1 /* Common subexpression elimination for GNU compiler.
2 Copyright (C) 1987, 88, 89, 92-6, 1997 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
23 /* Must precede rtl.h for FFS. */
28 #include "hard-reg-set.h"
31 #include "insn-config.h"
36 /* The basic idea of common subexpression elimination is to go
37 through the code, keeping a record of expressions that would
38 have the same value at the current scan point, and replacing
39 expressions encountered with the cheapest equivalent expression.
41 It is too complicated to keep track of the different possibilities
42 when control paths merge; so, at each label, we forget all that is
43 known and start fresh. This can be described as processing each
44 basic block separately. Note, however, that these are not quite
45 the same as the basic blocks found by a later pass and used for
46 data flow analysis and register packing. We do not need to start fresh
47 after a conditional jump instruction if there is no label there.
49 We use two data structures to record the equivalent expressions:
50 a hash table for most expressions, and several vectors together
51 with "quantity numbers" to record equivalent (pseudo) registers.
53 The use of the special data structure for registers is desirable
54 because it is faster. It is possible because registers references
55 contain a fairly small number, the register number, taken from
56 a contiguously allocated series, and two register references are
57 identical if they have the same number. General expressions
58 do not have any such thing, so the only way to retrieve the
59 information recorded on an expression other than a register
60 is to keep it in a hash table.
62 Registers and "quantity numbers":
64 At the start of each basic block, all of the (hardware and pseudo)
65 registers used in the function are given distinct quantity
66 numbers to indicate their contents. During scan, when the code
67 copies one register into another, we copy the quantity number.
68 When a register is loaded in any other way, we allocate a new
69 quantity number to describe the value generated by this operation.
70 `reg_qty' records what quantity a register is currently thought
73 All real quantity numbers are greater than or equal to `max_reg'.
74 If register N has not been assigned a quantity, reg_qty[N] will equal N.
76 Quantity numbers below `max_reg' do not exist and none of the `qty_...'
77 variables should be referenced with an index below `max_reg'.
79 We also maintain a bidirectional chain of registers for each
80 quantity number. `qty_first_reg', `qty_last_reg',
81 `reg_next_eqv' and `reg_prev_eqv' hold these chains.
83 The first register in a chain is the one whose lifespan is least local.
84 Among equals, it is the one that was seen first.
85 We replace any equivalent register with that one.
87 If two registers have the same quantity number, it must be true that
88 REG expressions with `qty_mode' must be in the hash table for both
89 registers and must be in the same class.
91 The converse is not true. Since hard registers may be referenced in
92 any mode, two REG expressions might be equivalent in the hash table
93 but not have the same quantity number if the quantity number of one
94 of the registers is not the same mode as those expressions.
96 Constants and quantity numbers
98 When a quantity has a known constant value, that value is stored
99 in the appropriate element of qty_const. This is in addition to
100 putting the constant in the hash table as is usual for non-regs.
102 Whether a reg or a constant is preferred is determined by the configuration
103 macro CONST_COSTS and will often depend on the constant value. In any
104 event, expressions containing constants can be simplified, by fold_rtx.
106 When a quantity has a known nearly constant value (such as an address
107 of a stack slot), that value is stored in the appropriate element
110 Integer constants don't have a machine mode. However, cse
111 determines the intended machine mode from the destination
112 of the instruction that moves the constant. The machine mode
113 is recorded in the hash table along with the actual RTL
114 constant expression so that different modes are kept separate.
118 To record known equivalences among expressions in general
119 we use a hash table called `table'. It has a fixed number of buckets
120 that contain chains of `struct table_elt' elements for expressions.
121 These chains connect the elements whose expressions have the same
124 Other chains through the same elements connect the elements which
125 currently have equivalent values.
127 Register references in an expression are canonicalized before hashing
128 the expression. This is done using `reg_qty' and `qty_first_reg'.
129 The hash code of a register reference is computed using the quantity
130 number, not the register number.
132 When the value of an expression changes, it is necessary to remove from the
133 hash table not just that expression but all expressions whose values
134 could be different as a result.
136 1. If the value changing is in memory, except in special cases
137 ANYTHING referring to memory could be changed. That is because
138 nobody knows where a pointer does not point.
139 The function `invalidate_memory' removes what is necessary.
141 The special cases are when the address is constant or is
142 a constant plus a fixed register such as the frame pointer
143 or a static chain pointer. When such addresses are stored in,
144 we can tell exactly which other such addresses must be invalidated
145 due to overlap. `invalidate' does this.
146 All expressions that refer to non-constant
147 memory addresses are also invalidated. `invalidate_memory' does this.
149 2. If the value changing is a register, all expressions
150 containing references to that register, and only those,
153 Because searching the entire hash table for expressions that contain
154 a register is very slow, we try to figure out when it isn't necessary.
155 Precisely, this is necessary only when expressions have been
156 entered in the hash table using this register, and then the value has
157 changed, and then another expression wants to be added to refer to
158 the register's new value. This sequence of circumstances is rare
159 within any one basic block.
161 The vectors `reg_tick' and `reg_in_table' are used to detect this case.
162 reg_tick[i] is incremented whenever a value is stored in register i.
163 reg_in_table[i] holds -1 if no references to register i have been
164 entered in the table; otherwise, it contains the value reg_tick[i] had
165 when the references were entered. If we want to enter a reference
166 and reg_in_table[i] != reg_tick[i], we must scan and remove old references.
167 Until we want to enter a new entry, the mere fact that the two vectors
168 don't match makes the entries be ignored if anyone tries to match them.
170 Registers themselves are entered in the hash table as well as in
171 the equivalent-register chains. However, the vectors `reg_tick'
172 and `reg_in_table' do not apply to expressions which are simple
173 register references. These expressions are removed from the table
174 immediately when they become invalid, and this can be done even if
175 we do not immediately search for all the expressions that refer to
178 A CLOBBER rtx in an instruction invalidates its operand for further
179 reuse. A CLOBBER or SET rtx whose operand is a MEM:BLK
180 invalidates everything that resides in memory.
184 Constant expressions that differ only by an additive integer
185 are called related. When a constant expression is put in
186 the table, the related expression with no constant term
187 is also entered. These are made to point at each other
188 so that it is possible to find out if there exists any
189 register equivalent to an expression related to a given expression. */
191 /* One plus largest register number used in this function. */
195 /* Length of vectors indexed by quantity number.
196 We know in advance we will not need a quantity number this big. */
200 /* Next quantity number to be allocated.
201 This is 1 + the largest number needed so far. */
205 /* Indexed by quantity number, gives the first (or last) (pseudo) register
206 in the chain of registers that currently contain this quantity. */
208 static int *qty_first_reg
;
209 static int *qty_last_reg
;
211 /* Index by quantity number, gives the mode of the quantity. */
213 static enum machine_mode
*qty_mode
;
215 /* Indexed by quantity number, gives the rtx of the constant value of the
216 quantity, or zero if it does not have a known value.
217 A sum of the frame pointer (or arg pointer) plus a constant
218 can also be entered here. */
220 static rtx
*qty_const
;
222 /* Indexed by qty number, gives the insn that stored the constant value
223 recorded in `qty_const'. */
225 static rtx
*qty_const_insn
;
227 /* The next three variables are used to track when a comparison between a
228 quantity and some constant or register has been passed. In that case, we
229 know the results of the comparison in case we see it again. These variables
230 record a comparison that is known to be true. */
232 /* Indexed by qty number, gives the rtx code of a comparison with a known
233 result involving this quantity. If none, it is UNKNOWN. */
234 static enum rtx_code
*qty_comparison_code
;
236 /* Indexed by qty number, gives the constant being compared against in a
237 comparison of known result. If no such comparison, it is undefined.
238 If the comparison is not with a constant, it is zero. */
240 static rtx
*qty_comparison_const
;
242 /* Indexed by qty number, gives the quantity being compared against in a
243 comparison of known result. If no such comparison, if it undefined.
244 If the comparison is not with a register, it is -1. */
246 static int *qty_comparison_qty
;
249 /* For machines that have a CC0, we do not record its value in the hash
250 table since its use is guaranteed to be the insn immediately following
251 its definition and any other insn is presumed to invalidate it.
253 Instead, we store below the value last assigned to CC0. If it should
254 happen to be a constant, it is stored in preference to the actual
255 assigned value. In case it is a constant, we store the mode in which
256 the constant should be interpreted. */
258 static rtx prev_insn_cc0
;
259 static enum machine_mode prev_insn_cc0_mode
;
262 /* Previous actual insn. 0 if at first insn of basic block. */
264 static rtx prev_insn
;
266 /* Insn being scanned. */
268 static rtx this_insn
;
270 /* Index by (pseudo) register number, gives the quantity number
271 of the register's current contents. */
275 /* Index by (pseudo) register number, gives the number of the next (or
276 previous) (pseudo) register in the chain of registers sharing the same
279 Or -1 if this register is at the end of the chain.
281 If reg_qty[N] == N, reg_next_eqv[N] is undefined. */
283 static int *reg_next_eqv
;
284 static int *reg_prev_eqv
;
286 /* Index by (pseudo) register number, gives the number of times
287 that register has been altered in the current basic block. */
289 static int *reg_tick
;
291 /* Index by (pseudo) register number, gives the reg_tick value at which
292 rtx's containing this register are valid in the hash table.
293 If this does not equal the current reg_tick value, such expressions
294 existing in the hash table are invalid.
295 If this is -1, no expressions containing this register have been
296 entered in the table. */
298 static int *reg_in_table
;
300 /* A HARD_REG_SET containing all the hard registers for which there is
301 currently a REG expression in the hash table. Note the difference
302 from the above variables, which indicate if the REG is mentioned in some
303 expression in the table. */
305 static HARD_REG_SET hard_regs_in_table
;
307 /* A HARD_REG_SET containing all the hard registers that are invalidated
310 static HARD_REG_SET regs_invalidated_by_call
;
312 /* Two vectors of ints:
313 one containing max_reg -1's; the other max_reg + 500 (an approximation
314 for max_qty) elements where element i contains i.
315 These are used to initialize various other vectors fast. */
317 static int *all_minus_one
;
318 static int *consec_ints
;
320 /* CUID of insn that starts the basic block currently being cse-processed. */
322 static int cse_basic_block_start
;
324 /* CUID of insn that ends the basic block currently being cse-processed. */
326 static int cse_basic_block_end
;
328 /* Vector mapping INSN_UIDs to cuids.
329 The cuids are like uids but increase monotonically always.
330 We use them to see whether a reg is used outside a given basic block. */
332 static int *uid_cuid
;
334 /* Highest UID in UID_CUID. */
337 /* Get the cuid of an insn. */
339 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
341 /* Nonzero if cse has altered conditional jump insns
342 in such a way that jump optimization should be redone. */
344 static int cse_jumps_altered
;
346 /* Nonzero if we put a LABEL_REF into the hash table. Since we may have put
347 it into an INSN without a REG_LABEL, we have to rerun jump after CSE
348 to put in the note. */
349 static int recorded_label_ref
;
351 /* canon_hash stores 1 in do_not_record
352 if it notices a reference to CC0, PC, or some other volatile
355 static int do_not_record
;
357 #ifdef LOAD_EXTEND_OP
359 /* Scratch rtl used when looking for load-extended copy of a MEM. */
360 static rtx memory_extend_rtx
;
363 /* canon_hash stores 1 in hash_arg_in_memory
364 if it notices a reference to memory within the expression being hashed. */
366 static int hash_arg_in_memory
;
368 /* canon_hash stores 1 in hash_arg_in_struct
369 if it notices a reference to memory that's part of a structure. */
371 static int hash_arg_in_struct
;
373 /* The hash table contains buckets which are chains of `struct table_elt's,
374 each recording one expression's information.
375 That expression is in the `exp' field.
377 Those elements with the same hash code are chained in both directions
378 through the `next_same_hash' and `prev_same_hash' fields.
380 Each set of expressions with equivalent values
381 are on a two-way chain through the `next_same_value'
382 and `prev_same_value' fields, and all point with
383 the `first_same_value' field at the first element in
384 that chain. The chain is in order of increasing cost.
385 Each element's cost value is in its `cost' field.
387 The `in_memory' field is nonzero for elements that
388 involve any reference to memory. These elements are removed
389 whenever a write is done to an unidentified location in memory.
390 To be safe, we assume that a memory address is unidentified unless
391 the address is either a symbol constant or a constant plus
392 the frame pointer or argument pointer.
394 The `in_struct' field is nonzero for elements that
395 involve any reference to memory inside a structure or array.
397 The `related_value' field is used to connect related expressions
398 (that differ by adding an integer).
399 The related expressions are chained in a circular fashion.
400 `related_value' is zero for expressions for which this
403 The `cost' field stores the cost of this element's expression.
405 The `is_const' flag is set if the element is a constant (including
408 The `flag' field is used as a temporary during some search routines.
410 The `mode' field is usually the same as GET_MODE (`exp'), but
411 if `exp' is a CONST_INT and has no machine mode then the `mode'
412 field is the mode it was being used as. Each constant is
413 recorded separately for each mode it is used with. */
419 struct table_elt
*next_same_hash
;
420 struct table_elt
*prev_same_hash
;
421 struct table_elt
*next_same_value
;
422 struct table_elt
*prev_same_value
;
423 struct table_elt
*first_same_value
;
424 struct table_elt
*related_value
;
426 enum machine_mode mode
;
433 /* We don't want a lot of buckets, because we rarely have very many
434 things stored in the hash table, and a lot of buckets slows
435 down a lot of loops that happen frequently. */
438 /* Compute hash code of X in mode M. Special-case case where X is a pseudo
439 register (hard registers may require `do_not_record' to be set). */
442 (GET_CODE (X) == REG && REGNO (X) >= FIRST_PSEUDO_REGISTER \
443 ? (((unsigned) REG << 7) + (unsigned) reg_qty[REGNO (X)]) % NBUCKETS \
444 : canon_hash (X, M) % NBUCKETS)
446 /* Determine whether register number N is considered a fixed register for CSE.
447 It is desirable to replace other regs with fixed regs, to reduce need for
449 A reg wins if it is either the frame pointer or designated as fixed,
450 but not if it is an overlapping register. */
451 #ifdef OVERLAPPING_REGNO_P
452 #define FIXED_REGNO_P(N) \
453 (((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
454 || fixed_regs[N] || global_regs[N]) \
455 && ! OVERLAPPING_REGNO_P ((N)))
457 #define FIXED_REGNO_P(N) \
458 ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
459 || fixed_regs[N] || global_regs[N])
462 /* Compute cost of X, as stored in the `cost' field of a table_elt. Fixed
463 hard registers and pointers into the frame are the cheapest with a cost
464 of 0. Next come pseudos with a cost of one and other hard registers with
465 a cost of 2. Aside from these special cases, call `rtx_cost'. */
467 #define CHEAP_REGNO(N) \
468 ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
469 || (N) == STACK_POINTER_REGNUM || (N) == ARG_POINTER_REGNUM \
470 || ((N) >= FIRST_VIRTUAL_REGISTER && (N) <= LAST_VIRTUAL_REGISTER) \
471 || ((N) < FIRST_PSEUDO_REGISTER \
472 && FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS))
474 /* A register is cheap if it is a user variable assigned to the register
475 or if its register number always corresponds to a cheap register. */
477 #define CHEAP_REG(N) \
478 ((REG_USERVAR_P (N) && REGNO (N) < FIRST_PSEUDO_REGISTER) \
479 || CHEAP_REGNO (REGNO (N)))
482 (GET_CODE (X) == REG \
483 ? (CHEAP_REG (X) ? 0 \
484 : REGNO (X) >= FIRST_PSEUDO_REGISTER ? 1 \
488 /* Determine if the quantity number for register X represents a valid index
489 into the `qty_...' variables. */
491 #define REGNO_QTY_VALID_P(N) (reg_qty[N] != (N))
493 static struct table_elt
*table
[NBUCKETS
];
495 /* Chain of `struct table_elt's made so far for this function
496 but currently removed from the table. */
498 static struct table_elt
*free_element_chain
;
500 /* Number of `struct table_elt' structures made so far for this function. */
502 static int n_elements_made
;
504 /* Maximum value `n_elements_made' has had so far in this compilation
505 for functions previously processed. */
507 static int max_elements_made
;
509 /* Surviving equivalence class when two equivalence classes are merged
510 by recording the effects of a jump in the last insn. Zero if the
511 last insn was not a conditional jump. */
513 static struct table_elt
*last_jump_equiv_class
;
515 /* Set to the cost of a constant pool reference if one was found for a
516 symbolic constant. If this was found, it means we should try to
517 convert constants into constant pool entries if they don't fit in
520 static int constant_pool_entries_cost
;
522 /* Bits describing what kind of values in memory must be invalidated
523 for a particular instruction. If all three bits are zero,
524 no memory refs need to be invalidated. Each bit is more powerful
525 than the preceding ones, and if a bit is set then the preceding
528 Here is how the bits are set:
529 Pushing onto the stack invalidates only the stack pointer,
530 writing at a fixed address invalidates only variable addresses,
531 writing in a structure element at variable address
532 invalidates all but scalar variables,
533 and writing in anything else at variable address invalidates everything. */
537 int sp
: 1; /* Invalidate stack pointer. */
538 int var
: 1; /* Invalidate variable addresses. */
539 int nonscalar
: 1; /* Invalidate all but scalar variables. */
540 int all
: 1; /* Invalidate all memory refs. */
543 /* Define maximum length of a branch path. */
545 #define PATHLENGTH 10
547 /* This data describes a block that will be processed by cse_basic_block. */
549 struct cse_basic_block_data
{
550 /* Lowest CUID value of insns in block. */
552 /* Highest CUID value of insns in block. */
554 /* Total number of SETs in block. */
556 /* Last insn in the block. */
558 /* Size of current branch path, if any. */
560 /* Current branch path, indicating which branches will be taken. */
562 /* The branch insn. */
564 /* Whether it should be taken or not. AROUND is the same as taken
565 except that it is used when the destination label is not preceded
567 enum taken
{TAKEN
, NOT_TAKEN
, AROUND
} status
;
571 /* Nonzero if X has the form (PLUS frame-pointer integer). We check for
572 virtual regs here because the simplify_*_operation routines are called
573 by integrate.c, which is called before virtual register instantiation. */
575 #define FIXED_BASE_PLUS_P(X) \
576 ((X) == frame_pointer_rtx || (X) == hard_frame_pointer_rtx \
577 || (X) == arg_pointer_rtx \
578 || (X) == virtual_stack_vars_rtx \
579 || (X) == virtual_incoming_args_rtx \
580 || (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == CONST_INT \
581 && (XEXP (X, 0) == frame_pointer_rtx \
582 || XEXP (X, 0) == hard_frame_pointer_rtx \
583 || XEXP (X, 0) == arg_pointer_rtx \
584 || XEXP (X, 0) == virtual_stack_vars_rtx \
585 || XEXP (X, 0) == virtual_incoming_args_rtx)))
587 /* Similar, but also allows reference to the stack pointer.
589 This used to include FIXED_BASE_PLUS_P, however, we can't assume that
590 arg_pointer_rtx by itself is nonzero, because on at least one machine,
591 the i960, the arg pointer is zero when it is unused. */
593 #define NONZERO_BASE_PLUS_P(X) \
594 ((X) == frame_pointer_rtx || (X) == hard_frame_pointer_rtx \
595 || (X) == virtual_stack_vars_rtx \
596 || (X) == virtual_incoming_args_rtx \
597 || (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == CONST_INT \
598 && (XEXP (X, 0) == frame_pointer_rtx \
599 || XEXP (X, 0) == hard_frame_pointer_rtx \
600 || XEXP (X, 0) == arg_pointer_rtx \
601 || XEXP (X, 0) == virtual_stack_vars_rtx \
602 || XEXP (X, 0) == virtual_incoming_args_rtx)) \
603 || (X) == stack_pointer_rtx \
604 || (X) == virtual_stack_dynamic_rtx \
605 || (X) == virtual_outgoing_args_rtx \
606 || (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == CONST_INT \
607 && (XEXP (X, 0) == stack_pointer_rtx \
608 || XEXP (X, 0) == virtual_stack_dynamic_rtx \
609 || XEXP (X, 0) == virtual_outgoing_args_rtx)))
611 static int notreg_cost
PROTO((rtx
));
612 static void new_basic_block
PROTO((void));
613 static void make_new_qty
PROTO((int));
614 static void make_regs_eqv
PROTO((int, int));
615 static void delete_reg_equiv
PROTO((int));
616 static int mention_regs
PROTO((rtx
));
617 static int insert_regs
PROTO((rtx
, struct table_elt
*, int));
618 static void free_element
PROTO((struct table_elt
*));
619 static void remove_from_table
PROTO((struct table_elt
*, unsigned));
620 static struct table_elt
*get_element
PROTO((void));
621 static struct table_elt
*lookup
PROTO((rtx
, unsigned, enum machine_mode
)),
622 *lookup_for_remove
PROTO((rtx
, unsigned, enum machine_mode
));
623 static rtx lookup_as_function
PROTO((rtx
, enum rtx_code
));
624 static struct table_elt
*insert
PROTO((rtx
, struct table_elt
*, unsigned,
626 static void merge_equiv_classes
PROTO((struct table_elt
*,
627 struct table_elt
*));
628 static void invalidate
PROTO((rtx
, enum machine_mode
));
629 static void remove_invalid_refs
PROTO((int));
630 static void rehash_using_reg
PROTO((rtx
));
631 static void invalidate_memory
PROTO((struct write_data
*));
632 static void invalidate_for_call
PROTO((void));
633 static rtx use_related_value
PROTO((rtx
, struct table_elt
*));
634 static unsigned canon_hash
PROTO((rtx
, enum machine_mode
));
635 static unsigned safe_hash
PROTO((rtx
, enum machine_mode
));
636 static int exp_equiv_p
PROTO((rtx
, rtx
, int, int));
637 static void set_nonvarying_address_components
PROTO((rtx
, int, rtx
*,
640 static int refers_to_p
PROTO((rtx
, rtx
));
641 static int refers_to_mem_p
PROTO((rtx
, rtx
, HOST_WIDE_INT
,
643 static int cse_rtx_addr_varies_p
PROTO((rtx
));
644 static rtx canon_reg
PROTO((rtx
, rtx
));
645 static void find_best_addr
PROTO((rtx
, rtx
*));
646 static enum rtx_code find_comparison_args
PROTO((enum rtx_code
, rtx
*, rtx
*,
648 enum machine_mode
*));
649 static rtx cse_gen_binary
PROTO((enum rtx_code
, enum machine_mode
,
651 static rtx simplify_plus_minus
PROTO((enum rtx_code
, enum machine_mode
,
653 static rtx fold_rtx
PROTO((rtx
, rtx
));
654 static rtx equiv_constant
PROTO((rtx
));
655 static void record_jump_equiv
PROTO((rtx
, int));
656 static void record_jump_cond
PROTO((enum rtx_code
, enum machine_mode
,
658 static void cse_insn
PROTO((rtx
, int));
659 static void note_mem_written
PROTO((rtx
, struct write_data
*));
660 static void invalidate_from_clobbers
PROTO((struct write_data
*, rtx
));
661 static rtx cse_process_notes
PROTO((rtx
, rtx
));
662 static void cse_around_loop
PROTO((rtx
));
663 static void invalidate_skipped_set
PROTO((rtx
, rtx
));
664 static void invalidate_skipped_block
PROTO((rtx
));
665 static void cse_check_loop_start
PROTO((rtx
, rtx
));
666 static void cse_set_around_loop
PROTO((rtx
, rtx
, rtx
));
667 static rtx cse_basic_block
PROTO((rtx
, rtx
, struct branch_path
*, int));
668 static void count_reg_usage
PROTO((rtx
, int *, rtx
, int));
670 extern int rtx_equal_function_value_matters
;
672 /* Return an estimate of the cost of computing rtx X.
673 One use is in cse, to decide which expression to keep in the hash table.
674 Another is in rtl generation, to pick the cheapest way to multiply.
675 Other uses like the latter are expected in the future. */
677 /* Internal function, to compute cost when X is not a register; called
678 from COST macro to keep it simple. */
684 return ((GET_CODE (x
) == SUBREG
685 && GET_CODE (SUBREG_REG (x
)) == REG
686 && GET_MODE_CLASS (GET_MODE (x
)) == MODE_INT
687 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (x
))) == MODE_INT
688 && (GET_MODE_SIZE (GET_MODE (x
))
689 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))))
690 && subreg_lowpart_p (x
)
691 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (x
)),
692 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x
)))))
693 ? (CHEAP_REG (SUBREG_REG (x
)) ? 0
694 : (REGNO (SUBREG_REG (x
)) >= FIRST_PSEUDO_REGISTER
? 1
696 : rtx_cost (x
, SET
) * 2);
699 /* Return the right cost to give to an operation
700 to make the cost of the corresponding register-to-register instruction
701 N times that of a fast register-to-register instruction. */
703 #define COSTS_N_INSNS(N) ((N) * 4 - 2)
706 rtx_cost (x
, outer_code
)
708 enum rtx_code outer_code
;
711 register enum rtx_code code
;
718 /* Compute the default costs of certain things.
719 Note that RTX_COSTS can override the defaults. */
725 /* Count multiplication by 2**n as a shift,
726 because if we are considering it, we would output it as a shift. */
727 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
728 && exact_log2 (INTVAL (XEXP (x
, 1))) >= 0)
731 total
= COSTS_N_INSNS (5);
737 total
= COSTS_N_INSNS (7);
740 /* Used in loop.c and combine.c as a marker. */
744 /* We don't want these to be used in substitutions because
745 we have no way of validating the resulting insn. So assign
746 anything containing an ASM_OPERANDS a very high cost. */
756 return ! CHEAP_REG (x
);
759 /* If we can't tie these modes, make this expensive. The larger
760 the mode, the more expensive it is. */
761 if (! MODES_TIEABLE_P (GET_MODE (x
), GET_MODE (SUBREG_REG (x
))))
762 return COSTS_N_INSNS (2
763 + GET_MODE_SIZE (GET_MODE (x
)) / UNITS_PER_WORD
);
766 RTX_COSTS (x
, code
, outer_code
);
768 CONST_COSTS (x
, code
, outer_code
);
771 /* Sum the costs of the sub-rtx's, plus cost of this operation,
772 which is already in total. */
774 fmt
= GET_RTX_FORMAT (code
);
775 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
777 total
+= rtx_cost (XEXP (x
, i
), code
);
778 else if (fmt
[i
] == 'E')
779 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
780 total
+= rtx_cost (XVECEXP (x
, i
, j
), code
);
785 /* Clear the hash table and initialize each register with its own quantity,
786 for a new basic block. */
795 bzero ((char *) reg_tick
, max_reg
* sizeof (int));
797 bcopy ((char *) all_minus_one
, (char *) reg_in_table
,
798 max_reg
* sizeof (int));
799 bcopy ((char *) consec_ints
, (char *) reg_qty
, max_reg
* sizeof (int));
800 CLEAR_HARD_REG_SET (hard_regs_in_table
);
802 /* The per-quantity values used to be initialized here, but it is
803 much faster to initialize each as it is made in `make_new_qty'. */
805 for (i
= 0; i
< NBUCKETS
; i
++)
807 register struct table_elt
*this, *next
;
808 for (this = table
[i
]; this; this = next
)
810 next
= this->next_same_hash
;
815 bzero ((char *) table
, sizeof table
);
824 /* Say that register REG contains a quantity not in any register before
825 and initialize that quantity. */
833 if (next_qty
>= max_qty
)
836 q
= reg_qty
[reg
] = next_qty
++;
837 qty_first_reg
[q
] = reg
;
838 qty_last_reg
[q
] = reg
;
839 qty_const
[q
] = qty_const_insn
[q
] = 0;
840 qty_comparison_code
[q
] = UNKNOWN
;
842 reg_next_eqv
[reg
] = reg_prev_eqv
[reg
] = -1;
845 /* Make reg NEW equivalent to reg OLD.
846 OLD is not changing; NEW is. */
849 make_regs_eqv (new, old
)
850 register int new, old
;
852 register int lastr
, firstr
;
853 register int q
= reg_qty
[old
];
855 /* Nothing should become eqv until it has a "non-invalid" qty number. */
856 if (! REGNO_QTY_VALID_P (old
))
860 firstr
= qty_first_reg
[q
];
861 lastr
= qty_last_reg
[q
];
863 /* Prefer fixed hard registers to anything. Prefer pseudo regs to other
864 hard regs. Among pseudos, if NEW will live longer than any other reg
865 of the same qty, and that is beyond the current basic block,
866 make it the new canonical replacement for this qty. */
867 if (! (firstr
< FIRST_PSEUDO_REGISTER
&& FIXED_REGNO_P (firstr
))
868 /* Certain fixed registers might be of the class NO_REGS. This means
869 that not only can they not be allocated by the compiler, but
870 they cannot be used in substitutions or canonicalizations
872 && (new >= FIRST_PSEUDO_REGISTER
|| REGNO_REG_CLASS (new) != NO_REGS
)
873 && ((new < FIRST_PSEUDO_REGISTER
&& FIXED_REGNO_P (new))
874 || (new >= FIRST_PSEUDO_REGISTER
875 && (firstr
< FIRST_PSEUDO_REGISTER
876 || ((uid_cuid
[REGNO_LAST_UID (new)] > cse_basic_block_end
877 || (uid_cuid
[REGNO_FIRST_UID (new)]
878 < cse_basic_block_start
))
879 && (uid_cuid
[REGNO_LAST_UID (new)]
880 > uid_cuid
[REGNO_LAST_UID (firstr
)]))))))
882 reg_prev_eqv
[firstr
] = new;
883 reg_next_eqv
[new] = firstr
;
884 reg_prev_eqv
[new] = -1;
885 qty_first_reg
[q
] = new;
889 /* If NEW is a hard reg (known to be non-fixed), insert at end.
890 Otherwise, insert before any non-fixed hard regs that are at the
891 end. Registers of class NO_REGS cannot be used as an
892 equivalent for anything. */
893 while (lastr
< FIRST_PSEUDO_REGISTER
&& reg_prev_eqv
[lastr
] >= 0
894 && (REGNO_REG_CLASS (lastr
) == NO_REGS
|| ! FIXED_REGNO_P (lastr
))
895 && new >= FIRST_PSEUDO_REGISTER
)
896 lastr
= reg_prev_eqv
[lastr
];
897 reg_next_eqv
[new] = reg_next_eqv
[lastr
];
898 if (reg_next_eqv
[lastr
] >= 0)
899 reg_prev_eqv
[reg_next_eqv
[lastr
]] = new;
901 qty_last_reg
[q
] = new;
902 reg_next_eqv
[lastr
] = new;
903 reg_prev_eqv
[new] = lastr
;
907 /* Remove REG from its equivalence class. */
910 delete_reg_equiv (reg
)
913 register int q
= reg_qty
[reg
];
916 /* If invalid, do nothing. */
920 p
= reg_prev_eqv
[reg
];
921 n
= reg_next_eqv
[reg
];
930 qty_first_reg
[q
] = n
;
935 /* Remove any invalid expressions from the hash table
936 that refer to any of the registers contained in expression X.
938 Make sure that newly inserted references to those registers
939 as subexpressions will be considered valid.
941 mention_regs is not called when a register itself
942 is being stored in the table.
944 Return 1 if we have done something that may have changed the hash code
951 register enum rtx_code code
;
954 register int changed
= 0;
962 register int regno
= REGNO (x
);
963 register int endregno
964 = regno
+ (regno
>= FIRST_PSEUDO_REGISTER
? 1
965 : HARD_REGNO_NREGS (regno
, GET_MODE (x
)));
968 for (i
= regno
; i
< endregno
; i
++)
970 if (reg_in_table
[i
] >= 0 && reg_in_table
[i
] != reg_tick
[i
])
971 remove_invalid_refs (i
);
973 reg_in_table
[i
] = reg_tick
[i
];
979 /* If X is a comparison or a COMPARE and either operand is a register
980 that does not have a quantity, give it one. This is so that a later
981 call to record_jump_equiv won't cause X to be assigned a different
982 hash code and not found in the table after that call.
984 It is not necessary to do this here, since rehash_using_reg can
985 fix up the table later, but doing this here eliminates the need to
986 call that expensive function in the most common case where the only
987 use of the register is in the comparison. */
989 if (code
== COMPARE
|| GET_RTX_CLASS (code
) == '<')
991 if (GET_CODE (XEXP (x
, 0)) == REG
992 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x
, 0))))
993 if (insert_regs (XEXP (x
, 0), NULL_PTR
, 0))
995 rehash_using_reg (XEXP (x
, 0));
999 if (GET_CODE (XEXP (x
, 1)) == REG
1000 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x
, 1))))
1001 if (insert_regs (XEXP (x
, 1), NULL_PTR
, 0))
1003 rehash_using_reg (XEXP (x
, 1));
1008 fmt
= GET_RTX_FORMAT (code
);
1009 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1011 changed
|= mention_regs (XEXP (x
, i
));
1012 else if (fmt
[i
] == 'E')
1013 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1014 changed
|= mention_regs (XVECEXP (x
, i
, j
));
1019 /* Update the register quantities for inserting X into the hash table
1020 with a value equivalent to CLASSP.
1021 (If the class does not contain a REG, it is irrelevant.)
1022 If MODIFIED is nonzero, X is a destination; it is being modified.
1023 Note that delete_reg_equiv should be called on a register
1024 before insert_regs is done on that register with MODIFIED != 0.
1026 Nonzero value means that elements of reg_qty have changed
1027 so X's hash code may be different. */
1030 insert_regs (x
, classp
, modified
)
1032 struct table_elt
*classp
;
1035 if (GET_CODE (x
) == REG
)
1037 register int regno
= REGNO (x
);
1039 /* If REGNO is in the equivalence table already but is of the
1040 wrong mode for that equivalence, don't do anything here. */
1042 if (REGNO_QTY_VALID_P (regno
)
1043 && qty_mode
[reg_qty
[regno
]] != GET_MODE (x
))
1046 if (modified
|| ! REGNO_QTY_VALID_P (regno
))
1049 for (classp
= classp
->first_same_value
;
1051 classp
= classp
->next_same_value
)
1052 if (GET_CODE (classp
->exp
) == REG
1053 && GET_MODE (classp
->exp
) == GET_MODE (x
))
1055 make_regs_eqv (regno
, REGNO (classp
->exp
));
1059 make_new_qty (regno
);
1060 qty_mode
[reg_qty
[regno
]] = GET_MODE (x
);
1067 /* If X is a SUBREG, we will likely be inserting the inner register in the
1068 table. If that register doesn't have an assigned quantity number at
1069 this point but does later, the insertion that we will be doing now will
1070 not be accessible because its hash code will have changed. So assign
1071 a quantity number now. */
1073 else if (GET_CODE (x
) == SUBREG
&& GET_CODE (SUBREG_REG (x
)) == REG
1074 && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x
))))
1076 insert_regs (SUBREG_REG (x
), NULL_PTR
, 0);
1077 mention_regs (SUBREG_REG (x
));
1081 return mention_regs (x
);
1084 /* Look in or update the hash table. */
1086 /* Put the element ELT on the list of free elements. */
1090 struct table_elt
*elt
;
1092 elt
->next_same_hash
= free_element_chain
;
1093 free_element_chain
= elt
;
1096 /* Return an element that is free for use. */
1098 static struct table_elt
*
1101 struct table_elt
*elt
= free_element_chain
;
1104 free_element_chain
= elt
->next_same_hash
;
1108 return (struct table_elt
*) oballoc (sizeof (struct table_elt
));
1111 /* Remove table element ELT from use in the table.
1112 HASH is its hash code, made using the HASH macro.
1113 It's an argument because often that is known in advance
1114 and we save much time not recomputing it. */
1117 remove_from_table (elt
, hash
)
1118 register struct table_elt
*elt
;
1124 /* Mark this element as removed. See cse_insn. */
1125 elt
->first_same_value
= 0;
1127 /* Remove the table element from its equivalence class. */
1130 register struct table_elt
*prev
= elt
->prev_same_value
;
1131 register struct table_elt
*next
= elt
->next_same_value
;
1133 if (next
) next
->prev_same_value
= prev
;
1136 prev
->next_same_value
= next
;
1139 register struct table_elt
*newfirst
= next
;
1142 next
->first_same_value
= newfirst
;
1143 next
= next
->next_same_value
;
1148 /* Remove the table element from its hash bucket. */
1151 register struct table_elt
*prev
= elt
->prev_same_hash
;
1152 register struct table_elt
*next
= elt
->next_same_hash
;
1154 if (next
) next
->prev_same_hash
= prev
;
1157 prev
->next_same_hash
= next
;
1158 else if (table
[hash
] == elt
)
1162 /* This entry is not in the proper hash bucket. This can happen
1163 when two classes were merged by `merge_equiv_classes'. Search
1164 for the hash bucket that it heads. This happens only very
1165 rarely, so the cost is acceptable. */
1166 for (hash
= 0; hash
< NBUCKETS
; hash
++)
1167 if (table
[hash
] == elt
)
1172 /* Remove the table element from its related-value circular chain. */
1174 if (elt
->related_value
!= 0 && elt
->related_value
!= elt
)
1176 register struct table_elt
*p
= elt
->related_value
;
1177 while (p
->related_value
!= elt
)
1178 p
= p
->related_value
;
1179 p
->related_value
= elt
->related_value
;
1180 if (p
->related_value
== p
)
1181 p
->related_value
= 0;
1187 /* Look up X in the hash table and return its table element,
1188 or 0 if X is not in the table.
1190 MODE is the machine-mode of X, or if X is an integer constant
1191 with VOIDmode then MODE is the mode with which X will be used.
1193 Here we are satisfied to find an expression whose tree structure
1196 static struct table_elt
*
1197 lookup (x
, hash
, mode
)
1200 enum machine_mode mode
;
1202 register struct table_elt
*p
;
1204 for (p
= table
[hash
]; p
; p
= p
->next_same_hash
)
1205 if (mode
== p
->mode
&& ((x
== p
->exp
&& GET_CODE (x
) == REG
)
1206 || exp_equiv_p (x
, p
->exp
, GET_CODE (x
) != REG
, 0)))
1212 /* Like `lookup' but don't care whether the table element uses invalid regs.
