBLE_FROM_REAL_VALUE (r
, mode
);
757 union {HOST_WIDE_INT i
; float d
; } u
;
760 return CONST_DOUBLE_FROM_REAL_VALUE (u
.d
, mode
);
763 else if (((HOST_FLOAT_FORMAT
== TARGET_FLOAT_FORMAT
764 && HOST_BITS_PER_WIDE_INT
== BITS_PER_WORD
)
765 || flag_pretend_float
)
766 && GET_MODE_CLASS (mode
) == MODE_FLOAT
767 && GET_MODE_SIZE (mode
) == 2 * UNITS_PER_WORD
768 && (GET_CODE (x
) == CONST_INT
|| GET_CODE (x
) == CONST_DOUBLE
)
769 && GET_MODE (x
) == VOIDmode
770 && (sizeof (double) * HOST_BITS_PER_CHAR
771 == 2 * HOST_BITS_PER_WIDE_INT
))
772 #ifdef REAL_ARITHMETIC
776 HOST_WIDE_INT low
, high
;
778 if (GET_CODE (x
) == CONST_INT
)
779 low
= INTVAL (x
), high
= low
>> (HOST_BITS_PER_WIDE_INT
-1);
781 low
= CONST_DOUBLE_LOW (x
), high
= CONST_DOUBLE_HIGH (x
);
783 /* REAL_VALUE_TARGET_DOUBLE takes the addressing order of the
785 if (WORDS_BIG_ENDIAN
)
786 i
[0] = high
, i
[1] = low
;
788 i
[0] = low
, i
[1] = high
;
790 r
= REAL_VALUE_FROM_TARGET_DOUBLE (i
);
791 return CONST_DOUBLE_FROM_REAL_VALUE (r
, mode
);
795 union {HOST_WIDE_INT i
[2]; double d
; } u
;
796 HOST_WIDE_INT low
, high
;
798 if (GET_CODE (x
) == CONST_INT
)
799 low
= INTVAL (x
), high
= low
>> (HOST_BITS_PER_WIDE_INT
-1);
801 low
= CONST_DOUBLE_LOW (x
), high
= CONST_DOUBLE_HIGH (x
);
803 #ifdef HOST_WORDS_BIG_ENDIAN
804 u
.i
[0] = high
, u
.i
[1] = low
;
806 u
.i
[0] = low
, u
.i
[1] = high
;
809 return CONST_DOUBLE_FROM_REAL_VALUE (u
.d
, mode
);
812 /* Similarly, if this is converting a floating-point value into a
813 single-word integer. Only do this is the host and target parameters are
816 else if (((HOST_FLOAT_FORMAT
== TARGET_FLOAT_FORMAT
817 && HOST_BITS_PER_WIDE_INT
== BITS_PER_WORD
)
818 || flag_pretend_float
)
819 && (GET_MODE_CLASS (mode
) == MODE_INT
820 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
)
821 && GET_CODE (x
) == CONST_DOUBLE
822 && GET_MODE_CLASS (GET_MODE (x
)) == MODE_FLOAT
823 && GET_MODE_BITSIZE (mode
) == BITS_PER_WORD
)
824 return operand_subword (x
, word
, 0, GET_MODE (x
));
826 /* Similarly, if this is converting a floating-point value into a
827 two-word integer, we can do this one word at a time and make an
828 integer. Only do this is the host and target parameters are
831 else if (((HOST_FLOAT_FORMAT
== TARGET_FLOAT_FORMAT
832 && HOST_BITS_PER_WIDE_INT
== BITS_PER_WORD
)
833 || flag_pretend_float
)
834 && (GET_MODE_CLASS (mode
) == MODE_INT
835 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
)
836 && GET_CODE (x
) == CONST_DOUBLE
837 && GET_MODE_CLASS (GET_MODE (x
)) == MODE_FLOAT
838 && GET_MODE_BITSIZE (mode
) == 2 * BITS_PER_WORD
)
841 = operand_subword (x
, word
+ WORDS_BIG_ENDIAN
, 0, GET_MODE (x
));
843 = operand_subword (x
, word
+ ! WORDS_BIG_ENDIAN
, 0, GET_MODE (x
));
845 if (lowpart
&& GET_CODE (lowpart
) == CONST_INT
846 && highpart
&& GET_CODE (highpart
) == CONST_INT
)
847 return immed_double_const (INTVAL (lowpart
), INTVAL (highpart
), mode
);
850 /* Otherwise, we can't do this. */
854 /* Return the real part (which has mode MODE) of a complex value X.
855 This always comes at the low address in memory. */
858 gen_realpart (mode
, x
)
859 enum machine_mode mode
;
862 if (GET_CODE (x
) == CONCAT
&& GET_MODE (XEXP (x
, 0)) == mode
)
864 else if (WORDS_BIG_ENDIAN
)
865 return gen_highpart (mode
, x
);
867 return gen_lowpart (mode
, x
);
870 /* Return the imaginary part (which has mode MODE) of a complex value X.
871 This always comes at the high address in memory. */
874 gen_imagpart (mode
, x
)
875 enum machine_mode mode
;
878 if (GET_CODE (x
) == CONCAT
&& GET_MODE (XEXP (x
, 0)) == mode
)
880 else if (WORDS_BIG_ENDIAN
)
881 return gen_lowpart (mode
, x
);
883 return gen_highpart (mode
, x
);
886 /* Return 1 iff X, assumed to be a SUBREG,
887 refers to the real part of the complex value in its containing reg.
888 Complex values are always stored with the real part in the first word,
889 regardless of WORDS_BIG_ENDIAN. */
892 subreg_realpart_p (x
)
895 if (GET_CODE (x
) != SUBREG
)
898 return SUBREG_WORD (x
) == 0;
901 /* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a value,
902 return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
903 least-significant part of X.
904 MODE specifies how big a part of X to return;
905 it usually should not be larger than a word.
906 If X is a MEM whose address is a QUEUED, the value may be so also. */
909 gen_lowpart (mode
, x
)
910 enum machine_mode mode
;
913 rtx result
= gen_lowpart_common (mode
, x
);
917 else if (GET_CODE (x
) == REG
)
919 /* Must be a hard reg that's not valid in MODE. */
920 result
= gen_lowpart_common (mode
, copy_to_reg (x
));
925 else if (GET_CODE (x
) == MEM
)
927 /* The only additional case we can do is MEM. */
928 register int offset
= 0;
929 if (WORDS_BIG_ENDIAN
)
930 offset
= (MAX (GET_MODE_SIZE (GET_MODE (x
)), UNITS_PER_WORD
)
931 - MAX (GET_MODE_SIZE (mode
), UNITS_PER_WORD
));
933 if (BYTES_BIG_ENDIAN
)
934 /* Adjust the address so that the address-after-the-data
936 offset
-= (MIN (UNITS_PER_WORD
, GET_MODE_SIZE (mode
))
937 - MIN (UNITS_PER_WORD
, GET_MODE_SIZE (GET_MODE (x
))));
939 return change_address (x
, mode
, plus_constant (XEXP (x
, 0), offset
));
945 /* Like `gen_lowpart', but refer to the most significant part.
946 This is used to access the imaginary part of a complex number. */
949 gen_highpart (mode
, x
)
950 enum machine_mode mode
;
953 /* This case loses if X is a subreg. To catch bugs early,
954 complain if an invalid MODE is used even in other cases. */
955 if (GET_MODE_SIZE (mode
) > UNITS_PER_WORD
956 && GET_MODE_SIZE (mode
) != GET_MODE_UNIT_SIZE (GET_MODE (x
)))
958 if (GET_CODE (x
) == CONST_DOUBLE
959 #if !(TARGET_FLOAT_FORMAT != HOST_FLOAT_FORMAT || defined (REAL_IS_NOT_DOUBLE))
960 && GET_MODE_CLASS (GET_MODE (x
)) != MODE_FLOAT
963 return gen_rtx (CONST_INT
, VOIDmode
,
964 CONST_DOUBLE_HIGH (x
) & GET_MODE_MASK (mode
));
965 else if (GET_CODE (x
) == CONST_INT
)
967 else if (GET_CODE (x
) == MEM
)
969 register int offset
= 0;
970 if (! WORDS_BIG_ENDIAN
)
971 offset
= (MAX (GET_MODE_SIZE (GET_MODE (x
)), UNITS_PER_WORD
)
972 - MAX (GET_MODE_SIZE (mode
), UNITS_PER_WORD
));
974 if (! BYTES_BIG_ENDIAN
975 && GET_MODE_SIZE (mode
) < UNITS_PER_WORD
)
976 offset
-= (GET_MODE_SIZE (mode
)
977 - MIN (UNITS_PER_WORD
,
978 GET_MODE_SIZE (GET_MODE (x
))));
980 return change_address (x
, mode
, plus_constant (XEXP (x
, 0), offset
));
982 else if (GET_CODE (x
) == SUBREG
)
984 /* The only time this should occur is when we are looking at a
985 multi-word item with a SUBREG whose mode is the same as that of the
986 item. It isn't clear what we would do if it wasn't. */
987 if (SUBREG_WORD (x
) != 0)
989 return gen_highpart (mode
, SUBREG_REG (x
));
991 else if (GET_CODE (x
) == REG
)
995 if (! WORDS_BIG_ENDIAN
996 && GET_MODE_SIZE (GET_MODE (x
)) > UNITS_PER_WORD
)
997 word
= ((GET_MODE_SIZE (GET_MODE (x
))
998 - MAX (GET_MODE_SIZE (mode
), UNITS_PER_WORD
))
1002 * ??? This fails miserably for complex values being passed in registers
1003 * where the sizeof the real and imaginary part are not equal to the
1004 * sizeof SImode. FIXME
1007 if (REGNO (x
) < FIRST_PSEUDO_REGISTER
1008 /* integrate.c can't handle parts of a return value register. */
1009 && (! REG_FUNCTION_VALUE_P (x
)
1010 || ! rtx_equal_function_value_matters
)
1011 /* We want to keep the stack, frame, and arg pointers special. */
1012 && x
!= frame_pointer_rtx
1013 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1014 && x
!= arg_pointer_rtx
1016 && x
!= stack_pointer_rtx
)
1017 return gen_rtx (REG
, mode
, REGNO (x
) + word
);
1019 return gen_rtx (SUBREG
, mode
, x
, word
);
1025 /* Return 1 iff X, assumed to be a SUBREG,
1026 refers to the least significant part of its containing reg.
