* pa.md (alternate dbra pattern): Remove incorrect pattern.
[official-gcc.git] / gcc / combine.c
blob12538fd88297e61b6dd728d604bec3782de4ba1a
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 88, 92-96, 1997 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information created by
53 flow.c aren't completely updated:
55 - reg_live_length is not updated
56 - reg_n_refs is not adjusted in the rare case when a register is
57 no longer required in a computation
58 - there are extremely rare cases (see distribute_regnotes) when a
59 REG_DEAD note is lost
60 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
61 removed because there is no way to know which register it was
62 linking
64 To simplify substitution, we combine only when the earlier insn(s)
65 consist of only a single assignment. To simplify updating afterward,
66 we never combine when a subroutine call appears in the middle.
68 Since we do not represent assignments to CC0 explicitly except when that
69 is all an insn does, there is no LOG_LINKS entry in an insn that uses
70 the condition code for the insn that set the condition code.
71 Fortunately, these two insns must be consecutive.
72 Therefore, every JUMP_INSN is taken to have an implicit logical link
73 to the preceding insn. This is not quite right, since non-jumps can
74 also use the condition code; but in practice such insns would not
75 combine anyway. */
77 #include "config.h"
78 #ifdef __STDC__
79 #include <stdarg.h>
80 #else
81 #include <varargs.h>
82 #endif
84 /* Must precede rtl.h for FFS. */
85 #include <stdio.h>
87 #include "rtl.h"
88 #include "flags.h"
89 #include "regs.h"
90 #include "hard-reg-set.h"
91 #include "expr.h"
92 #include "basic-block.h"
93 #include "insn-config.h"
94 #include "insn-flags.h"
95 #include "insn-codes.h"
96 #include "insn-attr.h"
97 #include "recog.h"
98 #include "real.h"
100 /* It is not safe to use ordinary gen_lowpart in combine.
101 Use gen_lowpart_for_combine instead. See comments there. */
102 #define gen_lowpart dont_use_gen_lowpart_you_dummy
104 /* Number of attempts to combine instructions in this function. */
106 static int combine_attempts;
108 /* Number of attempts that got as far as substitution in this function. */
110 static int combine_merges;
112 /* Number of instructions combined with added SETs in this function. */
114 static int combine_extras;
116 /* Number of instructions combined in this function. */
118 static int combine_successes;
120 /* Totals over entire compilation. */
122 static int total_attempts, total_merges, total_extras, total_successes;
124 /* Define a default value for REVERSIBLE_CC_MODE.
125 We can never assume that a condition code mode is safe to reverse unless
126 the md tells us so. */
127 #ifndef REVERSIBLE_CC_MODE
128 #define REVERSIBLE_CC_MODE(MODE) 0
129 #endif
131 /* Vector mapping INSN_UIDs to cuids.
132 The cuids are like uids but increase monotonically always.
133 Combine always uses cuids so that it can compare them.
134 But actually renumbering the uids, which we used to do,
135 proves to be a bad idea because it makes it hard to compare
136 the dumps produced by earlier passes with those from later passes. */
138 static int *uid_cuid;
139 static int max_uid_cuid;
141 /* Get the cuid of an insn. */
143 #define INSN_CUID(INSN) \
144 (INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
146 /* Maximum register number, which is the size of the tables below. */
148 static int combine_max_regno;
150 /* Record last point of death of (hard or pseudo) register n. */
152 static rtx *reg_last_death;
154 /* Record last point of modification of (hard or pseudo) register n. */
156 static rtx *reg_last_set;
158 /* Record the cuid of the last insn that invalidated memory
159 (anything that writes memory, and subroutine calls, but not pushes). */
161 static int mem_last_set;
163 /* Record the cuid of the last CALL_INSN
164 so we can tell whether a potential combination crosses any calls. */
166 static int last_call_cuid;
168 /* When `subst' is called, this is the insn that is being modified
169 (by combining in a previous insn). The PATTERN of this insn
170 is still the old pattern partially modified and it should not be
171 looked at, but this may be used to examine the successors of the insn
172 to judge whether a simplification is valid. */
174 static rtx subst_insn;
176 /* This is an insn that belongs before subst_insn, but is not currently
177 on the insn chain. */
179 static rtx subst_prev_insn;
181 /* This is the lowest CUID that `subst' is currently dealing with.
182 get_last_value will not return a value if the register was set at or
183 after this CUID. If not for this mechanism, we could get confused if
184 I2 or I1 in try_combine were an insn that used the old value of a register
185 to obtain a new value. In that case, we might erroneously get the
186 new value of the register when we wanted the old one. */
188 static int subst_low_cuid;
190 /* This contains any hard registers that are used in newpat; reg_dead_at_p
191 must consider all these registers to be always live. */
193 static HARD_REG_SET newpat_used_regs;
195 /* This is an insn to which a LOG_LINKS entry has been added. If this
196 insn is the earlier than I2 or I3, combine should rescan starting at
197 that location. */
199 static rtx added_links_insn;
201 /* Basic block number of the block in which we are performing combines. */
202 static int this_basic_block;
204 /* The next group of arrays allows the recording of the last value assigned
205 to (hard or pseudo) register n. We use this information to see if a
206 operation being processed is redundant given a prior operation performed
207 on the register. For example, an `and' with a constant is redundant if
208 all the zero bits are already known to be turned off.
210 We use an approach similar to that used by cse, but change it in the
211 following ways:
213 (1) We do not want to reinitialize at each label.
214 (2) It is useful, but not critical, to know the actual value assigned
215 to a register. Often just its form is helpful.
217 Therefore, we maintain the following arrays:
219 reg_last_set_value the last value assigned
220 reg_last_set_label records the value of label_tick when the
221 register was assigned
222 reg_last_set_table_tick records the value of label_tick when a
223 value using the register is assigned
224 reg_last_set_invalid set to non-zero when it is not valid
225 to use the value of this register in some
226 register's value
228 To understand the usage of these tables, it is important to understand
229 the distinction between the value in reg_last_set_value being valid
230 and the register being validly contained in some other expression in the
231 table.
233 Entry I in reg_last_set_value is valid if it is non-zero, and either
234 reg_n_sets[i] is 1 or reg_last_set_label[i] == label_tick.
236 Register I may validly appear in any expression returned for the value
237 of another register if reg_n_sets[i] is 1. It may also appear in the
238 value for register J if reg_last_set_label[i] < reg_last_set_label[j] or
239 reg_last_set_invalid[j] is zero.
241 If an expression is found in the table containing a register which may
242 not validly appear in an expression, the register is replaced by
243 something that won't match, (clobber (const_int 0)).
245 reg_last_set_invalid[i] is set non-zero when register I is being assigned
246 to and reg_last_set_table_tick[i] == label_tick. */
248 /* Record last value assigned to (hard or pseudo) register n. */
250 static rtx *reg_last_set_value;
252 /* Record the value of label_tick when the value for register n is placed in
253 reg_last_set_value[n]. */
255 static int *reg_last_set_label;
257 /* Record the value of label_tick when an expression involving register n
258 is placed in reg_last_set_value. */
260 static int *reg_last_set_table_tick;
262 /* Set non-zero if references to register n in expressions should not be
263 used. */
265 static char *reg_last_set_invalid;
267 /* Incremented for each label. */
269 static int label_tick;
271 /* Some registers that are set more than once and used in more than one
272 basic block are nevertheless always set in similar ways. For example,
273 a QImode register may be loaded from memory in two places on a machine
274 where byte loads zero extend.
276 We record in the following array what we know about the nonzero
277 bits of a register, specifically which bits are known to be zero.
279 If an entry is zero, it means that we don't know anything special. */
281 static unsigned HOST_WIDE_INT *reg_nonzero_bits;
283 /* Mode used to compute significance in reg_nonzero_bits. It is the largest
284 integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
286 static enum machine_mode nonzero_bits_mode;
288 /* Nonzero if we know that a register has some leading bits that are always
289 equal to the sign bit. */
291 static char *reg_sign_bit_copies;
293 /* Nonzero when reg_nonzero_bits and reg_sign_bit_copies can be safely used.
294 It is zero while computing them and after combine has completed. This
295 former test prevents propagating values based on previously set values,
296 which can be incorrect if a variable is modified in a loop. */
298 static int nonzero_sign_valid;
300 /* These arrays are maintained in parallel with reg_last_set_value
301 and are used to store the mode in which the register was last set,
302 the bits that were known to be zero when it was last set, and the
303 number of sign bits copies it was known to have when it was last set. */
305 static enum machine_mode *reg_last_set_mode;
306 static unsigned HOST_WIDE_INT *reg_last_set_nonzero_bits;
307 static char *reg_last_set_sign_bit_copies;
309 /* Record one modification to rtl structure
310 to be undone by storing old_contents into *where.
311 is_int is 1 if the contents are an int. */
313 struct undo
315 struct undo *next;
316 int is_int;
317 union {rtx r; int i;} old_contents;
318 union {rtx *r; int *i;} where;
321 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
322 num_undo says how many are currently recorded.
324 storage is nonzero if we must undo the allocation of new storage.
325 The value of storage is what to pass to obfree.
327 other_insn is nonzero if we have modified some other insn in the process
328 of working on subst_insn. It must be verified too.
330 previous_undos is the value of undobuf.undos when we started processing
331 this substitution. This will prevent gen_rtx_combine from re-used a piece
332 from the previous expression. Doing so can produce circular rtl
333 structures. */
335 struct undobuf
337 char *storage;
338 struct undo *undos;
339 struct undo *frees;
340 struct undo *previous_undos;
341 rtx other_insn;
344 static struct undobuf undobuf;
346 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
347 insn. The substitution can be undone by undo_all. If INTO is already
348 set to NEWVAL, do not record this change. Because computing NEWVAL might
349 also call SUBST, we have to compute it before we put anything into
350 the undo table. */
352 #define SUBST(INTO, NEWVAL) \
353 do { rtx _new = (NEWVAL); \
354 struct undo *_buf; \
356 if (undobuf.frees) \
357 _buf = undobuf.frees, undobuf.frees = _buf->next; \
358 else \
359 _buf = (struct undo *) xmalloc (sizeof (struct undo)); \
361 _buf->is_int = 0; \
362 _buf->where.r = &INTO; \
363 _buf->old_contents.r = INTO; \
364 INTO = _new; \
365 if (_buf->old_contents.r == INTO) \
366 _buf->next = undobuf.frees, undobuf.frees = _buf; \
367 else \
368 _buf->next = undobuf.undos, undobuf.undos = _buf; \
369 } while (0)
371 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
372 for the value of a HOST_WIDE_INT value (including CONST_INT) is
373 not safe. */
375 #define SUBST_INT(INTO, NEWVAL) \
376 do { struct undo *_buf; \
378 if (undobuf.frees) \
379 _buf = undobuf.frees, undobuf.frees = _buf->next; \
380 else \
381 _buf = (struct undo *) xmalloc (sizeof (struct undo)); \
383 _buf->is_int = 1; \
384 _buf->where.i = (int *) &INTO; \
385 _buf->old_contents.i = INTO; \
386 INTO = NEWVAL; \
387 if (_buf->old_contents.i == INTO) \
388 _buf->next = undobuf.frees, undobuf.frees = _buf; \
389 else \
390 _buf->next = undobuf.undos, undobuf.undos = _buf; \
391 } while (0)
393 /* Number of times the pseudo being substituted for
394 was found and replaced. */
396 static int n_occurrences;
398 static void init_reg_last_arrays PROTO((void));
399 static void setup_incoming_promotions PROTO((void));
400 static void set_nonzero_bits_and_sign_copies PROTO((rtx, rtx));
401 static int can_combine_p PROTO((rtx, rtx, rtx, rtx, rtx *, rtx *));
402 static int combinable_i3pat PROTO((rtx, rtx *, rtx, rtx, int, rtx *));
403 static rtx try_combine PROTO((rtx, rtx, rtx));
404 static void undo_all PROTO((void));
405 static rtx *find_split_point PROTO((rtx *, rtx));
406 static rtx subst PROTO((rtx, rtx, rtx, int, int));
407 static rtx simplify_rtx PROTO((rtx, enum machine_mode, int, int));
408 static rtx simplify_if_then_else PROTO((rtx));
409 static rtx simplify_set PROTO((rtx));
410 static rtx simplify_logical PROTO((rtx, int));
411 static rtx expand_compound_operation PROTO((rtx));
412 static rtx expand_field_assignment PROTO((rtx));
413 static rtx make_extraction PROTO((enum machine_mode, rtx, int, rtx, int,
414 int, int, int));
415 static rtx extract_left_shift PROTO((rtx, int));
416 static rtx make_compound_operation PROTO((rtx, enum rtx_code));
417 static int get_pos_from_mask PROTO((unsigned HOST_WIDE_INT, int *));
418 static rtx force_to_mode PROTO((rtx, enum machine_mode,
419 unsigned HOST_WIDE_INT, rtx, int));
420 static rtx if_then_else_cond PROTO((rtx, rtx *, rtx *));
421 static rtx known_cond PROTO((rtx, enum rtx_code, rtx, rtx));
422 static int rtx_equal_for_field_assignment_p PROTO((rtx, rtx));
423 static rtx make_field_assignment PROTO((rtx));
424 static rtx apply_distributive_law PROTO((rtx));
425 static rtx simplify_and_const_int PROTO((rtx, enum machine_mode, rtx,
426 unsigned HOST_WIDE_INT));
427 static unsigned HOST_WIDE_INT nonzero_bits PROTO((rtx, enum machine_mode));
428 static int num_sign_bit_copies PROTO((rtx, enum machine_mode));
429 static int merge_outer_ops PROTO((enum rtx_code *, HOST_WIDE_INT *,
430 enum rtx_code, HOST_WIDE_INT,
431 enum machine_mode, int *));
432 static rtx simplify_shift_const PROTO((rtx, enum rtx_code, enum machine_mode,
433 rtx, int));
434 static int recog_for_combine PROTO((rtx *, rtx, rtx *, int *));
435 static rtx gen_lowpart_for_combine PROTO((enum machine_mode, rtx));
436 static rtx gen_rtx_combine PVPROTO((enum rtx_code code, enum machine_mode mode,
437 ...));
438 static rtx gen_binary PROTO((enum rtx_code, enum machine_mode,
439 rtx, rtx));
440 static rtx gen_unary PROTO((enum rtx_code, enum machine_mode,
441 enum machine_mode, rtx));
442 static enum rtx_code simplify_comparison PROTO((enum rtx_code, rtx *, rtx *));
443 static int reversible_comparison_p PROTO((rtx));
444 static void update_table_tick PROTO((rtx));
445 static void record_value_for_reg PROTO((rtx, rtx, rtx));
446 static void record_dead_and_set_regs_1 PROTO((rtx, rtx));
447 static void record_dead_and_set_regs PROTO((rtx));
448 static int get_last_value_validate PROTO((rtx *, rtx, int, int));
449 static rtx get_last_value PROTO((rtx));
450 static int use_crosses_set_p PROTO((rtx, int));
451 static void reg_dead_at_p_1 PROTO((rtx, rtx));
452 static int reg_dead_at_p PROTO((rtx, rtx));
453 static void move_deaths PROTO((rtx, rtx, int, rtx, rtx *));
454 static int reg_bitfield_target_p PROTO((rtx, rtx));
455 static void distribute_notes PROTO((rtx, rtx, rtx, rtx, rtx, rtx));
456 static void distribute_links PROTO((rtx));
457 static void mark_used_regs_combine PROTO((rtx));
458 static int insn_cuid PROTO((rtx));
460 /* Main entry point for combiner. F is the first insn of the function.
461 NREGS is the first unused pseudo-reg number. */
463 void
464 combine_instructions (f, nregs)
465 rtx f;
466 int nregs;
468 register rtx insn, next, prev;
469 register int i;
470 register rtx links, nextlinks;
472 combine_attempts = 0;
473 combine_merges = 0;
474 combine_extras = 0;
475 combine_successes = 0;
476 undobuf.undos = undobuf.previous_undos = 0;
478 combine_max_regno = nregs;
480 reg_nonzero_bits
481 = (unsigned HOST_WIDE_INT *) alloca (nregs * sizeof (HOST_WIDE_INT));
482 reg_sign_bit_copies = (char *) alloca (nregs * sizeof (char));
484 bzero ((char *) reg_nonzero_bits, nregs * sizeof (HOST_WIDE_INT));
485 bzero (reg_sign_bit_copies, nregs * sizeof (char));
487 reg_last_death = (rtx *) alloca (nregs * sizeof (rtx));
488 reg_last_set = (rtx *) alloca (nregs * sizeof (rtx));
489 reg_last_set_value = (rtx *) alloca (nregs * sizeof (rtx));
490 reg_last_set_table_tick = (int *) alloca (nregs * sizeof (int));
491 reg_last_set_label = (int *) alloca (nregs * sizeof (int));
492 reg_last_set_invalid = (char *) alloca (nregs * sizeof (char));
493 reg_last_set_mode
494 = (enum machine_mode *) alloca (nregs * sizeof (enum machine_mode));
495 reg_last_set_nonzero_bits
496 = (unsigned HOST_WIDE_INT *) alloca (nregs * sizeof (HOST_WIDE_INT));
497 reg_last_set_sign_bit_copies
498 = (char *) alloca (nregs * sizeof (char));
500 init_reg_last_arrays ();
502 init_recog_no_volatile ();
504 /* Compute maximum uid value so uid_cuid can be allocated. */
506 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
507 if (INSN_UID (insn) > i)
508 i = INSN_UID (insn);
510 uid_cuid = (int *) alloca ((i + 1) * sizeof (int));
511 max_uid_cuid = i;
513 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
515 /* Don't use reg_nonzero_bits when computing it. This can cause problems
516 when, for example, we have j <<= 1 in a loop. */
518 nonzero_sign_valid = 0;
520 /* Compute the mapping from uids to cuids.
521 Cuids are numbers assigned to insns, like uids,
522 except that cuids increase monotonically through the code.
524 Scan all SETs and see if we can deduce anything about what
525 bits are known to be zero for some registers and how many copies
526 of the sign bit are known to exist for those registers.
528 Also set any known values so that we can use it while searching
529 for what bits are known to be set. */
531 label_tick = 1;
533 /* We need to initialize it here, because record_dead_and_set_regs may call
534 get_last_value. */
535 subst_prev_insn = NULL_RTX;
537 setup_incoming_promotions ();
539 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
541 uid_cuid[INSN_UID (insn)] = ++i;
542 subst_low_cuid = i;
543 subst_insn = insn;
545 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
547 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies);
548 record_dead_and_set_regs (insn);
550 #ifdef AUTO_INC_DEC
551 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
552 if (REG_NOTE_KIND (links) == REG_INC)
553 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX);
554 #endif
557 if (GET_CODE (insn) == CODE_LABEL)
558 label_tick++;
561 nonzero_sign_valid = 1;
563 /* Now scan all the insns in forward order. */
565 this_basic_block = -1;
566 label_tick = 1;
567 last_call_cuid = 0;
568 mem_last_set = 0;
569 init_reg_last_arrays ();
570 setup_incoming_promotions ();
572 for (insn = f; insn; insn = next ? next : NEXT_INSN (insn))
574 next = 0;
576 /* If INSN starts a new basic block, update our basic block number. */
577 if (this_basic_block + 1 < n_basic_blocks
578 && basic_block_head[this_basic_block + 1] == insn)
579 this_basic_block++;
581 if (GET_CODE (insn) == CODE_LABEL)
582 label_tick++;
584 else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
586 /* Try this insn with each insn it links back to. */
588 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
589 if ((next = try_combine (insn, XEXP (links, 0), NULL_RTX)) != 0)
590 goto retry;
592 /* Try each sequence of three linked insns ending with this one. */
594 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
595 for (nextlinks = LOG_LINKS (XEXP (links, 0)); nextlinks;
596 nextlinks = XEXP (nextlinks, 1))
597 if ((next = try_combine (insn, XEXP (links, 0),
598 XEXP (nextlinks, 0))) != 0)
599 goto retry;
601 #ifdef HAVE_cc0
602 /* Try to combine a jump insn that uses CC0
603 with a preceding insn that sets CC0, and maybe with its
604 logical predecessor as well.
605 This is how we make decrement-and-branch insns.
606 We need this special code because data flow connections
607 via CC0 do not get entered in LOG_LINKS. */
609 if (GET_CODE (insn) == JUMP_INSN
610 && (prev = prev_nonnote_insn (insn)) != 0
611 && GET_CODE (prev) == INSN
612 && sets_cc0_p (PATTERN (prev)))
614 if ((next = try_combine (insn, prev, NULL_RTX)) != 0)
615 goto retry;
617 for (nextlinks = LOG_LINKS (prev); nextlinks;
618 nextlinks = XEXP (nextlinks, 1))
619 if ((next = try_combine (insn, prev,
620 XEXP (nextlinks, 0))) != 0)
621 goto retry;
624 /* Do the same for an insn that explicitly references CC0. */
625 if (GET_CODE (insn) == INSN
626 && (prev = prev_nonnote_insn (insn)) != 0
627 && GET_CODE (prev) == INSN
628 && sets_cc0_p (PATTERN (prev))
629 && GET_CODE (PATTERN (insn)) == SET
630 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
632 if ((next = try_combine (insn, prev, NULL_RTX)) != 0)
633 goto retry;
635 for (nextlinks = LOG_LINKS (prev); nextlinks;
636 nextlinks = XEXP (nextlinks, 1))
637 if ((next = try_combine (insn, prev,
638 XEXP (nextlinks, 0))) != 0)
639 goto retry;
642 /* Finally, see if any of the insns that this insn links to
643 explicitly references CC0. If so, try this insn, that insn,
644 and its predecessor if it sets CC0. */
645 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
646 if (GET_CODE (XEXP (links, 0)) == INSN
647 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
648 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
649 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
650 && GET_CODE (prev) == INSN
651 && sets_cc0_p (PATTERN (prev))
652 && (next = try_combine (insn, XEXP (links, 0), prev)) != 0)
653 goto retry;
654 #endif
656 /* Try combining an insn with two different insns whose results it
657 uses. */
658 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
659 for (nextlinks = XEXP (links, 1); nextlinks;
660 nextlinks = XEXP (nextlinks, 1))
661 if ((next = try_combine (insn, XEXP (links, 0),
662 XEXP (nextlinks, 0))) != 0)
663 goto retry;
665 if (GET_CODE (insn) != NOTE)
666 record_dead_and_set_regs (insn);
668 retry:
673 total_attempts += combine_attempts;
674 total_merges += combine_merges;
675 total_extras += combine_extras;
676 total_successes += combine_successes;
678 nonzero_sign_valid = 0;
681 /* Wipe the reg_last_xxx arrays in preparation for another pass. */
683 static void
684 init_reg_last_arrays ()
686 int nregs = combine_max_regno;
688 bzero ((char *) reg_last_death, nregs * sizeof (rtx));
689 bzero ((char *) reg_last_set, nregs * sizeof (rtx));
690 bzero ((char *) reg_last_set_value, nregs * sizeof (rtx));
691 bzero ((char *) reg_last_set_table_tick, nregs * sizeof (int));
692 bzero ((char *) reg_last_set_label, nregs * sizeof (int));
693 bzero (reg_last_set_invalid, nregs * sizeof (char));
694 bzero ((char *) reg_last_set_mode, nregs * sizeof (enum machine_mode));
695 bzero ((char *) reg_last_set_nonzero_bits, nregs * sizeof (HOST_WIDE_INT));
696 bzero (reg_last_set_sign_bit_copies, nregs * sizeof (char));
699 /* Set up any promoted values for incoming argument registers. */
701 static void
702 setup_incoming_promotions ()
704 #ifdef PROMOTE_FUNCTION_ARGS
705 int regno;
706 rtx reg;
707 enum machine_mode mode;
708 int unsignedp;
709 rtx first = get_insns ();
711 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
712 if (FUNCTION_ARG_REGNO_P (regno)
713 && (reg = promoted_input_arg (regno, &mode, &unsignedp)) != 0)
714 record_value_for_reg (reg, first,
715 gen_rtx (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
716 GET_MODE (reg),
717 gen_rtx (CLOBBER, mode, const0_rtx)));
718 #endif
721 /* Called via note_stores. If X is a pseudo that is narrower than
722 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
724 If we are setting only a portion of X and we can't figure out what
725 portion, assume all bits will be used since we don't know what will
726 be happening.
728 Similarly, set how many bits of X are known to be copies of the sign bit
729 at all locations in the function. This is the smallest number implied
730 by any set of X. */
732 static void
733 set_nonzero_bits_and_sign_copies (x, set)
734 rtx x;
735 rtx set;
737 int num;
739 if (GET_CODE (x) == REG
740 && REGNO (x) >= FIRST_PSEUDO_REGISTER
741 /* If this register is undefined at the start of the file, we can't
742 say what its contents were. */
743 && ! (basic_block_live_at_start[0][REGNO (x) / REGSET_ELT_BITS]
744 & ((REGSET_ELT_TYPE) 1 << (REGNO (x) % REGSET_ELT_BITS)))
745 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
747 if (set == 0 || GET_CODE (set) == CLOBBER)
749 reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
750 reg_sign_bit_copies[REGNO (x)] = 1;
751 return;
754 /* If this is a complex assignment, see if we can convert it into a
755 simple assignment. */
756 set = expand_field_assignment (set);
758 /* If this is a simple assignment, or we have a paradoxical SUBREG,
759 set what we know about X. */
761 if (SET_DEST (set) == x
762 || (GET_CODE (SET_DEST (set)) == SUBREG
763 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
764 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
765 && SUBREG_REG (SET_DEST (set)) == x))
767 rtx src = SET_SRC (set);
769 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
770 /* If X is narrower than a word and SRC is a non-negative
771 constant that would appear negative in the mode of X,
772 sign-extend it for use in reg_nonzero_bits because some
773 machines (maybe most) will actually do the sign-extension
774 and this is the conservative approach.
776 ??? For 2.5, try to tighten up the MD files in this regard
777 instead of this kludge. */
779 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
780 && GET_CODE (src) == CONST_INT
781 && INTVAL (src) > 0
782 && 0 != (INTVAL (src)
783 & ((HOST_WIDE_INT) 1
784 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
785 src = GEN_INT (INTVAL (src)
786 | ((HOST_WIDE_INT) (-1)
787 << GET_MODE_BITSIZE (GET_MODE (x))));
788 #endif
790 reg_nonzero_bits[REGNO (x)]
791 |= nonzero_bits (src, nonzero_bits_mode);
792 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
793 if (reg_sign_bit_copies[REGNO (x)] == 0
794 || reg_sign_bit_copies[REGNO (x)] > num)
795 reg_sign_bit_copies[REGNO (x)] = num;
797 else
799 reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
800 reg_sign_bit_copies[REGNO (x)] = 1;
805 /* See if INSN can be combined into I3. PRED and SUCC are optionally
806 insns that were previously combined into I3 or that will be combined
807 into the merger of INSN and I3.
809 Return 0 if the combination is not allowed for any reason.
811 If the combination is allowed, *PDEST will be set to the single
812 destination of INSN and *PSRC to the single source, and this function
813 will return 1. */
815 static int
816 can_combine_p (insn, i3, pred, succ, pdest, psrc)
817 rtx insn;
818 rtx i3;
819 rtx pred, succ;
820 rtx *pdest, *psrc;
822 int i;
823 rtx set = 0, src, dest;
824 rtx p, link;
825 int all_adjacent = (succ ? (next_active_insn (insn) == succ
826 && next_active_insn (succ) == i3)
827 : next_active_insn (insn) == i3);
829 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
830 or a PARALLEL consisting of such a SET and CLOBBERs.
832 If INSN has CLOBBER parallel parts, ignore them for our processing.
833 By definition, these happen during the execution of the insn. When it
834 is merged with another insn, all bets are off. If they are, in fact,
835 needed and aren't also supplied in I3, they may be added by
836 recog_for_combine. Otherwise, it won't match.
838 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
839 note.
841 Get the source and destination of INSN. If more than one, can't
842 combine. */
844 if (GET_CODE (PATTERN (insn)) == SET)
845 set = PATTERN (insn);
846 else if (GET_CODE (PATTERN (insn)) == PARALLEL
847 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
849 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
851 rtx elt = XVECEXP (PATTERN (insn), 0, i);
853 switch (GET_CODE (elt))
855 /* We can ignore CLOBBERs. */
856 case CLOBBER:
857 break;
859 case SET:
860 /* Ignore SETs whose result isn't used but not those that
861 have side-effects. */
862 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
863 && ! side_effects_p (elt))
864 break;
866 /* If we have already found a SET, this is a second one and
867 so we cannot combine with this insn. */
868 if (set)
869 return 0;
871 set = elt;
872 break;
874 default:
875 /* Anything else means we can't combine. */
876 return 0;
880 if (set == 0
881 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
882 so don't do anything with it. */
883 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
884 return 0;
886 else
887 return 0;
889 if (set == 0)
890 return 0;
892 set = expand_field_assignment (set);
893 src = SET_SRC (set), dest = SET_DEST (set);
895 /* Don't eliminate a store in the stack pointer. */
896 if (dest == stack_pointer_rtx
897 /* If we couldn't eliminate a field assignment, we can't combine. */
898 || GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == STRICT_LOW_PART
899 /* Don't combine with an insn that sets a register to itself if it has
900 a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
901 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
902 /* Can't merge a function call. */
903 || GET_CODE (src) == CALL
904 /* Don't eliminate a function call argument. */
905 || (GET_CODE (i3) == CALL_INSN
906 && (find_reg_fusage (i3, USE, dest)
907 || (GET_CODE (dest) == REG
908 && REGNO (dest) < FIRST_PSEUDO_REGISTER
909 && global_regs[REGNO (dest)])))
910 /* Don't substitute into an incremented register. */
911 || FIND_REG_INC_NOTE (i3, dest)
912 || (succ && FIND_REG_INC_NOTE (succ, dest))
913 /* Don't combine the end of a libcall into anything. */
914 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
915 /* Make sure that DEST is not used after SUCC but before I3. */
916 || (succ && ! all_adjacent
917 && reg_used_between_p (dest, succ, i3))
918 /* Make sure that the value that is to be substituted for the register
919 does not use any registers whose values alter in between. However,
920 If the insns are adjacent, a use can't cross a set even though we
921 think it might (this can happen for a sequence of insns each setting
922 the same destination; reg_last_set of that register might point to
923 a NOTE). If INSN has a REG_EQUIV note, the register is always
924 equivalent to the memory so the substitution is valid even if there
925 are intervening stores. Also, don't move a volatile asm or
926 UNSPEC_VOLATILE across any other insns. */
927 || (! all_adjacent
928 && (((GET_CODE (src) != MEM
929 || ! find_reg_note (insn, REG_EQUIV, src))
930 && use_crosses_set_p (src, INSN_CUID (insn)))
931 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
932 || GET_CODE (src) == UNSPEC_VOLATILE))
933 /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
934 better register allocation by not doing the combine. */
935 || find_reg_note (i3, REG_NO_CONFLICT, dest)
936 || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
937 /* Don't combine across a CALL_INSN, because that would possibly
938 change whether the life span of some REGs crosses calls or not,
939 and it is a pain to update that information.
940 Exception: if source is a constant, moving it later can't hurt.
941 Accept that special case, because it helps -fforce-addr a lot. */
942 || (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
943 return 0;
945 /* DEST must either be a REG or CC0. */
946 if (GET_CODE (dest) == REG)
948 /* If register alignment is being enforced for multi-word items in all
949 cases except for parameters, it is possible to have a register copy
950 insn referencing a hard register that is not allowed to contain the
951 mode being copied and which would not be valid as an operand of most
952 insns. Eliminate this problem by not combining with such an insn.
954 Also, on some machines we don't want to extend the life of a hard
955 register.
957 This is the same test done in can_combine except that we don't test
958 if SRC is a CALL operation to permit a hard register with
959 SMALL_REGISTER_CLASSES, and that we have to take all_adjacent
960 into account. */
962 if (GET_CODE (src) == REG
963 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
964 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
965 /* Don't extend the life of a hard register unless it is
966 user variable (if we have few registers) or it can't
967 fit into the desired register (meaning something special
968 is going on).
969 Also avoid substituting a return register into I3, because
970 reload can't handle a conflict with constraints of other
971 inputs. */
972 || (REGNO (src) < FIRST_PSEUDO_REGISTER
973 && (! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src))
974 #ifdef SMALL_REGISTER_CLASSES
975 || (SMALL_REGISTER_CLASSES
976 && ((! all_adjacent && ! REG_USERVAR_P (src))
977 || (FUNCTION_VALUE_REGNO_P (REGNO (src))
978 && ! REG_USERVAR_P (src))))
979 #endif
980 ))))
981 return 0;
983 else if (GET_CODE (dest) != CC0)
984 return 0;
986 /* Don't substitute for a register intended as a clobberable operand.
987 Similarly, don't substitute an expression containing a register that
988 will be clobbered in I3. */
989 if (GET_CODE (PATTERN (i3)) == PARALLEL)
990 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
991 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER
992 && (reg_overlap_mentioned_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0),
993 src)
994 || rtx_equal_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0), dest)))
995 return 0;
997 /* If INSN contains anything volatile, or is an `asm' (whether volatile
998 or not), reject, unless nothing volatile comes between it and I3,
999 with the exception of SUCC. */
1001 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1002 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1003 if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
1004 && p != succ && volatile_refs_p (PATTERN (p)))
1005 return 0;
1007 /* If there are any volatile insns between INSN and I3, reject, because
1008 they might affect machine state. */
1010 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1011 if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
1012 && p != succ && volatile_insn_p (PATTERN (p)))
1013 return 0;
1015 /* If INSN or I2 contains an autoincrement or autodecrement,
1016 make sure that register is not used between there and I3,
1017 and not already used in I3 either.
1018 Also insist that I3 not be a jump; if it were one
1019 and the incremented register were spilled, we would lose. */
1021 #ifdef AUTO_INC_DEC
1022 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1023 if (REG_NOTE_KIND (link) == REG_INC
1024 && (GET_CODE (i3) == JUMP_INSN
1025 || reg_used_between_p (XEXP (link, 0), insn, i3)
1026 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1027 return 0;
1028 #endif
1030 #ifdef HAVE_cc0
1031 /* Don't combine an insn that follows a CC0-setting insn.
1032 An insn that uses CC0 must not be separated from the one that sets it.
1033 We do, however, allow I2 to follow a CC0-setting insn if that insn
1034 is passed as I1; in that case it will be deleted also.
1035 We also allow combining in this case if all the insns are adjacent
1036 because that would leave the two CC0 insns adjacent as well.
1037 It would be more logical to test whether CC0 occurs inside I1 or I2,
1038 but that would be much slower, and this ought to be equivalent. */
1040 p = prev_nonnote_insn (insn);
1041 if (p && p != pred && GET_CODE (p) == INSN && sets_cc0_p (PATTERN (p))
1042 && ! all_adjacent)
1043 return 0;
1044 #endif
1046 /* If we get here, we have passed all the tests and the combination is
1047 to be allowed. */
1049 *pdest = dest;
1050 *psrc = src;
1052 return 1;
1055 /* LOC is the location within I3 that contains its pattern or the component
1056 of a PARALLEL of the pattern. We validate that it is valid for combining.
1058 One problem is if I3 modifies its output, as opposed to replacing it
1059 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1060 so would produce an insn that is not equivalent to the original insns.
1062 Consider:
1064 (set (reg:DI 101) (reg:DI 100))
1065 (set (subreg:SI (reg:DI 101) 0) <foo>)
1067 This is NOT equivalent to:
1069 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1070 (set (reg:DI 101) (reg:DI 100))])
1072 Not only does this modify 100 (in which case it might still be valid
1073 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1075 We can also run into a problem if I2 sets a register that I1
1076 uses and I1 gets directly substituted into I3 (not via I2). In that
1077 case, we would be getting the wrong value of I2DEST into I3, so we
1078 must reject the combination. This case occurs when I2 and I1 both
1079 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1080 If I1_NOT_IN_SRC is non-zero, it means that finding I1 in the source
1081 of a SET must prevent combination from occurring.
1083 On machines where SMALL_REGISTER_CLASSES is defined, we don't combine
1084 if the destination of a SET is a hard register that isn't a user
1085 variable.
1087 Before doing the above check, we first try to expand a field assignment
1088 into a set of logical operations.
1090 If PI3_DEST_KILLED is non-zero, it is a pointer to a location in which
1091 we place a register that is both set and used within I3. If more than one
1092 such register is detected, we fail.
1094 Return 1 if the combination is valid, zero otherwise. */
1096 static int
1097 combinable_i3pat (i3, loc, i2dest, i1dest, i1_not_in_src, pi3dest_killed)
1098 rtx i3;
1099 rtx *loc;
1100 rtx i2dest;
1101 rtx i1dest;
1102 int i1_not_in_src;
1103 rtx *pi3dest_killed;
1105 rtx x = *loc;
1107 if (GET_CODE (x) == SET)
1109 rtx set = expand_field_assignment (x);
1110 rtx dest = SET_DEST (set);
1111 rtx src = SET_SRC (set);
1112 rtx inner_dest = dest, inner_src = src;
1114 SUBST (*loc, set);
1116 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1117 || GET_CODE (inner_dest) == SUBREG
1118 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1119 inner_dest = XEXP (inner_dest, 0);
1121 /* We probably don't need this any more now that LIMIT_RELOAD_CLASS
1122 was added. */
1123 #if 0
1124 while (GET_CODE (inner_src) == STRICT_LOW_PART
1125 || GET_CODE (inner_src) == SUBREG
1126 || GET_CODE (inner_src) == ZERO_EXTRACT)
1127 inner_src = XEXP (inner_src, 0);
1129 /* If it is better that two different modes keep two different pseudos,
1130 avoid combining them. This avoids producing the following pattern
1131 on a 386:
1132 (set (subreg:SI (reg/v:QI 21) 0)
1133 (lshiftrt:SI (reg/v:SI 20)
1134 (const_int 24)))
1135 If that were made, reload could not handle the pair of
1136 reg 20/21, since it would try to get any GENERAL_REGS
1137 but some of them don't handle QImode. */
1139 if (rtx_equal_p (inner_src, i2dest)
1140 && GET_CODE (inner_dest) == REG
1141 && ! MODES_TIEABLE_P (GET_MODE (i2dest), GET_MODE (inner_dest)))
1142 return 0;
1143 #endif
1145 /* Check for the case where I3 modifies its output, as
1146 discussed above. */
1147 if ((inner_dest != dest
1148 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1149 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1150 /* This is the same test done in can_combine_p except that we
1151 allow a hard register with SMALL_REGISTER_CLASSES if SRC is a
1152 CALL operation.
1153 Moreover, we can't test all_adjacent; we don't have to, since
1154 this instruction will stay in place, thus we are not considering
1155 to increase the lifetime of INNER_DEST. */
1156 || (GET_CODE (inner_dest) == REG
1157 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1158 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1159 GET_MODE (inner_dest))
1160 #ifdef SMALL_REGISTER_CLASSES
1161 || (SMALL_REGISTER_CLASSES
1162 && GET_CODE (src) != CALL && ! REG_USERVAR_P (inner_dest)
1163 && FUNCTION_VALUE_REGNO_P (REGNO (inner_dest)))
1164 #endif
1166 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1167 return 0;
1169 /* If DEST is used in I3, it is being killed in this insn,
1170 so record that for later.
1171 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1172 STACK_POINTER_REGNUM, since these are always considered to be
1173 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1174 if (pi3dest_killed && GET_CODE (dest) == REG
1175 && reg_referenced_p (dest, PATTERN (i3))
1176 && REGNO (dest) != FRAME_POINTER_REGNUM
1177 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1178 && REGNO (dest) != HARD_FRAME_POINTER_REGNUM
1179 #endif
1180 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1181 && (REGNO (dest) != ARG_POINTER_REGNUM
1182 || ! fixed_regs [REGNO (dest)])
1183 #endif
1184 && REGNO (dest) != STACK_POINTER_REGNUM)
1186 if (*pi3dest_killed)
1187 return 0;
1189 *pi3dest_killed = dest;
1193 else if (GET_CODE (x) == PARALLEL)
1195 int i;
1197 for (i = 0; i < XVECLEN (x, 0); i++)
1198 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1199 i1_not_in_src, pi3dest_killed))
1200 return 0;
1203 return 1;
1206 /* Try to combine the insns I1 and I2 into I3.
1207 Here I1 and I2 appear earlier than I3.
1208 I1 can be zero; then we combine just I2 into I3.
1210 It we are combining three insns and the resulting insn is not recognized,
1211 try splitting it into two insns. If that happens, I2 and I3 are retained
1212 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
1213 are pseudo-deleted.
1215 Return 0 if the combination does not work. Then nothing is changed.
1216 If we did the combination, return the insn at which combine should
1217 resume scanning. */
1219 static rtx
1220 try_combine (i3, i2, i1)
1221 register rtx i3, i2, i1;
1223 /* New patterns for I3 and I3, respectively. */
1224 rtx newpat, newi2pat = 0;
1225 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
1226 int added_sets_1, added_sets_2;
1227 /* Total number of SETs to put into I3. */
1228 int total_sets;
1229 /* Nonzero is I2's body now appears in I3. */
1230 int i2_is_used;
1231 /* INSN_CODEs for new I3, new I2, and user of condition code. */
1232 int insn_code_number, i2_code_number, other_code_number;
1233 /* Contains I3 if the destination of I3 is used in its source, which means
1234 that the old life of I3 is being killed. If that usage is placed into
1235 I2 and not in I3, a REG_DEAD note must be made. */
1236 rtx i3dest_killed = 0;
1237 /* SET_DEST and SET_SRC of I2 and I1. */
1238 rtx i2dest, i2src, i1dest = 0, i1src = 0;
1239 /* PATTERN (I2), or a copy of it in certain cases. */
1240 rtx i2pat;
1241 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
1242 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
1243 int i1_feeds_i3 = 0;
1244 /* Notes that must be added to REG_NOTES in I3 and I2. */
1245 rtx new_i3_notes, new_i2_notes;
1246 /* Notes that we substituted I3 into I2 instead of the normal case. */
1247 int i3_subst_into_i2 = 0;
1248 /* Notes that I1, I2 or I3 is a MULT operation. */
1249 int have_mult = 0;
1250 /* Number of clobbers of SCRATCH we had to add. */
1251 int i3_scratches = 0, i2_scratches = 0, other_scratches = 0;
1253 int maxreg;
1254 rtx temp;
1255 register rtx link;
1256 int i;
1258 /* If any of I1, I2, and I3 isn't really an insn, we can't do anything.
1259 This can occur when flow deletes an insn that it has merged into an
1260 auto-increment address. We also can't do anything if I3 has a
1261 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1262 libcall. */
1264 if (GET_RTX_CLASS (GET_CODE (i3)) != 'i'
1265 || GET_RTX_CLASS (GET_CODE (i2)) != 'i'
1266 || (i1 && GET_RTX_CLASS (GET_CODE (i1)) != 'i')
1267 || find_reg_note (i3, REG_LIBCALL, NULL_RTX))
1268 return 0;
1270 combine_attempts++;
1272 undobuf.undos = undobuf.previous_undos = 0;
1273 undobuf.other_insn = 0;
1275 /* Save the current high-water-mark so we can free storage if we didn't
1276 accept this combination. */
1277 undobuf.storage = (char *) oballoc (0);
1279 /* Reset the hard register usage information. */
1280 CLEAR_HARD_REG_SET (newpat_used_regs);
1282 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
1283 code below, set I1 to be the earlier of the two insns. */
1284 if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
1285 temp = i1, i1 = i2, i2 = temp;
1287 added_links_insn = 0;
1289 /* First check for one important special-case that the code below will
1290 not handle. Namely, the case where I1 is zero, I2 has multiple sets,
1291 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
1292 we may be able to replace that destination with the destination of I3.
1293 This occurs in the common code where we compute both a quotient and
1294 remainder into a structure, in which case we want to do the computation
1295 directly into the structure to avoid register-register copies.
1297 We make very conservative checks below and only try to handle the
1298 most common cases of this. For example, we only handle the case
1299 where I2 and I3 are adjacent to avoid making difficult register
1300 usage tests. */
1302 if (i1 == 0 && GET_CODE (i3) == INSN && GET_CODE (PATTERN (i3)) == SET
1303 && GET_CODE (SET_SRC (PATTERN (i3))) == REG
1304 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1305 #ifdef SMALL_REGISTER_CLASSES
1306 && (! SMALL_REGISTER_CLASSES
1307 || GET_CODE (SET_DEST (PATTERN (i3))) != REG
1308 || REGNO (SET_DEST (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1309 || REG_USERVAR_P (SET_DEST (PATTERN (i3))))
1310 #endif
1311 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
1312 && GET_CODE (PATTERN (i2)) == PARALLEL
1313 && ! side_effects_p (SET_DEST (PATTERN (i3)))
1314 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1315 below would need to check what is inside (and reg_overlap_mentioned_p
1316 doesn't support those codes anyway). Don't allow those destinations;
1317 the resulting insn isn't likely to be recognized anyway. */
1318 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
1319 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
1320 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
1321 SET_DEST (PATTERN (i3)))
1322 && next_real_insn (i2) == i3)
1324 rtx p2 = PATTERN (i2);
1326 /* Make sure that the destination of I3,
1327 which we are going to substitute into one output of I2,
1328 is not used within another output of I2. We must avoid making this:
1329 (parallel [(set (mem (reg 69)) ...)
1330 (set (reg 69) ...)])
1331 which is not well-defined as to order of actions.
1332 (Besides, reload can't handle output reloads for this.)