1213 Also ignore discrepancies in the machine mode of a register. */
1215 static struct table_elt
*
1216 lookup_for_remove (x
, hash
, mode
)
1219 enum machine_mode mode
;
1221 register struct table_elt
*p
;
1223 if (GET_CODE (x
) == REG
)
1225 int regno
= REGNO (x
);
1226 /* Don't check the machine mode when comparing registers;
1227 invalidating (REG:SI 0) also invalidates (REG:DF 0). */
1228 for (p
= table
[hash
]; p
; p
= p
->next_same_hash
)
1229 if (GET_CODE (p
->exp
) == REG
1230 && REGNO (p
->exp
) == regno
)
1235 for (p
= table
[hash
]; p
; p
= p
->next_same_hash
)
1236 if (mode
== p
->mode
&& (x
== p
->exp
|| exp_equiv_p (x
, p
->exp
, 0, 0)))
1243 /* Look for an expression equivalent to X and with code CODE.
1244 If one is found, return that expression. */
1247 lookup_as_function (x
, code
)
1251 register struct table_elt
*p
= lookup (x
, safe_hash (x
, VOIDmode
) % NBUCKETS
,
1256 for (p
= p
->first_same_value
; p
; p
= p
->next_same_value
)
1258 if (GET_CODE (p
->exp
) == code
1259 /* Make sure this is a valid entry in the table. */
1260 && exp_equiv_p (p
->exp
, p
->exp
, 1, 0))
1267 /* Insert X in the hash table, assuming HASH is its hash code
1268 and CLASSP is an element of the class it should go in
1269 (or 0 if a new class should be made).
1270 It is inserted at the proper position to keep the class in
1271 the order cheapest first.
1273 MODE is the machine-mode of X, or if X is an integer constant
1274 with VOIDmode then MODE is the mode with which X will be used.
1276 For elements of equal cheapness, the most recent one
1277 goes in front, except that the first element in the list
1278 remains first unless a cheaper element is added. The order of
1279 pseudo-registers does not matter, as canon_reg will be called to
1280 find the cheapest when a register is retrieved from the table.
1282 The in_memory field in the hash table element is set to 0.
1283 The caller must set it nonzero if appropriate.
1285 You should call insert_regs (X, CLASSP, MODIFY) before calling here,
1286 and if insert_regs returns a nonzero value
1287 you must then recompute its hash code before calling here.
1289 If necessary, update table showing constant values of quantities. */
1291 #define CHEAPER(X,Y) ((X)->cost < (Y)->cost)
1293 static struct table_elt
*
1294 insert (x
, classp
, hash
, mode
)
1296 register struct table_elt
*classp
;
1298 enum machine_mode mode
;
1300 register struct table_elt
*elt
;
1302 /* If X is a register and we haven't made a quantity for it,
1303 something is wrong. */
1304 if (GET_CODE (x
) == REG
&& ! REGNO_QTY_VALID_P (REGNO (x
)))
1307 /* If X is a hard register, show it is being put in the table. */
1308 if (GET_CODE (x
) == REG
&& REGNO (x
) < FIRST_PSEUDO_REGISTER
)
1310 int regno
= REGNO (x
);
1311 int endregno
= regno
+ HARD_REGNO_NREGS (regno
, GET_MODE (x
));
1314 for (i
= regno
; i
< endregno
; i
++)
1315 SET_HARD_REG_BIT (hard_regs_in_table
, i
);
1318 /* If X is a label, show we recorded it. */
1319 if (GET_CODE (x
) == LABEL_REF
1320 || (GET_CODE (x
) == CONST
&& GET_CODE (XEXP (x
, 0)) == PLUS
1321 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == LABEL_REF
))
1322 recorded_label_ref
= 1;
1324 /* Put an element for X into the right hash bucket. */
1326 elt
= get_element ();
1328 elt
->cost
= COST (x
);
1329 elt
->next_same_value
= 0;
1330 elt
->prev_same_value
= 0;
1331 elt
->next_same_hash
= table
[hash
];
1332 elt
->prev_same_hash
= 0;
1333 elt
->related_value
= 0;
1336 elt
->is_const
= (CONSTANT_P (x
)
1337 /* GNU C++ takes advantage of this for `this'
1338 (and other const values). */
1339 || (RTX_UNCHANGING_P (x
)
1340 && GET_CODE (x
) == REG
1341 && REGNO (x
) >= FIRST_PSEUDO_REGISTER
)
1342 || FIXED_BASE_PLUS_P (x
));
1345 table
[hash
]->prev_same_hash
= elt
;
1348 /* Put it into the proper value-class. */
1351 classp
= classp
->first_same_value
;
1352 if (CHEAPER (elt
, classp
))
1353 /* Insert at the head of the class */
1355 register struct table_elt
*p
;
1356 elt
->next_same_value
= classp
;
1357 classp
->prev_same_value
= elt
;
1358 elt
->first_same_value
= elt
;
1360 for (p
= classp
; p
; p
= p
->next_same_value
)
1361 p
->first_same_value
= elt
;
1365 /* Insert not at head of the class. */
1366 /* Put it after the last element cheaper than X. */
1367 register struct table_elt
*p
, *next
;
1368 for (p
= classp
; (next
= p
->next_same_value
) && CHEAPER (next
, elt
);
1370 /* Put it after P and before NEXT. */
1371 elt
->next_same_value
= next
;
1373 next
->prev_same_value
= elt
;
1374 elt
->prev_same_value
= p
;
1375 p
->next_same_value
= elt
;
1376 elt
->first_same_value
= classp
;
1380 elt
->first_same_value
= elt
;
1382 /* If this is a constant being set equivalent to a register or a register
1383 being set equivalent to a constant, note the constant equivalence.
1385 If this is a constant, it cannot be equivalent to a different constant,
1386 and a constant is the only thing that can be cheaper than a register. So
1387 we know the register is the head of the class (before the constant was
1390 If this is a register that is not already known equivalent to a
1391 constant, we must check the entire class.
1393 If this is a register that is already known equivalent to an insn,
1394 update `qty_const_insn' to show that `this_insn' is the latest
1395 insn making that quantity equivalent to the constant. */
1397 if (elt
->is_const
&& classp
&& GET_CODE (classp
->exp
) == REG
1398 && GET_CODE (x
) != REG
)
1400 qty_const
[reg_qty
[REGNO (classp
->exp
)]]
1401 = gen_lowpart_if_possible (qty_mode
[reg_qty
[REGNO (classp
->exp
)]], x
);
1402 qty_const_insn
[reg_qty
[REGNO (classp
->exp
)]] = this_insn
;
1405 else if (GET_CODE (x
) == REG
&& classp
&& ! qty_const
[reg_qty
[REGNO (x
)]]
1408 register struct table_elt
*p
;
1410 for (p
= classp
; p
!= 0; p
= p
->next_same_value
)
1412 if (p
->is_const
&& GET_CODE (p
->exp
) != REG
)
1414 qty_const
[reg_qty
[REGNO (x
)]]
1415 = gen_lowpart_if_possible (GET_MODE (x
), p
->exp
);
1416 qty_const_insn
[reg_qty
[REGNO (x
)]] = this_insn
;
1422 else if (GET_CODE (x
) == REG
&& qty_const
[reg_qty
[REGNO (x
)]]
1423 && GET_MODE (x
) == qty_mode
[reg_qty
[REGNO (x
)]])
1424 qty_const_insn
[reg_qty
[REGNO (x
)]] = this_insn
;
1426 /* If this is a constant with symbolic value,
1427 and it has a term with an explicit integer value,
1428 link it up with related expressions. */
1429 if (GET_CODE (x
) == CONST
)
1431 rtx subexp
= get_related_value (x
);
1433 struct table_elt
*subelt
, *subelt_prev
;
1437 /* Get the integer-free subexpression in the hash table. */
1438 subhash
= safe_hash (subexp
, mode
) % NBUCKETS
;
1439 subelt
= lookup (subexp
, subhash
, mode
);
1441 subelt
= insert (subexp
, NULL_PTR
, subhash
, mode
);
1442 /* Initialize SUBELT's circular chain if it has none. */
1443 if (subelt
->related_value
== 0)
1444 subelt
->related_value
= subelt
;
1445 /* Find the element in the circular chain that precedes SUBELT. */
1446 subelt_prev
= subelt
;
1447 while (subelt_prev
->related_value
!= subelt
)
1448 subelt_prev
= subelt_prev
->related_value
;
1449 /* Put new ELT into SUBELT's circular chain just before SUBELT.
1450 This way the element that follows SUBELT is the oldest one. */
1451 elt
->related_value
= subelt_prev
->related_value
;
1452 subelt_prev
->related_value
= elt
;
1459 /* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
1460 CLASS2 into CLASS1. This is done when we have reached an insn which makes
1461 the two classes equivalent.
1463 CLASS1 will be the surviving class; CLASS2 should not be used after this
1466 Any invalid entries in CLASS2 will not be copied. */
1469 merge_equiv_classes (class1
, class2
)
1470 struct table_elt
*class1
, *class2
;
1472 struct table_elt
*elt
, *next
, *new;
1474 /* Ensure we start with the head of the classes. */
1475 class1
= class1
->first_same_value
;
1476 class2
= class2
->first_same_value
;
1478 /* If they were already equal, forget it. */
1479 if (class1
== class2
)
1482 for (elt
= class2
; elt
; elt
= next
)
1486 enum machine_mode mode
= elt
->mode
;
1488 next
= elt
->next_same_value
;
1490 /* Remove old entry, make a new one in CLASS1's class.
1491 Don't do this for invalid entries as we cannot find their
1492 hash code (it also isn't necessary). */
1493 if (GET_CODE (exp
) == REG
|| exp_equiv_p (exp
, exp
, 1, 0))
1495 hash_arg_in_memory
= 0;
1496 hash_arg_in_struct
= 0;
1497 hash
= HASH (exp
, mode
);
1499 if (GET_CODE (exp
) == REG
)
1500 delete_reg_equiv (REGNO (exp
));
1502 remove_from_table (elt
, hash
);
1504 if (insert_regs (exp
, class1
, 0))
1506 rehash_using_reg (exp
);
1507 hash
= HASH (exp
, mode
);
1509 new = insert (exp
, class1
, hash
, mode
);
1510 new->in_memory
= hash_arg_in_memory
;
1511 new->in_struct
= hash_arg_in_struct
;
1516 /* Remove from the hash table, or mark as invalid,
1517 all expressions whose values could be altered by storing in X.
1518 X is a register, a subreg, or a memory reference with nonvarying address
1519 (because, when a memory reference with a varying address is stored in,
1520 all memory references are removed by invalidate_memory
1521 so specific invalidation is superfluous).
1522 FULL_MODE, if not VOIDmode, indicates that this much should be invalidated
1523 instead of just the amount indicated by the mode of X. This is only used
1524 for bitfield stores into memory.
1526 A nonvarying address may be just a register or just
1527 a symbol reference, or it may be either of those plus
1528 a numeric offset. */
1531 invalidate (x
, full_mode
)
1533 enum machine_mode full_mode
;
1536 register struct table_elt
*p
;
1538 HOST_WIDE_INT start
, end
;
1540 /* If X is a register, dependencies on its contents
1541 are recorded through the qty number mechanism.
1542 Just change the qty number of the register,
1543 mark it as invalid for expressions that refer to it,
1544 and remove it itself. */
1546 if (GET_CODE (x
) == REG
)
1548 register int regno
= REGNO (x
);
1549 register unsigned hash
= HASH (x
, GET_MODE (x
));
1551 /* Remove REGNO from any quantity list it might be on and indicate
1552 that it's value might have changed. If it is a pseudo, remove its
1553 entry from the hash table.
1555 For a hard register, we do the first two actions above for any
1556 additional hard registers corresponding to X. Then, if any of these
1557 registers are in the table, we must remove any REG entries that
1558 overlap these registers. */
1560 delete_reg_equiv (regno
);
1563 if (regno
>= FIRST_PSEUDO_REGISTER
)
1565 /* Because a register can be referenced in more than one mode,
1566 we might have to remove more than one table entry. */
1568 struct table_elt
*elt
;
1570 while (elt
= lookup_for_remove (x
, hash
, GET_MODE (x
)))
1571 remove_from_table (elt
, hash
);
1575 HOST_WIDE_INT in_table
1576 = TEST_HARD_REG_BIT (hard_regs_in_table
, regno
);
1577 int endregno
= regno
+ HARD_REGNO_NREGS (regno
, GET_MODE (x
));
1578 int tregno
, tendregno
;
1579 register struct table_elt
*p
, *next
;
1581 CLEAR_HARD_REG_BIT (hard_regs_in_table
, regno
);
1583 for (i
= regno
+ 1; i
< endregno
; i
++)
1585 in_table
|= TEST_HARD_REG_BIT (hard_regs_in_table
, i
);
1586 CLEAR_HARD_REG_BIT (hard_regs_in_table
, i
);
1587 delete_reg_equiv (i
);
1592 for (hash
= 0; hash
< NBUCKETS
; hash
++)
1593 for (p
= table
[hash
]; p
; p
= next
)
1595 next
= p
->next_same_hash
;
1597 if (GET_CODE (p
->exp
) != REG
1598 || REGNO (p
->exp
) >= FIRST_PSEUDO_REGISTER
)
1601 tregno
= REGNO (p
->exp
);
1603 = tregno
+ HARD_REGNO_NREGS (tregno
, GET_MODE (p
->exp
));
1604 if (tendregno
> regno
&& tregno
< endregno
)
1605 remove_from_table (p
, hash
);
1612 if (GET_CODE (x
) == SUBREG
)
1614 if (GET_CODE (SUBREG_REG (x
)) != REG
)
1616 invalidate (SUBREG_REG (x
), VOIDmode
);
1620 /* X is not a register; it must be a memory reference with
1621 a nonvarying address. Remove all hash table elements
1622 that refer to overlapping pieces of memory. */
1624 if (GET_CODE (x
) != MEM
)
1627 if (full_mode
== VOIDmode
)
1628 full_mode
= GET_MODE (x
);
1630 set_nonvarying_address_components (XEXP (x
, 0), GET_MODE_SIZE (full_mode
),
1631 &base
, &start
, &end
);
1633 for (i
= 0; i
< NBUCKETS
; i
++)
1635 register struct table_elt
*next
;
1636 for (p
= table
[i
]; p
; p
= next
)
1638 next
= p
->next_same_hash
;
1639 if (refers_to_mem_p (p
->exp
, base
, start
, end
))
1640 remove_from_table (p
, i
);
1645 /* Remove all expressions that refer to register REGNO,
1646 since they are already invalid, and we are about to
1647 mark that register valid again and don't want the old
1648 expressions to reappear as valid. */
1651 remove_invalid_refs (regno
)
1655 register struct table_elt
*p
, *next
;
1657 for (i
= 0; i
< NBUCKETS
; i
++)
1658 for (p
= table
[i
]; p
; p
= next
)
1660 next
= p
->next_same_hash
;
1661 if (GET_CODE (p
->exp
) != REG
1662 && refers_to_regno_p (regno
, regno
+ 1, p
->exp
, NULL_PTR
))
1663 remove_from_table (p
, i
);
1667 /* Recompute the hash codes of any valid entries in the hash table that
1668 reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.
1670 This is called when we make a jump equivalence. */
1673 rehash_using_reg (x
)
1677 struct table_elt
*p
, *next
;
1680 if (GET_CODE (x
) == SUBREG
)
1683 /* If X is not a register or if the register is known not to be in any
1684 valid entries in the table, we have no work to do. */
1686 if (GET_CODE (x
) != REG
1687 || reg_in_table
[REGNO (x
)] < 0
1688 || reg_in_table
[REGNO (x
)] != reg_tick
[REGNO (x
)])
1691 /* Scan all hash chains looking for valid entries that mention X.
1692 If we find one and it is in the wrong hash chain, move it. We can skip
1693 objects that are registers, since they are handled specially. */
1695 for (i
= 0; i
< NBUCKETS
; i
++)
1696 for (p
= table
[i
]; p
; p
= next
)
1698 next
= p
->next_same_hash
;
1699 if (GET_CODE (p
->exp
) != REG
&& reg_mentioned_p (x
, p
->exp
)
1700 && exp_equiv_p (p
->exp
, p
->exp
, 1, 0)
1701 && i
!= (hash
= safe_hash (p
->exp
, p
->mode
) % NBUCKETS
))
1703 if (p
->next_same_hash
)
1704 p
->next_same_hash
->prev_same_hash
= p
->prev_same_hash
;
1706 if (p
->prev_same_hash
)
1707 p
->prev_same_hash
->next_same_hash
= p
->next_same_hash
;
1709 table
[i
] = p
->next_same_hash
;
1711 p
->next_same_hash
= table
[hash
];
1712 p
->prev_same_hash
= 0;
1714 table
[hash
]->prev_same_hash
= p
;
1720 /* Remove from the hash table all expressions that reference memory,
1721 or some of them as specified by *WRITES. */
1724 invalidate_memory (writes
)
1725 struct write_data
*writes
;
1728 register struct table_elt
*p
, *next
;
1729 int all
= writes
->all
;
1730 int nonscalar
= writes
->nonscalar
;
1732 for (i
= 0; i
< NBUCKETS
; i
++)
1733 for (p
= table
[i
]; p
; p
= next
)
1735 next
= p
->next_same_hash
;
1738 || (nonscalar
&& p
->in_struct
)
1739 || cse_rtx_addr_varies_p (p
->exp
)))
1740 remove_from_table (p
, i
);
1744 /* Remove from the hash table any expression that is a call-clobbered
1745 register. Also update their TICK values. */
1748 invalidate_for_call ()
1750 int regno
, endregno
;
1753 struct table_elt
*p
, *next
;
1756 /* Go through all the hard registers. For each that is clobbered in
1757 a CALL_INSN, remove the register from quantity chains and update
1758 reg_tick if defined. Also see if any of these registers is currently
1761 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
1762 if (TEST_HARD_REG_BIT (regs_invalidated_by_call
, regno
))
1764 delete_reg_equiv (regno
);
1765 if (reg_tick
[regno
] >= 0)
1768 in_table
|= (TEST_HARD_REG_BIT (hard_regs_in_table
, regno
) != 0);
1771 /* In the case where we have no call-clobbered hard registers in the
1772 table, we are done. Otherwise, scan the table and remove any
1773 entry that overlaps a call-clobbered register. */
1776 for (hash
= 0; hash
< NBUCKETS
; hash
++)
1777 for (p
= table
[hash
]; p
; p
= next
)
1779 next
= p
->next_same_hash
;
1781 if (GET_CODE (p
->exp
) != REG
1782 || REGNO (p
->exp
) >= FIRST_PSEUDO_REGISTER
)
1785 regno
= REGNO (p
->exp
);
1786 endregno
= regno
+ HARD_REGNO_NREGS (regno
, GET_MODE (p
->exp
));
1788 for (i
= regno
; i
< endregno
; i
++)
1789 if (TEST_HARD_REG_BIT (regs_invalidated_by_call
, i
))
1791 remove_from_table (p
, hash
);
1797 /* Given an expression X of type CONST,
1798 and ELT which is its table entry (or 0 if it
1799 is not in the hash table),
1800 return an alternate expression for X as a register plus integer.
1801 If none can be found, return 0. */
1804 use_related_value (x
, elt
)
1806 struct table_elt
*elt
;
1808 register struct table_elt
*relt
= 0;
1809 register struct table_elt
*p
, *q
;
1810 HOST_WIDE_INT offset
;
1812 /* First, is there anything related known?
1813 If we have a table element, we can tell from that.
1814 Otherwise, must look it up. */
1816 if (elt
!= 0 && elt
->related_value
!= 0)
1818 else if (elt
== 0 && GET_CODE (x
) == CONST
)
1820 rtx subexp
= get_related_value (x
);
1822 relt
= lookup (subexp
,
1823 safe_hash (subexp
, GET_MODE (subexp
)) % NBUCKETS
,
1830 /* Search all related table entries for one that has an
1831 equivalent register. */
1836 /* This loop is strange in that it is executed in two different cases.
1837 The first is when X is already in the table. Then it is searching
1838 the RELATED_VALUE list of X's class (RELT). The second case is when
1839 X is not in the table. Then RELT points to a class for the related
1842 Ensure that, whatever case we are in, that we ignore classes that have
1843 the same value as X. */
1845 if (rtx_equal_p (x
, p
->exp
))
1848 for (q
= p
->first_same_value
; q
; q
= q
->next_same_value
)
1849 if (GET_CODE (q
->exp
) == REG
)
1855 p
= p
->related_value
;
1857 /* We went all the way around, so there is nothing to be found.
1858 Alternatively, perhaps RELT was in the table for some other reason
1859 and it has no related values recorded. */
1860 if (p
== relt
|| p
== 0)
1867 offset
= (get_integer_term (x
) - get_integer_term (p
->exp
));
1868 /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity. */
1869 return plus_constant (q
->exp
, offset
);
1872 /* Hash an rtx. We are careful to make sure the value is never negative.
1873 Equivalent registers hash identically.
1874 MODE is used in hashing for CONST_INTs only;
1875 otherwise the mode of X is used.
1877 Store 1 in do_not_record if any subexpression is volatile.
1879 Store 1 in hash_arg_in_memory if X contains a MEM rtx
1880 which does not have the RTX_UNCHANGING_P bit set.
1881 In this case, also store 1 in hash_arg_in_struct
1882 if there is a MEM rtx which has the MEM_IN_STRUCT_P bit set.
1884 Note that cse_insn knows that the hash code of a MEM expression
1885 is just (int) MEM plus the hash code of the address. */
1888 canon_hash (x
, mode
)
1890 enum machine_mode mode
;
1893 register unsigned hash
= 0;
1894 register enum rtx_code code
;
1897 /* repeat is used to turn tail-recursion into iteration. */
1902 code
= GET_CODE (x
);
1907 register int regno
= REGNO (x
);
1909 /* On some machines, we can't record any non-fixed hard register,
1910 because extending its life will cause reload problems. We
1911 consider ap, fp, and sp to be fixed for this purpose.
1912 On all machines, we can't record any global registers. */
1914 if (regno
< FIRST_PSEUDO_REGISTER
1915 && (global_regs
[regno
]
1916 #ifdef SMALL_REGISTER_CLASSES
1917 || (SMALL_REGISTER_CLASSES
1918 && ! fixed_regs
[regno
]
1919 && regno
!= FRAME_POINTER_REGNUM
1920 && regno
!= HARD_FRAME_POINTER_REGNUM
1921 && regno
!= ARG_POINTER_REGNUM
1922 && regno
!= STACK_POINTER_REGNUM
)
1929 hash
+= ((unsigned) REG
<< 7) + (unsigned) reg_qty
[regno
];
1935 unsigned HOST_WIDE_INT tem
= INTVAL (x
);
1936 hash
+= ((unsigned) CONST_INT
<< 7) + (unsigned) mode
+ tem
;
1941 /* This is like the general case, except that it only counts
1942 the integers representing the constant. */
1943 hash
+= (unsigned) code
+ (unsigned) GET_MODE (x
);
1944 if (GET_MODE (x
) != VOIDmode
)
1945 for (i
= 2; i
< GET_RTX_LENGTH (CONST_DOUBLE
); i
++)
1947 unsigned tem
= XINT (x
, i
);
1951 hash
+= ((unsigned) CONST_DOUBLE_LOW (x
)
1952 + (unsigned) CONST_DOUBLE_HIGH (x
));
1955 /* Assume there is only one rtx object for any given label. */
1958 += ((unsigned) LABEL_REF
<< 7) + (unsigned HOST_WIDE_INT
) XEXP (x
, 0);
1963 += ((unsigned) SYMBOL_REF
<< 7) + (unsigned HOST_WIDE_INT
) XSTR (x
, 0);
1967 if (MEM_VOLATILE_P (x
))
1972 if (! RTX_UNCHANGING_P (x
) || FIXED_BASE_PLUS_P (XEXP (x
, 0)))
1974 hash_arg_in_memory
= 1;
1975 if (MEM_IN_STRUCT_P (x
)) hash_arg_in_struct
= 1;
1977 /* Now that we have already found this special case,
1978 might as well speed it up as much as possible. */
1979 hash
+= (unsigned) MEM
;
1990 case UNSPEC_VOLATILE
:
1995 if (MEM_VOLATILE_P (x
))
2002 i
= GET_RTX_LENGTH (code
) - 1;
2003 hash
+= (unsigned) code
+ (unsigned) GET_MODE (x
);
2004 fmt
= GET_RTX_FORMAT (code
);
2009 rtx tem
= XEXP (x
, i
);
2011 /* If we are about to do the last recursive call
2012 needed at this level, change it into iteration.
2013 This function is called enough to be worth it. */
2019 hash
+= canon_hash (tem
, 0);
2021 else if (fmt
[i
] == 'E')
2022 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2023 hash
+= canon_hash (XVECEXP (x
, i
, j
), 0);
2024 else if (fmt
[i
] == 's')
2026 register unsigned char *p
= (unsigned char *) XSTR (x
, i
);
2031 else if (fmt
[i
] == 'i')
2033 register unsigned tem
= XINT (x
, i
);
2042 /* Like canon_hash but with no side effects. */
2047 enum machine_mode mode
;
2049 int save_do_not_record
= do_not_record
;
2050 int save_hash_arg_in_memory
= hash_arg_in_memory
;
2051 int save_hash_arg_in_struct
= hash_arg_in_struct
;
2052 unsigned hash
= canon_hash (x
, mode
);
2053 hash_arg_in_memory
= save_hash_arg_in_memory
;
2054 hash_arg_in_struct
= save_hash_arg_in_struct
;
2055 do_not_record
= save_do_not_record
;
2059 /* Return 1 iff X and Y would canonicalize into the same thing,
2060 without actually constructing the canonicalization of either one.
2061 If VALIDATE is nonzero,
2062 we assume X is an expression being processed from the rtl
2063 and Y was found in the hash table. We check register refs
2064 in Y for being marked as valid.
2066 If EQUAL_VALUES is nonzero, we allow a register to match a constant value
2067 that is known to be in the register. Ordinarily, we don't allow them
2068 to match, because letting them match would cause unpredictable results
2069 in all the places that search a hash table chain for an equivalent
2070 for a given value. A possible equivalent that has different structure
2071 has its hash code computed from different data. Whether the hash code
2072 is the same as that of the the given value is pure luck. */
2075 exp_equiv_p (x
, y
, validate
, equal_values
)
2081 register enum rtx_code code
;
2084 /* Note: it is incorrect to assume an expression is equivalent to itself
2085 if VALIDATE is nonzero. */
2086 if (x
== y
&& !validate
)
2088 if (x
== 0 || y
== 0)
2091 code
= GET_CODE (x
);
2092 if (code
!= GET_CODE (y
))
2097 /* If X is a constant and Y is a register or vice versa, they may be
2098 equivalent. We only have to validate if Y is a register. */
2099 if (CONSTANT_P (x
) && GET_CODE (y
) == REG
2100 && REGNO_QTY_VALID_P (REGNO (y
))
2101 && GET_MODE (y
) == qty_mode
[reg_qty
[REGNO (y
)]]
2102 && rtx_equal_p (x
, qty_const
[reg_qty
[REGNO (y
)]])
2103 && (! validate
|| reg_in_table
[REGNO (y
)] == reg_tick
[REGNO (y
)]))
2106 if (CONSTANT_P (y
) && code
== REG
2107 && REGNO_QTY_VALID_P (REGNO (x
))
2108 && GET_MODE (x
) == qty_mode
[reg_qty
[REGNO (x
)]]
2109 && rtx_equal_p (y
, qty_const
[reg_qty
[REGNO (x
)]]))
2115 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2116 if (GET_MODE (x
) != GET_MODE (y
))
2126 return INTVAL (x
) == INTVAL (y
);
2129 return XEXP (x
, 0) == XEXP (y
, 0);
2132 return XSTR (x
, 0) == XSTR (y
, 0);
2136 int regno
= REGNO (y
);
2138 = regno
+ (regno
>= FIRST_PSEUDO_REGISTER
? 1
2139 : HARD_REGNO_NREGS (regno
, GET_MODE (y
)));
2142 /* If the quantities are not the same, the expressions are not
2143 equivalent. If there are and we are not to validate, they
2144 are equivalent. Otherwise, ensure all regs are up-to-date. */
2146 if (reg_qty
[REGNO (x
)] != reg_qty
[regno
])
2152 for (i
= regno
; i
< endregno
; i
++)
2153 if (reg_in_table
[i
] != reg_tick
[i
])
2159 /* For commutative operations, check both orders. */
2167 return ((exp_equiv_p (XEXP (x
, 0), XEXP (y
, 0), validate
, equal_values
)
2168 && exp_equiv_p (XEXP (x
, 1), XEXP (y
, 1),
2169 validate
, equal_values
))
2170 || (exp_equiv_p (XEXP (x
, 0), XEXP (y
, 1),
2171 validate
, equal_values
)
2172 && exp_equiv_p (XEXP (x
, 1), XEXP (y
, 0),
2173 validate
, equal_values
)));
2176 /* Compare the elements. If any pair of corresponding elements
2177 fail to match, return 0 for the whole things. */
2179 fmt
= GET_RTX_FORMAT (code
);
2180 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2185 if (! exp_equiv_p (XEXP (x
, i
), XEXP (y
, i
), validate
, equal_values
))
2190 if (XVECLEN (x
, i
) != XVECLEN (y
, i
))
2192 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2193 if (! exp_equiv_p (XVECEXP (x
, i
, j
), XVECEXP (y
, i
, j
),
2194 validate
, equal_values
))
2199 if (strcmp (XSTR (x
, i
), XSTR (y
, i
)))
2204 if (XINT (x
, i
) != XINT (y
, i
))
2209 if (XWINT (x
, i
) != XWINT (y
, i
))
2224 /* Return 1 iff any subexpression of X matches Y.
2225 Here we do not require that X or Y be valid (for registers referred to)
2226 for being in the hash table. */
2233 register enum rtx_code code
;
2239 if (x
== 0 || y
== 0)
2242 code
= GET_CODE (x
);
2243 /* If X as a whole has the same code as Y, they may match.
2245 if (code
== GET_CODE (y
))
2247 if (exp_equiv_p (x
, y
, 0, 1))
2251 /* X does not match, so try its subexpressions. */
2253 fmt
= GET_RTX_FORMAT (code
);
2254 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2263 if (refers_to_p (XEXP (x
, i
), y
))
2266 else if (fmt
[i
] == 'E')
2269 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2270 if (refers_to_p (XVECEXP (x
, i
, j
), y
))
2277 /* Given ADDR and SIZE (a memory address, and the size of the memory reference),
2278 set PBASE, PSTART, and PEND which correspond to the base of the address,
2279 the starting offset, and ending offset respectively.
2281 ADDR is known to be a nonvarying address. */
2283 /* ??? Despite what the comments say, this function is in fact frequently
2284 passed varying addresses. This does not appear to cause any problems. */
2287 set_nonvarying_address_components (addr
, size
, pbase
, pstart
, pend
)
2291 HOST_WIDE_INT
*pstart
, *pend
;
2294 HOST_WIDE_INT start
, end
;
2300 /* Registers with nonvarying addresses usually have constant equivalents;
2301 but the frame pointer register is also possible. */
2302 if (GET_CODE (base
) == REG
2304 && REGNO_QTY_VALID_P (REGNO (base
))
2305 && qty_mode
[reg_qty
[REGNO (base
)]] == GET_MODE (base
)
2306 && qty_const
[reg_qty
[REGNO (base
)]] != 0)
2307 base
= qty_const
[reg_qty
[REGNO (base
)]];
2308 else if (GET_CODE (base
) == PLUS
2309 && GET_CODE (XEXP (base
, 1)) == CONST_INT
2310 && GET_CODE (XEXP (base
, 0)) == REG
2312 && REGNO_QTY_VALID_P (REGNO (XEXP (base
, 0)))
2313 && (qty_mode
[reg_qty
[REGNO (XEXP (base
, 0))]]
2314 == GET_MODE (XEXP (base
, 0)))
2315 && qty_const
[reg_qty
[REGNO (XEXP (base
, 0))]])
2317 start
= INTVAL (XEXP (base
, 1));
2318 base
= qty_const
[reg_qty
[REGNO (XEXP (base
, 0))]];
2320 /* This can happen as the result of virtual register instantiation,
2321 if the initial offset is too large to be a valid address. */
2322 else if (GET_CODE (base
) == PLUS
2323 && GET_CODE (XEXP (base
, 0)) == REG
2324 && GET_CODE (XEXP (base
, 1)) == REG
2326 && REGNO_QTY_VALID_P (REGNO (XEXP (base
, 0)))
2327 && (qty_mode
[reg_qty
[REGNO (XEXP (base
, 0))]]
2328 == GET_MODE (XEXP (base
, 0)))
2329 && qty_const
[reg_qty
[REGNO (XEXP (base
, 0))]]
2330 && REGNO_QTY_VALID_P (REGNO (XEXP (base
, 1)))
2331 && (qty_mode
[reg_qty
[REGNO (XEXP (base
, 1))]]
2332 == GET_MODE (XEXP (base
, 1)))
2333 && qty_const
[reg_qty
[REGNO (XEXP (base
, 1))]])
2335 rtx tem
= qty_const
[reg_qty
[REGNO (XEXP (base
, 1))]];
2336 base
= qty_const
[reg_qty
[REGNO (XEXP (base
, 0))]];
2338 /* One of the two values must be a constant. */
2339 if (GET_CODE (base
) != CONST_INT
)
2341 if (GET_CODE (tem
) != CONST_INT
)
2343 start
= INTVAL (tem
);
2347 start
= INTVAL (base
);
2352 /* Handle everything that we can find inside an address that has been
2353 viewed as constant. */
2357 /* If no part of this switch does a "continue", the code outside
2358 will exit this loop. */
2360 switch (GET_CODE (base
))
2363 /* By definition, operand1 of a LO_SUM is the associated constant
2364 address. Use the associated constant address as the base
2366 base
= XEXP (base
, 1);
2370 /* Strip off CONST. */
2371 base
= XEXP (base
, 0);
2375 if (GET_CODE (XEXP (base
, 1)) == CONST_INT
)
2377 start
+= INTVAL (XEXP (base
, 1));
2378 base
= XEXP (base
, 0);
2384 /* Handle the case of an AND which is the negative of a power of
2385 two. This is used to represent unaligned memory operations. */
2386 if (GET_CODE (XEXP (base
, 1)) == CONST_INT
2387 && exact_log2 (- INTVAL (XEXP (base
, 1))) > 0)
2389 set_nonvarying_address_components (XEXP (base
, 0), size
,
2390 pbase
, pstart
, pend
);
2392 /* Assume the worst misalignment. START is affected, but not
2393 END, so compensate but adjusting SIZE. Don't lose any
2394 constant we already had. */
2396 size
= *pend
- *pstart
- INTVAL (XEXP (base
, 1)) - 1;
2397 start
+= *pstart
+ INTVAL (XEXP (base
, 1)) + 1;
2407 if (GET_CODE (base
) == CONST_INT
)
2409 start
+= INTVAL (base
);
2415 /* Set the return values. */
2421 /* Return 1 iff any subexpression of X refers to memory
2422 at an address of BASE plus some offset
2423 such that any of the bytes' offsets fall between START (inclusive)
2424 and END (exclusive).
2426 The value is undefined if X is a varying address (as determined by
2427 cse_rtx_addr_varies_p). This function is not used in such cases.
2429 When used in the cse pass, `qty_const' is nonzero, and it is used
2430 to treat an address that is a register with a known constant value
2431 as if it were that constant value.
2432 In the loop pass, `qty_const' is zero, so this is not done. */
2435 refers_to_mem_p (x
, base
, start
, end
)
2437 HOST_WIDE_INT start
, end
;
2439 register HOST_WIDE_INT i
;
2440 register enum rtx_code code
;
2447 code
= GET_CODE (x
);
2450 register rtx addr
= XEXP (x
, 0); /* Get the address. */
2452 HOST_WIDE_INT mystart
, myend
;
2454 set_nonvarying_address_components (addr
, GET_MODE_SIZE (GET_MODE (x
)),
2455 &mybase
, &mystart
, &myend
);
2458 /* refers_to_mem_p is never called with varying addresses.
2459 If the base addresses are not equal, there is no chance
2460 of the memory addresses conflicting. */
2461 if (! rtx_equal_p (mybase
, base
))
2464 return myend
> start
&& mystart
< end
;
2467 /* X does not match, so try its subexpressions. */
2469 fmt
= GET_RTX_FORMAT (code
);
2470 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2479 if (refers_to_mem_p (XEXP (x
, i
), base
, start
, end
))
2482 else if (fmt
[i
] == 'E')
2485 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2486 if (refers_to_mem_p (XVECEXP (x
, i
, j
), base
, start
, end
))
2493 /* Nonzero if X refers to memory at a varying address;
2494 except that a register which has at the moment a known constant value
2495 isn't considered variable. */
2498 cse_rtx_addr_varies_p (x
)
2501 /* We need not check for X and the equivalence class being of the same
2502 mode because if X is equivalent to a constant in some mode, it
2503 doesn't vary in any mode. */
2505 if (GET_CODE (x
) == MEM
2506 && GET_CODE (XEXP (x
, 0)) == REG
2507 && REGNO_QTY_VALID_P (REGNO (XEXP (x
, 0)))
2508 && GET_MODE (XEXP (x
, 0)) == qty_mode
[reg_qty
[REGNO (XEXP (x
, 0))]]
2509 && qty_const
[reg_qty
[REGNO (XEXP (x
, 0))]] != 0)
2512 if (GET_CODE (x
) == MEM
2513 && GET_CODE (XEXP (x
, 0)) == PLUS
2514 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
2515 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == REG
2516 && REGNO_QTY_VALID_P (REGNO (XEXP (XEXP (x
, 0), 0)))
2517 && (GET_MODE (XEXP (XEXP (x
, 0), 0))
2518 == qty_mode
[reg_qty
[REGNO (XEXP (XEXP (x
, 0), 0))]])
2519 && qty_const
[reg_qty
[REGNO (XEXP (XEXP (x
, 0), 0))]])
2522 /* This can happen as the result of virtual register instantiation, if
2523 the initial constant is too large to be a valid address. This gives
2524 us a three instruction sequence, load large offset into a register,
2525 load fp minus a constant into a register, then a MEM which is the
2526 sum of the two `constant' registers. */
2527 if (GET_CODE (x
) == MEM
2528 && GET_CODE (XEXP (x
, 0)) == PLUS
2529 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == REG
2530 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == REG
2531 && REGNO_QTY_VALID_P (REGNO (XEXP (XEXP (x
, 0), 0)))
2532 && (GET_MODE (XEXP (XEXP (x
, 0), 0))
2533 == qty_mode
[reg_qty
[REGNO (XEXP (XEXP (x
, 0), 0))]])
2534 && qty_const
[reg_qty
[REGNO (XEXP (XEXP (x
, 0), 0))]]
2535 && REGNO_QTY_VALID_P (REGNO (XEXP (XEXP (x
, 0), 1)))
2536 && (GET_MODE (XEXP (XEXP (x
, 0), 1))
2537 == qty_mode
[reg_qty
[REGNO (XEXP (XEXP (x
, 0), 1))]])
2538 && qty_const
[reg_qty
[REGNO (XEXP (XEXP (x
, 0), 1))]])
2541 return rtx_addr_varies_p (x
);
2544 /* Canonicalize an expression:
2545 replace each register reference inside it
2546 with the "oldest" equivalent register.