1027 If X is not a SUBREG, always return 1 (it is its own low part!). */
1030 subreg_lowpart_p (x
)
1033 if (GET_CODE (x
) != SUBREG
)
1035 else if (GET_MODE (SUBREG_REG (x
)) == VOIDmode
)
1038 if (WORDS_BIG_ENDIAN
1039 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))) > UNITS_PER_WORD
)
1040 return (SUBREG_WORD (x
)
1041 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
)))
1042 - MAX (GET_MODE_SIZE (GET_MODE (x
)), UNITS_PER_WORD
))
1045 return SUBREG_WORD (x
) == 0;
1048 /* Return subword I of operand OP.
1049 The word number, I, is interpreted as the word number starting at the
1050 low-order address. Word 0 is the low-order word if not WORDS_BIG_ENDIAN,
1051 otherwise it is the high-order word.
1053 If we cannot extract the required word, we return zero. Otherwise, an
1054 rtx corresponding to the requested word will be returned.
1056 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1057 reload has completed, a valid address will always be returned. After
1058 reload, if a valid address cannot be returned, we return zero.
1060 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1061 it is the responsibility of the caller.
1063 MODE is the mode of OP in case it is a CONST_INT. */
1066 operand_subword (op
, i
, validate_address
, mode
)
1069 int validate_address
;
1070 enum machine_mode mode
;
1073 int size_ratio
= HOST_BITS_PER_WIDE_INT
/ BITS_PER_WORD
;
1075 if (mode
== VOIDmode
)
1076 mode
= GET_MODE (op
);
1078 if (mode
== VOIDmode
)
1081 /* If OP is narrower than a word or if we want a word outside OP, fail. */
1083 && (GET_MODE_SIZE (mode
) < UNITS_PER_WORD
1084 || (i
+ 1) * UNITS_PER_WORD
> GET_MODE_SIZE (mode
)))
1087 /* If OP is already an integer word, return it. */
1088 if (GET_MODE_CLASS (mode
) == MODE_INT
1089 && GET_MODE_SIZE (mode
) == UNITS_PER_WORD
)
1092 /* If OP is a REG or SUBREG, we can handle it very simply. */
1093 if (GET_CODE (op
) == REG
)
1095 /* If the register is not valid for MODE, return 0. If we don't
1096 do this, there is no way to fix up the resulting REG later. */
1097 if (REGNO (op
) < FIRST_PSEUDO_REGISTER
1098 && ! HARD_REGNO_MODE_OK (REGNO (op
) + i
, word_mode
))
1100 else if (REGNO (op
) >= FIRST_PSEUDO_REGISTER
1101 || (REG_FUNCTION_VALUE_P (op
)
1102 && rtx_equal_function_value_matters
)
1103 /* We want to keep the stack, frame, and arg pointers
1105 || op
== frame_pointer_rtx
1106 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1107 || op
== arg_pointer_rtx
1109 || op
== stack_pointer_rtx
)
1110 return gen_rtx (SUBREG
, word_mode
, op
, i
);
1112 return gen_rtx (REG
, word_mode
, REGNO (op
) + i
);
1114 else if (GET_CODE (op
) == SUBREG
)
1115 return gen_rtx (SUBREG
, word_mode
, SUBREG_REG (op
), i
+ SUBREG_WORD (op
));
1116 else if (GET_CODE (op
) == CONCAT
)
1118 int partwords
= GET_MODE_UNIT_SIZE (GET_MODE (op
)) / UNITS_PER_WORD
;
1120 return operand_subword (XEXP (op
, 0), i
, validate_address
, mode
);
1121 return operand_subword (XEXP (op
, 1), i
- partwords
,
1122 validate_address
, mode
);
1125 /* Form a new MEM at the requested address. */
1126 if (GET_CODE (op
) == MEM
)
1128 rtx addr
= plus_constant (XEXP (op
, 0), i
* UNITS_PER_WORD
);
1131 if (validate_address
)
1133 if (reload_completed
)
1135 if (! strict_memory_address_p (word_mode
, addr
))
1139 addr
= memory_address (word_mode
, addr
);
1142 new = gen_rtx (MEM
, word_mode
, addr
);
1144 MEM_VOLATILE_P (new) = MEM_VOLATILE_P (op
);
1145 MEM_IN_STRUCT_P (new) = MEM_IN_STRUCT_P (op
);
1146 RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (op
);
1151 /* The only remaining cases are when OP is a constant. If the host and
1152 target floating formats are the same, handling two-word floating
1153 constants are easy. Note that REAL_VALUE_TO_TARGET_{SINGLE,DOUBLE}
1154 are defined as returning one or two 32 bit values, respectively,
1155 and not values of BITS_PER_WORD bits. */
1156 #ifdef REAL_ARITHMETIC
1157 /* The output is some bits, the width of the target machine's word.
1158 A wider-word host can surely hold them in a CONST_INT. A narrower-word
1160 if (HOST_BITS_PER_WIDE_INT
>= BITS_PER_WORD
1161 && GET_MODE_CLASS (mode
) == MODE_FLOAT
1162 && GET_MODE_BITSIZE (mode
) == 64
1163 && GET_CODE (op
) == CONST_DOUBLE
)
1168 REAL_VALUE_FROM_CONST_DOUBLE (rv
, op
);
1169 REAL_VALUE_TO_TARGET_DOUBLE (rv
, k
);
1171 /* We handle 32-bit and >= 64-bit words here. Note that the order in
1172 which the words are written depends on the word endianness.
1174 ??? This is a potential portability problem and should
1175 be fixed at some point. */
1176 if (BITS_PER_WORD
== 32)
1177 return GEN_INT ((HOST_WIDE_INT
) k
[i
]);
1178 #if HOST_BITS_PER_WIDE_INT > 32
1179 else if (BITS_PER_WORD
>= 64 && i
== 0)
1180 return GEN_INT ((((HOST_WIDE_INT
) k
[! WORDS_BIG_ENDIAN
]) << 32)
1181 | (HOST_WIDE_INT
) k
[WORDS_BIG_ENDIAN
]);
1183 else if (BITS_PER_WORD
== 16)
1190 return GEN_INT ((HOST_WIDE_INT
) value
);
1195 else if (HOST_BITS_PER_WIDE_INT
>= BITS_PER_WORD
1196 && GET_MODE_CLASS (mode
) == MODE_FLOAT
1197 && GET_MODE_BITSIZE (mode
) > 64
1198 && GET_CODE (op
) == CONST_DOUBLE
)
1203 REAL_VALUE_FROM_CONST_DOUBLE (rv
, op
);
1204 REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv
, k
);
1206 if (BITS_PER_WORD
== 32)
1207 return GEN_INT ((HOST_WIDE_INT
) k
[i
]);
1209 #else /* no REAL_ARITHMETIC */
1210 if (((HOST_FLOAT_FORMAT
== TARGET_FLOAT_FORMAT
1211 && HOST_BITS_PER_WIDE_INT
== BITS_PER_WORD
)
1212 || flag_pretend_float
)
1213 && GET_MODE_CLASS (mode
) == MODE_FLOAT
1214 && GET_MODE_SIZE (mode
) == 2 * UNITS_PER_WORD
1215 && GET_CODE (op
) == CONST_DOUBLE
)
1217 /* The constant is stored in the host's word-ordering,
1218 but we want to access it in the target's word-ordering. Some
1219 compilers don't like a conditional inside macro args, so we have two
1220 copies of the return. */
1221 #ifdef HOST_WORDS_BIG_ENDIAN
1222 return GEN_INT (i
== WORDS_BIG_ENDIAN
1223 ? CONST_DOUBLE_HIGH (op
) : CONST_DOUBLE_LOW (op
));
1225 return GEN_INT (i
!= WORDS_BIG_ENDIAN
1226 ? CONST_DOUBLE_HIGH (op
) : CONST_DOUBLE_LOW (op
));
1229 #endif /* no REAL_ARITHMETIC */
1231 /* Single word float is a little harder, since single- and double-word
1232 values often do not have the same high-order bits. We have already
1233 verified that we want the only defined word of the single-word value. */
1234 #ifdef REAL_ARITHMETIC
1235 if (GET_MODE_CLASS (mode
) == MODE_FLOAT
1236 && GET_MODE_BITSIZE (mode
) == 32
1237 && GET_CODE (op
) == CONST_DOUBLE
)
1242 REAL_VALUE_FROM_CONST_DOUBLE (rv
, op
);
1243 REAL_VALUE_TO_TARGET_SINGLE (rv
, l
);
1244 return GEN_INT ((HOST_WIDE_INT
) l
);
1247 if (((HOST_FLOAT_FORMAT
== TARGET_FLOAT_FORMAT
1248 && HOST_BITS_PER_WIDE_INT
== BITS_PER_WORD
)
1249 || flag_pretend_float
)
1250 && sizeof (float) * 8 == HOST_BITS_PER_WIDE_INT
1251 && GET_MODE_CLASS (mode
) == MODE_FLOAT
1252 && GET_MODE_SIZE (mode
) == UNITS_PER_WORD
1253 && GET_CODE (op
) == CONST_DOUBLE
)
1256 union {float f
; HOST_WIDE_INT i
; } u
;
1258 REAL_VALUE_FROM_CONST_DOUBLE (d
, op
);
1261 return GEN_INT (u
.i
);
1263 if (((HOST_FLOAT_FORMAT
== TARGET_FLOAT_FORMAT
1264 && HOST_BITS_PER_WIDE_INT
== BITS_PER_WORD
)
1265 || flag_pretend_float
)
1266 && sizeof (double) * 8 == HOST_BITS_PER_WIDE_INT
1267 && GET_MODE_CLASS (mode
) == MODE_FLOAT
1268 && GET_MODE_SIZE (mode
) == UNITS_PER_WORD
1269 && GET_CODE (op
) == CONST_DOUBLE
)
1272 union {double d
; HOST_WIDE_INT i
; } u
;
1274 REAL_VALUE_FROM_CONST_DOUBLE (d
, op
);
1277 return GEN_INT (u
.i
);
1279 #endif /* no REAL_ARITHMETIC */
1281 /* The only remaining cases that we can handle are integers.