1334 The problem can also happen if the dest of I3 is a memory ref,
1335 if another dest in I2 is an indirect memory ref. */
1336 for (i = 0; i < XVECLEN (p2, 0); i++)
1337 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1338 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1339 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
1340 SET_DEST (XVECEXP (p2, 0, i))))
1341 break;
1343 if (i == XVECLEN (p2, 0))
1344 for (i = 0; i < XVECLEN (p2, 0); i++)
1345 if (SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
1347 combine_merges++;
1349 subst_insn = i3;
1350 subst_low_cuid = INSN_CUID (i2);
1352 added_sets_2 = added_sets_1 = 0;
1353 i2dest = SET_SRC (PATTERN (i3));
1355 /* Replace the dest in I2 with our dest and make the resulting
1356 insn the new pattern for I3. Then skip to where we
1357 validate the pattern. Everything was set up above. */
1358 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
1359 SET_DEST (PATTERN (i3)));
1361 newpat = p2;
1362 i3_subst_into_i2 = 1;
1363 goto validate_replacement;
1367 #ifndef HAVE_cc0
1368 /* If we have no I1 and I2 looks like:
1369 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
1370 (set Y OP)])
1371 make up a dummy I1 that is
1372 (set Y OP)
1373 and change I2 to be
1374 (set (reg:CC X) (compare:CC Y (const_int 0)))
1376 (We can ignore any trailing CLOBBERs.)
1378 This undoes a previous combination and allows us to match a branch-and-
1379 decrement insn. */
1381 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
1382 && XVECLEN (PATTERN (i2), 0) >= 2
1383 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
1384 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
1385 == MODE_CC)
1386 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
1387 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
1388 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
1389 && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 1))) == REG
1390 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
1391 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
1393 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
1394 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
1395 break;
1397 if (i == 1)
1399 /* We make I1 with the same INSN_UID as I2. This gives it
1400 the same INSN_CUID for value tracking. Our fake I1 will
1401 never appear in the insn stream so giving it the same INSN_UID
1402 as I2 will not cause a problem. */
1404 subst_prev_insn = i1
1405 = gen_rtx (INSN, VOIDmode, INSN_UID (i2), 0, i2,
1406 XVECEXP (PATTERN (i2), 0, 1), -1, 0, 0);
1408 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
1409 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
1410 SET_DEST (PATTERN (i1)));
1413 #endif
1415 /* Verify that I2 and I1 are valid for combining. */
1416 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
1417 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
1419 undo_all ();
1420 return 0;
1423 /* Record whether I2DEST is used in I2SRC and similarly for the other
1424 cases. Knowing this will help in register status updating below. */
1425 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
1426 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
1427 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
1429 /* See if I1 directly feeds into I3. It does if I1DEST is not used
1430 in I2SRC. */
1431 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
1433 /* Ensure that I3's pattern can be the destination of combines. */
1434 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
1435 i1 && i2dest_in_i1src && i1_feeds_i3,
1436 &i3dest_killed))
1438 undo_all ();
1439 return 0;
1442 /* See if any of the insns is a MULT operation. Unless one is, we will
1443 reject a combination that is, since it must be slower. Be conservative
1444 here. */
1445 if (GET_CODE (i2src) == MULT
1446 || (i1 != 0 && GET_CODE (i1src) == MULT)
1447 || (GET_CODE (PATTERN (i3)) == SET
1448 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
1449 have_mult = 1;
1451 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
1452 We used to do this EXCEPT in one case: I3 has a post-inc in an
1453 output operand. However, that exception can give rise to insns like
1454 mov r3,(r3)+
1455 which is a famous insn on the PDP-11 where the value of r3 used as the
1456 source was model-dependent. Avoid this sort of thing. */
1458 #if 0
1459 if (!(GET_CODE (PATTERN (i3)) == SET
1460 && GET_CODE (SET_SRC (PATTERN (i3))) == REG
1461 && GET_CODE (SET_DEST (PATTERN (i3))) == MEM
1462 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
1463 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
1464 /* It's not the exception. */
1465 #endif
1466 #ifdef AUTO_INC_DEC
1467 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
1468 if (REG_NOTE_KIND (link) == REG_INC
1469 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
1470 || (i1 != 0
1471 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
1473 undo_all ();
1474 return 0;
1476 #endif
1478 /* See if the SETs in I1 or I2 need to be kept around in the merged
1479 instruction: whenever the value set there is still needed past I3.
1480 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
1482 For the SET in I1, we have two cases: If I1 and I2 independently
1483 feed into I3, the set in I1 needs to be kept around if I1DEST dies
1484 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
1485 in I1 needs to be kept around unless I1DEST dies or is set in either
1486 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
1487 I1DEST. If so, we know I1 feeds into I2. */
1489 added_sets_2 = ! dead_or_set_p (i3, i2dest);
1491 added_sets_1
1492 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
1493 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
1495 /* If the set in I2 needs to be kept around, we must make a copy of
1496 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
1497 PATTERN (I2), we are only substituting for the original I1DEST, not into
1498 an already-substituted copy. This also prevents making self-referential
1499 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
1500 I2DEST. */
1502 i2pat = (GET_CODE (PATTERN (i2)) == PARALLEL
1503 ? gen_rtx (SET, VOIDmode, i2dest, i2src)
1504 : PATTERN (i2));
1506 if (added_sets_2)
1507 i2pat = copy_rtx (i2pat);
1509 combine_merges++;
1511 /* Substitute in the latest insn for the regs set by the earlier ones. */
1513 maxreg = max_reg_num ();
1515 subst_insn = i3;
1517 /* It is possible that the source of I2 or I1 may be performing an
1518 unneeded operation, such as a ZERO_EXTEND of something that is known
1519 to have the high part zero. Handle that case by letting subst look at
1520 the innermost one of them.
1522 Another way to do this would be to have a function that tries to
1523 simplify a single insn instead of merging two or more insns. We don't
1524 do this because of the potential of infinite loops and because
1525 of the potential extra memory required. However, doing it the way
1526 we are is a bit of a kludge and doesn't catch all cases.
1528 But only do this if -fexpensive-optimizations since it slows things down
1529 and doesn't usually win. */
1531 if (flag_expensive_optimizations)
1533 /* Pass pc_rtx so no substitutions are done, just simplifications.
1534 The cases that we are interested in here do not involve the few
1535 cases were is_replaced is checked. */
1536 if (i1)
1538 subst_low_cuid = INSN_CUID (i1);
1539 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
1541 else
1543 subst_low_cuid = INSN_CUID (i2);
1544 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
1547 undobuf.previous_undos = undobuf.undos;
1550 #ifndef HAVE_cc0
1551 /* Many machines that don't use CC0 have insns that can both perform an
1552 arithmetic operation and set the condition code. These operations will
1553 be represented as a PARALLEL with the first element of the vector
1554 being a COMPARE of an arithmetic operation with the constant zero.
1555 The second element of the vector will set some pseudo to the result
1556 of the same arithmetic operation. If we simplify the COMPARE, we won't
1557 match such a pattern and so will generate an extra insn. Here we test
1558 for this case, where both the comparison and the operation result are
1559 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
1560 I2SRC. Later we will make the PARALLEL that contains I2. */
1562 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
1563 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
1564 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
1565 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
1567 rtx *cc_use;
1568 enum machine_mode compare_mode;
1570 newpat = PATTERN (i3);
1571 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
1573 i2_is_used = 1;
1575 #ifdef EXTRA_CC_MODES
1576 /* See if a COMPARE with the operand we substituted in should be done
1577 with the mode that is currently being used. If not, do the same
1578 processing we do in `subst' for a SET; namely, if the destination
1579 is used only once, try to replace it with a register of the proper
1580 mode and also replace the COMPARE. */
1581 if (undobuf.other_insn == 0
1582 && (cc_use = find_single_use (SET_DEST (newpat), i3,
1583 &undobuf.other_insn))
1584 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
1585 i2src, const0_rtx))
1586 != GET_MODE (SET_DEST (newpat))))
1588 int regno = REGNO (SET_DEST (newpat));
1589 rtx new_dest = gen_rtx (REG, compare_mode, regno);
1591 if (regno < FIRST_PSEUDO_REGISTER
1592 || (REG_N_SETS (regno) == 1 && ! added_sets_2
1593 && ! REG_USERVAR_P (SET_DEST (newpat))))
1595 if (regno >= FIRST_PSEUDO_REGISTER)
1596 SUBST (regno_reg_rtx[regno], new_dest);
1598 SUBST (SET_DEST (newpat), new_dest);
1599 SUBST (XEXP (*cc_use, 0), new_dest);
1600 SUBST (SET_SRC (newpat),
1601 gen_rtx_combine (COMPARE, compare_mode,
1602 i2src, const0_rtx));
1604 else
1605 undobuf.other_insn = 0;
1607 #endif
1609 else
1610 #endif
1612 n_occurrences = 0; /* `subst' counts here */
1614 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
1615 need to make a unique copy of I2SRC each time we substitute it
1616 to avoid self-referential rtl. */
1618 subst_low_cuid = INSN_CUID (i2);
1619 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
1620 ! i1_feeds_i3 && i1dest_in_i1src);
1621 undobuf.previous_undos = undobuf.undos;
1623 /* Record whether i2's body now appears within i3's body. */
1624 i2_is_used = n_occurrences;
1627 /* If we already got a failure, don't try to do more. Otherwise,
1628 try to substitute in I1 if we have it. */
1630 if (i1 && GET_CODE (newpat) != CLOBBER)
1632 /* Before we can do this substitution, we must redo the test done
1633 above (see detailed comments there) that ensures that I1DEST
1634 isn't mentioned in any SETs in NEWPAT that are field assignments. */
1636 if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
1637 0, NULL_PTR))
1639 undo_all ();
1640 return 0;
1643 n_occurrences = 0;
1644 subst_low_cuid = INSN_CUID (i1);
1645 newpat = subst (newpat, i1dest, i1src, 0, 0);
1646 undobuf.previous_undos = undobuf.undos;
1649 /* Fail if an autoincrement side-effect has been duplicated. Be careful
1650 to count all the ways that I2SRC and I1SRC can be used. */
1651 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
1652 && i2_is_used + added_sets_2 > 1)
1653 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
1654 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
1655 > 1))
1656 /* Fail if we tried to make a new register (we used to abort, but there's
1657 really no reason to). */
1658 || max_reg_num () != maxreg
1659 /* Fail if we couldn't do something and have a CLOBBER. */
1660 || GET_CODE (newpat) == CLOBBER
1661 /* Fail if this new pattern is a MULT and we didn't have one before
1662 at the outer level. */
1663 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
1664 && ! have_mult))
1666 undo_all ();
1667 return 0;
1670 /* If the actions of the earlier insns must be kept
1671 in addition to substituting them into the latest one,
1672 we must make a new PARALLEL for the latest insn
1673 to hold additional the SETs. */
1675 if (added_sets_1 || added_sets_2)
1677 combine_extras++;
1679 if (GET_CODE (newpat) == PARALLEL)
1681 rtvec old = XVEC (newpat, 0);
1682 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
1683 newpat = gen_rtx (PARALLEL, VOIDmode, rtvec_alloc (total_sets));
1684 bcopy ((char *) &old->elem[0], (char *) XVEC (newpat, 0)->elem,
1685 sizeof (old->elem[0]) * old->num_elem);
1687 else
1689 rtx old = newpat;
1690 total_sets = 1 + added_sets_1 + added_sets_2;
1691 newpat = gen_rtx (PARALLEL, VOIDmode, rtvec_alloc (total_sets));
1692 XVECEXP (newpat, 0, 0) = old;
1695 if (added_sets_1)
1696 XVECEXP (newpat, 0, --total_sets)
1697 = (GET_CODE (PATTERN (i1)) == PARALLEL
1698 ? gen_rtx (SET, VOIDmode, i1dest, i1src) : PATTERN (i1));
1700 if (added_sets_2)
1702 /* If there is no I1, use I2's body as is. We used to also not do
1703 the subst call below if I2 was substituted into I3,
1704 but that could lose a simplification. */
1705 if (i1 == 0)
1706 XVECEXP (newpat, 0, --total_sets) = i2pat;
1707 else
1708 /* See comment where i2pat is assigned. */
1709 XVECEXP (newpat, 0, --total_sets)
1710 = subst (i2pat, i1dest, i1src, 0, 0);
1714 /* We come here when we are replacing a destination in I2 with the
1715 destination of I3. */
1716 validate_replacement:
1718 /* Note which hard regs this insn has as inputs. */
1719 mark_used_regs_combine (newpat);
1721 /* Is the result of combination a valid instruction? */
1722 insn_code_number
1723 = recog_for_combine (&newpat, i3, &new_i3_notes, &i3_scratches);
1725 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
1726 the second SET's destination is a register that is unused. In that case,
1727 we just need the first SET. This can occur when simplifying a divmod
1728 insn. We *must* test for this case here because the code below that
1729 splits two independent SETs doesn't handle this case correctly when it
1730 updates the register status. Also check the case where the first
1731 SET's destination is unused. That would not cause incorrect code, but
1732 does cause an unneeded insn to remain. */
1734 if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
1735 && XVECLEN (newpat, 0) == 2
1736 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
1737 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
1738 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == REG
1739 && find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 1)))
1740 && ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 1)))
1741 && asm_noperands (newpat) < 0)
1743 newpat = XVECEXP (newpat, 0, 0);
1744 insn_code_number
1745 = recog_for_combine (&newpat, i3, &new_i3_notes, &i3_scratches);
1748 else if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
1749 && XVECLEN (newpat, 0) == 2
1750 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
1751 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
1752 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) == REG
1753 && find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 0)))
1754 && ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 0)))
1755 && asm_noperands (newpat) < 0)
1757 newpat = XVECEXP (newpat, 0, 1);
1758 insn_code_number
1759 = recog_for_combine (&newpat, i3, &new_i3_notes, &i3_scratches);
1762 /* If we were combining three insns and the result is a simple SET
1763 with no ASM_OPERANDS that wasn't recognized, try to split it into two
1764 insns. There are two ways to do this. It can be split using a
1765 machine-specific method (like when you have an addition of a large
1766 constant) or by combine in the function find_split_point. */
1768 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
1769 && asm_noperands (newpat) < 0)
1771 rtx m_split, *split;
1772 rtx ni2dest = i2dest;
1774 /* See if the MD file can split NEWPAT. If it can't, see if letting it
1775 use I2DEST as a scratch register will help. In the latter case,
1776 convert I2DEST to the mode of the source of NEWPAT if we can. */
1778 m_split = split_insns (newpat, i3);
1780 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
1781 inputs of NEWPAT. */
1783 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
1784 possible to try that as a scratch reg. This would require adding
1785 more code to make it work though. */
1787 if (m_split == 0 && ! reg_overlap_mentioned_p (ni2dest, newpat))
1789 /* If I2DEST is a hard register or the only use of a pseudo,
1790 we can change its mode. */
1791 if (GET_MODE (SET_DEST (newpat)) != GET_MODE (i2dest)
1792 && GET_MODE (SET_DEST (newpat)) != VOIDmode
1793 && GET_CODE (i2dest) == REG
1794 && (REGNO (i2dest) < FIRST_PSEUDO_REGISTER
1795 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
1796 && ! REG_USERVAR_P (i2dest))))
1797 ni2dest = gen_rtx (REG, GET_MODE (SET_DEST (newpat)),
1798 REGNO (i2dest));
1800 m_split = split_insns (gen_rtx (PARALLEL, VOIDmode,
1801 gen_rtvec (2, newpat,
1802 gen_rtx (CLOBBER,
1803 VOIDmode,
1804 ni2dest))),
1805 i3);
1808 if (m_split && GET_CODE (m_split) == SEQUENCE
1809 && XVECLEN (m_split, 0) == 2
1810 && (next_real_insn (i2) == i3
1811 || ! use_crosses_set_p (PATTERN (XVECEXP (m_split, 0, 0)),
1812 INSN_CUID (i2))))
1814 rtx i2set, i3set;
1815 rtx newi3pat = PATTERN (XVECEXP (m_split, 0, 1));
1816 newi2pat = PATTERN (XVECEXP (m_split, 0, 0));
1818 i3set = single_set (XVECEXP (m_split, 0, 1));
1819 i2set = single_set (XVECEXP (m_split, 0, 0));
1821 /* In case we changed the mode of I2DEST, replace it in the
1822 pseudo-register table here. We can't do it above in case this
1823 code doesn't get executed and we do a split the other way. */
1825 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
1826 SUBST (regno_reg_rtx[REGNO (i2dest)], ni2dest);
1828 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes,
1829 &i2_scratches);
1831 /* If I2 or I3 has multiple SETs, we won't know how to track
1832 register status, so don't use these insns. If I2's destination
1833 is used between I2 and I3, we also can't use these insns. */
1835 if (i2_code_number >= 0 && i2set && i3set
1836 && (next_real_insn (i2) == i3
1837 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
1838 insn_code_number = recog_for_combine (&newi3pat, i3, &new_i3_notes,
1839 &i3_scratches);
1840 if (insn_code_number >= 0)
1841 newpat = newi3pat;
1843 /* It is possible that both insns now set the destination of I3.
1844 If so, we must show an extra use of it. */
1846 if (insn_code_number >= 0)
1848 rtx new_i3_dest = SET_DEST (i3set);
1849 rtx new_i2_dest = SET_DEST (i2set);
1851 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
1852 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
1853 || GET_CODE (new_i3_dest) == SUBREG)
1854 new_i3_dest = XEXP (new_i3_dest, 0);
1856 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
1857 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
1858 || GET_CODE (new_i2_dest) == SUBREG)
1859 new_i2_dest = XEXP (new_i2_dest, 0);
1861 if (GET_CODE (new_i3_dest) == REG
1862 && GET_CODE (new_i2_dest) == REG
1863 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
1864 REG_N_SETS (REGNO (new_i2_dest))++;
1868 /* If we can split it and use I2DEST, go ahead and see if that
1869 helps things be recognized. Verify that none of the registers
1870 are set between I2 and I3. */
1871 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
1872 #ifdef HAVE_cc0
1873 && GET_CODE (i2dest) == REG
1874 #endif
1875 /* We need I2DEST in the proper mode. If it is a hard register
1876 or the only use of a pseudo, we can change its mode. */
1877 && (GET_MODE (*split) == GET_MODE (i2dest)
1878 || GET_MODE (*split) == VOIDmode
1879 || REGNO (i2dest) < FIRST_PSEUDO_REGISTER
1880 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
1881 && ! REG_USERVAR_P (i2dest)))
1882 && (next_real_insn (i2) == i3
1883 || ! use_crosses_set_p (*split, INSN_CUID (i2)))
1884 /* We can't overwrite I2DEST if its value is still used by
1885 NEWPAT. */
1886 && ! reg_referenced_p (i2dest, newpat))
1888 rtx newdest = i2dest;
1889 enum rtx_code split_code = GET_CODE (*split);
1890 enum machine_mode split_mode = GET_MODE (*split);
1892 /* Get NEWDEST as a register in the proper mode. We have already
1893 validated that we can do this. */
1894 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
1896 newdest = gen_rtx (REG, split_mode, REGNO (i2dest));
1898 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
1899 SUBST (regno_reg_rtx[REGNO (i2dest)], newdest);
1902 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
1903 an ASHIFT. This can occur if it was inside a PLUS and hence
1904 appeared to be a memory address. This is a kludge. */
1905 if (split_code == MULT
1906 && GET_CODE (XEXP (*split, 1)) == CONST_INT
1907 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
1909 SUBST (*split, gen_rtx_combine (ASHIFT, split_mode,
1910 XEXP (*split, 0), GEN_INT (i)));
1911 /* Update split_code because we may not have a multiply
1912 anymore. */
1913 split_code = GET_CODE (*split);
1916 #ifdef INSN_SCHEDULING
1917 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
1918 be written as a ZERO_EXTEND. */
1919 if (split_code == SUBREG && GET_CODE (SUBREG_REG (*split)) == MEM)
1920 SUBST (*split, gen_rtx_combine (ZERO_EXTEND, split_mode,
1921 XEXP (*split, 0)));
1922 #endif
1924 newi2pat = gen_rtx_combine (SET, VOIDmode, newdest, *split);
1925 SUBST (*split, newdest);
1926 i2_code_number
1927 = recog_for_combine (&newi2pat, i2, &new_i2_notes, &i2_scratches);
1929 /* If the split point was a MULT and we didn't have one before,
1930 don't use one now. */
1931 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
1932 insn_code_number
1933 = recog_for_combine (&newpat, i3, &new_i3_notes, &i3_scratches);
1937 /* Check for a case where we loaded from memory in a narrow mode and
1938 then sign extended it, but we need both registers. In that case,
1939 we have a PARALLEL with both loads from the same memory location.
1940 We can split this into a load from memory followed by a register-register
1941 copy. This saves at least one insn, more if register allocation can
1942 eliminate the copy.
1944 We cannot do this if the destination of the second assignment is
1945 a register that we have already assumed is zero-extended. Similarly
1946 for a SUBREG of such a register. */
1948 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
1949 && GET_CODE (newpat) == PARALLEL
1950 && XVECLEN (newpat, 0) == 2
1951 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
1952 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
1953 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
1954 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
1955 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
1956 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
1957 INSN_CUID (i2))
1958 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
1959 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
1960 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
1961 (GET_CODE (temp) == REG
1962 && reg_nonzero_bits[REGNO (temp)] != 0
1963 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
1964 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
1965 && (reg_nonzero_bits[REGNO (temp)]
1966 != GET_MODE_MASK (word_mode))))
1967 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
1968 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
1969 (GET_CODE (temp) == REG
1970 && reg_nonzero_bits[REGNO (temp)] != 0
1971 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
1972 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
1973 && (reg_nonzero_bits[REGNO (temp)]
1974 != GET_MODE_MASK (word_mode)))))
1975 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
1976 SET_SRC (XVECEXP (newpat, 0, 1)))
1977 && ! find_reg_note (i3, REG_UNUSED,
1978 SET_DEST (XVECEXP (newpat, 0, 0))))
1980 rtx ni2dest;
1982 newi2pat = XVECEXP (newpat, 0, 0);
1983 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
1984 newpat = XVECEXP (newpat, 0, 1);
1985 SUBST (SET_SRC (newpat),
1986 gen_lowpart_for_combine (GET_MODE (SET_SRC (newpat)), ni2dest));
1987 i2_code_number
1988 = recog_for_combine (&newi2pat, i2, &new_i2_notes, &i2_scratches);
1990 if (i2_code_number >= 0)
1991 insn_code_number
1992 = recog_for_combine (&newpat, i3, &new_i3_notes, &i3_scratches);
1994 if (insn_code_number >= 0)
1996 rtx insn;
1997 rtx link;
1999 /* If we will be able to accept this, we have made a change to the
2000 destination of I3. This can invalidate a LOG_LINKS pointing
2001 to I3. No other part of combine.c makes such a transformation.
2003 The new I3 will have a destination that was previously the
2004 destination of I1 or I2 and which was used in i2 or I3. Call
2005 distribute_links to make a LOG_LINK from the next use of
2006 that destination. */
2008 PATTERN (i3) = newpat;
2009 distribute_links (gen_rtx (INSN_LIST, VOIDmode, i3, NULL_RTX));
2011 /* I3 now uses what used to be its destination and which is
2012 now I2's destination. That means we need a LOG_LINK from
2013 I3 to I2. But we used to have one, so we still will.
2015 However, some later insn might be using I2's dest and have
2016 a LOG_LINK pointing at I3. We must remove this link.
2017 The simplest way to remove the link is to point it at I1,
2018 which we know will be a NOTE. */
2020 for (insn = NEXT_INSN (i3);
2021 insn && (this_basic_block == n_basic_blocks - 1
2022 || insn != basic_block_head[this_basic_block + 1]);
2023 insn = NEXT_INSN (insn))
2025 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
2026 && reg_referenced_p (ni2dest, PATTERN (insn)))
2028 for (link = LOG_LINKS (insn); link;
2029 link = XEXP (link, 1))
2030 if (XEXP (link, 0) == i3)
2031 XEXP (link, 0) = i1;
2033 break;
2039 /* Similarly, check for a case where we have a PARALLEL of two independent
2040 SETs but we started with three insns. In this case, we can do the sets
2041 as two separate insns. This case occurs when some SET allows two
2042 other insns to combine, but the destination of that SET is still live. */
2044 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2045 && GET_CODE (newpat) == PARALLEL
2046 && XVECLEN (newpat, 0) == 2
2047 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2048 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
2049 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
2050 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2051 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2052 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2053 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2054 INSN_CUID (i2))
2055 /* Don't pass sets with (USE (MEM ...)) dests to the following. */
2056 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != USE
2057 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != USE
2058 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2059 XVECEXP (newpat, 0, 0))
2060 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
2061 XVECEXP (newpat, 0, 1)))
2063 newi2pat = XVECEXP (newpat, 0, 1);
2064 newpat = XVECEXP (newpat, 0, 0);
2066 i2_code_number
2067 = recog_for_combine (&newi2pat, i2, &new_i2_notes, &i2_scratches);
2069 if (i2_code_number >= 0)
2070 insn_code_number
2071 = recog_for_combine (&newpat, i3, &new_i3_notes, &i3_scratches);
2074 /* If it still isn't recognized, fail and change things back the way they
2075 were. */
2076 if ((insn_code_number < 0
2077 /* Is the result a reasonable ASM_OPERANDS? */
2078 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
2080 undo_all ();
2081 return 0;
2084 /* If we had to change another insn, make sure it is valid also. */
2085 if (undobuf.other_insn)
2087 rtx other_pat = PATTERN (undobuf.other_insn);
2088 rtx new_other_notes;
2089 rtx note, next;
2091 CLEAR_HARD_REG_SET (newpat_used_regs);
2093 other_code_number
2094 = recog_for_combine (&other_pat, undobuf.other_insn,
2095 &new_other_notes, &other_scratches);
2097 if (other_code_number < 0 && ! check_asm_operands (other_pat))
2099 undo_all ();
2100 return 0;
2103 PATTERN (undobuf.other_insn) = other_pat;
2105 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
2106 are still valid. Then add any non-duplicate notes added by
2107 recog_for_combine. */
2108 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
2110 next = XEXP (note, 1);
2112 if (REG_NOTE_KIND (note) == REG_UNUSED
2113 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
2115 if (GET_CODE (XEXP (note, 0)) == REG)
2116 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
2118 remove_note (undobuf.other_insn, note);
2122 for (note = new_other_notes; note; note = XEXP (note, 1))
2123 if (GET_CODE (XEXP (note, 0)) == REG)
2124 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
2126 distribute_notes (new_other_notes, undobuf.other_insn,
2127 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX);
2130 /* We now know that we can do this combination. Merge the insns and
2131 update the status of registers and LOG_LINKS. */
2134 rtx i3notes, i2notes, i1notes = 0;
2135 rtx i3links, i2links, i1links = 0;
2136 rtx midnotes = 0;
2137 register int regno;
2138 /* Compute which registers we expect to eliminate. */
2139 rtx elim_i2 = (newi2pat || i2dest_in_i2src || i2dest_in_i1src
2140 ? 0 : i2dest);
2141 rtx elim_i1 = i1 == 0 || i1dest_in_i1src ? 0 : i1dest;
2143 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
2144 clear them. */
2145 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
2146 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
2147 if (i1)
2148 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
2150 /* Ensure that we do not have something that should not be shared but
2151 occurs multiple times in the new insns. Check this by first
2152 resetting all the `used' flags and then copying anything is shared. */
2154 reset_used_flags (i3notes);
2155 reset_used_flags (i2notes);
2156 reset_used_flags (i1notes);
2157 reset_used_flags (newpat);
2158 reset_used_flags (newi2pat);
2159 if (undobuf.other_insn)
2160 reset_used_flags (PATTERN (undobuf.other_insn));
2162 i3notes = copy_rtx_if_shared (i3notes);
2163 i2notes = copy_rtx_if_shared (i2notes);
2164 i1notes = copy_rtx_if_shared (i1notes);
2165 newpat = copy_rtx_if_shared (newpat);
2166 newi2pat = copy_rtx_if_shared (newi2pat);
2167 if (undobuf.other_insn)
2168 reset_used_flags (PATTERN (undobuf.other_insn));
2170 INSN_CODE (i3) = insn_code_number;
2171 PATTERN (i3) = newpat;
2172 if (undobuf.other_insn)
2173 INSN_CODE (undobuf.other_insn) = other_code_number;
2175 /* We had one special case above where I2 had more than one set and
2176 we replaced a destination of one of those sets with the destination
2177 of I3. In that case, we have to update LOG_LINKS of insns later
2178 in this basic block. Note that this (expensive) case is rare.
2180 Also, in this case, we must pretend that all REG_NOTEs for I2
2181 actually came from I3, so that REG_UNUSED notes from I2 will be
2182 properly handled. */
2184 if (i3_subst_into_i2)
2186 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
2187 if (GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, i))) == REG
2188 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
2189 && ! find_reg_note (i2, REG_UNUSED,
2190 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
2191 for (temp = NEXT_INSN (i2);
2192 temp && (this_basic_block == n_basic_blocks - 1
2193 || basic_block_head[this_basic_block] != temp);
2194 temp = NEXT_INSN (temp))
2195 if (temp != i3 && GET_RTX_CLASS (GET_CODE (temp)) == 'i')
2196 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
2197 if (XEXP (link, 0) == i2)
2198 XEXP (link, 0) = i3;
2200 if (i3notes)
2202 rtx link = i3notes;
2203 while (XEXP (link, 1))
2204 link = XEXP (link, 1);
2205 XEXP (link, 1) = i2notes;
2207 else
2208 i3notes = i2notes;
2209 i2notes = 0;
2212 LOG_LINKS (i3) = 0;
2213 REG_NOTES (i3) = 0;
2214 LOG_LINKS (i2) = 0;
2215 REG_NOTES (i2) = 0;
2217 if (newi2pat)
2219 INSN_CODE (i2) = i2_code_number;
2220 PATTERN (i2) = newi2pat;
2222 else
2224 PUT_CODE (i2, NOTE);
2225 NOTE_LINE_NUMBER (i2) = NOTE_INSN_DELETED;
2226 NOTE_SOURCE_FILE (i2) = 0;
2229 if (i1)
2231 LOG_LINKS (i1) = 0;
2232 REG_NOTES (i1) = 0;
2233 PUT_CODE (i1, NOTE);
2234 NOTE_LINE_NUMBER (i1) = NOTE_INSN_DELETED;
2235 NOTE_SOURCE_FILE (i1) = 0;
2238 /* Get death notes for everything that is now used in either I3 or
2239 I2 and used to die in a previous insn. If we built two new
2240 patterns, move from I1 to I2 then I2 to I3 so that we get the
2241 proper movement on registers that I2 modifies. */
2243 if (newi2pat)
2245 move_deaths (newi2pat, NULL_RTX, INSN_CUID (i1), i2, &midnotes);
2246 move_deaths (newpat, newi2pat, INSN_CUID (i1), i3, &midnotes);
2248 else
2249 move_deaths (newpat, NULL_RTX, i1 ? INSN_CUID (i1) : INSN_CUID (i2),
2250 i3, &midnotes);
2252 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
2253 if (i3notes)
2254 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
2255 elim_i2, elim_i1);
2256 if (i2notes)
2257 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
2258 elim_i2, elim_i1);
2259 if (i1notes)
2260 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
2261 elim_i2, elim_i1);
2262 if (midnotes)
2263 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2264 elim_i2, elim_i1);
2266 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
2267 know these are REG_UNUSED and want them to go to the desired insn,
2268 so we always pass it as i3. We have not counted the notes in
2269 reg_n_deaths yet, so we need to do so now. */
2271 if (newi2pat && new_i2_notes)
2273 for (temp = new_i2_notes; temp; temp = XEXP (temp, 1))
2274 if (GET_CODE (XEXP (temp, 0)) == REG)
2275 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2277 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2280 if (new_i3_notes)
2282 for (temp = new_i3_notes; temp; temp = XEXP (temp, 1))
2283 if (GET_CODE (XEXP (temp, 0)) == REG)
2284 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2286 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX);
2289 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
2290 put a REG_DEAD note for it somewhere. Similarly for I2 and I1.
2291 Show an additional death due to the REG_DEAD note we make here. If
2292 we discard it in distribute_notes, we will decrement it again. */
2294 if (i3dest_killed)
2296 if (GET_CODE (i3dest_killed) == REG)
2297 REG_N_DEATHS (REGNO (i3dest_killed))++;
2299 distribute_notes (gen_rtx (EXPR_LIST, REG_DEAD, i3dest_killed,
2300 NULL_RTX),
2301 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2302 NULL_RTX, NULL_RTX);
2305 /* For I2 and I1, we have to be careful. If NEWI2PAT exists and sets
2306 I2DEST or I1DEST, the death must be somewhere before I2, not I3. If
2307 we passed I3 in that case, it might delete I2. */
2309 if (i2dest_in_i2src)
2311 if (GET_CODE (i2dest) == REG)
2312 REG_N_DEATHS (REGNO (i2dest))++;
2314 if (newi2pat && reg_set_p (i2dest, newi2pat))
2315 distribute_notes (gen_rtx (EXPR_LIST, REG_DEAD, i2dest, NULL_RTX),
2316 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2317 else
2318 distribute_notes (gen_rtx (EXPR_LIST, REG_DEAD, i2dest, NULL_RTX),
2319 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2320 NULL_RTX, NULL_RTX);
2323 if (i1dest_in_i1src)
2325 if (GET_CODE (i1dest) == REG)
2326 REG_N_DEATHS (REGNO (i1dest))++;
2328 if (newi2pat && reg_set_p (i1dest, newi2pat))
2329 distribute_notes (gen_rtx (EXPR_LIST, REG_DEAD, i1dest, NULL_RTX),
2330 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2331 else
2332 distribute_notes (gen_rtx (EXPR_LIST, REG_DEAD, i1dest, NULL_RTX),
2333 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2334 NULL_RTX, NULL_RTX);
2337 distribute_links (i3links);
2338 distribute_links (i2links);
2339 distribute_links (i1links);
2341 if (GET_CODE (i2dest) == REG)
2343 rtx link;
2344 rtx i2_insn = 0, i2_val = 0, set;
2346 /* The insn that used to set this register doesn't exist, and
2347 this life of the register may not exist either. See if one of
2348 I3's links points to an insn that sets I2DEST. If it does,
2349 that is now the last known value for I2DEST. If we don't update
2350 this and I2 set the register to a value that depended on its old
2351 contents, we will get confused. If this insn is used, thing
2352 will be set correctly in combine_instructions. */
2354 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2355 if ((set = single_set (XEXP (link, 0))) != 0
2356 && rtx_equal_p (i2dest, SET_DEST (set)))
2357 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
2359 record_value_for_reg (i2dest, i2_insn, i2_val);
2361 /* If the reg formerly set in I2 died only once and that was in I3,
2362 zero its use count so it won't make `reload' do any work. */
2363 if (! added_sets_2
2364 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
2365 && ! i2dest_in_i2src)
2367 regno = REGNO (i2dest);
2368 REG_N_SETS (regno)--;
2369 if (REG_N_SETS (regno) == 0
2370 && ! (basic_block_live_at_start[0][regno / REGSET_ELT_BITS]
2371 & ((REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS))))
2372 REG_N_REFS (regno) = 0;
2376 if (i1 && GET_CODE (i1dest) == REG)
2378 rtx link;
2379 rtx i1_insn = 0, i1_val = 0, set;
2381 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2382 if ((set = single_set (XEXP (link, 0))) != 0
2383 && rtx_equal_p (i1dest, SET_DEST (set)))
2384 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
2386 record_value_for_reg (i1dest, i1_insn, i1_val);
2388 regno = REGNO (i1dest);
2389 if (! added_sets_1 && ! i1dest_in_i1src)
2391 REG_N_SETS (regno)--;
2392 if (REG_N_SETS (regno) == 0
2393 && ! (basic_block_live_at_start[0][regno / REGSET_ELT_BITS]
2394 & ((REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS))))
2395 REG_N_REFS (regno) = 0;
2399 /* Update reg_nonzero_bits et al for any changes that may have been made
2400 to this insn. */
2402 note_stores (newpat, set_nonzero_bits_and_sign_copies);
2403 if (newi2pat)
2404 note_stores (newi2pat, set_nonzero_bits_and_sign_copies);
2406 /* If we added any (clobber (scratch)), add them to the max for a
2407 block. This is a very pessimistic calculation, since we might
2408 have had them already and this might not be the worst block, but
2409 it's not worth doing any better. */
2410 max_scratch += i3_scratches + i2_scratches + other_scratches;
2412 /* If I3 is now an unconditional jump, ensure that it has a
2413 BARRIER following it since it may have initially been a
2414 conditional jump. It may also be the last nonnote insn. */
2416 if ((GET_CODE (newpat) == RETURN || simplejump_p (i3))
2417 && ((temp = next_nonnote_insn (i3)) == NULL_RTX
2418 || GET_CODE (temp) != BARRIER))
2419 emit_barrier_after (i3);
2422 combine_successes++;
2424 /* Clear this here, so that subsequent get_last_value calls are not
2425 affected. */
2426 subst_prev_insn = NULL_RTX;
2428 if (added_links_insn
2429 && (newi2pat == 0 || INSN_CUID (added_links_insn) < INSN_CUID (i2))
2430 && INSN_CUID (added_links_insn) < INSN_CUID (i3))
2431 return added_links_insn;
2432 else
2433 return newi2pat ? i2 : i3;
2436 /* Undo all the modifications recorded in undobuf. */
2438 static void
2439 undo_all ()
2441 struct undo *undo, *next;
2443 for (undo = undobuf.undos; undo; undo = next)
2445 next = undo->next;
2446 if (undo->is_int)
2447 *undo->where.i = undo->old_contents.i;
2448 else
2449 *undo->where.r = undo->old_contents.r;
2451 undo->next = undobuf.frees;
2452 undobuf.frees = undo;
2455 obfree (undobuf.storage);
2456 undobuf.undos = undobuf.previous_undos = 0;
2458 /* Clear this here, so that subsequent get_last_value calls are not
2459 affected. */
2460 subst_prev_insn = NULL_RTX;
2463 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
2464 where we have an arithmetic expression and return that point. LOC will
2465 be inside INSN.
2467 try_combine will call this function to see if an insn can be split into
2468 two insns. */
2470 static rtx *
2471 find_split_point (loc, insn)
2472 rtx *loc;
2473 rtx insn;
2475 rtx x = *loc;
2476 enum rtx_code code = GET_CODE (x);
2477 rtx *split;
2478 int len = 0, pos, unsignedp;
2479 rtx inner;
2481 /* First special-case some codes. */
2482 switch (code)
2484 case SUBREG:
2485 #ifdef INSN_SCHEDULING
2486 /* If we are making a paradoxical SUBREG invalid, it becomes a split
2487 point. */
2488 if (GET_CODE (SUBREG_REG (x)) == MEM)
2489 return loc;
2490 #endif
2491 return find_split_point (&SUBREG_REG (x), insn);
2493 case MEM:
2494 #ifdef HAVE_lo_sum
2495 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
2496 using LO_SUM and HIGH. */
2497 if (GET_CODE (XEXP (x, 0)) == CONST
2498 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
2500 SUBST (XEXP (x, 0),
2501 gen_rtx_combine (LO_SUM, Pmode,
2502 gen_rtx_combine (HIGH, Pmode, XEXP (x, 0)),
2503 XEXP (x, 0)));
2504 return &XEXP (XEXP (x, 0), 0);
2506 #endif
2508 /* If we have a PLUS whose second operand is a constant and the
2509 address is not valid, perhaps will can split it up using
2510 the machine-specific way to split large constants. We use
2511 the first pseudo-reg (one of the virtual regs) as a placeholder;
2512 it will not remain in the result. */
2513 if (GET_CODE (XEXP (x, 0)) == PLUS
2514 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
2515 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
2517 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
2518 rtx seq = split_insns (gen_rtx (SET, VOIDmode, reg, XEXP (x, 0)),
2519 subst_insn);
2521 /* This should have produced two insns, each of which sets our
2522 placeholder. If the source of the second is a valid address,
2523 we can make put both sources together and make a split point
2524 in the middle. */
2526 if (seq && XVECLEN (seq, 0) == 2
2527 && GET_CODE (XVECEXP (seq, 0, 0)) == INSN
2528 && GET_CODE (PATTERN (XVECEXP (seq, 0, 0))) == SET
2529 && SET_DEST (PATTERN (XVECEXP (seq, 0, 0))) == reg
2530 && ! reg_mentioned_p (reg,
2531 SET_SRC (PATTERN (XVECEXP (seq, 0, 0))))
2532 && GET_CODE (XVECEXP (seq, 0, 1)) == INSN
2533 && GET_CODE (PATTERN (XVECEXP (seq, 0, 1))) == SET
2534 && SET_DEST (PATTERN (XVECEXP (seq, 0, 1))) == reg
2535 && memory_address_p (GET_MODE (x),
2536 SET_SRC (PATTERN (XVECEXP (seq, 0, 1)))))
2538 rtx src1 = SET_SRC (PATTERN (XVECEXP (seq, 0, 0)));
2539 rtx src2 = SET_SRC (PATTERN (XVECEXP (seq, 0, 1)));
2541 /* Replace the placeholder in SRC2 with SRC1. If we can
2542 find where in SRC2 it was placed, that can become our
2543 split point and we can replace this address with SRC2.
2544 Just try two obvious places. */
2546 src2 = replace_rtx (src2, reg, src1);
2547 split = 0;
2548 if (XEXP (src2, 0) == src1)
2549 split = &XEXP (src2, 0);
2550 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
2551 && XEXP (XEXP (src2, 0), 0) == src1)
2552 split = &XEXP (XEXP (src2, 0), 0);
2554 if (split)
2556 SUBST (XEXP (x, 0), src2);
2557 return split;
2561 /* If that didn't work, perhaps the first operand is complex and
2562 needs to be computed separately, so make a split point there.
2563 This will occur on machines that just support REG + CONST
2564 and have a constant moved through some previous computation. */
2566 else if (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x, 0), 0))) != 'o'
2567 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
2568 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (XEXP (x, 0), 0))))
2569 == 'o')))
2570 return &XEXP (XEXP (x, 0), 0);
2572 break;
2574 case SET:
2575 #ifdef HAVE_cc0
2576 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
2577 ZERO_EXTRACT, the most likely reason why this doesn't match is that
2578 we need to put the operand into a register. So split at that
2579 point. */
2581 if (SET_DEST (x) == cc0_rtx
2582 && GET_CODE (SET_SRC (x)) != COMPARE
2583 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
2584 && GET_RTX_CLASS (GET_CODE (SET_SRC (x))) != 'o'
2585 && ! (GET_CODE (SET_SRC (x)) == SUBREG
2586 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (SET_SRC (x)))) == 'o'))
2587 return &SET_SRC (x);
2588 #endif
2590 /* See if we can split SET_SRC as it stands. */
2591 split = find_split_point (&SET_SRC (x), insn);
2592 if (split && split != &SET_SRC (x))
2593 return split;
2595 /* See if we can split SET_DEST as it stands. */
2596 split = find_split_point (&SET_DEST (x), insn);
2597 if (split && split != &SET_DEST (x))
2598 return split;
2600 /* See if this is a bitfield assignment with everything constant. If
2601 so, this is an IOR of an AND, so split it into that. */
2602 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
2603 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
2604 <= HOST_BITS_PER_WIDE_INT)
2605 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
2606 && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
2607 && GET_CODE (SET_SRC (x)) == CONST_INT
2608 && ((INTVAL (XEXP (SET_DEST (x), 1))
2609 + INTVAL (XEXP (SET_DEST (x), 2)))
2610 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
2611 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
2613 int pos = INTVAL (XEXP (SET_DEST (x), 2));
2614 int len = INTVAL (XEXP (SET_DEST (x), 1));
2615 int src = INTVAL (SET_SRC (x));
2616 rtx dest = XEXP (SET_DEST (x), 0);
2617 enum machine_mode mode = GET_MODE (dest);
2618 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
2620 if (BITS_BIG_ENDIAN)
2621 pos = GET_MODE_BITSIZE (mode) - len - pos;
2623 if (src == mask)
2624 SUBST (SET_SRC (x),
2625 gen_binary (IOR, mode, dest, GEN_INT (src << pos)));
2626 else
2627 SUBST (SET_SRC (x),
2628 gen_binary (IOR, mode,
2629 gen_binary (AND, mode, dest,
2630 GEN_INT (~ (mask << pos)
2631 & GET_MODE_MASK (mode))),
2632 GEN_INT (src << pos)));
2634 SUBST (SET_DEST (x), dest);
2636 split = find_split_point (&SET_SRC (x), insn);
2637 if (split && split != &SET_SRC (x))
2638 return split;
2641 /* Otherwise, see if this is an operation that we can split into two.