2548 If INSN is non-zero and we are replacing a pseudo with a hard register
2549 or vice versa, validate_change is used to ensure that INSN remains valid
2550 after we make our substitution. The calls are made with IN_GROUP non-zero
2551 so apply_change_group must be called upon the outermost return from this
2552 function (unless INSN is zero). The result of apply_change_group can
2553 generally be discarded since the changes we are making are optional. */
2561 register enum rtx_code code
;
2567 code
= GET_CODE (x
);
2585 /* Never replace a hard reg, because hard regs can appear
2586 in more than one machine mode, and we must preserve the mode
2587 of each occurrence. Also, some hard regs appear in
2588 MEMs that are shared and mustn't be altered. Don't try to
2589 replace any reg that maps to a reg of class NO_REGS. */
2590 if (REGNO (x
) < FIRST_PSEUDO_REGISTER
2591 || ! REGNO_QTY_VALID_P (REGNO (x
)))
2594 first
= qty_first_reg
[reg_qty
[REGNO (x
)]];
2595 return (first
>= FIRST_PSEUDO_REGISTER
? regno_reg_rtx
[first
]
2596 : REGNO_REG_CLASS (first
) == NO_REGS
? x
2597 : gen_rtx (REG
, qty_mode
[reg_qty
[REGNO (x
)]], first
));
2601 fmt
= GET_RTX_FORMAT (code
);
2602 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2608 rtx
new = canon_reg (XEXP (x
, i
), insn
);
2611 /* If replacing pseudo with hard reg or vice versa, ensure the
2612 insn remains valid. Likewise if the insn has MATCH_DUPs. */
2613 if (insn
!= 0 && new != 0
2614 && GET_CODE (new) == REG
&& GET_CODE (XEXP (x
, i
)) == REG
2615 && (((REGNO (new) < FIRST_PSEUDO_REGISTER
)
2616 != (REGNO (XEXP (x
, i
)) < FIRST_PSEUDO_REGISTER
))
2617 || (insn_code
= recog_memoized (insn
)) < 0
2618 || insn_n_dups
[insn_code
] > 0))
2619 validate_change (insn
, &XEXP (x
, i
), new, 1);
2623 else if (fmt
[i
] == 'E')
2624 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2625 XVECEXP (x
, i
, j
) = canon_reg (XVECEXP (x
, i
, j
), insn
);
2631 /* LOC is a location within INSN that is an operand address (the contents of
2632 a MEM). Find the best equivalent address to use that is valid for this
2635 On most CISC machines, complicated address modes are costly, and rtx_cost
2636 is a good approximation for that cost. However, most RISC machines have
2637 only a few (usually only one) memory reference formats. If an address is
2638 valid at all, it is often just as cheap as any other address. Hence, for
2639 RISC machines, we use the configuration macro `ADDRESS_COST' to compare the
2640 costs of various addresses. For two addresses of equal cost, choose the one
2641 with the highest `rtx_cost' value as that has the potential of eliminating
2642 the most insns. For equal costs, we choose the first in the equivalence
2643 class. Note that we ignore the fact that pseudo registers are cheaper
2644 than hard registers here because we would also prefer the pseudo registers.
2648 find_best_addr (insn
, loc
)
2652 struct table_elt
*elt
, *p
;
2655 int found_better
= 1;
2656 int save_do_not_record
= do_not_record
;
2657 int save_hash_arg_in_memory
= hash_arg_in_memory
;
2658 int save_hash_arg_in_struct
= hash_arg_in_struct
;
2663 /* Do not try to replace constant addresses or addresses of local and
2664 argument slots. These MEM expressions are made only once and inserted
2665 in many instructions, as well as being used to control symbol table
2666 output. It is not safe to clobber them.
2668 There are some uncommon cases where the address is already in a register
2669 for some reason, but we cannot take advantage of that because we have
2670 no easy way to unshare the MEM. In addition, looking up all stack
2671 addresses is costly. */
2672 if ((GET_CODE (addr
) == PLUS
2673 && GET_CODE (XEXP (addr
, 0)) == REG
2674 && GET_CODE (XEXP (addr
, 1)) == CONST_INT
2675 && (regno
= REGNO (XEXP (addr
, 0)),
2676 regno
== FRAME_POINTER_REGNUM
|| regno
== HARD_FRAME_POINTER_REGNUM
2677 || regno
== ARG_POINTER_REGNUM
))
2678 || (GET_CODE (addr
) == REG
2679 && (regno
= REGNO (addr
), regno
== FRAME_POINTER_REGNUM
2680 || regno
== HARD_FRAME_POINTER_REGNUM
2681 || regno
== ARG_POINTER_REGNUM
))
2682 || CONSTANT_ADDRESS_P (addr
))
2685 /* If this address is not simply a register, try to fold it. This will
2686 sometimes simplify the expression. Many simplifications
2687 will not be valid, but some, usually applying the associative rule, will
2688 be valid and produce better code. */
2689 if (GET_CODE (addr
) != REG
)
2691 rtx folded
= fold_rtx (copy_rtx (addr
), NULL_RTX
);
2695 && (ADDRESS_COST (folded
) < ADDRESS_COST (addr
)
2696 || (ADDRESS_COST (folded
) == ADDRESS_COST (addr
)
2697 && rtx_cost (folded
) > rtx_cost (addr
)))
2699 && rtx_cost (folded
) < rtx_cost (addr
)
2701 && validate_change (insn
, loc
, folded
, 0))
2705 /* If this address is not in the hash table, we can't look for equivalences
2706 of the whole address. Also, ignore if volatile. */
2709 hash
= HASH (addr
, Pmode
);
2710 addr_volatile
= do_not_record
;
2711 do_not_record
= save_do_not_record
;
2712 hash_arg_in_memory
= save_hash_arg_in_memory
;
2713 hash_arg_in_struct
= save_hash_arg_in_struct
;
2718 elt
= lookup (addr
, hash
, Pmode
);
2720 #ifndef ADDRESS_COST
2723 our_cost
= elt
->cost
;
2725 /* Find the lowest cost below ours that works. */
2726 for (elt
= elt
->first_same_value
; elt
; elt
= elt
->next_same_value
)
2727 if (elt
->cost
< our_cost
2728 && (GET_CODE (elt
->exp
) == REG
2729 || exp_equiv_p (elt
->exp
, elt
->exp
, 1, 0))
2730 && validate_change (insn
, loc
,
2731 canon_reg (copy_rtx (elt
->exp
), NULL_RTX
), 0))
2738 /* We need to find the best (under the criteria documented above) entry
2739 in the class that is valid. We use the `flag' field to indicate
2740 choices that were invalid and iterate until we can't find a better
2741 one that hasn't already been tried. */
2743 for (p
= elt
->first_same_value
; p
; p
= p
->next_same_value
)
2746 while (found_better
)
2748 int best_addr_cost
= ADDRESS_COST (*loc
);
2749 int best_rtx_cost
= (elt
->cost
+ 1) >> 1;
2750 struct table_elt
*best_elt
= elt
;
2753 for (p
= elt
->first_same_value
; p
; p
= p
->next_same_value
)
2755 && (GET_CODE (p
->exp
) == REG
2756 || exp_equiv_p (p
->exp
, p
->exp
, 1, 0))
2757 && (ADDRESS_COST (p
->exp
) < best_addr_cost
2758 || (ADDRESS_COST (p
->exp
) == best_addr_cost
2759 && (p
->cost
+ 1) >> 1 > best_rtx_cost
)))
2762 best_addr_cost
= ADDRESS_COST (p
->exp
);
2763 best_rtx_cost
= (p
->cost
+ 1) >> 1;
2769 if (validate_change (insn
, loc
,
2770 canon_reg (copy_rtx (best_elt
->exp
),
2779 /* If the address is a binary operation with the first operand a register
2780 and the second a constant, do the same as above, but looking for
2781 equivalences of the register. Then try to simplify before checking for
2782 the best address to use. This catches a few cases: First is when we
2783 have REG+const and the register is another REG+const. We can often merge
2784 the constants and eliminate one insn and one register. It may also be
2785 that a machine has a cheap REG+REG+const. Finally, this improves the
2786 code on the Alpha for unaligned byte stores. */
2788 if (flag_expensive_optimizations
2789 && (GET_RTX_CLASS (GET_CODE (*loc
)) == '2'
2790 || GET_RTX_CLASS (GET_CODE (*loc
)) == 'c')
2791 && GET_CODE (XEXP (*loc
, 0)) == REG
2792 && GET_CODE (XEXP (*loc
, 1)) == CONST_INT
)
2794 rtx c
= XEXP (*loc
, 1);
2797 hash
= HASH (XEXP (*loc
, 0), Pmode
);
2798 do_not_record
= save_do_not_record
;
2799 hash_arg_in_memory
= save_hash_arg_in_memory
;
2800 hash_arg_in_struct
= save_hash_arg_in_struct
;
2802 elt
= lookup (XEXP (*loc
, 0), hash
, Pmode
);
2806 /* We need to find the best (under the criteria documented above) entry
2807 in the class that is valid. We use the `flag' field to indicate
2808 choices that were invalid and iterate until we can't find a better
2809 one that hasn't already been tried. */
2811 for (p
= elt
->first_same_value
; p
; p
= p
->next_same_value
)
2814 while (found_better
)
2816 int best_addr_cost
= ADDRESS_COST (*loc
);
2817 int best_rtx_cost
= (COST (*loc
) + 1) >> 1;
2818 struct table_elt
*best_elt
= elt
;
2819 rtx best_rtx
= *loc
;
2822 /* This is at worst case an O(n^2) algorithm, so limit our search
2823 to the first 32 elements on the list. This avoids trouble
2824 compiling code with very long basic blocks that can easily
2825 call cse_gen_binary so many times that we run out of memory. */
2828 for (p
= elt
->first_same_value
, count
= 0;
2830 p
= p
->next_same_value
, count
++)
2832 && (GET_CODE (p
->exp
) == REG
2833 || exp_equiv_p (p
->exp
, p
->exp
, 1, 0)))
2835 rtx
new = cse_gen_binary (GET_CODE (*loc
), Pmode
, p
->exp
, c
);
2837 if ((ADDRESS_COST (new) < best_addr_cost
2838 || (ADDRESS_COST (new) == best_addr_cost
2839 && (COST (new) + 1) >> 1 > best_rtx_cost
)))
2842 best_addr_cost
= ADDRESS_COST (new);
2843 best_rtx_cost
= (COST (new) + 1) >> 1;
2851 if (validate_change (insn
, loc
,
2852 canon_reg (copy_rtx (best_rtx
),
2863 /* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
2864 operation (EQ, NE, GT, etc.), follow it back through the hash table and
2865 what values are being compared.
2867 *PARG1 and *PARG2 are updated to contain the rtx representing the values
2868 actually being compared. For example, if *PARG1 was (cc0) and *PARG2
2869 was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were
2870 compared to produce cc0.
2872 The return value is the comparison operator and is either the code of
2873 A or the code corresponding to the inverse of the comparison. */
2875 static enum rtx_code
2876 find_comparison_args (code
, parg1
, parg2
, pmode1
, pmode2
)
2879 enum machine_mode
*pmode1
, *pmode2
;
2883 arg1
= *parg1
, arg2
= *parg2
;
2885 /* If ARG2 is const0_rtx, see what ARG1 is equivalent to. */
2887 while (arg2
== CONST0_RTX (GET_MODE (arg1
)))
2889 /* Set non-zero when we find something of interest. */
2891 int reverse_code
= 0;
2892 struct table_elt
*p
= 0;
2894 /* If arg1 is a COMPARE, extract the comparison arguments from it.
2895 On machines with CC0, this is the only case that can occur, since
2896 fold_rtx will return the COMPARE or item being compared with zero
2899 if (GET_CODE (arg1
) == COMPARE
&& arg2
== const0_rtx
)
2902 /* If ARG1 is a comparison operator and CODE is testing for
2903 STORE_FLAG_VALUE, get the inner arguments. */
2905 else if (GET_RTX_CLASS (GET_CODE (arg1
)) == '<')
2908 || (GET_MODE_CLASS (GET_MODE (arg1
)) == MODE_INT
2909 && code
== LT
&& STORE_FLAG_VALUE
== -1)
2910 #ifdef FLOAT_STORE_FLAG_VALUE
2911 || (GET_MODE_CLASS (GET_MODE (arg1
)) == MODE_FLOAT
2912 && FLOAT_STORE_FLAG_VALUE
< 0)
2917 || (GET_MODE_CLASS (GET_MODE (arg1
)) == MODE_INT
2918 && code
== GE
&& STORE_FLAG_VALUE
== -1)
2919 #ifdef FLOAT_STORE_FLAG_VALUE
2920 || (GET_MODE_CLASS (GET_MODE (arg1
)) == MODE_FLOAT
2921 && FLOAT_STORE_FLAG_VALUE
< 0)
2924 x
= arg1
, reverse_code
= 1;
2927 /* ??? We could also check for
2929 (ne (and (eq (...) (const_int 1))) (const_int 0))
2931 and related forms, but let's wait until we see them occurring. */
2934 /* Look up ARG1 in the hash table and see if it has an equivalence
2935 that lets us see what is being compared. */
2936 p
= lookup (arg1
, safe_hash (arg1
, GET_MODE (arg1
)) % NBUCKETS
,
2938 if (p
) p
= p
->first_same_value
;
2940 for (; p
; p
= p
->next_same_value
)
2942 enum machine_mode inner_mode
= GET_MODE (p
->exp
);
2944 /* If the entry isn't valid, skip it. */
2945 if (! exp_equiv_p (p
->exp
, p
->exp
, 1, 0))
2948 if (GET_CODE (p
->exp
) == COMPARE
2949 /* Another possibility is that this machine has a compare insn
2950 that includes the comparison code. In that case, ARG1 would
2951 be equivalent to a comparison operation that would set ARG1 to
2952 either STORE_FLAG_VALUE or zero. If this is an NE operation,
2953 ORIG_CODE is the actual comparison being done; if it is an EQ,
2954 we must reverse ORIG_CODE. On machine with a negative value
2955 for STORE_FLAG_VALUE, also look at LT and GE operations. */
2958 && GET_MODE_CLASS (inner_mode
) == MODE_INT
2959 && (GET_MODE_BITSIZE (inner_mode
)
2960 <= HOST_BITS_PER_WIDE_INT
)
2961 && (STORE_FLAG_VALUE
2962 & ((HOST_WIDE_INT
) 1
2963 << (GET_MODE_BITSIZE (inner_mode
) - 1))))
2964 #ifdef FLOAT_STORE_FLAG_VALUE
2966 && GET_MODE_CLASS (inner_mode
) == MODE_FLOAT
2967 && FLOAT_STORE_FLAG_VALUE
< 0)
2970 && GET_RTX_CLASS (GET_CODE (p
->exp
)) == '<'))
2975 else if ((code
== EQ
2977 && GET_MODE_CLASS (inner_mode
) == MODE_INT
2978 && (GET_MODE_BITSIZE (inner_mode
)
2979 <= HOST_BITS_PER_WIDE_INT
)
2980 && (STORE_FLAG_VALUE
2981 & ((HOST_WIDE_INT
) 1
2982 << (GET_MODE_BITSIZE (inner_mode
) - 1))))
2983 #ifdef FLOAT_STORE_FLAG_VALUE
2985 && GET_MODE_CLASS (inner_mode
) == MODE_FLOAT
2986 && FLOAT_STORE_FLAG_VALUE
< 0)
2989 && GET_RTX_CLASS (GET_CODE (p
->exp
)) == '<')
2996 /* If this is fp + constant, the equivalent is a better operand since
2997 it may let us predict the value of the comparison. */
2998 else if (NONZERO_BASE_PLUS_P (p
->exp
))
3005 /* If we didn't find a useful equivalence for ARG1, we are done.
3006 Otherwise, set up for the next iteration. */
3010 arg1
= XEXP (x
, 0), arg2
= XEXP (x
, 1);
3011 if (GET_RTX_CLASS (GET_CODE (x
)) == '<')
3012 code
= GET_CODE (x
);
3015 code
= reverse_condition (code
);
3018 /* Return our results. Return the modes from before fold_rtx
3019 because fold_rtx might produce const_int, and then it's too late. */
3020 *pmode1
= GET_MODE (arg1
), *pmode2
= GET_MODE (arg2
);
3021 *parg1
= fold_rtx (arg1
, 0), *parg2
= fold_rtx (arg2
, 0);
3026 /* Try to simplify a unary operation CODE whose output mode is to be
3027 MODE with input operand OP whose mode was originally OP_MODE.
3028 Return zero if no simplification can be made. */
3031 simplify_unary_operation (code
, mode
, op
, op_mode
)
3033 enum machine_mode mode
;
3035 enum machine_mode op_mode
;
3037 register int width
= GET_MODE_BITSIZE (mode
);
3039 /* The order of these tests is critical so that, for example, we don't
3040 check the wrong mode (input vs. output) for a conversion operation,
3041 such as FIX. At some point, this should be simplified. */
3043 #if !defined(REAL_IS_NOT_DOUBLE) || defined(REAL_ARITHMETIC)
3045 if (code
== FLOAT
&& GET_MODE (op
) == VOIDmode
3046 && (GET_CODE (op
) == CONST_DOUBLE
|| GET_CODE (op
) == CONST_INT
))
3048 HOST_WIDE_INT hv
, lv
;
3051 if (GET_CODE (op
) == CONST_INT
)
3052 lv
= INTVAL (op
), hv
= INTVAL (op
) < 0 ? -1 : 0;
3054 lv
= CONST_DOUBLE_LOW (op
), hv
= CONST_DOUBLE_HIGH (op
);
3056 #ifdef REAL_ARITHMETIC
3057 REAL_VALUE_FROM_INT (d
, lv
, hv
, mode
);
3061 d
= (double) (~ hv
);
3062 d
*= ((double) ((HOST_WIDE_INT
) 1 << (HOST_BITS_PER_WIDE_INT
/ 2))
3063 * (double) ((HOST_WIDE_INT
) 1 << (HOST_BITS_PER_WIDE_INT
/ 2)));
3064 d
+= (double) (unsigned HOST_WIDE_INT
) (~ lv
);
3070 d
*= ((double) ((HOST_WIDE_INT
) 1 << (HOST_BITS_PER_WIDE_INT
/ 2))
3071 * (double) ((HOST_WIDE_INT
) 1 << (HOST_BITS_PER_WIDE_INT
/ 2)));
3072 d
+= (double) (unsigned HOST_WIDE_INT
) lv
;
3074 #endif /* REAL_ARITHMETIC */
3075 d
= real_value_truncate (mode
, d
);
3076 return CONST_DOUBLE_FROM_REAL_VALUE (d
, mode
);
3078 else if (code
== UNSIGNED_FLOAT
&& GET_MODE (op
) == VOIDmode
3079 && (GET_CODE (op
) == CONST_DOUBLE
|| GET_CODE (op
) == CONST_INT
))
3081 HOST_WIDE_INT hv
, lv
;
3084 if (GET_CODE (op
) == CONST_INT
)
3085 lv
= INTVAL (op
), hv
= INTVAL (op
) < 0 ? -1 : 0;
3087 lv
= CONST_DOUBLE_LOW (op
), hv
= CONST_DOUBLE_HIGH (op
);
3089 if (op_mode
== VOIDmode
)
3091 /* We don't know how to interpret negative-looking numbers in
3092 this case, so don't try to fold those. */
3096 else if (GET_MODE_BITSIZE (op_mode
) >= HOST_BITS_PER_WIDE_INT
* 2)
3099 hv
= 0, lv
&= GET_MODE_MASK (op_mode
);
3101 #ifdef REAL_ARITHMETIC
3102 REAL_VALUE_FROM_UNSIGNED_INT (d
, lv
, hv
, mode
);
3105 d
= (double) (unsigned HOST_WIDE_INT
) hv
;
3106 d
*= ((double) ((HOST_WIDE_INT
) 1 << (HOST_BITS_PER_WIDE_INT
/ 2))
3107 * (double) ((HOST_WIDE_INT
) 1 << (HOST_BITS_PER_WIDE_INT
/ 2)));
3108 d
+= (double) (unsigned HOST_WIDE_INT
) lv
;
3109 #endif /* REAL_ARITHMETIC */
3110 d
= real_value_truncate (mode
, d
);
3111 return CONST_DOUBLE_FROM_REAL_VALUE (d
, mode
);
3115 if (GET_CODE (op
) == CONST_INT
3116 && width
<= HOST_BITS_PER_WIDE_INT
&& width
> 0)
3118 register HOST_WIDE_INT arg0
= INTVAL (op
);
3119 register HOST_WIDE_INT val
;
3132 val
= (arg0
>= 0 ? arg0
: - arg0
);
3136 /* Don't use ffs here. Instead, get low order bit and then its
3137 number. If arg0 is zero, this will return 0, as desired. */
3138 arg0
&= GET_MODE_MASK (mode
);
3139 val
= exact_log2 (arg0
& (- arg0
)) + 1;
3147 if (op_mode
== VOIDmode
)
3149 if (GET_MODE_BITSIZE (op_mode
) == HOST_BITS_PER_WIDE_INT
)
3151 /* If we were really extending the mode,
3152 we would have to distinguish between zero-extension
3153 and sign-extension. */
3154 if (width
!= GET_MODE_BITSIZE (op_mode
))
3158 else if (GET_MODE_BITSIZE (op_mode
) < HOST_BITS_PER_WIDE_INT
)
3159 val
= arg0
& ~((HOST_WIDE_INT
) (-1) << GET_MODE_BITSIZE (op_mode
));
3165 if (op_mode
== VOIDmode
)
3167 if (GET_MODE_BITSIZE (op_mode
) == HOST_BITS_PER_WIDE_INT
)
3169 /* If we were really extending the mode,
3170 we would have to distinguish between zero-extension
3171 and sign-extension. */
3172 if (width
!= GET_MODE_BITSIZE (op_mode
))
3176 else if (GET_MODE_BITSIZE (op_mode
) < HOST_BITS_PER_WIDE_INT
)
3179 = arg0
& ~((HOST_WIDE_INT
) (-1) << GET_MODE_BITSIZE (op_mode
));
3181 & ((HOST_WIDE_INT
) 1 << (GET_MODE_BITSIZE (op_mode
) - 1)))
3182 val
-= (HOST_WIDE_INT
) 1 << GET_MODE_BITSIZE (op_mode
);
3195 /* Clear the bits that don't belong in our mode,
3196 unless they and our sign bit are all one.
3197 So we get either a reasonable negative value or a reasonable
3198 unsigned value for this mode. */
3199 if (width
< HOST_BITS_PER_WIDE_INT
3200 && ((val
& ((HOST_WIDE_INT
) (-1) << (width
- 1)))
3201 != ((HOST_WIDE_INT
) (-1) << (width
- 1))))
3202 val
&= ((HOST_WIDE_INT
) 1 << width
) - 1;
3204 return GEN_INT (val
);
3207 /* We can do some operations on integer CONST_DOUBLEs. Also allow
3208 for a DImode operation on a CONST_INT. */
3209 else if (GET_MODE (op
) == VOIDmode
&& width
<= HOST_BITS_PER_INT
* 2
3210 && (GET_CODE (op
) == CONST_DOUBLE
|| GET_CODE (op
) == CONST_INT
))
3212 HOST_WIDE_INT l1
, h1
, lv
, hv
;
3214 if (GET_CODE (op
) == CONST_DOUBLE
)
3215 l1
= CONST_DOUBLE_LOW (op
), h1
= CONST_DOUBLE_HIGH (op
);
3217 l1
= INTVAL (op
), h1
= l1
< 0 ? -1 : 0;
3227 neg_double (l1
, h1
, &lv
, &hv
);
3232 neg_double (l1
, h1
, &lv
, &hv
);
3240 lv
= HOST_BITS_PER_WIDE_INT
+ exact_log2 (h1
& (-h1
)) + 1;
3242 lv
= exact_log2 (l1
& (-l1
)) + 1;
3246 /* This is just a change-of-mode, so do nothing. */
3251 if (op_mode
== VOIDmode
3252 || GET_MODE_BITSIZE (op_mode
) > HOST_BITS_PER_WIDE_INT
)
3256 lv
= l1
& GET_MODE_MASK (op_mode
);
3260 if (op_mode
== VOIDmode
3261 || GET_MODE_BITSIZE (op_mode
) > HOST_BITS_PER_WIDE_INT
)
3265 lv
= l1
& GET_MODE_MASK (op_mode
);
3266 if (GET_MODE_BITSIZE (op_mode
) < HOST_BITS_PER_WIDE_INT
3267 && (lv
& ((HOST_WIDE_INT
) 1
3268 << (GET_MODE_BITSIZE (op_mode
) - 1))) != 0)
3269 lv
-= (HOST_WIDE_INT
) 1 << GET_MODE_BITSIZE (op_mode
);
3271 hv
= (lv
< 0) ? ~ (HOST_WIDE_INT
) 0 : 0;
3282 return immed_double_const (lv
, hv
, mode
);
3285 #if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
3286 else if (GET_CODE (op
) == CONST_DOUBLE
3287 && GET_MODE_CLASS (mode
) == MODE_FLOAT
)
3293 if (setjmp (handler
))
3294 /* There used to be a warning here, but that is inadvisable.
3295 People may want to cause traps, and the natural way
3296 to do it should not get a warning. */
3299 set_float_handler (handler
);
3301 REAL_VALUE_FROM_CONST_DOUBLE (d
, op
);
3306 d
= REAL_VALUE_NEGATE (d
);
3310 if (REAL_VALUE_NEGATIVE (d
))
3311 d
= REAL_VALUE_NEGATE (d
);
3314 case FLOAT_TRUNCATE
:
3315 d
= real_value_truncate (mode
, d
);
3319 /* All this does is change the mode. */
3323 d
= REAL_VALUE_RNDZINT (d
);
3327 d
= REAL_VALUE_UNSIGNED_RNDZINT (d
);
3337 x
= CONST_DOUBLE_FROM_REAL_VALUE (d
, mode
);
3338 set_float_handler (NULL_PTR
);
3342 else if (GET_CODE (op
) == CONST_DOUBLE
3343 && GET_MODE_CLASS (GET_MODE (op
)) == MODE_FLOAT
3344 && GET_MODE_CLASS (mode
) == MODE_INT
3345 && width
<= HOST_BITS_PER_WIDE_INT
&& width
> 0)
3351 if (setjmp (handler
))
3354 set_float_handler (handler
);
3356 REAL_VALUE_FROM_CONST_DOUBLE (d
, op
);
3361 val
= REAL_VALUE_FIX (d
);
3365 val
= REAL_VALUE_UNSIGNED_FIX (d
);
3372 set_float_handler (NULL_PTR
);
3374 /* Clear the bits that don't belong in our mode,
3375 unless they and our sign bit are all one.
3376 So we get either a reasonable negative value or a reasonable
3377 unsigned value for this mode. */
3378 if (width
< HOST_BITS_PER_WIDE_INT
3379 && ((val
& ((HOST_WIDE_INT
) (-1) << (width
- 1)))
3380 != ((HOST_WIDE_INT
) (-1) << (width
- 1))))
3381 val
&= ((HOST_WIDE_INT
) 1 << width
) - 1;
3383 /* If this would be an entire word for the target, but is not for
3384 the host, then sign-extend on the host so that the number will look
3385 the same way on the host that it would on the target.
3387 For example, when building a 64 bit alpha hosted 32 bit sparc
3388 targeted compiler, then we want the 32 bit unsigned value -1 to be
3389 represented as a 64 bit value -1, and not as 0x00000000ffffffff.
3390 The later confuses the sparc backend. */
3392 if (BITS_PER_WORD
< HOST_BITS_PER_WIDE_INT
&& BITS_PER_WORD
== width
3393 && (val
& ((HOST_WIDE_INT
) 1 << (width
- 1))))
3394 val
|= ((HOST_WIDE_INT
) (-1) << width
);
3396 return GEN_INT (val
);
3399 /* This was formerly used only for non-IEEE float.
3400 eggert@twinsun.com says it is safe for IEEE also. */
3403 /* There are some simplifications we can do even if the operands
3409 /* (not (not X)) == X, similarly for NEG. */
3410 if (GET_CODE (op
) == code
)
3411 return XEXP (op
, 0);
3415 /* (sign_extend (truncate (minus (label_ref L1) (label_ref L2))))
3416 becomes just the MINUS if its mode is MODE. This allows
3417 folding switch statements on machines using casesi (such as
3419 if (GET_CODE (op
) == TRUNCATE
3420 && GET_MODE (XEXP (op
, 0)) == mode
3421 && GET_CODE (XEXP (op
, 0)) == MINUS
3422 && GET_CODE (XEXP (XEXP (op
, 0), 0)) == LABEL_REF
3423 && GET_CODE (XEXP (XEXP (op
, 0), 1)) == LABEL_REF
)
3424 return XEXP (op
, 0);
3426 #ifdef POINTERS_EXTEND_UNSIGNED
3427 if (! POINTERS_EXTEND_UNSIGNED
3428 && mode
== Pmode
&& GET_MODE (op
) == ptr_mode
3430 return convert_memory_address (Pmode
, op
);
3434 #ifdef POINTERS_EXTEND_UNSIGNED
3436 if (POINTERS_EXTEND_UNSIGNED
3437 && mode
== Pmode
&& GET_MODE (op
) == ptr_mode
3439 return convert_memory_address (Pmode
, op
);
3448 /* Simplify a binary operation CODE with result mode MODE, operating on OP0
3449 and OP1. Return 0 if no simplification is possible.
3451 Don't use this for relational operations such as EQ or LT.
3452 Use simplify_relational_operation instead. */
3455 simplify_binary_operation (code
, mode
, op0
, op1
)
3457 enum machine_mode mode
;
3460 register HOST_WIDE_INT arg0
, arg1
, arg0s
, arg1s
;
3462 int width
= GET_MODE_BITSIZE (mode
);
3465 /* Relational operations don't work here. We must know the mode
3466 of the operands in order to do the comparison correctly.
3467 Assuming a full word can give incorrect results.
3468 Consider comparing 128 with -128 in QImode. */
3470 if (GET_RTX_CLASS (code
) == '<')
3473 #if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
3474 if (GET_MODE_CLASS (mode
) == MODE_FLOAT
3475 && GET_CODE (op0
) == CONST_DOUBLE
&& GET_CODE (op1
) == CONST_DOUBLE
3476 && mode
== GET_MODE (op0
) && mode
== GET_MODE (op1
))
3478 REAL_VALUE_TYPE f0
, f1
, value
;
3481 if (setjmp (handler
))
3484 set_float_handler (handler
);
3486 REAL_VALUE_FROM_CONST_DOUBLE (f0
, op0
);
3487 REAL_VALUE_FROM_CONST_DOUBLE (f1
, op1
);
3488 f0
= real_value_truncate (mode
, f0
);
3489 f1
= real_value_truncate (mode
, f1
);
3491 #ifdef REAL_ARITHMETIC
3492 REAL_ARITHMETIC (value
, rtx_to_tree_code (code
), f0
, f1
);
3506 #ifndef REAL_INFINITY
3513 value
= MIN (f0
, f1
);
3516 value
= MAX (f0
, f1
);
3523 value
= real_value_truncate (mode
, value
);
3524 set_float_handler (NULL_PTR
);
3525 return CONST_DOUBLE_FROM_REAL_VALUE (value
, mode
);
3527 #endif /* not REAL_IS_NOT_DOUBLE, or REAL_ARITHMETIC */
3529 /* We can fold some multi-word operations. */
3530 if (GET_MODE_CLASS (mode
) == MODE_INT
3531 && width
== HOST_BITS_PER_WIDE_INT
* 2
3532 && (GET_CODE (op0
) == CONST_DOUBLE
|| GET_CODE (op0
) == CONST_INT
)
3533 && (GET_CODE (op1
) == CONST_DOUBLE
|| GET_CODE (op1
) == CONST_INT
))
3535 HOST_WIDE_INT l1
, l2
, h1
, h2
, lv
, hv
;
3537 if (GET_CODE (op0
) == CONST_DOUBLE
)
3538 l1
= CONST_DOUBLE_LOW (op0
), h1
= CONST_DOUBLE_HIGH (op0
);
3540 l1
= INTVAL (op0
), h1
= l1
< 0 ? -1 : 0;
3542 if (GET_CODE (op1
) == CONST_DOUBLE
)
3543 l2
= CONST_DOUBLE_LOW (op1
), h2
= CONST_DOUBLE_HIGH (op1
);
3545 l2
= INTVAL (op1
), h2
= l2
< 0 ? -1 : 0;
3550 /* A - B == A + (-B). */
3551 neg_double (l2
, h2
, &lv
, &hv
);
3554 /* .. fall through ... */
3557 add_double (l1
, h1
, l2
, h2
, &lv
, &hv
);
3561 mul_double (l1
, h1
, l2
, h2
, &lv
, &hv
);
3564 case DIV
: case MOD
: case UDIV
: case UMOD
:
3565 /* We'd need to include tree.h to do this and it doesn't seem worth
3570 lv
= l1
& l2
, hv
= h1
& h2
;
3574 lv
= l1
| l2
, hv
= h1
| h2
;
3578 lv
= l1
^ l2
, hv
= h1
^ h2
;
3584 && ((unsigned HOST_WIDE_INT
) l1
3585 < (unsigned HOST_WIDE_INT
) l2
)))
3594 && ((unsigned HOST_WIDE_INT
) l1
3595 > (unsigned HOST_WIDE_INT
) l2
)))
3602 if ((unsigned HOST_WIDE_INT
) h1
< (unsigned HOST_WIDE_INT
) h2
3604 && ((unsigned HOST_WIDE_INT
) l1
3605 < (unsigned HOST_WIDE_INT
) l2
)))
3612 if ((unsigned HOST_WIDE_INT
) h1
> (unsigned HOST_WIDE_INT
) h2
3614 && ((unsigned HOST_WIDE_INT
) l1
3615 > (unsigned HOST_WIDE_INT
) l2
)))
3621 case LSHIFTRT
: case ASHIFTRT
:
3623 case ROTATE
: case ROTATERT
:
3624 #ifdef SHIFT_COUNT_TRUNCATED
3625 if (SHIFT_COUNT_TRUNCATED
)
3626 l2
&= (GET_MODE_BITSIZE (mode
) - 1), h2
= 0;
3629 if (h2
!= 0 || l2
< 0 || l2
>= GET_MODE_BITSIZE (mode
))
3632 if (code
== LSHIFTRT
|| code
== ASHIFTRT
)
3633 rshift_double (l1
, h1
, l2
, GET_MODE_BITSIZE (mode
), &lv
, &hv
,
3635 else if (code
== ASHIFT
)
3636 lshift_double (l1
, h1
, l2
, GET_MODE_BITSIZE (mode
), &lv
, &hv
, 1);
3637 else if (code
== ROTATE
)
3638 lrotate_double (l1
, h1
, l2
, GET_MODE_BITSIZE (mode
), &lv
, &hv
);
3639 else /* code == ROTATERT */
3640 rrotate_double (l1
, h1
, l2
, GET_MODE_BITSIZE (mode
), &lv
, &hv
);
3647 return immed_double_const (lv
, hv
, mode
);
3650 if (GET_CODE (op0
) != CONST_INT
|| GET_CODE (op1
) != CONST_INT
3651 || width
> HOST_BITS_PER_WIDE_INT
|| width
== 0)
3653 /* Even if we can't compute a constant result,
3654 there are some cases worth simplifying. */
3659 /* In IEEE floating point, x+0 is not the same as x. Similarly
3660 for the other optimizations below. */
3661 if (TARGET_FLOAT_FORMAT
== IEEE_FLOAT_FORMAT
3662 && FLOAT_MODE_P (mode
) && ! flag_fast_math
)
3665 if (op1
== CONST0_RTX (mode
))
3668 /* ((-a) + b) -> (b - a) and similarly for (a + (-b)) */
3669 if (GET_CODE (op0
) == NEG
)
3670 return cse_gen_binary (MINUS
, mode
, op1
, XEXP (op0
, 0));
3671 else if (GET_CODE (op1
) == NEG
)
3672 return cse_gen_binary (MINUS
, mode
, op0
, XEXP (op1
, 0));
3674 /* Handle both-operands-constant cases. We can only add
3675 CONST_INTs to constants since the sum of relocatable symbols
3676 can't be handled by most assemblers. Don't add CONST_INT
3677 to CONST_INT since overflow won't be computed properly if wider
3678 than HOST_BITS_PER_WIDE_INT. */
3680 if (CONSTANT_P (op0
) && GET_MODE (op0
) != VOIDmode
3681 && GET_CODE (op1
) == CONST_INT
)
3682 return plus_constant (op0
, INTVAL (op1
));
3683 else if (CONSTANT_P (op1
) && GET_MODE (op1
) != VOIDmode
3684 && GET_CODE (op0
) == CONST_INT
)
3685 return plus_constant (op1
, INTVAL (op0
));
3687 /* See if this is something like X * C - X or vice versa or
3688 if the multiplication is written as a shift. If so, we can
3689 distribute and make a new multiply, shift, or maybe just
3690 have X (if C is 2 in the example above). But don't make
3691 real multiply if we didn't have one before. */
3693 if (! FLOAT_MODE_P (mode
))
3695 HOST_WIDE_INT coeff0
= 1, coeff1
= 1;
3696 rtx lhs
= op0
, rhs
= op1
;
3699 if (GET_CODE (lhs
) == NEG
)
3700 coeff0
= -1, lhs
= XEXP (lhs
, 0);
3701 else if (GET_CODE (lhs
) == MULT
3702 && GET_CODE (XEXP (lhs
, 1)) == CONST_INT
)
3704 coeff0
= INTVAL (XEXP (lhs
, 1)), lhs
= XEXP (lhs
, 0);
3707 else if (GET_CODE (lhs
) == ASHIFT
3708 && GET_CODE (XEXP (lhs
, 1)) == CONST_INT
3709 && INTVAL (XEXP (lhs
, 1)) >= 0
3710 && INTVAL (XEXP (lhs
, 1)) < HOST_BITS_PER_WIDE_INT
)
3712 coeff0
= ((HOST_WIDE_INT
) 1) << INTVAL (XEXP (lhs
, 1));
3713 lhs
= XEXP (lhs
, 0);
3716 if (GET_CODE (rhs
) == NEG
)
3717 coeff1
= -1, rhs
= XEXP (rhs
, 0);
3718 else if (GET_CODE (rhs
) == MULT
3719 && GET_CODE (XEXP (rhs
, 1)) == CONST_INT
)
3721 coeff1
= INTVAL (XEXP (rhs
, 1)), rhs
= XEXP (rhs
, 0);
3724 else if (GET_CODE (rhs
) == ASHIFT
3725 && GET_CODE (XEXP (rhs
, 1)) == CONST_INT
3726 && INTVAL (XEXP (rhs
, 1)) >= 0
3727 && INTVAL (XEXP (rhs
, 1)) < HOST_BITS_PER_WIDE_INT
)
3729 coeff1
= ((HOST_WIDE_INT
) 1) << INTVAL (XEXP (rhs
, 1));
3730 rhs
= XEXP (rhs
, 0);
3733 if (rtx_equal_p (lhs
, rhs
))
3735 tem
= cse_gen_binary (MULT
, mode
, lhs
,
3736 GEN_INT (coeff0
+ coeff1
));
3737 return (GET_CODE (tem
) == MULT
&& ! had_mult
) ? 0 : tem
;
3741 /* If one of the operands is a PLUS or a MINUS, see if we can
3742 simplify this by the associative law.