1282 Convert to proper endianness now since these cases need it.
1283 At this point, i == 0 means the low-order word.
1285 We do not want to handle the case when BITS_PER_WORD <= HOST_BITS_PER_INT
1286 in general. However, if OP is (const_int 0), we can just return
1289 if (op
== const0_rtx
)
1292 if (GET_MODE_CLASS (mode
) != MODE_INT
1293 || (GET_CODE (op
) != CONST_INT
&& GET_CODE (op
) != CONST_DOUBLE
)
1294 || BITS_PER_WORD
> HOST_BITS_PER_WIDE_INT
)
1297 if (WORDS_BIG_ENDIAN
)
1298 i
= GET_MODE_SIZE (mode
) / UNITS_PER_WORD
- 1 - i
;
1300 /* Find out which word on the host machine this value is in and get
1301 it from the constant. */
1302 val
= (i
/ size_ratio
== 0
1303 ? (GET_CODE (op
) == CONST_INT
? INTVAL (op
) : CONST_DOUBLE_LOW (op
))
1304 : (GET_CODE (op
) == CONST_INT
1305 ? (INTVAL (op
) < 0 ? ~0 : 0) : CONST_DOUBLE_HIGH (op
)));
1307 /* If BITS_PER_WORD is smaller than an int, get the appropriate bits. */
1308 if (BITS_PER_WORD
< HOST_BITS_PER_WIDE_INT
)
1309 val
= ((val
>> ((i
% size_ratio
) * BITS_PER_WORD
))
1310 & (((HOST_WIDE_INT
) 1
1311 << (BITS_PER_WORD
% HOST_BITS_PER_WIDE_INT
)) - 1));
1313 return GEN_INT (val
);
1316 /* Similar to `operand_subword', but never return 0. If we can't extract
1317 the required subword, put OP into a register and try again. If that fails,
1318 abort. We always validate the address in this case. It is not valid
1319 to call this function after reload; it is mostly meant for RTL
1322 MODE is the mode of OP, in case it is CONST_INT. */
1325 operand_subword_force (op
, i
, mode
)
1328 enum machine_mode mode
;
1330 rtx result
= operand_subword (op
, i
, 1, mode
);
1335 if (mode
!= BLKmode
&& mode
!= VOIDmode
)
1336 op
= force_reg (mode
, op
);
1338 result
= operand_subword (op
, i
, 1, mode
);
1345 /* Given a compare instruction, swap the operands.
1346 A test instruction is changed into a compare of 0 against the operand. */
1349 reverse_comparison (insn
)
1352 rtx body
= PATTERN (insn
);
1355 if (GET_CODE (body
) == SET
)
1356 comp
= SET_SRC (body
);
1358 comp
= SET_SRC (XVECEXP (body
, 0, 0));
1360 if (GET_CODE (comp
) == COMPARE
)
1362 rtx op0
= XEXP (comp
, 0);
1363 rtx op1
= XEXP (comp
, 1);
1364 XEXP (comp
, 0) = op1
;
1365 XEXP (comp
, 1) = op0
;
1369 rtx
new = gen_rtx (COMPARE
, VOIDmode
,
1370 CONST0_RTX (GET_MODE (comp
)), comp
);
1371 if (GET_CODE (body
) == SET
)
1372 SET_SRC (body
) = new;
1374 SET_SRC (XVECEXP (body
, 0, 0)) = new;
1378 /* Return a memory reference like MEMREF, but with its mode changed
1379 to MODE and its address changed to ADDR.
1380 (VOIDmode means don't change the mode.
1381 NULL for ADDR means don't change the address.) */
1384 change_address (memref
, mode
, addr
)
1386 enum machine_mode mode
;
1391 if (GET_CODE (memref
) != MEM
)
1393 if (mode
== VOIDmode
)
1394 mode
= GET_MODE (memref
);
1396 addr
= XEXP (memref
, 0);
1398 /* If reload is in progress or has completed, ADDR must be valid.
1399 Otherwise, we can call memory_address to make it valid. */
1400 if (reload_completed
|| reload_in_progress
)
1402 if (! memory_address_p (mode
, addr
))
1406 addr
= memory_address (mode
, addr
);
1408 if (rtx_equal_p (addr
, XEXP (memref
, 0)) && mode
== GET_MODE (memref
))
1411 new = gen_rtx (MEM
, mode
, addr
);
1412 MEM_VOLATILE_P (new) = MEM_VOLATILE_P (memref
);
1413 RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (memref
);
1414 MEM_IN_STRUCT_P (new) = MEM_IN_STRUCT_P (memref
);
1418 /* Return a newly created CODE_LABEL rtx with a unique label number. */
1425 label
= (output_bytecode
1426 ? gen_rtx (CODE_LABEL
, VOIDmode
, NULL
, bc_get_bytecode_label ())
1427 : gen_rtx (CODE_LABEL
, VOIDmode
, 0, 0, 0, label_num
++, NULL_PTR
));
1429 LABEL_NUSES (label
) = 0;
1433 /* For procedure integration. */
1435 /* Return a newly created INLINE_HEADER rtx. Should allocate this
1436 from a permanent obstack when the opportunity arises. */
1439 gen_inline_header_rtx (first_insn
, first_parm_insn
, first_labelno
,
1440 last_labelno
, max_parm_regnum
, max_regnum
, args_size
,
1441 pops_args
, stack_slots
, forced_labels
, function_flags
,
1442 outgoing_args_size
, original_arg_vector
,
1443 original_decl_initial
, regno_rtx
, regno_flag
,
1445 rtx first_insn
, first_parm_insn
;
1446 int first_labelno
, last_labelno
, max_parm_regnum
, max_regnum
, args_size
;
1451 int outgoing_args_size
;
1452 rtvec original_arg_vector
;
1453 rtx original_decl_initial
;
1458 rtx header
= gen_rtx (INLINE_HEADER
, VOIDmode
,
1459 cur_insn_uid
++, NULL_RTX
,
1460 first_insn
, first_parm_insn
,
1461 first_labelno
, last_labelno
,
1462 max_parm_regnum
, max_regnum
, args_size
, pops_args
,
1463 stack_slots
, forced_labels
, function_flags
,
1464 outgoing_args_size
, original_arg_vector
,
1465 original_decl_initial
,
1466 regno_rtx
, regno_flag
, regno_align
);
1470 /* Install new pointers to the first and last insns in the chain.
1471 Also, set cur_insn_uid to one higher than the last in use.
1472 Used for an inline-procedure after copying the insn chain. */
1475 set_new_first_and_last_insn (first
, last
)
1484 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
1485 cur_insn_uid
= MAX (cur_insn_uid
, INSN_UID (insn
));
1490 /* Set the range of label numbers found in the current function.
1491 This is used when belatedly compiling an inline function. */
1494 set_new_first_and_last_label_num (first
, last
)
1497 base_label_num
= label_num
;
1498 first_label_num
= first
;
1499 last_label_num
= last
;
1502 /* Save all variables describing the current status into the structure *P.
1503 This is used before starting a nested function. */
1506 save_emit_status (p
)
1509 p
->reg_rtx_no
= reg_rtx_no
;
1510 p
->first_label_num
= first_label_num
;
1511 p
->first_insn
= first_insn
;
1512 p
->last_insn
= last_insn
;
1513 p
->sequence_rtl_expr
= sequence_rtl_expr
;
1514 p
->sequence_stack
= sequence_stack
;
1515 p
->cur_insn_uid
= cur_insn_uid
;
1516 p
->last_linenum
= last_linenum
;
1517 p
->last_filename
= last_filename
;
1518 p
->regno_pointer_flag
= regno_pointer_flag
;
1519 p
->regno_pointer_align
= regno_pointer_align
;
1520 p
->regno_pointer_flag_length
= regno_pointer_flag_length
;
1521 p
->regno_reg_rtx
= regno_reg_rtx
;
1524 /* Restore all variables describing the current status from the structure *P.
1525 This is used after a nested function. */
1528 restore_emit_status (p
)
1533 reg_rtx_no
= p
->reg_rtx_no
;
1534 first_label_num
= p
->first_label_num
;
1536 first_insn
= p
->first_insn
;
1537 last_insn
= p
->last_insn
;
1538 sequence_rtl_expr
= p
->sequence_rtl_expr
;
1539 sequence_stack
= p
->sequence_stack
;
1540 cur_insn_uid
= p
->cur_insn_uid
;
1541 last_linenum
= p
->last_linenum
;
1542 last_filename
= p
->last_filename
;
1543 regno_pointer_flag
= p
->regno_pointer_flag
;
1544 regno_pointer_align
= p
->regno_pointer_align
;
1545 regno_pointer_flag_length
= p
->regno_pointer_flag_length
;
1546 regno_reg_rtx
= p
->regno_reg_rtx
;
1548 /* Clear our cache of rtx expressions for start_sequence and
1550 sequence_element_free_list
= 0;
1551 for (i
= 0; i
< SEQUENCE_RESULT_SIZE
; i
++)
1552 sequence_result
[i
] = 0;
1557 /* Go through all the RTL insn bodies and copy any invalid shared structure.