2642 If so, try to split that. */
2643 code = GET_CODE (SET_SRC (x));
2645 switch (code)
2647 case AND:
2648 /* If we are AND'ing with a large constant that is only a single
2649 bit and the result is only being used in a context where we
2650 need to know if it is zero or non-zero, replace it with a bit
2651 extraction. This will avoid the large constant, which might
2652 have taken more than one insn to make. If the constant were
2653 not a valid argument to the AND but took only one insn to make,
2654 this is no worse, but if it took more than one insn, it will
2655 be better. */
2657 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
2658 && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
2659 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
2660 && GET_CODE (SET_DEST (x)) == REG
2661 && (split = find_single_use (SET_DEST (x), insn, NULL_PTR)) != 0
2662 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
2663 && XEXP (*split, 0) == SET_DEST (x)
2664 && XEXP (*split, 1) == const0_rtx)
2666 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
2667 XEXP (SET_SRC (x), 0),
2668 pos, NULL_RTX, 1, 1, 0, 0);
2669 if (extraction != 0)
2671 SUBST (SET_SRC (x), extraction);
2672 return find_split_point (loc, insn);
2675 break;
2677 case NE:
2678 /* if STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
2679 is known to be on, this can be converted into a NEG of a shift. */
2680 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
2681 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
2682 && 1 <= (pos = exact_log2
2683 (nonzero_bits (XEXP (SET_SRC (x), 0),
2684 GET_MODE (XEXP (SET_SRC (x), 0))))))
2686 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
2688 SUBST (SET_SRC (x),
2689 gen_rtx_combine (NEG, mode,
2690 gen_rtx_combine (LSHIFTRT, mode,
2691 XEXP (SET_SRC (x), 0),
2692 GEN_INT (pos))));
2694 split = find_split_point (&SET_SRC (x), insn);
2695 if (split && split != &SET_SRC (x))
2696 return split;
2698 break;
2700 case SIGN_EXTEND:
2701 inner = XEXP (SET_SRC (x), 0);
2703 /* We can't optimize if either mode is a partial integer
2704 mode as we don't know how many bits are significant
2705 in those modes. */
2706 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
2707 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
2708 break;
2710 pos = 0;
2711 len = GET_MODE_BITSIZE (GET_MODE (inner));
2712 unsignedp = 0;
2713 break;
2715 case SIGN_EXTRACT:
2716 case ZERO_EXTRACT:
2717 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
2718 && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
2720 inner = XEXP (SET_SRC (x), 0);
2721 len = INTVAL (XEXP (SET_SRC (x), 1));
2722 pos = INTVAL (XEXP (SET_SRC (x), 2));
2724 if (BITS_BIG_ENDIAN)
2725 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
2726 unsignedp = (code == ZERO_EXTRACT);
2728 break;
2731 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
2733 enum machine_mode mode = GET_MODE (SET_SRC (x));
2735 /* For unsigned, we have a choice of a shift followed by an
2736 AND or two shifts. Use two shifts for field sizes where the
2737 constant might be too large. We assume here that we can
2738 always at least get 8-bit constants in an AND insn, which is
2739 true for every current RISC. */
2741 if (unsignedp && len <= 8)
2743 SUBST (SET_SRC (x),
2744 gen_rtx_combine
2745 (AND, mode,
2746 gen_rtx_combine (LSHIFTRT, mode,
2747 gen_lowpart_for_combine (mode, inner),
2748 GEN_INT (pos)),
2749 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
2751 split = find_split_point (&SET_SRC (x), insn);
2752 if (split && split != &SET_SRC (x))
2753 return split;
2755 else
2757 SUBST (SET_SRC (x),
2758 gen_rtx_combine
2759 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
2760 gen_rtx_combine (ASHIFT, mode,
2761 gen_lowpart_for_combine (mode, inner),
2762 GEN_INT (GET_MODE_BITSIZE (mode)
2763 - len - pos)),
2764 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
2766 split = find_split_point (&SET_SRC (x), insn);
2767 if (split && split != &SET_SRC (x))
2768 return split;
2772 /* See if this is a simple operation with a constant as the second
2773 operand. It might be that this constant is out of range and hence
2774 could be used as a split point. */
2775 if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
2776 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
2777 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<')
2778 && CONSTANT_P (XEXP (SET_SRC (x), 1))
2779 && (GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (x), 0))) == 'o'
2780 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
2781 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (SET_SRC (x), 0))))
2782 == 'o'))))
2783 return &XEXP (SET_SRC (x), 1);
2785 /* Finally, see if this is a simple operation with its first operand
2786 not in a register. The operation might require this operand in a
2787 register, so return it as a split point. We can always do this
2788 because if the first operand were another operation, we would have
2789 already found it as a split point. */
2790 if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
2791 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
2792 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<'
2793 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '1')
2794 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
2795 return &XEXP (SET_SRC (x), 0);
2797 return 0;
2799 case AND:
2800 case IOR:
2801 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
2802 it is better to write this as (not (ior A B)) so we can split it.
2803 Similarly for IOR. */
2804 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
2806 SUBST (*loc,
2807 gen_rtx_combine (NOT, GET_MODE (x),
2808 gen_rtx_combine (code == IOR ? AND : IOR,
2809 GET_MODE (x),
2810 XEXP (XEXP (x, 0), 0),
2811 XEXP (XEXP (x, 1), 0))));
2812 return find_split_point (loc, insn);
2815 /* Many RISC machines have a large set of logical insns. If the
2816 second operand is a NOT, put it first so we will try to split the
2817 other operand first. */
2818 if (GET_CODE (XEXP (x, 1)) == NOT)
2820 rtx tem = XEXP (x, 0);
2821 SUBST (XEXP (x, 0), XEXP (x, 1));
2822 SUBST (XEXP (x, 1), tem);
2824 break;
2827 /* Otherwise, select our actions depending on our rtx class. */
2828 switch (GET_RTX_CLASS (code))
2830 case 'b': /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
2831 case '3':
2832 split = find_split_point (&XEXP (x, 2), insn);
2833 if (split)
2834 return split;
2835 /* ... fall through ... */
2836 case '2':
2837 case 'c':
2838 case '<':
2839 split = find_split_point (&XEXP (x, 1), insn);
2840 if (split)
2841 return split;
2842 /* ... fall through ... */
2843 case '1':
2844 /* Some machines have (and (shift ...) ...) insns. If X is not
2845 an AND, but XEXP (X, 0) is, use it as our split point. */
2846 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
2847 return &XEXP (x, 0);
2849 split = find_split_point (&XEXP (x, 0), insn);
2850 if (split)
2851 return split;
2852 return loc;
2855 /* Otherwise, we don't have a split point. */
2856 return 0;
2859 /* Throughout X, replace FROM with TO, and return the result.
2860 The result is TO if X is FROM;
2861 otherwise the result is X, but its contents may have been modified.
2862 If they were modified, a record was made in undobuf so that
2863 undo_all will (among other things) return X to its original state.
2865 If the number of changes necessary is too much to record to undo,
2866 the excess changes are not made, so the result is invalid.
2867 The changes already made can still be undone.
2868 undobuf.num_undo is incremented for such changes, so by testing that
2869 the caller can tell whether the result is valid.
2871 `n_occurrences' is incremented each time FROM is replaced.
2873 IN_DEST is non-zero if we are processing the SET_DEST of a SET.
2875 UNIQUE_COPY is non-zero if each substitution must be unique. We do this
2876 by copying if `n_occurrences' is non-zero. */
2878 static rtx
2879 subst (x, from, to, in_dest, unique_copy)
2880 register rtx x, from, to;
2881 int in_dest;
2882 int unique_copy;
2884 register enum rtx_code code = GET_CODE (x);
2885 enum machine_mode op0_mode = VOIDmode;
2886 register char *fmt;
2887 register int len, i;
2888 rtx new;
2890 /* Two expressions are equal if they are identical copies of a shared
2891 RTX or if they are both registers with the same register number
2892 and mode. */
2894 #define COMBINE_RTX_EQUAL_P(X,Y) \
2895 ((X) == (Y) \
2896 || (GET_CODE (X) == REG && GET_CODE (Y) == REG \
2897 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
2899 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
2901 n_occurrences++;
2902 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
2905 /* If X and FROM are the same register but different modes, they will
2906 not have been seen as equal above. However, flow.c will make a
2907 LOG_LINKS entry for that case. If we do nothing, we will try to
2908 rerecognize our original insn and, when it succeeds, we will
2909 delete the feeding insn, which is incorrect.
2911 So force this insn not to match in this (rare) case. */
2912 if (! in_dest && code == REG && GET_CODE (from) == REG
2913 && REGNO (x) == REGNO (from))
2914 return gen_rtx (CLOBBER, GET_MODE (x), const0_rtx);
2916 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
2917 of which may contain things that can be combined. */
2918 if (code != MEM && code != LO_SUM && GET_RTX_CLASS (code) == 'o')
2919 return x;
2921 /* It is possible to have a subexpression appear twice in the insn.
2922 Suppose that FROM is a register that appears within TO.
2923 Then, after that subexpression has been scanned once by `subst',
2924 the second time it is scanned, TO may be found. If we were
2925 to scan TO here, we would find FROM within it and create a
2926 self-referent rtl structure which is completely wrong. */
2927 if (COMBINE_RTX_EQUAL_P (x, to))
2928 return to;
2930 len = GET_RTX_LENGTH (code);
2931 fmt = GET_RTX_FORMAT (code);
2933 /* We don't need to process a SET_DEST that is a register, CC0, or PC, so
2934 set up to skip this common case. All other cases where we want to
2935 suppress replacing something inside a SET_SRC are handled via the
2936 IN_DEST operand. */
2937 if (code == SET
2938 && (GET_CODE (SET_DEST (x)) == REG
2939 || GET_CODE (SET_DEST (x)) == CC0
2940 || GET_CODE (SET_DEST (x)) == PC))
2941 fmt = "ie";
2943 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
2944 constant. */
2945 if (fmt[0] == 'e')
2946 op0_mode = GET_MODE (XEXP (x, 0));
2948 for (i = 0; i < len; i++)
2950 if (fmt[i] == 'E')
2952 register int j;
2953 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2955 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
2957 new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
2958 n_occurrences++;
2960 else
2962 new = subst (XVECEXP (x, i, j), from, to, 0, unique_copy);
2964 /* If this substitution failed, this whole thing fails. */
2965 if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
2966 return new;
2969 SUBST (XVECEXP (x, i, j), new);
2972 else if (fmt[i] == 'e')
2974 if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
2976 /* In general, don't install a subreg involving two modes not
2977 tieable. It can worsen register allocation, and can even
2978 make invalid reload insns, since the reg inside may need to
2979 be copied from in the outside mode, and that may be invalid
2980 if it is an fp reg copied in integer mode.
2982 We allow two exceptions to this: It is valid if it is inside
2983 another SUBREG and the mode of that SUBREG and the mode of
2984 the inside of TO is tieable and it is valid if X is a SET
2985 that copies FROM to CC0. */
2986 if (GET_CODE (to) == SUBREG
2987 && ! MODES_TIEABLE_P (GET_MODE (to),
2988 GET_MODE (SUBREG_REG (to)))
2989 && ! (code == SUBREG
2990 && MODES_TIEABLE_P (GET_MODE (x),
2991 GET_MODE (SUBREG_REG (to))))
2992 #ifdef HAVE_cc0
2993 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
2994 #endif
2996 return gen_rtx (CLOBBER, VOIDmode, const0_rtx);
2998 new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
2999 n_occurrences++;
3001 else
3002 /* If we are in a SET_DEST, suppress most cases unless we
3003 have gone inside a MEM, in which case we want to
3004 simplify the address. We assume here that things that
3005 are actually part of the destination have their inner
3006 parts in the first expression. This is true for SUBREG,
3007 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
3008 things aside from REG and MEM that should appear in a
3009 SET_DEST. */
3010 new = subst (XEXP (x, i), from, to,
3011 (((in_dest
3012 && (code == SUBREG || code == STRICT_LOW_PART
3013 || code == ZERO_EXTRACT))
3014 || code == SET)
3015 && i == 0), unique_copy);
3017 /* If we found that we will have to reject this combination,
3018 indicate that by returning the CLOBBER ourselves, rather than
3019 an expression containing it. This will speed things up as
3020 well as prevent accidents where two CLOBBERs are considered
3021 to be equal, thus producing an incorrect simplification. */
3023 if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
3024 return new;
3026 SUBST (XEXP (x, i), new);
3030 /* Try to simplify X. If the simplification changed the code, it is likely
3031 that further simplification will help, so loop, but limit the number
3032 of repetitions that will be performed. */
3034 for (i = 0; i < 4; i++)
3036 /* If X is sufficiently simple, don't bother trying to do anything
3037 with it. */
3038 if (code != CONST_INT && code != REG && code != CLOBBER)
3039 x = simplify_rtx (x, op0_mode, i == 3, in_dest);
3041 if (GET_CODE (x) == code)
3042 break;
3044 code = GET_CODE (x);
3046 /* We no longer know the original mode of operand 0 since we
3047 have changed the form of X) */
3048 op0_mode = VOIDmode;
3051 return x;
3054 /* Simplify X, a piece of RTL. We just operate on the expression at the
3055 outer level; call `subst' to simplify recursively. Return the new
3056 expression.
3058 OP0_MODE is the original mode of XEXP (x, 0); LAST is nonzero if this
3059 will be the iteration even if an expression with a code different from
3060 X is returned; IN_DEST is nonzero if we are inside a SET_DEST. */
3062 static rtx
3063 simplify_rtx (x, op0_mode, last, in_dest)
3064 rtx x;
3065 enum machine_mode op0_mode;
3066 int last;
3067 int in_dest;
3069 enum rtx_code code = GET_CODE (x);
3070 enum machine_mode mode = GET_MODE (x);
3071 rtx temp;
3072 int i;
3074 /* If this is a commutative operation, put a constant last and a complex
3075 expression first. We don't need to do this for comparisons here. */
3076 if (GET_RTX_CLASS (code) == 'c'
3077 && ((CONSTANT_P (XEXP (x, 0)) && GET_CODE (XEXP (x, 1)) != CONST_INT)
3078 || (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == 'o'
3079 && GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) != 'o')
3080 || (GET_CODE (XEXP (x, 0)) == SUBREG
3081 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0)))) == 'o'
3082 && GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) != 'o')))
3084 temp = XEXP (x, 0);
3085 SUBST (XEXP (x, 0), XEXP (x, 1));
3086 SUBST (XEXP (x, 1), temp);
3089 /* If this is a PLUS, MINUS, or MULT, and the first operand is the
3090 sign extension of a PLUS with a constant, reverse the order of the sign
3091 extension and the addition. Note that this not the same as the original
3092 code, but overflow is undefined for signed values. Also note that the
3093 PLUS will have been partially moved "inside" the sign-extension, so that
3094 the first operand of X will really look like:
3095 (ashiftrt (plus (ashift A C4) C5) C4).
3096 We convert this to
3097 (plus (ashiftrt (ashift A C4) C2) C4)
3098 and replace the first operand of X with that expression. Later parts
3099 of this function may simplify the expression further.
3101 For example, if we start with (mult (sign_extend (plus A C1)) C2),
3102 we swap the SIGN_EXTEND and PLUS. Later code will apply the
3103 distributive law to produce (plus (mult (sign_extend X) C1) C3).
3105 We do this to simplify address expressions. */
3107 if ((code == PLUS || code == MINUS || code == MULT)
3108 && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3109 && GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
3110 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == ASHIFT
3111 && GET_CODE (XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1)) == CONST_INT
3112 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3113 && XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1) == XEXP (XEXP (x, 0), 1)
3114 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
3115 && (temp = simplify_binary_operation (ASHIFTRT, mode,
3116 XEXP (XEXP (XEXP (x, 0), 0), 1),
3117 XEXP (XEXP (x, 0), 1))) != 0)
3119 rtx new
3120 = simplify_shift_const (NULL_RTX, ASHIFT, mode,
3121 XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 0),
3122 INTVAL (XEXP (XEXP (x, 0), 1)));
3124 new = simplify_shift_const (NULL_RTX, ASHIFTRT, mode, new,
3125 INTVAL (XEXP (XEXP (x, 0), 1)));
3127 SUBST (XEXP (x, 0), gen_binary (PLUS, mode, new, temp));
3130 /* If this is a simple operation applied to an IF_THEN_ELSE, try
3131 applying it to the arms of the IF_THEN_ELSE. This often simplifies
3132 things. Check for cases where both arms are testing the same
3133 condition.
3135 Don't do anything if all operands are very simple. */
3137 if (((GET_RTX_CLASS (code) == '2' || GET_RTX_CLASS (code) == 'c'
3138 || GET_RTX_CLASS (code) == '<')
3139 && ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
3140 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3141 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0))))
3142 == 'o')))
3143 || (GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) != 'o'
3144 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
3145 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 1))))
3146 == 'o')))))
3147 || (GET_RTX_CLASS (code) == '1'
3148 && ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
3149 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3150 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0))))
3151 == 'o'))))))
3153 rtx cond, true, false;
3155 cond = if_then_else_cond (x, &true, &false);
3156 if (cond != 0
3157 /* If everything is a comparison, what we have is highly unlikely
3158 to be simpler, so don't use it. */
3159 && ! (GET_RTX_CLASS (code) == '<'
3160 && (GET_RTX_CLASS (GET_CODE (true)) == '<'
3161 || GET_RTX_CLASS (GET_CODE (false)) == '<')))
3163 rtx cop1 = const0_rtx;
3164 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
3166 if (cond_code == NE && GET_RTX_CLASS (GET_CODE (cond)) == '<')
3167 return x;
3169 /* Simplify the alternative arms; this may collapse the true and
3170 false arms to store-flag values. */
3171 true = subst (true, pc_rtx, pc_rtx, 0, 0);
3172 false = subst (false, pc_rtx, pc_rtx, 0, 0);
3174 /* Restarting if we generate a store-flag expression will cause
3175 us to loop. Just drop through in this case. */
3177 /* If the result values are STORE_FLAG_VALUE and zero, we can
3178 just make the comparison operation. */
3179 if (true == const_true_rtx && false == const0_rtx)
3180 x = gen_binary (cond_code, mode, cond, cop1);
3181 else if (true == const0_rtx && false == const_true_rtx)
3182 x = gen_binary (reverse_condition (cond_code), mode, cond, cop1);
3184 /* Likewise, we can make the negate of a comparison operation
3185 if the result values are - STORE_FLAG_VALUE and zero. */
3186 else if (GET_CODE (true) == CONST_INT
3187 && INTVAL (true) == - STORE_FLAG_VALUE
3188 && false == const0_rtx)
3189 x = gen_unary (NEG, mode, mode,
3190 gen_binary (cond_code, mode, cond, cop1));
3191 else if (GET_CODE (false) == CONST_INT
3192 && INTVAL (false) == - STORE_FLAG_VALUE
3193 && true == const0_rtx)
3194 x = gen_unary (NEG, mode, mode,
3195 gen_binary (reverse_condition (cond_code),
3196 mode, cond, cop1));
3197 else
3198 return gen_rtx (IF_THEN_ELSE, mode,
3199 gen_binary (cond_code, VOIDmode, cond, cop1),
3200 true, false);
3202 code = GET_CODE (x);
3203 op0_mode = VOIDmode;
3207 /* Try to fold this expression in case we have constants that weren't
3208 present before. */
3209 temp = 0;
3210 switch (GET_RTX_CLASS (code))
3212 case '1':
3213 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
3214 break;
3215 case '<':
3216 temp = simplify_relational_operation (code, op0_mode,
3217 XEXP (x, 0), XEXP (x, 1));
3218 #ifdef FLOAT_STORE_FLAG_VALUE
3219 if (temp != 0 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
3220 temp = ((temp == const0_rtx) ? CONST0_RTX (GET_MODE (x))
3221 : immed_real_const_1 (FLOAT_STORE_FLAG_VALUE, GET_MODE (x)));
3222 #endif
3223 break;
3224 case 'c':
3225 case '2':
3226 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
3227 break;
3228 case 'b':
3229 case '3':
3230 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
3231 XEXP (x, 1), XEXP (x, 2));
3232 break;
3235 if (temp)
3236 x = temp, code = GET_CODE (temp);
3238 /* First see if we can apply the inverse distributive law. */
3239 if (code == PLUS || code == MINUS
3240 || code == AND || code == IOR || code == XOR)
3242 x = apply_distributive_law (x);
3243 code = GET_CODE (x);
3246 /* If CODE is an associative operation not otherwise handled, see if we
3247 can associate some operands. This can win if they are constants or
3248 if they are logically related (i.e. (a & b) & a. */
3249 if ((code == PLUS || code == MINUS
3250 || code == MULT || code == AND || code == IOR || code == XOR
3251 || code == DIV || code == UDIV
3252 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
3253 && INTEGRAL_MODE_P (mode))
3255 if (GET_CODE (XEXP (x, 0)) == code)
3257 rtx other = XEXP (XEXP (x, 0), 0);
3258 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
3259 rtx inner_op1 = XEXP (x, 1);
3260 rtx inner;
3262 /* Make sure we pass the constant operand if any as the second
3263 one if this is a commutative operation. */
3264 if (CONSTANT_P (inner_op0) && GET_RTX_CLASS (code) == 'c')
3266 rtx tem = inner_op0;
3267 inner_op0 = inner_op1;
3268 inner_op1 = tem;
3270 inner = simplify_binary_operation (code == MINUS ? PLUS
3271 : code == DIV ? MULT
3272 : code == UDIV ? MULT
3273 : code,
3274 mode, inner_op0, inner_op1);
3276 /* For commutative operations, try the other pair if that one
3277 didn't simplify. */
3278 if (inner == 0 && GET_RTX_CLASS (code) == 'c')
3280 other = XEXP (XEXP (x, 0), 1);
3281 inner = simplify_binary_operation (code, mode,
3282 XEXP (XEXP (x, 0), 0),
3283 XEXP (x, 1));
3286 if (inner)
3287 return gen_binary (code, mode, other, inner);
3291 /* A little bit of algebraic simplification here. */
3292 switch (code)
3294 case MEM:
3295 /* Ensure that our address has any ASHIFTs converted to MULT in case
3296 address-recognizing predicates are called later. */
3297 temp = make_compound_operation (XEXP (x, 0), MEM);
3298 SUBST (XEXP (x, 0), temp);
3299 break;
3301 case SUBREG:
3302 /* (subreg:A (mem:B X) N) becomes a modified MEM unless the SUBREG
3303 is paradoxical. If we can't do that safely, then it becomes
3304 something nonsensical so that this combination won't take place. */
3306 if (GET_CODE (SUBREG_REG (x)) == MEM
3307 && (GET_MODE_SIZE (mode)
3308 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
3310 rtx inner = SUBREG_REG (x);
3311 int endian_offset = 0;
3312 /* Don't change the mode of the MEM
3313 if that would change the meaning of the address. */
3314 if (MEM_VOLATILE_P (SUBREG_REG (x))
3315 || mode_dependent_address_p (XEXP (inner, 0)))
3316 return gen_rtx (CLOBBER, mode, const0_rtx);
3318 if (BYTES_BIG_ENDIAN)
3320 if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
3321 endian_offset += UNITS_PER_WORD - GET_MODE_SIZE (mode);
3322 if (GET_MODE_SIZE (GET_MODE (inner)) < UNITS_PER_WORD)
3323 endian_offset -= (UNITS_PER_WORD
3324 - GET_MODE_SIZE (GET_MODE (inner)));
3326 /* Note if the plus_constant doesn't make a valid address
3327 then this combination won't be accepted. */
3328 x = gen_rtx (MEM, mode,
3329 plus_constant (XEXP (inner, 0),
3330 (SUBREG_WORD (x) * UNITS_PER_WORD
3331 + endian_offset)));
3332 MEM_VOLATILE_P (x) = MEM_VOLATILE_P (inner);
3333 RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (inner);
3334 MEM_IN_STRUCT_P (x) = MEM_IN_STRUCT_P (inner);
3335 return x;
3338 /* If we are in a SET_DEST, these other cases can't apply. */
3339 if (in_dest)
3340 return x;
3342 /* Changing mode twice with SUBREG => just change it once,
3343 or not at all if changing back to starting mode. */
3344 if (GET_CODE (SUBREG_REG (x)) == SUBREG)
3346 if (mode == GET_MODE (SUBREG_REG (SUBREG_REG (x)))
3347 && SUBREG_WORD (x) == 0 && SUBREG_WORD (SUBREG_REG (x)) == 0)
3348 return SUBREG_REG (SUBREG_REG (x));
3350 SUBST_INT (SUBREG_WORD (x),
3351 SUBREG_WORD (x) + SUBREG_WORD (SUBREG_REG (x)));
3352 SUBST (SUBREG_REG (x), SUBREG_REG (SUBREG_REG (x)));
3355 /* SUBREG of a hard register => just change the register number
3356 and/or mode. If the hard register is not valid in that mode,
3357 suppress this combination. If the hard register is the stack,
3358 frame, or argument pointer, leave this as a SUBREG. */
3360 if (GET_CODE (SUBREG_REG (x)) == REG
3361 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER
3362 && REGNO (SUBREG_REG (x)) != FRAME_POINTER_REGNUM
3363 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3364 && REGNO (SUBREG_REG (x)) != HARD_FRAME_POINTER_REGNUM
3365 #endif
3366 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3367 && REGNO (SUBREG_REG (x)) != ARG_POINTER_REGNUM
3368 #endif
3369 && REGNO (SUBREG_REG (x)) != STACK_POINTER_REGNUM)
3371 if (HARD_REGNO_MODE_OK (REGNO (SUBREG_REG (x)) + SUBREG_WORD (x),
3372 mode))
3373 return gen_rtx (REG, mode,
3374 REGNO (SUBREG_REG (x)) + SUBREG_WORD (x));
3375 else
3376 return gen_rtx (CLOBBER, mode, const0_rtx);
3379 /* For a constant, try to pick up the part we want. Handle a full
3380 word and low-order part. Only do this if we are narrowing
3381 the constant; if it is being widened, we have no idea what
3382 the extra bits will have been set to. */
3384 if (CONSTANT_P (SUBREG_REG (x)) && op0_mode != VOIDmode
3385 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
3386 && GET_MODE_SIZE (op0_mode) > UNITS_PER_WORD
3387 && GET_MODE_CLASS (mode) == MODE_INT)
3389 temp = operand_subword (SUBREG_REG (x), SUBREG_WORD (x),
3390 0, op0_mode);
3391 if (temp)
3392 return temp;
3395 /* If we want a subreg of a constant, at offset 0,
3396 take the low bits. On a little-endian machine, that's
3397 always valid. On a big-endian machine, it's valid
3398 only if the constant's mode fits in one word. Note that we
3399 cannot use subreg_lowpart_p since SUBREG_REG may be VOIDmode. */
3400 if (CONSTANT_P (SUBREG_REG (x))
3401 && ((GET_MODE_SIZE (op0_mode) <= UNITS_PER_WORD
3402 || ! WORDS_BIG_ENDIAN)
3403 ? SUBREG_WORD (x) == 0
3404 : (SUBREG_WORD (x)
3405 == ((GET_MODE_SIZE (op0_mode)
3406 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD))
3407 / UNITS_PER_WORD)))
3408 && GET_MODE_SIZE (mode) <= GET_MODE_SIZE (op0_mode)
3409 && (! WORDS_BIG_ENDIAN
3410 || GET_MODE_BITSIZE (op0_mode) <= BITS_PER_WORD))
3411 return gen_lowpart_for_combine (mode, SUBREG_REG (x));
3413 /* A paradoxical SUBREG of a VOIDmode constant is the same constant,
3414 since we are saying that the high bits don't matter. */
3415 if (CONSTANT_P (SUBREG_REG (x)) && GET_MODE (SUBREG_REG (x)) == VOIDmode
3416 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (op0_mode))
3417 return SUBREG_REG (x);
3419 /* Note that we cannot do any narrowing for non-constants since
3420 we might have been counting on using the fact that some bits were
3421 zero. We now do this in the SET. */
3423 break;
3425 case NOT:
3426 /* (not (plus X -1)) can become (neg X). */
3427 if (GET_CODE (XEXP (x, 0)) == PLUS
3428 && XEXP (XEXP (x, 0), 1) == constm1_rtx)
3429 return gen_rtx_combine (NEG, mode, XEXP (XEXP (x, 0), 0));
3431 /* Similarly, (not (neg X)) is (plus X -1). */
3432 if (GET_CODE (XEXP (x, 0)) == NEG)
3433 return gen_rtx_combine (PLUS, mode, XEXP (XEXP (x, 0), 0),
3434 constm1_rtx);
3436 /* (not (xor X C)) for C constant is (xor X D) with D = ~ C. */
3437 if (GET_CODE (XEXP (x, 0)) == XOR
3438 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3439 && (temp = simplify_unary_operation (NOT, mode,
3440 XEXP (XEXP (x, 0), 1),
3441 mode)) != 0)
3442 return gen_binary (XOR, mode, XEXP (XEXP (x, 0), 0), temp);
3444 /* (not (ashift 1 X)) is (rotate ~1 X). We used to do this for operands
3445 other than 1, but that is not valid. We could do a similar
3446 simplification for (not (lshiftrt C X)) where C is just the sign bit,
3447 but this doesn't seem common enough to bother with. */
3448 if (GET_CODE (XEXP (x, 0)) == ASHIFT
3449 && XEXP (XEXP (x, 0), 0) == const1_rtx)
3450 return gen_rtx (ROTATE, mode, gen_unary (NOT, mode, mode, const1_rtx),
3451 XEXP (XEXP (x, 0), 1));
3453 if (GET_CODE (XEXP (x, 0)) == SUBREG
3454 && subreg_lowpart_p (XEXP (x, 0))
3455 && (GET_MODE_SIZE (GET_MODE (XEXP (x, 0)))
3456 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (x, 0)))))
3457 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == ASHIFT
3458 && XEXP (SUBREG_REG (XEXP (x, 0)), 0) == const1_rtx)
3460 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (XEXP (x, 0)));
3462 x = gen_rtx (ROTATE, inner_mode,
3463 gen_unary (NOT, inner_mode, inner_mode, const1_rtx),
3464 XEXP (SUBREG_REG (XEXP (x, 0)), 1));
3465 return gen_lowpart_for_combine (mode, x);
3468 /* If STORE_FLAG_VALUE is -1, (not (comparison foo bar)) can be done by
3469 reversing the comparison code if valid. */
3470 if (STORE_FLAG_VALUE == -1
3471 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
3472 && reversible_comparison_p (XEXP (x, 0)))
3473 return gen_rtx_combine (reverse_condition (GET_CODE (XEXP (x, 0))),
3474 mode, XEXP (XEXP (x, 0), 0),
3475 XEXP (XEXP (x, 0), 1));
3477 /* (ashiftrt foo C) where C is the number of bits in FOO minus 1
3478 is (lt foo (const_int 0)) if STORE_FLAG_VALUE is -1, so we can
3479 perform the above simplification. */
3481 if (STORE_FLAG_VALUE == -1
3482 && XEXP (x, 1) == const1_rtx
3483 && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3484 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3485 && INTVAL (XEXP (XEXP (x, 0), 1)) == GET_MODE_BITSIZE (mode) - 1)
3486 return gen_rtx_combine (GE, mode, XEXP (XEXP (x, 0), 0), const0_rtx);
3488 /* Apply De Morgan's laws to reduce number of patterns for machines
3489 with negating logical insns (and-not, nand, etc.). If result has
3490 only one NOT, put it first, since that is how the patterns are
3491 coded. */
3493 if (GET_CODE (XEXP (x, 0)) == IOR || GET_CODE (XEXP (x, 0)) == AND)
3495 rtx in1 = XEXP (XEXP (x, 0), 0), in2 = XEXP (XEXP (x, 0), 1);
3497 if (GET_CODE (in1) == NOT)
3498 in1 = XEXP (in1, 0);
3499 else
3500 in1 = gen_rtx_combine (NOT, GET_MODE (in1), in1);
3502 if (GET_CODE (in2) == NOT)
3503 in2 = XEXP (in2, 0);
3504 else if (GET_CODE (in2) == CONST_INT
3505 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3506 in2 = GEN_INT (GET_MODE_MASK (mode) & ~ INTVAL (in2));
3507 else
3508 in2 = gen_rtx_combine (NOT, GET_MODE (in2), in2);
3510 if (GET_CODE (in2) == NOT)
3512 rtx tem = in2;
3513 in2 = in1; in1 = tem;
3516 return gen_rtx_combine (GET_CODE (XEXP (x, 0)) == IOR ? AND : IOR,
3517 mode, in1, in2);
3519 break;
3521 case NEG:
3522 /* (neg (plus X 1)) can become (not X). */
3523 if (GET_CODE (XEXP (x, 0)) == PLUS
3524 && XEXP (XEXP (x, 0), 1) == const1_rtx)
3525 return gen_rtx_combine (NOT, mode, XEXP (XEXP (x, 0), 0));
3527 /* Similarly, (neg (not X)) is (plus X 1). */
3528 if (GET_CODE (XEXP (x, 0)) == NOT)
3529 return plus_constant (XEXP (XEXP (x, 0), 0), 1);
3531 /* (neg (minus X Y)) can become (minus Y X). */
3532 if (GET_CODE (XEXP (x, 0)) == MINUS
3533 && (! FLOAT_MODE_P (mode)
3534 /* x-y != -(y-x) with IEEE floating point. */
3535 || TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
3536 || flag_fast_math))
3537 return gen_binary (MINUS, mode, XEXP (XEXP (x, 0), 1),
3538 XEXP (XEXP (x, 0), 0));
3540 /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
3541 if (GET_CODE (XEXP (x, 0)) == XOR && XEXP (XEXP (x, 0), 1) == const1_rtx
3542 && nonzero_bits (XEXP (XEXP (x, 0), 0), mode) == 1)
3543 return gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
3545 /* NEG commutes with ASHIFT since it is multiplication. Only do this
3546 if we can then eliminate the NEG (e.g.,
3547 if the operand is a constant). */
3549 if (GET_CODE (XEXP (x, 0)) == ASHIFT)
3551 temp = simplify_unary_operation (NEG, mode,
3552 XEXP (XEXP (x, 0), 0), mode);
3553 if (temp)
3555 SUBST (XEXP (XEXP (x, 0), 0), temp);
3556 return XEXP (x, 0);
3560 temp = expand_compound_operation (XEXP (x, 0));
3562 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
3563 replaced by (lshiftrt X C). This will convert
3564 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
3566 if (GET_CODE (temp) == ASHIFTRT
3567 && GET_CODE (XEXP (temp, 1)) == CONST_INT
3568 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
3569 return simplify_shift_const (temp, LSHIFTRT, mode, XEXP (temp, 0),
3570 INTVAL (XEXP (temp, 1)));
3572 /* If X has only a single bit that might be nonzero, say, bit I, convert
3573 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
3574 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
3575 (sign_extract X 1 Y). But only do this if TEMP isn't a register
3576 or a SUBREG of one since we'd be making the expression more
3577 complex if it was just a register. */
3579 if (GET_CODE (temp) != REG
3580 && ! (GET_CODE (temp) == SUBREG
3581 && GET_CODE (SUBREG_REG (temp)) == REG)
3582 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
3584 rtx temp1 = simplify_shift_const
3585 (NULL_RTX, ASHIFTRT, mode,
3586 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
3587 GET_MODE_BITSIZE (mode) - 1 - i),
3588 GET_MODE_BITSIZE (mode) - 1 - i);
3590 /* If all we did was surround TEMP with the two shifts, we
3591 haven't improved anything, so don't use it. Otherwise,
3592 we are better off with TEMP1. */
3593 if (GET_CODE (temp1) != ASHIFTRT
3594 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
3595 || XEXP (XEXP (temp1, 0), 0) != temp)
3596 return temp1;
3598 break;
3600 case TRUNCATE:
3601 /* We can't handle truncation to a partial integer mode here
3602 because we don't know the real bitsize of the partial
3603 integer mode. */
3604 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
3605 break;
3607 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3608 SUBST (XEXP (x, 0),
3609 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
3610 GET_MODE_MASK (mode), NULL_RTX, 0));
3612 /* (truncate:SI ({sign,zero}_extend:DI foo:SI)) == foo:SI. */
3613 if ((GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
3614 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
3615 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
3616 return XEXP (XEXP (x, 0), 0);
3618 /* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
3619 (OP:SI foo:SI) if OP is NEG or ABS. */
3620 if ((GET_CODE (XEXP (x, 0)) == ABS
3621 || GET_CODE (XEXP (x, 0)) == NEG)
3622 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == SIGN_EXTEND
3623 || GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND)
3624 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
3625 return gen_unary (GET_CODE (XEXP (x, 0)), mode, mode,
3626 XEXP (XEXP (XEXP (x, 0), 0), 0));
3628 /* (truncate:SI (subreg:DI (truncate:SI X) 0)) is
3629 (truncate:SI x). */
3630 if (GET_CODE (XEXP (x, 0)) == SUBREG
3631 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == TRUNCATE
3632 && subreg_lowpart_p (XEXP (x, 0)))
3633 return SUBREG_REG (XEXP (x, 0));
3635 /* If we know that the value is already truncated, we can
3636 replace the TRUNCATE with a SUBREG. */
3637 if (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) <= HOST_BITS_PER_WIDE_INT
3638 && (nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
3639 &~ GET_MODE_MASK (mode)) == 0)
3640 return gen_lowpart_for_combine (mode, XEXP (x, 0));
3642 /* A truncate of a comparison can be replaced with a subreg if
3643 STORE_FLAG_VALUE permits. This is like the previous test,
3644 but it works even if the comparison is done in a mode larger
3645 than HOST_BITS_PER_WIDE_INT. */
3646 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
3647 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
3648 && ((HOST_WIDE_INT) STORE_FLAG_VALUE &~ GET_MODE_MASK (mode)) == 0)
3649 return gen_lowpart_for_combine (mode, XEXP (x, 0));
3651 /* Similarly, a truncate of a register whose value is a
3652 comparison can be replaced with a subreg if STORE_FLAG_VALUE
3653 permits. */
3654 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
3655 && ((HOST_WIDE_INT) STORE_FLAG_VALUE &~ GET_MODE_MASK (mode)) == 0
3656 && (temp = get_last_value (XEXP (x, 0)))
3657 && GET_RTX_CLASS (GET_CODE (temp)) == '<')
3658 return gen_lowpart_for_combine (mode, XEXP (x, 0));
3660 break;
3662 case FLOAT_TRUNCATE:
3663 /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
3664 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
3665 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
3666 return XEXP (XEXP (x, 0), 0);
3668 /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
3669 (OP:SF foo:SF) if OP is NEG or ABS. */
3670 if ((GET_CODE (XEXP (x, 0)) == ABS
3671 || GET_CODE (XEXP (x, 0)) == NEG)
3672 && GET_CODE (XEXP (XEXP (x, 0), 0)) == FLOAT_EXTEND
3673 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
3674 return gen_unary (GET_CODE (XEXP (x, 0)), mode, mode,
3675 XEXP (XEXP (XEXP (x, 0), 0), 0));
3677 /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
3678 is (float_truncate:SF x). */
3679 if (GET_CODE (XEXP (x, 0)) == SUBREG
3680 && subreg_lowpart_p (XEXP (x, 0))
3681 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == FLOAT_TRUNCATE)
3682 return SUBREG_REG (XEXP (x, 0));
3683 break;
3685 #ifdef HAVE_cc0
3686 case COMPARE:
3687 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
3688 using cc0, in which case we want to leave it as a COMPARE
3689 so we can distinguish it from a register-register-copy. */
3690 if (XEXP (x, 1) == const0_rtx)
3691 return XEXP (x, 0);
3693 /* In IEEE floating point, x-0 is not the same as x. */
3694 if ((TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
3695 || ! FLOAT_MODE_P (GET_MODE (XEXP (x, 0)))
3696 || flag_fast_math)
3697 && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
3698 return XEXP (x, 0);
3699 break;
3700 #endif
3702 case CONST:
3703 /* (const (const X)) can become (const X). Do it this way rather than
3704 returning the inner CONST since CONST can be shared with a
3705 REG_EQUAL note. */
3706 if (GET_CODE (XEXP (x, 0)) == CONST)
3707 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
3708 break;
3710 #ifdef HAVE_lo_sum
3711 case LO_SUM:
3712 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
3713 can add in an offset. find_split_point will split this address up
3714 again if it doesn't match. */
3715 if (GET_CODE (XEXP (x, 0)) == HIGH
3716 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
3717 return XEXP (x, 1);
3718 break;
3719 #endif
3721 case PLUS:
3722 /* If we have (plus (plus (A const) B)), associate it so that CONST is
3723 outermost. That's because that's the way indexed addresses are
3724 supposed to appear. This code used to check many more cases, but
3725 they are now checked elsewhere. */
3726 if (GET_CODE (XEXP (x, 0)) == PLUS
3727 && CONSTANT_ADDRESS_P (XEXP (XEXP (x, 0), 1)))
3728 return gen_binary (PLUS, mode,
3729 gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0),
3730 XEXP (x, 1)),
3731 XEXP (XEXP (x, 0), 1));
3733 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
3734 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
3735 bit-field and can be replaced by either a sign_extend or a
3736 sign_extract. The `and' may be a zero_extend. */
3737 if (GET_CODE (XEXP (x, 0)) == XOR
3738 && GET_CODE (XEXP (x, 1)) == CONST_INT
3739 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3740 && INTVAL (XEXP (x, 1)) == - INTVAL (XEXP (XEXP (x, 0), 1))
3741 && (i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
3742 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
3743 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
3744 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
3745 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
3746 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
3747 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
3748 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
3749 == i + 1))))
3750 return simplify_shift_const
3751 (NULL_RTX, ASHIFTRT, mode,
3752 simplify_shift_const (NULL_RTX, ASHIFT, mode,
3753 XEXP (XEXP (XEXP (x, 0), 0), 0),
3754 GET_MODE_BITSIZE (mode) - (i + 1)),
3755 GET_MODE_BITSIZE (mode) - (i + 1));
3757 /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
3758 C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
3759 is 1. This produces better code than the alternative immediately
3760 below. */
3761 if (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
3762 && reversible_comparison_p (XEXP (x, 0))
3763 && ((STORE_FLAG_VALUE == -1 && XEXP (x, 1) == const1_rtx)
3764 || (STORE_FLAG_VALUE == 1 && XEXP (x, 1) == constm1_rtx)))
3765 return
3766 gen_unary (NEG, mode, mode,
3767 gen_binary (reverse_condition (GET_CODE (XEXP (x, 0))),
3768 mode, XEXP (XEXP (x, 0), 0),
3769 XEXP (XEXP (x, 0), 1)));
3771 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
3772 can become (ashiftrt (ashift (xor x 1) C) C) where C is
3773 the bitsize of the mode - 1. This allows simplification of
3774 "a = (b & 8) == 0;" */
3775 if (XEXP (x, 1) == constm1_rtx
3776 && GET_CODE (XEXP (x, 0)) != REG
3777 && ! (GET_CODE (XEXP (x,0)) == SUBREG
3778 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == REG)
3779 && nonzero_bits (XEXP (x, 0), mode) == 1)
3780 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
3781 simplify_shift_const (NULL_RTX, ASHIFT, mode,
3782 gen_rtx_combine (XOR, mode,
3783 XEXP (x, 0), const1_rtx),
3784 GET_MODE_BITSIZE (mode) - 1),
3785 GET_MODE_BITSIZE (mode) - 1);
3787 /* If we are adding two things that have no bits in common, convert
3788 the addition into an IOR. This will often be further simplified,
3789 for example in cases like ((a & 1) + (a & 2)), which can
3790 become a & 3. */
3792 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
3793 && (nonzero_bits (XEXP (x, 0), mode)
3794 & nonzero_bits (XEXP (x, 1), mode)) == 0)
3795 return gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
3796 break;
3798 case MINUS:
3799 /* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
3800 by reversing the comparison code if valid. */
3801 if (STORE_FLAG_VALUE == 1
3802 && XEXP (x, 0) == const1_rtx
3803 && GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) == '<'
3804 && reversible_comparison_p (XEXP (x, 1)))
3805 return gen_binary (reverse_condition (GET_CODE (XEXP (x, 1))),
3806 mode, XEXP (XEXP (x, 1), 0),
3807 XEXP (XEXP (x, 1), 1));
3809 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
3810 (and <foo> (const_int pow2-1)) */
3811 if (GET_CODE (XEXP (x, 1)) == AND
3812 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
3813 && exact_log2 (- INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
3814 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
3815 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
3816 - INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
3818 /* Canonicalize (minus A (plus B C)) to (minus (minus A B) C) for
3819 integers. */
3820 if (GET_CODE (XEXP (x, 1)) == PLUS && INTEGRAL_MODE_P (mode))
3821 return gen_binary (MINUS, mode,
3822 gen_binary (MINUS, mode, XEXP (x, 0),
3823 XEXP (XEXP (x, 1), 0)),
3824 XEXP (XEXP (x, 1), 1));
3825 break;
3827 case MULT:
3828 /* If we have (mult (plus A B) C), apply the distributive law and then
3829 the inverse distributive law to see if things simplify. This
3830 occurs mostly in addresses, often when unrolling loops. */
3832 if (GET_CODE (XEXP (x, 0)) == PLUS)
3834 x = apply_distributive_law
3835 (gen_binary (PLUS, mode,
3836 gen_binary (MULT, mode,
3837 XEXP (XEXP (x, 0), 0), XEXP (x, 1)),
3838 gen_binary (MULT, mode,
3839 XEXP (XEXP (x, 0), 1), XEXP (x, 1))));
3841 if (GET_CODE (x) != MULT)
3842 return x;
3844 break;
3846 case UDIV:
3847 /* If this is a divide by a power of two, treat it as a shift if
3848 its first operand is a shift. */
3849 if (GET_CODE (XEXP (x, 1)) == CONST_INT
3850 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
3851 && (GET_CODE (XEXP (x, 0)) == ASHIFT
3852 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
3853 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
3854 || GET_CODE (XEXP (x, 0)) == ROTATE
3855 || GET_CODE (XEXP (x, 0)) == ROTATERT))
3856 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
3857 break;
3859 case EQ: case NE:
3860 case GT: case GTU: case GE: case GEU:
3861 case LT: case LTU: case LE: case LEU:
3862 /* If the first operand is a condition code, we can't do anything
3863 with it. */
3864 if (GET_CODE (XEXP (x, 0)) == COMPARE
3865 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
3866 #ifdef HAVE_cc0
3867 && XEXP (x, 0) != cc0_rtx
3868 #endif
3871 rtx op0 = XEXP (x, 0);
3872 rtx op1 = XEXP (x, 1);
3873 enum rtx_code new_code;
3875 if (GET_CODE (op0) == COMPARE)
3876 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
3878 /* Simplify our comparison, if possible. */
3879 new_code = simplify_comparison (code, &op0, &op1);
3881 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
3882 if only the low-order bit is possibly nonzero in X (such as when
3883 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
3884 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
3885 known to be either 0 or -1, NE becomes a NEG and EQ becomes
3886 (plus X 1).