3743 Don't use the associative law for floating point.
3744 The inaccuracy makes it nonassociative,
3745 and subtle programs can break if operations are associated. */
3747 if (INTEGRAL_MODE_P (mode
)
3748 && (GET_CODE (op0
) == PLUS
|| GET_CODE (op0
) == MINUS
3749 || GET_CODE (op1
) == PLUS
|| GET_CODE (op1
) == MINUS
)
3750 && (tem
= simplify_plus_minus (code
, mode
, op0
, op1
)) != 0)
3756 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
3757 using cc0, in which case we want to leave it as a COMPARE
3758 so we can distinguish it from a register-register-copy.
3760 In IEEE floating point, x-0 is not the same as x. */
3762 if ((TARGET_FLOAT_FORMAT
!= IEEE_FLOAT_FORMAT
3763 || ! FLOAT_MODE_P (mode
) || flag_fast_math
)
3764 && op1
== CONST0_RTX (mode
))
3767 /* Do nothing here. */
3772 /* None of these optimizations can be done for IEEE
3774 if (TARGET_FLOAT_FORMAT
== IEEE_FLOAT_FORMAT
3775 && FLOAT_MODE_P (mode
) && ! flag_fast_math
)
3778 /* We can't assume x-x is 0 even with non-IEEE floating point,
3779 but since it is zero except in very strange circumstances, we
3780 will treat it as zero with -ffast-math. */
3781 if (rtx_equal_p (op0
, op1
)
3782 && ! side_effects_p (op0
)
3783 && (! FLOAT_MODE_P (mode
) || flag_fast_math
))
3784 return CONST0_RTX (mode
);
3786 /* Change subtraction from zero into negation. */
3787 if (op0
== CONST0_RTX (mode
))
3788 return gen_rtx (NEG
, mode
, op1
);
3790 /* (-1 - a) is ~a. */
3791 if (op0
== constm1_rtx
)
3792 return gen_rtx (NOT
, mode
, op1
);
3794 /* Subtracting 0 has no effect. */
3795 if (op1
== CONST0_RTX (mode
))
3798 /* See if this is something like X * C - X or vice versa or
3799 if the multiplication is written as a shift. If so, we can
3800 distribute and make a new multiply, shift, or maybe just
3801 have X (if C is 2 in the example above). But don't make
3802 real multiply if we didn't have one before. */
3804 if (! FLOAT_MODE_P (mode
))
3806 HOST_WIDE_INT coeff0
= 1, coeff1
= 1;
3807 rtx lhs
= op0
, rhs
= op1
;
3810 if (GET_CODE (lhs
) == NEG
)
3811 coeff0
= -1, lhs
= XEXP (lhs
, 0);
3812 else if (GET_CODE (lhs
) == MULT
3813 && GET_CODE (XEXP (lhs
, 1)) == CONST_INT
)
3815 coeff0
= INTVAL (XEXP (lhs
, 1)), lhs
= XEXP (lhs
, 0);
3818 else if (GET_CODE (lhs
) == ASHIFT
3819 && GET_CODE (XEXP (lhs
, 1)) == CONST_INT
3820 && INTVAL (XEXP (lhs
, 1)) >= 0
3821 && INTVAL (XEXP (lhs
, 1)) < HOST_BITS_PER_WIDE_INT
)
3823 coeff0
= ((HOST_WIDE_INT
) 1) << INTVAL (XEXP (lhs
, 1));
3824 lhs
= XEXP (lhs
, 0);
3827 if (GET_CODE (rhs
) == NEG
)
3828 coeff1
= - 1, rhs
= XEXP (rhs
, 0);
3829 else if (GET_CODE (rhs
) == MULT
3830 && GET_CODE (XEXP (rhs
, 1)) == CONST_INT
)
3832 coeff1
= INTVAL (XEXP (rhs
, 1)), rhs
= XEXP (rhs
, 0);
3835 else if (GET_CODE (rhs
) == ASHIFT
3836 && GET_CODE (XEXP (rhs
, 1)) == CONST_INT
3837 && INTVAL (XEXP (rhs
, 1)) >= 0
3838 && INTVAL (XEXP (rhs
, 1)) < HOST_BITS_PER_WIDE_INT
)
3840 coeff1
= ((HOST_WIDE_INT
) 1) << INTVAL (XEXP (rhs
, 1));
3841 rhs
= XEXP (rhs
, 0);
3844 if (rtx_equal_p (lhs
, rhs
))
3846 tem
= cse_gen_binary (MULT
, mode
, lhs
,
3847 GEN_INT (coeff0
- coeff1
));
3848 return (GET_CODE (tem
) == MULT
&& ! had_mult
) ? 0 : tem
;
3852 /* (a - (-b)) -> (a + b). */
3853 if (GET_CODE (op1
) == NEG
)
3854 return cse_gen_binary (PLUS
, mode
, op0
, XEXP (op1
, 0));
3856 /* If one of the operands is a PLUS or a MINUS, see if we can
3857 simplify this by the associative law.
3858 Don't use the associative law for floating point.
3859 The inaccuracy makes it nonassociative,
3860 and subtle programs can break if operations are associated. */
3862 if (INTEGRAL_MODE_P (mode
)
3863 && (GET_CODE (op0
) == PLUS
|| GET_CODE (op0
) == MINUS
3864 || GET_CODE (op1
) == PLUS
|| GET_CODE (op1
) == MINUS
)
3865 && (tem
= simplify_plus_minus (code
, mode
, op0
, op1
)) != 0)
3868 /* Don't let a relocatable value get a negative coeff. */
3869 if (GET_CODE (op1
) == CONST_INT
&& GET_MODE (op0
) != VOIDmode
)
3870 return plus_constant (op0
, - INTVAL (op1
));
3872 /* (x - (x & y)) -> (x & ~y) */
3873 if (GET_CODE (op1
) == AND
)
3875 if (rtx_equal_p (op0
, XEXP (op1
, 0)))
3876 return cse_gen_binary (AND
, mode
, op0
, gen_rtx (NOT
, mode
, XEXP (op1
, 1)));
3877 if (rtx_equal_p (op0
, XEXP (op1
, 1)))
3878 return cse_gen_binary (AND
, mode
, op0
, gen_rtx (NOT
, mode
, XEXP (op1
, 0)));
3883 if (op1
== constm1_rtx
)
3885 tem
= simplify_unary_operation (NEG
, mode
, op0
, mode
);
3887 return tem
? tem
: gen_rtx (NEG
, mode
, op0
);
3890 /* In IEEE floating point, x*0 is not always 0. */
3891 if ((TARGET_FLOAT_FORMAT
!= IEEE_FLOAT_FORMAT
3892 || ! FLOAT_MODE_P (mode
) || flag_fast_math
)
3893 && op1
== CONST0_RTX (mode
)
3894 && ! side_effects_p (op0
))
3897 /* In IEEE floating point, x*1 is not equivalent to x for nans.
3898 However, ANSI says we can drop signals,
3899 so we can do this anyway. */
3900 if (op1
== CONST1_RTX (mode
))
3903 /* Convert multiply by constant power of two into shift unless
3904 we are still generating RTL. This test is a kludge. */
3905 if (GET_CODE (op1
) == CONST_INT
3906 && (val
= exact_log2 (INTVAL (op1
))) >= 0
3907 /* If the mode is larger than the host word size, and the
3908 uppermost bit is set, then this isn't a power of two due
3909 to implicit sign extension. */
3910 && (width
<= HOST_BITS_PER_WIDE_INT
3911 || val
!= HOST_BITS_PER_WIDE_INT
- 1)
3912 && ! rtx_equal_function_value_matters
)
3913 return gen_rtx (ASHIFT
, mode
, op0
, GEN_INT (val
));
3915 if (GET_CODE (op1
) == CONST_DOUBLE
3916 && GET_MODE_CLASS (GET_MODE (op1
)) == MODE_FLOAT
)
3920 int op1is2
, op1ism1
;
3922 if (setjmp (handler
))
3925 set_float_handler (handler
);
3926 REAL_VALUE_FROM_CONST_DOUBLE (d
, op1
);
3927 op1is2
= REAL_VALUES_EQUAL (d
, dconst2
);
3928 op1ism1
= REAL_VALUES_EQUAL (d
, dconstm1
);
3929 set_float_handler (NULL_PTR
);
3931 /* x*2 is x+x and x*(-1) is -x */
3932 if (op1is2
&& GET_MODE (op0
) == mode
)
3933 return gen_rtx (PLUS
, mode
, op0
, copy_rtx (op0
));
3935 else if (op1ism1
&& GET_MODE (op0
) == mode
)
3936 return gen_rtx (NEG
, mode
, op0
);
3941 if (op1
== const0_rtx
)
3943 if (GET_CODE (op1
) == CONST_INT
3944 && (INTVAL (op1
) & GET_MODE_MASK (mode
)) == GET_MODE_MASK (mode
))
3946 if (rtx_equal_p (op0
, op1
) && ! side_effects_p (op0
))
3948 /* A | (~A) -> -1 */
3949 if (((GET_CODE (op0
) == NOT
&& rtx_equal_p (XEXP (op0
, 0), op1
))
3950 || (GET_CODE (op1
) == NOT
&& rtx_equal_p (XEXP (op1
, 0), op0
)))
3951 && ! side_effects_p (op0
)
3952 && GET_MODE_CLASS (mode
) != MODE_CC
)
3957 if (op1
== const0_rtx
)
3959 if (GET_CODE (op1
) == CONST_INT
3960 && (INTVAL (op1
) & GET_MODE_MASK (mode
)) == GET_MODE_MASK (mode
))
3961 return gen_rtx (NOT
, mode
, op0
);
3962 if (op0
== op1
&& ! side_effects_p (op0
)
3963 && GET_MODE_CLASS (mode
) != MODE_CC
)
3968 if (op1
== const0_rtx
&& ! side_effects_p (op0
))
3970 if (GET_CODE (op1
) == CONST_INT
3971 && (INTVAL (op1
) & GET_MODE_MASK (mode
)) == GET_MODE_MASK (mode
))
3973 if (op0
== op1
&& ! side_effects_p (op0
)
3974 && GET_MODE_CLASS (mode
) != MODE_CC
)
3977 if (((GET_CODE (op0
) == NOT
&& rtx_equal_p (XEXP (op0
, 0), op1
))
3978 || (GET_CODE (op1
) == NOT
&& rtx_equal_p (XEXP (op1
, 0), op0
)))
3979 && ! side_effects_p (op0
)
3980 && GET_MODE_CLASS (mode
) != MODE_CC
)
3985 /* Convert divide by power of two into shift (divide by 1 handled
3987 if (GET_CODE (op1
) == CONST_INT
3988 && (arg1
= exact_log2 (INTVAL (op1
))) > 0)
3989 return gen_rtx (LSHIFTRT
, mode
, op0
, GEN_INT (arg1
));
3991 /* ... fall through ... */
3994 if (op1
== CONST1_RTX (mode
))
3997 /* In IEEE floating point, 0/x is not always 0. */
3998 if ((TARGET_FLOAT_FORMAT
!= IEEE_FLOAT_FORMAT
3999 || ! FLOAT_MODE_P (mode
) || flag_fast_math
)
4000 && op0
== CONST0_RTX (mode
)
4001 && ! side_effects_p (op1
))
4004 #if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
4005 /* Change division by a constant into multiplication. Only do
4006 this with -ffast-math until an expert says it is safe in
4008 else if (GET_CODE (op1
) == CONST_DOUBLE
4009 && GET_MODE_CLASS (GET_MODE (op1
)) == MODE_FLOAT
4010 && op1
!= CONST0_RTX (mode
)
4014 REAL_VALUE_FROM_CONST_DOUBLE (d
, op1
);
4016 if (! REAL_VALUES_EQUAL (d
, dconst0
))
4018 #if defined (REAL_ARITHMETIC)
4019 REAL_ARITHMETIC (d
, rtx_to_tree_code (DIV
), dconst1
, d
);
4020 return gen_rtx (MULT
, mode
, op0
,
4021 CONST_DOUBLE_FROM_REAL_VALUE (d
, mode
));
4023 return gen_rtx (MULT
, mode
, op0
,
4024 CONST_DOUBLE_FROM_REAL_VALUE (1./d
, mode
));
4032 /* Handle modulus by power of two (mod with 1 handled below). */
4033 if (GET_CODE (op1
) == CONST_INT
4034 && exact_log2 (INTVAL (op1
)) > 0)
4035 return gen_rtx (AND
, mode
, op0
, GEN_INT (INTVAL (op1
) - 1));
4037 /* ... fall through ... */
4040 if ((op0
== const0_rtx
|| op1
== const1_rtx
)
4041 && ! side_effects_p (op0
) && ! side_effects_p (op1
))
4047 /* Rotating ~0 always results in ~0. */
4048 if (GET_CODE (op0
) == CONST_INT
&& width
<= HOST_BITS_PER_WIDE_INT
4049 && INTVAL (op0
) == GET_MODE_MASK (mode
)
4050 && ! side_effects_p (op1
))
4053 /* ... fall through ... */
4058 if (op1
== const0_rtx
)
4060 if (op0
== const0_rtx
&& ! side_effects_p (op1
))
4065 if (width
<= HOST_BITS_PER_WIDE_INT
&& GET_CODE (op1
) == CONST_INT
4066 && INTVAL (op1
) == (HOST_WIDE_INT
) 1 << (width
-1)
4067 && ! side_effects_p (op0
))
4069 else if (rtx_equal_p (op0
, op1
) && ! side_effects_p (op0
))
4074 if (width
<= HOST_BITS_PER_WIDE_INT
&& GET_CODE (op1
) == CONST_INT
4076 == (unsigned HOST_WIDE_INT
) GET_MODE_MASK (mode
) >> 1)
4077 && ! side_effects_p (op0
))
4079 else if (rtx_equal_p (op0
, op1
) && ! side_effects_p (op0
))
4084 if (op1
== const0_rtx
&& ! side_effects_p (op0
))
4086 else if (rtx_equal_p (op0
, op1
) && ! side_effects_p (op0
))
4091 if (op1
== constm1_rtx
&& ! side_effects_p (op0
))
4093 else if (rtx_equal_p (op0
, op1
) && ! side_effects_p (op0
))
4104 /* Get the integer argument values in two forms:
4105 zero-extended in ARG0, ARG1 and sign-extended in ARG0S, ARG1S. */
4107 arg0
= INTVAL (op0
);
4108 arg1
= INTVAL (op1
);
4110 if (width
< HOST_BITS_PER_WIDE_INT
)
4112 arg0
&= ((HOST_WIDE_INT
) 1 << width
) - 1;
4113 arg1
&= ((HOST_WIDE_INT
) 1 << width
) - 1;
4116 if (arg0s
& ((HOST_WIDE_INT
) 1 << (width
- 1)))
4117 arg0s
|= ((HOST_WIDE_INT
) (-1) << width
);
4120 if (arg1s
& ((HOST_WIDE_INT
) 1 << (width
- 1)))
4121 arg1s
|= ((HOST_WIDE_INT
) (-1) << width
);
4129 /* Compute the value of the arithmetic. */
4134 val
= arg0s
+ arg1s
;
4138 val
= arg0s
- arg1s
;
4142 val
= arg0s
* arg1s
;
4148 val
= arg0s
/ arg1s
;
4154 val
= arg0s
% arg1s
;
4160 val
= (unsigned HOST_WIDE_INT
) arg0
/ arg1
;
4166 val
= (unsigned HOST_WIDE_INT
) arg0
% arg1
;
4182 /* If shift count is undefined, don't fold it; let the machine do
4183 what it wants. But truncate it if the machine will do that. */
4187 #ifdef SHIFT_COUNT_TRUNCATED
4188 if (SHIFT_COUNT_TRUNCATED
)
4192 val
= ((unsigned HOST_WIDE_INT
) arg0
) >> arg1
;
4199 #ifdef SHIFT_COUNT_TRUNCATED
4200 if (SHIFT_COUNT_TRUNCATED
)
4204 val
= ((unsigned HOST_WIDE_INT
) arg0
) << arg1
;
4211 #ifdef SHIFT_COUNT_TRUNCATED
4212 if (SHIFT_COUNT_TRUNCATED
)
4216 val
= arg0s
>> arg1
;
4218 /* Bootstrap compiler may not have sign extended the right shift.
4219 Manually extend the sign to insure bootstrap cc matches gcc. */
4220 if (arg0s
< 0 && arg1
> 0)
4221 val
|= ((HOST_WIDE_INT
) -1) << (HOST_BITS_PER_WIDE_INT
- arg1
);
4230 val
= ((((unsigned HOST_WIDE_INT
) arg0
) << (width
- arg1
))
4231 | (((unsigned HOST_WIDE_INT
) arg0
) >> arg1
));
4239 val
= ((((unsigned HOST_WIDE_INT
) arg0
) << arg1
)
4240 | (((unsigned HOST_WIDE_INT
) arg0
) >> (width
- arg1
)));
4244 /* Do nothing here. */
4248 val
= arg0s
<= arg1s
? arg0s
: arg1s
;
4252 val
= ((unsigned HOST_WIDE_INT
) arg0
4253 <= (unsigned HOST_WIDE_INT
) arg1
? arg0
: arg1
);
4257 val
= arg0s
> arg1s
? arg0s
: arg1s
;
4261 val
= ((unsigned HOST_WIDE_INT
) arg0
4262 > (unsigned HOST_WIDE_INT
) arg1
? arg0
: arg1
);
4269 /* Clear the bits that don't belong in our mode, unless they and our sign
4270 bit are all one. So we get either a reasonable negative value or a
4271 reasonable unsigned value for this mode. */
4272 if (width
< HOST_BITS_PER_WIDE_INT
4273 && ((val
& ((HOST_WIDE_INT
) (-1) << (width
- 1)))
4274 != ((HOST_WIDE_INT
) (-1) << (width
- 1))))
4275 val
&= ((HOST_WIDE_INT
) 1 << width
) - 1;
4277 /* If this would be an entire word for the target, but is not for
4278 the host, then sign-extend on the host so that the number will look
4279 the same way on the host that it would on the target.
4281 For example, when building a 64 bit alpha hosted 32 bit sparc
4282 targeted compiler, then we want the 32 bit unsigned value -1 to be
4283 represented as a 64 bit value -1, and not as 0x00000000ffffffff.
4284 The later confuses the sparc backend. */
4286 if (BITS_PER_WORD
< HOST_BITS_PER_WIDE_INT
&& BITS_PER_WORD
== width
4287 && (val
& ((HOST_WIDE_INT
) 1 << (width
- 1))))
4288 val
|= ((HOST_WIDE_INT
) (-1) << width
);
4290 return GEN_INT (val
);
4293 /* Simplify a PLUS or MINUS, at least one of whose operands may be another
4296 Rather than test for specific case, we do this by a brute-force method
4297 and do all possible simplifications until no more changes occur. Then
4298 we rebuild the operation. */
4301 simplify_plus_minus (code
, mode
, op0
, op1
)
4303 enum machine_mode mode
;
4309 int n_ops
= 2, input_ops
= 2, input_consts
= 0, n_consts
= 0;
4310 int first
= 1, negate
= 0, changed
;
4313 bzero ((char *) ops
, sizeof ops
);
4315 /* Set up the two operands and then expand them until nothing has been
4316 changed. If we run out of room in our array, give up; this should
4317 almost never happen. */
4319 ops
[0] = op0
, ops
[1] = op1
, negs
[0] = 0, negs
[1] = (code
== MINUS
);
4326 for (i
= 0; i
< n_ops
; i
++)
4327 switch (GET_CODE (ops
[i
]))
4334 ops
[n_ops
] = XEXP (ops
[i
], 1);
4335 negs
[n_ops
++] = GET_CODE (ops
[i
]) == MINUS
? !negs
[i
] : negs
[i
];
4336 ops
[i
] = XEXP (ops
[i
], 0);
4342 ops
[i
] = XEXP (ops
[i
], 0);
4343 negs
[i
] = ! negs
[i
];
4348 ops
[i
] = XEXP (ops
[i
], 0);
4354 /* ~a -> (-a - 1) */
4357 ops
[n_ops
] = constm1_rtx
;
4358 negs
[n_ops
++] = negs
[i
];
4359 ops
[i
] = XEXP (ops
[i
], 0);
4360 negs
[i
] = ! negs
[i
];
4367 ops
[i
] = GEN_INT (- INTVAL (ops
[i
])), negs
[i
] = 0, changed
= 1;
4372 /* If we only have two operands, we can't do anything. */
4376 /* Now simplify each pair of operands until nothing changes. The first
4377 time through just simplify constants against each other. */
4384 for (i
= 0; i
< n_ops
- 1; i
++)
4385 for (j
= i
+ 1; j
< n_ops
; j
++)
4386 if (ops
[i
] != 0 && ops
[j
] != 0
4387 && (! first
|| (CONSTANT_P (ops
[i
]) && CONSTANT_P (ops
[j
]))))
4389 rtx lhs
= ops
[i
], rhs
= ops
[j
];
4390 enum rtx_code ncode
= PLUS
;
4392 if (negs
[i
] && ! negs
[j
])
4393 lhs
= ops
[j
], rhs
= ops
[i
], ncode
= MINUS
;
4394 else if (! negs
[i
] && negs
[j
])
4397 tem
= simplify_binary_operation (ncode
, mode
, lhs
, rhs
);
4400 ops
[i
] = tem
, ops
[j
] = 0;
4401 negs
[i
] = negs
[i
] && negs
[j
];
4402 if (GET_CODE (tem
) == NEG
)
4403 ops
[i
] = XEXP (tem
, 0), negs
[i
] = ! negs
[i
];
4405 if (GET_CODE (ops
[i
]) == CONST_INT
&& negs
[i
])
4406 ops
[i
] = GEN_INT (- INTVAL (ops
[i
])), negs
[i
] = 0;
4414 /* Pack all the operands to the lower-numbered entries and give up if
4415 we didn't reduce the number of operands we had. Make sure we
4416 count a CONST as two operands. If we have the same number of
4417 operands, but have made more CONSTs than we had, this is also
4418 an improvement, so accept it. */
4420 for (i
= 0, j
= 0; j
< n_ops
; j
++)
4423 ops
[i
] = ops
[j
], negs
[i
++] = negs
[j
];
4424 if (GET_CODE (ops
[j
]) == CONST
)
4428 if (i
+ n_consts
> input_ops
4429 || (i
+ n_consts
== input_ops
&& n_consts
<= input_consts
))
4434 /* If we have a CONST_INT, put it last. */
4435 for (i
= 0; i
< n_ops
- 1; i
++)
4436 if (GET_CODE (ops
[i
]) == CONST_INT
)
4438 tem
= ops
[n_ops
- 1], ops
[n_ops
- 1] = ops
[i
] , ops
[i
] = tem
;
4439 j
= negs
[n_ops
- 1], negs
[n_ops
- 1] = negs
[i
], negs
[i
] = j
;
4442 /* Put a non-negated operand first. If there aren't any, make all
4443 operands positive and negate the whole thing later. */
4444 for (i
= 0; i
< n_ops
&& negs
[i
]; i
++)
4449 for (i
= 0; i
< n_ops
; i
++)
4455 tem
= ops
[0], ops
[0] = ops
[i
], ops
[i
] = tem
;
4456 j
= negs
[0], negs
[0] = negs
[i
], negs
[i
] = j
;
4459 /* Now make the result by performing the requested operations. */
4461 for (i
= 1; i
< n_ops
; i
++)
4462 result
= cse_gen_binary (negs
[i
] ? MINUS
: PLUS
, mode
, result
, ops
[i
]);
4464 return negate
? gen_rtx (NEG
, mode
, result
) : result
;
4467 /* Make a binary operation by properly ordering the operands and
4468 seeing if the expression folds. */
4471 cse_gen_binary (code
, mode
, op0
, op1
)
4473 enum machine_mode mode
;
4478 /* Put complex operands first and constants second if commutative. */
4479 if (GET_RTX_CLASS (code
) == 'c'
4480 && ((CONSTANT_P (op0
) && GET_CODE (op1
) != CONST_INT
)
4481 || (GET_RTX_CLASS (GET_CODE (op0
)) == 'o'
4482 && GET_RTX_CLASS (GET_CODE (op1
)) != 'o')
4483 || (GET_CODE (op0
) == SUBREG
4484 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (op0
))) == 'o'
4485 && GET_RTX_CLASS (GET_CODE (op1
)) != 'o')))
4486 tem
= op0
, op0
= op1
, op1
= tem
;
4488 /* If this simplifies, do it. */
4489 tem
= simplify_binary_operation (code
, mode
, op0
, op1
);
4494 /* Handle addition and subtraction of CONST_INT specially. Otherwise,
4495 just form the operation. */
4497 if (code
== PLUS
&& GET_CODE (op1
) == CONST_INT
4498 && GET_MODE (op0
) != VOIDmode
)
4499 return plus_constant (op0
, INTVAL (op1
));
4500 else if (code
== MINUS
&& GET_CODE (op1
) == CONST_INT
4501 && GET_MODE (op0
) != VOIDmode
)
4502 return plus_constant (op0
, - INTVAL (op1
));
4504 return gen_rtx (code
, mode
, op0
, op1
);
4507 /* Like simplify_binary_operation except used for relational operators.
4508 MODE is the mode of the operands, not that of the result. If MODE
4509 is VOIDmode, both operands must also be VOIDmode and we compare the
4510 operands in "infinite precision".
4512 If no simplification is possible, this function returns zero. Otherwise,
4513 it returns either const_true_rtx or const0_rtx. */
4516 simplify_relational_operation (code
, mode
, op0
, op1
)
4518 enum machine_mode mode
;
4521 int equal
, op0lt
, op0ltu
, op1lt
, op1ltu
;
4524 /* If op0 is a compare, extract the comparison arguments from it. */
4525 if (GET_CODE (op0
) == COMPARE
&& op1
== const0_rtx
)
4526 op1
= XEXP (op0
, 1), op0
= XEXP (op0
, 0);
4528 /* We can't simplify MODE_CC values since we don't know what the
4529 actual comparison is. */
4530 if (GET_MODE_CLASS (GET_MODE (op0
)) == MODE_CC
4537 /* For integer comparisons of A and B maybe we can simplify A - B and can
4538 then simplify a comparison of that with zero. If A and B are both either
4539 a register or a CONST_INT, this can't help; testing for these cases will
4540 prevent infinite recursion here and speed things up.
4542 If CODE is an unsigned comparison, then we can never do this optimization,
4543 because it gives an incorrect result if the subtraction wraps around zero.
4544 ANSI C defines unsigned operations such that they never overflow, and
4545 thus such cases can not be ignored. */
4547 if (INTEGRAL_MODE_P (mode
) && op1
!= const0_rtx
4548 && ! ((GET_CODE (op0
) == REG
|| GET_CODE (op0
) == CONST_INT
)
4549 && (GET_CODE (op1
) == REG
|| GET_CODE (op1
) == CONST_INT
))
4550 && 0 != (tem
= simplify_binary_operation (MINUS
, mode
, op0
, op1
))
4551 && code
!= GTU
&& code
!= GEU
&& code
!= LTU
&& code
!= LEU
)
4552 return simplify_relational_operation (signed_condition (code
),
4553 mode
, tem
, const0_rtx
);
4555 /* For non-IEEE floating-point, if the two operands are equal, we know the
4557 if (rtx_equal_p (op0
, op1
)
4558 && (TARGET_FLOAT_FORMAT
!= IEEE_FLOAT_FORMAT
4559 || ! FLOAT_MODE_P (GET_MODE (op0
)) || flag_fast_math
))
4560 equal
= 1, op0lt
= 0, op0ltu
= 0, op1lt
= 0, op1ltu
= 0;
4562 /* If the operands are floating-point constants, see if we can fold
4564 #if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
4565 else if (GET_CODE (op0
) == CONST_DOUBLE
&& GET_CODE (op1
) == CONST_DOUBLE
4566 && GET_MODE_CLASS (GET_MODE (op0
)) == MODE_FLOAT
)
4568 REAL_VALUE_TYPE d0
, d1
;
4571 if (setjmp (handler
))
4574 set_float_handler (handler
);
4575 REAL_VALUE_FROM_CONST_DOUBLE (d0
, op0
);
4576 REAL_VALUE_FROM_CONST_DOUBLE (d1
, op1
);
4577 equal
= REAL_VALUES_EQUAL (d0
, d1
);
4578 op0lt
= op0ltu
= REAL_VALUES_LESS (d0
, d1
);
4579 op1lt
= op1ltu
= REAL_VALUES_LESS (d1
, d0
);
4580 set_float_handler (NULL_PTR
);
4582 #endif /* not REAL_IS_NOT_DOUBLE, or REAL_ARITHMETIC */
4584 /* Otherwise, see if the operands are both integers. */
4585 else if ((GET_MODE_CLASS (mode
) == MODE_INT
|| mode
== VOIDmode
)
4586 && (GET_CODE (op0
) == CONST_DOUBLE
|| GET_CODE (op0
) == CONST_INT
)
4587 && (GET_CODE (op1
) == CONST_DOUBLE
|| GET_CODE (op1
) == CONST_INT
))
4589 int width
= GET_MODE_BITSIZE (mode
);
4590 HOST_WIDE_INT l0s
, h0s
, l1s
, h1s
;
4591 unsigned HOST_WIDE_INT l0u
, h0u
, l1u
, h1u
;
4593 /* Get the two words comprising each integer constant. */
4594 if (GET_CODE (op0
) == CONST_DOUBLE
)
4596 l0u
= l0s
= CONST_DOUBLE_LOW (op0
);
4597 h0u
= h0s
= CONST_DOUBLE_HIGH (op0
);
4601 l0u
= l0s
= INTVAL (op0
);
4602 h0u
= 0, h0s
= l0s
< 0 ? -1 : 0;
4605 if (GET_CODE (op1
) == CONST_DOUBLE
)
4607 l1u
= l1s
= CONST_DOUBLE_LOW (op1
);
4608 h1u
= h1s
= CONST_DOUBLE_HIGH (op1
);
4612 l1u
= l1s
= INTVAL (op1
);
4613 h1u
= 0, h1s
= l1s
< 0 ? -1 : 0;
4616 /* If WIDTH is nonzero and smaller than HOST_BITS_PER_WIDE_INT,
4617 we have to sign or zero-extend the values. */
4618 if (width
!= 0 && width
<= HOST_BITS_PER_WIDE_INT
)
4619 h0u
= h1u
= 0, h0s
= l0s
< 0 ? -1 : 0, h1s
= l1s
< 0 ? -1 : 0;
4621 if (width
!= 0 && width
< HOST_BITS_PER_WIDE_INT
)
4623 l0u
&= ((HOST_WIDE_INT
) 1 << width
) - 1;
4624 l1u
&= ((HOST_WIDE_INT
) 1 << width
) - 1;
4626 if (l0s
& ((HOST_WIDE_INT
) 1 << (width
- 1)))
4627 l0s
|= ((HOST_WIDE_INT
) (-1) << width
);
4629 if (l1s
& ((HOST_WIDE_INT
) 1 << (width
- 1)))
4630 l1s
|= ((HOST_WIDE_INT
) (-1) << width
);
4633 equal
= (h0u
== h1u
&& l0u
== l1u
);
4634 op0lt
= (h0s
< h1s
|| (h0s
== h1s
&& l0s
< l1s
));
4635 op1lt
= (h1s
< h0s
|| (h1s
== h0s
&& l1s
< l0s
));
4636 op0ltu
= (h0u
< h1u
|| (h0u
== h1u
&& l0u
< l1u
));
4637 op1ltu
= (h1u
< h0u
|| (h1u
== h0u
&& l1u
< l0u
));
4640 /* Otherwise, there are some code-specific tests we can make. */
4646 /* References to the frame plus a constant or labels cannot
4647 be zero, but a SYMBOL_REF can due to #pragma weak. */
4648 if (((NONZERO_BASE_PLUS_P (op0
) && op1
== const0_rtx
)
4649 || GET_CODE (op0
) == LABEL_REF
)
4650 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4651 /* On some machines, the ap reg can be 0 sometimes. */
4652 && op0
!= arg_pointer_rtx
4659 if (((NONZERO_BASE_PLUS_P (op0
) && op1
== const0_rtx
)
4660 || GET_CODE (op0
) == LABEL_REF
)
4661 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4662 && op0
!= arg_pointer_rtx
4665 return const_true_rtx
;
4669 /* Unsigned values are never negative. */
4670 if (op1
== const0_rtx
)
4671 return const_true_rtx
;
4675 if (op1
== const0_rtx
)
4680 /* Unsigned values are never greater than the largest
4682 if (GET_CODE (op1
) == CONST_INT
4683 && INTVAL (op1
) == GET_MODE_MASK (mode
)
4684 && INTEGRAL_MODE_P (mode
))
4685 return const_true_rtx
;
4689 if (GET_CODE (op1
) == CONST_INT
4690 && INTVAL (op1
) == GET_MODE_MASK (mode
)
4691 && INTEGRAL_MODE_P (mode
))
4699 /* If we reach here, EQUAL, OP0LT, OP0LTU, OP1LT, and OP1LTU are set
4704 return equal
? const_true_rtx
: const0_rtx
;
4706 return ! equal
? const_true_rtx
: const0_rtx
;
4708 return op0lt
? const_true_rtx
: const0_rtx
;
4710 return op1lt
? const_true_rtx
: const0_rtx
;
4712 return op0ltu
? const_true_rtx
: const0_rtx
;
4714 return op1ltu
? const_true_rtx
: const0_rtx
;
4716 return equal
|| op0lt
? const_true_rtx
: const0_rtx
;
4718 return equal
|| op1lt
? const_true_rtx
: const0_rtx
;
4720 return equal
|| op0ltu
? const_true_rtx
: const0_rtx
;
4722 return equal
|| op1ltu
? const_true_rtx
: const0_rtx
;
4728 /* Simplify CODE, an operation with result mode MODE and three operands,
4729 OP0, OP1, and OP2. OP0_MODE was the mode of OP0 before it became
4730 a constant. Return 0 if no simplifications is possible. */
4733 simplify_ternary_operation (code
, mode
, op0_mode
, op0
, op1
, op2
)
4735 enum machine_mode mode
, op0_mode
;
4738 int width
= GET_MODE_BITSIZE (mode
);
4740 /* VOIDmode means "infinite" precision. */
4742 width
= HOST_BITS_PER_WIDE_INT
;
4748 if (GET_CODE (op0
) == CONST_INT
4749 && GET_CODE (op1
) == CONST_INT
4750 && GET_CODE (op2
) == CONST_INT
4751 && INTVAL (op1
) + INTVAL (op2
) <= GET_MODE_BITSIZE (op0_mode
)
4752 && width
<= HOST_BITS_PER_WIDE_INT
)
4754 /* Extracting a bit-field from a constant */
4755 HOST_WIDE_INT val
= INTVAL (op0
);
4757 if (BITS_BIG_ENDIAN
)
4758 val
>>= (GET_MODE_BITSIZE (op0_mode
)
4759 - INTVAL (op2
) - INTVAL (op1
));
4761 val
>>= INTVAL (op2
);
4763 if (HOST_BITS_PER_WIDE_INT
!= INTVAL (op1
))
4765 /* First zero-extend. */
4766 val
&= ((HOST_WIDE_INT
) 1 << INTVAL (op1
)) - 1;
4767 /* If desired, propagate sign bit. */
4768 if (code
== SIGN_EXTRACT
4769 && (val
& ((HOST_WIDE_INT
) 1 << (INTVAL (op1
) - 1))))
4770 val
|= ~ (((HOST_WIDE_INT
) 1 << INTVAL (op1
)) - 1);
4773 /* Clear the bits that don't belong in our mode,
4774 unless they and our sign bit are all one.