1558 It does not work to do this twice, because the mark bits set here
1559 are not cleared afterwards. */
1562 unshare_all_rtl (insn
)
1565 for (; insn
; insn
= NEXT_INSN (insn
))
1566 if (GET_CODE (insn
) == INSN
|| GET_CODE (insn
) == JUMP_INSN
1567 || GET_CODE (insn
) == CALL_INSN
)
1569 PATTERN (insn
) = copy_rtx_if_shared (PATTERN (insn
));
1570 REG_NOTES (insn
) = copy_rtx_if_shared (REG_NOTES (insn
));
1571 LOG_LINKS (insn
) = copy_rtx_if_shared (LOG_LINKS (insn
));
1574 /* Make sure the addresses of stack slots found outside the insn chain
1575 (such as, in DECL_RTL of a variable) are not shared
1576 with the insn chain.
1578 This special care is necessary when the stack slot MEM does not
1579 actually appear in the insn chain. If it does appear, its address
1580 is unshared from all else at that point. */
1582 copy_rtx_if_shared (stack_slot_list
);
1585 /* Mark ORIG as in use, and return a copy of it if it was already in use.
1586 Recursively does the same for subexpressions. */
1589 copy_rtx_if_shared (orig
)
1592 register rtx x
= orig
;
1594 register enum rtx_code code
;
1595 register char *format_ptr
;
1601 code
= GET_CODE (x
);
1603 /* These types may be freely shared. */
1616 /* SCRATCH must be shared because they represent distinct values. */
1620 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
1621 a LABEL_REF, it isn't sharable. */
1622 if (GET_CODE (XEXP (x
, 0)) == PLUS
1623 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == SYMBOL_REF
1624 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
)
1633 /* The chain of insns is not being copied. */
1637 /* A MEM is allowed to be shared if its address is constant
1638 or is a constant plus one of the special registers. */
1639 if (CONSTANT_ADDRESS_P (XEXP (x
, 0))
1640 || XEXP (x
, 0) == virtual_stack_vars_rtx
1641 || XEXP (x
, 0) == virtual_incoming_args_rtx
)
1644 if (GET_CODE (XEXP (x
, 0)) == PLUS
1645 && (XEXP (XEXP (x
, 0), 0) == virtual_stack_vars_rtx
1646 || XEXP (XEXP (x
, 0), 0) == virtual_incoming_args_rtx
)
1647 && CONSTANT_ADDRESS_P (XEXP (XEXP (x
, 0), 1)))
1649 /* This MEM can appear in more than one place,
1650 but its address better not be shared with anything else. */
1652 XEXP (x
, 0) = copy_rtx_if_shared (XEXP (x
, 0));
1658 /* This rtx may not be shared. If it has already been seen,
1659 replace it with a copy of itself. */
1665 copy
= rtx_alloc (code
);
1666 bcopy ((char *) x
, (char *) copy
,
1667 (sizeof (*copy
) - sizeof (copy
->fld
)
1668 + sizeof (copy
->fld
[0]) * GET_RTX_LENGTH (code
)));
1674 /* Now scan the subexpressions recursively.
1675 We can store any replaced subexpressions directly into X
1676 since we know X is not shared! Any vectors in X
1677 must be copied if X was copied. */
1679 format_ptr
= GET_RTX_FORMAT (code
);
1681 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
1683 switch (*format_ptr
++)
1686 XEXP (x
, i
) = copy_rtx_if_shared (XEXP (x
, i
));
1690 if (XVEC (x
, i
) != NULL
)
1693 int len
= XVECLEN (x
, i
);
1695 if (copied
&& len
> 0)
1696 XVEC (x
, i
) = gen_rtvec_vv (len
, XVEC (x
, i
)->elem
);
1697 for (j
= 0; j
< len
; j
++)
1698 XVECEXP (x
, i
, j
) = copy_rtx_if_shared (XVECEXP (x
, i
, j
));
1706 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
1707 to look for shared sub-parts. */
1710 reset_used_flags (x
)
1714 register enum rtx_code code
;
1715 register char *format_ptr
;
1720 code
= GET_CODE (x
);
1722 /* These types may be freely shared so we needn't do any resetting
1743 /* The chain of insns is not being copied. */
1749 format_ptr
= GET_RTX_FORMAT (code
);
1750 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
1752 switch (*format_ptr
++)
1755 reset_used_flags (XEXP (x
, i
));
1759 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1760 reset_used_flags (XVECEXP (x
, i
, j
));
1766 /* Copy X if necessary so that it won't be altered by changes in OTHER.
1767 Return X or the rtx for the pseudo reg the value of X was copied into.
1768 OTHER must be valid as a SET_DEST. */
1771 make_safe_from (x
, other
)
1775 switch (GET_CODE (other
))
1778 other
= SUBREG_REG (other
);
1780 case STRICT_LOW_PART
:
1783 other
= XEXP (other
, 0);
1789 if ((GET_CODE (other
) == MEM
1791 && GET_CODE (x
) != REG
1792 && GET_CODE (x
) != SUBREG
)
1793 || (GET_CODE (other
) == REG
1794 && (REGNO (other
) < FIRST_PSEUDO_REGISTER
1795 || reg_mentioned_p (other
, x
))))
1797 rtx temp
= gen_reg_rtx (GET_MODE (x
));
1798 emit_move_insn (temp
, x
);
1804 /* Emission of insns (adding them to the doubly-linked list). */
1806 /* Return the first insn of the current sequence or current function. */
1814 /* Return the last insn emitted in current sequence or current function. */
1822 /* Specify a new insn as the last in the chain. */
1825 set_last_insn (insn
)
1828 if (NEXT_INSN (insn
) != 0)
1833 /* Return the last insn emitted, even if it is in a sequence now pushed. */
1836 get_last_insn_anywhere ()
1838 struct sequence_stack
*stack
;
1841 for (stack
= sequence_stack
; stack
; stack
= stack
->next
)
1842 if (stack
->last
!= 0)
1847 /* Return a number larger than any instruction's uid in this function. */
1852 return cur_insn_uid
;
1855 /* Return the next insn. If it is a SEQUENCE, return the first insn
1864 insn
= NEXT_INSN (insn
);
1865 if (insn
&& GET_CODE (insn
) == INSN
1866 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
1867 insn
= XVECEXP (PATTERN (insn
), 0, 0);
1873 /* Return the previous insn. If it is a SEQUENCE, return the last insn
1877 previous_insn (insn
)
1882 insn
= PREV_INSN (insn
);
1883 if (insn
&& GET_CODE (insn
) == INSN
1884 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
1885 insn
= XVECEXP (PATTERN (insn
), 0, XVECLEN (PATTERN (insn
), 0) - 1);
1891 /* Return the next insn after INSN that is not a NOTE. This routine does not
1892 look inside SEQUENCEs. */
1895 next_nonnote_insn (insn
)
1900 insn
= NEXT_INSN (insn
);
1901 if (insn
== 0 || GET_CODE (insn
) != NOTE
)
1908 /* Return the previous insn before INSN that is not a NOTE. This routine does
1909 not look inside SEQUENCEs. */
1912 prev_nonnote_insn (insn
)
1917 insn
= PREV_INSN (insn
);
1918 if (insn
== 0 || GET_CODE (insn
) != NOTE
)
1925 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
1926 or 0, if there is none. This routine does not look inside
1930 next_real_insn (insn
)
1935 insn
= NEXT_INSN (insn
);
1936 if (insn
== 0 || GET_CODE (insn
) == INSN
1937 || GET_CODE (insn
) == CALL_INSN
|| GET_CODE (insn
) == JUMP_INSN
)
1944 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
1945 or 0, if there is none. This routine does not look inside
1949 prev_real_insn (insn
)
1954 insn
= PREV_INSN (insn
);
1955 if (insn
== 0 || GET_CODE (insn
) == INSN
|| GET_CODE (insn
) == CALL_INSN
1956 || GET_CODE (insn
) == JUMP_INSN
)
1963 /* Find the next insn after INSN that really does something. This routine
1964 does not look inside SEQUENCEs. Until reload has completed, this is the
1965 same as next_real_insn. */
1968 next_active_insn (insn
)
1973 insn
= NEXT_INSN (insn
);
1975 || GET_CODE (insn
) == CALL_INSN
|| GET_CODE (insn
) == JUMP_INSN
1976 || (GET_CODE (insn
) == INSN
1977 && (! reload_completed
1978 || (GET_CODE (PATTERN (insn
)) != USE
1979 && GET_CODE (PATTERN (insn
)) != CLOBBER
))))
1986 /* Find the last insn before INSN that really does something. This routine
1987 does not look inside SEQUENCEs. Until reload has completed, this is the
1988 same as prev_real_insn. */
1991 prev_active_insn (insn
)
1996 insn
= PREV_INSN (insn
);
1998 || GET_CODE (insn
) == CALL_INSN
|| GET_CODE (insn
) == JUMP_INSN
1999 || (GET_CODE (insn
) == INSN
2000 && (! reload_completed
2001 || (GET_CODE (PATTERN (insn
)) != USE
2002 && GET_CODE (PATTERN (insn
)) != CLOBBER
))))
2009 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
2017 insn
= NEXT_INSN (insn
);
2018 if (insn
== 0 || GET_CODE (insn
) == CODE_LABEL
)
2025 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
2033 insn
= PREV_INSN (insn
);
2034 if (insn
== 0 || GET_CODE (insn
) == CODE_LABEL
)
2042 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
2043 and REG_CC_USER notes so we can find it. */
2046 link_cc0_insns (insn
)
2049 rtx user
= next_nonnote_insn (insn
);
2051 if (GET_CODE (user
) == INSN
&& GET_CODE (PATTERN (user
)) == SEQUENCE
)
2052 user
= XVECEXP (PATTERN (user
), 0, 0);
2054 REG_NOTES (user
) = gen_rtx (INSN_LIST
, REG_CC_SETTER
, insn
,
2056 REG_NOTES (insn
) = gen_rtx (INSN_LIST
, REG_CC_USER
, user
, REG_NOTES (insn
));
2059 /* Return the next insn that uses CC0 after INSN, which is assumed to
2060 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
2061 applied to the result of this function should yield INSN).