3888 Remove any ZERO_EXTRACT we made when thinking this was a
3889 comparison. It may now be simpler to use, e.g., an AND. If a
3890 ZERO_EXTRACT is indeed appropriate, it will be placed back by
3891 the call to make_compound_operation in the SET case. */
3893 if (STORE_FLAG_VALUE == 1
3894 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
3895 && op1 == const0_rtx && nonzero_bits (op0, mode) == 1)
3896 return gen_lowpart_for_combine (mode,
3897 expand_compound_operation (op0));
3899 else if (STORE_FLAG_VALUE == 1
3900 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
3901 && op1 == const0_rtx
3902 && (num_sign_bit_copies (op0, mode)
3903 == GET_MODE_BITSIZE (mode)))
3905 op0 = expand_compound_operation (op0);
3906 return gen_unary (NEG, mode, mode,
3907 gen_lowpart_for_combine (mode, op0));
3910 else if (STORE_FLAG_VALUE == 1
3911 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
3912 && op1 == const0_rtx
3913 && nonzero_bits (op0, mode) == 1)
3915 op0 = expand_compound_operation (op0);
3916 return gen_binary (XOR, mode,
3917 gen_lowpart_for_combine (mode, op0),
3918 const1_rtx);
3921 else if (STORE_FLAG_VALUE == 1
3922 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
3923 && op1 == const0_rtx
3924 && (num_sign_bit_copies (op0, mode)
3925 == GET_MODE_BITSIZE (mode)))
3927 op0 = expand_compound_operation (op0);
3928 return plus_constant (gen_lowpart_for_combine (mode, op0), 1);
3931 /* If STORE_FLAG_VALUE is -1, we have cases similar to
3932 those above. */
3933 if (STORE_FLAG_VALUE == -1
3934 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
3935 && op1 == const0_rtx
3936 && (num_sign_bit_copies (op0, mode)
3937 == GET_MODE_BITSIZE (mode)))
3938 return gen_lowpart_for_combine (mode,
3939 expand_compound_operation (op0));
3941 else if (STORE_FLAG_VALUE == -1
3942 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
3943 && op1 == const0_rtx
3944 && nonzero_bits (op0, mode) == 1)
3946 op0 = expand_compound_operation (op0);
3947 return gen_unary (NEG, mode, mode,
3948 gen_lowpart_for_combine (mode, op0));
3951 else if (STORE_FLAG_VALUE == -1
3952 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
3953 && op1 == const0_rtx
3954 && (num_sign_bit_copies (op0, mode)
3955 == GET_MODE_BITSIZE (mode)))
3957 op0 = expand_compound_operation (op0);
3958 return gen_unary (NOT, mode, mode,
3959 gen_lowpart_for_combine (mode, op0));
3962 /* If X is 0/1, (eq X 0) is X-1. */
3963 else if (STORE_FLAG_VALUE == -1
3964 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
3965 && op1 == const0_rtx
3966 && nonzero_bits (op0, mode) == 1)
3968 op0 = expand_compound_operation (op0);
3969 return plus_constant (gen_lowpart_for_combine (mode, op0), -1);
3972 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
3973 one bit that might be nonzero, we can convert (ne x 0) to
3974 (ashift x c) where C puts the bit in the sign bit. Remove any
3975 AND with STORE_FLAG_VALUE when we are done, since we are only
3976 going to test the sign bit. */
3977 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
3978 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
3979 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
3980 == (HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
3981 && op1 == const0_rtx
3982 && mode == GET_MODE (op0)
3983 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
3985 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
3986 expand_compound_operation (op0),
3987 GET_MODE_BITSIZE (mode) - 1 - i);
3988 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
3989 return XEXP (x, 0);
3990 else
3991 return x;
3994 /* If the code changed, return a whole new comparison. */
3995 if (new_code != code)
3996 return gen_rtx_combine (new_code, mode, op0, op1);
3998 /* Otherwise, keep this operation, but maybe change its operands.
3999 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
4000 SUBST (XEXP (x, 0), op0);
4001 SUBST (XEXP (x, 1), op1);
4003 break;
4005 case IF_THEN_ELSE:
4006 return simplify_if_then_else (x);
4008 case ZERO_EXTRACT:
4009 case SIGN_EXTRACT:
4010 case ZERO_EXTEND:
4011 case SIGN_EXTEND:
4012 /* If we are processing SET_DEST, we are done. */
4013 if (in_dest)
4014 return x;
4016 return expand_compound_operation (x);
4018 case SET:
4019 return simplify_set (x);
4021 case AND:
4022 case IOR:
4023 case XOR:
4024 return simplify_logical (x, last);
4026 case ABS:
4027 /* (abs (neg <foo>)) -> (abs <foo>) */
4028 if (GET_CODE (XEXP (x, 0)) == NEG)
4029 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4031 /* If operand is something known to be positive, ignore the ABS. */
4032 if (GET_CODE (XEXP (x, 0)) == FFS || GET_CODE (XEXP (x, 0)) == ABS
4033 || ((GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4034 <= HOST_BITS_PER_WIDE_INT)
4035 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4036 & ((HOST_WIDE_INT) 1
4037 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1)))
4038 == 0)))
4039 return XEXP (x, 0);
4042 /* If operand is known to be only -1 or 0, convert ABS to NEG. */
4043 if (num_sign_bit_copies (XEXP (x, 0), mode) == GET_MODE_BITSIZE (mode))
4044 return gen_rtx_combine (NEG, mode, XEXP (x, 0));
4046 break;
4048 case FFS:
4049 /* (ffs (*_extend <X>)) = (ffs <X>) */
4050 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4051 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4052 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4053 break;
4055 case FLOAT:
4056 /* (float (sign_extend <X>)) = (float <X>). */
4057 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
4058 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4059 break;
4061 case ASHIFT:
4062 case LSHIFTRT:
4063 case ASHIFTRT:
4064 case ROTATE:
4065 case ROTATERT:
4066 /* If this is a shift by a constant amount, simplify it. */
4067 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4068 return simplify_shift_const (x, code, mode, XEXP (x, 0),
4069 INTVAL (XEXP (x, 1)));
4071 #ifdef SHIFT_COUNT_TRUNCATED
4072 else if (SHIFT_COUNT_TRUNCATED && GET_CODE (XEXP (x, 1)) != REG)
4073 SUBST (XEXP (x, 1),
4074 force_to_mode (XEXP (x, 1), GET_MODE (x),
4075 ((HOST_WIDE_INT) 1
4076 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
4077 - 1,
4078 NULL_RTX, 0));
4079 #endif
4081 break;
4084 return x;
4087 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
4089 static rtx
4090 simplify_if_then_else (x)
4091 rtx x;
4093 enum machine_mode mode = GET_MODE (x);
4094 rtx cond = XEXP (x, 0);
4095 rtx true = XEXP (x, 1);
4096 rtx false = XEXP (x, 2);
4097 enum rtx_code true_code = GET_CODE (cond);
4098 int comparison_p = GET_RTX_CLASS (true_code) == '<';
4099 rtx temp;
4100 int i;
4102 /* Simplify storing of the truth value. */
4103 if (comparison_p && true == const_true_rtx && false == const0_rtx)
4104 return gen_binary (true_code, mode, XEXP (cond, 0), XEXP (cond, 1));
4106 /* Also when the truth value has to be reversed. */
4107 if (comparison_p && reversible_comparison_p (cond)
4108 && true == const0_rtx && false == const_true_rtx)
4109 return gen_binary (reverse_condition (true_code),
4110 mode, XEXP (cond, 0), XEXP (cond, 1));
4112 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
4113 in it is being compared against certain values. Get the true and false
4114 comparisons and see if that says anything about the value of each arm. */
4116 if (comparison_p && reversible_comparison_p (cond)
4117 && GET_CODE (XEXP (cond, 0)) == REG)
4119 HOST_WIDE_INT nzb;
4120 rtx from = XEXP (cond, 0);
4121 enum rtx_code false_code = reverse_condition (true_code);
4122 rtx true_val = XEXP (cond, 1);
4123 rtx false_val = true_val;
4124 int swapped = 0;
4126 /* If FALSE_CODE is EQ, swap the codes and arms. */
4128 if (false_code == EQ)
4130 swapped = 1, true_code = EQ, false_code = NE;
4131 temp = true, true = false, false = temp;
4134 /* If we are comparing against zero and the expression being tested has
4135 only a single bit that might be nonzero, that is its value when it is
4136 not equal to zero. Similarly if it is known to be -1 or 0. */
4138 if (true_code == EQ && true_val == const0_rtx
4139 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
4140 false_code = EQ, false_val = GEN_INT (nzb);
4141 else if (true_code == EQ && true_val == const0_rtx
4142 && (num_sign_bit_copies (from, GET_MODE (from))
4143 == GET_MODE_BITSIZE (GET_MODE (from))))
4144 false_code = EQ, false_val = constm1_rtx;
4146 /* Now simplify an arm if we know the value of the register in the
4147 branch and it is used in the arm. Be careful due to the potential
4148 of locally-shared RTL. */
4150 if (reg_mentioned_p (from, true))
4151 true = subst (known_cond (copy_rtx (true), true_code, from, true_val),
4152 pc_rtx, pc_rtx, 0, 0);
4153 if (reg_mentioned_p (from, false))
4154 false = subst (known_cond (copy_rtx (false), false_code,
4155 from, false_val),
4156 pc_rtx, pc_rtx, 0, 0);
4158 SUBST (XEXP (x, 1), swapped ? false : true);
4159 SUBST (XEXP (x, 2), swapped ? true : false);
4161 true = XEXP (x, 1), false = XEXP (x, 2), true_code = GET_CODE (cond);
4164 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
4165 reversed, do so to avoid needing two sets of patterns for
4166 subtract-and-branch insns. Similarly if we have a constant in the true
4167 arm, the false arm is the same as the first operand of the comparison, or
4168 the false arm is more complicated than the true arm. */
4170 if (comparison_p && reversible_comparison_p (cond)
4171 && (true == pc_rtx
4172 || (CONSTANT_P (true)
4173 && GET_CODE (false) != CONST_INT && false != pc_rtx)
4174 || true == const0_rtx
4175 || (GET_RTX_CLASS (GET_CODE (true)) == 'o'
4176 && GET_RTX_CLASS (GET_CODE (false)) != 'o')
4177 || (GET_CODE (true) == SUBREG
4178 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (true))) == 'o'
4179 && GET_RTX_CLASS (GET_CODE (false)) != 'o')
4180 || reg_mentioned_p (true, false)
4181 || rtx_equal_p (false, XEXP (cond, 0))))
4183 true_code = reverse_condition (true_code);
4184 SUBST (XEXP (x, 0),
4185 gen_binary (true_code, GET_MODE (cond), XEXP (cond, 0),
4186 XEXP (cond, 1)));
4188 SUBST (XEXP (x, 1), false);
4189 SUBST (XEXP (x, 2), true);
4191 temp = true, true = false, false = temp, cond = XEXP (x, 0);
4193 /* It is possible that the conditional has been simplified out. */
4194 true_code = GET_CODE (cond);
4195 comparison_p = GET_RTX_CLASS (true_code) == '<';
4198 /* If the two arms are identical, we don't need the comparison. */
4200 if (rtx_equal_p (true, false) && ! side_effects_p (cond))
4201 return true;
4203 /* Convert a == b ? b : a to "a". */
4204 if (true_code == EQ && ! side_effects_p (cond)
4205 && rtx_equal_p (XEXP (cond, 0), false)
4206 && rtx_equal_p (XEXP (cond, 1), true))
4207 return false;
4208 else if (true_code == NE && ! side_effects_p (cond)
4209 && rtx_equal_p (XEXP (cond, 0), true)
4210 && rtx_equal_p (XEXP (cond, 1), false))
4211 return true;
4213 /* Look for cases where we have (abs x) or (neg (abs X)). */
4215 if (GET_MODE_CLASS (mode) == MODE_INT
4216 && GET_CODE (false) == NEG
4217 && rtx_equal_p (true, XEXP (false, 0))
4218 && comparison_p
4219 && rtx_equal_p (true, XEXP (cond, 0))
4220 && ! side_effects_p (true))
4221 switch (true_code)
4223 case GT:
4224 case GE:
4225 return gen_unary (ABS, mode, mode, true);
4226 case LT:
4227 case LE:
4228 return gen_unary (NEG, mode, mode, gen_unary (ABS, mode, mode, true));
4231 /* Look for MIN or MAX. */
4233 if ((! FLOAT_MODE_P (mode) || flag_fast_math)
4234 && comparison_p
4235 && rtx_equal_p (XEXP (cond, 0), true)
4236 && rtx_equal_p (XEXP (cond, 1), false)
4237 && ! side_effects_p (cond))
4238 switch (true_code)
4240 case GE:
4241 case GT:
4242 return gen_binary (SMAX, mode, true, false);
4243 case LE:
4244 case LT:
4245 return gen_binary (SMIN, mode, true, false);
4246 case GEU:
4247 case GTU:
4248 return gen_binary (UMAX, mode, true, false);
4249 case LEU:
4250 case LTU:
4251 return gen_binary (UMIN, mode, true, false);
4254 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
4255 second operand is zero, this can be done as (OP Z (mult COND C2)) where
4256 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
4257 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
4258 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
4259 neither 1 or -1, but it isn't worth checking for. */
4261 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
4262 && comparison_p && mode != VOIDmode && ! side_effects_p (x))
4264 rtx t = make_compound_operation (true, SET);
4265 rtx f = make_compound_operation (false, SET);
4266 rtx cond_op0 = XEXP (cond, 0);
4267 rtx cond_op1 = XEXP (cond, 1);
4268 enum rtx_code op, extend_op = NIL;
4269 enum machine_mode m = mode;
4270 rtx z = 0, c1;
4272 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
4273 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
4274 || GET_CODE (t) == ASHIFT
4275 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
4276 && rtx_equal_p (XEXP (t, 0), f))
4277 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
4279 /* If an identity-zero op is commutative, check whether there
4280 would be a match if we swapped the operands. */
4281 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
4282 || GET_CODE (t) == XOR)
4283 && rtx_equal_p (XEXP (t, 1), f))
4284 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
4285 else if (GET_CODE (t) == SIGN_EXTEND
4286 && (GET_CODE (XEXP (t, 0)) == PLUS
4287 || GET_CODE (XEXP (t, 0)) == MINUS
4288 || GET_CODE (XEXP (t, 0)) == IOR
4289 || GET_CODE (XEXP (t, 0)) == XOR
4290 || GET_CODE (XEXP (t, 0)) == ASHIFT
4291 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4292 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4293 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4294 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4295 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4296 && (num_sign_bit_copies (f, GET_MODE (f))
4297 > (GET_MODE_BITSIZE (mode)
4298 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
4300 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4301 extend_op = SIGN_EXTEND;
4302 m = GET_MODE (XEXP (t, 0));
4304 else if (GET_CODE (t) == SIGN_EXTEND
4305 && (GET_CODE (XEXP (t, 0)) == PLUS
4306 || GET_CODE (XEXP (t, 0)) == IOR
4307 || GET_CODE (XEXP (t, 0)) == XOR)
4308 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4309 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4310 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4311 && (num_sign_bit_copies (f, GET_MODE (f))
4312 > (GET_MODE_BITSIZE (mode)
4313 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
4315 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
4316 extend_op = SIGN_EXTEND;
4317 m = GET_MODE (XEXP (t, 0));
4319 else if (GET_CODE (t) == ZERO_EXTEND
4320 && (GET_CODE (XEXP (t, 0)) == PLUS
4321 || GET_CODE (XEXP (t, 0)) == MINUS
4322 || GET_CODE (XEXP (t, 0)) == IOR
4323 || GET_CODE (XEXP (t, 0)) == XOR
4324 || GET_CODE (XEXP (t, 0)) == ASHIFT
4325 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4326 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4327 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4328 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4329 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4330 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4331 && ((nonzero_bits (f, GET_MODE (f))
4332 & ~ GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
4333 == 0))
4335 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4336 extend_op = ZERO_EXTEND;
4337 m = GET_MODE (XEXP (t, 0));
4339 else if (GET_CODE (t) == ZERO_EXTEND
4340 && (GET_CODE (XEXP (t, 0)) == PLUS
4341 || GET_CODE (XEXP (t, 0)) == IOR
4342 || GET_CODE (XEXP (t, 0)) == XOR)
4343 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4344 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4345 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4346 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4347 && ((nonzero_bits (f, GET_MODE (f))
4348 & ~ GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
4349 == 0))
4351 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
4352 extend_op = ZERO_EXTEND;
4353 m = GET_MODE (XEXP (t, 0));
4356 if (z)
4358 temp = subst (gen_binary (true_code, m, cond_op0, cond_op1),
4359 pc_rtx, pc_rtx, 0, 0);
4360 temp = gen_binary (MULT, m, temp,
4361 gen_binary (MULT, m, c1, const_true_rtx));
4362 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
4363 temp = gen_binary (op, m, gen_lowpart_for_combine (m, z), temp);
4365 if (extend_op != NIL)
4366 temp = gen_unary (extend_op, mode, m, temp);
4368 return temp;
4372 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
4373 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
4374 negation of a single bit, we can convert this operation to a shift. We
4375 can actually do this more generally, but it doesn't seem worth it. */
4377 if (true_code == NE && XEXP (cond, 1) == const0_rtx
4378 && false == const0_rtx && GET_CODE (true) == CONST_INT
4379 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
4380 && (i = exact_log2 (INTVAL (true))) >= 0)
4381 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
4382 == GET_MODE_BITSIZE (mode))
4383 && (i = exact_log2 (- INTVAL (true))) >= 0)))
4384 return
4385 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4386 gen_lowpart_for_combine (mode, XEXP (cond, 0)), i);
4388 return x;
4391 /* Simplify X, a SET expression. Return the new expression. */
4393 static rtx
4394 simplify_set (x)
4395 rtx x;
4397 rtx src = SET_SRC (x);
4398 rtx dest = SET_DEST (x);
4399 enum machine_mode mode
4400 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
4401 rtx other_insn;
4402 rtx *cc_use;
4404 /* (set (pc) (return)) gets written as (return). */
4405 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
4406 return src;
4408 /* Now that we know for sure which bits of SRC we are using, see if we can
4409 simplify the expression for the object knowing that we only need the
4410 low-order bits. */
4412 if (GET_MODE_CLASS (mode) == MODE_INT)
4413 src = force_to_mode (src, mode, GET_MODE_MASK (mode), NULL_RTX, 0);
4415 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
4416 the comparison result and try to simplify it unless we already have used
4417 undobuf.other_insn. */
4418 if ((GET_CODE (src) == COMPARE
4419 #ifdef HAVE_cc0
4420 || dest == cc0_rtx
4421 #endif
4423 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
4424 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
4425 && GET_RTX_CLASS (GET_CODE (*cc_use)) == '<'
4426 && rtx_equal_p (XEXP (*cc_use, 0), dest))
4428 enum rtx_code old_code = GET_CODE (*cc_use);
4429 enum rtx_code new_code;
4430 rtx op0, op1;
4431 int other_changed = 0;
4432 enum machine_mode compare_mode = GET_MODE (dest);
4434 if (GET_CODE (src) == COMPARE)
4435 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
4436 else
4437 op0 = src, op1 = const0_rtx;
4439 /* Simplify our comparison, if possible. */
4440 new_code = simplify_comparison (old_code, &op0, &op1);
4442 #ifdef EXTRA_CC_MODES
4443 /* If this machine has CC modes other than CCmode, check to see if we
4444 need to use a different CC mode here. */
4445 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
4446 #endif /* EXTRA_CC_MODES */
4448 #if !defined (HAVE_cc0) && defined (EXTRA_CC_MODES)
4449 /* If the mode changed, we have to change SET_DEST, the mode in the
4450 compare, and the mode in the place SET_DEST is used. If SET_DEST is
4451 a hard register, just build new versions with the proper mode. If it
4452 is a pseudo, we lose unless it is only time we set the pseudo, in
4453 which case we can safely change its mode. */
4454 if (compare_mode != GET_MODE (dest))
4456 int regno = REGNO (dest);
4457 rtx new_dest = gen_rtx (REG, compare_mode, regno);
4459 if (regno < FIRST_PSEUDO_REGISTER
4460 || (REG_N_SETS (regno) == 1 && ! REG_USERVAR_P (dest)))
4462 if (regno >= FIRST_PSEUDO_REGISTER)
4463 SUBST (regno_reg_rtx[regno], new_dest);
4465 SUBST (SET_DEST (x), new_dest);
4466 SUBST (XEXP (*cc_use, 0), new_dest);
4467 other_changed = 1;
4469 dest = new_dest;
4472 #endif
4474 /* If the code changed, we have to build a new comparison in
4475 undobuf.other_insn. */
4476 if (new_code != old_code)
4478 unsigned HOST_WIDE_INT mask;
4480 SUBST (*cc_use, gen_rtx_combine (new_code, GET_MODE (*cc_use),
4481 dest, const0_rtx));
4483 /* If the only change we made was to change an EQ into an NE or
4484 vice versa, OP0 has only one bit that might be nonzero, and OP1
4485 is zero, check if changing the user of the condition code will
4486 produce a valid insn. If it won't, we can keep the original code
4487 in that insn by surrounding our operation with an XOR. */
4489 if (((old_code == NE && new_code == EQ)
4490 || (old_code == EQ && new_code == NE))
4491 && ! other_changed && op1 == const0_rtx
4492 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
4493 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
4495 rtx pat = PATTERN (other_insn), note = 0;
4496 int scratches;
4498 if ((recog_for_combine (&pat, other_insn, &note, &scratches) < 0
4499 && ! check_asm_operands (pat)))
4501 PUT_CODE (*cc_use, old_code);
4502 other_insn = 0;
4504 op0 = gen_binary (XOR, GET_MODE (op0), op0, GEN_INT (mask));
4508 other_changed = 1;
4511 if (other_changed)
4512 undobuf.other_insn = other_insn;
4514 #ifdef HAVE_cc0
4515 /* If we are now comparing against zero, change our source if
4516 needed. If we do not use cc0, we always have a COMPARE. */
4517 if (op1 == const0_rtx && dest == cc0_rtx)
4519 SUBST (SET_SRC (x), op0);
4520 src = op0;
4522 else
4523 #endif
4525 /* Otherwise, if we didn't previously have a COMPARE in the
4526 correct mode, we need one. */
4527 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
4529 SUBST (SET_SRC (x),
4530 gen_rtx_combine (COMPARE, compare_mode, op0, op1));
4531 src = SET_SRC (x);
4533 else
4535 /* Otherwise, update the COMPARE if needed. */
4536 SUBST (XEXP (src, 0), op0);
4537 SUBST (XEXP (src, 1), op1);
4540 else
4542 /* Get SET_SRC in a form where we have placed back any
4543 compound expressions. Then do the checks below. */
4544 src = make_compound_operation (src, SET);
4545 SUBST (SET_SRC (x), src);
4548 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
4549 and X being a REG or (subreg (reg)), we may be able to convert this to
4550 (set (subreg:m2 x) (op)).
4552 We can always do this if M1 is narrower than M2 because that means that
4553 we only care about the low bits of the result.
4555 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
4556 perform a narrower operation that requested since the high-order bits will
4557 be undefined. On machine where it is defined, this transformation is safe
4558 as long as M1 and M2 have the same number of words. */
4560 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
4561 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (src))) != 'o'
4562 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
4563 / UNITS_PER_WORD)
4564 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
4565 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
4566 #ifndef WORD_REGISTER_OPERATIONS
4567 && (GET_MODE_SIZE (GET_MODE (src))
4568 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
4569 #endif
4570 #ifdef CLASS_CANNOT_CHANGE_SIZE
4571 && ! (GET_CODE (dest) == REG && REGNO (dest) < FIRST_PSEUDO_REGISTER
4572 && (TEST_HARD_REG_BIT
4573 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_SIZE],
4574 REGNO (dest)))
4575 && (GET_MODE_SIZE (GET_MODE (src))
4576 != GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
4577 #endif
4578 && (GET_CODE (dest) == REG
4579 || (GET_CODE (dest) == SUBREG
4580 && GET_CODE (SUBREG_REG (dest)) == REG)))
4582 SUBST (SET_DEST (x),
4583 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (src)),
4584 dest));
4585 SUBST (SET_SRC (x), SUBREG_REG (src));
4587 src = SET_SRC (x), dest = SET_DEST (x);
4590 #ifdef LOAD_EXTEND_OP
4591 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
4592 would require a paradoxical subreg. Replace the subreg with a
4593 zero_extend to avoid the reload that would otherwise be required. */
4595 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
4596 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != NIL
4597 && SUBREG_WORD (src) == 0
4598 && (GET_MODE_SIZE (GET_MODE (src))
4599 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
4600 && GET_CODE (SUBREG_REG (src)) == MEM)
4602 SUBST (SET_SRC (x),
4603 gen_rtx_combine (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
4604 GET_MODE (src), XEXP (src, 0)));
4606 src = SET_SRC (x);
4608 #endif
4610 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
4611 are comparing an item known to be 0 or -1 against 0, use a logical
4612 operation instead. Check for one of the arms being an IOR of the other
4613 arm with some value. We compute three terms to be IOR'ed together. In
4614 practice, at most two will be nonzero. Then we do the IOR's. */
4616 if (GET_CODE (dest) != PC
4617 && GET_CODE (src) == IF_THEN_ELSE
4618 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
4619 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
4620 && XEXP (XEXP (src, 0), 1) == const0_rtx
4621 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
4622 #ifdef HAVE_conditional_move
4623 && ! can_conditionally_move_p (GET_MODE (src))
4624 #endif
4625 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
4626 GET_MODE (XEXP (XEXP (src, 0), 0)))
4627 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
4628 && ! side_effects_p (src))
4630 rtx true = (GET_CODE (XEXP (src, 0)) == NE
4631 ? XEXP (src, 1) : XEXP (src, 2));
4632 rtx false = (GET_CODE (XEXP (src, 0)) == NE
4633 ? XEXP (src, 2) : XEXP (src, 1));
4634 rtx term1 = const0_rtx, term2, term3;
4636 if (GET_CODE (true) == IOR && rtx_equal_p (XEXP (true, 0), false))
4637 term1 = false, true = XEXP (true, 1), false = const0_rtx;
4638 else if (GET_CODE (true) == IOR
4639 && rtx_equal_p (XEXP (true, 1), false))
4640 term1 = false, true = XEXP (true, 0), false = const0_rtx;
4641 else if (GET_CODE (false) == IOR
4642 && rtx_equal_p (XEXP (false, 0), true))
4643 term1 = true, false = XEXP (false, 1), true = const0_rtx;
4644 else if (GET_CODE (false) == IOR
4645 && rtx_equal_p (XEXP (false, 1), true))
4646 term1 = true, false = XEXP (false, 0), true = const0_rtx;
4648 term2 = gen_binary (AND, GET_MODE (src), XEXP (XEXP (src, 0), 0), true);
4649 term3 = gen_binary (AND, GET_MODE (src),
4650 gen_unary (NOT, GET_MODE (src), GET_MODE (src),
4651 XEXP (XEXP (src, 0), 0)),
4652 false);
4654 SUBST (SET_SRC (x),
4655 gen_binary (IOR, GET_MODE (src),
4656 gen_binary (IOR, GET_MODE (src), term1, term2),
4657 term3));
4659 src = SET_SRC (x);
4662 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
4663 whole thing fail. */
4664 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
4665 return src;
4666 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
4667 return dest;
4668 else
4669 /* Convert this into a field assignment operation, if possible. */
4670 return make_field_assignment (x);
4673 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
4674 result. LAST is nonzero if this is the last retry. */
4676 static rtx
4677 simplify_logical (x, last)
4678 rtx x;
4679 int last;
4681 enum machine_mode mode = GET_MODE (x);
4682 rtx op0 = XEXP (x, 0);
4683 rtx op1 = XEXP (x, 1);
4685 switch (GET_CODE (x))
4687 case AND:
4688 /* Convert (A ^ B) & A to A & (~ B) since the latter is often a single
4689 insn (and may simplify more). */
4690 if (GET_CODE (op0) == XOR
4691 && rtx_equal_p (XEXP (op0, 0), op1)
4692 && ! side_effects_p (op1))
4693 x = gen_binary (AND, mode,
4694 gen_unary (NOT, mode, mode, XEXP (op0, 1)), op1);
4696 if (GET_CODE (op0) == XOR
4697 && rtx_equal_p (XEXP (op0, 1), op1)
4698 && ! side_effects_p (op1))
4699 x = gen_binary (AND, mode,
4700 gen_unary (NOT, mode, mode, XEXP (op0, 0)), op1);
4702 /* Similarly for (~ (A ^ B)) & A. */
4703 if (GET_CODE (op0) == NOT
4704 && GET_CODE (XEXP (op0, 0)) == XOR
4705 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), op1)
4706 && ! side_effects_p (op1))
4707 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 1), op1);
4709 if (GET_CODE (op0) == NOT
4710 && GET_CODE (XEXP (op0, 0)) == XOR
4711 && rtx_equal_p (XEXP (XEXP (op0, 0), 1), op1)
4712 && ! side_effects_p (op1))
4713 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 0), op1);
4715 if (GET_CODE (op1) == CONST_INT)
4717 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
4719 /* If we have (ior (and (X C1) C2)) and the next restart would be
4720 the last, simplify this by making C1 as small as possible
4721 and then exit. */
4722 if (last
4723 && GET_CODE (x) == IOR && GET_CODE (op0) == AND
4724 && GET_CODE (XEXP (op0, 1)) == CONST_INT
4725 && GET_CODE (op1) == CONST_INT)
4726 return gen_binary (IOR, mode,
4727 gen_binary (AND, mode, XEXP (op0, 0),
4728 GEN_INT (INTVAL (XEXP (op0, 1))
4729 & ~ INTVAL (op1))), op1);
4731 if (GET_CODE (x) != AND)
4732 return x;
4734 if (GET_RTX_CLASS (GET_CODE (x)) == 'c'
4735 || GET_RTX_CLASS (GET_CODE (x)) == '2')
4736 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
4739 /* Convert (A | B) & A to A. */
4740 if (GET_CODE (op0) == IOR
4741 && (rtx_equal_p (XEXP (op0, 0), op1)
4742 || rtx_equal_p (XEXP (op0, 1), op1))
4743 && ! side_effects_p (XEXP (op0, 0))
4744 && ! side_effects_p (XEXP (op0, 1)))
4745 return op1;
4747 /* In the following group of tests (and those in case IOR below),
4748 we start with some combination of logical operations and apply
4749 the distributive law followed by the inverse distributive law.
4750 Most of the time, this results in no change. However, if some of
4751 the operands are the same or inverses of each other, simplifications
4752 will result.
4754 For example, (and (ior A B) (not B)) can occur as the result of
4755 expanding a bit field assignment. When we apply the distributive
4756 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
4757 which then simplifies to (and (A (not B))).
4759 If we have (and (ior A B) C), apply the distributive law and then
4760 the inverse distributive law to see if things simplify. */
4762 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
4764 x = apply_distributive_law
4765 (gen_binary (GET_CODE (op0), mode,
4766 gen_binary (AND, mode, XEXP (op0, 0), op1),
4767 gen_binary (AND, mode, XEXP (op0, 1), op1)));
4768 if (GET_CODE (x) != AND)
4769 return x;
4772 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
4773 return apply_distributive_law
4774 (gen_binary (GET_CODE (op1), mode,
4775 gen_binary (AND, mode, XEXP (op1, 0), op0),
4776 gen_binary (AND, mode, XEXP (op1, 1), op0)));
4778 /* Similarly, taking advantage of the fact that
4779 (and (not A) (xor B C)) == (xor (ior A B) (ior A C)) */
4781 if (GET_CODE (op0) == NOT && GET_CODE (op1) == XOR)
4782 return apply_distributive_law
4783 (gen_binary (XOR, mode,
4784 gen_binary (IOR, mode, XEXP (op0, 0), XEXP (op1, 0)),
4785 gen_binary (IOR, mode, XEXP (op0, 0), XEXP (op1, 1))));
4787 else if (GET_CODE (op1) == NOT && GET_CODE (op0) == XOR)
4788 return apply_distributive_law
4789 (gen_binary (XOR, mode,
4790 gen_binary (IOR, mode, XEXP (op1, 0), XEXP (op0, 0)),
4791 gen_binary (IOR, mode, XEXP (op1, 0), XEXP (op0, 1))));
4792 break;
4794 case IOR:
4795 /* (ior A C) is C if all bits of A that might be nonzero are on in C. */
4796 if (GET_CODE (op1) == CONST_INT
4797 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4798 && (nonzero_bits (op0, mode) & ~ INTVAL (op1)) == 0)
4799 return op1;
4801 /* Convert (A & B) | A to A. */
4802 if (GET_CODE (op0) == AND
4803 && (rtx_equal_p (XEXP (op0, 0), op1)
4804 || rtx_equal_p (XEXP (op0, 1), op1))
4805 && ! side_effects_p (XEXP (op0, 0))
4806 && ! side_effects_p (XEXP (op0, 1)))
4807 return op1;
4809 /* If we have (ior (and A B) C), apply the distributive law and then
4810 the inverse distributive law to see if things simplify. */
4812 if (GET_CODE (op0) == AND)
4814 x = apply_distributive_law
4815 (gen_binary (AND, mode,
4816 gen_binary (IOR, mode, XEXP (op0, 0), op1),
4817 gen_binary (IOR, mode, XEXP (op0, 1), op1)));
4819 if (GET_CODE (x) != IOR)
4820 return x;
4823 if (GET_CODE (op1) == AND)
4825 x = apply_distributive_law
4826 (gen_binary (AND, mode,
4827 gen_binary (IOR, mode, XEXP (op1, 0), op0),
4828 gen_binary (IOR, mode, XEXP (op1, 1), op0)));
4830 if (GET_CODE (x) != IOR)
4831 return x;
4834 /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
4835 mode size to (rotate A CX). */
4837 if (((GET_CODE (op0) == ASHIFT && GET_CODE (op1) == LSHIFTRT)
4838 || (GET_CODE (op1) == ASHIFT && GET_CODE (op0) == LSHIFTRT))
4839 && rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
4840 && GET_CODE (XEXP (op0, 1)) == CONST_INT
4841 && GET_CODE (XEXP (op1, 1)) == CONST_INT
4842 && (INTVAL (XEXP (op0, 1)) + INTVAL (XEXP (op1, 1))
4843 == GET_MODE_BITSIZE (mode)))
4844 return gen_rtx (ROTATE, mode, XEXP (op0, 0),
4845 (GET_CODE (op0) == ASHIFT
4846 ? XEXP (op0, 1) : XEXP (op1, 1)));
4848 /* If OP0 is (ashiftrt (plus ...) C), it might actually be
4849 a (sign_extend (plus ...)). If so, OP1 is a CONST_INT, and the PLUS
4850 does not affect any of the bits in OP1, it can really be done
4851 as a PLUS and we can associate. We do this by seeing if OP1
4852 can be safely shifted left C bits. */
4853 if (GET_CODE (op1) == CONST_INT && GET_CODE (op0) == ASHIFTRT
4854 && GET_CODE (XEXP (op0, 0)) == PLUS
4855 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
4856 && GET_CODE (XEXP (op0, 1)) == CONST_INT
4857 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT)
4859 int count = INTVAL (XEXP (op0, 1));
4860 HOST_WIDE_INT mask = INTVAL (op1) << count;
4862 if (mask >> count == INTVAL (op1)
4863 && (mask & nonzero_bits (XEXP (op0, 0), mode)) == 0)
4865 SUBST (XEXP (XEXP (op0, 0), 1),
4866 GEN_INT (INTVAL (XEXP (XEXP (op0, 0), 1)) | mask));
4867 return op0;
4870 break;
4872 case XOR:
4873 /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
4874 Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
4875 (NOT y). */
4877 int num_negated = 0;
4879 if (GET_CODE (op0) == NOT)
4880 num_negated++, op0 = XEXP (op0, 0);
4881 if (GET_CODE (op1) == NOT)
4882 num_negated++, op1 = XEXP (op1, 0);
4884 if (num_negated == 2)
4886 SUBST (XEXP (x, 0), op0);
4887 SUBST (XEXP (x, 1), op1);
4889 else if (num_negated == 1)
4890 return gen_unary (NOT, mode, mode, gen_binary (XOR, mode, op0, op1));
4893 /* Convert (xor (and A B) B) to (and (not A) B). The latter may
4894 correspond to a machine insn or result in further simplifications
4895 if B is a constant. */
4897 if (GET_CODE (op0) == AND
4898 && rtx_equal_p (XEXP (op0, 1), op1)
4899 && ! side_effects_p (op1))
4900 return gen_binary (AND, mode,
4901 gen_unary (NOT, mode, mode, XEXP (op0, 0)),
4902 op1);
4904 else if (GET_CODE (op0) == AND
4905 && rtx_equal_p (XEXP (op0, 0), op1)
4906 && ! side_effects_p (op1))
4907 return gen_binary (AND, mode,
4908 gen_unary (NOT, mode, mode, XEXP (op0, 1)),
4909 op1);
4911 /* (xor (comparison foo bar) (const_int 1)) can become the reversed
4912 comparison if STORE_FLAG_VALUE is 1. */
4913 if (STORE_FLAG_VALUE == 1
4914 && op1 == const1_rtx
4915 && GET_RTX_CLASS (GET_CODE (op0)) == '<'
4916 && reversible_comparison_p (op0))
4917 return gen_rtx_combine (reverse_condition (GET_CODE (op0)),
4918 mode, XEXP (op0, 0), XEXP (op0, 1));
4920 /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
4921 is (lt foo (const_int 0)), so we can perform the above
4922 simplification if STORE_FLAG_VALUE is 1. */
4924 if (STORE_FLAG_VALUE == 1
4925 && op1 == const1_rtx
4926 && GET_CODE (op0) == LSHIFTRT
4927 && GET_CODE (XEXP (op0, 1)) == CONST_INT
4928 && INTVAL (XEXP (op0, 1)) == GET_MODE_BITSIZE (mode) - 1)
4929 return gen_rtx_combine (GE, mode, XEXP (op0, 0), const0_rtx);
4931 /* (xor (comparison foo bar) (const_int sign-bit))
4932 when STORE_FLAG_VALUE is the sign bit. */
4933 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4934 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
4935 == (HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
4936 && op1 == const_true_rtx
4937 && GET_RTX_CLASS (GET_CODE (op0)) == '<'
4938 && reversible_comparison_p (op0))
4939 return gen_rtx_combine (reverse_condition (GET_CODE (op0)),
4940 mode, XEXP (op0, 0), XEXP (op0, 1));
4941 break;
4944 return x;
4947 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
4948 operations" because they can be replaced with two more basic operations.
4949 ZERO_EXTEND is also considered "compound" because it can be replaced with
4950 an AND operation, which is simpler, though only one operation.
4952 The function expand_compound_operation is called with an rtx expression
4953 and will convert it to the appropriate shifts and AND operations,
4954 simplifying at each stage.
4956 The function make_compound_operation is called to convert an expression
4957 consisting of shifts and ANDs into the equivalent compound expression.
4958 It is the inverse of this function, loosely speaking. */
4960 static rtx
4961 expand_compound_operation (x)
4962 rtx x;
4964 int pos = 0, len;
4965 int unsignedp = 0;
4966 int modewidth;
4967 rtx tem;
4969 switch (GET_CODE (x))
4971 case ZERO_EXTEND:
4972 unsignedp = 1;
4973 case SIGN_EXTEND:
4974 /* We can't necessarily use a const_int for a multiword mode;
4975 it depends on implicitly extending the value.
4976 Since we don't know the right way to extend it,
4977 we can't tell whether the implicit way is right.
4979 Even for a mode that is no wider than a const_int,
4980 we can't win, because we need to sign extend one of its bits through
4981 the rest of it, and we don't know which bit. */
4982 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
4983 return x;
4985 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
4986 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
4987 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
4988 reloaded. If not for that, MEM's would very rarely be safe.
4990 Reject MODEs bigger than a word, because we might not be able
4991 to reference a two-register group starting with an arbitrary register
4992 (and currently gen_lowpart might crash for a SUBREG). */
4994 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
4995 return x;
4997 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
4998 /* If the inner object has VOIDmode (the only way this can happen
4999 is if it is a ASM_OPERANDS), we can't do anything since we don't
5000 know how much masking to do. */
5001 if (len == 0)
5002 return x;
5004 break;
5006 case ZERO_EXTRACT:
5007 unsignedp = 1;
5008 case SIGN_EXTRACT:
5009 /* If the operand is a CLOBBER, just return it. */
5010 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
5011 return XEXP (x, 0);
5013 if (GET_CODE (XEXP (x, 1)) != CONST_INT
5014 || GET_CODE (XEXP (x, 2)) != CONST_INT
5015 || GET_MODE (XEXP (x, 0)) == VOIDmode)
5016 return x;
5018 len = INTVAL (XEXP (x, 1));
5019 pos = INTVAL (XEXP (x, 2));
5021 /* If this goes outside the object being extracted, replace the object
5022 with a (use (mem ...)) construct that only combine understands
5023 and is used only for this purpose. */
5024 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
5025 SUBST (XEXP (x, 0), gen_rtx (USE, GET_MODE (x), XEXP (x, 0)));
5027 if (BITS_BIG_ENDIAN)
5028 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
5030 break;
5032 default:
5033 return x;
5036 /* We can optimize some special cases of ZERO_EXTEND. */
5037 if (GET_CODE (x) == ZERO_EXTEND)
5039 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
5040 know that the last value didn't have any inappropriate bits
5041 set. */
5042 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5043 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5044 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5045 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
5046 & ~ GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5047 return XEXP (XEXP (x, 0), 0);
5049 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5050 if (GET_CODE (XEXP (x, 0)) == SUBREG
5051 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5052 && subreg_lowpart_p (XEXP (x, 0))
5053 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5054 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
5055 & ~ GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))) == 0)
5056 return SUBREG_REG (XEXP (x, 0));
5058 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
5059 is a comparison and STORE_FLAG_VALUE permits. This is like
5060 the first case, but it works even when GET_MODE (x) is larger
5061 than HOST_WIDE_INT. */
5062 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5063 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5064 && GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x, 0), 0))) == '<'
5065 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5066 <= HOST_BITS_PER_WIDE_INT)
5067 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5068 & ~ GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5069 return XEXP (XEXP (x, 0), 0);
5071 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5072 if (GET_CODE (XEXP (x, 0)) == SUBREG
5073 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5074 && subreg_lowpart_p (XEXP (x, 0))
5075 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0)))) == '<'
5076 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5077 <= HOST_BITS_PER_WIDE_INT)
5078 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5079 & ~ GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5080 return SUBREG_REG (XEXP (x, 0));
5082 /* If sign extension is cheaper than zero extension, then use it
5083 if we know that no extraneous bits are set, and that the high
5084 bit is not set. */
5085 if (flag_expensive_optimizations
5086 && ((GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5087 && ((nonzero_bits (XEXP (x, 0), GET_MODE (x))
5088 & ~ (((unsigned HOST_WIDE_INT)
5089 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
5090 >> 1))
5091 == 0))
5092 || (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
5093 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5094 <= HOST_BITS_PER_WIDE_INT)
5095 && (((HOST_WIDE_INT) STORE_FLAG_VALUE
5096 & ~ (((unsigned HOST_WIDE_INT)
5097 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
5098 >> 1))
5099 == 0))))
5101 rtx temp = gen_rtx (SIGN_EXTEND, GET_MODE (x), XEXP (x, 0));
5103 if (rtx_cost (temp, SET) < rtx_cost (x, SET))
5104 return expand_compound_operation (temp);
5108 /* If we reach here, we want to return a pair of shifts. The inner
5109 shift is a left shift of BITSIZE - POS - LEN bits. The outer
5110 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
5111 logical depending on the value of UNSIGNEDP.
5113 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
5114 converted into an AND of a shift.
5116 We must check for the case where the left shift would have a negative
5117 count. This can happen in a case like (x >> 31) & 255 on machines
5118 that can't shift by a constant. On those machines, we would first
5119 combine the shift with the AND to produce a variable-position
5120 extraction. Then the constant of 31 would be substituted in to produce
5121 a such a position. */
5123 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
5124 if (modewidth >= pos - len)
5125 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
5126 GET_MODE (x),
5127 simplify_shift_const (NULL_RTX, ASHIFT,
5128 GET_MODE (x),
5129 XEXP (x, 0),
5130 modewidth - pos - len),
5131 modewidth - len);
5133 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
5134 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
5135 simplify_shift_const (NULL_RTX, LSHIFTRT,
5136 GET_MODE (x),
5137 XEXP (x, 0), pos),
5138 ((HOST_WIDE_INT) 1 << len) - 1);
5139 else
5140 /* Any other cases we can't handle. */
5141 return x;
5144 /* If we couldn't do this for some reason, return the original
5145 expression. */
5146 if (GET_CODE (tem) == CLOBBER)
5147 return x;
5149 return tem;
5152 /* X is a SET which contains an assignment of one object into
5153 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
5154 or certain SUBREGS). If possible, convert it into a series of
5155 logical operations.