4775 So we get either a reasonable negative value or a reasonable
4776 unsigned value for this mode. */
4777 if (width
< HOST_BITS_PER_WIDE_INT
4778 && ((val
& ((HOST_WIDE_INT
) (-1) << (width
- 1)))
4779 != ((HOST_WIDE_INT
) (-1) << (width
- 1))))
4780 val
&= ((HOST_WIDE_INT
) 1 << width
) - 1;
4782 return GEN_INT (val
);
4787 if (GET_CODE (op0
) == CONST_INT
)
4788 return op0
!= const0_rtx
? op1
: op2
;
4798 /* If X is a nontrivial arithmetic operation on an argument
4799 for which a constant value can be determined, return
4800 the result of operating on that value, as a constant.
4801 Otherwise, return X, possibly with one or more operands
4802 modified by recursive calls to this function.
4804 If X is a register whose contents are known, we do NOT
4805 return those contents here. equiv_constant is called to
4808 INSN is the insn that we may be modifying. If it is 0, make a copy
4809 of X before modifying it. */
4816 register enum rtx_code code
;
4817 register enum machine_mode mode
;
4824 /* Folded equivalents of first two operands of X. */
4828 /* Constant equivalents of first three operands of X;
4829 0 when no such equivalent is known. */
4834 /* The mode of the first operand of X. We need this for sign and zero
4836 enum machine_mode mode_arg0
;
4841 mode
= GET_MODE (x
);
4842 code
= GET_CODE (x
);
4851 /* No use simplifying an EXPR_LIST
4852 since they are used only for lists of args
4853 in a function call's REG_EQUAL note. */
4859 return prev_insn_cc0
;
4863 /* If the next insn is a CODE_LABEL followed by a jump table,
4864 PC's value is a LABEL_REF pointing to that label. That
4865 lets us fold switch statements on the Vax. */
4866 if (insn
&& GET_CODE (insn
) == JUMP_INSN
)
4868 rtx next
= next_nonnote_insn (insn
);
4870 if (next
&& GET_CODE (next
) == CODE_LABEL
4871 && NEXT_INSN (next
) != 0
4872 && GET_CODE (NEXT_INSN (next
)) == JUMP_INSN
4873 && (GET_CODE (PATTERN (NEXT_INSN (next
))) == ADDR_VEC
4874 || GET_CODE (PATTERN (NEXT_INSN (next
))) == ADDR_DIFF_VEC
))
4875 return gen_rtx (LABEL_REF
, Pmode
, next
);
4880 /* See if we previously assigned a constant value to this SUBREG. */
4881 if ((new = lookup_as_function (x
, CONST_INT
)) != 0
4882 || (new = lookup_as_function (x
, CONST_DOUBLE
)) != 0)
4885 /* If this is a paradoxical SUBREG, we have no idea what value the
4886 extra bits would have. However, if the operand is equivalent
4887 to a SUBREG whose operand is the same as our mode, and all the
4888 modes are within a word, we can just use the inner operand
4889 because these SUBREGs just say how to treat the register.
4891 Similarly if we find an integer constant. */
4893 if (GET_MODE_SIZE (mode
) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))))
4895 enum machine_mode imode
= GET_MODE (SUBREG_REG (x
));
4896 struct table_elt
*elt
;
4898 if (GET_MODE_SIZE (mode
) <= UNITS_PER_WORD
4899 && GET_MODE_SIZE (imode
) <= UNITS_PER_WORD
4900 && (elt
= lookup (SUBREG_REG (x
), HASH (SUBREG_REG (x
), imode
),
4902 for (elt
= elt
->first_same_value
;
4903 elt
; elt
= elt
->next_same_value
)
4905 if (CONSTANT_P (elt
->exp
)
4906 && GET_MODE (elt
->exp
) == VOIDmode
)
4909 if (GET_CODE (elt
->exp
) == SUBREG
4910 && GET_MODE (SUBREG_REG (elt
->exp
)) == mode
4911 && exp_equiv_p (elt
->exp
, elt
->exp
, 1, 0))
4912 return copy_rtx (SUBREG_REG (elt
->exp
));
4918 /* Fold SUBREG_REG. If it changed, see if we can simplify the SUBREG.
4919 We might be able to if the SUBREG is extracting a single word in an
4920 integral mode or extracting the low part. */
4922 folded_arg0
= fold_rtx (SUBREG_REG (x
), insn
);
4923 const_arg0
= equiv_constant (folded_arg0
);
4925 folded_arg0
= const_arg0
;
4927 if (folded_arg0
!= SUBREG_REG (x
))
4931 if (GET_MODE_CLASS (mode
) == MODE_INT
4932 && GET_MODE_SIZE (mode
) == UNITS_PER_WORD
4933 && GET_MODE (SUBREG_REG (x
)) != VOIDmode
)
4934 new = operand_subword (folded_arg0
, SUBREG_WORD (x
), 0,
4935 GET_MODE (SUBREG_REG (x
)));
4936 if (new == 0 && subreg_lowpart_p (x
))
4937 new = gen_lowpart_if_possible (mode
, folded_arg0
);
4942 /* If this is a narrowing SUBREG and our operand is a REG, see if
4943 we can find an equivalence for REG that is an arithmetic operation
4944 in a wider mode where both operands are paradoxical SUBREGs
4945 from objects of our result mode. In that case, we couldn't report
4946 an equivalent value for that operation, since we don't know what the
4947 extra bits will be. But we can find an equivalence for this SUBREG
4948 by folding that operation is the narrow mode. This allows us to
4949 fold arithmetic in narrow modes when the machine only supports
4950 word-sized arithmetic.
4952 Also look for a case where we have a SUBREG whose operand is the
4953 same as our result. If both modes are smaller than a word, we
4954 are simply interpreting a register in different modes and we
4955 can use the inner value. */
4957 if (GET_CODE (folded_arg0
) == REG
4958 && GET_MODE_SIZE (mode
) < GET_MODE_SIZE (GET_MODE (folded_arg0
))
4959 && subreg_lowpart_p (x
))
4961 struct table_elt
*elt
;
4963 /* We can use HASH here since we know that canon_hash won't be
4965 elt
= lookup (folded_arg0
,
4966 HASH (folded_arg0
, GET_MODE (folded_arg0
)),
4967 GET_MODE (folded_arg0
));
4970 elt
= elt
->first_same_value
;
4972 for (; elt
; elt
= elt
->next_same_value
)
4974 enum rtx_code eltcode
= GET_CODE (elt
->exp
);
4976 /* Just check for unary and binary operations. */
4977 if (GET_RTX_CLASS (GET_CODE (elt
->exp
)) == '1'
4978 && GET_CODE (elt
->exp
) != SIGN_EXTEND
4979 && GET_CODE (elt
->exp
) != ZERO_EXTEND
4980 && GET_CODE (XEXP (elt
->exp
, 0)) == SUBREG
4981 && GET_MODE (SUBREG_REG (XEXP (elt
->exp
, 0))) == mode
)
4983 rtx op0
= SUBREG_REG (XEXP (elt
->exp
, 0));
4985 if (GET_CODE (op0
) != REG
&& ! CONSTANT_P (op0
))
4986 op0
= fold_rtx (op0
, NULL_RTX
);
4988 op0
= equiv_constant (op0
);
4990 new = simplify_unary_operation (GET_CODE (elt
->exp
), mode
,
4993 else if ((GET_RTX_CLASS (GET_CODE (elt
->exp
)) == '2'
4994 || GET_RTX_CLASS (GET_CODE (elt
->exp
)) == 'c')
4995 && eltcode
!= DIV
&& eltcode
!= MOD
4996 && eltcode
!= UDIV
&& eltcode
!= UMOD
4997 && eltcode
!= ASHIFTRT
&& eltcode
!= LSHIFTRT
4998 && eltcode
!= ROTATE
&& eltcode
!= ROTATERT
4999 && ((GET_CODE (XEXP (elt
->exp
, 0)) == SUBREG
5000 && (GET_MODE (SUBREG_REG (XEXP (elt
->exp
, 0)))
5002 || CONSTANT_P (XEXP (elt
->exp
, 0)))
5003 && ((GET_CODE (XEXP (elt
->exp
, 1)) == SUBREG
5004 && (GET_MODE (SUBREG_REG (XEXP (elt
->exp
, 1)))
5006 || CONSTANT_P (XEXP (elt
->exp
, 1))))
5008 rtx op0
= gen_lowpart_common (mode
, XEXP (elt
->exp
, 0));
5009 rtx op1
= gen_lowpart_common (mode
, XEXP (elt
->exp
, 1));
5011 if (op0
&& GET_CODE (op0
) != REG
&& ! CONSTANT_P (op0
))
5012 op0
= fold_rtx (op0
, NULL_RTX
);
5015 op0
= equiv_constant (op0
);
5017 if (op1
&& GET_CODE (op1
) != REG
&& ! CONSTANT_P (op1
))
5018 op1
= fold_rtx (op1
, NULL_RTX
);
5021 op1
= equiv_constant (op1
);
5023 /* If we are looking for the low SImode part of
5024 (ashift:DI c (const_int 32)), it doesn't work
5025 to compute that in SImode, because a 32-bit shift
5026 in SImode is unpredictable. We know the value is 0. */
5028 && GET_CODE (elt
->exp
) == ASHIFT
5029 && GET_CODE (op1
) == CONST_INT
5030 && INTVAL (op1
) >= GET_MODE_BITSIZE (mode
))
5032 if (INTVAL (op1
) < GET_MODE_BITSIZE (GET_MODE (elt
->exp
)))
5034 /* If the count fits in the inner mode's width,
5035 but exceeds the outer mode's width,
5036 the value will get truncated to 0
5040 /* If the count exceeds even the inner mode's width,
5041 don't fold this expression. */
5044 else if (op0
&& op1
)
5045 new = simplify_binary_operation (GET_CODE (elt
->exp
), mode
,
5049 else if (GET_CODE (elt
->exp
) == SUBREG
5050 && GET_MODE (SUBREG_REG (elt
->exp
)) == mode
5051 && (GET_MODE_SIZE (GET_MODE (folded_arg0
))
5053 && exp_equiv_p (elt
->exp
, elt
->exp
, 1, 0))
5054 new = copy_rtx (SUBREG_REG (elt
->exp
));
5065 /* If we have (NOT Y), see if Y is known to be (NOT Z).
5066 If so, (NOT Y) simplifies to Z. Similarly for NEG. */
5067 new = lookup_as_function (XEXP (x
, 0), code
);
5069 return fold_rtx (copy_rtx (XEXP (new, 0)), insn
);
5073 /* If we are not actually processing an insn, don't try to find the
5074 best address. Not only don't we care, but we could modify the
5075 MEM in an invalid way since we have no insn to validate against. */
5077 find_best_addr (insn
, &XEXP (x
, 0));
5080 /* Even if we don't fold in the insn itself,
5081 we can safely do so here, in hopes of getting a constant. */
5082 rtx addr
= fold_rtx (XEXP (x
, 0), NULL_RTX
);
5084 HOST_WIDE_INT offset
= 0;
5086 if (GET_CODE (addr
) == REG
5087 && REGNO_QTY_VALID_P (REGNO (addr
))
5088 && GET_MODE (addr
) == qty_mode
[reg_qty
[REGNO (addr
)]]
5089 && qty_const
[reg_qty
[REGNO (addr
)]] != 0)
5090 addr
= qty_const
[reg_qty
[REGNO (addr
)]];
5092 /* If address is constant, split it into a base and integer offset. */
5093 if (GET_CODE (addr
) == SYMBOL_REF
|| GET_CODE (addr
) == LABEL_REF
)
5095 else if (GET_CODE (addr
) == CONST
&& GET_CODE (XEXP (addr
, 0)) == PLUS
5096 && GET_CODE (XEXP (XEXP (addr
, 0), 1)) == CONST_INT
)
5098 base
= XEXP (XEXP (addr
, 0), 0);
5099 offset
= INTVAL (XEXP (XEXP (addr
, 0), 1));
5101 else if (GET_CODE (addr
) == LO_SUM
5102 && GET_CODE (XEXP (addr
, 1)) == SYMBOL_REF
)
5103 base
= XEXP (addr
, 1);
5105 /* If this is a constant pool reference, we can fold it into its
5106 constant to allow better value tracking. */
5107 if (base
&& GET_CODE (base
) == SYMBOL_REF
5108 && CONSTANT_POOL_ADDRESS_P (base
))
5110 rtx constant
= get_pool_constant (base
);
5111 enum machine_mode const_mode
= get_pool_mode (base
);
5114 if (CONSTANT_P (constant
) && GET_CODE (constant
) != CONST_INT
)
5115 constant_pool_entries_cost
= COST (constant
);
5117 /* If we are loading the full constant, we have an equivalence. */
5118 if (offset
== 0 && mode
== const_mode
)
5121 /* If this actually isn't a constant (weird!), we can't do
5122 anything. Otherwise, handle the two most common cases:
5123 extracting a word from a multi-word constant, and extracting
5124 the low-order bits. Other cases don't seem common enough to
5126 if (! CONSTANT_P (constant
))
5129 if (GET_MODE_CLASS (mode
) == MODE_INT
5130 && GET_MODE_SIZE (mode
) == UNITS_PER_WORD
5131 && offset
% UNITS_PER_WORD
== 0
5132 && (new = operand_subword (constant
,
5133 offset
/ UNITS_PER_WORD
,
5134 0, const_mode
)) != 0)
5137 if (((BYTES_BIG_ENDIAN
5138 && offset
== GET_MODE_SIZE (GET_MODE (constant
)) - 1)
5139 || (! BYTES_BIG_ENDIAN
&& offset
== 0))
5140 && (new = gen_lowpart_if_possible (mode
, constant
)) != 0)
5144 /* If this is a reference to a label at a known position in a jump
5145 table, we also know its value. */
5146 if (base
&& GET_CODE (base
) == LABEL_REF
)
5148 rtx label
= XEXP (base
, 0);
5149 rtx table_insn
= NEXT_INSN (label
);
5151 if (table_insn
&& GET_CODE (table_insn
) == JUMP_INSN
5152 && GET_CODE (PATTERN (table_insn
)) == ADDR_VEC
)
5154 rtx table
= PATTERN (table_insn
);
5157 && (offset
/ GET_MODE_SIZE (GET_MODE (table
))
5158 < XVECLEN (table
, 0)))
5159 return XVECEXP (table
, 0,
5160 offset
/ GET_MODE_SIZE (GET_MODE (table
)));
5162 if (table_insn
&& GET_CODE (table_insn
) == JUMP_INSN
5163 && GET_CODE (PATTERN (table_insn
)) == ADDR_DIFF_VEC
)
5165 rtx table
= PATTERN (table_insn
);
5168 && (offset
/ GET_MODE_SIZE (GET_MODE (table
))
5169 < XVECLEN (table
, 1)))
5171 offset
/= GET_MODE_SIZE (GET_MODE (table
));
5172 new = gen_rtx (MINUS
, Pmode
, XVECEXP (table
, 1, offset
),
5175 if (GET_MODE (table
) != Pmode
)
5176 new = gen_rtx (TRUNCATE
, GET_MODE (table
), new);
5178 /* Indicate this is a constant. This isn't a
5179 valid form of CONST, but it will only be used
5180 to fold the next insns and then discarded, so
5181 it should be safe. */
5182 return gen_rtx (CONST
, GET_MODE (new), new);
5191 for (i
= XVECLEN (x
, 3) - 1; i
>= 0; i
--)
5192 validate_change (insn
, &XVECEXP (x
, 3, i
),
5193 fold_rtx (XVECEXP (x
, 3, i
), insn
), 0);
5200 mode_arg0
= VOIDmode
;
5202 /* Try folding our operands.
5203 Then see which ones have constant values known. */
5205 fmt
= GET_RTX_FORMAT (code
);
5206 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
5209 rtx arg
= XEXP (x
, i
);
5210 rtx folded_arg
= arg
, const_arg
= 0;
5211 enum machine_mode mode_arg
= GET_MODE (arg
);
5212 rtx cheap_arg
, expensive_arg
;
5213 rtx replacements
[2];
5216 /* Most arguments are cheap, so handle them specially. */
5217 switch (GET_CODE (arg
))
5220 /* This is the same as calling equiv_constant; it is duplicated
5222 if (REGNO_QTY_VALID_P (REGNO (arg
))
5223 && qty_const
[reg_qty
[REGNO (arg
)]] != 0
5224 && GET_CODE (qty_const
[reg_qty
[REGNO (arg
)]]) != REG
5225 && GET_CODE (qty_const
[reg_qty
[REGNO (arg
)]]) != PLUS
)
5227 = gen_lowpart_if_possible (GET_MODE (arg
),
5228 qty_const
[reg_qty
[REGNO (arg
)]]);
5241 folded_arg
= prev_insn_cc0
;
5242 mode_arg
= prev_insn_cc0_mode
;
5243 const_arg
= equiv_constant (folded_arg
);
5248 folded_arg
= fold_rtx (arg
, insn
);
5249 const_arg
= equiv_constant (folded_arg
);
5252 /* For the first three operands, see if the operand
5253 is constant or equivalent to a constant. */
5257 folded_arg0
= folded_arg
;
5258 const_arg0
= const_arg
;
5259 mode_arg0
= mode_arg
;
5262 folded_arg1
= folded_arg
;
5263 const_arg1
= const_arg
;
5266 const_arg2
= const_arg
;
5270 /* Pick the least expensive of the folded argument and an
5271 equivalent constant argument. */
5272 if (const_arg
== 0 || const_arg
== folded_arg
5273 || COST (const_arg
) > COST (folded_arg
))
5274 cheap_arg
= folded_arg
, expensive_arg
= const_arg
;
5276 cheap_arg
= const_arg
, expensive_arg
= folded_arg
;
5278 /* Try to replace the operand with the cheapest of the two
5279 possibilities. If it doesn't work and this is either of the first
5280 two operands of a commutative operation, try swapping them.
5281 If THAT fails, try the more expensive, provided it is cheaper
5282 than what is already there. */
5284 if (cheap_arg
== XEXP (x
, i
))
5287 if (insn
== 0 && ! copied
)
5293 replacements
[0] = cheap_arg
, replacements
[1] = expensive_arg
;
5295 j
< 2 && replacements
[j
]
5296 && COST (replacements
[j
]) < COST (XEXP (x
, i
));
5299 if (validate_change (insn
, &XEXP (x
, i
), replacements
[j
], 0))
5302 if (code
== NE
|| code
== EQ
|| GET_RTX_CLASS (code
) == 'c')
5304 validate_change (insn
, &XEXP (x
, i
), XEXP (x
, 1 - i
), 1);
5305 validate_change (insn
, &XEXP (x
, 1 - i
), replacements
[j
], 1);
5307 if (apply_change_group ())
5309 /* Swap them back to be invalid so that this loop can
5310 continue and flag them to be swapped back later. */
5313 tem
= XEXP (x
, 0); XEXP (x
, 0) = XEXP (x
, 1);
5322 else if (fmt
[i
] == 'E')
5323 /* Don't try to fold inside of a vector of expressions.
5324 Doing nothing is harmless. */
5327 /* If a commutative operation, place a constant integer as the second
5328 operand unless the first operand is also a constant integer. Otherwise,
5329 place any constant second unless the first operand is also a constant. */
5331 if (code
== EQ
|| code
== NE
|| GET_RTX_CLASS (code
) == 'c')
5333 if (must_swap
|| (const_arg0
5335 || (GET_CODE (const_arg0
) == CONST_INT
5336 && GET_CODE (const_arg1
) != CONST_INT
))))
5338 register rtx tem
= XEXP (x
, 0);
5340 if (insn
== 0 && ! copied
)
5346 validate_change (insn
, &XEXP (x
, 0), XEXP (x
, 1), 1);
5347 validate_change (insn
, &XEXP (x
, 1), tem
, 1);
5348 if (apply_change_group ())
5350 tem
= const_arg0
, const_arg0
= const_arg1
, const_arg1
= tem
;
5351 tem
= folded_arg0
, folded_arg0
= folded_arg1
, folded_arg1
= tem
;
5356 /* If X is an arithmetic operation, see if we can simplify it. */
5358 switch (GET_RTX_CLASS (code
))
5364 /* We can't simplify extension ops unless we know the
5366 if ((code
== ZERO_EXTEND
|| code
== SIGN_EXTEND
)
5367 && mode_arg0
== VOIDmode
)
5370 /* If we had a CONST, strip it off and put it back later if we
5372 if (const_arg0
!= 0 && GET_CODE (const_arg0
) == CONST
)
5373 is_const
= 1, const_arg0
= XEXP (const_arg0
, 0);
5375 new = simplify_unary_operation (code
, mode
,
5376 const_arg0
? const_arg0
: folded_arg0
,
5378 if (new != 0 && is_const
)
5379 new = gen_rtx (CONST
, mode
, new);
5384 /* See what items are actually being compared and set FOLDED_ARG[01]
5385 to those values and CODE to the actual comparison code. If any are
5386 constant, set CONST_ARG0 and CONST_ARG1 appropriately. We needn't
5387 do anything if both operands are already known to be constant. */
5389 if (const_arg0
== 0 || const_arg1
== 0)
5391 struct table_elt
*p0
, *p1
;
5392 rtx
true = const_true_rtx
, false = const0_rtx
;
5393 enum machine_mode mode_arg1
;
5395 #ifdef FLOAT_STORE_FLAG_VALUE
5396 if (GET_MODE_CLASS (mode
) == MODE_FLOAT
)
5398 true = CONST_DOUBLE_FROM_REAL_VALUE (FLOAT_STORE_FLAG_VALUE
,
5400 false = CONST0_RTX (mode
);
5404 code
= find_comparison_args (code
, &folded_arg0
, &folded_arg1
,
5405 &mode_arg0
, &mode_arg1
);
5406 const_arg0
= equiv_constant (folded_arg0
);
5407 const_arg1
= equiv_constant (folded_arg1
);
5409 /* If the mode is VOIDmode or a MODE_CC mode, we don't know
5410 what kinds of things are being compared, so we can't do
5411 anything with this comparison. */
5413 if (mode_arg0
== VOIDmode
|| GET_MODE_CLASS (mode_arg0
) == MODE_CC
)
5416 /* If we do not now have two constants being compared, see
5417 if we can nevertheless deduce some things about the
5419 if (const_arg0
== 0 || const_arg1
== 0)
5421 /* Is FOLDED_ARG0 frame-pointer plus a constant? Or
5422 non-explicit constant? These aren't zero, but we
5423 don't know their sign. */
5424 if (const_arg1
== const0_rtx
5425 && (NONZERO_BASE_PLUS_P (folded_arg0
)
5426 #if 0 /* Sad to say, on sysvr4, #pragma weak can make a symbol address
5428 || GET_CODE (folded_arg0
) == SYMBOL_REF
5430 || GET_CODE (folded_arg0
) == LABEL_REF
5431 || GET_CODE (folded_arg0
) == CONST
))
5435 else if (code
== NE
)
5439 /* See if the two operands are the same. We don't do this
5440 for IEEE floating-point since we can't assume x == x
5441 since x might be a NaN. */
5443 if ((TARGET_FLOAT_FORMAT
!= IEEE_FLOAT_FORMAT
5444 || ! FLOAT_MODE_P (mode_arg0
) || flag_fast_math
)
5445 && (folded_arg0
== folded_arg1
5446 || (GET_CODE (folded_arg0
) == REG
5447 && GET_CODE (folded_arg1
) == REG
5448 && (reg_qty
[REGNO (folded_arg0
)]
5449 == reg_qty
[REGNO (folded_arg1
)]))
5450 || ((p0
= lookup (folded_arg0
,
5451 (safe_hash (folded_arg0
, mode_arg0
)
5452 % NBUCKETS
), mode_arg0
))
5453 && (p1
= lookup (folded_arg1
,
5454 (safe_hash (folded_arg1
, mode_arg0
)
5455 % NBUCKETS
), mode_arg0
))
5456 && p0
->first_same_value
== p1
->first_same_value
)))
5457 return ((code
== EQ
|| code
== LE
|| code
== GE
5458 || code
== LEU
|| code
== GEU
)
5461 /* If FOLDED_ARG0 is a register, see if the comparison we are
5462 doing now is either the same as we did before or the reverse
5463 (we only check the reverse if not floating-point). */
5464 else if (GET_CODE (folded_arg0
) == REG
)
5466 int qty
= reg_qty
[REGNO (folded_arg0
)];
5468 if (REGNO_QTY_VALID_P (REGNO (folded_arg0
))
5469 && (comparison_dominates_p (qty_comparison_code
[qty
], code
)
5470 || (comparison_dominates_p (qty_comparison_code
[qty
],
5471 reverse_condition (code
))
5472 && ! FLOAT_MODE_P (mode_arg0
)))
5473 && (rtx_equal_p (qty_comparison_const
[qty
], folded_arg1
)
5475 && rtx_equal_p (qty_comparison_const
[qty
],
5477 || (GET_CODE (folded_arg1
) == REG
5478 && (reg_qty
[REGNO (folded_arg1
)]
5479 == qty_comparison_qty
[qty
]))))
5480 return (comparison_dominates_p (qty_comparison_code
[qty
],
5487 /* If we are comparing against zero, see if the first operand is
5488 equivalent to an IOR with a constant. If so, we may be able to
5489 determine the result of this comparison. */
5491 if (const_arg1
== const0_rtx
)
5493 rtx y
= lookup_as_function (folded_arg0
, IOR
);
5497 && (inner_const
= equiv_constant (XEXP (y
, 1))) != 0
5498 && GET_CODE (inner_const
) == CONST_INT
5499 && INTVAL (inner_const
) != 0)
5501 int sign_bitnum
= GET_MODE_BITSIZE (mode_arg0
) - 1;
5502 int has_sign
= (HOST_BITS_PER_WIDE_INT
>= sign_bitnum
5503 && (INTVAL (inner_const
)
5504 & ((HOST_WIDE_INT
) 1 << sign_bitnum
)));
5505 rtx
true = const_true_rtx
, false = const0_rtx
;
5507 #ifdef FLOAT_STORE_FLAG_VALUE
5508 if (GET_MODE_CLASS (mode
) == MODE_FLOAT
)
5510 true = CONST_DOUBLE_FROM_REAL_VALUE (FLOAT_STORE_FLAG_VALUE
,
5512 false = CONST0_RTX (mode
);
5534 new = simplify_relational_operation (code
, mode_arg0
,
5535 const_arg0
? const_arg0
: folded_arg0
,
5536 const_arg1
? const_arg1
: folded_arg1
);
5537 #ifdef FLOAT_STORE_FLAG_VALUE
5538 if (new != 0 && GET_MODE_CLASS (mode
) == MODE_FLOAT
)
5539 new = ((new == const0_rtx
) ? CONST0_RTX (mode
)
5540 : CONST_DOUBLE_FROM_REAL_VALUE (FLOAT_STORE_FLAG_VALUE
, mode
));
5549 /* If the second operand is a LABEL_REF, see if the first is a MINUS
5550 with that LABEL_REF as its second operand. If so, the result is
5551 the first operand of that MINUS. This handles switches with an
5552 ADDR_DIFF_VEC table. */
5553 if (const_arg1
&& GET_CODE (const_arg1
) == LABEL_REF
)
5556 = GET_CODE (folded_arg0
) == MINUS
? folded_arg0
5557 : lookup_as_function (folded_arg0
, MINUS
);
5559 if (y
!= 0 && GET_CODE (XEXP (y
, 1)) == LABEL_REF
5560 && XEXP (XEXP (y
, 1), 0) == XEXP (const_arg1
, 0))
5563 /* Now try for a CONST of a MINUS like the above. */
5564 if ((y
= (GET_CODE (folded_arg0
) == CONST
? folded_arg0
5565 : lookup_as_function (folded_arg0
, CONST
))) != 0
5566 && GET_CODE (XEXP (y
, 0)) == MINUS
5567 && GET_CODE (XEXP (XEXP (y
, 0), 1)) == LABEL_REF
5568 && XEXP (XEXP (XEXP (y
, 0),1), 0) == XEXP (const_arg1
, 0))
5569 return XEXP (XEXP (y
, 0), 0);
5572 /* Likewise if the operands are in the other order. */
5573 if (const_arg0
&& GET_CODE (const_arg0
) == LABEL_REF
)
5576 = GET_CODE (folded_arg1
) == MINUS
? folded_arg1
5577 : lookup_as_function (folded_arg1
, MINUS
);
5579 if (y
!= 0 && GET_CODE (XEXP (y
, 1)) == LABEL_REF
5580 && XEXP (XEXP (y
, 1), 0) == XEXP (const_arg0
, 0))
5583 /* Now try for a CONST of a MINUS like the above. */
5584 if ((y
= (GET_CODE (folded_arg1
) == CONST
? folded_arg1
5585 : lookup_as_function (folded_arg1
, CONST
))) != 0
5586 && GET_CODE (XEXP (y
, 0)) == MINUS
5587 && GET_CODE (XEXP (XEXP (y
, 0), 1)) == LABEL_REF
5588 && XEXP (XEXP (XEXP (y
, 0),1), 0) == XEXP (const_arg0
, 0))
5589 return XEXP (XEXP (y
, 0), 0);
5592 /* If second operand is a register equivalent to a negative
5593 CONST_INT, see if we can find a register equivalent to the
5594 positive constant. Make a MINUS if so. Don't do this for
5595 a non-negative constant since we might then alternate between
5596 chosing positive and negative constants. Having the positive
5597 constant previously-used is the more common case. Be sure
5598 the resulting constant is non-negative; if const_arg1 were
5599 the smallest negative number this would overflow: depending
5600 on the mode, this would either just be the same value (and
5601 hence not save anything) or be incorrect. */
5602 if (const_arg1
!= 0 && GET_CODE (const_arg1
) == CONST_INT
5603 && INTVAL (const_arg1
) < 0
5604 && - INTVAL (const_arg1
) >= 0
5605 && GET_CODE (folded_arg1
) == REG
)
5607 rtx new_const
= GEN_INT (- INTVAL (const_arg1
));
5609 = lookup (new_const
, safe_hash (new_const
, mode
) % NBUCKETS
,
5613 for (p
= p
->first_same_value
; p
; p
= p
->next_same_value
)
5614 if (GET_CODE (p
->exp
) == REG
)
5615 return cse_gen_binary (MINUS
, mode
, folded_arg0
,
5616 canon_reg (p
->exp
, NULL_RTX
));
5621 /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2).
5622 If so, produce (PLUS Z C2-C). */
5623 if (const_arg1
!= 0 && GET_CODE (const_arg1
) == CONST_INT
)
5625 rtx y
= lookup_as_function (XEXP (x
, 0), PLUS
);
5626 if (y
&& GET_CODE (XEXP (y
, 1)) == CONST_INT
)
5627 return fold_rtx (plus_constant (copy_rtx (y
),
5628 -INTVAL (const_arg1
)),
5632 /* ... fall through ... */
5635 case SMIN
: case SMAX
: case UMIN
: case UMAX
:
5636 case IOR
: case AND
: case XOR
:
5637 case MULT
: case DIV
: case UDIV
:
5638 case ASHIFT
: case LSHIFTRT
: case ASHIFTRT
:
5639 /* If we have (<op> <reg> <const_int>) for an associative OP and REG
5640 is known to be of similar form, we may be able to replace the
5641 operation with a combined operation. This may eliminate the
5642 intermediate operation if every use is simplified in this way.
5643 Note that the similar optimization done by combine.c only works
5644 if the intermediate operation's result has only one reference. */
5646 if (GET_CODE (folded_arg0
) == REG
5647 && const_arg1
&& GET_CODE (const_arg1
) == CONST_INT
)
5650 = (code
== ASHIFT
|| code
== ASHIFTRT
|| code
== LSHIFTRT
);
5651 rtx y
= lookup_as_function (folded_arg0
, code
);
5653 enum rtx_code associate_code
;
5657 || 0 == (inner_const
5658 = equiv_constant (fold_rtx (XEXP (y
, 1), 0)))
5659 || GET_CODE (inner_const
) != CONST_INT
5660 /* If we have compiled a statement like
5661 "if (x == (x & mask1))", and now are looking at
5662 "x & mask2", we will have a case where the first operand
5663 of Y is the same as our first operand. Unless we detect
5664 this case, an infinite loop will result. */
5665 || XEXP (y
, 0) == folded_arg0
)
5668 /* Don't associate these operations if they are a PLUS with the
5669 same constant and it is a power of two. These might be doable
5670 with a pre- or post-increment. Similarly for two subtracts of
5671 identical powers of two with post decrement. */
5673 if (code
== PLUS
&& INTVAL (const_arg1
) == INTVAL (inner_const
)
5675 #if defined(HAVE_PRE_INCREMENT) || defined(HAVE_POST_INCREMENT)
5676 || exact_log2 (INTVAL (const_arg1
)) >= 0
5678 #if defined(HAVE_PRE_DECREMENT) || defined(HAVE_POST_DECREMENT)
5679 || exact_log2 (- INTVAL (const_arg1
)) >= 0
5684 /* Compute the code used to compose the constants. For example,
5685 A/C1/C2 is A/(C1 * C2), so if CODE == DIV, we want MULT. */
5688 = (code
== MULT
|| code
== DIV
|| code
== UDIV
? MULT
5689 : is_shift
|| code
== PLUS
|| code
== MINUS
? PLUS
: code
);
5691 new_const
= simplify_binary_operation (associate_code
, mode
,
5692 const_arg1
, inner_const
);
5697 /* If we are associating shift operations, don't let this
5698 produce a shift of the size of the object or larger.
5699 This could occur when we follow a sign-extend by a right
5700 shift on a machine that does a sign-extend as a pair
5703 if (is_shift
&& GET_CODE (new_const
) == CONST_INT
5704 && INTVAL (new_const
) >= GET_MODE_BITSIZE (mode
))
5706 /* As an exception, we can turn an ASHIFTRT of this
5707 form into a shift of the number of bits - 1. */
5708 if (code
== ASHIFTRT
)
5709 new_const
= GEN_INT (GET_MODE_BITSIZE (mode
) - 1);
5714 y
= copy_rtx (XEXP (y
, 0));
5716 /* If Y contains our first operand (the most common way this
5717 can happen is if Y is a MEM), we would do into an infinite
5718 loop if we tried to fold it. So don't in that case. */
5720 if (! reg_mentioned_p (folded_arg0
, y
))
5721 y
= fold_rtx (y
, insn
);
5723 return cse_gen_binary (code
, mode
, y
, new_const
);
5727 new = simplify_binary_operation (code
, mode
,
5728 const_arg0
? const_arg0
: folded_arg0
,
5729 const_arg1
? const_arg1
: folded_arg1
);
5733 /* (lo_sum (high X) X) is simply X. */
5734 if (code
== LO_SUM
&& const_arg0
!= 0
5735 && GET_CODE (const_arg0
) == HIGH
5736 && rtx_equal_p (XEXP (const_arg0
, 0), const_arg1
))
5742 new = simplify_ternary_operation (code
, mode
, mode_arg0
,
5743 const_arg0
? const_arg0
: folded_arg0
,
5744 const_arg1
? const_arg1
: folded_arg1
,
5745 const_arg2
? const_arg2
: XEXP (x
, 2));
5749 return new ? new : x
;
5752 /* Return a constant value currently equivalent to X.
5753 Return 0 if we don't know one. */
5759 if (GET_CODE (x
) == REG
5760 && REGNO_QTY_VALID_P (REGNO (x
))
5761 && qty_const
[reg_qty
[REGNO (x
)]])
5762 x
= gen_lowpart_if_possible (GET_MODE (x
), qty_const
[reg_qty
[REGNO (x
)]]);
5764 if (x
!= 0 && CONSTANT_P (x
))
5767 /* If X is a MEM, try to fold it outside the context of any insn to see if
5768 it might be equivalent to a constant. That handles the case where it
5769 is a constant-pool reference. Then try to look it up in the hash table
5770 in case it is something whose value we have seen before. */
5772 if (GET_CODE (x
) == MEM
)
5774 struct table_elt
*elt
;
5776 x
= fold_rtx (x
, NULL_RTX
);
5780 elt
= lookup (x
, safe_hash (x
, GET_MODE (x
)) % NBUCKETS
, GET_MODE (x
));
5784 for (elt
= elt
->first_same_value
; elt
; elt
= elt
->next_same_value
)
5785 if (elt
->is_const
&& CONSTANT_P (elt
->exp
))
5792 /* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a fixed-point
5793 number, return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
5794 least-significant part of X.
5795 MODE specifies how big a part of X to return.
5797 If the requested operation cannot be done, 0 is returned.
5799 This is similar to gen_lowpart in emit-rtl.c. */
5802 gen_lowpart_if_possible (mode
, x
)
5803 enum machine_mode mode
;
5806 rtx result
= gen_lowpart_common (mode
, x
);
5810 else if (GET_CODE (x
) == MEM
)
5812 /* This is the only other case we handle. */
5813 register int offset
= 0;
5816 if (WORDS_BIG_ENDIAN
)
5817 offset
= (MAX (GET_MODE_SIZE (GET_MODE (x
)), UNITS_PER_WORD
)
5818 - MAX (GET_MODE_SIZE (mode
), UNITS_PER_WORD
));
5819 if (BYTES_BIG_ENDIAN
)
5820 /* Adjust the address so that the address-after-the-data is
5822 offset
-= (MIN (UNITS_PER_WORD
, GET_MODE_SIZE (mode
))
5823 - MIN (UNITS_PER_WORD
, GET_MODE_SIZE (GET_MODE (x
))));
5824 new = gen_rtx (MEM
, mode
, plus_constant (XEXP (x
, 0), offset
));
5825 if (! memory_address_p (mode
, XEXP (new, 0)))
5827 MEM_VOLATILE_P (new) = MEM_VOLATILE_P (x
);
5828 RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (x
);
5829 MEM_IN_STRUCT_P (new) = MEM_IN_STRUCT_P (x
);
5836 /* Given INSN, a jump insn, TAKEN indicates if we are following the "taken"
5837 branch. It will be zero if not.