2063 Normally, this is simply the next insn. However, if a REG_CC_USER note
2064 is present, it contains the insn that uses CC0.
2066 Return 0 if we can't find the insn. */
2069 next_cc0_user (insn
)
2072 rtx note
= find_reg_note (insn
, REG_CC_USER
, NULL_RTX
);
2075 return XEXP (note
, 0);
2077 insn
= next_nonnote_insn (insn
);
2078 if (insn
&& GET_CODE (insn
) == INSN
&& GET_CODE (PATTERN (insn
)) == SEQUENCE
)
2079 insn
= XVECEXP (PATTERN (insn
), 0, 0);
2081 if (insn
&& GET_RTX_CLASS (GET_CODE (insn
)) == 'i'
2082 && reg_mentioned_p (cc0_rtx
, PATTERN (insn
)))
2088 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
2089 note, it is the previous insn. */
2092 prev_cc0_setter (insn
)
2095 rtx note
= find_reg_note (insn
, REG_CC_SETTER
, NULL_RTX
);
2099 return XEXP (note
, 0);
2101 insn
= prev_nonnote_insn (insn
);
2102 if (! sets_cc0_p (PATTERN (insn
)))
2109 /* Try splitting insns that can be split for better scheduling.
2110 PAT is the pattern which might split.
2111 TRIAL is the insn providing PAT.
2112 LAST is non-zero if we should return the last insn of the sequence produced.
2114 If this routine succeeds in splitting, it returns the first or last
2115 replacement insn depending on the value of LAST. Otherwise, it
2116 returns TRIAL. If the insn to be returned can be split, it will be. */
2119 try_split (pat
, trial
, last
)
2123 rtx before
= PREV_INSN (trial
);
2124 rtx after
= NEXT_INSN (trial
);
2125 rtx seq
= split_insns (pat
, trial
);
2126 int has_barrier
= 0;
2129 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
2130 We may need to handle this specially. */
2131 if (after
&& GET_CODE (after
) == BARRIER
)
2134 after
= NEXT_INSN (after
);
2139 /* SEQ can either be a SEQUENCE or the pattern of a single insn.
2140 The latter case will normally arise only when being done so that
2141 it, in turn, will be split (SFmode on the 29k is an example). */
2142 if (GET_CODE (seq
) == SEQUENCE
)
2144 /* If we are splitting a JUMP_INSN, look for the JUMP_INSN in
2145 SEQ and copy our JUMP_LABEL to it. If JUMP_LABEL is non-zero,
2146 increment the usage count so we don't delete the label. */
2149 if (GET_CODE (trial
) == JUMP_INSN
)
2150 for (i
= XVECLEN (seq
, 0) - 1; i
>= 0; i
--)
2151 if (GET_CODE (XVECEXP (seq
, 0, i
)) == JUMP_INSN
)
2153 JUMP_LABEL (XVECEXP (seq
, 0, i
)) = JUMP_LABEL (trial
);
2155 if (JUMP_LABEL (trial
))
2156 LABEL_NUSES (JUMP_LABEL (trial
))++;
2159 tem
= emit_insn_after (seq
, before
);
2161 delete_insn (trial
);
2163 emit_barrier_after (tem
);
2165 /* Recursively call try_split for each new insn created; by the
2166 time control returns here that insn will be fully split, so
2167 set LAST and continue from the insn after the one returned.
2168 We can't use next_active_insn here since AFTER may be a note.
2169 Ignore deleted insns, which can be occur if not optimizing. */
2170 for (tem
= NEXT_INSN (before
); tem
!= after
;
2171 tem
= NEXT_INSN (tem
))
2172 if (! INSN_DELETED_P (tem
))
2173 tem
= try_split (PATTERN (tem
), tem
, 1);
2175 /* Avoid infinite loop if the result matches the original pattern. */
2176 else if (rtx_equal_p (seq
, pat
))
2180 PATTERN (trial
) = seq
;
2181 INSN_CODE (trial
) = -1;
2182 try_split (seq
, trial
, last
);
2185 /* Return either the first or the last insn, depending on which was
2187 return last
? prev_active_insn (after
) : next_active_insn (before
);
2193 /* Make and return an INSN rtx, initializing all its slots.
2194 Store PATTERN in the pattern slots. */
2197 make_insn_raw (pattern
)
2202 /* If in RTL generation phase, see if FREE_INSN can be used. */
2203 if (free_insn
!= 0 && rtx_equal_function_value_matters
)
2206 free_insn
= NEXT_INSN (free_insn
);
2207 PUT_CODE (insn
, INSN
);
2210 insn
= rtx_alloc (INSN
);
2212 INSN_UID (insn
) = cur_insn_uid
++;
2213 PATTERN (insn
) = pattern
;
2214 INSN_CODE (insn
) = -1;
2215 LOG_LINKS (insn
) = NULL
;
2216 REG_NOTES (insn
) = NULL
;
2221 /* Like `make_insn' but make a JUMP_INSN instead of an insn. */
2224 make_jump_insn_raw (pattern
)
2229 insn
= rtx_alloc (JUMP_INSN
);
2230 INSN_UID (insn
) = cur_insn_uid
++;
2232 PATTERN (insn
) = pattern
;
2233 INSN_CODE (insn
) = -1;
2234 LOG_LINKS (insn
) = NULL
;
2235 REG_NOTES (insn
) = NULL
;
2236 JUMP_LABEL (insn
) = NULL
;
2241 /* Like `make_insn' but make a CALL_INSN instead of an insn. */
2244 make_call_insn_raw (pattern
)
2249 insn
= rtx_alloc (CALL_INSN
);
2250 INSN_UID (insn
) = cur_insn_uid
++;
2252 PATTERN (insn
) = pattern
;
2253 INSN_CODE (insn
) = -1;
2254 LOG_LINKS (insn
) = NULL
;
2255 REG_NOTES (insn
) = NULL
;
2256 CALL_INSN_FUNCTION_USAGE (insn
) = NULL
;
2261 /* Add INSN to the end of the doubly-linked list.
2262 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
2268 PREV_INSN (insn
) = last_insn
;
2269 NEXT_INSN (insn
) = 0;
2271 if (NULL
!= last_insn
)
2272 NEXT_INSN (last_insn
) = insn
;
2274 if (NULL
== first_insn
)
2280 /* Add INSN into the doubly-linked list after insn AFTER. This and
2281 the next should be the only functions called to insert an insn once
2282 delay slots have been filled since only they know how to update a
2286 add_insn_after (insn
, after
)
2289 rtx next
= NEXT_INSN (after
);
2291 if (optimize
&& INSN_DELETED_P (after
))
2294 NEXT_INSN (insn
) = next
;
2295 PREV_INSN (insn
) = after
;
2299 PREV_INSN (next
) = insn
;
2300 if (GET_CODE (next
) == INSN
&& GET_CODE (PATTERN (next
)) == SEQUENCE
)
2301 PREV_INSN (XVECEXP (PATTERN (next
), 0, 0)) = insn
;
2303 else if (last_insn
== after
)
2307 struct sequence_stack
*stack
= sequence_stack
;
2308 /* Scan all pending sequences too. */
2309 for (; stack
; stack
= stack
->next
)
2310 if (after
== stack
->last
)
2320 NEXT_INSN (after
) = insn
;
2321 if (GET_CODE (after
) == INSN
&& GET_CODE (PATTERN (after
)) == SEQUENCE
)
2323 rtx sequence
= PATTERN (after
);
2324 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = insn
;
2328 /* Add INSN into the doubly-linked list before insn BEFORE. This and
2329 the previous should be the only functions called to insert an insn once
2330 delay slots have been filled since only they know how to update a
2334 add_insn_before (insn
, before
)
2337 rtx prev
= PREV_INSN (before
);
2339 if (optimize
&& INSN_DELETED_P (before
))
2342 PREV_INSN (insn
) = prev
;
2343 NEXT_INSN (insn
) = before
;
2347 NEXT_INSN (prev
) = insn
;
2348 if (GET_CODE (prev
) == INSN
&& GET_CODE (PATTERN (prev
)) == SEQUENCE
)
2350 rtx sequence
= PATTERN (prev
);
2351 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = insn
;
2354 else if (first_insn
== before
)
2358 struct sequence_stack
*stack
= sequence_stack
;
2359 /* Scan all pending sequences too. */
2360 for (; stack
; stack
= stack
->next
)
2361 if (before
== stack
->first
)
2363 stack
->first
= insn
;
2371 PREV_INSN (before
) = insn
;
2372 if (GET_CODE (before
) == INSN
&& GET_CODE (PATTERN (before
)) == SEQUENCE
)
2373 PREV_INSN (XVECEXP (PATTERN (before
), 0, 0)) = insn
;
2376 /* Delete all insns made since FROM.
2377 FROM becomes the new last instruction. */
2380 delete_insns_since (from
)
2386 NEXT_INSN (from
) = 0;
2390 /* This function is deprecated, please use sequences instead.