5157 We half-heartedly support variable positions, but do not at all
5158 support variable lengths. */
5160 static rtx
5161 expand_field_assignment (x)
5162 rtx x;
5164 rtx inner;
5165 rtx pos; /* Always counts from low bit. */
5166 int len;
5167 rtx mask;
5168 enum machine_mode compute_mode;
5170 /* Loop until we find something we can't simplify. */
5171 while (1)
5173 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
5174 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
5176 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
5177 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
5178 pos = GEN_INT (BITS_PER_WORD * SUBREG_WORD (XEXP (SET_DEST (x), 0)));
5180 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5181 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
5183 inner = XEXP (SET_DEST (x), 0);
5184 len = INTVAL (XEXP (SET_DEST (x), 1));
5185 pos = XEXP (SET_DEST (x), 2);
5187 /* If the position is constant and spans the width of INNER,
5188 surround INNER with a USE to indicate this. */
5189 if (GET_CODE (pos) == CONST_INT
5190 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
5191 inner = gen_rtx (USE, GET_MODE (SET_DEST (x)), inner);
5193 if (BITS_BIG_ENDIAN)
5195 if (GET_CODE (pos) == CONST_INT)
5196 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
5197 - INTVAL (pos));
5198 else if (GET_CODE (pos) == MINUS
5199 && GET_CODE (XEXP (pos, 1)) == CONST_INT
5200 && (INTVAL (XEXP (pos, 1))
5201 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
5202 /* If position is ADJUST - X, new position is X. */
5203 pos = XEXP (pos, 0);
5204 else
5205 pos = gen_binary (MINUS, GET_MODE (pos),
5206 GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner))
5207 - len),
5208 pos);
5212 /* A SUBREG between two modes that occupy the same numbers of words
5213 can be done by moving the SUBREG to the source. */
5214 else if (GET_CODE (SET_DEST (x)) == SUBREG
5215 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
5216 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
5217 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
5218 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
5220 x = gen_rtx (SET, VOIDmode, SUBREG_REG (SET_DEST (x)),
5221 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (SET_DEST (x))),
5222 SET_SRC (x)));
5223 continue;
5225 else
5226 break;
5228 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5229 inner = SUBREG_REG (inner);
5231 compute_mode = GET_MODE (inner);
5233 /* Compute a mask of LEN bits, if we can do this on the host machine. */
5234 if (len < HOST_BITS_PER_WIDE_INT)
5235 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
5236 else
5237 break;
5239 /* Now compute the equivalent expression. Make a copy of INNER
5240 for the SET_DEST in case it is a MEM into which we will substitute;
5241 we don't want shared RTL in that case. */
5242 x = gen_rtx (SET, VOIDmode, copy_rtx (inner),
5243 gen_binary (IOR, compute_mode,
5244 gen_binary (AND, compute_mode,
5245 gen_unary (NOT, compute_mode,
5246 compute_mode,
5247 gen_binary (ASHIFT,
5248 compute_mode,
5249 mask, pos)),
5250 inner),
5251 gen_binary (ASHIFT, compute_mode,
5252 gen_binary (AND, compute_mode,
5253 gen_lowpart_for_combine
5254 (compute_mode,
5255 SET_SRC (x)),
5256 mask),
5257 pos)));
5260 return x;
5263 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
5264 it is an RTX that represents a variable starting position; otherwise,
5265 POS is the (constant) starting bit position (counted from the LSB).
5267 INNER may be a USE. This will occur when we started with a bitfield
5268 that went outside the boundary of the object in memory, which is
5269 allowed on most machines. To isolate this case, we produce a USE
5270 whose mode is wide enough and surround the MEM with it. The only
5271 code that understands the USE is this routine. If it is not removed,
5272 it will cause the resulting insn not to match.
5274 UNSIGNEDP is non-zero for an unsigned reference and zero for a
5275 signed reference.
5277 IN_DEST is non-zero if this is a reference in the destination of a
5278 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If non-zero,
5279 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
5280 be used.
5282 IN_COMPARE is non-zero if we are in a COMPARE. This means that a
5283 ZERO_EXTRACT should be built even for bits starting at bit 0.
5285 MODE is the desired mode of the result (if IN_DEST == 0).
5287 The result is an RTX for the extraction or NULL_RTX if the target
5288 can't handle it. */
5290 static rtx
5291 make_extraction (mode, inner, pos, pos_rtx, len,
5292 unsignedp, in_dest, in_compare)
5293 enum machine_mode mode;
5294 rtx inner;
5295 int pos;
5296 rtx pos_rtx;
5297 int len;
5298 int unsignedp;
5299 int in_dest, in_compare;
5301 /* This mode describes the size of the storage area
5302 to fetch the overall value from. Within that, we
5303 ignore the POS lowest bits, etc. */
5304 enum machine_mode is_mode = GET_MODE (inner);
5305 enum machine_mode inner_mode;
5306 enum machine_mode wanted_inner_mode = byte_mode;
5307 enum machine_mode wanted_inner_reg_mode = word_mode;
5308 enum machine_mode pos_mode = word_mode;
5309 enum machine_mode extraction_mode = word_mode;
5310 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
5311 int spans_byte = 0;
5312 rtx new = 0;
5313 rtx orig_pos_rtx = pos_rtx;
5314 int orig_pos;
5316 /* Get some information about INNER and get the innermost object. */
5317 if (GET_CODE (inner) == USE)
5318 /* (use:SI (mem:QI foo)) stands for (mem:SI foo). */
5319 /* We don't need to adjust the position because we set up the USE
5320 to pretend that it was a full-word object. */
5321 spans_byte = 1, inner = XEXP (inner, 0);
5322 else if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5324 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
5325 consider just the QI as the memory to extract from.
5326 The subreg adds or removes high bits; its mode is
5327 irrelevant to the meaning of this extraction,
5328 since POS and LEN count from the lsb. */
5329 if (GET_CODE (SUBREG_REG (inner)) == MEM)
5330 is_mode = GET_MODE (SUBREG_REG (inner));
5331 inner = SUBREG_REG (inner);
5334 inner_mode = GET_MODE (inner);
5336 if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
5337 pos = INTVAL (pos_rtx), pos_rtx = 0;
5339 /* See if this can be done without an extraction. We never can if the
5340 width of the field is not the same as that of some integer mode. For
5341 registers, we can only avoid the extraction if the position is at the
5342 low-order bit and this is either not in the destination or we have the
5343 appropriate STRICT_LOW_PART operation available.
5345 For MEM, we can avoid an extract if the field starts on an appropriate
5346 boundary and we can change the mode of the memory reference. However,
5347 we cannot directly access the MEM if we have a USE and the underlying
5348 MEM is not TMODE. This combination means that MEM was being used in a
5349 context where bits outside its mode were being referenced; that is only
5350 valid in bit-field insns. */
5352 if (tmode != BLKmode
5353 && ! (spans_byte && inner_mode != tmode)
5354 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
5355 && GET_CODE (inner) != MEM
5356 && (! in_dest
5357 || (GET_CODE (inner) == REG
5358 && (movstrict_optab->handlers[(int) tmode].insn_code
5359 != CODE_FOR_nothing))))
5360 || (GET_CODE (inner) == MEM && pos_rtx == 0
5361 && (pos
5362 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
5363 : BITS_PER_UNIT)) == 0
5364 /* We can't do this if we are widening INNER_MODE (it
5365 may not be aligned, for one thing). */
5366 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
5367 && (inner_mode == tmode
5368 || (! mode_dependent_address_p (XEXP (inner, 0))
5369 && ! MEM_VOLATILE_P (inner))))))
5371 /* If INNER is a MEM, make a new MEM that encompasses just the desired
5372 field. If the original and current mode are the same, we need not
5373 adjust the offset. Otherwise, we do if bytes big endian.
5375 If INNER is not a MEM, get a piece consisting of just the field
5376 of interest (in this case POS % BITS_PER_WORD must be 0). */
5378 if (GET_CODE (inner) == MEM)
5380 int offset;
5381 /* POS counts from lsb, but make OFFSET count in memory order. */
5382 if (BYTES_BIG_ENDIAN)
5383 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
5384 else
5385 offset = pos / BITS_PER_UNIT;
5387 new = gen_rtx (MEM, tmode, plus_constant (XEXP (inner, 0), offset));
5388 RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (inner);
5389 MEM_VOLATILE_P (new) = MEM_VOLATILE_P (inner);
5390 MEM_IN_STRUCT_P (new) = MEM_IN_STRUCT_P (inner);
5392 else if (GET_CODE (inner) == REG)
5394 /* We can't call gen_lowpart_for_combine here since we always want
5395 a SUBREG and it would sometimes return a new hard register. */
5396 if (tmode != inner_mode)
5397 new = gen_rtx (SUBREG, tmode, inner,
5398 (WORDS_BIG_ENDIAN
5399 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD
5400 ? (((GET_MODE_SIZE (inner_mode)
5401 - GET_MODE_SIZE (tmode))
5402 / UNITS_PER_WORD)
5403 - pos / BITS_PER_WORD)
5404 : pos / BITS_PER_WORD));
5405 else
5406 new = inner;
5408 else
5409 new = force_to_mode (inner, tmode,
5410 len >= HOST_BITS_PER_WIDE_INT
5411 ? GET_MODE_MASK (tmode)
5412 : ((HOST_WIDE_INT) 1 << len) - 1,
5413 NULL_RTX, 0);
5415 /* If this extraction is going into the destination of a SET,
5416 make a STRICT_LOW_PART unless we made a MEM. */
5418 if (in_dest)
5419 return (GET_CODE (new) == MEM ? new
5420 : (GET_CODE (new) != SUBREG
5421 ? gen_rtx (CLOBBER, tmode, const0_rtx)
5422 : gen_rtx_combine (STRICT_LOW_PART, VOIDmode, new)));
5424 /* Otherwise, sign- or zero-extend unless we already are in the
5425 proper mode. */
5427 return (mode == tmode ? new
5428 : gen_rtx_combine (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
5429 mode, new));
5432 /* Unless this is a COMPARE or we have a funny memory reference,
5433 don't do anything with zero-extending field extracts starting at
5434 the low-order bit since they are simple AND operations. */
5435 if (pos_rtx == 0 && pos == 0 && ! in_dest
5436 && ! in_compare && ! spans_byte && unsignedp)
5437 return 0;
5439 /* Unless we are allowed to span bytes, reject this if we would be
5440 spanning bytes or if the position is not a constant and the length
5441 is not 1. In all other cases, we would only be going outside
5442 out object in cases when an original shift would have been
5443 undefined. */
5444 if (! spans_byte
5445 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
5446 || (pos_rtx != 0 && len != 1)))
5447 return 0;
5449 /* Get the mode to use should INNER not be a MEM, the mode for the position,
5450 and the mode for the result. */
5451 #ifdef HAVE_insv
5452 if (in_dest)
5454 wanted_inner_reg_mode = insn_operand_mode[(int) CODE_FOR_insv][0];
5455 pos_mode = insn_operand_mode[(int) CODE_FOR_insv][2];
5456 extraction_mode = insn_operand_mode[(int) CODE_FOR_insv][3];
5458 #endif
5460 #ifdef HAVE_extzv
5461 if (! in_dest && unsignedp)
5463 wanted_inner_reg_mode = insn_operand_mode[(int) CODE_FOR_extzv][1];
5464 pos_mode = insn_operand_mode[(int) CODE_FOR_extzv][3];
5465 extraction_mode = insn_operand_mode[(int) CODE_FOR_extzv][0];
5467 #endif
5469 #ifdef HAVE_extv
5470 if (! in_dest && ! unsignedp)
5472 wanted_inner_reg_mode = insn_operand_mode[(int) CODE_FOR_extv][1];
5473 pos_mode = insn_operand_mode[(int) CODE_FOR_extv][3];
5474 extraction_mode = insn_operand_mode[(int) CODE_FOR_extv][0];
5476 #endif
5478 /* Never narrow an object, since that might not be safe. */
5480 if (mode != VOIDmode
5481 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
5482 extraction_mode = mode;
5484 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
5485 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
5486 pos_mode = GET_MODE (pos_rtx);
5488 /* If this is not from memory, the desired mode is wanted_inner_reg_mode;
5489 if we have to change the mode of memory and cannot, the desired mode is
5490 EXTRACTION_MODE. */
5491 if (GET_CODE (inner) != MEM)
5492 wanted_inner_mode = wanted_inner_reg_mode;
5493 else if (inner_mode != wanted_inner_mode
5494 && (mode_dependent_address_p (XEXP (inner, 0))
5495 || MEM_VOLATILE_P (inner)))
5496 wanted_inner_mode = extraction_mode;
5498 orig_pos = pos;
5500 if (BITS_BIG_ENDIAN)
5502 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
5503 BITS_BIG_ENDIAN style. If position is constant, compute new
5504 position. Otherwise, build subtraction.
5505 Note that POS is relative to the mode of the original argument.
5506 If it's a MEM we need to recompute POS relative to that.
5507 However, if we're extracting from (or inserting into) a register,
5508 we want to recompute POS relative to wanted_inner_mode. */
5509 int width = (GET_CODE (inner) == MEM
5510 ? GET_MODE_BITSIZE (is_mode)
5511 : GET_MODE_BITSIZE (wanted_inner_mode));
5513 if (pos_rtx == 0)
5514 pos = width - len - pos;
5515 else
5516 pos_rtx
5517 = gen_rtx_combine (MINUS, GET_MODE (pos_rtx),
5518 GEN_INT (width - len), pos_rtx);
5519 /* POS may be less than 0 now, but we check for that below.
5520 Note that it can only be less than 0 if GET_CODE (inner) != MEM. */
5523 /* If INNER has a wider mode, make it smaller. If this is a constant
5524 extract, try to adjust the byte to point to the byte containing
5525 the value. */
5526 if (wanted_inner_mode != VOIDmode
5527 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
5528 && ((GET_CODE (inner) == MEM
5529 && (inner_mode == wanted_inner_mode
5530 || (! mode_dependent_address_p (XEXP (inner, 0))
5531 && ! MEM_VOLATILE_P (inner))))))
5533 int offset = 0;
5535 /* The computations below will be correct if the machine is big
5536 endian in both bits and bytes or little endian in bits and bytes.
5537 If it is mixed, we must adjust. */
5539 /* If bytes are big endian and we had a paradoxical SUBREG, we must
5540 adjust OFFSET to compensate. */
5541 if (BYTES_BIG_ENDIAN
5542 && ! spans_byte
5543 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
5544 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
5546 /* If this is a constant position, we can move to the desired byte. */
5547 if (pos_rtx == 0)
5549 offset += pos / BITS_PER_UNIT;
5550 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
5553 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
5554 && ! spans_byte
5555 && is_mode != wanted_inner_mode)
5556 offset = (GET_MODE_SIZE (is_mode)
5557 - GET_MODE_SIZE (wanted_inner_mode) - offset);
5559 if (offset != 0 || inner_mode != wanted_inner_mode)
5561 rtx newmem = gen_rtx (MEM, wanted_inner_mode,
5562 plus_constant (XEXP (inner, 0), offset));
5563 RTX_UNCHANGING_P (newmem) = RTX_UNCHANGING_P (inner);
5564 MEM_VOLATILE_P (newmem) = MEM_VOLATILE_P (inner);
5565 MEM_IN_STRUCT_P (newmem) = MEM_IN_STRUCT_P (inner);
5566 inner = newmem;
5570 /* If INNER is not memory, we can always get it into the proper mode. If we
5571 are changing its mode, POS must be a constant and smaller than the size
5572 of the new mode. */
5573 else if (GET_CODE (inner) != MEM)
5575 if (GET_MODE (inner) != wanted_inner_mode
5576 && (pos_rtx != 0
5577 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
5578 return 0;
5580 inner = force_to_mode (inner, wanted_inner_mode,
5581 pos_rtx
5582 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
5583 ? GET_MODE_MASK (wanted_inner_mode)
5584 : (((HOST_WIDE_INT) 1 << len) - 1) << orig_pos,
5585 NULL_RTX, 0);
5588 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
5589 have to zero extend. Otherwise, we can just use a SUBREG. */
5590 if (pos_rtx != 0
5591 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
5592 pos_rtx = gen_rtx_combine (ZERO_EXTEND, pos_mode, pos_rtx);
5593 else if (pos_rtx != 0
5594 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
5595 pos_rtx = gen_lowpart_for_combine (pos_mode, pos_rtx);
5597 /* Make POS_RTX unless we already have it and it is correct. If we don't
5598 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
5599 be a CONST_INT. */
5600 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
5601 pos_rtx = orig_pos_rtx;
5603 else if (pos_rtx == 0)
5604 pos_rtx = GEN_INT (pos);
5606 /* Make the required operation. See if we can use existing rtx. */
5607 new = gen_rtx_combine (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
5608 extraction_mode, inner, GEN_INT (len), pos_rtx);
5609 if (! in_dest)
5610 new = gen_lowpart_for_combine (mode, new);
5612 return new;
5615 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
5616 with any other operations in X. Return X without that shift if so. */
5618 static rtx
5619 extract_left_shift (x, count)
5620 rtx x;
5621 int count;
5623 enum rtx_code code = GET_CODE (x);
5624 enum machine_mode mode = GET_MODE (x);
5625 rtx tem;
5627 switch (code)
5629 case ASHIFT:
5630 /* This is the shift itself. If it is wide enough, we will return
5631 either the value being shifted if the shift count is equal to
5632 COUNT or a shift for the difference. */
5633 if (GET_CODE (XEXP (x, 1)) == CONST_INT
5634 && INTVAL (XEXP (x, 1)) >= count)
5635 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
5636 INTVAL (XEXP (x, 1)) - count);
5637 break;
5639 case NEG: case NOT:
5640 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
5641 return gen_unary (code, mode, mode, tem);
5643 break;
5645 case PLUS: case IOR: case XOR: case AND:
5646 /* If we can safely shift this constant and we find the inner shift,
5647 make a new operation. */
5648 if (GET_CODE (XEXP (x,1)) == CONST_INT
5649 && (INTVAL (XEXP (x, 1)) & (((HOST_WIDE_INT) 1 << count)) - 1) == 0
5650 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
5651 return gen_binary (code, mode, tem,
5652 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
5654 break;
5657 return 0;
5660 /* Look at the expression rooted at X. Look for expressions
5661 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
5662 Form these expressions.
5664 Return the new rtx, usually just X.
5666 Also, for machines like the Vax that don't have logical shift insns,
5667 try to convert logical to arithmetic shift operations in cases where
5668 they are equivalent. This undoes the canonicalizations to logical
5669 shifts done elsewhere.
5671 We try, as much as possible, to re-use rtl expressions to save memory.
5673 IN_CODE says what kind of expression we are processing. Normally, it is
5674 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
5675 being kludges), it is MEM. When processing the arguments of a comparison
5676 or a COMPARE against zero, it is COMPARE. */
5678 static rtx
5679 make_compound_operation (x, in_code)
5680 rtx x;
5681 enum rtx_code in_code;
5683 enum rtx_code code = GET_CODE (x);
5684 enum machine_mode mode = GET_MODE (x);
5685 int mode_width = GET_MODE_BITSIZE (mode);
5686 rtx rhs, lhs;
5687 enum rtx_code next_code;
5688 int i;
5689 rtx new = 0;
5690 rtx tem;
5691 char *fmt;
5693 /* Select the code to be used in recursive calls. Once we are inside an
5694 address, we stay there. If we have a comparison, set to COMPARE,
5695 but once inside, go back to our default of SET. */
5697 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
5698 : ((code == COMPARE || GET_RTX_CLASS (code) == '<')
5699 && XEXP (x, 1) == const0_rtx) ? COMPARE
5700 : in_code == COMPARE ? SET : in_code);
5702 /* Process depending on the code of this operation. If NEW is set
5703 non-zero, it will be returned. */
5705 switch (code)
5707 case ASHIFT:
5708 /* Convert shifts by constants into multiplications if inside
5709 an address. */
5710 if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
5711 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
5712 && INTVAL (XEXP (x, 1)) >= 0)
5714 new = make_compound_operation (XEXP (x, 0), next_code);
5715 new = gen_rtx_combine (MULT, mode, new,
5716 GEN_INT ((HOST_WIDE_INT) 1
5717 << INTVAL (XEXP (x, 1))));
5719 break;
5721 case AND:
5722 /* If the second operand is not a constant, we can't do anything
5723 with it. */
5724 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
5725 break;
5727 /* If the constant is a power of two minus one and the first operand
5728 is a logical right shift, make an extraction. */
5729 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
5730 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
5732 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
5733 new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
5734 0, in_code == COMPARE);
5737 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
5738 else if (GET_CODE (XEXP (x, 0)) == SUBREG
5739 && subreg_lowpart_p (XEXP (x, 0))
5740 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
5741 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
5743 new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
5744 next_code);
5745 new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new, 0,
5746 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
5747 0, in_code == COMPARE);
5749 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
5750 else if ((GET_CODE (XEXP (x, 0)) == XOR
5751 || GET_CODE (XEXP (x, 0)) == IOR)
5752 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
5753 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
5754 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
5756 /* Apply the distributive law, and then try to make extractions. */
5757 new = gen_rtx_combine (GET_CODE (XEXP (x, 0)), mode,
5758 gen_rtx (AND, mode, XEXP (XEXP (x, 0), 0),
5759 XEXP (x, 1)),
5760 gen_rtx (AND, mode, XEXP (XEXP (x, 0), 1),
5761 XEXP (x, 1)));
5762 new = make_compound_operation (new, in_code);
5765 /* If we are have (and (rotate X C) M) and C is larger than the number
5766 of bits in M, this is an extraction. */
5768 else if (GET_CODE (XEXP (x, 0)) == ROTATE
5769 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
5770 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
5771 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
5773 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
5774 new = make_extraction (mode, new,
5775 (GET_MODE_BITSIZE (mode)
5776 - INTVAL (XEXP (XEXP (x, 0), 1))),
5777 NULL_RTX, i, 1, 0, in_code == COMPARE);
5780 /* On machines without logical shifts, if the operand of the AND is
5781 a logical shift and our mask turns off all the propagated sign
5782 bits, we can replace the logical shift with an arithmetic shift. */
5783 else if (ashr_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing
5784 && (lshr_optab->handlers[(int) mode].insn_code
5785 == CODE_FOR_nothing)
5786 && GET_CODE (XEXP (x, 0)) == LSHIFTRT
5787 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
5788 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
5789 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
5790 && mode_width <= HOST_BITS_PER_WIDE_INT)
5792 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
5794 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
5795 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
5796 SUBST (XEXP (x, 0),
5797 gen_rtx_combine (ASHIFTRT, mode,
5798 make_compound_operation (XEXP (XEXP (x, 0), 0),
5799 next_code),
5800 XEXP (XEXP (x, 0), 1)));
5803 /* If the constant is one less than a power of two, this might be
5804 representable by an extraction even if no shift is present.
5805 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
5806 we are in a COMPARE. */
5807 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
5808 new = make_extraction (mode,
5809 make_compound_operation (XEXP (x, 0),
5810 next_code),
5811 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
5813 /* If we are in a comparison and this is an AND with a power of two,
5814 convert this into the appropriate bit extract. */
5815 else if (in_code == COMPARE
5816 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
5817 new = make_extraction (mode,
5818 make_compound_operation (XEXP (x, 0),
5819 next_code),
5820 i, NULL_RTX, 1, 1, 0, 1);
5822 break;
5824 case LSHIFTRT:
5825 /* If the sign bit is known to be zero, replace this with an
5826 arithmetic shift. */
5827 if (ashr_optab->handlers[(int) mode].insn_code == CODE_FOR_nothing
5828 && lshr_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing
5829 && mode_width <= HOST_BITS_PER_WIDE_INT
5830 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
5832 new = gen_rtx_combine (ASHIFTRT, mode,
5833 make_compound_operation (XEXP (x, 0),
5834 next_code),
5835 XEXP (x, 1));
5836 break;
5839 /* ... fall through ... */
5841 case ASHIFTRT:
5842 lhs = XEXP (x, 0);
5843 rhs = XEXP (x, 1);
5845 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
5846 this is a SIGN_EXTRACT. */
5847 if (GET_CODE (rhs) == CONST_INT
5848 && GET_CODE (lhs) == ASHIFT
5849 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
5850 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
5852 new = make_compound_operation (XEXP (lhs, 0), next_code);
5853 new = make_extraction (mode, new,
5854 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
5855 NULL_RTX, mode_width - INTVAL (rhs),
5856 code == LSHIFTRT, 0, in_code == COMPARE);
5859 /* See if we have operations between an ASHIFTRT and an ASHIFT.
5860 If so, try to merge the shifts into a SIGN_EXTEND. We could
5861 also do this for some cases of SIGN_EXTRACT, but it doesn't
5862 seem worth the effort; the case checked for occurs on Alpha. */
5864 if (GET_RTX_CLASS (GET_CODE (lhs)) != 'o'
5865 && ! (GET_CODE (lhs) == SUBREG
5866 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (lhs))) == 'o'))
5867 && GET_CODE (rhs) == CONST_INT
5868 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
5869 && (new = extract_left_shift (lhs, INTVAL (rhs))) != 0)
5870 new = make_extraction (mode, make_compound_operation (new, next_code),
5871 0, NULL_RTX, mode_width - INTVAL (rhs),
5872 code == LSHIFTRT, 0, in_code == COMPARE);
5874 break;
5876 case SUBREG:
5877 /* Call ourselves recursively on the inner expression. If we are
5878 narrowing the object and it has a different RTL code from
5879 what it originally did, do this SUBREG as a force_to_mode. */
5881 tem = make_compound_operation (SUBREG_REG (x), in_code);
5882 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
5883 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
5884 && subreg_lowpart_p (x))
5886 rtx newer = force_to_mode (tem, mode,
5887 GET_MODE_MASK (mode), NULL_RTX, 0);
5889 /* If we have something other than a SUBREG, we might have
5890 done an expansion, so rerun outselves. */
5891 if (GET_CODE (newer) != SUBREG)
5892 newer = make_compound_operation (newer, in_code);
5894 return newer;
5898 if (new)
5900 x = gen_lowpart_for_combine (mode, new);
5901 code = GET_CODE (x);
5904 /* Now recursively process each operand of this operation. */
5905 fmt = GET_RTX_FORMAT (code);
5906 for (i = 0; i < GET_RTX_LENGTH (code); i++)
5907 if (fmt[i] == 'e')
5909 new = make_compound_operation (XEXP (x, i), next_code);
5910 SUBST (XEXP (x, i), new);
5913 return x;
5916 /* Given M see if it is a value that would select a field of bits
5917 within an item, but not the entire word. Return -1 if not.
5918 Otherwise, return the starting position of the field, where 0 is the
5919 low-order bit.
5921 *PLEN is set to the length of the field. */
5923 static int
5924 get_pos_from_mask (m, plen)
5925 unsigned HOST_WIDE_INT m;
5926 int *plen;
5928 /* Get the bit number of the first 1 bit from the right, -1 if none. */
5929 int pos = exact_log2 (m & - m);
5931 if (pos < 0)
5932 return -1;
5934 /* Now shift off the low-order zero bits and see if we have a power of
5935 two minus 1. */
5936 *plen = exact_log2 ((m >> pos) + 1);
5938 if (*plen <= 0)
5939 return -1;
5941 return pos;
5944 /* See if X can be simplified knowing that we will only refer to it in
5945 MODE and will only refer to those bits that are nonzero in MASK.
5946 If other bits are being computed or if masking operations are done
5947 that select a superset of the bits in MASK, they can sometimes be
5948 ignored.
5950 Return a possibly simplified expression, but always convert X to
5951 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
5953 Also, if REG is non-zero and X is a register equal in value to REG,
5954 replace X with REG.
5956 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
5957 are all off in X. This is used when X will be complemented, by either
5958 NOT, NEG, or XOR. */
5960 static rtx
5961 force_to_mode (x, mode, mask, reg, just_select)
5962 rtx x;
5963 enum machine_mode mode;
5964 unsigned HOST_WIDE_INT mask;
5965 rtx reg;
5966 int just_select;
5968 enum rtx_code code = GET_CODE (x);
5969 int next_select = just_select || code == XOR || code == NOT || code == NEG;
5970 enum machine_mode op_mode;
5971 unsigned HOST_WIDE_INT fuller_mask, nonzero;
5972 rtx op0, op1, temp;
5974 /* If this is a CALL, don't do anything. Some of the code below
5975 will do the wrong thing since the mode of a CALL is VOIDmode. */
5976 if (code == CALL)
5977 return x;
5979 /* We want to perform the operation is its present mode unless we know
5980 that the operation is valid in MODE, in which case we do the operation
5981 in MODE. */
5982 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
5983 && code_to_optab[(int) code] != 0
5984 && (code_to_optab[(int) code]->handlers[(int) mode].insn_code
5985 != CODE_FOR_nothing))
5986 ? mode : GET_MODE (x));
5988 /* It is not valid to do a right-shift in a narrower mode
5989 than the one it came in with. */
5990 if ((code == LSHIFTRT || code == ASHIFTRT)
5991 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
5992 op_mode = GET_MODE (x);
5994 /* Truncate MASK to fit OP_MODE. */
5995 if (op_mode)
5996 mask &= GET_MODE_MASK (op_mode);
5998 /* When we have an arithmetic operation, or a shift whose count we
5999 do not know, we need to assume that all bit the up to the highest-order
6000 bit in MASK will be needed. This is how we form such a mask. */
6001 if (op_mode)
6002 fuller_mask = (GET_MODE_BITSIZE (op_mode) >= HOST_BITS_PER_WIDE_INT
6003 ? GET_MODE_MASK (op_mode)
6004 : ((HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1)) - 1);
6005 else
6006 fuller_mask = ~ (HOST_WIDE_INT) 0;
6008 /* Determine what bits of X are guaranteed to be (non)zero. */
6009 nonzero = nonzero_bits (x, mode);
6011 /* If none of the bits in X are needed, return a zero. */
6012 if (! just_select && (nonzero & mask) == 0)
6013 return const0_rtx;
6015 /* If X is a CONST_INT, return a new one. Do this here since the
6016 test below will fail. */
6017 if (GET_CODE (x) == CONST_INT)
6019 HOST_WIDE_INT cval = INTVAL (x) & mask;
6020 int width = GET_MODE_BITSIZE (mode);
6022 /* If MODE is narrower that HOST_WIDE_INT and CVAL is a negative
6023 number, sign extend it. */
6024 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
6025 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6026 cval |= (HOST_WIDE_INT) -1 << width;
6028 return GEN_INT (cval);
6031 /* If X is narrower than MODE and we want all the bits in X's mode, just
6032 get X in the proper mode. */
6033 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
6034 && (GET_MODE_MASK (GET_MODE (x)) & ~ mask) == 0)
6035 return gen_lowpart_for_combine (mode, x);
6037 /* If we aren't changing the mode, X is not a SUBREG, and all zero bits in
6038 MASK are already known to be zero in X, we need not do anything. */
6039 if (GET_MODE (x) == mode && code != SUBREG && (~ mask & nonzero) == 0)
6040 return x;
6042 switch (code)
6044 case CLOBBER:
6045 /* If X is a (clobber (const_int)), return it since we know we are
6046 generating something that won't match. */
6047 return x;
6049 case USE:
6050 /* X is a (use (mem ..)) that was made from a bit-field extraction that
6051 spanned the boundary of the MEM. If we are now masking so it is
6052 within that boundary, we don't need the USE any more. */
6053 if (! BITS_BIG_ENDIAN
6054 && (mask & ~ GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6055 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
6056 break;
6058 case SIGN_EXTEND:
6059 case ZERO_EXTEND:
6060 case ZERO_EXTRACT:
6061 case SIGN_EXTRACT:
6062 x = expand_compound_operation (x);
6063 if (GET_CODE (x) != code)
6064 return force_to_mode (x, mode, mask, reg, next_select);
6065 break;
6067 case REG:
6068 if (reg != 0 && (rtx_equal_p (get_last_value (reg), x)
6069 || rtx_equal_p (reg, get_last_value (x))))
6070 x = reg;
6071 break;
6073 case SUBREG:
6074 if (subreg_lowpart_p (x)
6075 /* We can ignore the effect of this SUBREG if it narrows the mode or
6076 if the constant masks to zero all the bits the mode doesn't
6077 have. */
6078 && ((GET_MODE_SIZE (GET_MODE (x))
6079 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
6080 || (0 == (mask
6081 & GET_MODE_MASK (GET_MODE (x))
6082 & ~ GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
6083 return force_to_mode (SUBREG_REG (x), mode, mask, reg, next_select);
6084 break;
6086 case AND:
6087 /* If this is an AND with a constant, convert it into an AND
6088 whose constant is the AND of that constant with MASK. If it
6089 remains an AND of MASK, delete it since it is redundant. */
6091 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
6093 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
6094 mask & INTVAL (XEXP (x, 1)));
6096 /* If X is still an AND, see if it is an AND with a mask that
6097 is just some low-order bits. If so, and it is MASK, we don't
6098 need it. */
6100 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6101 && INTVAL (XEXP (x, 1)) == mask)
6102 x = XEXP (x, 0);
6104 /* If it remains an AND, try making another AND with the bits
6105 in the mode mask that aren't in MASK turned on. If the
6106 constant in the AND is wide enough, this might make a
6107 cheaper constant. */
6109 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6110 && GET_MODE_MASK (GET_MODE (x)) != mask
6111 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
6113 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
6114 | (GET_MODE_MASK (GET_MODE (x)) & ~ mask));
6115 int width = GET_MODE_BITSIZE (GET_MODE (x));
6116 rtx y;
6118 /* If MODE is narrower that HOST_WIDE_INT and CVAL is a negative
6119 number, sign extend it. */
6120 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
6121 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6122 cval |= (HOST_WIDE_INT) -1 << width;
6124 y = gen_binary (AND, GET_MODE (x), XEXP (x, 0), GEN_INT (cval));
6125 if (rtx_cost (y, SET) < rtx_cost (x, SET))
6126 x = y;
6129 break;
6132 goto binop;
6134 case PLUS:
6135 /* In (and (plus FOO C1) M), if M is a mask that just turns off
6136 low-order bits (as in an alignment operation) and FOO is already
6137 aligned to that boundary, mask C1 to that boundary as well.
6138 This may eliminate that PLUS and, later, the AND. */
6141 int width = GET_MODE_BITSIZE (mode);
6142 unsigned HOST_WIDE_INT smask = mask;
6144 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
6145 number, sign extend it. */
6147 if (width < HOST_BITS_PER_WIDE_INT
6148 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6149 smask |= (HOST_WIDE_INT) -1 << width;
6151 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6152 && exact_log2 (- smask) >= 0
6153 && (nonzero_bits (XEXP (x, 0), mode) & ~ mask) == 0
6154 && (INTVAL (XEXP (x, 1)) & ~ mask) != 0)
6155 return force_to_mode (plus_constant (XEXP (x, 0),
6156 INTVAL (XEXP (x, 1)) & mask),
6157 mode, mask, reg, next_select);
6160 /* ... fall through ... */
6162 case MINUS:
6163 case MULT:
6164 /* For PLUS, MINUS and MULT, we need any bits less significant than the
6165 most significant bit in MASK since carries from those bits will
6166 affect the bits we are interested in. */
6167 mask = fuller_mask;
6168 goto binop;
6170 case IOR:
6171 case XOR:
6172 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
6173 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
6174 operation which may be a bitfield extraction. Ensure that the
6175 constant we form is not wider than the mode of X. */
6177 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6178 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6179 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6180 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6181 && GET_CODE (XEXP (x, 1)) == CONST_INT
6182 && ((INTVAL (XEXP (XEXP (x, 0), 1))
6183 + floor_log2 (INTVAL (XEXP (x, 1))))
6184 < GET_MODE_BITSIZE (GET_MODE (x)))
6185 && (INTVAL (XEXP (x, 1))
6186 & ~ nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
6188 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
6189 << INTVAL (XEXP (XEXP (x, 0), 1)));
6190 temp = gen_binary (GET_CODE (x), GET_MODE (x),
6191 XEXP (XEXP (x, 0), 0), temp);
6192 x = gen_binary (LSHIFTRT, GET_MODE (x), temp,
6193 XEXP (XEXP (x, 0), 1));
6194 return force_to_mode (x, mode, mask, reg, next_select);
6197 binop:
6198 /* For most binary operations, just propagate into the operation and
6199 change the mode if we have an operation of that mode. */
6201 op0 = gen_lowpart_for_combine (op_mode,
6202 force_to_mode (XEXP (x, 0), mode, mask,
6203 reg, next_select));
6204 op1 = gen_lowpart_for_combine (op_mode,
6205 force_to_mode (XEXP (x, 1), mode, mask,
6206 reg, next_select));
6208 /* If OP1 is a CONST_INT and X is an IOR or XOR, clear bits outside
6209 MASK since OP1 might have been sign-extended but we never want
6210 to turn on extra bits, since combine might have previously relied
6211 on them being off. */
6212 if (GET_CODE (op1) == CONST_INT && (code == IOR || code == XOR)
6213 && (INTVAL (op1) & mask) != 0)
6214 op1 = GEN_INT (INTVAL (op1) & mask);
6216 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
6217 x = gen_binary (code, op_mode, op0, op1);
6218 break;
6220 case ASHIFT:
6221 /* For left shifts, do the same, but just for the first operand.
6222 However, we cannot do anything with shifts where we cannot
6223 guarantee that the counts are smaller than the size of the mode
6224 because such a count will have a different meaning in a
6225 wider mode. */
6227 if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
6228 && INTVAL (XEXP (x, 1)) >= 0
6229 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
6230 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
6231 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
6232 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
6233 break;
6235 /* If the shift count is a constant and we can do arithmetic in
6236 the mode of the shift, refine which bits we need. Otherwise, use the
6237 conservative form of the mask. */
6238 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6239 && INTVAL (XEXP (x, 1)) >= 0
6240 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
6241 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
6242 mask >>= INTVAL (XEXP (x, 1));
6243 else
6244 mask = fuller_mask;
6246 op0 = gen_lowpart_for_combine (op_mode,
6247 force_to_mode (XEXP (x, 0), op_mode,
6248 mask, reg, next_select));
6250 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
6251 x = gen_binary (code, op_mode, op0, XEXP (x, 1));
6252 break;
6254 case LSHIFTRT:
6255 /* Here we can only do something if the shift count is a constant,
6256 this shift constant is valid for the host, and we can do arithmetic
6257 in OP_MODE. */
6259 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6260 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6261 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
6263 rtx inner = XEXP (x, 0);
6265 /* Select the mask of the bits we need for the shift operand. */
6266 mask <<= INTVAL (XEXP (x, 1));
6268 /* We can only change the mode of the shift if we can do arithmetic
6269 in the mode of the shift and MASK is no wider than the width of
6270 OP_MODE. */
6271 if (GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT
6272 || (mask & ~ GET_MODE_MASK (op_mode)) != 0)
6273 op_mode = GET_MODE (x);
6275 inner = force_to_mode (inner, op_mode, mask, reg, next_select);
6277 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
6278 x = gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
6281 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
6282 shift and AND produces only copies of the sign bit (C2 is one less
6283 than a power of two), we can do this with just a shift. */
6285 if (GET_CODE (x) == LSHIFTRT
6286 && GET_CODE (XEXP (x, 1)) == CONST_INT
6287 && ((INTVAL (XEXP (x, 1))
6288 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
6289 >= GET_MODE_BITSIZE (GET_MODE (x)))
6290 && exact_log2 (mask + 1) >= 0
6291 && (num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
6292 >= exact_log2 (mask + 1)))
6293 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
6294 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
6295 - exact_log2 (mask + 1)));
6296 break;
6298 case ASHIFTRT:
6299 /* If we are just looking for the sign bit, we don't need this shift at
6300 all, even if it has a variable count. */
6301 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6302 && (mask == ((HOST_WIDE_INT) 1
6303 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
6304 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
6306 /* If this is a shift by a constant, get a mask that contains those bits
6307 that are not copies of the sign bit. We then have two cases: If
6308 MASK only includes those bits, this can be a logical shift, which may
6309 allow simplifications. If MASK is a single-bit field not within
6310 those bits, we are requesting a copy of the sign bit and hence can
6311 shift the sign bit to the appropriate location. */
6313 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
6314 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
6316 int i = -1;
6318 /* If the considered data is wider then HOST_WIDE_INT, we can't
6319 represent a mask for all its bits in a single scalar.
6320 But we only care about the lower bits, so calculate these. */
6322 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
6324 nonzero = ~ (HOST_WIDE_INT) 0;
6326 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
6327 is the number of bits a full-width mask would have set.
6328 We need only shift if these are fewer than nonzero can
6329 hold. If not, we must keep all bits set in nonzero. */
6331 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
6332 < HOST_BITS_PER_WIDE_INT)
6333 nonzero >>= INTVAL (XEXP (x, 1))
6334 + HOST_BITS_PER_WIDE_INT
6335 - GET_MODE_BITSIZE (GET_MODE (x)) ;
6337 else
6339 nonzero = GET_MODE_MASK (GET_MODE (x));
6340 nonzero >>= INTVAL (XEXP (x, 1));
6343 if ((mask & ~ nonzero) == 0
6344 || (i = exact_log2 (mask)) >= 0)
6346 x = simplify_shift_const
6347 (x, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
6348 i < 0 ? INTVAL (XEXP (x, 1))
6349 : GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
6351 if (GET_CODE (x) != ASHIFTRT)
6352 return force_to_mode (x, mode, mask, reg, next_select);
6356 /* If MASK is 1, convert this to a LSHIFTRT. This can be done
6357 even if the shift count isn't a constant. */
6358 if (mask == 1)
6359 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0), XEXP (x, 1));
6361 /* If this is a sign-extension operation that just affects bits
6362 we don't care about, remove it. Be sure the call above returned
6363 something that is still a shift. */
6365 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
6366 && GET_CODE (XEXP (x, 1)) == CONST_INT
6367 && INTVAL (XEXP (x, 1)) >= 0
6368 && (INTVAL (XEXP (x, 1))
6369 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
6370 && GET_CODE (XEXP (x, 0)) == ASHIFT
6371 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6372 && INTVAL (XEXP (XEXP (x, 0), 1)) == INTVAL (XEXP (x, 1)))
6373 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
6374 reg, next_select);
6376 break;
6378 case ROTATE:
6379 case ROTATERT:
6380 /* If the shift count is constant and we can do computations
6381 in the mode of X, compute where the bits we care about are.
6382 Otherwise, we can't do anything. Don't change the mode of
6383 the shift or propagate MODE into the shift, though. */
6384 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6385 && INTVAL (XEXP (x, 1)) >= 0)
6387 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
6388 GET_MODE (x), GEN_INT (mask),
6389 XEXP (x, 1));
6390 if (temp && GET_CODE(temp) == CONST_INT)
6391 SUBST (XEXP (x, 0),
6392 force_to_mode (XEXP (x, 0), GET_MODE (x),
6393 INTVAL (temp), reg, next_select));
6395 break;
6397 case NEG:
6398 /* If we just want the low-order bit, the NEG isn't needed since it
6399 won't change the low-order bit. */
6400 if (mask == 1)
6401 return force_to_mode (XEXP (x, 0), mode, mask, reg, just_select);
6403 /* We need any bits less significant than the most significant bit in
6404 MASK since carries from those bits will affect the bits we are
6405 interested in. */
6406 mask = fuller_mask;
6407 goto unop;
6409 case NOT:
6410 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
6411 same as the XOR case above. Ensure that the constant we form is not
6412 wider than the mode of X. */
6414 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6415 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6416 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6417 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
6418 < GET_MODE_BITSIZE (GET_MODE (x)))
6419 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
6421 temp = GEN_INT (mask << INTVAL (XEXP (XEXP (x, 0), 1)));
6422 temp = gen_binary (XOR, GET_MODE (x), XEXP (XEXP (x, 0), 0), temp);
6423 x = gen_binary (LSHIFTRT, GET_MODE (x), temp, XEXP (XEXP (x, 0), 1));
6425 return force_to_mode (x, mode, mask, reg, next_select);
6428 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
6429 use the full mask inside the NOT. */
6430 mask = fuller_mask;
6432 unop:
6433 op0 = gen_lowpart_for_combine (op_mode,
6434 force_to_mode (XEXP (x, 0), mode, mask,
6435 reg, next_select));
6436 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
6437 x = gen_unary (code, op_mode, op_mode, op0);
6438 break;
6440 case NE:
6441 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
6442 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
6443 which is equal to STORE_FLAG_VALUE. */
6444 if ((mask & ~ STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
6445 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
6446 && nonzero_bits (XEXP (x, 0), mode) == STORE_FLAG_VALUE)
6447 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
6449 break;
6451 case IF_THEN_ELSE:
6452 /* We have no way of knowing if the IF_THEN_ELSE can itself be
6453 written in a narrower mode. We play it safe and do not do so. */
6455 SUBST (XEXP (x, 1),
6456 gen_lowpart_for_combine (GET_MODE (x),
6457 force_to_mode (XEXP (x, 1), mode,
6458 mask, reg, next_select)));
6459 SUBST (XEXP (x, 2),
6460 gen_lowpart_for_combine (GET_MODE (x),
6461 force_to_mode (XEXP (x, 2), mode,
6462 mask, reg,next_select)));
6463 break;
6466 /* Ensure we return a value of the proper mode. */
6467 return gen_lowpart_for_combine (mode, x);
6470 /* Return nonzero if X is an expression that has one of two values depending on
6471 whether some other value is zero or nonzero. In that case, we return the
6472 value that is being tested, *PTRUE is set to the value if the rtx being
6473 returned has a nonzero value, and *PFALSE is set to the other alternative.