5839 In certain cases, this can cause us to add an equivalence. For example,
5840 if we are following the taken case of
5842 we can add the fact that `i' and '2' are now equivalent.
5844 In any case, we can record that this comparison was passed. If the same
5845 comparison is seen later, we will know its value. */
5848 record_jump_equiv (insn
, taken
)
5852 int cond_known_true
;
5854 enum machine_mode mode
, mode0
, mode1
;
5855 int reversed_nonequality
= 0;
5858 /* Ensure this is the right kind of insn. */
5859 if (! condjump_p (insn
) || simplejump_p (insn
))
5862 /* See if this jump condition is known true or false. */
5864 cond_known_true
= (XEXP (SET_SRC (PATTERN (insn
)), 2) == pc_rtx
);
5866 cond_known_true
= (XEXP (SET_SRC (PATTERN (insn
)), 1) == pc_rtx
);
5868 /* Get the type of comparison being done and the operands being compared.
5869 If we had to reverse a non-equality condition, record that fact so we
5870 know that it isn't valid for floating-point. */
5871 code
= GET_CODE (XEXP (SET_SRC (PATTERN (insn
)), 0));
5872 op0
= fold_rtx (XEXP (XEXP (SET_SRC (PATTERN (insn
)), 0), 0), insn
);
5873 op1
= fold_rtx (XEXP (XEXP (SET_SRC (PATTERN (insn
)), 0), 1), insn
);
5875 code
= find_comparison_args (code
, &op0
, &op1
, &mode0
, &mode1
);
5876 if (! cond_known_true
)
5878 reversed_nonequality
= (code
!= EQ
&& code
!= NE
);
5879 code
= reverse_condition (code
);
5882 /* The mode is the mode of the non-constant. */
5884 if (mode1
!= VOIDmode
)
5887 record_jump_cond (code
, mode
, op0
, op1
, reversed_nonequality
);
5890 /* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
5891 REVERSED_NONEQUALITY is nonzero if CODE had to be swapped.
5892 Make any useful entries we can with that information. Called from
5893 above function and called recursively. */
5896 record_jump_cond (code
, mode
, op0
, op1
, reversed_nonequality
)
5898 enum machine_mode mode
;
5900 int reversed_nonequality
;
5902 unsigned op0_hash
, op1_hash
;
5903 int op0_in_memory
, op0_in_struct
, op1_in_memory
, op1_in_struct
;
5904 struct table_elt
*op0_elt
, *op1_elt
;
5906 /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
5907 we know that they are also equal in the smaller mode (this is also
5908 true for all smaller modes whether or not there is a SUBREG, but
5909 is not worth testing for with no SUBREG. */
5911 /* Note that GET_MODE (op0) may not equal MODE. */
5912 if (code
== EQ
&& GET_CODE (op0
) == SUBREG
5913 && (GET_MODE_SIZE (GET_MODE (op0
))
5914 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0
)))))
5916 enum machine_mode inner_mode
= GET_MODE (SUBREG_REG (op0
));
5917 rtx tem
= gen_lowpart_if_possible (inner_mode
, op1
);
5919 record_jump_cond (code
, mode
, SUBREG_REG (op0
),
5920 tem
? tem
: gen_rtx (SUBREG
, inner_mode
, op1
, 0),
5921 reversed_nonequality
);
5924 if (code
== EQ
&& GET_CODE (op1
) == SUBREG
5925 && (GET_MODE_SIZE (GET_MODE (op1
))
5926 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1
)))))
5928 enum machine_mode inner_mode
= GET_MODE (SUBREG_REG (op1
));
5929 rtx tem
= gen_lowpart_if_possible (inner_mode
, op0
);
5931 record_jump_cond (code
, mode
, SUBREG_REG (op1
),
5932 tem
? tem
: gen_rtx (SUBREG
, inner_mode
, op0
, 0),
5933 reversed_nonequality
);
5936 /* Similarly, if this is an NE comparison, and either is a SUBREG
5937 making a smaller mode, we know the whole thing is also NE. */
5939 /* Note that GET_MODE (op0) may not equal MODE;
5940 if we test MODE instead, we can get an infinite recursion
5941 alternating between two modes each wider than MODE. */
5943 if (code
== NE
&& GET_CODE (op0
) == SUBREG
5944 && subreg_lowpart_p (op0
)
5945 && (GET_MODE_SIZE (GET_MODE (op0
))
5946 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0
)))))
5948 enum machine_mode inner_mode
= GET_MODE (SUBREG_REG (op0
));
5949 rtx tem
= gen_lowpart_if_possible (inner_mode
, op1
);
5951 record_jump_cond (code
, mode
, SUBREG_REG (op0
),
5952 tem
? tem
: gen_rtx (SUBREG
, inner_mode
, op1
, 0),
5953 reversed_nonequality
);
5956 if (code
== NE
&& GET_CODE (op1
) == SUBREG
5957 && subreg_lowpart_p (op1
)
5958 && (GET_MODE_SIZE (GET_MODE (op1
))
5959 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1
)))))
5961 enum machine_mode inner_mode
= GET_MODE (SUBREG_REG (op1
));
5962 rtx tem
= gen_lowpart_if_possible (inner_mode
, op0
);
5964 record_jump_cond (code
, mode
, SUBREG_REG (op1
),
5965 tem
? tem
: gen_rtx (SUBREG
, inner_mode
, op0
, 0),
5966 reversed_nonequality
);
5969 /* Hash both operands. */
5972 hash_arg_in_memory
= 0;
5973 hash_arg_in_struct
= 0;
5974 op0_hash
= HASH (op0
, mode
);
5975 op0_in_memory
= hash_arg_in_memory
;
5976 op0_in_struct
= hash_arg_in_struct
;
5982 hash_arg_in_memory
= 0;
5983 hash_arg_in_struct
= 0;
5984 op1_hash
= HASH (op1
, mode
);
5985 op1_in_memory
= hash_arg_in_memory
;
5986 op1_in_struct
= hash_arg_in_struct
;
5991 /* Look up both operands. */
5992 op0_elt
= lookup (op0
, op0_hash
, mode
);
5993 op1_elt
= lookup (op1
, op1_hash
, mode
);
5995 /* If both operands are already equivalent or if they are not in the
5996 table but are identical, do nothing. */
5997 if ((op0_elt
!= 0 && op1_elt
!= 0
5998 && op0_elt
->first_same_value
== op1_elt
->first_same_value
)
5999 || op0
== op1
|| rtx_equal_p (op0
, op1
))
6002 /* If we aren't setting two things equal all we can do is save this
6003 comparison. Similarly if this is floating-point. In the latter
6004 case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
6005 If we record the equality, we might inadvertently delete code
6006 whose intent was to change -0 to +0. */
6008 if (code
!= EQ
|| FLOAT_MODE_P (GET_MODE (op0
)))
6010 /* If we reversed a floating-point comparison, if OP0 is not a
6011 register, or if OP1 is neither a register or constant, we can't
6014 if (GET_CODE (op1
) != REG
)
6015 op1
= equiv_constant (op1
);
6017 if ((reversed_nonequality
&& FLOAT_MODE_P (mode
))
6018 || GET_CODE (op0
) != REG
|| op1
== 0)
6021 /* Put OP0 in the hash table if it isn't already. This gives it a
6022 new quantity number. */
6025 if (insert_regs (op0
, NULL_PTR
, 0))
6027 rehash_using_reg (op0
);
6028 op0_hash
= HASH (op0
, mode
);
6030 /* If OP0 is contained in OP1, this changes its hash code
6031 as well. Faster to rehash than to check, except
6032 for the simple case of a constant. */
6033 if (! CONSTANT_P (op1
))
6034 op1_hash
= HASH (op1
,mode
);
6037 op0_elt
= insert (op0
, NULL_PTR
, op0_hash
, mode
);
6038 op0_elt
->in_memory
= op0_in_memory
;
6039 op0_elt
->in_struct
= op0_in_struct
;
6042 qty_comparison_code
[reg_qty
[REGNO (op0
)]] = code
;
6043 if (GET_CODE (op1
) == REG
)
6045 /* Look it up again--in case op0 and op1 are the same. */
6046 op1_elt
= lookup (op1
, op1_hash
, mode
);
6048 /* Put OP1 in the hash table so it gets a new quantity number. */
6051 if (insert_regs (op1
, NULL_PTR
, 0))
6053 rehash_using_reg (op1
);
6054 op1_hash
= HASH (op1
, mode
);
6057 op1_elt
= insert (op1
, NULL_PTR
, op1_hash
, mode
);
6058 op1_elt
->in_memory
= op1_in_memory
;
6059 op1_elt
->in_struct
= op1_in_struct
;
6062 qty_comparison_qty
[reg_qty
[REGNO (op0
)]] = reg_qty
[REGNO (op1
)];
6063 qty_comparison_const
[reg_qty
[REGNO (op0
)]] = 0;
6067 qty_comparison_qty
[reg_qty
[REGNO (op0
)]] = -1;
6068 qty_comparison_const
[reg_qty
[REGNO (op0
)]] = op1
;
6074 /* If either side is still missing an equivalence, make it now,
6075 then merge the equivalences. */
6079 if (insert_regs (op0
, NULL_PTR
, 0))
6081 rehash_using_reg (op0
);
6082 op0_hash
= HASH (op0
, mode
);
6085 op0_elt
= insert (op0
, NULL_PTR
, op0_hash
, mode
);
6086 op0_elt
->in_memory
= op0_in_memory
;
6087 op0_elt
->in_struct
= op0_in_struct
;
6092 if (insert_regs (op1
, NULL_PTR
, 0))
6094 rehash_using_reg (op1
);
6095 op1_hash
= HASH (op1
, mode
);
6098 op1_elt
= insert (op1
, NULL_PTR
, op1_hash
, mode
);
6099 op1_elt
->in_memory
= op1_in_memory
;
6100 op1_elt
->in_struct
= op1_in_struct
;
6103 merge_equiv_classes (op0_elt
, op1_elt
);
6104 last_jump_equiv_class
= op0_elt
;
6107 /* CSE processing for one instruction.
6108 First simplify sources and addresses of all assignments
6109 in the instruction, using previously-computed equivalents values.
6110 Then install the new sources and destinations in the table
6111 of available values.
6113 If IN_LIBCALL_BLOCK is nonzero, don't record any equivalence made in
6116 /* Data on one SET contained in the instruction. */
6120 /* The SET rtx itself. */
6122 /* The SET_SRC of the rtx (the original value, if it is changing). */
6124 /* The hash-table element for the SET_SRC of the SET. */
6125 struct table_elt
*src_elt
;
6126 /* Hash value for the SET_SRC. */
6128 /* Hash value for the SET_DEST. */
6130 /* The SET_DEST, with SUBREG, etc., stripped. */
6132 /* Place where the pointer to the INNER_DEST was found. */
6133 rtx
*inner_dest_loc
;
6134 /* Nonzero if the SET_SRC is in memory. */
6136 /* Nonzero if the SET_SRC is in a structure. */
6138 /* Nonzero if the SET_SRC contains something
6139 whose value cannot be predicted and understood. */
6141 /* Original machine mode, in case it becomes a CONST_INT. */
6142 enum machine_mode mode
;
6143 /* A constant equivalent for SET_SRC, if any. */
6145 /* Hash value of constant equivalent for SET_SRC. */
6146 unsigned src_const_hash
;
6147 /* Table entry for constant equivalent for SET_SRC, if any. */
6148 struct table_elt
*src_const_elt
;
6152 cse_insn (insn
, in_libcall_block
)
6154 int in_libcall_block
;
6156 register rtx x
= PATTERN (insn
);
6159 register int n_sets
= 0;
6161 /* Records what this insn does to set CC0. */
6162 rtx this_insn_cc0
= 0;
6163 enum machine_mode this_insn_cc0_mode
;
6164 struct write_data writes_memory
;
6165 static struct write_data init
= {0, 0, 0, 0};
6168 struct table_elt
*src_eqv_elt
= 0;
6169 int src_eqv_volatile
;
6170 int src_eqv_in_memory
;
6171 int src_eqv_in_struct
;
6172 unsigned src_eqv_hash
;
6177 writes_memory
= init
;
6179 /* Find all the SETs and CLOBBERs in this instruction.
6180 Record all the SETs in the array `set' and count them.
6181 Also determine whether there is a CLOBBER that invalidates
6182 all memory references, or all references at varying addresses. */
6184 if (GET_CODE (insn
) == CALL_INSN
)
6186 for (tem
= CALL_INSN_FUNCTION_USAGE (insn
); tem
; tem
= XEXP (tem
, 1))
6187 if (GET_CODE (XEXP (tem
, 0)) == CLOBBER
)
6188 invalidate (SET_DEST (XEXP (tem
, 0)), VOIDmode
);
6191 if (GET_CODE (x
) == SET
)
6193 sets
= (struct set
*) alloca (sizeof (struct set
));
6196 /* Ignore SETs that are unconditional jumps.
6197 They never need cse processing, so this does not hurt.
6198 The reason is not efficiency but rather
6199 so that we can test at the end for instructions
6200 that have been simplified to unconditional jumps
6201 and not be misled by unchanged instructions
6202 that were unconditional jumps to begin with. */
6203 if (SET_DEST (x
) == pc_rtx
6204 && GET_CODE (SET_SRC (x
)) == LABEL_REF
)
6207 /* Don't count call-insns, (set (reg 0) (call ...)), as a set.
6208 The hard function value register is used only once, to copy to
6209 someplace else, so it isn't worth cse'ing (and on 80386 is unsafe)!
6210 Ensure we invalidate the destination register. On the 80386 no
6211 other code would invalidate it since it is a fixed_reg.
6212 We need not check the return of apply_change_group; see canon_reg. */
6214 else if (GET_CODE (SET_SRC (x
)) == CALL
)
6216 canon_reg (SET_SRC (x
), insn
);
6217 apply_change_group ();
6218 fold_rtx (SET_SRC (x
), insn
);
6219 invalidate (SET_DEST (x
), VOIDmode
);
6224 else if (GET_CODE (x
) == PARALLEL
)
6226 register int lim
= XVECLEN (x
, 0);
6228 sets
= (struct set
*) alloca (lim
* sizeof (struct set
));
6230 /* Find all regs explicitly clobbered in this insn,
6231 and ensure they are not replaced with any other regs
6232 elsewhere in this insn.
6233 When a reg that is clobbered is also used for input,
6234 we should presume that that is for a reason,
6235 and we should not substitute some other register
6236 which is not supposed to be clobbered.
6237 Therefore, this loop cannot be merged into the one below
6238 because a CALL may precede a CLOBBER and refer to the
6239 value clobbered. We must not let a canonicalization do
6240 anything in that case. */
6241 for (i
= 0; i
< lim
; i
++)
6243 register rtx y
= XVECEXP (x
, 0, i
);
6244 if (GET_CODE (y
) == CLOBBER
)
6246 rtx clobbered
= XEXP (y
, 0);
6248 if (GET_CODE (clobbered
) == REG
6249 || GET_CODE (clobbered
) == SUBREG
)
6250 invalidate (clobbered
, VOIDmode
);
6251 else if (GET_CODE (clobbered
) == STRICT_LOW_PART
6252 || GET_CODE (clobbered
) == ZERO_EXTRACT
)
6253 invalidate (XEXP (clobbered
, 0), GET_MODE (clobbered
));
6257 for (i
= 0; i
< lim
; i
++)
6259 register rtx y
= XVECEXP (x
, 0, i
);
6260 if (GET_CODE (y
) == SET
)
6262 /* As above, we ignore unconditional jumps and call-insns and
6263 ignore the result of apply_change_group. */
6264 if (GET_CODE (SET_SRC (y
)) == CALL
)
6266 canon_reg (SET_SRC (y
), insn
);
6267 apply_change_group ();
6268 fold_rtx (SET_SRC (y
), insn
);
6269 invalidate (SET_DEST (y
), VOIDmode
);
6271 else if (SET_DEST (y
) == pc_rtx
6272 && GET_CODE (SET_SRC (y
)) == LABEL_REF
)
6275 sets
[n_sets
++].rtl
= y
;
6277 else if (GET_CODE (y
) == CLOBBER
)
6279 /* If we clobber memory, take note of that,
6280 and canon the address.
6281 This does nothing when a register is clobbered
6282 because we have already invalidated the reg. */
6283 if (GET_CODE (XEXP (y
, 0)) == MEM
)
6285 canon_reg (XEXP (y
, 0), NULL_RTX
);
6286 note_mem_written (XEXP (y
, 0), &writes_memory
);
6289 else if (GET_CODE (y
) == USE
6290 && ! (GET_CODE (XEXP (y
, 0)) == REG
6291 && REGNO (XEXP (y
, 0)) < FIRST_PSEUDO_REGISTER
))
6292 canon_reg (y
, NULL_RTX
);
6293 else if (GET_CODE (y
) == CALL
)
6295 /* The result of apply_change_group can be ignored; see
6297 canon_reg (y
, insn
);
6298 apply_change_group ();
6303 else if (GET_CODE (x
) == CLOBBER
)
6305 if (GET_CODE (XEXP (x
, 0)) == MEM
)
6307 canon_reg (XEXP (x
, 0), NULL_RTX
);
6308 note_mem_written (XEXP (x
, 0), &writes_memory
);
6312 /* Canonicalize a USE of a pseudo register or memory location. */
6313 else if (GET_CODE (x
) == USE
6314 && ! (GET_CODE (XEXP (x
, 0)) == REG
6315 && REGNO (XEXP (x
, 0)) < FIRST_PSEUDO_REGISTER
))
6316 canon_reg (XEXP (x
, 0), NULL_RTX
);
6317 else if (GET_CODE (x
) == CALL
)
6319 /* The result of apply_change_group can be ignored; see canon_reg. */
6320 canon_reg (x
, insn
);
6321 apply_change_group ();
6325 /* Store the equivalent value in SRC_EQV, if different, or if the DEST
6326 is a STRICT_LOW_PART. The latter condition is necessary because SRC_EQV
6327 is handled specially for this case, and if it isn't set, then there will
6328 be no equivalence for the destination. */
6329 if (n_sets
== 1 && REG_NOTES (insn
) != 0
6330 && (tem
= find_reg_note (insn
, REG_EQUAL
, NULL_RTX
)) != 0
6331 && (! rtx_equal_p (XEXP (tem
, 0), SET_SRC (sets
[0].rtl
))
6332 || GET_CODE (SET_DEST (sets
[0].rtl
)) == STRICT_LOW_PART
))
6333 src_eqv
= canon_reg (XEXP (tem
, 0), NULL_RTX
);
6335 /* Canonicalize sources and addresses of destinations.
6336 We do this in a separate pass to avoid problems when a MATCH_DUP is
6337 present in the insn pattern. In that case, we want to ensure that
6338 we don't break the duplicate nature of the pattern. So we will replace
6339 both operands at the same time. Otherwise, we would fail to find an
6340 equivalent substitution in the loop calling validate_change below.
6342 We used to suppress canonicalization of DEST if it appears in SRC,
6343 but we don't do this any more. */
6345 for (i
= 0; i
< n_sets
; i
++)
6347 rtx dest
= SET_DEST (sets
[i
].rtl
);
6348 rtx src
= SET_SRC (sets
[i
].rtl
);
6349 rtx
new = canon_reg (src
, insn
);
6352 if ((GET_CODE (new) == REG
&& GET_CODE (src
) == REG
6353 && ((REGNO (new) < FIRST_PSEUDO_REGISTER
)
6354 != (REGNO (src
) < FIRST_PSEUDO_REGISTER
)))
6355 || (insn_code
= recog_memoized (insn
)) < 0
6356 || insn_n_dups
[insn_code
] > 0)
6357 validate_change (insn
, &SET_SRC (sets
[i
].rtl
), new, 1);
6359 SET_SRC (sets
[i
].rtl
) = new;
6361 if (GET_CODE (dest
) == ZERO_EXTRACT
|| GET_CODE (dest
) == SIGN_EXTRACT
)
6363 validate_change (insn
, &XEXP (dest
, 1),
6364 canon_reg (XEXP (dest
, 1), insn
), 1);
6365 validate_change (insn
, &XEXP (dest
, 2),
6366 canon_reg (XEXP (dest
, 2), insn
), 1);
6369 while (GET_CODE (dest
) == SUBREG
|| GET_CODE (dest
) == STRICT_LOW_PART
6370 || GET_CODE (dest
) == ZERO_EXTRACT
6371 || GET_CODE (dest
) == SIGN_EXTRACT
)
6372 dest
= XEXP (dest
, 0);
6374 if (GET_CODE (dest
) == MEM
)
6375 canon_reg (dest
, insn
);
6378 /* Now that we have done all the replacements, we can apply the change
6379 group and see if they all work. Note that this will cause some
6380 canonicalizations that would have worked individually not to be applied
6381 because some other canonicalization didn't work, but this should not
6384 The result of apply_change_group can be ignored; see canon_reg. */
6386 apply_change_group ();
6388 /* Set sets[i].src_elt to the class each source belongs to.
6389 Detect assignments from or to volatile things
6390 and set set[i] to zero so they will be ignored
6391 in the rest of this function.
6393 Nothing in this loop changes the hash table or the register chains. */
6395 for (i
= 0; i
< n_sets
; i
++)
6397 register rtx src
, dest
;
6398 register rtx src_folded
;
6399 register struct table_elt
*elt
= 0, *p
;
6400 enum machine_mode mode
;
6403 rtx src_related
= 0;
6404 struct table_elt
*src_const_elt
= 0;
6405 int src_cost
= 10000, src_eqv_cost
= 10000, src_folded_cost
= 10000;
6406 int src_related_cost
= 10000, src_elt_cost
= 10000;
6407 /* Set non-zero if we need to call force_const_mem on with the
6408 contents of src_folded before using it. */
6409 int src_folded_force_flag
= 0;
6411 dest
= SET_DEST (sets
[i
].rtl
);
6412 src
= SET_SRC (sets
[i
].rtl
);
6414 /* If SRC is a constant that has no machine mode,
6415 hash it with the destination's machine mode.
6416 This way we can keep different modes separate. */
6418 mode
= GET_MODE (src
) == VOIDmode
? GET_MODE (dest
) : GET_MODE (src
);
6419 sets
[i
].mode
= mode
;
6423 enum machine_mode eqvmode
= mode
;
6424 if (GET_CODE (dest
) == STRICT_LOW_PART
)
6425 eqvmode
= GET_MODE (SUBREG_REG (XEXP (dest
, 0)));
6427 hash_arg_in_memory
= 0;
6428 hash_arg_in_struct
= 0;
6429 src_eqv
= fold_rtx (src_eqv
, insn
);
6430 src_eqv_hash
= HASH (src_eqv
, eqvmode
);
6432 /* Find the equivalence class for the equivalent expression. */
6435 src_eqv_elt
= lookup (src_eqv
, src_eqv_hash
, eqvmode
);
6437 src_eqv_volatile
= do_not_record
;
6438 src_eqv_in_memory
= hash_arg_in_memory
;
6439 src_eqv_in_struct
= hash_arg_in_struct
;
6442 /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
6443 value of the INNER register, not the destination. So it is not
6444 a valid substitution for the source. But save it for later. */
6445 if (GET_CODE (dest
) == STRICT_LOW_PART
)
6448 src_eqv_here
= src_eqv
;
6450 /* Simplify and foldable subexpressions in SRC. Then get the fully-
6451 simplified result, which may not necessarily be valid. */
6452 src_folded
= fold_rtx (src
, insn
);
6455 /* ??? This caused bad code to be generated for the m68k port with -O2.
6456 Suppose src is (CONST_INT -1), and that after truncation src_folded
6457 is (CONST_INT 3). Suppose src_folded is then used for src_const.
6458 At the end we will add src and src_const to the same equivalence
6459 class. We now have 3 and -1 on the same equivalence class. This
6460 causes later instructions to be mis-optimized. */
6461 /* If storing a constant in a bitfield, pre-truncate the constant
6462 so we will be able to record it later. */
6463 if (GET_CODE (SET_DEST (sets
[i
].rtl
)) == ZERO_EXTRACT
6464 || GET_CODE (SET_DEST (sets
[i
].rtl
)) == SIGN_EXTRACT
)
6466 rtx width
= XEXP (SET_DEST (sets
[i
].rtl
), 1);
6468 if (GET_CODE (src
) == CONST_INT
6469 && GET_CODE (width
) == CONST_INT
6470 && INTVAL (width
) < HOST_BITS_PER_WIDE_INT
6471 && (INTVAL (src
) & ((HOST_WIDE_INT
) (-1) << INTVAL (width
))))
6473 = GEN_INT (INTVAL (src
) & (((HOST_WIDE_INT
) 1
6474 << INTVAL (width
)) - 1));
6478 /* Compute SRC's hash code, and also notice if it
6479 should not be recorded at all. In that case,
6480 prevent any further processing of this assignment. */
6482 hash_arg_in_memory
= 0;
6483 hash_arg_in_struct
= 0;
6486 sets
[i
].src_hash
= HASH (src
, mode
);
6487 sets
[i
].src_volatile
= do_not_record
;
6488 sets
[i
].src_in_memory
= hash_arg_in_memory
;
6489 sets
[i
].src_in_struct
= hash_arg_in_struct
;
6491 /* If SRC is a MEM, there is a REG_EQUIV note for SRC, and DEST is
6492 a pseudo that is set more than once, do not record SRC. Using
6493 SRC as a replacement for anything else will be incorrect in that
6494 situation. Note that this usually occurs only for stack slots,
6495 in which case all the RTL would be refering to SRC, so we don't
6496 lose any optimization opportunities by not having SRC in the
6499 if (GET_CODE (src
) == MEM
6500 && find_reg_note (insn
, REG_EQUIV
, src
) != 0
6501 && GET_CODE (dest
) == REG
6502 && REGNO (dest
) >= FIRST_PSEUDO_REGISTER
6503 && REG_N_SETS (REGNO (dest
)) != 1)
6504 sets
[i
].src_volatile
= 1;
6507 /* It is no longer clear why we used to do this, but it doesn't
6508 appear to still be needed. So let's try without it since this
6509 code hurts cse'ing widened ops. */
6510 /* If source is a perverse subreg (such as QI treated as an SI),
6511 treat it as volatile. It may do the work of an SI in one context
6512 where the extra bits are not being used, but cannot replace an SI
6514 if (GET_CODE (src
) == SUBREG
6515 && (GET_MODE_SIZE (GET_MODE (src
))
6516 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src
)))))
6517 sets
[i
].src_volatile
= 1;
6520 /* Locate all possible equivalent forms for SRC. Try to replace
6521 SRC in the insn with each cheaper equivalent.
6523 We have the following types of equivalents: SRC itself, a folded
6524 version, a value given in a REG_EQUAL note, or a value related
6527 Each of these equivalents may be part of an additional class
6528 of equivalents (if more than one is in the table, they must be in
6529 the same class; we check for this).
6531 If the source is volatile, we don't do any table lookups.
6533 We note any constant equivalent for possible later use in a
6536 if (!sets
[i
].src_volatile
)
6537 elt
= lookup (src
, sets
[i
].src_hash
, mode
);
6539 sets
[i
].src_elt
= elt
;
6541 if (elt
&& src_eqv_here
&& src_eqv_elt
)
6543 if (elt
->first_same_value
!= src_eqv_elt
->first_same_value
)
6545 /* The REG_EQUAL is indicating that two formerly distinct
6546 classes are now equivalent. So merge them. */
6547 merge_equiv_classes (elt
, src_eqv_elt
);
6548 src_eqv_hash
= HASH (src_eqv
, elt
->mode
);
6549 src_eqv_elt
= lookup (src_eqv
, src_eqv_hash
, elt
->mode
);
6555 else if (src_eqv_elt
)
6558 /* Try to find a constant somewhere and record it in `src_const'.
6559 Record its table element, if any, in `src_const_elt'. Look in
6560 any known equivalences first. (If the constant is not in the
6561 table, also set `sets[i].src_const_hash'). */
6563 for (p
= elt
->first_same_value
; p
; p
= p
->next_same_value
)
6567 src_const_elt
= elt
;
6572 && (CONSTANT_P (src_folded
)
6573 /* Consider (minus (label_ref L1) (label_ref L2)) as
6574 "constant" here so we will record it. This allows us
6575 to fold switch statements when an ADDR_DIFF_VEC is used. */
6576 || (GET_CODE (src_folded
) == MINUS
6577 && GET_CODE (XEXP (src_folded
, 0)) == LABEL_REF
6578 && GET_CODE (XEXP (src_folded
, 1)) == LABEL_REF
)))
6579 src_const
= src_folded
, src_const_elt
= elt
;
6580 else if (src_const
== 0 && src_eqv_here
&& CONSTANT_P (src_eqv_here
))
6581 src_const
= src_eqv_here
, src_const_elt
= src_eqv_elt
;
6583 /* If we don't know if the constant is in the table, get its
6584 hash code and look it up. */
6585 if (src_const
&& src_const_elt
== 0)
6587 sets
[i
].src_const_hash
= HASH (src_const
, mode
);
6588 src_const_elt
= lookup (src_const
, sets
[i
].src_const_hash
, mode
);
6591 sets
[i
].src_const
= src_const
;
6592 sets
[i
].src_const_elt
= src_const_elt
;
6594 /* If the constant and our source are both in the table, mark them as
6595 equivalent. Otherwise, if a constant is in the table but the source
6596 isn't, set ELT to it. */
6597 if (src_const_elt
&& elt
6598 && src_const_elt
->first_same_value
!= elt
->first_same_value
)
6599 merge_equiv_classes (elt
, src_const_elt
);
6600 else if (src_const_elt
&& elt
== 0)
6601 elt
= src_const_elt
;
6603 /* See if there is a register linearly related to a constant
6604 equivalent of SRC. */
6606 && (GET_CODE (src_const
) == CONST
6607 || (src_const_elt
&& src_const_elt
->related_value
!= 0)))
6609 src_related
= use_related_value (src_const
, src_const_elt
);
6612 struct table_elt
*src_related_elt
6613 = lookup (src_related
, HASH (src_related
, mode
), mode
);
6614 if (src_related_elt
&& elt
)
6616 if (elt
->first_same_value
6617 != src_related_elt
->first_same_value
)
6618 /* This can occur when we previously saw a CONST
6619 involving a SYMBOL_REF and then see the SYMBOL_REF
6620 twice. Merge the involved classes. */
6621 merge_equiv_classes (elt
, src_related_elt
);
6624 src_related_elt
= 0;
6626 else if (src_related_elt
&& elt
== 0)
6627 elt
= src_related_elt
;
6631 /* See if we have a CONST_INT that is already in a register in a
6634 if (src_const
&& src_related
== 0 && GET_CODE (src_const
) == CONST_INT
6635 && GET_MODE_CLASS (mode
) == MODE_INT
6636 && GET_MODE_BITSIZE (mode
) < BITS_PER_WORD
)
6638 enum machine_mode wider_mode
;
6640 for (wider_mode
= GET_MODE_WIDER_MODE (mode
);
6641 GET_MODE_BITSIZE (wider_mode
) <= BITS_PER_WORD
6642 && src_related
== 0;
6643 wider_mode
= GET_MODE_WIDER_MODE (wider_mode
))
6645 struct table_elt
*const_elt
6646 = lookup (src_const
, HASH (src_const
, wider_mode
), wider_mode
);
6651 for (const_elt
= const_elt
->first_same_value
;
6652 const_elt
; const_elt
= const_elt
->next_same_value
)
6653 if (GET_CODE (const_elt
->exp
) == REG
)
6655 src_related
= gen_lowpart_if_possible (mode
,
6662 /* Another possibility is that we have an AND with a constant in
6663 a mode narrower than a word. If so, it might have been generated
6664 as part of an "if" which would narrow the AND. If we already
6665 have done the AND in a wider mode, we can use a SUBREG of that
6668 if (flag_expensive_optimizations
&& ! src_related
6669 && GET_CODE (src
) == AND
&& GET_CODE (XEXP (src
, 1)) == CONST_INT
6670 && GET_MODE_SIZE (mode
) < UNITS_PER_WORD
)
6672 enum machine_mode tmode
;
6673 rtx new_and
= gen_rtx (AND
, VOIDmode
, NULL_RTX
, XEXP (src
, 1));
6675 for (tmode
= GET_MODE_WIDER_MODE (mode
);
6676 GET_MODE_SIZE (tmode
) <= UNITS_PER_WORD
;
6677 tmode
= GET_MODE_WIDER_MODE (tmode
))
6679 rtx inner
= gen_lowpart_if_possible (tmode
, XEXP (src
, 0));
6680 struct table_elt
*larger_elt
;
6684 PUT_MODE (new_and
, tmode
);
6685 XEXP (new_and
, 0) = inner
;
6686 larger_elt
= lookup (new_and
, HASH (new_and
, tmode
), tmode
);
6687 if (larger_elt
== 0)
6690 for (larger_elt
= larger_elt
->first_same_value
;
6691 larger_elt
; larger_elt
= larger_elt
->next_same_value
)
6692 if (GET_CODE (larger_elt
->exp
) == REG
)
6695 = gen_lowpart_if_possible (mode
, larger_elt
->exp
);
6705 #ifdef LOAD_EXTEND_OP
6706 /* See if a MEM has already been loaded with a widening operation;
6707 if it has, we can use a subreg of that. Many CISC machines
6708 also have such operations, but this is only likely to be
6709 beneficial these machines. */
6711 if (flag_expensive_optimizations
&& src_related
== 0
6712 && (GET_MODE_SIZE (mode
) < UNITS_PER_WORD
)
6713 && GET_MODE_CLASS (mode
) == MODE_INT
6714 && GET_CODE (src
) == MEM
&& ! do_not_record
6715 && LOAD_EXTEND_OP (mode
) != NIL
)
6717 enum machine_mode tmode
;
6719 /* Set what we are trying to extend and the operation it might
6720 have been extended with. */
6721 PUT_CODE (memory_extend_rtx
, LOAD_EXTEND_OP (mode
));
6722 XEXP (memory_extend_rtx
, 0) = src
;
6724 for (tmode
= GET_MODE_WIDER_MODE (mode
);
6725 GET_MODE_SIZE (tmode
) <= UNITS_PER_WORD
;
6726 tmode
= GET_MODE_WIDER_MODE (tmode
))
6728 struct table_elt
*larger_elt
;
6730 PUT_MODE (memory_extend_rtx
, tmode
);
6731 larger_elt
= lookup (memory_extend_rtx
,
6732 HASH (memory_extend_rtx
, tmode
), tmode
);
6733 if (larger_elt
== 0)
6736 for (larger_elt
= larger_elt
->first_same_value
;
6737 larger_elt
; larger_elt
= larger_elt
->next_same_value
)
6738 if (GET_CODE (larger_elt
->exp
) == REG
)
6740 src_related
= gen_lowpart_if_possible (mode
,
6749 #endif /* LOAD_EXTEND_OP */
6751 if (src
== src_folded
)
6754 /* At this point, ELT, if non-zero, points to a class of expressions
6755 equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
6756 and SRC_RELATED, if non-zero, each contain additional equivalent
6757 expressions. Prune these latter expressions by deleting expressions
6758 already in the equivalence class.
6760 Check for an equivalent identical to the destination. If found,
6761 this is the preferred equivalent since it will likely lead to
6762 elimination of the insn. Indicate this by placing it in
6765 if (elt
) elt
= elt
->first_same_value
;
6766 for (p
= elt
; p
; p
= p
->next_same_value
)
6768 enum rtx_code code
= GET_CODE (p
->exp
);
6770 /* If the expression is not valid, ignore it. Then we do not
6771 have to check for validity below. In most cases, we can use
6772 `rtx_equal_p', since canonicalization has already been done. */
6773 if (code
!= REG
&& ! exp_equiv_p (p
->exp
, p
->exp
, 1, 0))
6776 if (src
&& GET_CODE (src
) == code
&& rtx_equal_p (src
, p
->exp
))
6778 else if (src_folded
&& GET_CODE (src_folded
) == code
6779 && rtx_equal_p (src_folded
, p
->exp
))
6781 else if (src_eqv_here
&& GET_CODE (src_eqv_here
) == code
6782 && rtx_equal_p (src_eqv_here
, p
->exp
))
6784 else if (src_related
&& GET_CODE (src_related
) == code
6785 && rtx_equal_p (src_related
, p
->exp
))
6788 /* This is the same as the destination of the insns, we want
6789 to prefer it. Copy it to src_related. The code below will
6790 then give it a negative cost. */
6791 if (GET_CODE (dest
) == code
&& rtx_equal_p (p
->exp
, dest
))
6796 /* Find the cheapest valid equivalent, trying all the available
6797 possibilities. Prefer items not in the hash table to ones
6798 that are when they are equal cost. Note that we can never
6799 worsen an insn as the current contents will also succeed.