2392 Move a consecutive bunch of insns to a different place in the chain.
2393 The insns to be moved are those between FROM and TO.
2394 They are moved to a new position after the insn AFTER.
2395 AFTER must not be FROM or TO or any insn in between.
2397 This function does not know about SEQUENCEs and hence should not be
2398 called after delay-slot filling has been done. */
2401 reorder_insns (from
, to
, after
)
2402 rtx from
, to
, after
;
2404 /* Splice this bunch out of where it is now. */
2405 if (PREV_INSN (from
))
2406 NEXT_INSN (PREV_INSN (from
)) = NEXT_INSN (to
);
2408 PREV_INSN (NEXT_INSN (to
)) = PREV_INSN (from
);
2409 if (last_insn
== to
)
2410 last_insn
= PREV_INSN (from
);
2411 if (first_insn
== from
)
2412 first_insn
= NEXT_INSN (to
);
2414 /* Make the new neighbors point to it and it to them. */
2415 if (NEXT_INSN (after
))
2416 PREV_INSN (NEXT_INSN (after
)) = to
;
2418 NEXT_INSN (to
) = NEXT_INSN (after
);
2419 PREV_INSN (from
) = after
;
2420 NEXT_INSN (after
) = from
;
2421 if (after
== last_insn
)
2425 /* Return the line note insn preceding INSN. */
2428 find_line_note (insn
)
2431 if (no_line_numbers
)
2434 for (; insn
; insn
= PREV_INSN (insn
))
2435 if (GET_CODE (insn
) == NOTE
2436 && NOTE_LINE_NUMBER (insn
) >= 0)
2442 /* Like reorder_insns, but inserts line notes to preserve the line numbers
2443 of the moved insns when debugging. This may insert a note between AFTER
2444 and FROM, and another one after TO. */
2447 reorder_insns_with_line_notes (from
, to
, after
)
2448 rtx from
, to
, after
;
2450 rtx from_line
= find_line_note (from
);
2451 rtx after_line
= find_line_note (after
);
2453 reorder_insns (from
, to
, after
);
2455 if (from_line
== after_line
)
2459 emit_line_note_after (NOTE_SOURCE_FILE (from_line
),
2460 NOTE_LINE_NUMBER (from_line
),
2463 emit_line_note_after (NOTE_SOURCE_FILE (after_line
),
2464 NOTE_LINE_NUMBER (after_line
),
2468 /* Emit an insn of given code and pattern
2469 at a specified place within the doubly-linked list. */
2471 /* Make an instruction with body PATTERN
2472 and output it before the instruction BEFORE. */
2475 emit_insn_before (pattern
, before
)
2476 register rtx pattern
, before
;
2478 register rtx insn
= before
;
2480 if (GET_CODE (pattern
) == SEQUENCE
)
2484 for (i
= 0; i
< XVECLEN (pattern
, 0); i
++)
2486 insn
= XVECEXP (pattern
, 0, i
);
2487 add_insn_before (insn
, before
);
2489 if (XVECLEN (pattern
, 0) < SEQUENCE_RESULT_SIZE
)
2490 sequence_result
[XVECLEN (pattern
, 0)] = pattern
;
2494 insn
= make_insn_raw (pattern
);
2495 add_insn_before (insn
, before
);
2501 /* Make an instruction with body PATTERN and code JUMP_INSN
2502 and output it before the instruction BEFORE. */
2505 emit_jump_insn_before (pattern
, before
)
2506 register rtx pattern
, before
;
2510 if (GET_CODE (pattern
) == SEQUENCE
)
2511 insn
= emit_insn_before (pattern
, before
);
2514 insn
= make_jump_insn_raw (pattern
);
2515 add_insn_before (insn
, before
);
2521 /* Make an instruction with body PATTERN and code CALL_INSN
2522 and output it before the instruction BEFORE. */
2525 emit_call_insn_before (pattern
, before
)
2526 register rtx pattern
, before
;
2530 if (GET_CODE (pattern
) == SEQUENCE
)
2531 insn
= emit_insn_before (pattern
, before
);
2534 insn
= make_call_insn_raw (pattern
);
2535 add_insn_before (insn
, before
);
2536 PUT_CODE (insn
, CALL_INSN
);
2542 /* Make an insn of code BARRIER
2543 and output it before the insn AFTER. */
2546 emit_barrier_before (before
)
2547 register rtx before
;
2549 register rtx insn
= rtx_alloc (BARRIER
);
2551 INSN_UID (insn
) = cur_insn_uid
++;
2553 add_insn_before (insn
, before
);
2557 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
2560 emit_note_before (subtype
, before
)
2564 register rtx note
= rtx_alloc (NOTE
);
2565 INSN_UID (note
) = cur_insn_uid
++;
2566 NOTE_SOURCE_FILE (note
) = 0;
2567 NOTE_LINE_NUMBER (note
) = subtype
;
2569 add_insn_before (note
, before
);
2573 /* Make an insn of code INSN with body PATTERN
2574 and output it after the insn AFTER. */
2577 emit_insn_after (pattern
, after
)
2578 register rtx pattern
, after
;
2580 register rtx insn
= after
;
2582 if (GET_CODE (pattern
) == SEQUENCE
)
2586 for (i
= 0; i
< XVECLEN (pattern
, 0); i
++)
2588 insn
= XVECEXP (pattern
, 0, i
);
2589 add_insn_after (insn
, after
);
2592 if (XVECLEN (pattern
, 0) < SEQUENCE_RESULT_SIZE
)
2593 sequence_result
[XVECLEN (pattern
, 0)] = pattern
;
2597 insn
= make_insn_raw (pattern
);
2598 add_insn_after (insn
, after
);
2604 /* Similar to emit_insn_after, except that line notes are to be inserted so
2605 as to act as if this insn were at FROM. */
2608 emit_insn_after_with_line_notes (pattern
, after
, from
)
2609 rtx pattern
, after
, from
;
2611 rtx from_line
= find_line_note (from
);
2612 rtx after_line
= find_line_note (after
);
2613 rtx insn
= emit_insn_after (pattern
, after
);
2616 emit_line_note_after (NOTE_SOURCE_FILE (from_line
),
2617 NOTE_LINE_NUMBER (from_line
),
2621 emit_line_note_after (NOTE_SOURCE_FILE (after_line
),
2622 NOTE_LINE_NUMBER (after_line
),
2626 /* Make an insn of code JUMP_INSN with body PATTERN
2627 and output it after the insn AFTER. */
2630 emit_jump_insn_after (pattern
, after
)
2631 register rtx pattern
, after
;
2635 if (GET_CODE (pattern
) == SEQUENCE
)
2636 insn
= emit_insn_after (pattern
, after
);
2639 insn
= make_jump_insn_raw (pattern
);
2640 add_insn_after (insn
, after
);
2646 /* Make an insn of code BARRIER
2647 and output it after the insn AFTER. */
2650 emit_barrier_after (after
)
2653 register rtx insn
= rtx_alloc (BARRIER
);
2655 INSN_UID (insn
) = cur_insn_uid
++;
2657 add_insn_after (insn
, after
);
2661 /* Emit the label LABEL after the insn AFTER. */
2664 emit_label_after (label
, after
)
2667 /* This can be called twice for the same label
2668 as a result of the confusion that follows a syntax error!
2669 So make it harmless. */
2670 if (INSN_UID (label
) == 0)
2672 INSN_UID (label
) = cur_insn_uid
++;
2673 add_insn_after (label
, after
);
2679 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
2682 emit_note_after (subtype
, after
)
2686 register rtx note
= rtx_alloc (NOTE
);
2687 INSN_UID (note
) = cur_insn_uid
++;
2688 NOTE_SOURCE_FILE (note
) = 0;
2689 NOTE_LINE_NUMBER (note
) = subtype
;
2690 add_insn_after (note
, after
);
2694 /* Emit a line note for FILE and LINE after the insn AFTER. */
2697 emit_line_note_after (file
, line
, after
)
2704 if (no_line_numbers
&& line
> 0)
2710 note
= rtx_alloc (NOTE
);
2711 INSN_UID (note
) = cur_insn_uid
++;
2712 NOTE_SOURCE_FILE (note
) = file
;
2713 NOTE_LINE_NUMBER (note
) = line
;
2714 add_insn_after (note
, after
);
2718 /* Make an insn of code INSN with pattern PATTERN
2719 and add it to the end of the doubly-linked list.
2720 If PATTERN is a SEQUENCE, take the elements of it
2721 and emit an insn for each element.
2723 Returns the last insn emitted. */
2729 rtx insn
= last_insn
;
2731 if (GET_CODE (pattern
) == SEQUENCE
)
2735 for (i
= 0; i
< XVECLEN (pattern
, 0); i
++)
2737 insn
= XVECEXP (pattern
, 0, i
);
2740 if (XVECLEN (pattern
, 0) < SEQUENCE_RESULT_SIZE
)
2741 sequence_result
[XVECLEN (pattern
, 0)] = pattern
;
2745 insn
= make_insn_raw (pattern
);
2752 /* Emit the insns in a chain starting with INSN.
2753 Return the last insn emitted. */
2763 rtx next
= NEXT_INSN (insn
);
2772 /* Emit the insns in a chain starting with INSN and place them in front of
2773 the insn BEFORE. Return the last insn emitted. */
2776 emit_insns_before (insn
, before
)
2784 rtx next
= NEXT_INSN (insn
);
2785 add_insn_before (insn
, before
);
2793 /* Emit the insns in a chain starting with FIRST and place them in back of
2794 the insn AFTER. Return the last insn emitted. */
2797 emit_insns_after (first
, after
)
2802 register rtx after_after
;
2810 for (last
= first
; NEXT_INSN (last
); last
= NEXT_INSN (last
))
2813 after_after
= NEXT_INSN (after
);
2815 NEXT_INSN (after
) = first
;
2816 PREV_INSN (first
) = after
;
2817 NEXT_INSN (last
) = after_after
;
2819 PREV_INSN (after_after
) = last
;
2821 if (after
== last_insn
)
2826 /* Make an insn of code JUMP_INSN with pattern PATTERN
2827 and add it to the end of the doubly-linked list. */
2830 emit_jump_insn (pattern
)
2833 if (GET_CODE (pattern
) == SEQUENCE
)
2834 return emit_insn (pattern
);
2837 register rtx insn
= make_jump_insn_raw (pattern
);
2843 /* Make an insn of code CALL_INSN with pattern PATTERN
2844 and add it to the end of the doubly-linked list. */
2847 emit_call_insn (pattern
)
2850 if (GET_CODE (pattern
) == SEQUENCE
)
2851 return emit_insn (pattern
);
2854 register rtx insn
= make_call_insn_raw (pattern
);
2856 PUT_CODE (insn
, CALL_INSN
);
2861 /* Add the label LABEL to the end of the doubly-linked list. */
2867 /* This can be called twice for the same label
2868 as a result of the confusion that follows a syntax error!