6475 If we return zero, we set *PTRUE and *PFALSE to X. */
6477 static rtx
6478 if_then_else_cond (x, ptrue, pfalse)
6479 rtx x;
6480 rtx *ptrue, *pfalse;
6482 enum machine_mode mode = GET_MODE (x);
6483 enum rtx_code code = GET_CODE (x);
6484 int size = GET_MODE_BITSIZE (mode);
6485 rtx cond0, cond1, true0, true1, false0, false1;
6486 unsigned HOST_WIDE_INT nz;
6488 /* If this is a unary operation whose operand has one of two values, apply
6489 our opcode to compute those values. */
6490 if (GET_RTX_CLASS (code) == '1'
6491 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
6493 *ptrue = gen_unary (code, mode, GET_MODE (XEXP (x, 0)), true0);
6494 *pfalse = gen_unary (code, mode, GET_MODE (XEXP (x, 0)), false0);
6495 return cond0;
6498 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
6499 make can't possibly match and would suppress other optimizations. */
6500 else if (code == COMPARE)
6503 /* If this is a binary operation, see if either side has only one of two
6504 values. If either one does or if both do and they are conditional on
6505 the same value, compute the new true and false values. */
6506 else if (GET_RTX_CLASS (code) == 'c' || GET_RTX_CLASS (code) == '2'
6507 || GET_RTX_CLASS (code) == '<')
6509 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
6510 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
6512 if ((cond0 != 0 || cond1 != 0)
6513 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
6515 /* If if_then_else_cond returned zero, then true/false are the
6516 same rtl. We must copy one of them to prevent invalid rtl
6517 sharing. */
6518 if (cond0 == 0)
6519 true0 = copy_rtx (true0);
6520 else if (cond1 == 0)
6521 true1 = copy_rtx (true1);
6523 *ptrue = gen_binary (code, mode, true0, true1);
6524 *pfalse = gen_binary (code, mode, false0, false1);
6525 return cond0 ? cond0 : cond1;
6528 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
6529 operands is zero when the other is non-zero, and vice-versa,
6530 and STORE_FLAG_VALUE is 1 or -1. */
6532 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6533 && (code == PLUS || code == IOR || code == XOR || code == MINUS
6534 || code == UMAX)
6535 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
6537 rtx op0 = XEXP (XEXP (x, 0), 1);
6538 rtx op1 = XEXP (XEXP (x, 1), 1);
6540 cond0 = XEXP (XEXP (x, 0), 0);
6541 cond1 = XEXP (XEXP (x, 1), 0);
6543 if (GET_RTX_CLASS (GET_CODE (cond0)) == '<'
6544 && GET_RTX_CLASS (GET_CODE (cond1)) == '<'
6545 && reversible_comparison_p (cond1)
6546 && ((GET_CODE (cond0) == reverse_condition (GET_CODE (cond1))
6547 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
6548 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
6549 || ((swap_condition (GET_CODE (cond0))
6550 == reverse_condition (GET_CODE (cond1)))
6551 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
6552 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
6553 && ! side_effects_p (x))
6555 *ptrue = gen_binary (MULT, mode, op0, const_true_rtx);
6556 *pfalse = gen_binary (MULT, mode,
6557 (code == MINUS
6558 ? gen_unary (NEG, mode, mode, op1) : op1),
6559 const_true_rtx);
6560 return cond0;
6564 /* Similarly for MULT, AND and UMIN, execpt that for these the result
6565 is always zero. */
6566 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6567 && (code == MULT || code == AND || code == UMIN)
6568 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
6570 cond0 = XEXP (XEXP (x, 0), 0);
6571 cond1 = XEXP (XEXP (x, 1), 0);
6573 if (GET_RTX_CLASS (GET_CODE (cond0)) == '<'
6574 && GET_RTX_CLASS (GET_CODE (cond1)) == '<'
6575 && reversible_comparison_p (cond1)
6576 && ((GET_CODE (cond0) == reverse_condition (GET_CODE (cond1))
6577 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
6578 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
6579 || ((swap_condition (GET_CODE (cond0))
6580 == reverse_condition (GET_CODE (cond1)))
6581 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
6582 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
6583 && ! side_effects_p (x))
6585 *ptrue = *pfalse = const0_rtx;
6586 return cond0;
6591 else if (code == IF_THEN_ELSE)
6593 /* If we have IF_THEN_ELSE already, extract the condition and
6594 canonicalize it if it is NE or EQ. */
6595 cond0 = XEXP (x, 0);
6596 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
6597 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
6598 return XEXP (cond0, 0);
6599 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
6601 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
6602 return XEXP (cond0, 0);
6604 else
6605 return cond0;
6608 /* If X is a normal SUBREG with both inner and outer modes integral,
6609 we can narrow both the true and false values of the inner expression,
6610 if there is a condition. */
6611 else if (code == SUBREG && GET_MODE_CLASS (mode) == MODE_INT
6612 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_INT
6613 && GET_MODE_SIZE (mode) <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))
6614 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
6615 &true0, &false0)))
6617 *ptrue = force_to_mode (true0, mode, GET_MODE_MASK (mode), NULL_RTX, 0);
6618 *pfalse
6619 = force_to_mode (false0, mode, GET_MODE_MASK (mode), NULL_RTX, 0);
6621 return cond0;
6624 /* If X is a constant, this isn't special and will cause confusions
6625 if we treat it as such. Likewise if it is equivalent to a constant. */
6626 else if (CONSTANT_P (x)
6627 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
6630 /* If X is known to be either 0 or -1, those are the true and
6631 false values when testing X. */
6632 else if (num_sign_bit_copies (x, mode) == size)
6634 *ptrue = constm1_rtx, *pfalse = const0_rtx;
6635 return x;
6638 /* Likewise for 0 or a single bit. */
6639 else if (exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
6641 *ptrue = GEN_INT (nz), *pfalse = const0_rtx;
6642 return x;
6645 /* Otherwise fail; show no condition with true and false values the same. */
6646 *ptrue = *pfalse = x;
6647 return 0;
6650 /* Return the value of expression X given the fact that condition COND
6651 is known to be true when applied to REG as its first operand and VAL
6652 as its second. X is known to not be shared and so can be modified in
6653 place.
6655 We only handle the simplest cases, and specifically those cases that
6656 arise with IF_THEN_ELSE expressions. */
6658 static rtx
6659 known_cond (x, cond, reg, val)
6660 rtx x;
6661 enum rtx_code cond;
6662 rtx reg, val;
6664 enum rtx_code code = GET_CODE (x);
6665 rtx temp;
6666 char *fmt;
6667 int i, j;
6669 if (side_effects_p (x))
6670 return x;
6672 if (cond == EQ && rtx_equal_p (x, reg))
6673 return val;
6675 /* If X is (abs REG) and we know something about REG's relationship
6676 with zero, we may be able to simplify this. */
6678 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
6679 switch (cond)
6681 case GE: case GT: case EQ:
6682 return XEXP (x, 0);
6683 case LT: case LE:
6684 return gen_unary (NEG, GET_MODE (XEXP (x, 0)), GET_MODE (XEXP (x, 0)),
6685 XEXP (x, 0));
6688 /* The only other cases we handle are MIN, MAX, and comparisons if the
6689 operands are the same as REG and VAL. */
6691 else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == 'c')
6693 if (rtx_equal_p (XEXP (x, 0), val))
6694 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
6696 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
6698 if (GET_RTX_CLASS (code) == '<')
6699 return (comparison_dominates_p (cond, code) ? const_true_rtx
6700 : (comparison_dominates_p (cond,
6701 reverse_condition (code))
6702 ? const0_rtx : x));
6704 else if (code == SMAX || code == SMIN
6705 || code == UMIN || code == UMAX)
6707 int unsignedp = (code == UMIN || code == UMAX);
6709 if (code == SMAX || code == UMAX)
6710 cond = reverse_condition (cond);
6712 switch (cond)
6714 case GE: case GT:
6715 return unsignedp ? x : XEXP (x, 1);
6716 case LE: case LT:
6717 return unsignedp ? x : XEXP (x, 0);
6718 case GEU: case GTU:
6719 return unsignedp ? XEXP (x, 1) : x;
6720 case LEU: case LTU:
6721 return unsignedp ? XEXP (x, 0) : x;
6727 fmt = GET_RTX_FORMAT (code);
6728 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6730 if (fmt[i] == 'e')
6731 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
6732 else if (fmt[i] == 'E')
6733 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6734 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
6735 cond, reg, val));
6738 return x;
6741 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
6742 assignment as a field assignment. */
6744 static int
6745 rtx_equal_for_field_assignment_p (x, y)
6746 rtx x;
6747 rtx y;
6749 rtx last_x, last_y;
6751 if (x == y || rtx_equal_p (x, y))
6752 return 1;
6754 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
6755 return 0;
6757 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
6758 Note that all SUBREGs of MEM are paradoxical; otherwise they
6759 would have been rewritten. */
6760 if (GET_CODE (x) == MEM && GET_CODE (y) == SUBREG
6761 && GET_CODE (SUBREG_REG (y)) == MEM
6762 && rtx_equal_p (SUBREG_REG (y),
6763 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (y)), x)))
6764 return 1;
6766 if (GET_CODE (y) == MEM && GET_CODE (x) == SUBREG
6767 && GET_CODE (SUBREG_REG (x)) == MEM
6768 && rtx_equal_p (SUBREG_REG (x),
6769 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (x)), y)))
6770 return 1;
6772 last_x = get_last_value (x);
6773 last_y = get_last_value (y);
6775 return ((last_x != 0
6776 && GET_CODE (last_x) != CLOBBER
6777 && rtx_equal_for_field_assignment_p (last_x, y))
6778 || (last_y != 0
6779 && GET_CODE (last_y) != CLOBBER
6780 && rtx_equal_for_field_assignment_p (x, last_y))
6781 || (last_x != 0 && last_y != 0
6782 && GET_CODE (last_x) != CLOBBER
6783 && GET_CODE (last_y) != CLOBBER
6784 && rtx_equal_for_field_assignment_p (last_x, last_y)));
6787 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
6788 Return that assignment if so.
6790 We only handle the most common cases. */
6792 static rtx
6793 make_field_assignment (x)
6794 rtx x;
6796 rtx dest = SET_DEST (x);
6797 rtx src = SET_SRC (x);
6798 rtx assign;
6799 rtx rhs, lhs;
6800 HOST_WIDE_INT c1;
6801 int pos, len;
6802 rtx other;
6803 enum machine_mode mode;
6805 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
6806 a clear of a one-bit field. We will have changed it to
6807 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
6808 for a SUBREG. */
6810 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
6811 && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
6812 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
6813 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
6815 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
6816 1, 1, 1, 0);
6817 if (assign != 0)
6818 return gen_rtx (SET, VOIDmode, assign, const0_rtx);
6819 return x;
6822 else if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
6823 && subreg_lowpart_p (XEXP (src, 0))
6824 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
6825 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
6826 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
6827 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
6828 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
6830 assign = make_extraction (VOIDmode, dest, 0,
6831 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
6832 1, 1, 1, 0);
6833 if (assign != 0)
6834 return gen_rtx (SET, VOIDmode, assign, const0_rtx);
6835 return x;
6838 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
6839 one-bit field. */
6840 else if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
6841 && XEXP (XEXP (src, 0), 0) == const1_rtx
6842 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
6844 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
6845 1, 1, 1, 0);
6846 if (assign != 0)
6847 return gen_rtx (SET, VOIDmode, assign, const1_rtx);
6848 return x;
6851 /* The other case we handle is assignments into a constant-position
6852 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
6853 a mask that has all one bits except for a group of zero bits and
6854 OTHER is known to have zeros where C1 has ones, this is such an
6855 assignment. Compute the position and length from C1. Shift OTHER
6856 to the appropriate position, force it to the required mode, and
6857 make the extraction. Check for the AND in both operands. */
6859 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
6860 return x;
6862 rhs = expand_compound_operation (XEXP (src, 0));
6863 lhs = expand_compound_operation (XEXP (src, 1));
6865 if (GET_CODE (rhs) == AND
6866 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
6867 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
6868 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
6869 else if (GET_CODE (lhs) == AND
6870 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
6871 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
6872 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
6873 else
6874 return x;
6876 pos = get_pos_from_mask ((~ c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
6877 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
6878 || (GET_MODE_BITSIZE (GET_MODE (other)) <= HOST_BITS_PER_WIDE_INT
6879 && (c1 & nonzero_bits (other, GET_MODE (other))) != 0))
6880 return x;
6882 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
6883 if (assign == 0)
6884 return x;
6886 /* The mode to use for the source is the mode of the assignment, or of
6887 what is inside a possible STRICT_LOW_PART. */
6888 mode = (GET_CODE (assign) == STRICT_LOW_PART
6889 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
6891 /* Shift OTHER right POS places and make it the source, restricting it
6892 to the proper length and mode. */
6894 src = force_to_mode (simplify_shift_const (NULL_RTX, LSHIFTRT,
6895 GET_MODE (src), other, pos),
6896 mode,
6897 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
6898 ? GET_MODE_MASK (mode)
6899 : ((HOST_WIDE_INT) 1 << len) - 1,
6900 dest, 0);
6902 return gen_rtx_combine (SET, VOIDmode, assign, src);
6905 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
6906 if so. */
6908 static rtx
6909 apply_distributive_law (x)
6910 rtx x;
6912 enum rtx_code code = GET_CODE (x);
6913 rtx lhs, rhs, other;
6914 rtx tem;
6915 enum rtx_code inner_code;
6917 /* Distributivity is not true for floating point.
6918 It can change the value. So don't do it.
6919 -- rms and moshier@world.std.com. */
6920 if (FLOAT_MODE_P (GET_MODE (x)))
6921 return x;
6923 /* The outer operation can only be one of the following: */
6924 if (code != IOR && code != AND && code != XOR
6925 && code != PLUS && code != MINUS)
6926 return x;
6928 lhs = XEXP (x, 0), rhs = XEXP (x, 1);
6930 /* If either operand is a primitive we can't do anything, so get out
6931 fast. */
6932 if (GET_RTX_CLASS (GET_CODE (lhs)) == 'o'
6933 || GET_RTX_CLASS (GET_CODE (rhs)) == 'o')
6934 return x;
6936 lhs = expand_compound_operation (lhs);
6937 rhs = expand_compound_operation (rhs);
6938 inner_code = GET_CODE (lhs);
6939 if (inner_code != GET_CODE (rhs))
6940 return x;
6942 /* See if the inner and outer operations distribute. */
6943 switch (inner_code)
6945 case LSHIFTRT:
6946 case ASHIFTRT:
6947 case AND:
6948 case IOR:
6949 /* These all distribute except over PLUS. */
6950 if (code == PLUS || code == MINUS)
6951 return x;
6952 break;
6954 case MULT:
6955 if (code != PLUS && code != MINUS)
6956 return x;
6957 break;
6959 case ASHIFT:
6960 /* This is also a multiply, so it distributes over everything. */
6961 break;
6963 case SUBREG:
6964 /* Non-paradoxical SUBREGs distributes over all operations, provided
6965 the inner modes and word numbers are the same, this is an extraction
6966 of a low-order part, we don't convert an fp operation to int or
6967 vice versa, and we would not be converting a single-word
6968 operation into a multi-word operation. The latter test is not
6969 required, but it prevents generating unneeded multi-word operations.
6970 Some of the previous tests are redundant given the latter test, but
6971 are retained because they are required for correctness.
6973 We produce the result slightly differently in this case. */
6975 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
6976 || SUBREG_WORD (lhs) != SUBREG_WORD (rhs)
6977 || ! subreg_lowpart_p (lhs)
6978 || (GET_MODE_CLASS (GET_MODE (lhs))
6979 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
6980 || (GET_MODE_SIZE (GET_MODE (lhs))
6981 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
6982 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD)
6983 return x;
6985 tem = gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
6986 SUBREG_REG (lhs), SUBREG_REG (rhs));
6987 return gen_lowpart_for_combine (GET_MODE (x), tem);
6989 default:
6990 return x;
6993 /* Set LHS and RHS to the inner operands (A and B in the example
6994 above) and set OTHER to the common operand (C in the example).
6995 These is only one way to do this unless the inner operation is
6996 commutative. */
6997 if (GET_RTX_CLASS (inner_code) == 'c'
6998 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
6999 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
7000 else if (GET_RTX_CLASS (inner_code) == 'c'
7001 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
7002 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
7003 else if (GET_RTX_CLASS (inner_code) == 'c'
7004 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
7005 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
7006 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
7007 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
7008 else
7009 return x;
7011 /* Form the new inner operation, seeing if it simplifies first. */
7012 tem = gen_binary (code, GET_MODE (x), lhs, rhs);
7014 /* There is one exception to the general way of distributing:
7015 (a ^ b) | (a ^ c) -> (~a) & (b ^ c) */
7016 if (code == XOR && inner_code == IOR)
7018 inner_code = AND;
7019 other = gen_unary (NOT, GET_MODE (x), GET_MODE (x), other);
7022 /* We may be able to continuing distributing the result, so call
7023 ourselves recursively on the inner operation before forming the
7024 outer operation, which we return. */
7025 return gen_binary (inner_code, GET_MODE (x),
7026 apply_distributive_law (tem), other);
7029 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
7030 in MODE.
7032 Return an equivalent form, if different from X. Otherwise, return X. If
7033 X is zero, we are to always construct the equivalent form. */
7035 static rtx
7036 simplify_and_const_int (x, mode, varop, constop)
7037 rtx x;
7038 enum machine_mode mode;
7039 rtx varop;
7040 unsigned HOST_WIDE_INT constop;
7042 unsigned HOST_WIDE_INT nonzero;
7043 int width = GET_MODE_BITSIZE (mode);
7044 int i;
7046 /* Simplify VAROP knowing that we will be only looking at some of the
7047 bits in it. */
7048 varop = force_to_mode (varop, mode, constop, NULL_RTX, 0);
7050 /* If VAROP is a CLOBBER, we will fail so return it; if it is a
7051 CONST_INT, we are done. */
7052 if (GET_CODE (varop) == CLOBBER || GET_CODE (varop) == CONST_INT)
7053 return varop;
7055 /* See what bits may be nonzero in VAROP. Unlike the general case of
7056 a call to nonzero_bits, here we don't care about bits outside
7057 MODE. */
7059 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
7061 /* If this would be an entire word for the target, but is not for
7062 the host, then sign-extend on the host so that the number will look
7063 the same way on the host that it would on the target.
7065 For example, when building a 64 bit alpha hosted 32 bit sparc
7066 targeted compiler, then we want the 32 bit unsigned value -1 to be
7067 represented as a 64 bit value -1, and not as 0x00000000ffffffff.
7068 The later confuses the sparc backend. */
7070 if (BITS_PER_WORD < HOST_BITS_PER_WIDE_INT && BITS_PER_WORD == width
7071 && (nonzero & ((HOST_WIDE_INT) 1 << (width - 1))))
7072 nonzero |= ((HOST_WIDE_INT) (-1) << width);
7074 /* Turn off all bits in the constant that are known to already be zero.
7075 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
7076 which is tested below. */
7078 constop &= nonzero;
7080 /* If we don't have any bits left, return zero. */
7081 if (constop == 0)
7082 return const0_rtx;
7084 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
7085 a power of two, we can replace this with a ASHIFT. */
7086 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
7087 && (i = exact_log2 (constop)) >= 0)
7088 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
7090 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
7091 or XOR, then try to apply the distributive law. This may eliminate
7092 operations if either branch can be simplified because of the AND.
7093 It may also make some cases more complex, but those cases probably
7094 won't match a pattern either with or without this. */
7096 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
7097 return
7098 gen_lowpart_for_combine
7099 (mode,
7100 apply_distributive_law
7101 (gen_binary (GET_CODE (varop), GET_MODE (varop),
7102 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
7103 XEXP (varop, 0), constop),
7104 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
7105 XEXP (varop, 1), constop))));
7107 /* Get VAROP in MODE. Try to get a SUBREG if not. Don't make a new SUBREG
7108 if we already had one (just check for the simplest cases). */
7109 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
7110 && GET_MODE (XEXP (x, 0)) == mode
7111 && SUBREG_REG (XEXP (x, 0)) == varop)
7112 varop = XEXP (x, 0);
7113 else
7114 varop = gen_lowpart_for_combine (mode, varop);
7116 /* If we can't make the SUBREG, try to return what we were given. */
7117 if (GET_CODE (varop) == CLOBBER)
7118 return x ? x : varop;
7120 /* If we are only masking insignificant bits, return VAROP. */
7121 if (constop == nonzero)
7122 x = varop;
7124 /* Otherwise, return an AND. See how much, if any, of X we can use. */
7125 else if (x == 0 || GET_CODE (x) != AND || GET_MODE (x) != mode)
7126 x = gen_binary (AND, mode, varop, GEN_INT (constop));
7128 else
7130 if (GET_CODE (XEXP (x, 1)) != CONST_INT
7131 || INTVAL (XEXP (x, 1)) != constop)
7132 SUBST (XEXP (x, 1), GEN_INT (constop));
7134 SUBST (XEXP (x, 0), varop);
7137 return x;
7140 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
7141 We don't let nonzero_bits recur into num_sign_bit_copies, because that
7142 is less useful. We can't allow both, because that results in exponential
7143 run time recusion. There is a nullstone testcase that triggered
7144 this. This macro avoids accidental uses of num_sign_bit_copies. */
7145 #define num_sign_bit_copies()
7147 /* Given an expression, X, compute which bits in X can be non-zero.
7148 We don't care about bits outside of those defined in MODE.
7150 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
7151 a shift, AND, or zero_extract, we can do better. */
7153 static unsigned HOST_WIDE_INT
7154 nonzero_bits (x, mode)
7155 rtx x;
7156 enum machine_mode mode;
7158 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
7159 unsigned HOST_WIDE_INT inner_nz;
7160 enum rtx_code code;
7161 int mode_width = GET_MODE_BITSIZE (mode);
7162 rtx tem;
7164 /* For floating-point values, assume all bits are needed. */
7165 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode))
7166 return nonzero;
7168 /* If X is wider than MODE, use its mode instead. */
7169 if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
7171 mode = GET_MODE (x);
7172 nonzero = GET_MODE_MASK (mode);
7173 mode_width = GET_MODE_BITSIZE (mode);
7176 if (mode_width > HOST_BITS_PER_WIDE_INT)
7177 /* Our only callers in this case look for single bit values. So
7178 just return the mode mask. Those tests will then be false. */
7179 return nonzero;
7181 #ifndef WORD_REGISTER_OPERATIONS
7182 /* If MODE is wider than X, but both are a single word for both the host
7183 and target machines, we can compute this from which bits of the
7184 object might be nonzero in its own mode, taking into account the fact
7185 that on many CISC machines, accessing an object in a wider mode
7186 causes the high-order bits to become undefined. So they are
7187 not known to be zero. */
7189 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
7190 && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
7191 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7192 && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
7194 nonzero &= nonzero_bits (x, GET_MODE (x));
7195 nonzero |= GET_MODE_MASK (mode) & ~ GET_MODE_MASK (GET_MODE (x));
7196 return nonzero;
7198 #endif
7200 code = GET_CODE (x);
7201 switch (code)
7203 case REG:
7204 #ifdef POINTERS_EXTEND_UNSIGNED
7205 /* If pointers extend unsigned and this is a pointer in Pmode, say that
7206 all the bits above ptr_mode are known to be zero. */
7207 if (POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
7208 && REGNO_POINTER_FLAG (REGNO (x)))
7209 nonzero &= GET_MODE_MASK (ptr_mode);
7210 #endif
7212 #ifdef STACK_BOUNDARY
7213 /* If this is the stack pointer, we may know something about its
7214 alignment. If PUSH_ROUNDING is defined, it is possible for the
7215 stack to be momentarily aligned only to that amount, so we pick
7216 the least alignment. */
7218 /* We can't check for arg_pointer_rtx here, because it is not
7219 guaranteed to have as much alignment as the stack pointer.
7220 In particular, in the Irix6 n64 ABI, the stack has 128 bit
7221 alignment but the argument pointer has only 64 bit alignment. */
7223 if (x == stack_pointer_rtx || x == frame_pointer_rtx
7224 || x == hard_frame_pointer_rtx
7225 || (REGNO (x) >= FIRST_VIRTUAL_REGISTER
7226 && REGNO (x) <= LAST_VIRTUAL_REGISTER))
7228 int sp_alignment = STACK_BOUNDARY / BITS_PER_UNIT;
7230 #ifdef PUSH_ROUNDING
7231 if (REGNO (x) == STACK_POINTER_REGNUM)
7232 sp_alignment = MIN (PUSH_ROUNDING (1), sp_alignment);
7233 #endif
7235 /* We must return here, otherwise we may get a worse result from
7236 one of the choices below. There is nothing useful below as
7237 far as the stack pointer is concerned. */
7238 return nonzero &= ~ (sp_alignment - 1);
7240 #endif
7242 /* If X is a register whose nonzero bits value is current, use it.
7243 Otherwise, if X is a register whose value we can find, use that
7244 value. Otherwise, use the previously-computed global nonzero bits
7245 for this register. */
7247 if (reg_last_set_value[REGNO (x)] != 0
7248 && reg_last_set_mode[REGNO (x)] == mode
7249 && (REG_N_SETS (REGNO (x)) == 1
7250 || reg_last_set_label[REGNO (x)] == label_tick)
7251 && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
7252 return reg_last_set_nonzero_bits[REGNO (x)];
7254 tem = get_last_value (x);
7256 if (tem)
7258 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
7259 /* If X is narrower than MODE and TEM is a non-negative
7260 constant that would appear negative in the mode of X,
7261 sign-extend it for use in reg_nonzero_bits because some
7262 machines (maybe most) will actually do the sign-extension
7263 and this is the conservative approach.
7265 ??? For 2.5, try to tighten up the MD files in this regard
7266 instead of this kludge. */
7268 if (GET_MODE_BITSIZE (GET_MODE (x)) < mode_width
7269 && GET_CODE (tem) == CONST_INT
7270 && INTVAL (tem) > 0
7271 && 0 != (INTVAL (tem)
7272 & ((HOST_WIDE_INT) 1
7273 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7274 tem = GEN_INT (INTVAL (tem)
7275 | ((HOST_WIDE_INT) (-1)
7276 << GET_MODE_BITSIZE (GET_MODE (x))));
7277 #endif
7278 return nonzero_bits (tem, mode);
7280 else if (nonzero_sign_valid && reg_nonzero_bits[REGNO (x)])
7281 return reg_nonzero_bits[REGNO (x)] & nonzero;
7282 else
7283 return nonzero;
7285 case CONST_INT:
7286 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
7287 /* If X is negative in MODE, sign-extend the value. */
7288 if (INTVAL (x) > 0 && mode_width < BITS_PER_WORD
7289 && 0 != (INTVAL (x) & ((HOST_WIDE_INT) 1 << (mode_width - 1))))
7290 return (INTVAL (x) | ((HOST_WIDE_INT) (-1) << mode_width));
7291 #endif
7293 return INTVAL (x);
7295 case MEM:
7296 #ifdef LOAD_EXTEND_OP
7297 /* In many, if not most, RISC machines, reading a byte from memory
7298 zeros the rest of the register. Noticing that fact saves a lot
7299 of extra zero-extends. */
7300 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
7301 nonzero &= GET_MODE_MASK (GET_MODE (x));
7302 #endif
7303 break;
7305 case EQ: case NE:
7306 case GT: case GTU:
7307 case LT: case LTU:
7308 case GE: case GEU:
7309 case LE: case LEU:
7311 /* If this produces an integer result, we know which bits are set.
7312 Code here used to clear bits outside the mode of X, but that is
7313 now done above. */
7315 if (GET_MODE_CLASS (mode) == MODE_INT
7316 && mode_width <= HOST_BITS_PER_WIDE_INT)
7317 nonzero = STORE_FLAG_VALUE;
7318 break;
7320 case NEG:
7321 #if 0
7322 /* Disabled to avoid exponential mutual recursion between nonzero_bits
7323 and num_sign_bit_copies. */
7324 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
7325 == GET_MODE_BITSIZE (GET_MODE (x)))
7326 nonzero = 1;
7327 #endif
7329 if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
7330 nonzero |= (GET_MODE_MASK (mode) & ~ GET_MODE_MASK (GET_MODE (x)));
7331 break;
7333 case ABS:
7334 #if 0
7335 /* Disabled to avoid exponential mutual recursion between nonzero_bits
7336 and num_sign_bit_copies. */
7337 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
7338 == GET_MODE_BITSIZE (GET_MODE (x)))
7339 nonzero = 1;
7340 #endif
7341 break;
7343 case TRUNCATE:
7344 nonzero &= (nonzero_bits (XEXP (x, 0), mode) & GET_MODE_MASK (mode));
7345 break;
7347 case ZERO_EXTEND:
7348 nonzero &= nonzero_bits (XEXP (x, 0), mode);
7349 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
7350 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
7351 break;
7353 case SIGN_EXTEND:
7354 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
7355 Otherwise, show all the bits in the outer mode but not the inner
7356 may be non-zero. */
7357 inner_nz = nonzero_bits (XEXP (x, 0), mode);
7358 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
7360 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
7361 if (inner_nz
7362 & (((HOST_WIDE_INT) 1
7363 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
7364 inner_nz |= (GET_MODE_MASK (mode)
7365 & ~ GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
7368 nonzero &= inner_nz;
7369 break;
7371 case AND:
7372 nonzero &= (nonzero_bits (XEXP (x, 0), mode)
7373 & nonzero_bits (XEXP (x, 1), mode));
7374 break;
7376 case XOR: case IOR:
7377 case UMIN: case UMAX: case SMIN: case SMAX:
7378 nonzero &= (nonzero_bits (XEXP (x, 0), mode)
7379 | nonzero_bits (XEXP (x, 1), mode));
7380 break;
7382 case PLUS: case MINUS:
7383 case MULT:
7384 case DIV: case UDIV:
7385 case MOD: case UMOD:
7386 /* We can apply the rules of arithmetic to compute the number of
7387 high- and low-order zero bits of these operations. We start by
7388 computing the width (position of the highest-order non-zero bit)
7389 and the number of low-order zero bits for each value. */
7391 unsigned HOST_WIDE_INT nz0 = nonzero_bits (XEXP (x, 0), mode);
7392 unsigned HOST_WIDE_INT nz1 = nonzero_bits (XEXP (x, 1), mode);
7393 int width0 = floor_log2 (nz0) + 1;
7394 int width1 = floor_log2 (nz1) + 1;
7395 int low0 = floor_log2 (nz0 & -nz0);
7396 int low1 = floor_log2 (nz1 & -nz1);
7397 HOST_WIDE_INT op0_maybe_minusp
7398 = (nz0 & ((HOST_WIDE_INT) 1 << (mode_width - 1)));
7399 HOST_WIDE_INT op1_maybe_minusp
7400 = (nz1 & ((HOST_WIDE_INT) 1 << (mode_width - 1)));
7401 int result_width = mode_width;
7402 int result_low = 0;
7404 switch (code)
7406 case PLUS:
7407 result_width = MAX (width0, width1) + 1;
7408 result_low = MIN (low0, low1);
7409 break;
7410 case MINUS:
7411 result_low = MIN (low0, low1);
7412 break;
7413 case MULT:
7414 result_width = width0 + width1;
7415 result_low = low0 + low1;
7416 break;
7417 case DIV:
7418 if (! op0_maybe_minusp && ! op1_maybe_minusp)
7419 result_width = width0;
7420 break;
7421 case UDIV:
7422 result_width = width0;
7423 break;
7424 case MOD:
7425 if (! op0_maybe_minusp && ! op1_maybe_minusp)
7426 result_width = MIN (width0, width1);
7427 result_low = MIN (low0, low1);
7428 break;
7429 case UMOD:
7430 result_width = MIN (width0, width1);
7431 result_low = MIN (low0, low1);
7432 break;
7435 if (result_width < mode_width)
7436 nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1;
7438 if (result_low > 0)
7439 nonzero &= ~ (((HOST_WIDE_INT) 1 << result_low) - 1);
7441 break;
7443 case ZERO_EXTRACT:
7444 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7445 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7446 nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
7447 break;
7449 case SUBREG:
7450 /* If this is a SUBREG formed for a promoted variable that has
7451 been zero-extended, we know that at least the high-order bits
7452 are zero, though others might be too. */
7454 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x))
7455 nonzero = (GET_MODE_MASK (GET_MODE (x))
7456 & nonzero_bits (SUBREG_REG (x), GET_MODE (x)));
7458 /* If the inner mode is a single word for both the host and target
7459 machines, we can compute this from which bits of the inner
7460 object might be nonzero. */
7461 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
7462 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
7463 <= HOST_BITS_PER_WIDE_INT))
7465 nonzero &= nonzero_bits (SUBREG_REG (x), mode);
7467 #ifndef WORD_REGISTER_OPERATIONS
7468 /* On many CISC machines, accessing an object in a wider mode
7469 causes the high-order bits to become undefined. So they are
7470 not known to be zero. */
7471 if (GET_MODE_SIZE (GET_MODE (x))
7472 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
7473 nonzero |= (GET_MODE_MASK (GET_MODE (x))
7474 & ~ GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
7475 #endif
7477 break;
7479 case ASHIFTRT:
7480 case LSHIFTRT:
7481 case ASHIFT:
7482 case ROTATE:
7483 /* The nonzero bits are in two classes: any bits within MODE
7484 that aren't in GET_MODE (x) are always significant. The rest of the
7485 nonzero bits are those that are significant in the operand of
7486 the shift when shifted the appropriate number of bits. This
7487 shows that high-order bits are cleared by the right shift and
7488 low-order bits by left shifts. */
7489 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7490 && INTVAL (XEXP (x, 1)) >= 0
7491 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7493 enum machine_mode inner_mode = GET_MODE (x);
7494 int width = GET_MODE_BITSIZE (inner_mode);
7495 int count = INTVAL (XEXP (x, 1));
7496 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
7497 unsigned HOST_WIDE_INT op_nonzero = nonzero_bits (XEXP (x, 0), mode);
7498 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
7499 unsigned HOST_WIDE_INT outer = 0;
7501 if (mode_width > width)
7502 outer = (op_nonzero & nonzero & ~ mode_mask);
7504 if (code == LSHIFTRT)
7505 inner >>= count;
7506 else if (code == ASHIFTRT)
7508 inner >>= count;
7510 /* If the sign bit may have been nonzero before the shift, we
7511 need to mark all the places it could have been copied to
7512 by the shift as possibly nonzero. */
7513 if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
7514 inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
7516 else if (code == ASHIFT)
7517 inner <<= count;
7518 else
7519 inner = ((inner << (count % width)
7520 | (inner >> (width - (count % width)))) & mode_mask);
7522 nonzero &= (outer | inner);
7524 break;
7526 case FFS:
7527 /* This is at most the number of bits in the mode. */
7528 nonzero = ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width) + 1)) - 1;
7529 break;
7531 case IF_THEN_ELSE:
7532 nonzero &= (nonzero_bits (XEXP (x, 1), mode)
7533 | nonzero_bits (XEXP (x, 2), mode));
7534 break;
7537 return nonzero;
7540 /* See the macro definition above. */
7541 #undef num_sign_bit_copies
7543 /* Return the number of bits at the high-order end of X that are known to
7544 be equal to the sign bit. X will be used in mode MODE; if MODE is
7545 VOIDmode, X will be used in its own mode. The returned value will always
7546 be between 1 and the number of bits in MODE. */
7548 static int
7549 num_sign_bit_copies (x, mode)
7550 rtx x;
7551 enum machine_mode mode;
7553 enum rtx_code code = GET_CODE (x);
7554 int bitwidth;
7555 int num0, num1, result;
7556 unsigned HOST_WIDE_INT nonzero;
7557 rtx tem;
7559 /* If we weren't given a mode, use the mode of X. If the mode is still
7560 VOIDmode, we don't know anything. Likewise if one of the modes is
7561 floating-point. */
7563 if (mode == VOIDmode)
7564 mode = GET_MODE (x);
7566 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x)))
7567 return 1;
7569 bitwidth = GET_MODE_BITSIZE (mode);
7571 /* For a smaller object, just ignore the high bits. */
7572 if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
7573 return MAX (1, (num_sign_bit_copies (x, GET_MODE (x))
7574 - (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth)));
7576 #ifndef WORD_REGISTER_OPERATIONS
7577 /* If this machine does not do all register operations on the entire
7578 register and MODE is wider than the mode of X, we can say nothing
7579 at all about the high-order bits. */
7580 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
7581 return 1;
7582 #endif
7584 switch (code)
7586 case REG:
7588 #ifdef POINTERS_EXTEND_UNSIGNED
7589 /* If pointers extend signed and this is a pointer in Pmode, say that
7590 all the bits above ptr_mode are known to be sign bit copies. */
7591 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode && mode == Pmode
7592 && REGNO_POINTER_FLAG (REGNO (x)))
7593 return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
7594 #endif
7596 if (reg_last_set_value[REGNO (x)] != 0
7597 && reg_last_set_mode[REGNO (x)] == mode
7598 && (REG_N_SETS (REGNO (x)) == 1
7599 || reg_last_set_label[REGNO (x)] == label_tick)
7600 && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
7601 return reg_last_set_sign_bit_copies[REGNO (x)];
7603 tem = get_last_value (x);
7604 if (tem != 0)
7605 return num_sign_bit_copies (tem, mode);
7607 if (nonzero_sign_valid && reg_sign_bit_copies[REGNO (x)] != 0)
7608 return reg_sign_bit_copies[REGNO (x)];
7609 break;
7611 case MEM:
7612 #ifdef LOAD_EXTEND_OP
7613 /* Some RISC machines sign-extend all loads of smaller than a word. */
7614 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
7615 return MAX (1, bitwidth - GET_MODE_BITSIZE (GET_MODE (x)) + 1);
7616 #endif
7617 break;
7619 case CONST_INT:
7620 /* If the constant is negative, take its 1's complement and remask.
7621 Then see how many zero bits we have. */
7622 nonzero = INTVAL (x) & GET_MODE_MASK (mode);
7623 if (bitwidth <= HOST_BITS_PER_WIDE_INT
7624 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
7625 nonzero = (~ nonzero) & GET_MODE_MASK (mode);
7627 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
7629 case SUBREG:
7630 /* If this is a SUBREG for a promoted object that is sign-extended
7631 and we are looking at it in a wider mode, we know that at least the
7632 high-order bits are known to be sign bit copies. */
7634 if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
7635 return MAX (bitwidth - GET_MODE_BITSIZE (GET_MODE (x)) + 1,
7636 num_sign_bit_copies (SUBREG_REG (x), mode));
7638 /* For a smaller object, just ignore the high bits. */
7639 if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
7641 num0 = num_sign_bit_copies (SUBREG_REG (x), VOIDmode);
7642 return MAX (1, (num0
7643 - (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
7644 - bitwidth)));
7647 #ifdef WORD_REGISTER_OPERATIONS
7648 #ifdef LOAD_EXTEND_OP
7649 /* For paradoxical SUBREGs on machines where all register operations
7650 affect the entire register, just look inside. Note that we are
7651 passing MODE to the recursive call, so the number of sign bit copies
7652 will remain relative to that mode, not the inner mode. */
7654 /* This works only if loads sign extend. Otherwise, if we get a
7655 reload for the inner part, it may be loaded from the stack, and
7656 then we lose all sign bit copies that existed before the store
7657 to the stack. */
7659 if ((GET_MODE_SIZE (GET_MODE (x))
7660 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
7661 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND)
7662 return num_sign_bit_copies (SUBREG_REG (x), mode);
7663 #endif
7664 #endif
7665 break;
7667 case SIGN_EXTRACT:
7668 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
7669 return MAX (1, bitwidth - INTVAL (XEXP (x, 1)));
7670 break;
7672 case SIGN_EXTEND:
7673 return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
7674 + num_sign_bit_copies (XEXP (x, 0), VOIDmode));
7676 case TRUNCATE:
7677 /* For a smaller object, just ignore the high bits. */
7678 num0 = num_sign_bit_copies (XEXP (x, 0), VOIDmode);
7679 return MAX (1, (num0 - (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
7680 - bitwidth)));
7682 case NOT:
7683 return num_sign_bit_copies (XEXP (x, 0), mode);
7685 case ROTATE: case ROTATERT:
7686 /* If we are rotating left by a number of bits less than the number
7687 of sign bit copies, we can just subtract that amount from the
7688 number. */
7689 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7690 && INTVAL (XEXP (x, 1)) >= 0 && INTVAL (XEXP (x, 1)) < bitwidth)
7692 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
7693 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
7694 : bitwidth - INTVAL (XEXP (x, 1))));
7696 break;
7698 case NEG:
7699 /* In general, this subtracts one sign bit copy. But if the value
7700 is known to be positive, the number of sign bit copies is the
7701 same as that of the input. Finally, if the input has just one bit
7702 that might be nonzero, all the bits are copies of the sign bit. */
7703 nonzero = nonzero_bits (XEXP (x, 0), mode);
7704 if (nonzero == 1)
7705 return bitwidth;
7707 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
7708 if (num0 > 1
7709 && bitwidth <= HOST_BITS_PER_WIDE_INT
7710 && (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
7711 num0--;
7713 return num0;
7715 case IOR: case AND: case XOR:
7716 case SMIN: case SMAX: case UMIN: case UMAX:
7717 /* Logical operations will preserve the number of sign-bit copies.
7718 MIN and MAX operations always return one of the operands. */
7719 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
7720 num1 = num_sign_bit_copies (XEXP (x, 1), mode);
7721 return MIN (num0, num1);
7723 case PLUS: case MINUS:
7724 /* For addition and subtraction, we can have a 1-bit carry. However,
7725 if we are subtracting 1 from a positive number, there will not
7726 be such a carry. Furthermore, if the positive number is known to
7727 be 0 or 1, we know the result is either -1 or 0. */
7729 if (code == PLUS && XEXP (x, 1) == constm1_rtx
7730 && bitwidth <= HOST_BITS_PER_WIDE_INT)
7732 nonzero = nonzero_bits (XEXP (x, 0), mode);
7733 if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
7734 return (nonzero == 1 || nonzero == 0 ? bitwidth
7735 : bitwidth - floor_log2 (nonzero) - 1);
7738 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
7739 num1 = num_sign_bit_copies (XEXP (x, 1), mode);
7740 return MAX (1, MIN (num0, num1) - 1);
7742 case MULT:
7743 /* The number of bits of the product is the sum of the number of
7744 bits of both terms. However, unless one of the terms if known
7745 to be positive, we must allow for an additional bit since negating
7746 a negative number can remove one sign bit copy. */
7748 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
7749 num1 = num_sign_bit_copies (XEXP (x, 1), mode);
7751 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
7752 if (result > 0
7753 && bitwidth <= HOST_BITS_PER_WIDE_INT
7754 && ((nonzero_bits (XEXP (x, 0), mode)
7755 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
7756 && ((nonzero_bits (XEXP (x, 1), mode)
7757 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
7758 result--;
7760 return MAX (1, result);
7762 case UDIV:
7763 /* The result must be <= the first operand. */
7764 return num_sign_bit_copies (XEXP (x, 0), mode);
7766 case UMOD:
7767 /* The result must be <= the scond operand. */
7768 return num_sign_bit_copies (XEXP (x, 1), mode);
7770 case DIV:
7771 /* Similar to unsigned division, except that we have to worry about
7772 the case where the divisor is negative, in which case we have
7773 to add 1. */
7774 result = num_sign_bit_copies (XEXP (x, 0), mode);
7775 if (result > 1
7776 && bitwidth <= HOST_BITS_PER_WIDE_INT
7777 && (nonzero_bits (XEXP (x, 1), mode)
7778 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
7779 result --;
7781 return result;
7783 case MOD:
7784 result = num_sign_bit_copies (XEXP (x, 1), mode);
7785 if (result > 1
7786 && bitwidth <= HOST_BITS_PER_WIDE_INT
7787 && (nonzero_bits (XEXP (x, 1), mode)
7788 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
7789 result --;
7791 return result;
7793 case ASHIFTRT:
7794 /* Shifts by a constant add to the number of bits equal to the
7795 sign bit. */
7796 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
7797 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7798 && INTVAL (XEXP (x, 1)) > 0)
7799 num0 = MIN (bitwidth, num0 + INTVAL (XEXP (x, 1)));
7801 return num0;
7803 case ASHIFT:
7804 /* Left shifts destroy copies. */
7805 if (GET_CODE (XEXP (x, 1)) != CONST_INT
7806 || INTVAL (XEXP (x, 1)) < 0
7807 || INTVAL (XEXP (x, 1)) >= bitwidth)
7808 return 1;
7810 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
7811 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
7813 case IF_THEN_ELSE:
7814 num0 = num_sign_bit_copies (XEXP (x, 1), mode);
7815 num1 = num_sign_bit_copies (XEXP (x, 2), mode);
7816 return MIN (num0, num1);
7818 case EQ: case NE: case GE: case GT: case LE: case LT:
7819 case GEU: case GTU: case LEU: case LTU:
7820 if (STORE_FLAG_VALUE == -1)
7821 return bitwidth;
7824 /* If we haven't been able to figure it out by one of the above rules,
7825 see if some of the high-order bits are known to be zero. If so,
7826 count those bits and return one less than that amount. If we can't
7827 safely compute the mask for this mode, always return BITWIDTH. */
7829 if (bitwidth > HOST_BITS_PER_WIDE_INT)
7830 return 1;
7832 nonzero = nonzero_bits (x, mode);
7833 return (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))
7834 ? 1 : bitwidth - floor_log2 (nonzero) - 1);
7837 /* Return the number of "extended" bits there are in X, when interpreted
7838 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
7839 unsigned quantities, this is the number of high-order zero bits.
7840 For signed quantities, this is the number of copies of the sign bit
7841 minus 1. In both case, this function returns the number of "spare"
7842 bits. For example, if two quantities for which this function returns
7843 at least 1 are added, the addition is known not to overflow.