6800 If we find an equivalent identical to the destination, use it as best,
6801 since this insn will probably be eliminated in that case. */
6804 if (rtx_equal_p (src
, dest
))
6807 src_cost
= COST (src
);
6812 if (rtx_equal_p (src_eqv_here
, dest
))
6815 src_eqv_cost
= COST (src_eqv_here
);
6820 if (rtx_equal_p (src_folded
, dest
))
6821 src_folded_cost
= -1;
6823 src_folded_cost
= COST (src_folded
);
6828 if (rtx_equal_p (src_related
, dest
))
6829 src_related_cost
= -1;
6831 src_related_cost
= COST (src_related
);
6834 /* If this was an indirect jump insn, a known label will really be
6835 cheaper even though it looks more expensive. */
6836 if (dest
== pc_rtx
&& src_const
&& GET_CODE (src_const
) == LABEL_REF
)
6837 src_folded
= src_const
, src_folded_cost
= -1;
6839 /* Terminate loop when replacement made. This must terminate since
6840 the current contents will be tested and will always be valid. */
6845 /* Skip invalid entries. */
6846 while (elt
&& GET_CODE (elt
->exp
) != REG
6847 && ! exp_equiv_p (elt
->exp
, elt
->exp
, 1, 0))
6848 elt
= elt
->next_same_value
;
6850 if (elt
) src_elt_cost
= elt
->cost
;
6852 /* Find cheapest and skip it for the next time. For items
6853 of equal cost, use this order:
6854 src_folded, src, src_eqv, src_related and hash table entry. */
6855 if (src_folded_cost
<= src_cost
6856 && src_folded_cost
<= src_eqv_cost
6857 && src_folded_cost
<= src_related_cost
6858 && src_folded_cost
<= src_elt_cost
)
6860 trial
= src_folded
, src_folded_cost
= 10000;
6861 if (src_folded_force_flag
)
6862 trial
= force_const_mem (mode
, trial
);
6864 else if (src_cost
<= src_eqv_cost
6865 && src_cost
<= src_related_cost
6866 && src_cost
<= src_elt_cost
)
6867 trial
= src
, src_cost
= 10000;
6868 else if (src_eqv_cost
<= src_related_cost
6869 && src_eqv_cost
<= src_elt_cost
)
6870 trial
= copy_rtx (src_eqv_here
), src_eqv_cost
= 10000;
6871 else if (src_related_cost
<= src_elt_cost
)
6872 trial
= copy_rtx (src_related
), src_related_cost
= 10000;
6875 trial
= copy_rtx (elt
->exp
);
6876 elt
= elt
->next_same_value
;
6877 src_elt_cost
= 10000;
6880 /* We don't normally have an insn matching (set (pc) (pc)), so
6881 check for this separately here. We will delete such an
6884 Tablejump insns contain a USE of the table, so simply replacing
6885 the operand with the constant won't match. This is simply an
6886 unconditional branch, however, and is therefore valid. Just
6887 insert the substitution here and we will delete and re-emit
6890 if (n_sets
== 1 && dest
== pc_rtx
6892 || (GET_CODE (trial
) == LABEL_REF
6893 && ! condjump_p (insn
))))
6895 /* If TRIAL is a label in front of a jump table, we are
6896 really falling through the switch (this is how casesi
6897 insns work), so we must branch around the table. */
6898 if (GET_CODE (trial
) == CODE_LABEL
6899 && NEXT_INSN (trial
) != 0
6900 && GET_CODE (NEXT_INSN (trial
)) == JUMP_INSN
6901 && (GET_CODE (PATTERN (NEXT_INSN (trial
))) == ADDR_DIFF_VEC
6902 || GET_CODE (PATTERN (NEXT_INSN (trial
))) == ADDR_VEC
))
6904 trial
= gen_rtx (LABEL_REF
, Pmode
, get_label_after (trial
));
6906 SET_SRC (sets
[i
].rtl
) = trial
;
6907 cse_jumps_altered
= 1;
6911 /* Look for a substitution that makes a valid insn. */
6912 else if (validate_change (insn
, &SET_SRC (sets
[i
].rtl
), trial
, 0))
6914 /* The result of apply_change_group can be ignored; see
6917 validate_change (insn
, &SET_SRC (sets
[i
].rtl
),
6918 canon_reg (SET_SRC (sets
[i
].rtl
), insn
),
6920 apply_change_group ();
6924 /* If we previously found constant pool entries for
6925 constants and this is a constant, try making a
6926 pool entry. Put it in src_folded unless we already have done
6927 this since that is where it likely came from. */
6929 else if (constant_pool_entries_cost
6930 && CONSTANT_P (trial
)
6931 && ! (GET_CODE (trial
) == CONST
6932 && GET_CODE (XEXP (trial
, 0)) == TRUNCATE
)
6934 || (GET_CODE (src_folded
) != MEM
6935 && ! src_folded_force_flag
))
6936 && GET_MODE_CLASS (mode
) != MODE_CC
)
6938 src_folded_force_flag
= 1;
6940 src_folded_cost
= constant_pool_entries_cost
;
6944 src
= SET_SRC (sets
[i
].rtl
);
6946 /* In general, it is good to have a SET with SET_SRC == SET_DEST.
6947 However, there is an important exception: If both are registers
6948 that are not the head of their equivalence class, replace SET_SRC
6949 with the head of the class. If we do not do this, we will have
6950 both registers live over a portion of the basic block. This way,
6951 their lifetimes will likely abut instead of overlapping. */
6952 if (GET_CODE (dest
) == REG
6953 && REGNO_QTY_VALID_P (REGNO (dest
))
6954 && qty_mode
[reg_qty
[REGNO (dest
)]] == GET_MODE (dest
)
6955 && qty_first_reg
[reg_qty
[REGNO (dest
)]] != REGNO (dest
)
6956 && GET_CODE (src
) == REG
&& REGNO (src
) == REGNO (dest
)
6957 /* Don't do this if the original insn had a hard reg as
6959 && (GET_CODE (sets
[i
].src
) != REG
6960 || REGNO (sets
[i
].src
) >= FIRST_PSEUDO_REGISTER
))
6961 /* We can't call canon_reg here because it won't do anything if
6962 SRC is a hard register. */
6964 int first
= qty_first_reg
[reg_qty
[REGNO (src
)]];
6966 src
= SET_SRC (sets
[i
].rtl
)
6967 = first
>= FIRST_PSEUDO_REGISTER
? regno_reg_rtx
[first
]
6968 : gen_rtx (REG
, GET_MODE (src
), first
);
6970 /* If we had a constant that is cheaper than what we are now
6971 setting SRC to, use that constant. We ignored it when we
6972 thought we could make this into a no-op. */
6973 if (src_const
&& COST (src_const
) < COST (src
)
6974 && validate_change (insn
, &SET_SRC (sets
[i
].rtl
), src_const
, 0))
6978 /* If we made a change, recompute SRC values. */
6979 if (src
!= sets
[i
].src
)
6982 hash_arg_in_memory
= 0;
6983 hash_arg_in_struct
= 0;
6985 sets
[i
].src_hash
= HASH (src
, mode
);
6986 sets
[i
].src_volatile
= do_not_record
;
6987 sets
[i
].src_in_memory
= hash_arg_in_memory
;
6988 sets
[i
].src_in_struct
= hash_arg_in_struct
;
6989 sets
[i
].src_elt
= lookup (src
, sets
[i
].src_hash
, mode
);
6992 /* If this is a single SET, we are setting a register, and we have an
6993 equivalent constant, we want to add a REG_NOTE. We don't want
6994 to write a REG_EQUAL note for a constant pseudo since verifying that
6995 that pseudo hasn't been eliminated is a pain. Such a note also
6996 won't help anything. */
6997 if (n_sets
== 1 && src_const
&& GET_CODE (dest
) == REG
6998 && GET_CODE (src_const
) != REG
)
7000 tem
= find_reg_note (insn
, REG_EQUAL
, NULL_RTX
);
7002 /* Record the actual constant value in a REG_EQUAL note, making
7003 a new one if one does not already exist. */
7005 XEXP (tem
, 0) = src_const
;
7007 REG_NOTES (insn
) = gen_rtx (EXPR_LIST
, REG_EQUAL
,
7008 src_const
, REG_NOTES (insn
));
7010 /* If storing a constant value in a register that
7011 previously held the constant value 0,
7012 record this fact with a REG_WAS_0 note on this insn.
7014 Note that the *register* is required to have previously held 0,
7015 not just any register in the quantity and we must point to the
7016 insn that set that register to zero.
7018 Rather than track each register individually, we just see if
7019 the last set for this quantity was for this register. */
7021 if (REGNO_QTY_VALID_P (REGNO (dest
))
7022 && qty_const
[reg_qty
[REGNO (dest
)]] == const0_rtx
)
7024 /* See if we previously had a REG_WAS_0 note. */
7025 rtx note
= find_reg_note (insn
, REG_WAS_0
, NULL_RTX
);
7026 rtx const_insn
= qty_const_insn
[reg_qty
[REGNO (dest
)]];
7028 if ((tem
= single_set (const_insn
)) != 0
7029 && rtx_equal_p (SET_DEST (tem
), dest
))
7032 XEXP (note
, 0) = const_insn
;
7034 REG_NOTES (insn
) = gen_rtx (INSN_LIST
, REG_WAS_0
,
7035 const_insn
, REG_NOTES (insn
));
7040 /* Now deal with the destination. */
7042 sets
[i
].inner_dest_loc
= &SET_DEST (sets
[0].rtl
);
7044 /* Look within any SIGN_EXTRACT or ZERO_EXTRACT
7045 to the MEM or REG within it. */
7046 while (GET_CODE (dest
) == SIGN_EXTRACT
7047 || GET_CODE (dest
) == ZERO_EXTRACT
7048 || GET_CODE (dest
) == SUBREG
7049 || GET_CODE (dest
) == STRICT_LOW_PART
)
7051 sets
[i
].inner_dest_loc
= &XEXP (dest
, 0);
7052 dest
= XEXP (dest
, 0);
7055 sets
[i
].inner_dest
= dest
;
7057 if (GET_CODE (dest
) == MEM
)
7059 dest
= fold_rtx (dest
, insn
);
7061 /* Decide whether we invalidate everything in memory,
7062 or just things at non-fixed places.
7063 Writing a large aggregate must invalidate everything
7064 because we don't know how long it is. */
7065 note_mem_written (dest
, &writes_memory
);
7068 /* Compute the hash code of the destination now,
7069 before the effects of this instruction are recorded,
7070 since the register values used in the address computation
7071 are those before this instruction. */
7072 sets
[i
].dest_hash
= HASH (dest
, mode
);
7074 /* Don't enter a bit-field in the hash table
7075 because the value in it after the store
7076 may not equal what was stored, due to truncation. */
7078 if (GET_CODE (SET_DEST (sets
[i
].rtl
)) == ZERO_EXTRACT
7079 || GET_CODE (SET_DEST (sets
[i
].rtl
)) == SIGN_EXTRACT
)
7081 rtx width
= XEXP (SET_DEST (sets
[i
].rtl
), 1);
7083 if (src_const
!= 0 && GET_CODE (src_const
) == CONST_INT
7084 && GET_CODE (width
) == CONST_INT
7085 && INTVAL (width
) < HOST_BITS_PER_WIDE_INT
7086 && ! (INTVAL (src_const
)
7087 & ((HOST_WIDE_INT
) (-1) << INTVAL (width
))))
7088 /* Exception: if the value is constant,
7089 and it won't be truncated, record it. */
7093 /* This is chosen so that the destination will be invalidated
7094 but no new value will be recorded.
7095 We must invalidate because sometimes constant
7096 values can be recorded for bitfields. */
7097 sets
[i
].src_elt
= 0;
7098 sets
[i
].src_volatile
= 1;
7104 /* If only one set in a JUMP_INSN and it is now a no-op, we can delete
7106 else if (n_sets
== 1 && dest
== pc_rtx
&& src
== pc_rtx
)
7108 PUT_CODE (insn
, NOTE
);
7109 NOTE_LINE_NUMBER (insn
) = NOTE_INSN_DELETED
;
7110 NOTE_SOURCE_FILE (insn
) = 0;
7111 cse_jumps_altered
= 1;
7112 /* One less use of the label this insn used to jump to. */
7113 --LABEL_NUSES (JUMP_LABEL (insn
));
7114 /* No more processing for this set. */
7118 /* If this SET is now setting PC to a label, we know it used to
7119 be a conditional or computed branch. So we see if we can follow
7120 it. If it was a computed branch, delete it and re-emit. */
7121 else if (dest
== pc_rtx
&& GET_CODE (src
) == LABEL_REF
)
7125 /* If this is not in the format for a simple branch and
7126 we are the only SET in it, re-emit it. */
7127 if (! simplejump_p (insn
) && n_sets
== 1)
7129 rtx
new = emit_jump_insn_before (gen_jump (XEXP (src
, 0)), insn
);
7130 JUMP_LABEL (new) = XEXP (src
, 0);
7131 LABEL_NUSES (XEXP (src
, 0))++;
7136 /* Otherwise, force rerecognition, since it probably had
7137 a different pattern before.
7138 This shouldn't really be necessary, since whatever
7139 changed the source value above should have done this.
7140 Until the right place is found, might as well do this here. */
7141 INSN_CODE (insn
) = -1;
7143 /* Now that we've converted this jump to an unconditional jump,
7144 there is dead code after it. Delete the dead code until we
7145 reach a BARRIER, the end of the function, or a label. Do
7146 not delete NOTEs except for NOTE_INSN_DELETED since later
7147 phases assume these notes are retained. */
7151 while (NEXT_INSN (p
) != 0
7152 && GET_CODE (NEXT_INSN (p
)) != BARRIER
7153 && GET_CODE (NEXT_INSN (p
)) != CODE_LABEL
)
7155 if (GET_CODE (NEXT_INSN (p
)) != NOTE
7156 || NOTE_LINE_NUMBER (NEXT_INSN (p
)) == NOTE_INSN_DELETED
)
7157 delete_insn (NEXT_INSN (p
));
7162 /* If we don't have a BARRIER immediately after INSN, put one there.
7163 Much code assumes that there are no NOTEs between a JUMP_INSN and
7166 if (NEXT_INSN (insn
) == 0
7167 || GET_CODE (NEXT_INSN (insn
)) != BARRIER
)
7168 emit_barrier_before (NEXT_INSN (insn
));
7170 /* We might have two BARRIERs separated by notes. Delete the second
7173 if (p
!= insn
&& NEXT_INSN (p
) != 0
7174 && GET_CODE (NEXT_INSN (p
)) == BARRIER
)
7175 delete_insn (NEXT_INSN (p
));
7177 cse_jumps_altered
= 1;
7181 /* If destination is volatile, invalidate it and then do no further
7182 processing for this assignment. */
7184 else if (do_not_record
)
7186 if (GET_CODE (dest
) == REG
|| GET_CODE (dest
) == SUBREG
7187 || GET_CODE (dest
) == MEM
)
7188 invalidate (dest
, VOIDmode
);
7189 else if (GET_CODE (dest
) == STRICT_LOW_PART
7190 || GET_CODE (dest
) == ZERO_EXTRACT
)
7191 invalidate (XEXP (dest
, 0), GET_MODE (dest
));
7195 if (sets
[i
].rtl
!= 0 && dest
!= SET_DEST (sets
[i
].rtl
))
7196 sets
[i
].dest_hash
= HASH (SET_DEST (sets
[i
].rtl
), mode
);
7199 /* If setting CC0, record what it was set to, or a constant, if it
7200 is equivalent to a constant. If it is being set to a floating-point
7201 value, make a COMPARE with the appropriate constant of 0. If we
7202 don't do this, later code can interpret this as a test against
7203 const0_rtx, which can cause problems if we try to put it into an
7204 insn as a floating-point operand. */
7205 if (dest
== cc0_rtx
)
7207 this_insn_cc0
= src_const
&& mode
!= VOIDmode
? src_const
: src
;
7208 this_insn_cc0_mode
= mode
;
7209 if (FLOAT_MODE_P (mode
))
7210 this_insn_cc0
= gen_rtx (COMPARE
, VOIDmode
, this_insn_cc0
,
7216 /* Now enter all non-volatile source expressions in the hash table
7217 if they are not already present.
7218 Record their equivalence classes in src_elt.
7219 This way we can insert the corresponding destinations into
7220 the same classes even if the actual sources are no longer in them
7221 (having been invalidated). */
7223 if (src_eqv
&& src_eqv_elt
== 0 && sets
[0].rtl
!= 0 && ! src_eqv_volatile
7224 && ! rtx_equal_p (src_eqv
, SET_DEST (sets
[0].rtl
)))
7226 register struct table_elt
*elt
;
7227 register struct table_elt
*classp
= sets
[0].src_elt
;
7228 rtx dest
= SET_DEST (sets
[0].rtl
);
7229 enum machine_mode eqvmode
= GET_MODE (dest
);
7231 if (GET_CODE (dest
) == STRICT_LOW_PART
)
7233 eqvmode
= GET_MODE (SUBREG_REG (XEXP (dest
, 0)));
7236 if (insert_regs (src_eqv
, classp
, 0))
7238 rehash_using_reg (src_eqv
);
7239 src_eqv_hash
= HASH (src_eqv
, eqvmode
);
7241 elt
= insert (src_eqv
, classp
, src_eqv_hash
, eqvmode
);
7242 elt
->in_memory
= src_eqv_in_memory
;
7243 elt
->in_struct
= src_eqv_in_struct
;
7246 /* Check to see if src_eqv_elt is the same as a set source which
7247 does not yet have an elt, and if so set the elt of the set source
7249 for (i
= 0; i
< n_sets
; i
++)
7250 if (sets
[i
].rtl
&& sets
[i
].src_elt
== 0
7251 && rtx_equal_p (SET_SRC (sets
[i
].rtl
), src_eqv
))
7252 sets
[i
].src_elt
= src_eqv_elt
;
7255 for (i
= 0; i
< n_sets
; i
++)
7256 if (sets
[i
].rtl
&& ! sets
[i
].src_volatile
7257 && ! rtx_equal_p (SET_SRC (sets
[i
].rtl
), SET_DEST (sets
[i
].rtl
)))
7259 if (GET_CODE (SET_DEST (sets
[i
].rtl
)) == STRICT_LOW_PART
)
7261 /* REG_EQUAL in setting a STRICT_LOW_PART
7262 gives an equivalent for the entire destination register,
7263 not just for the subreg being stored in now.
7264 This is a more interesting equivalence, so we arrange later
7265 to treat the entire reg as the destination. */
7266 sets
[i
].src_elt
= src_eqv_elt
;
7267 sets
[i
].src_hash
= src_eqv_hash
;
7271 /* Insert source and constant equivalent into hash table, if not
7273 register struct table_elt
*classp
= src_eqv_elt
;
7274 register rtx src
= sets
[i
].src
;
7275 register rtx dest
= SET_DEST (sets
[i
].rtl
);
7276 enum machine_mode mode
7277 = GET_MODE (src
) == VOIDmode
? GET_MODE (dest
) : GET_MODE (src
);
7279 if (sets
[i
].src_elt
== 0)
7281 register struct table_elt
*elt
;
7283 /* Note that these insert_regs calls cannot remove
7284 any of the src_elt's, because they would have failed to
7285 match if not still valid. */
7286 if (insert_regs (src
, classp
, 0))
7288 rehash_using_reg (src
);
7289 sets
[i
].src_hash
= HASH (src
, mode
);
7291 elt
= insert (src
, classp
, sets
[i
].src_hash
, mode
);
7292 elt
->in_memory
= sets
[i
].src_in_memory
;
7293 elt
->in_struct
= sets
[i
].src_in_struct
;
7294 sets
[i
].src_elt
= classp
= elt
;
7297 if (sets
[i
].src_const
&& sets
[i
].src_const_elt
== 0
7298 && src
!= sets
[i
].src_const
7299 && ! rtx_equal_p (sets
[i
].src_const
, src
))
7300 sets
[i
].src_elt
= insert (sets
[i
].src_const
, classp
,
7301 sets
[i
].src_const_hash
, mode
);
7304 else if (sets
[i
].src_elt
== 0)
7305 /* If we did not insert the source into the hash table (e.g., it was
7306 volatile), note the equivalence class for the REG_EQUAL value, if any,
7307 so that the destination goes into that class. */
7308 sets
[i
].src_elt
= src_eqv_elt
;
7310 invalidate_from_clobbers (&writes_memory
, x
);
7312 /* Some registers are invalidated by subroutine calls. Memory is
7313 invalidated by non-constant calls. */
7315 if (GET_CODE (insn
) == CALL_INSN
)
7317 static struct write_data everything
= {0, 1, 1, 1};
7319 if (! CONST_CALL_P (insn
))
7320 invalidate_memory (&everything
);
7321 invalidate_for_call ();
7324 /* Now invalidate everything set by this instruction.
7325 If a SUBREG or other funny destination is being set,
7326 sets[i].rtl is still nonzero, so here we invalidate the reg
7327 a part of which is being set. */
7329 for (i
= 0; i
< n_sets
; i
++)
7332 /* We can't use the inner dest, because the mode associated with
7333 a ZERO_EXTRACT is significant. */
7334 register rtx dest
= SET_DEST (sets
[i
].rtl
);
7336 /* Needed for registers to remove the register from its
7337 previous quantity's chain.
7338 Needed for memory if this is a nonvarying address, unless
7339 we have just done an invalidate_memory that covers even those. */
7340 if (GET_CODE (dest
) == REG
|| GET_CODE (dest
) == SUBREG
7341 || (GET_CODE (dest
) == MEM
&& ! writes_memory
.all
7342 && ! cse_rtx_addr_varies_p (dest
)))
7343 invalidate (dest
, VOIDmode
);
7344 else if (GET_CODE (dest
) == STRICT_LOW_PART
7345 || GET_CODE (dest
) == ZERO_EXTRACT
)
7346 invalidate (XEXP (dest
, 0), GET_MODE (dest
));
7349 /* Make sure registers mentioned in destinations
7350 are safe for use in an expression to be inserted.
7351 This removes from the hash table
7352 any invalid entry that refers to one of these registers.
7354 We don't care about the return value from mention_regs because
7355 we are going to hash the SET_DEST values unconditionally. */
7357 for (i
= 0; i
< n_sets
; i
++)
7358 if (sets
[i
].rtl
&& GET_CODE (SET_DEST (sets
[i
].rtl
)) != REG
)
7359 mention_regs (SET_DEST (sets
[i
].rtl
));
7361 /* We may have just removed some of the src_elt's from the hash table.
7362 So replace each one with the current head of the same class. */
7364 for (i
= 0; i
< n_sets
; i
++)
7367 if (sets
[i
].src_elt
&& sets
[i
].src_elt
->first_same_value
== 0)
7368 /* If elt was removed, find current head of same class,
7369 or 0 if nothing remains of that class. */
7371 register struct table_elt
*elt
= sets
[i
].src_elt
;
7373 while (elt
&& elt
->prev_same_value
)
7374 elt
= elt
->prev_same_value
;
7376 while (elt
&& elt
->first_same_value
== 0)
7377 elt
= elt
->next_same_value
;
7378 sets
[i
].src_elt
= elt
? elt
->first_same_value
: 0;
7382 /* Now insert the destinations into their equivalence classes. */
7384 for (i
= 0; i
< n_sets
; i
++)
7387 register rtx dest
= SET_DEST (sets
[i
].rtl
);
7388 register struct table_elt
*elt
;
7390 /* Don't record value if we are not supposed to risk allocating
7391 floating-point values in registers that might be wider than
7393 if ((flag_float_store
7394 && GET_CODE (dest
) == MEM
7395 && FLOAT_MODE_P (GET_MODE (dest
)))
7396 /* Don't record values of destinations set inside a libcall block
7397 since we might delete the libcall. Things should have been set
7398 up so we won't want to reuse such a value, but we play it safe
7401 /* If we didn't put a REG_EQUAL value or a source into the hash
7402 table, there is no point is recording DEST. */
7403 || sets
[i
].src_elt
== 0
7404 /* If DEST is a paradoxical SUBREG and SRC is a ZERO_EXTEND
7405 or SIGN_EXTEND, don't record DEST since it can cause
7406 some tracking to be wrong.
7408 ??? Think about this more later. */
7409 || (GET_CODE (dest
) == SUBREG
7410 && (GET_MODE_SIZE (GET_MODE (dest
))
7411 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest
))))
7412 && (GET_CODE (sets
[i
].src
) == SIGN_EXTEND
7413 || GET_CODE (sets
[i
].src
) == ZERO_EXTEND
)))
7416 /* STRICT_LOW_PART isn't part of the value BEING set,
7417 and neither is the SUBREG inside it.
7418 Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT. */
7419 if (GET_CODE (dest
) == STRICT_LOW_PART
)
7420 dest
= SUBREG_REG (XEXP (dest
, 0));
7422 if (GET_CODE (dest
) == REG
|| GET_CODE (dest
) == SUBREG
)
7423 /* Registers must also be inserted into chains for quantities. */
7424 if (insert_regs (dest
, sets
[i
].src_elt
, 1))
7426 /* If `insert_regs' changes something, the hash code must be
7428 rehash_using_reg (dest
);
7429 sets
[i
].dest_hash
= HASH (dest
, GET_MODE (dest
));
7432 elt
= insert (dest
, sets
[i
].src_elt
,
7433 sets
[i
].dest_hash
, GET_MODE (dest
));
7434 elt
->in_memory
= (GET_CODE (sets
[i
].inner_dest
) == MEM
7435 && (! RTX_UNCHANGING_P (sets
[i
].inner_dest
)
7436 || FIXED_BASE_PLUS_P (XEXP (sets
[i
].inner_dest
,
7441 /* This implicitly assumes a whole struct
7442 need not have MEM_IN_STRUCT_P.
7443 But a whole struct is *supposed* to have MEM_IN_STRUCT_P. */
7444 elt
->in_struct
= (MEM_IN_STRUCT_P (sets
[i
].inner_dest
)
7445 || sets
[i
].inner_dest
!= SET_DEST (sets
[i
].rtl
));
7448 /* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
7449 narrower than M2, and both M1 and M2 are the same number of words,
7450 we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
7451 make that equivalence as well.
7453 However, BAR may have equivalences for which gen_lowpart_if_possible
7454 will produce a simpler value than gen_lowpart_if_possible applied to
7455 BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
7456 BAR's equivalences. If we don't get a simplified form, make
7457 the SUBREG. It will not be used in an equivalence, but will
7458 cause two similar assignments to be detected.
7460 Note the loop below will find SUBREG_REG (DEST) since we have
7461 already entered SRC and DEST of the SET in the table. */
7463 if (GET_CODE (dest
) == SUBREG
7464 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest
))) - 1)
7466 == (GET_MODE_SIZE (GET_MODE (dest
)) - 1)/ UNITS_PER_WORD
)
7467 && (GET_MODE_SIZE (GET_MODE (dest
))
7468 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest
))))
7469 && sets
[i
].src_elt
!= 0)
7471 enum machine_mode new_mode
= GET_MODE (SUBREG_REG (dest
));
7472 struct table_elt
*elt
, *classp
= 0;
7474 for (elt
= sets
[i
].src_elt
->first_same_value
; elt
;
7475 elt
= elt
->next_same_value
)
7479 struct table_elt
*src_elt
;
7481 /* Ignore invalid entries. */
7482 if (GET_CODE (elt
->exp
) != REG
7483 && ! exp_equiv_p (elt
->exp
, elt
->exp
, 1, 0))
7486 new_src
= gen_lowpart_if_possible (new_mode
, elt
->exp
);
7488 new_src
= gen_rtx (SUBREG
, new_mode
, elt
->exp
, 0);
7490 src_hash
= HASH (new_src
, new_mode
);
7491 src_elt
= lookup (new_src
, src_hash
, new_mode
);
7493 /* Put the new source in the hash table is if isn't
7497 if (insert_regs (new_src
, classp
, 0))
7499 rehash_using_reg (new_src
);
7500 src_hash
= HASH (new_src
, new_mode
);
7502 src_elt
= insert (new_src
, classp
, src_hash
, new_mode
);
7503 src_elt
->in_memory
= elt
->in_memory
;
7504 src_elt
->in_struct
= elt
->in_struct
;
7506 else if (classp
&& classp
!= src_elt
->first_same_value
)
7507 /* Show that two things that we've seen before are
7508 actually the same. */
7509 merge_equiv_classes (src_elt
, classp
);
7511 classp
= src_elt
->first_same_value
;
7516 /* Special handling for (set REG0 REG1)
7517 where REG0 is the "cheapest", cheaper than REG1.
7518 After cse, REG1 will probably not be used in the sequel,
7519 so (if easily done) change this insn to (set REG1 REG0) and
7520 replace REG1 with REG0 in the previous insn that computed their value.
7521 Then REG1 will become a dead store and won't cloud the situation
7522 for later optimizations.
7524 Do not make this change if REG1 is a hard register, because it will
7525 then be used in the sequel and we may be changing a two-operand insn
7526 into a three-operand insn.
7528 Also do not do this if we are operating on a copy of INSN. */
7530 if (n_sets
== 1 && sets
[0].rtl
&& GET_CODE (SET_DEST (sets
[0].rtl
)) == REG
7531 && NEXT_INSN (PREV_INSN (insn
)) == insn
7532 && GET_CODE (SET_SRC (sets
[0].rtl
)) == REG
7533 && REGNO (SET_SRC (sets
[0].rtl
)) >= FIRST_PSEUDO_REGISTER
7534 && REGNO_QTY_VALID_P (REGNO (SET_SRC (sets
[0].rtl
)))
7535 && (qty_first_reg
[reg_qty
[REGNO (SET_SRC (sets
[0].rtl
))]]
7536 == REGNO (SET_DEST (sets
[0].rtl
))))
7538 rtx prev
= PREV_INSN (insn
);
7539 while (prev
&& GET_CODE (prev
) == NOTE
)
7540 prev
= PREV_INSN (prev
);
7542 if (prev
&& GET_CODE (prev
) == INSN
&& GET_CODE (PATTERN (prev
)) == SET
7543 && SET_DEST (PATTERN (prev
)) == SET_SRC (sets
[0].rtl
))
7545 rtx dest
= SET_DEST (sets
[0].rtl
);
7546 rtx note
= find_reg_note (prev
, REG_EQUIV
, NULL_RTX
);
7548 validate_change (prev
, & SET_DEST (PATTERN (prev
)), dest
, 1);
7549 validate_change (insn
, & SET_DEST (sets
[0].rtl
),
7550 SET_SRC (sets
[0].rtl
), 1);
7551 validate_change (insn
, & SET_SRC (sets
[0].rtl
), dest
, 1);
7552 apply_change_group ();
7554 /* If REG1 was equivalent to a constant, REG0 is not. */
7556 PUT_REG_NOTE_KIND (note
, REG_EQUAL
);
7558 /* If there was a REG_WAS_0 note on PREV, remove it. Move
7559 any REG_WAS_0 note on INSN to PREV. */
7560 note
= find_reg_note (prev
, REG_WAS_0
, NULL_RTX
);
7562 remove_note (prev
, note
);
7564 note
= find_reg_note (insn
, REG_WAS_0
, NULL_RTX
);
7567 remove_note (insn
, note
);
7568 XEXP (note
, 1) = REG_NOTES (prev
);
7569 REG_NOTES (prev
) = note
;
7572 /* If INSN has a REG_EQUAL note, and this note mentions REG0,
7573 then we must delete it, because the value in REG0 has changed. */
7574 note
= find_reg_note (insn
, REG_EQUAL
, NULL_RTX
);
7575 if (note
&& reg_mentioned_p (dest
, XEXP (note
, 0)))
7576 remove_note (insn
, note
);
7580 /* If this is a conditional jump insn, record any known equivalences due to
7581 the condition being tested. */
7583 last_jump_equiv_class
= 0;
7584 if (GET_CODE (insn
) == JUMP_INSN
7585 && n_sets
== 1 && GET_CODE (x
) == SET
7586 && GET_CODE (SET_SRC (x
)) == IF_THEN_ELSE
)
7587 record_jump_equiv (insn
, 0);
7590 /* If the previous insn set CC0 and this insn no longer references CC0,
7591 delete the previous insn. Here we use the fact that nothing expects CC0
7592 to be valid over an insn, which is true until the final pass. */
7593 if (prev_insn
&& GET_CODE (prev_insn
) == INSN
7594 && (tem
= single_set (prev_insn
)) != 0
7595 && SET_DEST (tem
) == cc0_rtx
7596 && ! reg_mentioned_p (cc0_rtx
, x
))
7598 PUT_CODE (prev_insn
, NOTE
);
7599 NOTE_LINE_NUMBER (prev_insn
) = NOTE_INSN_DELETED
;
7600 NOTE_SOURCE_FILE (prev_insn
) = 0;
7603 prev_insn_cc0
= this_insn_cc0
;
7604 prev_insn_cc0_mode
= this_insn_cc0_mode
;
7610 /* Store 1 in *WRITES_PTR for those categories of memory ref
7611 that must be invalidated when the expression WRITTEN is stored in.
7612 If WRITTEN is null, say everything must be invalidated. */
7615 note_mem_written (written
, writes_ptr
)
7617 struct write_data
*writes_ptr
;
7619 static struct write_data everything
= {0, 1, 1, 1};
7622 *writes_ptr
= everything
;
7623 else if (GET_CODE (written
) == MEM
)
7625 /* Pushing or popping the stack invalidates just the stack pointer. */
7626 rtx addr
= XEXP (written
, 0);
7627 if ((GET_CODE (addr
) == PRE_DEC
|| GET_CODE (addr
) == PRE_INC
7628 || GET_CODE (addr
) == POST_DEC
|| GET_CODE (addr
) == POST_INC
)
7629 && GET_CODE (XEXP (addr
, 0)) == REG
7630 && REGNO (XEXP (addr
, 0)) == STACK_POINTER_REGNUM
)
7635 else if (GET_MODE (written
) == BLKmode
)
7636 *writes_ptr
= everything
;
7637 else if (cse_rtx_addr_varies_p (written
))
7639 /* A varying address that is a sum indicates an array element,
7640 and that's just as good as a structure element
7641 in implying that we need not invalidate scalar variables.
7642 However, we must allow QImode aliasing of scalars, because the
7643 ANSI C standard allows character pointers to alias anything.
7644 We must also allow AND addresses, because they may generate
7645 accesses outside the object being referenced. This is used to
7646 generate aligned addresses from unaligned addresses, for instance,
7647 the alpha storeqi_unaligned pattern. */
7648 if (! ((MEM_IN_STRUCT_P (written
)
7649 || GET_CODE (XEXP (written
, 0)) == PLUS
)
7650 && GET_MODE (written
) != QImode
7651 && GET_CODE (XEXP (written
, 0)) != AND
))
7652 writes_ptr
->all
= 1;
7653 writes_ptr
->nonscalar
= 1;
7655 writes_ptr
->var
= 1;
7659 /* Perform invalidation on the basis of everything about an insn
7660 except for invalidating the actual places that are SET in it.
7661 This includes the places CLOBBERed, and anything that might
7662 alias with something that is SET or CLOBBERed.
7664 W points to the writes_memory for this insn, a struct write_data
7665 saying which kinds of memory references must be invalidated.
7666 X is the pattern of the insn. */
7669 invalidate_from_clobbers (w
, x
)
7670 struct write_data
*w
;
7673 /* If W->var is not set, W specifies no action.
7674 If W->all is set, this step gets all memory refs
7675 so they can be ignored in the rest of this function. */
7677 invalidate_memory (w
);
7681 if (reg_tick
[STACK_POINTER_REGNUM
] >= 0)
7682 reg_tick
[STACK_POINTER_REGNUM
]++;
7684 /* This should be *very* rare. */
7685 if (TEST_HARD_REG_BIT (hard_regs_in_table
, STACK_POINTER_REGNUM
))
7686 invalidate (stack_pointer_rtx
, VOIDmode
);
7689 if (GET_CODE (x
) == CLOBBER
)
7691 rtx ref
= XEXP (x
, 0);
7693 if (GET_CODE (ref
) == REG
|| GET_CODE (ref
) == SUBREG
7694 || (GET_CODE (ref
) == MEM
&& ! w
->all
))
7695 invalidate (ref
, VOIDmode
);
7696 else if (GET_CODE (ref
) == STRICT_LOW_PART
7697 || GET_CODE (ref
) == ZERO_EXTRACT
)
7698 invalidate (XEXP (ref
, 0), GET_MODE (ref
));
7700 else if (GET_CODE (x
) == PARALLEL
)
7703 for (i
= XVECLEN (x
, 0) - 1; i
>= 0; i
--)
7705 register rtx y
= XVECEXP (x
, 0, i
);
7706 if (GET_CODE (y
) == CLOBBER
)
7708 rtx ref
= XEXP (y
, 0);
7711 if (GET_CODE (ref
) == REG
|| GET_CODE (ref
) == SUBREG
7712 || (GET_CODE (ref
) == MEM
&& !w
->all
))
7713 invalidate (ref
, VOIDmode
);
7714 else if (GET_CODE (ref
) == STRICT_LOW_PART
7715 || GET_CODE (ref
) == ZERO_EXTRACT
)
7716 invalidate (XEXP (ref
, 0), GET_MODE (ref
));
7723 /* Process X, part of the REG_NOTES of an insn. Look at any REG_EQUAL notes
7724 and replace any registers in them with either an equivalent constant
7725 or the canonical form of the register. If we are inside an address,
7726 only do this if the address remains valid.
7728 OBJECT is 0 except when within a MEM in which case it is the MEM.
7730 Return the replacement for X. */
7733 cse_process_notes (x
, object
)
7737 enum rtx_code code
= GET_CODE (x
);
7738 char *fmt
= GET_RTX_FORMAT (code
);
7754 XEXP (x
, 0) = cse_process_notes (XEXP (x
, 0), x
);
7759 if (REG_NOTE_KIND (x
) == REG_EQUAL
)
7760 XEXP (x
, 0) = cse_process_notes (XEXP (x
, 0), NULL_RTX
);
7762 XEXP (x
, 1) = cse_process_notes (XEXP (x
, 1), NULL_RTX
);
7769 rtx
new = cse_process_notes (XEXP (x
, 0), object
);
7770 /* We don't substitute VOIDmode constants into these rtx,
7771 since they would impede folding. */
7772 if (GET_MODE (new) != VOIDmode
)
7773 validate_change (object
, &XEXP (x
, 0), new, 0);
7778 i
= reg_qty
[REGNO (x
)];
7780 /* Return a constant or a constant register. */
7781 if (REGNO_QTY_VALID_P (REGNO (x
))
7782 && qty_const
[i
] != 0
7783 && (CONSTANT_P (qty_const
[i
])
7784 || GET_CODE (qty_const
[i
]) == REG
))
7786 rtx
new = gen_lowpart_if_possible (GET_MODE (x
), qty_const
[i
]);
7791 /* Otherwise, canonicalize this register. */
7792 return canon_reg (x
, NULL_RTX
);
7795 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
7797 validate_change (object
, &XEXP (x
, i
),
7798 cse_process_notes (XEXP (x
, i
), object
), 0);
7803 /* Find common subexpressions between the end test of a loop and the beginning
7804 of the loop. LOOP_START is the CODE_LABEL at the start of a loop.