2869 So make it harmless. */
2870 if (INSN_UID (label
) == 0)
2872 INSN_UID (label
) = cur_insn_uid
++;
2878 /* Make an insn of code BARRIER
2879 and add it to the end of the doubly-linked list. */
2884 register rtx barrier
= rtx_alloc (BARRIER
);
2885 INSN_UID (barrier
) = cur_insn_uid
++;
2890 /* Make an insn of code NOTE
2891 with data-fields specified by FILE and LINE
2892 and add it to the end of the doubly-linked list,
2893 but only if line-numbers are desired for debugging info. */
2896 emit_line_note (file
, line
)
2900 if (output_bytecode
)
2902 /* FIXME: for now we do nothing, but eventually we will have to deal with
2903 debugging information. */
2907 emit_filename
= file
;
2911 if (no_line_numbers
)
2915 return emit_note (file
, line
);
2918 /* Make an insn of code NOTE
2919 with data-fields specified by FILE and LINE
2920 and add it to the end of the doubly-linked list.
2921 If it is a line-number NOTE, omit it if it matches the previous one. */
2924 emit_note (file
, line
)
2932 if (file
&& last_filename
&& !strcmp (file
, last_filename
)
2933 && line
== last_linenum
)
2935 last_filename
= file
;
2936 last_linenum
= line
;
2939 if (no_line_numbers
&& line
> 0)
2945 note
= rtx_alloc (NOTE
);
2946 INSN_UID (note
) = cur_insn_uid
++;
2947 NOTE_SOURCE_FILE (note
) = file
;
2948 NOTE_LINE_NUMBER (note
) = line
;
2953 /* Emit a NOTE, and don't omit it even if LINE it the previous note. */
2956 emit_line_note_force (file
, line
)
2961 return emit_line_note (file
, line
);
2964 /* Cause next statement to emit a line note even if the line number
2965 has not changed. This is used at the beginning of a function. */
2968 force_next_line_note ()
2973 /* Return an indication of which type of insn should have X as a body.
2974 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
2980 if (GET_CODE (x
) == CODE_LABEL
)
2982 if (GET_CODE (x
) == CALL
)
2984 if (GET_CODE (x
) == RETURN
)
2986 if (GET_CODE (x
) == SET
)
2988 if (SET_DEST (x
) == pc_rtx
)
2990 else if (GET_CODE (SET_SRC (x
)) == CALL
)
2995 if (GET_CODE (x
) == PARALLEL
)
2998 for (j
= XVECLEN (x
, 0) - 1; j
>= 0; j
--)
2999 if (GET_CODE (XVECEXP (x
, 0, j
)) == CALL
)
3001 else if (GET_CODE (XVECEXP (x
, 0, j
)) == SET
3002 && SET_DEST (XVECEXP (x
, 0, j
)) == pc_rtx
)
3004 else if (GET_CODE (XVECEXP (x
, 0, j
)) == SET
3005 && GET_CODE (SET_SRC (XVECEXP (x
, 0, j
))) == CALL
)
3011 /* Emit the rtl pattern X as an appropriate kind of insn.
3012 If X is a label, it is simply added into the insn chain. */
3018 enum rtx_code code
= classify_insn (x
);
3020 if (code
== CODE_LABEL
)
3021 return emit_label (x
);
3022 else if (code
== INSN
)
3023 return emit_insn (x
);
3024 else if (code
== JUMP_INSN
)
3026 register rtx insn
= emit_jump_insn (x
);
3027 if (simplejump_p (insn
) || GET_CODE (x
) == RETURN
)
3028 return emit_barrier ();
3031 else if (code
== CALL_INSN
)
3032 return emit_call_insn (x
);
3037 /* Begin emitting insns to a sequence which can be packaged in an RTL_EXPR. */
3042 struct sequence_stack
*tem
;
3044 if (sequence_element_free_list
)
3046 /* Reuse a previously-saved struct sequence_stack. */
3047 tem
= sequence_element_free_list
;
3048 sequence_element_free_list
= tem
->next
;
3051 tem
= (struct sequence_stack
*) permalloc (sizeof (struct sequence_stack
));
3053 tem
->next
= sequence_stack
;
3054 tem
->first
= first_insn
;
3055 tem
->last
= last_insn
;
3056 tem
->sequence_rtl_expr
= sequence_rtl_expr
;
3058 sequence_stack
= tem
;
3064 /* Similarly, but indicate that this sequence will be placed in
3068 start_sequence_for_rtl_expr (t
)
3073 sequence_rtl_expr
= t
;
3076 /* Set up the insn chain starting with FIRST
3077 as the current sequence, saving the previously current one. */
3080 push_to_sequence (first
)
3087 for (last
= first
; last
&& NEXT_INSN (last
); last
= NEXT_INSN (last
));
3093 /* Set up the outer-level insn chain
3094 as the current sequence, saving the previously current one. */
3097 push_topmost_sequence ()
3099 struct sequence_stack
*stack
, *top
;
3103 for (stack
= sequence_stack
; stack
; stack
= stack
->next
)
3106 first_insn
= top
->first
;
3107 last_insn
= top
->last
;
3108 sequence_rtl_expr
= top
->sequence_rtl_expr
;
3111 /* After emitting to the outer-level insn chain, update the outer-level
3112 insn chain, and restore the previous saved state. */
3115 pop_topmost_sequence ()
3117 struct sequence_stack
*stack
, *top
;
3119 for (stack
= sequence_stack
; stack
; stack
= stack
->next
)
3122 top
->first
= first_insn
;
3123 top
->last
= last_insn
;
3124 /* ??? Why don't we save sequence_rtl_expr here? */
3129 /* After emitting to a sequence, restore previous saved state.
3131 To get the contents of the sequence just made,
3132 you must call `gen_sequence' *before* calling here. */
3137 struct sequence_stack
*tem
= sequence_stack
;
3139 first_insn
= tem
->first
;
3140 last_insn
= tem
->last
;
3141 sequence_rtl_expr
= tem
->sequence_rtl_expr
;
3142 sequence_stack
= tem
->next
;
3144 tem
->next
= sequence_element_free_list
;
3145 sequence_element_free_list
= tem
;
3148 /* Return 1 if currently emitting into a sequence. */
3153 return sequence_stack
!= 0;
3156 /* Generate a SEQUENCE rtx containing the insns already emitted
3157 to the current sequence.
3159 This is how the gen_... function from a DEFINE_EXPAND
3160 constructs the SEQUENCE that it returns. */
3170 /* Count the insns in the chain. */
3172 for (tem
= first_insn
; tem
; tem
= NEXT_INSN (tem
))
3175 /* If only one insn, return its pattern rather than a SEQUENCE.
3176 (Now that we cache SEQUENCE expressions, it isn't worth special-casing
3177 the case of an empty list.) */
3179 && (GET_CODE (first_insn
) == INSN
3180 || GET_CODE (first_insn
) == JUMP_INSN
3181 /* Don't discard the call usage field. */
3182 || (GET_CODE (first_insn
) == CALL_INSN
3183 && CALL_INSN_FUNCTION_USAGE (first_insn
) == NULL_RTX
)))
3185 NEXT_INSN (first_insn
) = free_insn
;
3186 free_insn
= first_insn
;
3187 return PATTERN (first_insn
);
3190 /* Put them in a vector. See if we already have a SEQUENCE of the
3191 appropriate length around. */
3192 if (len
< SEQUENCE_RESULT_SIZE
&& (result
= sequence_result
[len
]) != 0)
3193 sequence_result
[len
] = 0;
3196 /* Ensure that this rtl goes in saveable_obstack, since we may
3198 push_obstacks_nochange ();
3199 rtl_in_saveable_obstack ();
3200 result
= gen_rtx (SEQUENCE
, VOIDmode
, rtvec_alloc (len
));
3204 for (i
= 0, tem
= first_insn
; tem
; tem
= NEXT_INSN (tem
), i
++)
3205 XVECEXP (result
, 0, i
) = tem
;
3210 /* Initialize data structures and variables in this file
3211 before generating rtl for each function. */
3220 sequence_rtl_expr
= NULL
;
3222 reg_rtx_no
= LAST_VIRTUAL_REGISTER
+ 1;
3225 first_label_num
= label_num
;
3227 sequence_stack
= NULL
;
3229 /* Clear the start_sequence/gen_sequence cache. */
3230 sequence_element_free_list
= 0;
3231 for (i
= 0; i
< SEQUENCE_RESULT_SIZE
; i
++)
3232 sequence_result
[i
] = 0;
3235 /* Init the tables that describe all the pseudo regs. */
3237 regno_pointer_flag_length
= LAST_VIRTUAL_REGISTER
+ 101;
3240 = (char *) savealloc (regno_pointer_flag_length
);
3241 bzero (regno_pointer_flag
, regno_pointer_flag_length
);
3244 = (char *) savealloc (regno_pointer_flag_length
);
3245 bzero (regno_pointer_align
, regno_pointer_flag_length
);
3248 = (rtx
*) savealloc (regno_pointer_flag_length
* sizeof (rtx
));
3249 bzero ((char *) regno_reg_rtx
, regno_pointer_flag_length
* sizeof (rtx
));
3251 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
3252 regno_reg_rtx
[VIRTUAL_INCOMING_ARGS_REGNUM
] = virtual_incoming_args_rtx
;
3253 regno_reg_rtx
[VIRTUAL_STACK_VARS_REGNUM
] = virtual_stack_vars_rtx
;
3254 regno_reg_rtx
[VIRTUAL_STACK_DYNAMIC_REGNUM
] = virtual_stack_dynamic_rtx
;
3255 regno_reg_rtx
[VIRTUAL_OUTGOING_ARGS_REGNUM
] = virtual_outgoing_args_rtx
;
3257 /* Indicate that the virtual registers and stack locations are
3259 REGNO_POINTER_FLAG (STACK_POINTER_REGNUM
) = 1;
3260 REGNO_POINTER_FLAG (FRAME_POINTER_REGNUM
) = 1;
3261 REGNO_POINTER_FLAG (HARD_FRAME_POINTER_REGNUM
) = 1;
3262 REGNO_POINTER_FLAG (ARG_POINTER_REGNUM
) = 1;
3264 REGNO_POINTER_FLAG (VIRTUAL_INCOMING_ARGS_REGNUM
) = 1;
3265 REGNO_POINTER_FLAG (VIRTUAL_STACK_VARS_REGNUM
) = 1;
3266 REGNO_POINTER_FLAG (VIRTUAL_STACK_DYNAMIC_REGNUM
) = 1;
3267 REGNO_POINTER_FLAG (VIRTUAL_OUTGOING_ARGS_REGNUM
) = 1;
3269 #ifdef STACK_BOUNDARY
3270 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM
) = STACK_BOUNDARY
/ BITS_PER_UNIT
;
3271 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM
) = STACK_BOUNDARY
/ BITS_PER_UNIT
;
3272 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM
)
3273 = STACK_BOUNDARY
/ BITS_PER_UNIT
;
3274 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM
) = STACK_BOUNDARY
/ BITS_PER_UNIT
;
3276 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM
)
3277 = STACK_BOUNDARY
/ BITS_PER_UNIT
;
3278 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM
)
3279 = STACK_BOUNDARY
/ BITS_PER_UNIT
;
3280 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM
)
3281 = STACK_BOUNDARY
/ BITS_PER_UNIT
;
3282 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM
)
3283 = STACK_BOUNDARY
/ BITS_PER_UNIT
;
3286 #ifdef INIT_EXPANDERS
3291 /* Create some permanent unique rtl objects shared between all functions.