7845 This function will always return 0 unless called during combine, which
7846 implies that it must be called from a define_split. */
7849 extended_count (x, mode, unsignedp)
7850 rtx x;
7851 enum machine_mode mode;
7852 int unsignedp;
7854 if (nonzero_sign_valid == 0)
7855 return 0;
7857 return (unsignedp
7858 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7859 && (GET_MODE_BITSIZE (mode) - 1
7860 - floor_log2 (nonzero_bits (x, mode))))
7861 : num_sign_bit_copies (x, mode) - 1);
7864 /* This function is called from `simplify_shift_const' to merge two
7865 outer operations. Specifically, we have already found that we need
7866 to perform operation *POP0 with constant *PCONST0 at the outermost
7867 position. We would now like to also perform OP1 with constant CONST1
7868 (with *POP0 being done last).
7870 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
7871 the resulting operation. *PCOMP_P is set to 1 if we would need to
7872 complement the innermost operand, otherwise it is unchanged.
7874 MODE is the mode in which the operation will be done. No bits outside
7875 the width of this mode matter. It is assumed that the width of this mode
7876 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
7878 If *POP0 or OP1 are NIL, it means no operation is required. Only NEG, PLUS,
7879 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
7880 result is simply *PCONST0.
7882 If the resulting operation cannot be expressed as one operation, we
7883 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
7885 static int
7886 merge_outer_ops (pop0, pconst0, op1, const1, mode, pcomp_p)
7887 enum rtx_code *pop0;
7888 HOST_WIDE_INT *pconst0;
7889 enum rtx_code op1;
7890 HOST_WIDE_INT const1;
7891 enum machine_mode mode;
7892 int *pcomp_p;
7894 enum rtx_code op0 = *pop0;
7895 HOST_WIDE_INT const0 = *pconst0;
7896 int width = GET_MODE_BITSIZE (mode);
7898 const0 &= GET_MODE_MASK (mode);
7899 const1 &= GET_MODE_MASK (mode);
7901 /* If OP0 is an AND, clear unimportant bits in CONST1. */
7902 if (op0 == AND)
7903 const1 &= const0;
7905 /* If OP0 or OP1 is NIL, this is easy. Similarly if they are the same or
7906 if OP0 is SET. */
7908 if (op1 == NIL || op0 == SET)
7909 return 1;
7911 else if (op0 == NIL)
7912 op0 = op1, const0 = const1;
7914 else if (op0 == op1)
7916 switch (op0)
7918 case AND:
7919 const0 &= const1;
7920 break;
7921 case IOR:
7922 const0 |= const1;
7923 break;
7924 case XOR:
7925 const0 ^= const1;
7926 break;
7927 case PLUS:
7928 const0 += const1;
7929 break;
7930 case NEG:
7931 op0 = NIL;
7932 break;
7936 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
7937 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
7938 return 0;
7940 /* If the two constants aren't the same, we can't do anything. The
7941 remaining six cases can all be done. */
7942 else if (const0 != const1)
7943 return 0;
7945 else
7946 switch (op0)
7948 case IOR:
7949 if (op1 == AND)
7950 /* (a & b) | b == b */
7951 op0 = SET;
7952 else /* op1 == XOR */
7953 /* (a ^ b) | b == a | b */
7955 break;
7957 case XOR:
7958 if (op1 == AND)
7959 /* (a & b) ^ b == (~a) & b */
7960 op0 = AND, *pcomp_p = 1;
7961 else /* op1 == IOR */
7962 /* (a | b) ^ b == a & ~b */
7963 op0 = AND, *pconst0 = ~ const0;
7964 break;
7966 case AND:
7967 if (op1 == IOR)
7968 /* (a | b) & b == b */
7969 op0 = SET;
7970 else /* op1 == XOR */
7971 /* (a ^ b) & b) == (~a) & b */
7972 *pcomp_p = 1;
7973 break;
7976 /* Check for NO-OP cases. */
7977 const0 &= GET_MODE_MASK (mode);
7978 if (const0 == 0
7979 && (op0 == IOR || op0 == XOR || op0 == PLUS))
7980 op0 = NIL;
7981 else if (const0 == 0 && op0 == AND)
7982 op0 = SET;
7983 else if (const0 == GET_MODE_MASK (mode) && op0 == AND)
7984 op0 = NIL;
7986 /* If this would be an entire word for the target, but is not for
7987 the host, then sign-extend on the host so that the number will look
7988 the same way on the host that it would on the target.
7990 For example, when building a 64 bit alpha hosted 32 bit sparc
7991 targeted compiler, then we want the 32 bit unsigned value -1 to be
7992 represented as a 64 bit value -1, and not as 0x00000000ffffffff.
7993 The later confuses the sparc backend. */
7995 if (BITS_PER_WORD < HOST_BITS_PER_WIDE_INT && BITS_PER_WORD == width
7996 && (const0 & ((HOST_WIDE_INT) 1 << (width - 1))))
7997 const0 |= ((HOST_WIDE_INT) (-1) << width);
7999 *pop0 = op0;
8000 *pconst0 = const0;
8002 return 1;
8005 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
8006 The result of the shift is RESULT_MODE. X, if non-zero, is an expression
8007 that we started with.
8009 The shift is normally computed in the widest mode we find in VAROP, as
8010 long as it isn't a different number of words than RESULT_MODE. Exceptions
8011 are ASHIFTRT and ROTATE, which are always done in their original mode, */
8013 static rtx
8014 simplify_shift_const (x, code, result_mode, varop, count)
8015 rtx x;
8016 enum rtx_code code;
8017 enum machine_mode result_mode;
8018 rtx varop;
8019 int count;
8021 enum rtx_code orig_code = code;
8022 int orig_count = count;
8023 enum machine_mode mode = result_mode;
8024 enum machine_mode shift_mode, tmode;
8025 int mode_words
8026 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
8027 /* We form (outer_op (code varop count) (outer_const)). */
8028 enum rtx_code outer_op = NIL;
8029 HOST_WIDE_INT outer_const = 0;
8030 rtx const_rtx;
8031 int complement_p = 0;
8032 rtx new;
8034 /* If we were given an invalid count, don't do anything except exactly
8035 what was requested. */
8037 if (count < 0 || count > GET_MODE_BITSIZE (mode))
8039 if (x)
8040 return x;
8042 return gen_rtx (code, mode, varop, GEN_INT (count));
8045 /* Unless one of the branches of the `if' in this loop does a `continue',
8046 we will `break' the loop after the `if'. */
8048 while (count != 0)
8050 /* If we have an operand of (clobber (const_int 0)), just return that
8051 value. */
8052 if (GET_CODE (varop) == CLOBBER)
8053 return varop;
8055 /* If we discovered we had to complement VAROP, leave. Making a NOT
8056 here would cause an infinite loop. */
8057 if (complement_p)
8058 break;
8060 /* Convert ROTATERT to ROTATE. */
8061 if (code == ROTATERT)
8062 code = ROTATE, count = GET_MODE_BITSIZE (result_mode) - count;
8064 /* We need to determine what mode we will do the shift in. If the
8065 shift is a right shift or a ROTATE, we must always do it in the mode
8066 it was originally done in. Otherwise, we can do it in MODE, the
8067 widest mode encountered. */
8068 shift_mode
8069 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
8070 ? result_mode : mode);
8072 /* Handle cases where the count is greater than the size of the mode
8073 minus 1. For ASHIFT, use the size minus one as the count (this can
8074 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
8075 take the count modulo the size. For other shifts, the result is
8076 zero.
8078 Since these shifts are being produced by the compiler by combining
8079 multiple operations, each of which are defined, we know what the
8080 result is supposed to be. */
8082 if (count > GET_MODE_BITSIZE (shift_mode) - 1)
8084 if (code == ASHIFTRT)
8085 count = GET_MODE_BITSIZE (shift_mode) - 1;
8086 else if (code == ROTATE || code == ROTATERT)
8087 count %= GET_MODE_BITSIZE (shift_mode);
8088 else
8090 /* We can't simply return zero because there may be an
8091 outer op. */
8092 varop = const0_rtx;
8093 count = 0;
8094 break;
8098 /* Negative counts are invalid and should not have been made (a
8099 programmer-specified negative count should have been handled
8100 above). */
8101 else if (count < 0)
8102 abort ();
8104 /* An arithmetic right shift of a quantity known to be -1 or 0
8105 is a no-op. */
8106 if (code == ASHIFTRT
8107 && (num_sign_bit_copies (varop, shift_mode)
8108 == GET_MODE_BITSIZE (shift_mode)))
8110 count = 0;
8111 break;
8114 /* If we are doing an arithmetic right shift and discarding all but
8115 the sign bit copies, this is equivalent to doing a shift by the
8116 bitsize minus one. Convert it into that shift because it will often
8117 allow other simplifications. */
8119 if (code == ASHIFTRT
8120 && (count + num_sign_bit_copies (varop, shift_mode)
8121 >= GET_MODE_BITSIZE (shift_mode)))
8122 count = GET_MODE_BITSIZE (shift_mode) - 1;
8124 /* We simplify the tests below and elsewhere by converting
8125 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
8126 `make_compound_operation' will convert it to a ASHIFTRT for
8127 those machines (such as Vax) that don't have a LSHIFTRT. */
8128 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8129 && code == ASHIFTRT
8130 && ((nonzero_bits (varop, shift_mode)
8131 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
8132 == 0))
8133 code = LSHIFTRT;
8135 switch (GET_CODE (varop))
8137 case SIGN_EXTEND:
8138 case ZERO_EXTEND:
8139 case SIGN_EXTRACT:
8140 case ZERO_EXTRACT:
8141 new = expand_compound_operation (varop);
8142 if (new != varop)
8144 varop = new;
8145 continue;
8147 break;
8149 case MEM:
8150 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
8151 minus the width of a smaller mode, we can do this with a
8152 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
8153 if ((code == ASHIFTRT || code == LSHIFTRT)
8154 && ! mode_dependent_address_p (XEXP (varop, 0))
8155 && ! MEM_VOLATILE_P (varop)
8156 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
8157 MODE_INT, 1)) != BLKmode)
8159 if (BYTES_BIG_ENDIAN)
8160 new = gen_rtx (MEM, tmode, XEXP (varop, 0));
8161 else
8162 new = gen_rtx (MEM, tmode,
8163 plus_constant (XEXP (varop, 0),
8164 count / BITS_PER_UNIT));
8165 RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (varop);
8166 MEM_VOLATILE_P (new) = MEM_VOLATILE_P (varop);
8167 MEM_IN_STRUCT_P (new) = MEM_IN_STRUCT_P (varop);
8168 varop = gen_rtx_combine (code == ASHIFTRT ? SIGN_EXTEND
8169 : ZERO_EXTEND, mode, new);
8170 count = 0;
8171 continue;
8173 break;
8175 case USE:
8176 /* Similar to the case above, except that we can only do this if
8177 the resulting mode is the same as that of the underlying
8178 MEM and adjust the address depending on the *bits* endianness
8179 because of the way that bit-field extract insns are defined. */
8180 if ((code == ASHIFTRT || code == LSHIFTRT)
8181 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
8182 MODE_INT, 1)) != BLKmode
8183 && tmode == GET_MODE (XEXP (varop, 0)))
8185 if (BITS_BIG_ENDIAN)
8186 new = XEXP (varop, 0);
8187 else
8189 new = copy_rtx (XEXP (varop, 0));
8190 SUBST (XEXP (new, 0),
8191 plus_constant (XEXP (new, 0),
8192 count / BITS_PER_UNIT));
8195 varop = gen_rtx_combine (code == ASHIFTRT ? SIGN_EXTEND
8196 : ZERO_EXTEND, mode, new);
8197 count = 0;
8198 continue;
8200 break;
8202 case SUBREG:
8203 /* If VAROP is a SUBREG, strip it as long as the inner operand has
8204 the same number of words as what we've seen so far. Then store
8205 the widest mode in MODE. */
8206 if (subreg_lowpart_p (varop)
8207 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
8208 > GET_MODE_SIZE (GET_MODE (varop)))
8209 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
8210 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
8211 == mode_words))
8213 varop = SUBREG_REG (varop);
8214 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
8215 mode = GET_MODE (varop);
8216 continue;
8218 break;
8220 case MULT:
8221 /* Some machines use MULT instead of ASHIFT because MULT
8222 is cheaper. But it is still better on those machines to
8223 merge two shifts into one. */
8224 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8225 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
8227 varop = gen_binary (ASHIFT, GET_MODE (varop), XEXP (varop, 0),
8228 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));;
8229 continue;
8231 break;
8233 case UDIV:
8234 /* Similar, for when divides are cheaper. */
8235 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8236 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
8238 varop = gen_binary (LSHIFTRT, GET_MODE (varop), XEXP (varop, 0),
8239 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
8240 continue;
8242 break;
8244 case ASHIFTRT:
8245 /* If we are extracting just the sign bit of an arithmetic right
8246 shift, that shift is not needed. */
8247 if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1)
8249 varop = XEXP (varop, 0);
8250 continue;
8253 /* ... fall through ... */
8255 case LSHIFTRT:
8256 case ASHIFT:
8257 case ROTATE:
8258 /* Here we have two nested shifts. The result is usually the
8259 AND of a new shift with a mask. We compute the result below. */
8260 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8261 && INTVAL (XEXP (varop, 1)) >= 0
8262 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
8263 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
8264 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
8266 enum rtx_code first_code = GET_CODE (varop);
8267 int first_count = INTVAL (XEXP (varop, 1));
8268 unsigned HOST_WIDE_INT mask;
8269 rtx mask_rtx;
8271 /* We have one common special case. We can't do any merging if
8272 the inner code is an ASHIFTRT of a smaller mode. However, if
8273 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
8274 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
8275 we can convert it to
8276 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
8277 This simplifies certain SIGN_EXTEND operations. */
8278 if (code == ASHIFT && first_code == ASHIFTRT
8279 && (GET_MODE_BITSIZE (result_mode)
8280 - GET_MODE_BITSIZE (GET_MODE (varop))) == count)
8282 /* C3 has the low-order C1 bits zero. */
8284 mask = (GET_MODE_MASK (mode)
8285 & ~ (((HOST_WIDE_INT) 1 << first_count) - 1));
8287 varop = simplify_and_const_int (NULL_RTX, result_mode,
8288 XEXP (varop, 0), mask);
8289 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
8290 varop, count);
8291 count = first_count;
8292 code = ASHIFTRT;
8293 continue;
8296 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
8297 than C1 high-order bits equal to the sign bit, we can convert
8298 this to either an ASHIFT or a ASHIFTRT depending on the
8299 two counts.
8301 We cannot do this if VAROP's mode is not SHIFT_MODE. */
8303 if (code == ASHIFTRT && first_code == ASHIFT
8304 && GET_MODE (varop) == shift_mode
8305 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
8306 > first_count))
8308 count -= first_count;
8309 if (count < 0)
8310 count = - count, code = ASHIFT;
8311 varop = XEXP (varop, 0);
8312 continue;
8315 /* There are some cases we can't do. If CODE is ASHIFTRT,
8316 we can only do this if FIRST_CODE is also ASHIFTRT.
8318 We can't do the case when CODE is ROTATE and FIRST_CODE is
8319 ASHIFTRT.
8321 If the mode of this shift is not the mode of the outer shift,
8322 we can't do this if either shift is a right shift or ROTATE.
8324 Finally, we can't do any of these if the mode is too wide
8325 unless the codes are the same.
8327 Handle the case where the shift codes are the same
8328 first. */
8330 if (code == first_code)
8332 if (GET_MODE (varop) != result_mode
8333 && (code == ASHIFTRT || code == LSHIFTRT
8334 || code == ROTATE))
8335 break;
8337 count += first_count;
8338 varop = XEXP (varop, 0);
8339 continue;
8342 if (code == ASHIFTRT
8343 || (code == ROTATE && first_code == ASHIFTRT)
8344 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
8345 || (GET_MODE (varop) != result_mode
8346 && (first_code == ASHIFTRT || first_code == LSHIFTRT
8347 || first_code == ROTATE
8348 || code == ROTATE)))
8349 break;
8351 /* To compute the mask to apply after the shift, shift the
8352 nonzero bits of the inner shift the same way the
8353 outer shift will. */
8355 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
8357 mask_rtx
8358 = simplify_binary_operation (code, result_mode, mask_rtx,
8359 GEN_INT (count));
8361 /* Give up if we can't compute an outer operation to use. */
8362 if (mask_rtx == 0
8363 || GET_CODE (mask_rtx) != CONST_INT
8364 || ! merge_outer_ops (&outer_op, &outer_const, AND,
8365 INTVAL (mask_rtx),
8366 result_mode, &complement_p))
8367 break;
8369 /* If the shifts are in the same direction, we add the
8370 counts. Otherwise, we subtract them. */
8371 if ((code == ASHIFTRT || code == LSHIFTRT)
8372 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
8373 count += first_count;
8374 else
8375 count -= first_count;
8377 /* If COUNT is positive, the new shift is usually CODE,
8378 except for the two exceptions below, in which case it is
8379 FIRST_CODE. If the count is negative, FIRST_CODE should
8380 always be used */
8381 if (count > 0
8382 && ((first_code == ROTATE && code == ASHIFT)
8383 || (first_code == ASHIFTRT && code == LSHIFTRT)))
8384 code = first_code;
8385 else if (count < 0)
8386 code = first_code, count = - count;
8388 varop = XEXP (varop, 0);
8389 continue;
8392 /* If we have (A << B << C) for any shift, we can convert this to
8393 (A << C << B). This wins if A is a constant. Only try this if
8394 B is not a constant. */
8396 else if (GET_CODE (varop) == code
8397 && GET_CODE (XEXP (varop, 1)) != CONST_INT
8398 && 0 != (new
8399 = simplify_binary_operation (code, mode,
8400 XEXP (varop, 0),
8401 GEN_INT (count))))
8403 varop = gen_rtx_combine (code, mode, new, XEXP (varop, 1));
8404 count = 0;
8405 continue;
8407 break;
8409 case NOT:
8410 /* Make this fit the case below. */
8411 varop = gen_rtx_combine (XOR, mode, XEXP (varop, 0),
8412 GEN_INT (GET_MODE_MASK (mode)));
8413 continue;
8415 case IOR:
8416 case AND:
8417 case XOR:
8418 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
8419 with C the size of VAROP - 1 and the shift is logical if
8420 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
8421 we have an (le X 0) operation. If we have an arithmetic shift
8422 and STORE_FLAG_VALUE is 1 or we have a logical shift with
8423 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
8425 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
8426 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
8427 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8428 && (code == LSHIFTRT || code == ASHIFTRT)
8429 && count == GET_MODE_BITSIZE (GET_MODE (varop)) - 1
8430 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
8432 count = 0;
8433 varop = gen_rtx_combine (LE, GET_MODE (varop), XEXP (varop, 1),
8434 const0_rtx);
8436 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
8437 varop = gen_rtx_combine (NEG, GET_MODE (varop), varop);
8439 continue;
8442 /* If we have (shift (logical)), move the logical to the outside
8443 to allow it to possibly combine with another logical and the
8444 shift to combine with another shift. This also canonicalizes to
8445 what a ZERO_EXTRACT looks like. Also, some machines have
8446 (and (shift)) insns. */
8448 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8449 && (new = simplify_binary_operation (code, result_mode,
8450 XEXP (varop, 1),
8451 GEN_INT (count))) != 0
8452 && GET_CODE(new) == CONST_INT
8453 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
8454 INTVAL (new), result_mode, &complement_p))
8456 varop = XEXP (varop, 0);
8457 continue;
8460 /* If we can't do that, try to simplify the shift in each arm of the
8461 logical expression, make a new logical expression, and apply
8462 the inverse distributive law. */
8464 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
8465 XEXP (varop, 0), count);
8466 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
8467 XEXP (varop, 1), count);
8469 varop = gen_binary (GET_CODE (varop), shift_mode, lhs, rhs);
8470 varop = apply_distributive_law (varop);
8472 count = 0;
8474 break;
8476 case EQ:
8477 /* convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
8478 says that the sign bit can be tested, FOO has mode MODE, C is
8479 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
8480 that may be nonzero. */
8481 if (code == LSHIFTRT
8482 && XEXP (varop, 1) == const0_rtx
8483 && GET_MODE (XEXP (varop, 0)) == result_mode
8484 && count == GET_MODE_BITSIZE (result_mode) - 1
8485 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
8486 && ((STORE_FLAG_VALUE
8487 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (result_mode) - 1))))
8488 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
8489 && merge_outer_ops (&outer_op, &outer_const, XOR,
8490 (HOST_WIDE_INT) 1, result_mode,
8491 &complement_p))
8493 varop = XEXP (varop, 0);
8494 count = 0;
8495 continue;
8497 break;
8499 case NEG:
8500 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
8501 than the number of bits in the mode is equivalent to A. */
8502 if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1
8503 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
8505 varop = XEXP (varop, 0);
8506 count = 0;
8507 continue;
8510 /* NEG commutes with ASHIFT since it is multiplication. Move the
8511 NEG outside to allow shifts to combine. */
8512 if (code == ASHIFT
8513 && merge_outer_ops (&outer_op, &outer_const, NEG,
8514 (HOST_WIDE_INT) 0, result_mode,
8515 &complement_p))
8517 varop = XEXP (varop, 0);
8518 continue;
8520 break;
8522 case PLUS:
8523 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
8524 is one less than the number of bits in the mode is
8525 equivalent to (xor A 1). */
8526 if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1
8527 && XEXP (varop, 1) == constm1_rtx
8528 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
8529 && merge_outer_ops (&outer_op, &outer_const, XOR,
8530 (HOST_WIDE_INT) 1, result_mode,
8531 &complement_p))
8533 count = 0;
8534 varop = XEXP (varop, 0);
8535 continue;
8538 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
8539 that might be nonzero in BAR are those being shifted out and those
8540 bits are known zero in FOO, we can replace the PLUS with FOO.
8541 Similarly in the other operand order. This code occurs when
8542 we are computing the size of a variable-size array. */
8544 if ((code == ASHIFTRT || code == LSHIFTRT)
8545 && count < HOST_BITS_PER_WIDE_INT
8546 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
8547 && (nonzero_bits (XEXP (varop, 1), result_mode)
8548 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
8550 varop = XEXP (varop, 0);
8551 continue;
8553 else if ((code == ASHIFTRT || code == LSHIFTRT)
8554 && count < HOST_BITS_PER_WIDE_INT
8555 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
8556 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
8557 >> count)
8558 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
8559 & nonzero_bits (XEXP (varop, 1),
8560 result_mode)))
8562 varop = XEXP (varop, 1);
8563 continue;
8566 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
8567 if (code == ASHIFT
8568 && GET_CODE (XEXP (varop, 1)) == CONST_INT
8569 && (new = simplify_binary_operation (ASHIFT, result_mode,
8570 XEXP (varop, 1),
8571 GEN_INT (count))) != 0
8572 && GET_CODE(new) == CONST_INT
8573 && merge_outer_ops (&outer_op, &outer_const, PLUS,
8574 INTVAL (new), result_mode, &complement_p))
8576 varop = XEXP (varop, 0);
8577 continue;
8579 break;
8581 case MINUS:
8582 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
8583 with C the size of VAROP - 1 and the shift is logical if
8584 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
8585 we have a (gt X 0) operation. If the shift is arithmetic with
8586 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
8587 we have a (neg (gt X 0)) operation. */
8589 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8590 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
8591 && count == GET_MODE_BITSIZE (GET_MODE (varop)) - 1
8592 && (code == LSHIFTRT || code == ASHIFTRT)
8593 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
8594 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
8595 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
8597 count = 0;
8598 varop = gen_rtx_combine (GT, GET_MODE (varop), XEXP (varop, 1),
8599 const0_rtx);
8601 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
8602 varop = gen_rtx_combine (NEG, GET_MODE (varop), varop);
8604 continue;
8606 break;
8609 break;
8612 /* We need to determine what mode to do the shift in. If the shift is
8613 a right shift or ROTATE, we must always do it in the mode it was
8614 originally done in. Otherwise, we can do it in MODE, the widest mode
8615 encountered. The code we care about is that of the shift that will
8616 actually be done, not the shift that was originally requested. */
8617 shift_mode
8618 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
8619 ? result_mode : mode);
8621 /* We have now finished analyzing the shift. The result should be
8622 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
8623 OUTER_OP is non-NIL, it is an operation that needs to be applied
8624 to the result of the shift. OUTER_CONST is the relevant constant,
8625 but we must turn off all bits turned off in the shift.
8627 If we were passed a value for X, see if we can use any pieces of
8628 it. If not, make new rtx. */
8630 if (x && GET_RTX_CLASS (GET_CODE (x)) == '2'
8631 && GET_CODE (XEXP (x, 1)) == CONST_INT
8632 && INTVAL (XEXP (x, 1)) == count)
8633 const_rtx = XEXP (x, 1);
8634 else
8635 const_rtx = GEN_INT (count);
8637 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
8638 && GET_MODE (XEXP (x, 0)) == shift_mode
8639 && SUBREG_REG (XEXP (x, 0)) == varop)
8640 varop = XEXP (x, 0);
8641 else if (GET_MODE (varop) != shift_mode)
8642 varop = gen_lowpart_for_combine (shift_mode, varop);
8644 /* If we can't make the SUBREG, try to return what we were given. */
8645 if (GET_CODE (varop) == CLOBBER)
8646 return x ? x : varop;
8648 new = simplify_binary_operation (code, shift_mode, varop, const_rtx);
8649 if (new != 0)
8650 x = new;
8651 else
8653 if (x == 0 || GET_CODE (x) != code || GET_MODE (x) != shift_mode)
8654 x = gen_rtx_combine (code, shift_mode, varop, const_rtx);
8656 SUBST (XEXP (x, 0), varop);
8657 SUBST (XEXP (x, 1), const_rtx);
8660 /* If we have an outer operation and we just made a shift, it is
8661 possible that we could have simplified the shift were it not
8662 for the outer operation. So try to do the simplification
8663 recursively. */
8665 if (outer_op != NIL && GET_CODE (x) == code
8666 && GET_CODE (XEXP (x, 1)) == CONST_INT)
8667 x = simplify_shift_const (x, code, shift_mode, XEXP (x, 0),
8668 INTVAL (XEXP (x, 1)));
8670 /* If we were doing a LSHIFTRT in a wider mode than it was originally,
8671 turn off all the bits that the shift would have turned off. */
8672 if (orig_code == LSHIFTRT && result_mode != shift_mode)
8673 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
8674 GET_MODE_MASK (result_mode) >> orig_count);
8676 /* Do the remainder of the processing in RESULT_MODE. */
8677 x = gen_lowpart_for_combine (result_mode, x);
8679 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
8680 operation. */
8681 if (complement_p)
8682 x = gen_unary (NOT, result_mode, result_mode, x);
8684 if (outer_op != NIL)
8686 if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
8688 int width = GET_MODE_BITSIZE (result_mode);
8690 outer_const &= GET_MODE_MASK (result_mode);
8692 /* If this would be an entire word for the target, but is not for
8693 the host, then sign-extend on the host so that the number will
8694 look the same way on the host that it would on the target.
8696 For example, when building a 64 bit alpha hosted 32 bit sparc
8697 targeted compiler, then we want the 32 bit unsigned value -1 to be
8698 represented as a 64 bit value -1, and not as 0x00000000ffffffff.
8699 The later confuses the sparc backend. */
8701 if (BITS_PER_WORD < HOST_BITS_PER_WIDE_INT && BITS_PER_WORD == width
8702 && (outer_const & ((HOST_WIDE_INT) 1 << (width - 1))))
8703 outer_const |= ((HOST_WIDE_INT) (-1) << width);
8706 if (outer_op == AND)
8707 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
8708 else if (outer_op == SET)
8709 /* This means that we have determined that the result is
8710 equivalent to a constant. This should be rare. */
8711 x = GEN_INT (outer_const);
8712 else if (GET_RTX_CLASS (outer_op) == '1')
8713 x = gen_unary (outer_op, result_mode, result_mode, x);
8714 else
8715 x = gen_binary (outer_op, result_mode, x, GEN_INT (outer_const));
8718 return x;
8721 /* Like recog, but we receive the address of a pointer to a new pattern.
8722 We try to match the rtx that the pointer points to.
8723 If that fails, we may try to modify or replace the pattern,
8724 storing the replacement into the same pointer object.
8726 Modifications include deletion or addition of CLOBBERs.
8728 PNOTES is a pointer to a location where any REG_UNUSED notes added for
8729 the CLOBBERs are placed.
8731 PADDED_SCRATCHES is set to the number of (clobber (scratch)) patterns
8732 we had to add.
8734 The value is the final insn code from the pattern ultimately matched,
8735 or -1. */
8737 static int
8738 recog_for_combine (pnewpat, insn, pnotes, padded_scratches)
8739 rtx *pnewpat;
8740 rtx insn;
8741 rtx *pnotes;
8742 int *padded_scratches;
8744 register rtx pat = *pnewpat;
8745 int insn_code_number;
8746 int num_clobbers_to_add = 0;
8747 int i;
8748 rtx notes = 0;
8750 *padded_scratches = 0;
8752 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
8753 we use to indicate that something didn't match. If we find such a
8754 thing, force rejection. */
8755 if (GET_CODE (pat) == PARALLEL)
8756 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
8757 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
8758 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
8759 return -1;
8761 /* Is the result of combination a valid instruction? */
8762 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
8764 /* If it isn't, there is the possibility that we previously had an insn
8765 that clobbered some register as a side effect, but the combined
8766 insn doesn't need to do that. So try once more without the clobbers
8767 unless this represents an ASM insn. */
8769 if (insn_code_number < 0 && ! check_asm_operands (pat)
8770 && GET_CODE (pat) == PARALLEL)
8772 int pos;
8774 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
8775 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
8777 if (i != pos)
8778 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
8779 pos++;
8782 SUBST_INT (XVECLEN (pat, 0), pos);
8784 if (pos == 1)
8785 pat = XVECEXP (pat, 0, 0);
8787 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
8790 /* If we had any clobbers to add, make a new pattern than contains
8791 them. Then check to make sure that all of them are dead. */
8792 if (num_clobbers_to_add)
8794 rtx newpat = gen_rtx (PARALLEL, VOIDmode,
8795 gen_rtvec (GET_CODE (pat) == PARALLEL
8796 ? XVECLEN (pat, 0) + num_clobbers_to_add
8797 : num_clobbers_to_add + 1));
8799 if (GET_CODE (pat) == PARALLEL)
8800 for (i = 0; i < XVECLEN (pat, 0); i++)
8801 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
8802 else
8803 XVECEXP (newpat, 0, 0) = pat;
8805 add_clobbers (newpat, insn_code_number);
8807 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
8808 i < XVECLEN (newpat, 0); i++)
8810 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) == REG
8811 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
8812 return -1;
8813 else if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) == SCRATCH)
8814 (*padded_scratches)++;
8815 notes = gen_rtx (EXPR_LIST, REG_UNUSED,
8816 XEXP (XVECEXP (newpat, 0, i), 0), notes);
8818 pat = newpat;
8821 *pnewpat = pat;
8822 *pnotes = notes;
8824 return insn_code_number;
8827 /* Like gen_lowpart but for use by combine. In combine it is not possible
8828 to create any new pseudoregs. However, it is safe to create
8829 invalid memory addresses, because combine will try to recognize
8830 them and all they will do is make the combine attempt fail.
8832 If for some reason this cannot do its job, an rtx
8833 (clobber (const_int 0)) is returned.
8834 An insn containing that will not be recognized. */
8836 #undef gen_lowpart
8838 static rtx
8839 gen_lowpart_for_combine (mode, x)
8840 enum machine_mode mode;
8841 register rtx x;
8843 rtx result;
8845 if (GET_MODE (x) == mode)
8846 return x;
8848 /* We can only support MODE being wider than a word if X is a
8849 constant integer or has a mode the same size. */
8851 if (GET_MODE_SIZE (mode) > UNITS_PER_WORD
8852 && ! ((GET_MODE (x) == VOIDmode
8853 && (GET_CODE (x) == CONST_INT
8854 || GET_CODE (x) == CONST_DOUBLE))
8855 || GET_MODE_SIZE (GET_MODE (x)) == GET_MODE_SIZE (mode)))
8856 return gen_rtx (CLOBBER, GET_MODE (x), const0_rtx);
8858 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
8859 won't know what to do. So we will strip off the SUBREG here and
8860 process normally. */
8861 if (GET_CODE (x) == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
8863 x = SUBREG_REG (x);
8864 if (GET_MODE (x) == mode)
8865 return x;
8868 result = gen_lowpart_common (mode, x);
8869 if (result != 0
8870 && GET_CODE (result) == SUBREG
8871 && GET_CODE (SUBREG_REG (result)) == REG
8872 && REGNO (SUBREG_REG (result)) >= FIRST_PSEUDO_REGISTER
8873 && (GET_MODE_SIZE (GET_MODE (result))
8874 != GET_MODE_SIZE (GET_MODE (SUBREG_REG (result)))))
8875 REG_CHANGES_SIZE (REGNO (SUBREG_REG (result))) = 1;
8877 if (result)
8878 return result;
8880 if (GET_CODE (x) == MEM)
8882 register int offset = 0;
8883 rtx new;
8885 /* Refuse to work on a volatile memory ref or one with a mode-dependent
8886 address. */
8887 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
8888 return gen_rtx (CLOBBER, GET_MODE (x), const0_rtx);
8890 /* If we want to refer to something bigger than the original memref,
8891 generate a perverse subreg instead. That will force a reload
8892 of the original memref X. */
8893 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode))
8894 return gen_rtx (SUBREG, mode, x, 0);
8896 if (WORDS_BIG_ENDIAN)
8897 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
8898 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
8899 if (BYTES_BIG_ENDIAN)
8901 /* Adjust the address so that the address-after-the-data is
8902 unchanged. */
8903 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
8904 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
8906 new = gen_rtx (MEM, mode, plus_constant (XEXP (x, 0), offset));
8907 RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (x);
8908 MEM_VOLATILE_P (new) = MEM_VOLATILE_P (x);
8909 MEM_IN_STRUCT_P (new) = MEM_IN_STRUCT_P (x);
8910 return new;
8913 /* If X is a comparison operator, rewrite it in a new mode. This
8914 probably won't match, but may allow further simplifications. */
8915 else if (GET_RTX_CLASS (GET_CODE (x)) == '<')
8916 return gen_rtx_combine (GET_CODE (x), mode, XEXP (x, 0), XEXP (x, 1));
8918 /* If we couldn't simplify X any other way, just enclose it in a
8919 SUBREG. Normally, this SUBREG won't match, but some patterns may
8920 include an explicit SUBREG or we may simplify it further in combine. */
8921 else
8923 int word = 0;
8925 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD)
8926 word = ((GET_MODE_SIZE (GET_MODE (x))
8927 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD))
8928 / UNITS_PER_WORD);
8929 return gen_rtx (SUBREG, mode, x, word);
8933 /* Make an rtx expression. This is a subset of gen_rtx and only supports
8934 expressions of 1, 2, or 3 operands, each of which are rtx expressions.
8936 If the identical expression was previously in the insn (in the undobuf),
8937 it will be returned. Only if it is not found will a new expression
8938 be made. */
8940 /*VARARGS2*/
8941 static rtx
8942 gen_rtx_combine VPROTO((enum rtx_code code, enum machine_mode mode, ...))
8944 #ifndef __STDC__
8945 enum rtx_code code;
8946 enum machine_mode mode;
8947 #endif
8948 va_list p;
8949 int n_args;
8950 rtx args[3];
8951 int i, j;
8952 char *fmt;
8953 rtx rt;
8954 struct undo *undo;
8956 VA_START (p, mode);
8958 #ifndef __STDC__
8959 code = va_arg (p, enum rtx_code);
8960 mode = va_arg (p, enum machine_mode);
8961 #endif
8963 n_args = GET_RTX_LENGTH (code);
8964 fmt = GET_RTX_FORMAT (code);
8966 if (n_args == 0 || n_args > 3)
8967 abort ();
8969 /* Get each arg and verify that it is supposed to be an expression. */
8970 for (j = 0; j < n_args; j++)
8972 if (*fmt++ != 'e')
8973 abort ();
8975 args[j] = va_arg (p, rtx);
8978 /* See if this is in undobuf. Be sure we don't use objects that came
8979 from another insn; this could produce circular rtl structures. */
8981 for (undo = undobuf.undos; undo != undobuf.previous_undos; undo = undo->next)
8982 if (!undo->is_int
8983 && GET_CODE (undo->old_contents.r) == code
8984 && GET_MODE (undo->old_contents.r) == mode)
8986 for (j = 0; j < n_args; j++)
8987 if (XEXP (undo->old_contents.r, j) != args[j])
8988 break;
8990 if (j == n_args)
8991 return undo->old_contents.r;
8994 /* Otherwise make a new rtx. We know we have 1, 2, or 3 args.
8995 Use rtx_alloc instead of gen_rtx because it's faster on RISC. */
8996 rt = rtx_alloc (code);
8997 PUT_MODE (rt, mode);
8998 XEXP (rt, 0) = args[0];
8999 if (n_args > 1)
9001 XEXP (rt, 1) = args[1];
9002 if (n_args > 2)
9003 XEXP (rt, 2) = args[2];
9005 return rt;
9008 /* These routines make binary and unary operations by first seeing if they
9009 fold; if not, a new expression is allocated. */
9011 static rtx
9012 gen_binary (code, mode, op0, op1)
9013 enum rtx_code code;
9014 enum machine_mode mode;
9015 rtx op0, op1;
9017 rtx result;
9018 rtx tem;
9020 if (GET_RTX_CLASS (code) == 'c'
9021 && (GET_CODE (op0) == CONST_INT
9022 || (CONSTANT_P (op0) && GET_CODE (op1) != CONST_INT)))
9023 tem = op0, op0 = op1, op1 = tem;
9025 if (GET_RTX_CLASS (code) == '<')
9027 enum machine_mode op_mode = GET_MODE (op0);
9029 /* Strip the COMPARE from (REL_OP (compare X Y) 0) to get
9030 just (REL_OP X Y). */
9031 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
9033 op1 = XEXP (op0, 1);
9034 op0 = XEXP (op0, 0);
9035 op_mode = GET_MODE (op0);
9038 if (op_mode == VOIDmode)
9039 op_mode = GET_MODE (op1);
9040 result = simplify_relational_operation (code, op_mode, op0, op1);
9042 else
9043 result = simplify_binary_operation (code, mode, op0, op1);
9045 if (result)
9046 return result;
9048 /* Put complex operands first and constants second. */
9049 if (GET_RTX_CLASS (code) == 'c'
9050 && ((CONSTANT_P (op0) && GET_CODE (op1) != CONST_INT)
9051 || (GET_RTX_CLASS (GET_CODE (op0)) == 'o'
9052 && GET_RTX_CLASS (GET_CODE (op1)) != 'o')
9053 || (GET_CODE (op0) == SUBREG
9054 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (op0))) == 'o'
9055 && GET_RTX_CLASS (GET_CODE (op1)) != 'o')))
9056 return gen_rtx_combine (code, mode, op1, op0);
9058 return gen_rtx_combine (code, mode, op0, op1);
9061 static rtx
9062 gen_unary (code, mode, op0_mode, op0)
9063 enum rtx_code code;
9064 enum machine_mode mode, op0_mode;
9065 rtx op0;
9067 rtx result = simplify_unary_operation (code, mode, op0, op0_mode);
9069 if (result)
9070 return result;
9072 return gen_rtx_combine (code, mode, op0);
9075 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
9076 comparison code that will be tested.
9078 The result is a possibly different comparison code to use. *POP0 and
9079 *POP1 may be updated.
9081 It is possible that we might detect that a comparison is either always
9082 true or always false. However, we do not perform general constant
9083 folding in combine, so this knowledge isn't useful. Such tautologies
9084 should have been detected earlier. Hence we ignore all such cases. */
9086 static enum rtx_code
9087 simplify_comparison (code, pop0, pop1)
9088 enum rtx_code code;
9089 rtx *pop0;
9090 rtx *pop1;
9092 rtx op0 = *pop0;
9093 rtx op1 = *pop1;
9094 rtx tem, tem1;
9095 int i;
9096 enum machine_mode mode, tmode;
9098 /* Try a few ways of applying the same transformation to both operands. */
9099 while (1)
9101 #ifndef WORD_REGISTER_OPERATIONS
9102 /* The test below this one won't handle SIGN_EXTENDs on these machines,
9103 so check specially. */
9104 if (code != GTU && code != GEU && code != LTU && code != LEU
9105 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
9106 && GET_CODE (XEXP (op0, 0)) == ASHIFT
9107 && GET_CODE (XEXP (op1, 0)) == ASHIFT
9108 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
9109 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
9110 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
9111 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
9112 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9113 && GET_CODE (XEXP (op1, 1)) == CONST_INT
9114 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
9115 && GET_CODE (XEXP (XEXP (op1, 0), 1)) == CONST_INT
9116 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (op1, 1))
9117 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (XEXP (op0, 0), 1))
9118 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (XEXP (op1, 0), 1))
9119 && (INTVAL (XEXP (op0, 1))
9120 == (GET_MODE_BITSIZE (GET_MODE (op0))
9121 - (GET_MODE_BITSIZE
9122 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
9124 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
9125 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
9127 #endif
9129 /* If both operands are the same constant shift, see if we can ignore the
9130 shift. We can if the shift is a rotate or if the bits shifted out of
9131 this shift are known to be zero for both inputs and if the type of
9132 comparison is compatible with the shift. */
9133 if (GET_CODE (op0) == GET_CODE (op1)
9134 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
9135 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
9136 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
9137 && (code != GT && code != LT && code != GE && code != LE))
9138 || (GET_CODE (op0) == ASHIFTRT
9139 && (code != GTU && code != LTU
9140 && code != GEU && code != GEU)))
9141 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9142 && INTVAL (XEXP (op0, 1)) >= 0
9143 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
9144 && XEXP (op0, 1) == XEXP (op1, 1))
9146 enum machine_mode mode = GET_MODE (op0);
9147 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9148 int shift_count = INTVAL (XEXP (op0, 1));
9150 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
9151 mask &= (mask >> shift_count) << shift_count;
9152 else if (GET_CODE (op0) == ASHIFT)
9153 mask = (mask & (mask << shift_count)) >> shift_count;
9155 if ((nonzero_bits (XEXP (op0, 0), mode) & ~ mask) == 0
9156 && (nonzero_bits (XEXP (op1, 0), mode) & ~ mask) == 0)
9157 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
9158 else
9159 break;
9162 /* If both operands are AND's of a paradoxical SUBREG by constant, the
9163 SUBREGs are of the same mode, and, in both cases, the AND would
9164 be redundant if the comparison was done in the narrower mode,
9165 do the comparison in the narrower mode (e.g., we are AND'ing with 1
9166 and the operand's possibly nonzero bits are 0xffffff01; in that case
9167 if we only care about QImode, we don't need the AND). This case
9168 occurs if the output mode of an scc insn is not SImode and
9169 STORE_FLAG_VALUE == 1 (e.g., the 386).
9171 Similarly, check for a case where the AND's are ZERO_EXTEND
9172 operations from some narrower mode even though a SUBREG is not
9173 present. */
9175 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
9176 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9177 && GET_CODE (XEXP (op1, 1)) == CONST_INT)
9179 rtx inner_op0 = XEXP (op0, 0);
9180 rtx inner_op1 = XEXP (op1, 0);
9181 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
9182 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
9183 int changed = 0;
9185 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
9186 && (GET_MODE_SIZE (GET_MODE (inner_op0))
9187 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
9188 && (GET_MODE (SUBREG_REG (inner_op0))
9189 == GET_MODE (SUBREG_REG (inner_op1)))
9190 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
9191 <= HOST_BITS_PER_WIDE_INT)
9192 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
9193 GET_MODE (SUBREG_REG (op0)))))
9194 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
9195 GET_MODE (SUBREG_REG (inner_op1))))))
9197 op0 = SUBREG_REG (inner_op0);
9198 op1 = SUBREG_REG (inner_op1);
9200 /* The resulting comparison is always unsigned since we masked
9201 off the original sign bit. */
9202 code = unsigned_condition (code);
9204 changed = 1;
9207 else if (c0 == c1)
9208 for (tmode = GET_CLASS_NARROWEST_MODE
9209 (GET_MODE_CLASS (GET_MODE (op0)));
9210 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
9211 if (c0 == GET_MODE_MASK (tmode))
9213 op0 = gen_lowpart_for_combine (tmode, inner_op0);
9214 op1 = gen_lowpart_for_combine (tmode, inner_op1);
9215 code = unsigned_condition (code);
9216 changed = 1;
9217 break;
9220 if (! changed)
9221 break;
9224 /* If both operands are NOT, we can strip off the outer operation
9225 and adjust the comparison code for swapped operands; similarly for
9226 NEG, except that this must be an equality comparison. */
9227 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
9228 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
9229 && (code == EQ || code == NE)))
9230 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
9232 else
9233 break;
9236 /* If the first operand is a constant, swap the operands and adjust the
9237 comparison code appropriately, but don't do this if the second operand
9238 is already a constant integer. */
9239 if (CONSTANT_P (op0) && GET_CODE (op1) != CONST_INT)
9241 tem = op0, op0 = op1, op1 = tem;
9242 code = swap_condition (code);
9245 /* We now enter a loop during which we will try to simplify the comparison.