7806 Often we have a loop where an expression in the exit test is used
7807 in the body of the loop. For example "while (*p) *q++ = *p++;".
7808 Because of the way we duplicate the loop exit test in front of the loop,
7809 however, we don't detect that common subexpression. This will be caught
7810 when global cse is implemented, but this is a quite common case.
7812 This function handles the most common cases of these common expressions.
7813 It is called after we have processed the basic block ending with the
7814 NOTE_INSN_LOOP_END note that ends a loop and the previous JUMP_INSN
7815 jumps to a label used only once. */
7818 cse_around_loop (loop_start
)
7823 struct table_elt
*p
;
7825 /* If the jump at the end of the loop doesn't go to the start, we don't
7827 for (insn
= PREV_INSN (loop_start
);
7828 insn
&& (GET_CODE (insn
) == NOTE
&& NOTE_LINE_NUMBER (insn
) >= 0);
7829 insn
= PREV_INSN (insn
))
7833 || GET_CODE (insn
) != NOTE
7834 || NOTE_LINE_NUMBER (insn
) != NOTE_INSN_LOOP_BEG
)
7837 /* If the last insn of the loop (the end test) was an NE comparison,
7838 we will interpret it as an EQ comparison, since we fell through
7839 the loop. Any equivalences resulting from that comparison are
7840 therefore not valid and must be invalidated. */
7841 if (last_jump_equiv_class
)
7842 for (p
= last_jump_equiv_class
->first_same_value
; p
;
7843 p
= p
->next_same_value
)
7844 if (GET_CODE (p
->exp
) == MEM
|| GET_CODE (p
->exp
) == REG
7845 || (GET_CODE (p
->exp
) == SUBREG
7846 && GET_CODE (SUBREG_REG (p
->exp
)) == REG
))
7847 invalidate (p
->exp
, VOIDmode
);
7848 else if (GET_CODE (p
->exp
) == STRICT_LOW_PART
7849 || GET_CODE (p
->exp
) == ZERO_EXTRACT
)
7850 invalidate (XEXP (p
->exp
, 0), GET_MODE (p
->exp
));
7852 /* Process insns starting after LOOP_START until we hit a CALL_INSN or
7853 a CODE_LABEL (we could handle a CALL_INSN, but it isn't worth it).
7855 The only thing we do with SET_DEST is invalidate entries, so we
7856 can safely process each SET in order. It is slightly less efficient
7857 to do so, but we only want to handle the most common cases. */
7859 for (insn
= NEXT_INSN (loop_start
);
7860 GET_CODE (insn
) != CALL_INSN
&& GET_CODE (insn
) != CODE_LABEL
7861 && ! (GET_CODE (insn
) == NOTE
7862 && NOTE_LINE_NUMBER (insn
) == NOTE_INSN_LOOP_END
);
7863 insn
= NEXT_INSN (insn
))
7865 if (GET_RTX_CLASS (GET_CODE (insn
)) == 'i'
7866 && (GET_CODE (PATTERN (insn
)) == SET
7867 || GET_CODE (PATTERN (insn
)) == CLOBBER
))
7868 cse_set_around_loop (PATTERN (insn
), insn
, loop_start
);
7869 else if (GET_RTX_CLASS (GET_CODE (insn
)) == 'i'
7870 && GET_CODE (PATTERN (insn
)) == PARALLEL
)
7871 for (i
= XVECLEN (PATTERN (insn
), 0) - 1; i
>= 0; i
--)
7872 if (GET_CODE (XVECEXP (PATTERN (insn
), 0, i
)) == SET
7873 || GET_CODE (XVECEXP (PATTERN (insn
), 0, i
)) == CLOBBER
)
7874 cse_set_around_loop (XVECEXP (PATTERN (insn
), 0, i
), insn
,
7879 /* Variable used for communications between the next two routines. */
7881 static struct write_data skipped_writes_memory
;
7883 /* Process one SET of an insn that was skipped. We ignore CLOBBERs
7884 since they are done elsewhere. This function is called via note_stores. */
7887 invalidate_skipped_set (dest
, set
)
7891 if (GET_CODE (dest
) == MEM
)
7892 note_mem_written (dest
, &skipped_writes_memory
);
7894 /* There are times when an address can appear varying and be a PLUS
7895 during this scan when it would be a fixed address were we to know
7896 the proper equivalences. So promote "nonscalar" to be "all". */
7897 if (skipped_writes_memory
.nonscalar
)
7898 skipped_writes_memory
.all
= 1;
7900 if (GET_CODE (set
) == CLOBBER
7907 if (GET_CODE (dest
) == REG
|| GET_CODE (dest
) == SUBREG
7908 || (! skipped_writes_memory
.all
&& ! cse_rtx_addr_varies_p (dest
)))
7909 invalidate (dest
, VOIDmode
);
7910 else if (GET_CODE (dest
) == STRICT_LOW_PART
7911 || GET_CODE (dest
) == ZERO_EXTRACT
)
7912 invalidate (XEXP (dest
, 0), GET_MODE (dest
));
7915 /* Invalidate all insns from START up to the end of the function or the
7916 next label. This called when we wish to CSE around a block that is
7917 conditionally executed. */
7920 invalidate_skipped_block (start
)
7924 static struct write_data init
= {0, 0, 0, 0};
7925 static struct write_data everything
= {0, 1, 1, 1};
7927 for (insn
= start
; insn
&& GET_CODE (insn
) != CODE_LABEL
;
7928 insn
= NEXT_INSN (insn
))
7930 if (GET_RTX_CLASS (GET_CODE (insn
)) != 'i')
7933 skipped_writes_memory
= init
;
7935 if (GET_CODE (insn
) == CALL_INSN
)
7937 invalidate_for_call ();
7938 skipped_writes_memory
= everything
;
7941 note_stores (PATTERN (insn
), invalidate_skipped_set
);
7942 invalidate_from_clobbers (&skipped_writes_memory
, PATTERN (insn
));
7946 /* Used for communication between the following two routines; contains a
7947 value to be checked for modification. */
7949 static rtx cse_check_loop_start_value
;
7951 /* If modifying X will modify the value in CSE_CHECK_LOOP_START_VALUE,
7952 indicate that fact by setting CSE_CHECK_LOOP_START_VALUE to 0. */
7955 cse_check_loop_start (x
, set
)
7959 if (cse_check_loop_start_value
== 0
7960 || GET_CODE (x
) == CC0
|| GET_CODE (x
) == PC
)
7963 if ((GET_CODE (x
) == MEM
&& GET_CODE (cse_check_loop_start_value
) == MEM
)
7964 || reg_overlap_mentioned_p (x
, cse_check_loop_start_value
))
7965 cse_check_loop_start_value
= 0;
7968 /* X is a SET or CLOBBER contained in INSN that was found near the start of
7969 a loop that starts with the label at LOOP_START.
7971 If X is a SET, we see if its SET_SRC is currently in our hash table.
7972 If so, we see if it has a value equal to some register used only in the
7973 loop exit code (as marked by jump.c).
7975 If those two conditions are true, we search backwards from the start of
7976 the loop to see if that same value was loaded into a register that still
7977 retains its value at the start of the loop.
7979 If so, we insert an insn after the load to copy the destination of that
7980 load into the equivalent register and (try to) replace our SET_SRC with that
7983 In any event, we invalidate whatever this SET or CLOBBER modifies. */
7986 cse_set_around_loop (x
, insn
, loop_start
)
7991 struct table_elt
*src_elt
;
7992 static struct write_data init
= {0, 0, 0, 0};
7993 struct write_data writes_memory
;
7995 writes_memory
= init
;
7997 /* If this is a SET, see if we can replace SET_SRC, but ignore SETs that
7998 are setting PC or CC0 or whose SET_SRC is already a register. */
7999 if (GET_CODE (x
) == SET
8000 && GET_CODE (SET_DEST (x
)) != PC
&& GET_CODE (SET_DEST (x
)) != CC0
8001 && GET_CODE (SET_SRC (x
)) != REG
)
8003 src_elt
= lookup (SET_SRC (x
),
8004 HASH (SET_SRC (x
), GET_MODE (SET_DEST (x
))),
8005 GET_MODE (SET_DEST (x
)));
8008 for (src_elt
= src_elt
->first_same_value
; src_elt
;
8009 src_elt
= src_elt
->next_same_value
)
8010 if (GET_CODE (src_elt
->exp
) == REG
&& REG_LOOP_TEST_P (src_elt
->exp
)
8011 && COST (src_elt
->exp
) < COST (SET_SRC (x
)))
8015 /* Look for an insn in front of LOOP_START that sets
8016 something in the desired mode to SET_SRC (x) before we hit
8017 a label or CALL_INSN. */
8019 for (p
= prev_nonnote_insn (loop_start
);
8020 p
&& GET_CODE (p
) != CALL_INSN
8021 && GET_CODE (p
) != CODE_LABEL
;
8022 p
= prev_nonnote_insn (p
))
8023 if ((set
= single_set (p
)) != 0
8024 && GET_CODE (SET_DEST (set
)) == REG
8025 && GET_MODE (SET_DEST (set
)) == src_elt
->mode
8026 && rtx_equal_p (SET_SRC (set
), SET_SRC (x
)))
8028 /* We now have to ensure that nothing between P
8029 and LOOP_START modified anything referenced in
8030 SET_SRC (x). We know that nothing within the loop
8031 can modify it, or we would have invalidated it in
8035 cse_check_loop_start_value
= SET_SRC (x
);
8036 for (q
= p
; q
!= loop_start
; q
= NEXT_INSN (q
))
8037 if (GET_RTX_CLASS (GET_CODE (q
)) == 'i')
8038 note_stores (PATTERN (q
), cse_check_loop_start
);
8040 /* If nothing was changed and we can replace our
8041 SET_SRC, add an insn after P to copy its destination
8042 to what we will be replacing SET_SRC with. */
8043 if (cse_check_loop_start_value
8044 && validate_change (insn
, &SET_SRC (x
),
8046 emit_insn_after (gen_move_insn (src_elt
->exp
,
8054 /* Now invalidate anything modified by X. */
8055 note_mem_written (SET_DEST (x
), &writes_memory
);
8057 if (writes_memory
.var
)
8058 invalidate_memory (&writes_memory
);
8060 /* See comment on similar code in cse_insn for explanation of these
8062 if (GET_CODE (SET_DEST (x
)) == REG
|| GET_CODE (SET_DEST (x
)) == SUBREG
8063 || (GET_CODE (SET_DEST (x
)) == MEM
&& ! writes_memory
.all
8064 && ! cse_rtx_addr_varies_p (SET_DEST (x
))))
8065 invalidate (SET_DEST (x
), VOIDmode
);
8066 else if (GET_CODE (SET_DEST (x
)) == STRICT_LOW_PART
8067 || GET_CODE (SET_DEST (x
)) == ZERO_EXTRACT
)
8068 invalidate (XEXP (SET_DEST (x
), 0), GET_MODE (SET_DEST (x
)));
8071 /* Find the end of INSN's basic block and return its range,
8072 the total number of SETs in all the insns of the block, the last insn of the
8073 block, and the branch path.
8075 The branch path indicates which branches should be followed. If a non-zero
8076 path size is specified, the block should be rescanned and a different set
8077 of branches will be taken. The branch path is only used if
8078 FLAG_CSE_FOLLOW_JUMPS or FLAG_CSE_SKIP_BLOCKS is non-zero.
8080 DATA is a pointer to a struct cse_basic_block_data, defined below, that is
8081 used to describe the block. It is filled in with the information about
8082 the current block. The incoming structure's branch path, if any, is used
8083 to construct the output branch path. */
8086 cse_end_of_basic_block (insn
, data
, follow_jumps
, after_loop
, skip_blocks
)
8088 struct cse_basic_block_data
*data
;
8095 int low_cuid
= INSN_CUID (insn
), high_cuid
= INSN_CUID (insn
);
8096 rtx next
= GET_RTX_CLASS (GET_CODE (insn
)) == 'i' ? insn
: next_real_insn (insn
);
8097 int path_size
= data
->path_size
;
8101 /* Update the previous branch path, if any. If the last branch was
8102 previously TAKEN, mark it NOT_TAKEN. If it was previously NOT_TAKEN,
8103 shorten the path by one and look at the previous branch. We know that
8104 at least one branch must have been taken if PATH_SIZE is non-zero. */
8105 while (path_size
> 0)
8107 if (data
->path
[path_size
- 1].status
!= NOT_TAKEN
)
8109 data
->path
[path_size
- 1].status
= NOT_TAKEN
;
8116 /* Scan to end of this basic block. */
8117 while (p
&& GET_CODE (p
) != CODE_LABEL
)
8119 /* Don't cse out the end of a loop. This makes a difference
8120 only for the unusual loops that always execute at least once;
8121 all other loops have labels there so we will stop in any case.
8122 Cse'ing out the end of the loop is dangerous because it
8123 might cause an invariant expression inside the loop
8124 to be reused after the end of the loop. This would make it
8125 hard to move the expression out of the loop in loop.c,
8126 especially if it is one of several equivalent expressions
8127 and loop.c would like to eliminate it.
8129 If we are running after loop.c has finished, we can ignore
8130 the NOTE_INSN_LOOP_END. */
8132 if (! after_loop
&& GET_CODE (p
) == NOTE
8133 && NOTE_LINE_NUMBER (p
) == NOTE_INSN_LOOP_END
)
8136 /* Don't cse over a call to setjmp; on some machines (eg vax)
8137 the regs restored by the longjmp come from
8138 a later time than the setjmp. */
8139 if (GET_CODE (p
) == NOTE
8140 && NOTE_LINE_NUMBER (p
) == NOTE_INSN_SETJMP
)
8143 /* A PARALLEL can have lots of SETs in it,
8144 especially if it is really an ASM_OPERANDS. */
8145 if (GET_RTX_CLASS (GET_CODE (p
)) == 'i'
8146 && GET_CODE (PATTERN (p
)) == PARALLEL
)
8147 nsets
+= XVECLEN (PATTERN (p
), 0);
8148 else if (GET_CODE (p
) != NOTE
)
8151 /* Ignore insns made by CSE; they cannot affect the boundaries of
8154 if (INSN_UID (p
) <= max_uid
&& INSN_CUID (p
) > high_cuid
)
8155 high_cuid
= INSN_CUID (p
);
8156 if (INSN_UID (p
) <= max_uid
&& INSN_CUID (p
) < low_cuid
)
8157 low_cuid
= INSN_CUID (p
);
8159 /* See if this insn is in our branch path. If it is and we are to
8161 if (path_entry
< path_size
&& data
->path
[path_entry
].branch
== p
)
8163 if (data
->path
[path_entry
].status
!= NOT_TAKEN
)
8166 /* Point to next entry in path, if any. */
8170 /* If this is a conditional jump, we can follow it if -fcse-follow-jumps
8171 was specified, we haven't reached our maximum path length, there are
8172 insns following the target of the jump, this is the only use of the
8173 jump label, and the target label is preceded by a BARRIER.
8175 Alternatively, we can follow the jump if it branches around a
8176 block of code and there are no other branches into the block.
8177 In this case invalidate_skipped_block will be called to invalidate any
8178 registers set in the block when following the jump. */
8180 else if ((follow_jumps
|| skip_blocks
) && path_size
< PATHLENGTH
- 1
8181 && GET_CODE (p
) == JUMP_INSN
8182 && GET_CODE (PATTERN (p
)) == SET
8183 && GET_CODE (SET_SRC (PATTERN (p
))) == IF_THEN_ELSE
8184 && LABEL_NUSES (JUMP_LABEL (p
)) == 1
8185 && NEXT_INSN (JUMP_LABEL (p
)) != 0)
8187 for (q
= PREV_INSN (JUMP_LABEL (p
)); q
; q
= PREV_INSN (q
))
8188 if ((GET_CODE (q
) != NOTE
8189 || NOTE_LINE_NUMBER (q
) == NOTE_INSN_LOOP_END
8190 || NOTE_LINE_NUMBER (q
) == NOTE_INSN_SETJMP
)
8191 && (GET_CODE (q
) != CODE_LABEL
|| LABEL_NUSES (q
) != 0))
8194 /* If we ran into a BARRIER, this code is an extension of the
8195 basic block when the branch is taken. */
8196 if (follow_jumps
&& q
!= 0 && GET_CODE (q
) == BARRIER
)
8198 /* Don't allow ourself to keep walking around an
8199 always-executed loop. */
8200 if (next_real_insn (q
) == next
)
8206 /* Similarly, don't put a branch in our path more than once. */
8207 for (i
= 0; i
< path_entry
; i
++)
8208 if (data
->path
[i
].branch
== p
)
8211 if (i
!= path_entry
)
8214 data
->path
[path_entry
].branch
= p
;
8215 data
->path
[path_entry
++].status
= TAKEN
;
8217 /* This branch now ends our path. It was possible that we
8218 didn't see this branch the last time around (when the
8219 insn in front of the target was a JUMP_INSN that was
8220 turned into a no-op). */
8221 path_size
= path_entry
;
8224 /* Mark block so we won't scan it again later. */
8225 PUT_MODE (NEXT_INSN (p
), QImode
);
8227 /* Detect a branch around a block of code. */
8228 else if (skip_blocks
&& q
!= 0 && GET_CODE (q
) != CODE_LABEL
)
8232 if (next_real_insn (q
) == next
)
8238 for (i
= 0; i
< path_entry
; i
++)
8239 if (data
->path
[i
].branch
== p
)
8242 if (i
!= path_entry
)
8245 /* This is no_labels_between_p (p, q) with an added check for
8246 reaching the end of a function (in case Q precedes P). */
8247 for (tmp
= NEXT_INSN (p
); tmp
&& tmp
!= q
; tmp
= NEXT_INSN (tmp
))
8248 if (GET_CODE (tmp
) == CODE_LABEL
)
8253 data
->path
[path_entry
].branch
= p
;
8254 data
->path
[path_entry
++].status
= AROUND
;
8256 path_size
= path_entry
;
8259 /* Mark block so we won't scan it again later. */
8260 PUT_MODE (NEXT_INSN (p
), QImode
);
8267 data
->low_cuid
= low_cuid
;
8268 data
->high_cuid
= high_cuid
;
8269 data
->nsets
= nsets
;
8272 /* If all jumps in the path are not taken, set our path length to zero
8273 so a rescan won't be done. */
8274 for (i
= path_size
- 1; i
>= 0; i
--)
8275 if (data
->path
[i
].status
!= NOT_TAKEN
)
8279 data
->path_size
= 0;
8281 data
->path_size
= path_size
;
8283 /* End the current branch path. */
8284 data
->path
[path_size
].branch
= 0;
8287 /* Perform cse on the instructions of a function.
8288 F is the first instruction.
8289 NREGS is one plus the highest pseudo-reg number used in the instruction.
8291 AFTER_LOOP is 1 if this is the cse call done after loop optimization
8292 (only if -frerun-cse-after-loop).
8294 Returns 1 if jump_optimize should be redone due to simplifications
8295 in conditional jump instructions. */
8298 cse_main (f
, nregs
, after_loop
, file
)
8304 struct cse_basic_block_data val
;
8305 register rtx insn
= f
;
8308 cse_jumps_altered
= 0;
8309 recorded_label_ref
= 0;
8310 constant_pool_entries_cost
= 0;
8317 all_minus_one
= (int *) alloca (nregs
* sizeof (int));
8318 consec_ints
= (int *) alloca (nregs
* sizeof (int));
8320 for (i
= 0; i
< nregs
; i
++)
8322 all_minus_one
[i
] = -1;
8326 reg_next_eqv
= (int *) alloca (nregs
* sizeof (int));
8327 reg_prev_eqv
= (int *) alloca (nregs
* sizeof (int));
8328 reg_qty
= (int *) alloca (nregs
* sizeof (int));
8329 reg_in_table
= (int *) alloca (nregs
* sizeof (int));
8330 reg_tick
= (int *) alloca (nregs
* sizeof (int));
8332 #ifdef LOAD_EXTEND_OP
8334 /* Allocate scratch rtl here. cse_insn will fill in the memory reference
8335 and change the code and mode as appropriate. */
8336 memory_extend_rtx
= gen_rtx (ZERO_EXTEND
, VOIDmode
, 0);
8339 /* Discard all the free elements of the previous function
8340 since they are allocated in the temporarily obstack. */
8341 bzero ((char *) table
, sizeof table
);
8342 free_element_chain
= 0;
8343 n_elements_made
= 0;
8345 /* Find the largest uid. */
8347 max_uid
= get_max_uid ();
8348 uid_cuid
= (int *) alloca ((max_uid
+ 1) * sizeof (int));
8349 bzero ((char *) uid_cuid
, (max_uid
+ 1) * sizeof (int));
8351 /* Compute the mapping from uids to cuids.
8352 CUIDs are numbers assigned to insns, like uids,
8353 except that cuids increase monotonically through the code.
8354 Don't assign cuids to line-number NOTEs, so that the distance in cuids
8355 between two insns is not affected by -g. */
8357 for (insn
= f
, i
= 0; insn
; insn
= NEXT_INSN (insn
))
8359 if (GET_CODE (insn
) != NOTE
8360 || NOTE_LINE_NUMBER (insn
) < 0)
8361 INSN_CUID (insn
) = ++i
;
8363 /* Give a line number note the same cuid as preceding insn. */
8364 INSN_CUID (insn
) = i
;
8367 /* Initialize which registers are clobbered by calls. */
8369 CLEAR_HARD_REG_SET (regs_invalidated_by_call
);
8371 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
8372 if ((call_used_regs
[i
]
8373 /* Used to check !fixed_regs[i] here, but that isn't safe;
8374 fixed regs are still call-clobbered, and sched can get
8375 confused if they can "live across calls".
8377 The frame pointer is always preserved across calls. The arg
8378 pointer is if it is fixed. The stack pointer usually is, unless
8379 RETURN_POPS_ARGS, in which case an explicit CLOBBER
8380 will be present. If we are generating PIC code, the PIC offset
8381 table register is preserved across calls. */
8383 && i
!= STACK_POINTER_REGNUM
8384 && i
!= FRAME_POINTER_REGNUM
8385 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
8386 && i
!= HARD_FRAME_POINTER_REGNUM
8388 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
8389 && ! (i
== ARG_POINTER_REGNUM
&& fixed_regs
[i
])
8391 #if defined (PIC_OFFSET_TABLE_REGNUM) && !defined (PIC_OFFSET_TABLE_REG_CALL_CLOBBERED)
8392 && ! (i
== PIC_OFFSET_TABLE_REGNUM
&& flag_pic
)
8396 SET_HARD_REG_BIT (regs_invalidated_by_call
, i
);
8398 /* Loop over basic blocks.
8399 Compute the maximum number of qty's needed for each basic block
8400 (which is 2 for each SET). */
8404 cse_end_of_basic_block (insn
, &val
, flag_cse_follow_jumps
, after_loop
,
8405 flag_cse_skip_blocks
);
8407 /* If this basic block was already processed or has no sets, skip it. */
8408 if (val
.nsets
== 0 || GET_MODE (insn
) == QImode
)
8410 PUT_MODE (insn
, VOIDmode
);
8411 insn
= (val
.last
? NEXT_INSN (val
.last
) : 0);
8416 cse_basic_block_start
= val
.low_cuid
;
8417 cse_basic_block_end
= val
.high_cuid
;
8418 max_qty
= val
.nsets
* 2;
8421 fprintf (file
, ";; Processing block from %d to %d, %d sets.\n",
8422 INSN_UID (insn
), val
.last
? INSN_UID (val
.last
) : 0,
8425 /* Make MAX_QTY bigger to give us room to optimize
8426 past the end of this basic block, if that should prove useful. */
8432 /* If this basic block is being extended by following certain jumps,
8433 (see `cse_end_of_basic_block'), we reprocess the code from the start.
8434 Otherwise, we start after this basic block. */
8435 if (val
.path_size
> 0)
8436 cse_basic_block (insn
, val
.last
, val
.path
, 0);
8439 int old_cse_jumps_altered
= cse_jumps_altered
;
8442 /* When cse changes a conditional jump to an unconditional
8443 jump, we want to reprocess the block, since it will give
8444 us a new branch path to investigate. */
8445 cse_jumps_altered
= 0;
8446 temp
= cse_basic_block (insn
, val
.last
, val
.path
, ! after_loop
);
8447 if (cse_jumps_altered
== 0
8448 || (flag_cse_follow_jumps
== 0 && flag_cse_skip_blocks
== 0))
8451 cse_jumps_altered
|= old_cse_jumps_altered
;
8459 /* Tell refers_to_mem_p that qty_const info is not available. */
8462 if (max_elements_made
< n_elements_made
)
8463 max_elements_made
= n_elements_made
;
8465 return cse_jumps_altered
|| recorded_label_ref
;
8468 /* Process a single basic block. FROM and TO and the limits of the basic
8469 block. NEXT_BRANCH points to the branch path when following jumps or
8470 a null path when not following jumps.
8472 AROUND_LOOP is non-zero if we are to try to cse around to the start of a
8473 loop. This is true when we are being called for the last time on a
8474 block and this CSE pass is before loop.c. */
8477 cse_basic_block (from
, to
, next_branch
, around_loop
)
8478 register rtx from
, to
;
8479 struct branch_path
*next_branch
;
8484 int in_libcall_block
= 0;
8486 /* Each of these arrays is undefined before max_reg, so only allocate
8487 the space actually needed and adjust the start below. */
8489 qty_first_reg
= (int *) alloca ((max_qty
- max_reg
) * sizeof (int));
8490 qty_last_reg
= (int *) alloca ((max_qty
- max_reg
) * sizeof (int));
8491 qty_mode
= (enum machine_mode
*) alloca ((max_qty
- max_reg
) * sizeof (enum machine_mode
));
8492 qty_const
= (rtx
*) alloca ((max_qty
- max_reg
) * sizeof (rtx
));
8493 qty_const_insn
= (rtx
*) alloca ((max_qty
- max_reg
) * sizeof (rtx
));
8495 = (enum rtx_code
*) alloca ((max_qty
- max_reg
) * sizeof (enum rtx_code
));
8496 qty_comparison_qty
= (int *) alloca ((max_qty
- max_reg
) * sizeof (int));
8497 qty_comparison_const
= (rtx
*) alloca ((max_qty
- max_reg
) * sizeof (rtx
));
8499 qty_first_reg
-= max_reg
;
8500 qty_last_reg
-= max_reg
;
8501 qty_mode
-= max_reg
;
8502 qty_const
-= max_reg
;
8503 qty_const_insn
-= max_reg
;
8504 qty_comparison_code
-= max_reg
;
8505 qty_comparison_qty
-= max_reg
;
8506 qty_comparison_const
-= max_reg
;
8510 /* TO might be a label. If so, protect it from being deleted. */
8511 if (to
!= 0 && GET_CODE (to
) == CODE_LABEL
)
8514 for (insn
= from
; insn
!= to
; insn
= NEXT_INSN (insn
))
8516 register enum rtx_code code
;
8518 /* See if this is a branch that is part of the path. If so, and it is
8519 to be taken, do so. */
8520 if (next_branch
->branch
== insn
)
8522 enum taken status
= next_branch
++->status
;
8523 if (status
!= NOT_TAKEN
)
8525 if (status
== TAKEN
)
8526 record_jump_equiv (insn
, 1);
8528 invalidate_skipped_block (NEXT_INSN (insn
));
8530 /* Set the last insn as the jump insn; it doesn't affect cc0.
8531 Then follow this branch. */
8536 insn
= JUMP_LABEL (insn
);
8541 code
= GET_CODE (insn
);
8542 if (GET_MODE (insn
) == QImode
)
8543 PUT_MODE (insn
, VOIDmode
);
8545 if (GET_RTX_CLASS (code
) == 'i')
8547 /* Process notes first so we have all notes in canonical forms when
8548 looking for duplicate operations. */
8550 if (REG_NOTES (insn
))
8551 REG_NOTES (insn
) = cse_process_notes (REG_NOTES (insn
), NULL_RTX
);
8553 /* Track when we are inside in LIBCALL block. Inside such a block,
8554 we do not want to record destinations. The last insn of a
8555 LIBCALL block is not considered to be part of the block, since
8556 its destination is the result of the block and hence should be
8559 if (find_reg_note (insn
, REG_LIBCALL
, NULL_RTX
))
8560 in_libcall_block
= 1;
8561 else if (find_reg_note (insn
, REG_RETVAL
, NULL_RTX
))
8562 in_libcall_block
= 0;
8564 cse_insn (insn
, in_libcall_block
);
8567 /* If INSN is now an unconditional jump, skip to the end of our
8568 basic block by pretending that we just did the last insn in the
8569 basic block. If we are jumping to the end of our block, show
8570 that we can have one usage of TO. */
8572 if (simplejump_p (insn
))
8577 if (JUMP_LABEL (insn
) == to
)
8580 /* Maybe TO was deleted because the jump is unconditional.
8581 If so, there is nothing left in this basic block. */
8582 /* ??? Perhaps it would be smarter to set TO
8583 to whatever follows this insn,
8584 and pretend the basic block had always ended here. */
8585 if (INSN_DELETED_P (to
))
8588 insn
= PREV_INSN (to
);
8591 /* See if it is ok to keep on going past the label
8592 which used to end our basic block. Remember that we incremented
8593 the count of that label, so we decrement it here. If we made
8594 a jump unconditional, TO_USAGE will be one; in that case, we don't
8595 want to count the use in that jump. */
8597 if (to
!= 0 && NEXT_INSN (insn
) == to
8598 && GET_CODE (to
) == CODE_LABEL
&& --LABEL_NUSES (to
) == to_usage
)
8600 struct cse_basic_block_data val
;
8603 insn
= NEXT_INSN (to
);
8605 if (LABEL_NUSES (to
) == 0)
8606 insn
= delete_insn (to
);
8608 /* If TO was the last insn in the function, we are done. */
8612 /* If TO was preceded by a BARRIER we are done with this block
8613 because it has no continuation. */
8614 prev
= prev_nonnote_insn (to
);
8615 if (prev
&& GET_CODE (prev
) == BARRIER
)
8618 /* Find the end of the following block. Note that we won't be
8619 following branches in this case. */
8622 cse_end_of_basic_block (insn
, &val
, 0, 0, 0);
8624 /* If the tables we allocated have enough space left
8625 to handle all the SETs in the next basic block,
8626 continue through it. Otherwise, return,
8627 and that block will be scanned individually. */
8628 if (val
.nsets
* 2 + next_qty
> max_qty
)
8631 cse_basic_block_start
= val
.low_cuid
;
8632 cse_basic_block_end
= val
.high_cuid
;
8635 /* Prevent TO from being deleted if it is a label. */
8636 if (to
!= 0 && GET_CODE (to
) == CODE_LABEL
)
8639 /* Back up so we process the first insn in the extension. */
8640 insn
= PREV_INSN (insn
);
8644 if (next_qty
> max_qty
)
8647 /* If we are running before loop.c, we stopped on a NOTE_INSN_LOOP_END, and
8648 the previous insn is the only insn that branches to the head of a loop,
8649 we can cse into the loop. Don't do this if we changed the jump
8650 structure of a loop unless we aren't going to be following jumps. */
8652 if ((cse_jumps_altered
== 0
8653 || (flag_cse_follow_jumps
== 0 && flag_cse_skip_blocks
== 0))
8654 && around_loop
&& to
!= 0
8655 && GET_CODE (to
) == NOTE
&& NOTE_LINE_NUMBER (to
) == NOTE_INSN_LOOP_END
8656 && GET_CODE (PREV_INSN (to
)) == JUMP_INSN
8657 && JUMP_LABEL (PREV_INSN (to
)) != 0
8658 && LABEL_NUSES (JUMP_LABEL (PREV_INSN (to
))) == 1)
8659 cse_around_loop (JUMP_LABEL (PREV_INSN (to
)));
8661 return to
? NEXT_INSN (to
) : 0;
8664 /* Count the number of times registers are used (not set) in X.
8665 COUNTS is an array in which we accumulate the count, INCR is how much
8666 we count each register usage.
8668 Don't count a usage of DEST, which is the SET_DEST of a SET which
8669 contains X in its SET_SRC. This is because such a SET does not
8670 modify the liveness of DEST. */
8673 count_reg_usage (x
, counts
, dest
, incr
)
8686 switch (code
= GET_CODE (x
))
8690 counts
[REGNO (x
)] += incr
;
8704 /* Unless we are setting a REG, count everything in SET_DEST. */
8705 if (GET_CODE (SET_DEST (x
)) != REG
)
8706 count_reg_usage (SET_DEST (x
), counts
, NULL_RTX
, incr
);
8708 /* If SRC has side-effects, then we can't delete this insn, so the
8709 usage of SET_DEST inside SRC counts.
8711 ??? Strictly-speaking, we might be preserving this insn
8712 because some other SET has side-effects, but that's hard
8713 to do and can't happen now. */
8714 count_reg_usage (SET_SRC (x
), counts
,
8715 side_effects_p (SET_SRC (x
)) ? NULL_RTX
: SET_DEST (x
),
8720 count_reg_usage (CALL_INSN_FUNCTION_USAGE (x
), counts
, NULL_RTX
, incr
);
8722 /* ... falls through ... */
8725 count_reg_usage (PATTERN (x
), counts
, NULL_RTX
, incr
);
8727 /* Things used in a REG_EQUAL note aren't dead since loop may try to
8730 count_reg_usage (REG_NOTES (x
), counts
, NULL_RTX
, incr
);
8735 if (REG_NOTE_KIND (x
) == REG_EQUAL
8736 || GET_CODE (XEXP (x
,0)) == USE
)
8737 count_reg_usage (XEXP (x
, 0), counts
, NULL_RTX
, incr
);
8738 count_reg_usage (XEXP (x
, 1), counts
, NULL_RTX
, incr
);
8742 fmt
= GET_RTX_FORMAT (code
);
8743 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
8746 count_reg_usage (XEXP (x
, i
), counts
, dest
, incr
);
8747 else if (fmt
[i
] == 'E')
8748 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
8749 count_reg_usage (XVECEXP (x
, i
, j
), counts
, dest
, incr
);
8753 /* Scan all the insns and delete any that are dead; i.e., they store a register
8754 that is never used or they copy a register to itself.
8756 This is used to remove insns made obviously dead by cse. It improves the
8757 heuristics in loop since it won't try to move dead invariants out of loops
8758 or make givs for dead quantities. The remaining passes of the compilation
8759 are also sped up. */
8762 delete_dead_from_cse (insns
, nreg
)
8766 int *counts
= (int *) alloca (nreg
* sizeof (int));
8772 /* First count the number of times each register is used. */
8773 bzero ((char *) counts
, sizeof (int) * nreg
);
8774 for (insn
= next_real_insn (insns
); insn
; insn
= next_real_insn (insn
))
8775 count_reg_usage (insn
, counts
, NULL_RTX
, 1);
8777 /* Go from the last insn to the first and delete insns that only set unused
8778 registers or copy a register to itself. As we delete an insn, remove
8779 usage counts for registers it uses. */
8780 for (insn
= prev_real_insn (get_last_insn ()); insn
; insn
= prev
)
8784 prev
= prev_real_insn (insn
);
8786 /* Don't delete any insns that are part of a libcall block.
8787 Flow or loop might get confused if we did that. Remember
8788 that we are scanning backwards. */
8789 if (find_reg_note (insn
, REG_RETVAL
, NULL_RTX
))
8794 else if (GET_CODE (PATTERN (insn
)) == SET
)
8796 if (GET_CODE (SET_DEST (PATTERN (insn
))) == REG
8797 && SET_DEST (PATTERN (insn
)) == SET_SRC (PATTERN (insn
)))
8801 else if (GET_CODE (SET_DEST (PATTERN (insn
))) == CC0
8802 && ! side_effects_p (SET_SRC (PATTERN (insn
)))
8803 && ((tem
= next_nonnote_insn (insn
)) == 0
8804 || GET_RTX_CLASS (GET_CODE (tem
)) != 'i'
8805 || ! reg_referenced_p (cc0_rtx
, PATTERN (tem
))))
8808 else if (GET_CODE (SET_DEST (PATTERN (insn
))) != REG
8809 || REGNO (SET_DEST (PATTERN (insn
))) < FIRST_PSEUDO_REGISTER
8810 || counts
[REGNO (SET_DEST (PATTERN (insn
)))] != 0
8811 || side_effects_p (SET_SRC (PATTERN (insn
))))
8814 else if (GET_CODE (PATTERN (insn
)) == PARALLEL
)
8815 for (i
= XVECLEN (PATTERN (insn
), 0) - 1; i
>= 0; i
--)
8817 rtx elt
= XVECEXP (PATTERN (insn
), 0, i
);
8819 if (GET_CODE (elt
) == SET
)
8821 if (GET_CODE (SET_DEST (elt
)) == REG
8822 && SET_DEST (elt
) == SET_SRC (elt
))
8826 else if (GET_CODE (SET_DEST (elt
)) == CC0
8827 && ! side_effects_p (SET_SRC (elt
))
8828 && ((tem
= next_nonnote_insn (insn
)) == 0
8829 || GET_RTX_CLASS (GET_CODE (tem
)) != 'i'
8830 || ! reg_referenced_p (cc0_rtx
, PATTERN (tem
))))
8833 else if (GET_CODE (SET_DEST (elt
)) != REG
8834 || REGNO (SET_DEST (elt
)) < FIRST_PSEUDO_REGISTER
8835 || counts
[REGNO (SET_DEST (elt
))] != 0
8836 || side_effects_p (SET_SRC (elt
)))
8839 else if (GET_CODE (elt
) != CLOBBER
&& GET_CODE (elt
) != USE
)
8845 /* If this is a dead insn, delete it and show registers in it aren't
8850 count_reg_usage (insn
, counts
, NULL_RTX
, -1);
8854 if (find_reg_note (insn
, REG_LIBCALL
, NULL_RTX
))