3292 LINE_NUMBERS is nonzero if line numbers are to be generated. */
3295 init_emit_once (line_numbers
)
3299 enum machine_mode mode
;
3301 no_line_numbers
= ! line_numbers
;
3303 sequence_stack
= NULL
;
3305 /* Compute the word and byte modes. */
3307 byte_mode
= VOIDmode
;
3308 word_mode
= VOIDmode
;
3310 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
3311 mode
= GET_MODE_WIDER_MODE (mode
))
3313 if (GET_MODE_BITSIZE (mode
) == BITS_PER_UNIT
3314 && byte_mode
== VOIDmode
)
3317 if (GET_MODE_BITSIZE (mode
) == BITS_PER_WORD
3318 && word_mode
== VOIDmode
)
3322 ptr_mode
= mode_for_size (POINTER_SIZE
, GET_MODE_CLASS (Pmode
), 0);
3324 /* Create the unique rtx's for certain rtx codes and operand values. */
3326 pc_rtx
= gen_rtx (PC
, VOIDmode
);
3327 cc0_rtx
= gen_rtx (CC0
, VOIDmode
);
3329 /* Don't use gen_rtx here since gen_rtx in this case
3330 tries to use these variables. */
3331 for (i
= - MAX_SAVED_CONST_INT
; i
<= MAX_SAVED_CONST_INT
; i
++)
3333 const_int_rtx
[i
+ MAX_SAVED_CONST_INT
] = rtx_alloc (CONST_INT
);
3334 PUT_MODE (const_int_rtx
[i
+ MAX_SAVED_CONST_INT
], VOIDmode
);
3335 INTVAL (const_int_rtx
[i
+ MAX_SAVED_CONST_INT
]) = i
;
3338 /* These four calls obtain some of the rtx expressions made above. */
3339 const0_rtx
= GEN_INT (0);
3340 const1_rtx
= GEN_INT (1);
3341 const2_rtx
= GEN_INT (2);
3342 constm1_rtx
= GEN_INT (-1);
3344 /* This will usually be one of the above constants, but may be a new rtx. */
3345 const_true_rtx
= GEN_INT (STORE_FLAG_VALUE
);
3347 dconst0
= REAL_VALUE_ATOF ("0", DFmode
);
3348 dconst1
= REAL_VALUE_ATOF ("1", DFmode
);
3349 dconst2
= REAL_VALUE_ATOF ("2", DFmode
);
3350 dconstm1
= REAL_VALUE_ATOF ("-1", DFmode
);
3352 for (i
= 0; i
<= 2; i
++)
3354 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
); mode
!= VOIDmode
;
3355 mode
= GET_MODE_WIDER_MODE (mode
))
3357 rtx tem
= rtx_alloc (CONST_DOUBLE
);
3358 union real_extract u
;
3360 bzero ((char *) &u
, sizeof u
); /* Zero any holes in a structure. */
3361 u
.d
= i
== 0 ? dconst0
: i
== 1 ? dconst1
: dconst2
;
3363 bcopy ((char *) &u
, (char *) &CONST_DOUBLE_LOW (tem
), sizeof u
);
3364 CONST_DOUBLE_MEM (tem
) = cc0_rtx
;
3365 PUT_MODE (tem
, mode
);
3367 const_tiny_rtx
[i
][(int) mode
] = tem
;
3370 const_tiny_rtx
[i
][(int) VOIDmode
] = GEN_INT (i
);
3372 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
3373 mode
= GET_MODE_WIDER_MODE (mode
))
3374 const_tiny_rtx
[i
][(int) mode
] = GEN_INT (i
);
3376 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT
);
3378 mode
= GET_MODE_WIDER_MODE (mode
))
3379 const_tiny_rtx
[i
][(int) mode
] = GEN_INT (i
);
3382 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_CC
); mode
!= VOIDmode
;
3383 mode
= GET_MODE_WIDER_MODE (mode
))
3384 const_tiny_rtx
[0][(int) mode
] = const0_rtx
;
3386 stack_pointer_rtx
= gen_rtx (REG
, Pmode
, STACK_POINTER_REGNUM
);
3387 frame_pointer_rtx
= gen_rtx (REG
, Pmode
, FRAME_POINTER_REGNUM
);
3389 if (HARD_FRAME_POINTER_REGNUM
== FRAME_POINTER_REGNUM
)
3390 hard_frame_pointer_rtx
= frame_pointer_rtx
;
3392 hard_frame_pointer_rtx
= gen_rtx (REG
, Pmode
, HARD_FRAME_POINTER_REGNUM
);
3394 if (FRAME_POINTER_REGNUM
== ARG_POINTER_REGNUM
)
3395 arg_pointer_rtx
= frame_pointer_rtx
;
3396 else if (HARD_FRAME_POINTER_REGNUM
== ARG_POINTER_REGNUM
)
3397 arg_pointer_rtx
= hard_frame_pointer_rtx
;
3398 else if (STACK_POINTER_REGNUM
== ARG_POINTER_REGNUM
)
3399 arg_pointer_rtx
= stack_pointer_rtx
;
3401 arg_pointer_rtx
= gen_rtx (REG
, Pmode
, ARG_POINTER_REGNUM
);
3403 #ifdef RETURN_ADDRESS_POINTER_REGNUM
3404 return_address_pointer_rtx
= gen_rtx (REG
, Pmode
,
3405 RETURN_ADDRESS_POINTER_REGNUM
);
3408 /* Create the virtual registers. Do so here since the following objects
3409 might reference them. */
3411 virtual_incoming_args_rtx
= gen_rtx (REG
, Pmode
,
3412 VIRTUAL_INCOMING_ARGS_REGNUM
);
3413 virtual_stack_vars_rtx
= gen_rtx (REG
, Pmode
,
3414 VIRTUAL_STACK_VARS_REGNUM
);
3415 virtual_stack_dynamic_rtx
= gen_rtx (REG
, Pmode
,
3416 VIRTUAL_STACK_DYNAMIC_REGNUM
);
3417 virtual_outgoing_args_rtx
= gen_rtx (REG
, Pmode
,
3418 VIRTUAL_OUTGOING_ARGS_REGNUM
);
3421 struct_value_rtx
= STRUCT_VALUE
;
3423 struct_value_rtx
= gen_rtx (REG
, Pmode
, STRUCT_VALUE_REGNUM
);
3426 #ifdef STRUCT_VALUE_INCOMING
3427 struct_value_incoming_rtx
= STRUCT_VALUE_INCOMING
;
3429 #ifdef STRUCT_VALUE_INCOMING_REGNUM
3430 struct_value_incoming_rtx
3431 = gen_rtx (REG
, Pmode
, STRUCT_VALUE_INCOMING_REGNUM
);
3433 struct_value_incoming_rtx
= struct_value_rtx
;
3437 #ifdef STATIC_CHAIN_REGNUM
3438 static_chain_rtx
= gen_rtx (REG
, Pmode
, STATIC_CHAIN_REGNUM
);
3440 #ifdef STATIC_CHAIN_INCOMING_REGNUM
3441 if (STATIC_CHAIN_INCOMING_REGNUM
!= STATIC_CHAIN_REGNUM
)
3442 static_chain_incoming_rtx
= gen_rtx (REG
, Pmode
, STATIC_CHAIN_INCOMING_REGNUM
);
3445 static_chain_incoming_rtx
= static_chain_rtx
;
3449 static_chain_rtx
= STATIC_CHAIN
;
3451 #ifdef STATIC_CHAIN_INCOMING
3452 static_chain_incoming_rtx
= STATIC_CHAIN_INCOMING
;
3454 static_chain_incoming_rtx
= static_chain_rtx
;
3458 #ifdef PIC_OFFSET_TABLE_REGNUM
3459 pic_offset_table_rtx
= gen_rtx (REG
, Pmode
, PIC_OFFSET_TABLE_REGNUM
);