9246 For the most part, we only are concerned with comparisons with zero,
9247 but some things may really be comparisons with zero but not start
9248 out looking that way. */
9250 while (GET_CODE (op1) == CONST_INT)
9252 enum machine_mode mode = GET_MODE (op0);
9253 int mode_width = GET_MODE_BITSIZE (mode);
9254 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9255 int equality_comparison_p;
9256 int sign_bit_comparison_p;
9257 int unsigned_comparison_p;
9258 HOST_WIDE_INT const_op;
9260 /* We only want to handle integral modes. This catches VOIDmode,
9261 CCmode, and the floating-point modes. An exception is that we
9262 can handle VOIDmode if OP0 is a COMPARE or a comparison
9263 operation. */
9265 if (GET_MODE_CLASS (mode) != MODE_INT
9266 && ! (mode == VOIDmode
9267 && (GET_CODE (op0) == COMPARE
9268 || GET_RTX_CLASS (GET_CODE (op0)) == '<')))
9269 break;
9271 /* Get the constant we are comparing against and turn off all bits
9272 not on in our mode. */
9273 const_op = INTVAL (op1);
9274 if (mode_width <= HOST_BITS_PER_WIDE_INT)
9275 const_op &= mask;
9277 /* If we are comparing against a constant power of two and the value
9278 being compared can only have that single bit nonzero (e.g., it was
9279 `and'ed with that bit), we can replace this with a comparison
9280 with zero. */
9281 if (const_op
9282 && (code == EQ || code == NE || code == GE || code == GEU
9283 || code == LT || code == LTU)
9284 && mode_width <= HOST_BITS_PER_WIDE_INT
9285 && exact_log2 (const_op) >= 0
9286 && nonzero_bits (op0, mode) == const_op)
9288 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
9289 op1 = const0_rtx, const_op = 0;
9292 /* Similarly, if we are comparing a value known to be either -1 or
9293 0 with -1, change it to the opposite comparison against zero. */
9295 if (const_op == -1
9296 && (code == EQ || code == NE || code == GT || code == LE
9297 || code == GEU || code == LTU)
9298 && num_sign_bit_copies (op0, mode) == mode_width)
9300 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
9301 op1 = const0_rtx, const_op = 0;
9304 /* Do some canonicalizations based on the comparison code. We prefer
9305 comparisons against zero and then prefer equality comparisons.
9306 If we can reduce the size of a constant, we will do that too. */
9308 switch (code)
9310 case LT:
9311 /* < C is equivalent to <= (C - 1) */
9312 if (const_op > 0)
9314 const_op -= 1;
9315 op1 = GEN_INT (const_op);
9316 code = LE;
9317 /* ... fall through to LE case below. */
9319 else
9320 break;
9322 case LE:
9323 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
9324 if (const_op < 0)
9326 const_op += 1;
9327 op1 = GEN_INT (const_op);
9328 code = LT;
9331 /* If we are doing a <= 0 comparison on a value known to have
9332 a zero sign bit, we can replace this with == 0. */
9333 else if (const_op == 0
9334 && mode_width <= HOST_BITS_PER_WIDE_INT
9335 && (nonzero_bits (op0, mode)
9336 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
9337 code = EQ;
9338 break;
9340 case GE:
9341 /* >= C is equivalent to > (C - 1). */
9342 if (const_op > 0)
9344 const_op -= 1;
9345 op1 = GEN_INT (const_op);
9346 code = GT;
9347 /* ... fall through to GT below. */
9349 else
9350 break;
9352 case GT:
9353 /* > C is equivalent to >= (C + 1); we do this for C < 0*/
9354 if (const_op < 0)
9356 const_op += 1;
9357 op1 = GEN_INT (const_op);
9358 code = GE;
9361 /* If we are doing a > 0 comparison on a value known to have
9362 a zero sign bit, we can replace this with != 0. */
9363 else if (const_op == 0
9364 && mode_width <= HOST_BITS_PER_WIDE_INT
9365 && (nonzero_bits (op0, mode)
9366 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
9367 code = NE;
9368 break;
9370 case LTU:
9371 /* < C is equivalent to <= (C - 1). */
9372 if (const_op > 0)
9374 const_op -= 1;
9375 op1 = GEN_INT (const_op);
9376 code = LEU;
9377 /* ... fall through ... */
9380 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
9381 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9382 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
9384 const_op = 0, op1 = const0_rtx;
9385 code = GE;
9386 break;
9388 else
9389 break;
9391 case LEU:
9392 /* unsigned <= 0 is equivalent to == 0 */
9393 if (const_op == 0)
9394 code = EQ;
9396 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
9397 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9398 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
9400 const_op = 0, op1 = const0_rtx;
9401 code = GE;
9403 break;
9405 case GEU:
9406 /* >= C is equivalent to < (C - 1). */
9407 if (const_op > 1)
9409 const_op -= 1;
9410 op1 = GEN_INT (const_op);
9411 code = GTU;
9412 /* ... fall through ... */
9415 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
9416 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9417 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
9419 const_op = 0, op1 = const0_rtx;
9420 code = LT;
9421 break;
9423 else
9424 break;
9426 case GTU:
9427 /* unsigned > 0 is equivalent to != 0 */
9428 if (const_op == 0)
9429 code = NE;
9431 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
9432 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9433 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
9435 const_op = 0, op1 = const0_rtx;
9436 code = LT;
9438 break;
9441 /* Compute some predicates to simplify code below. */
9443 equality_comparison_p = (code == EQ || code == NE);
9444 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
9445 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
9446 || code == LEU);
9448 /* If this is a sign bit comparison and we can do arithmetic in
9449 MODE, say that we will only be needing the sign bit of OP0. */
9450 if (sign_bit_comparison_p
9451 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
9452 op0 = force_to_mode (op0, mode,
9453 ((HOST_WIDE_INT) 1
9454 << (GET_MODE_BITSIZE (mode) - 1)),
9455 NULL_RTX, 0);
9457 /* Now try cases based on the opcode of OP0. If none of the cases
9458 does a "continue", we exit this loop immediately after the
9459 switch. */
9461 switch (GET_CODE (op0))
9463 case ZERO_EXTRACT:
9464 /* If we are extracting a single bit from a variable position in
9465 a constant that has only a single bit set and are comparing it
9466 with zero, we can convert this into an equality comparison
9467 between the position and the location of the single bit. */
9469 if (GET_CODE (XEXP (op0, 0)) == CONST_INT
9470 && XEXP (op0, 1) == const1_rtx
9471 && equality_comparison_p && const_op == 0
9472 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
9474 if (BITS_BIG_ENDIAN)
9475 #ifdef HAVE_extzv
9476 i = (GET_MODE_BITSIZE
9477 (insn_operand_mode[(int) CODE_FOR_extzv][1]) - 1 - i);
9478 #else
9479 i = BITS_PER_WORD - 1 - i;
9480 #endif
9482 op0 = XEXP (op0, 2);
9483 op1 = GEN_INT (i);
9484 const_op = i;
9486 /* Result is nonzero iff shift count is equal to I. */
9487 code = reverse_condition (code);
9488 continue;
9491 /* ... fall through ... */
9493 case SIGN_EXTRACT:
9494 tem = expand_compound_operation (op0);
9495 if (tem != op0)
9497 op0 = tem;
9498 continue;
9500 break;
9502 case NOT:
9503 /* If testing for equality, we can take the NOT of the constant. */
9504 if (equality_comparison_p
9505 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
9507 op0 = XEXP (op0, 0);
9508 op1 = tem;
9509 continue;
9512 /* If just looking at the sign bit, reverse the sense of the
9513 comparison. */
9514 if (sign_bit_comparison_p)
9516 op0 = XEXP (op0, 0);
9517 code = (code == GE ? LT : GE);
9518 continue;
9520 break;
9522 case NEG:
9523 /* If testing for equality, we can take the NEG of the constant. */
9524 if (equality_comparison_p
9525 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
9527 op0 = XEXP (op0, 0);
9528 op1 = tem;
9529 continue;
9532 /* The remaining cases only apply to comparisons with zero. */
9533 if (const_op != 0)
9534 break;
9536 /* When X is ABS or is known positive,
9537 (neg X) is < 0 if and only if X != 0. */
9539 if (sign_bit_comparison_p
9540 && (GET_CODE (XEXP (op0, 0)) == ABS
9541 || (mode_width <= HOST_BITS_PER_WIDE_INT
9542 && (nonzero_bits (XEXP (op0, 0), mode)
9543 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
9545 op0 = XEXP (op0, 0);
9546 code = (code == LT ? NE : EQ);
9547 continue;
9550 /* If we have NEG of something whose two high-order bits are the
9551 same, we know that "(-a) < 0" is equivalent to "a > 0". */
9552 if (num_sign_bit_copies (op0, mode) >= 2)
9554 op0 = XEXP (op0, 0);
9555 code = swap_condition (code);
9556 continue;
9558 break;
9560 case ROTATE:
9561 /* If we are testing equality and our count is a constant, we
9562 can perform the inverse operation on our RHS. */
9563 if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
9564 && (tem = simplify_binary_operation (ROTATERT, mode,
9565 op1, XEXP (op0, 1))) != 0)
9567 op0 = XEXP (op0, 0);
9568 op1 = tem;
9569 continue;
9572 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
9573 a particular bit. Convert it to an AND of a constant of that
9574 bit. This will be converted into a ZERO_EXTRACT. */
9575 if (const_op == 0 && sign_bit_comparison_p
9576 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9577 && mode_width <= HOST_BITS_PER_WIDE_INT)
9579 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
9580 ((HOST_WIDE_INT) 1
9581 << (mode_width - 1
9582 - INTVAL (XEXP (op0, 1)))));
9583 code = (code == LT ? NE : EQ);
9584 continue;
9587 /* ... fall through ... */
9589 case ABS:
9590 /* ABS is ignorable inside an equality comparison with zero. */
9591 if (const_op == 0 && equality_comparison_p)
9593 op0 = XEXP (op0, 0);
9594 continue;
9596 break;
9599 case SIGN_EXTEND:
9600 /* Can simplify (compare (zero/sign_extend FOO) CONST)
9601 to (compare FOO CONST) if CONST fits in FOO's mode and we
9602 are either testing inequality or have an unsigned comparison
9603 with ZERO_EXTEND or a signed comparison with SIGN_EXTEND. */
9604 if (! unsigned_comparison_p
9605 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
9606 <= HOST_BITS_PER_WIDE_INT)
9607 && ((unsigned HOST_WIDE_INT) const_op
9608 < (((HOST_WIDE_INT) 1
9609 << (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))) - 1)))))
9611 op0 = XEXP (op0, 0);
9612 continue;
9614 break;
9616 case SUBREG:
9617 /* Check for the case where we are comparing A - C1 with C2,
9618 both constants are smaller than 1/2 the maximum positive
9619 value in MODE, and the comparison is equality or unsigned.
9620 In that case, if A is either zero-extended to MODE or has
9621 sufficient sign bits so that the high-order bit in MODE
9622 is a copy of the sign in the inner mode, we can prove that it is
9623 safe to do the operation in the wider mode. This simplifies
9624 many range checks. */
9626 if (mode_width <= HOST_BITS_PER_WIDE_INT
9627 && subreg_lowpart_p (op0)
9628 && GET_CODE (SUBREG_REG (op0)) == PLUS
9629 && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT
9630 && INTVAL (XEXP (SUBREG_REG (op0), 1)) < 0
9631 && (- INTVAL (XEXP (SUBREG_REG (op0), 1))
9632 < GET_MODE_MASK (mode) / 2)
9633 && (unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode) / 2
9634 && (0 == (nonzero_bits (XEXP (SUBREG_REG (op0), 0),
9635 GET_MODE (SUBREG_REG (op0)))
9636 & ~ GET_MODE_MASK (mode))
9637 || (num_sign_bit_copies (XEXP (SUBREG_REG (op0), 0),
9638 GET_MODE (SUBREG_REG (op0)))
9639 > (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
9640 - GET_MODE_BITSIZE (mode)))))
9642 op0 = SUBREG_REG (op0);
9643 continue;
9646 /* If the inner mode is narrower and we are extracting the low part,
9647 we can treat the SUBREG as if it were a ZERO_EXTEND. */
9648 if (subreg_lowpart_p (op0)
9649 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
9650 /* Fall through */ ;
9651 else
9652 break;
9654 /* ... fall through ... */
9656 case ZERO_EXTEND:
9657 if ((unsigned_comparison_p || equality_comparison_p)
9658 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
9659 <= HOST_BITS_PER_WIDE_INT)
9660 && ((unsigned HOST_WIDE_INT) const_op
9661 < GET_MODE_MASK (GET_MODE (XEXP (op0, 0)))))
9663 op0 = XEXP (op0, 0);
9664 continue;
9666 break;
9668 case PLUS:
9669 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
9670 this for equality comparisons due to pathological cases involving
9671 overflows. */
9672 if (equality_comparison_p
9673 && 0 != (tem = simplify_binary_operation (MINUS, mode,
9674 op1, XEXP (op0, 1))))
9676 op0 = XEXP (op0, 0);
9677 op1 = tem;
9678 continue;
9681 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
9682 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
9683 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
9685 op0 = XEXP (XEXP (op0, 0), 0);
9686 code = (code == LT ? EQ : NE);
9687 continue;
9689 break;
9691 case MINUS:
9692 /* (eq (minus A B) C) -> (eq A (plus B C)) or
9693 (eq B (minus A C)), whichever simplifies. We can only do
9694 this for equality comparisons due to pathological cases involving
9695 overflows. */
9696 if (equality_comparison_p
9697 && 0 != (tem = simplify_binary_operation (PLUS, mode,
9698 XEXP (op0, 1), op1)))
9700 op0 = XEXP (op0, 0);
9701 op1 = tem;
9702 continue;
9705 if (equality_comparison_p
9706 && 0 != (tem = simplify_binary_operation (MINUS, mode,
9707 XEXP (op0, 0), op1)))
9709 op0 = XEXP (op0, 1);
9710 op1 = tem;
9711 continue;
9714 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
9715 of bits in X minus 1, is one iff X > 0. */
9716 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
9717 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
9718 && INTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
9719 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
9721 op0 = XEXP (op0, 1);
9722 code = (code == GE ? LE : GT);
9723 continue;
9725 break;
9727 case XOR:
9728 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
9729 if C is zero or B is a constant. */
9730 if (equality_comparison_p
9731 && 0 != (tem = simplify_binary_operation (XOR, mode,
9732 XEXP (op0, 1), op1)))
9734 op0 = XEXP (op0, 0);
9735 op1 = tem;
9736 continue;
9738 break;
9740 case EQ: case NE:
9741 case LT: case LTU: case LE: case LEU:
9742 case GT: case GTU: case GE: case GEU:
9743 /* We can't do anything if OP0 is a condition code value, rather
9744 than an actual data value. */
9745 if (const_op != 0
9746 #ifdef HAVE_cc0
9747 || XEXP (op0, 0) == cc0_rtx
9748 #endif
9749 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
9750 break;
9752 /* Get the two operands being compared. */
9753 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
9754 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
9755 else
9756 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
9758 /* Check for the cases where we simply want the result of the
9759 earlier test or the opposite of that result. */
9760 if (code == NE
9761 || (code == EQ && reversible_comparison_p (op0))
9762 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
9763 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
9764 && (STORE_FLAG_VALUE
9765 & (((HOST_WIDE_INT) 1
9766 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
9767 && (code == LT
9768 || (code == GE && reversible_comparison_p (op0)))))
9770 code = (code == LT || code == NE
9771 ? GET_CODE (op0) : reverse_condition (GET_CODE (op0)));
9772 op0 = tem, op1 = tem1;
9773 continue;
9775 break;
9777 case IOR:
9778 /* The sign bit of (ior (plus X (const_int -1)) X) is non-zero
9779 iff X <= 0. */
9780 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
9781 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
9782 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
9784 op0 = XEXP (op0, 1);
9785 code = (code == GE ? GT : LE);
9786 continue;
9788 break;
9790 case AND:
9791 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
9792 will be converted to a ZERO_EXTRACT later. */
9793 if (const_op == 0 && equality_comparison_p
9794 && GET_CODE (XEXP (op0, 0)) == ASHIFT
9795 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
9797 op0 = simplify_and_const_int
9798 (op0, mode, gen_rtx_combine (LSHIFTRT, mode,
9799 XEXP (op0, 1),
9800 XEXP (XEXP (op0, 0), 1)),
9801 (HOST_WIDE_INT) 1);
9802 continue;
9805 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
9806 zero and X is a comparison and C1 and C2 describe only bits set
9807 in STORE_FLAG_VALUE, we can compare with X. */
9808 if (const_op == 0 && equality_comparison_p
9809 && mode_width <= HOST_BITS_PER_WIDE_INT
9810 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9811 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
9812 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
9813 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
9814 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
9816 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
9817 << INTVAL (XEXP (XEXP (op0, 0), 1)));
9818 if ((~ STORE_FLAG_VALUE & mask) == 0
9819 && (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (op0, 0), 0))) == '<'
9820 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
9821 && GET_RTX_CLASS (GET_CODE (tem)) == '<')))
9823 op0 = XEXP (XEXP (op0, 0), 0);
9824 continue;
9828 /* If we are doing an equality comparison of an AND of a bit equal
9829 to the sign bit, replace this with a LT or GE comparison of
9830 the underlying value. */
9831 if (equality_comparison_p
9832 && const_op == 0
9833 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9834 && mode_width <= HOST_BITS_PER_WIDE_INT
9835 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
9836 == (HOST_WIDE_INT) 1 << (mode_width - 1)))
9838 op0 = XEXP (op0, 0);
9839 code = (code == EQ ? GE : LT);
9840 continue;
9843 /* If this AND operation is really a ZERO_EXTEND from a narrower
9844 mode, the constant fits within that mode, and this is either an
9845 equality or unsigned comparison, try to do this comparison in
9846 the narrower mode. */
9847 if ((equality_comparison_p || unsigned_comparison_p)
9848 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9849 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
9850 & GET_MODE_MASK (mode))
9851 + 1)) >= 0
9852 && const_op >> i == 0
9853 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
9855 op0 = gen_lowpart_for_combine (tmode, XEXP (op0, 0));
9856 continue;
9858 break;
9860 case ASHIFT:
9861 /* If we have (compare (ashift FOO N) (const_int C)) and
9862 the high order N bits of FOO (N+1 if an inequality comparison)
9863 are known to be zero, we can do this by comparing FOO with C
9864 shifted right N bits so long as the low-order N bits of C are
9865 zero. */
9866 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
9867 && INTVAL (XEXP (op0, 1)) >= 0
9868 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
9869 < HOST_BITS_PER_WIDE_INT)
9870 && ((const_op
9871 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
9872 && mode_width <= HOST_BITS_PER_WIDE_INT
9873 && (nonzero_bits (XEXP (op0, 0), mode)
9874 & ~ (mask >> (INTVAL (XEXP (op0, 1))
9875 + ! equality_comparison_p))) == 0)
9877 const_op >>= INTVAL (XEXP (op0, 1));
9878 op1 = GEN_INT (const_op);
9879 op0 = XEXP (op0, 0);
9880 continue;
9883 /* If we are doing a sign bit comparison, it means we are testing
9884 a particular bit. Convert it to the appropriate AND. */
9885 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
9886 && mode_width <= HOST_BITS_PER_WIDE_INT)
9888 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
9889 ((HOST_WIDE_INT) 1
9890 << (mode_width - 1
9891 - INTVAL (XEXP (op0, 1)))));
9892 code = (code == LT ? NE : EQ);
9893 continue;
9896 /* If this an equality comparison with zero and we are shifting
9897 the low bit to the sign bit, we can convert this to an AND of the
9898 low-order bit. */
9899 if (const_op == 0 && equality_comparison_p
9900 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9901 && INTVAL (XEXP (op0, 1)) == mode_width - 1)
9903 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
9904 (HOST_WIDE_INT) 1);
9905 continue;
9907 break;
9909 case ASHIFTRT:
9910 /* If this is an equality comparison with zero, we can do this
9911 as a logical shift, which might be much simpler. */
9912 if (equality_comparison_p && const_op == 0
9913 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
9915 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
9916 XEXP (op0, 0),
9917 INTVAL (XEXP (op0, 1)));
9918 continue;
9921 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
9922 do the comparison in a narrower mode. */
9923 if (! unsigned_comparison_p
9924 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9925 && GET_CODE (XEXP (op0, 0)) == ASHIFT
9926 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
9927 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
9928 MODE_INT, 1)) != BLKmode
9929 && ((unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (tmode)
9930 || ((unsigned HOST_WIDE_INT) - const_op
9931 <= GET_MODE_MASK (tmode))))
9933 op0 = gen_lowpart_for_combine (tmode, XEXP (XEXP (op0, 0), 0));
9934 continue;
9937 /* ... fall through ... */
9938 case LSHIFTRT:
9939 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
9940 the low order N bits of FOO are known to be zero, we can do this
9941 by comparing FOO with C shifted left N bits so long as no
9942 overflow occurs. */
9943 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
9944 && INTVAL (XEXP (op0, 1)) >= 0
9945 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
9946 && mode_width <= HOST_BITS_PER_WIDE_INT
9947 && (nonzero_bits (XEXP (op0, 0), mode)
9948 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
9949 && (const_op == 0
9950 || (floor_log2 (const_op) + INTVAL (XEXP (op0, 1))
9951 < mode_width)))
9953 const_op <<= INTVAL (XEXP (op0, 1));
9954 op1 = GEN_INT (const_op);
9955 op0 = XEXP (op0, 0);
9956 continue;
9959 /* If we are using this shift to extract just the sign bit, we
9960 can replace this with an LT or GE comparison. */
9961 if (const_op == 0
9962 && (equality_comparison_p || sign_bit_comparison_p)
9963 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9964 && INTVAL (XEXP (op0, 1)) == mode_width - 1)
9966 op0 = XEXP (op0, 0);
9967 code = (code == NE || code == GT ? LT : GE);
9968 continue;
9970 break;
9973 break;
9976 /* Now make any compound operations involved in this comparison. Then,
9977 check for an outmost SUBREG on OP0 that isn't doing anything or is
9978 paradoxical. The latter case can only occur when it is known that the
9979 "extra" bits will be zero. Therefore, it is safe to remove the SUBREG.
9980 We can never remove a SUBREG for a non-equality comparison because the
9981 sign bit is in a different place in the underlying object. */
9983 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
9984 op1 = make_compound_operation (op1, SET);
9986 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
9987 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
9988 && (code == NE || code == EQ)
9989 && ((GET_MODE_SIZE (GET_MODE (op0))
9990 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))))
9992 op0 = SUBREG_REG (op0);
9993 op1 = gen_lowpart_for_combine (GET_MODE (op0), op1);
9996 else if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
9997 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
9998 && (code == NE || code == EQ)
9999 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10000 <= HOST_BITS_PER_WIDE_INT)
10001 && (nonzero_bits (SUBREG_REG (op0), GET_MODE (SUBREG_REG (op0)))
10002 & ~ GET_MODE_MASK (GET_MODE (op0))) == 0
10003 && (tem = gen_lowpart_for_combine (GET_MODE (SUBREG_REG (op0)),
10004 op1),
10005 (nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
10006 & ~ GET_MODE_MASK (GET_MODE (op0))) == 0))
10007 op0 = SUBREG_REG (op0), op1 = tem;
10009 /* We now do the opposite procedure: Some machines don't have compare
10010 insns in all modes. If OP0's mode is an integer mode smaller than a
10011 word and we can't do a compare in that mode, see if there is a larger
10012 mode for which we can do the compare. There are a number of cases in
10013 which we can use the wider mode. */
10015 mode = GET_MODE (op0);
10016 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10017 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
10018 && cmp_optab->handlers[(int) mode].insn_code == CODE_FOR_nothing)
10019 for (tmode = GET_MODE_WIDER_MODE (mode);
10020 (tmode != VOIDmode
10021 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
10022 tmode = GET_MODE_WIDER_MODE (tmode))
10023 if (cmp_optab->handlers[(int) tmode].insn_code != CODE_FOR_nothing)
10025 /* If the only nonzero bits in OP0 and OP1 are those in the
10026 narrower mode and this is an equality or unsigned comparison,
10027 we can use the wider mode. Similarly for sign-extended
10028 values, in which case it is true for all comparisons. */
10029 if (((code == EQ || code == NE
10030 || code == GEU || code == GTU || code == LEU || code == LTU)
10031 && (nonzero_bits (op0, tmode) & ~ GET_MODE_MASK (mode)) == 0
10032 && (nonzero_bits (op1, tmode) & ~ GET_MODE_MASK (mode)) == 0)
10033 || ((num_sign_bit_copies (op0, tmode)
10034 > GET_MODE_BITSIZE (tmode) - GET_MODE_BITSIZE (mode))
10035 && (num_sign_bit_copies (op1, tmode)
10036 > GET_MODE_BITSIZE (tmode) - GET_MODE_BITSIZE (mode))))
10038 op0 = gen_lowpart_for_combine (tmode, op0);
10039 op1 = gen_lowpart_for_combine (tmode, op1);
10040 break;
10043 /* If this is a test for negative, we can make an explicit
10044 test of the sign bit. */
10046 if (op1 == const0_rtx && (code == LT || code == GE)
10047 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10049 op0 = gen_binary (AND, tmode,
10050 gen_lowpart_for_combine (tmode, op0),
10051 GEN_INT ((HOST_WIDE_INT) 1
10052 << (GET_MODE_BITSIZE (mode) - 1)));
10053 code = (code == LT) ? NE : EQ;
10054 break;
10058 #ifdef CANONICALIZE_COMPARISON
10059 /* If this machine only supports a subset of valid comparisons, see if we
10060 can convert an unsupported one into a supported one. */
10061 CANONICALIZE_COMPARISON (code, op0, op1);
10062 #endif
10064 *pop0 = op0;
10065 *pop1 = op1;
10067 return code;
10070 /* Return 1 if we know that X, a comparison operation, is not operating
10071 on a floating-point value or is EQ or NE, meaning that we can safely
10072 reverse it. */
10074 static int
10075 reversible_comparison_p (x)
10076 rtx x;
10078 if (TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
10079 || flag_fast_math
10080 || GET_CODE (x) == NE || GET_CODE (x) == EQ)
10081 return 1;
10083 switch (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))))
10085 case MODE_INT:
10086 case MODE_PARTIAL_INT:
10087 case MODE_COMPLEX_INT:
10088 return 1;
10090 case MODE_CC:
10091 /* If the mode of the condition codes tells us that this is safe,
10092 we need look no further. */
10093 if (REVERSIBLE_CC_MODE (GET_MODE (XEXP (x, 0))))
10094 return 1;
10096 /* Otherwise try and find where the condition codes were last set and
10097 use that. */
10098 x = get_last_value (XEXP (x, 0));
10099 return (x && GET_CODE (x) == COMPARE
10100 && ! FLOAT_MODE_P (GET_MODE (XEXP (x, 0))));
10103 return 0;
10106 /* Utility function for following routine. Called when X is part of a value
10107 being stored into reg_last_set_value. Sets reg_last_set_table_tick
10108 for each register mentioned. Similar to mention_regs in cse.c */
10110 static void
10111 update_table_tick (x)
10112 rtx x;
10114 register enum rtx_code code = GET_CODE (x);
10115 register char *fmt = GET_RTX_FORMAT (code);
10116 register int i;
10118 if (code == REG)
10120 int regno = REGNO (x);
10121 int endregno = regno + (regno < FIRST_PSEUDO_REGISTER
10122 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
10124 for (i = regno; i < endregno; i++)
10125 reg_last_set_table_tick[i] = label_tick;
10127 return;
10130 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
10131 /* Note that we can't have an "E" in values stored; see
10132 get_last_value_validate. */
10133 if (fmt[i] == 'e')
10134 update_table_tick (XEXP (x, i));
10137 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
10138 are saying that the register is clobbered and we no longer know its
10139 value. If INSN is zero, don't update reg_last_set; this is only permitted
10140 with VALUE also zero and is used to invalidate the register. */
10142 static void
10143 record_value_for_reg (reg, insn, value)
10144 rtx reg;
10145 rtx insn;
10146 rtx value;
10148 int regno = REGNO (reg);
10149 int endregno = regno + (regno < FIRST_PSEUDO_REGISTER
10150 ? HARD_REGNO_NREGS (regno, GET_MODE (reg)) : 1);
10151 int i;
10153 /* If VALUE contains REG and we have a previous value for REG, substitute
10154 the previous value. */
10155 if (value && insn && reg_overlap_mentioned_p (reg, value))
10157 rtx tem;
10159 /* Set things up so get_last_value is allowed to see anything set up to
10160 our insn. */
10161 subst_low_cuid = INSN_CUID (insn);
10162 tem = get_last_value (reg);
10164 if (tem)
10165 value = replace_rtx (copy_rtx (value), reg, tem);
10168 /* For each register modified, show we don't know its value, that
10169 we don't know about its bitwise content, that its value has been
10170 updated, and that we don't know the location of the death of the
10171 register. */
10172 for (i = regno; i < endregno; i ++)
10174 if (insn)
10175 reg_last_set[i] = insn;
10176 reg_last_set_value[i] = 0;
10177 reg_last_set_mode[i] = 0;
10178 reg_last_set_nonzero_bits[i] = 0;
10179 reg_last_set_sign_bit_copies[i] = 0;
10180 reg_last_death[i] = 0;
10183 /* Mark registers that are being referenced in this value. */
10184 if (value)
10185 update_table_tick (value);
10187 /* Now update the status of each register being set.
10188 If someone is using this register in this block, set this register
10189 to invalid since we will get confused between the two lives in this
10190 basic block. This makes using this register always invalid. In cse, we
10191 scan the table to invalidate all entries using this register, but this
10192 is too much work for us. */
10194 for (i = regno; i < endregno; i++)
10196 reg_last_set_label[i] = label_tick;
10197 if (value && reg_last_set_table_tick[i] == label_tick)
10198 reg_last_set_invalid[i] = 1;
10199 else
10200 reg_last_set_invalid[i] = 0;
10203 /* The value being assigned might refer to X (like in "x++;"). In that
10204 case, we must replace it with (clobber (const_int 0)) to prevent
10205 infinite loops. */
10206 if (value && ! get_last_value_validate (&value, insn,
10207 reg_last_set_label[regno], 0))
10209 value = copy_rtx (value);
10210 if (! get_last_value_validate (&value, insn,
10211 reg_last_set_label[regno], 1))
10212 value = 0;
10215 /* For the main register being modified, update the value, the mode, the
10216 nonzero bits, and the number of sign bit copies. */
10218 reg_last_set_value[regno] = value;
10220 if (value)
10222 subst_low_cuid = INSN_CUID (insn);
10223 reg_last_set_mode[regno] = GET_MODE (reg);
10224 reg_last_set_nonzero_bits[regno] = nonzero_bits (value, GET_MODE (reg));
10225 reg_last_set_sign_bit_copies[regno]
10226 = num_sign_bit_copies (value, GET_MODE (reg));
10230 /* Used for communication between the following two routines. */
10231 static rtx record_dead_insn;
10233 /* Called via note_stores from record_dead_and_set_regs to handle one
10234 SET or CLOBBER in an insn. */
10236 static void
10237 record_dead_and_set_regs_1 (dest, setter)
10238 rtx dest, setter;
10240 if (GET_CODE (dest) == SUBREG)
10241 dest = SUBREG_REG (dest);
10243 if (GET_CODE (dest) == REG)
10245 /* If we are setting the whole register, we know its value. Otherwise
10246 show that we don't know the value. We can handle SUBREG in
10247 some cases. */
10248 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
10249 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
10250 else if (GET_CODE (setter) == SET
10251 && GET_CODE (SET_DEST (setter)) == SUBREG
10252 && SUBREG_REG (SET_DEST (setter)) == dest
10253 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
10254 && subreg_lowpart_p (SET_DEST (setter)))
10255 record_value_for_reg (dest, record_dead_insn,
10256 gen_lowpart_for_combine (GET_MODE (dest),
10257 SET_SRC (setter)));
10258 else
10259 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
10261 else if (GET_CODE (dest) == MEM
10262 /* Ignore pushes, they clobber nothing. */
10263 && ! push_operand (dest, GET_MODE (dest)))
10264 mem_last_set = INSN_CUID (record_dead_insn);
10267 /* Update the records of when each REG was most recently set or killed
10268 for the things done by INSN. This is the last thing done in processing
10269 INSN in the combiner loop.
10271 We update reg_last_set, reg_last_set_value, reg_last_set_mode,
10272 reg_last_set_nonzero_bits, reg_last_set_sign_bit_copies, reg_last_death,
10273 and also the similar information mem_last_set (which insn most recently
10274 modified memory) and last_call_cuid (which insn was the most recent
10275 subroutine call). */
10277 static void
10278 record_dead_and_set_regs (insn)
10279 rtx insn;
10281 register rtx link;
10282 int i;
10284 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
10286 if (REG_NOTE_KIND (link) == REG_DEAD
10287 && GET_CODE (XEXP (link, 0)) == REG)
10289 int regno = REGNO (XEXP (link, 0));
10290 int endregno
10291 = regno + (regno < FIRST_PSEUDO_REGISTER
10292 ? HARD_REGNO_NREGS (regno, GET_MODE (XEXP (link, 0)))
10293 : 1);
10295 for (i = regno; i < endregno; i++)
10296 reg_last_death[i] = insn;
10298 else if (REG_NOTE_KIND (link) == REG_INC)
10299 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
10302 if (GET_CODE (insn) == CALL_INSN)
10304 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
10305 if (call_used_regs[i])
10307 reg_last_set_value[i] = 0;
10308 reg_last_set_mode[i] = 0;
10309 reg_last_set_nonzero_bits[i] = 0;
10310 reg_last_set_sign_bit_copies[i] = 0;
10311 reg_last_death[i] = 0;
10314 last_call_cuid = mem_last_set = INSN_CUID (insn);
10317 record_dead_insn = insn;
10318 note_stores (PATTERN (insn), record_dead_and_set_regs_1);
10321 /* Utility routine for the following function. Verify that all the registers
10322 mentioned in *LOC are valid when *LOC was part of a value set when
10323 label_tick == TICK. Return 0 if some are not.
10325 If REPLACE is non-zero, replace the invalid reference with
10326 (clobber (const_int 0)) and return 1. This replacement is useful because
10327 we often can get useful information about the form of a value (e.g., if
10328 it was produced by a shift that always produces -1 or 0) even though
10329 we don't know exactly what registers it was produced from. */
10331 static int
10332 get_last_value_validate (loc, insn, tick, replace)
10333 rtx *loc;
10334 rtx insn;
10335 int tick;
10336 int replace;
10338 rtx x = *loc;
10339 char *fmt = GET_RTX_FORMAT (GET_CODE (x));
10340 int len = GET_RTX_LENGTH (GET_CODE (x));
10341 int i;
10343 if (GET_CODE (x) == REG)
10345 int regno = REGNO (x);
10346 int endregno = regno + (regno < FIRST_PSEUDO_REGISTER
10347 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
10348 int j;
10350 for (j = regno; j < endregno; j++)
10351 if (reg_last_set_invalid[j]
10352 /* If this is a pseudo-register that was only set once, it is
10353 always valid. */
10354 || (! (regno >= FIRST_PSEUDO_REGISTER && REG_N_SETS (regno) == 1)
10355 && reg_last_set_label[j] > tick))
10357 if (replace)
10358 *loc = gen_rtx (CLOBBER, GET_MODE (x), const0_rtx);
10359 return replace;
10362 return 1;
10364 /* If this is a memory reference, make sure that there were
10365 no stores after it that might have clobbered the value. We don't
10366 have alias info, so we assume any store invalidates it. */
10367 else if (GET_CODE (x) == MEM && ! RTX_UNCHANGING_P (x)
10368 && INSN_CUID (insn) <= mem_last_set)
10370 if (replace)
10371 *loc = gen_rtx (CLOBBER, GET_MODE (x), const0_rtx);
10372 return replace;
10375 for (i = 0; i < len; i++)
10376 if ((fmt[i] == 'e'
10377 && get_last_value_validate (&XEXP (x, i), insn, tick, replace) == 0)
10378 /* Don't bother with these. They shouldn't occur anyway. */
10379 || fmt[i] == 'E')
10380 return 0;
10382 /* If we haven't found a reason for it to be invalid, it is valid. */
10383 return 1;
10386 /* Get the last value assigned to X, if known. Some registers
10387 in the value may be replaced with (clobber (const_int 0)) if their value
10388 is known longer known reliably. */
10390 static rtx
10391 get_last_value (x)
10392 rtx x;
10394 int regno;
10395 rtx value;
10397 /* If this is a non-paradoxical SUBREG, get the value of its operand and
10398 then convert it to the desired mode. If this is a paradoxical SUBREG,
10399 we cannot predict what values the "extra" bits might have. */
10400 if (GET_CODE (x) == SUBREG
10401 && subreg_lowpart_p (x)
10402 && (GET_MODE_SIZE (GET_MODE (x))
10403 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
10404 && (value = get_last_value (SUBREG_REG (x))) != 0)
10405 return gen_lowpart_for_combine (GET_MODE (x), value);
10407 if (GET_CODE (x) != REG)
10408 return 0;
10410 regno = REGNO (x);
10411 value = reg_last_set_value[regno];
10413 /* If we don't have a value or if it isn't for this basic block,
10414 return 0. */
10416 if (value == 0
10417 || (REG_N_SETS (regno) != 1
10418 && reg_last_set_label[regno] != label_tick))
10419 return 0;
10421 /* If the value was set in a later insn than the ones we are processing,
10422 we can't use it even if the register was only set once, but make a quick
10423 check to see if the previous insn set it to something. This is commonly
10424 the case when the same pseudo is used by repeated insns.
10426 This does not work if there exists an instruction which is temporarily
10427 not on the insn chain. */
10429 if (INSN_CUID (reg_last_set[regno]) >= subst_low_cuid)
10431 rtx insn, set;
10433 /* We can not do anything useful in this case, because there is
10434 an instruction which is not on the insn chain. */
10435 if (subst_prev_insn)
10436 return 0;
10438 /* Skip over USE insns. They are not useful here, and they may have
10439 been made by combine, in which case they do not have a INSN_CUID
10440 value. We can't use prev_real_insn, because that would incorrectly
10441 take us backwards across labels. Skip over BARRIERs also, since
10442 they could have been made by combine. If we see one, we must be
10443 optimizing dead code, so it doesn't matter what we do. */
10444 for (insn = prev_nonnote_insn (subst_insn);
10445 insn && ((GET_CODE (insn) == INSN
10446 && GET_CODE (PATTERN (insn)) == USE)
10447 || GET_CODE (insn) == BARRIER
10448 || INSN_CUID (insn) >= subst_low_cuid);
10449 insn = prev_nonnote_insn (insn))
10452 if (insn
10453 && (set = single_set (insn)) != 0
10454 && rtx_equal_p (SET_DEST (set), x))
10456 value = SET_SRC (set);
10458 /* Make sure that VALUE doesn't reference X. Replace any
10459 explicit references with a CLOBBER. If there are any remaining
10460 references (rare), don't use the value. */
10462 if (reg_mentioned_p (x, value))
10463 value = replace_rtx (copy_rtx (value), x,
10464 gen_rtx (CLOBBER, GET_MODE (x), const0_rtx));
10466 if (reg_overlap_mentioned_p (x, value))
10467 return 0;
10469 else
10470 return 0;
10473 /* If the value has all its registers valid, return it. */
10474 if (get_last_value_validate (&value, reg_last_set[regno],
10475 reg_last_set_label[regno], 0))
10476 return value;
10478 /* Otherwise, make a copy and replace any invalid register with
10479 (clobber (const_int 0)). If that fails for some reason, return 0. */
10481 value = copy_rtx (value);
10482 if (get_last_value_validate (&value, reg_last_set[regno],
10483 reg_last_set_label[regno], 1))
10484 return value;
10486 return 0;
10489 /* Return nonzero if expression X refers to a REG or to memory
10490 that is set in an instruction more recent than FROM_CUID. */
10492 static int
10493 use_crosses_set_p (x, from_cuid)
10494 register rtx x;
10495 int from_cuid;
10497 register char *fmt;
10498 register int i;
10499 register enum rtx_code code = GET_CODE (x);
10501 if (code == REG)
10503 register int regno = REGNO (x);
10504 int endreg = regno + (regno < FIRST_PSEUDO_REGISTER
10505 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
10507 #ifdef PUSH_ROUNDING
10508 /* Don't allow uses of the stack pointer to be moved,
10509 because we don't know whether the move crosses a push insn. */
10510 if (regno == STACK_POINTER_REGNUM)
10511 return 1;
10512 #endif
10513 for (;regno < endreg; regno++)
10514 if (reg_last_set[regno]
10515 && INSN_CUID (reg_last_set[regno]) > from_cuid)
10516 return 1;
10517 return 0;
10520 if (code == MEM && mem_last_set > from_cuid)
10521 return 1;
10523 fmt = GET_RTX_FORMAT (code);
10525 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
10527 if (fmt[i] == 'E')
10529 register int j;
10530 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
10531 if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
10532 return 1;
10534 else if (fmt[i] == 'e'
10535 && use_crosses_set_p (XEXP (x, i), from_cuid))
10536 return 1;
10538 return 0;
10541 /* Define three variables used for communication between the following
10542 routines. */
10544 static int reg_dead_regno, reg_dead_endregno;
10545 static int reg_dead_flag;
10547 /* Function called via note_stores from reg_dead_at_p.
10549 If DEST is within [reg_dead_regno, reg_dead_endregno), set
10550 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
10552 static void
10553 reg_dead_at_p_1 (dest, x)
10554 rtx dest;
10555 rtx x;
10557 int regno, endregno;
10559 if (GET_CODE (dest) != REG)
10560 return;
10562 regno = REGNO (dest);
10563 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
10564 ? HARD_REGNO_NREGS (regno, GET_MODE (dest)) : 1);
10566 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
10567 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
10570 /* Return non-zero if REG is known to be dead at INSN.
10572 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
10573 referencing REG, it is dead. If we hit a SET referencing REG, it is
10574 live. Otherwise, see if it is live or dead at the start of the basic
10575 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
10576 must be assumed to be always live. */
10578 static int
10579 reg_dead_at_p (reg, insn)
10580 rtx reg;
10581 rtx insn;
10583 int block, i;
10585 /* Set variables for reg_dead_at_p_1. */
10586 reg_dead_regno = REGNO (reg);
10587 reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
10588 ? HARD_REGNO_NREGS (reg_dead_regno,
10589 GET_MODE (reg))
10590 : 1);
10592 reg_dead_flag = 0;
10594 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. */
10595 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
10597 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
10598 if (TEST_HARD_REG_BIT (newpat_used_regs, i))
10599 return 0;
10602 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
10603 beginning of function. */
10604 for (; insn && GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != BARRIER;
10605 insn = prev_nonnote_insn (insn))
10607 note_stores (PATTERN (insn), reg_dead_at_p_1);
10608 if (reg_dead_flag)
10609 return reg_dead_flag == 1 ? 1 : 0;
10611 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
10612 return 1;
10615 /* Get the basic block number that we were in. */
10616 if (insn == 0)
10617 block = 0;
10618 else
10620 for (block = 0; block < n_basic_blocks; block++)
10621 if (insn == basic_block_head[block])
10622 break;
10624 if (block == n_basic_blocks)
10625 return 0;
10628 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
10629 if (basic_block_live_at_start[block][i / REGSET_ELT_BITS]
10630 & ((REGSET_ELT_TYPE) 1 << (i % REGSET_ELT_BITS)))
10631 return 0;
10633 return 1;
10636 /* Note hard registers in X that are used. This code is similar to
10637 that in flow.c, but much simpler since we don't care about pseudos. */
10639 static void
10640 mark_used_regs_combine (x)
10641 rtx x;
10643 register RTX_CODE code = GET_CODE (x);
10644 register int regno;
10645 int i;
10647 switch (code)
10649 case LABEL_REF:
10650 case SYMBOL_REF:
10651 case CONST_INT:
10652 case CONST:
10653 case CONST_DOUBLE:
10654 case PC:
10655 case ADDR_VEC:
10656 case ADDR_DIFF_VEC:
10657 case ASM_INPUT:
10658 #ifdef HAVE_cc0
10659 /* CC0 must die in the insn after it is set, so we don't need to take
10660 special note of it here. */
10661 case CC0:
10662 #endif
10663 return;
10665 case CLOBBER:
10666 /* If we are clobbering a MEM, mark any hard registers inside the
10667 address as used. */
10668 if (GET_CODE (XEXP (x, 0)) == MEM)
10669 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
10670 return;
10672 case REG:
10673 regno = REGNO (x);
10674 /* A hard reg in a wide mode may really be multiple registers.
10675 If so, mark all of them just like the first. */
10676 if (regno < FIRST_PSEUDO_REGISTER)
10678 /* None of this applies to the stack, frame or arg pointers */
10679 if (regno == STACK_POINTER_REGNUM
10680 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
10681 || regno == HARD_FRAME_POINTER_REGNUM
10682 #endif
10683 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
10684 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
10685 #endif
10686 || regno == FRAME_POINTER_REGNUM)
10687 return;
10689 i = HARD_REGNO_NREGS (regno, GET_MODE (x));
10690 while (i-- > 0)
10691 SET_HARD_REG_BIT (newpat_used_regs, regno + i);
10693 return;
10695 case SET:
10697 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
10698 the address. */
10699 register rtx testreg = SET_DEST (x);
10701 while (GET_CODE (testreg) == SUBREG
10702 || GET_CODE (testreg) == ZERO_EXTRACT
10703 || GET_CODE (testreg) == SIGN_EXTRACT
10704 || GET_CODE (testreg) == STRICT_LOW_PART)
10705 testreg = XEXP (testreg, 0);
10707 if (GET_CODE (testreg) == MEM)
10708 mark_used_regs_combine (XEXP (testreg, 0));
10710 mark_used_regs_combine (SET_SRC (x));
10711 return;
10715 /* Recursively scan the operands of this expression. */
10718 register char *fmt = GET_RTX_FORMAT (code);
10720 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
10722 if (fmt[i] == 'e')
10723 mark_used_regs_combine (XEXP (x, i));
10724 else if (fmt[i] == 'E')
10726 register int j;
10728 for (j = 0; j < XVECLEN (x, i); j++)
10729 mark_used_regs_combine (XVECEXP (x, i, j));
10736 /* Remove register number REGNO from the dead registers list of INSN.
10738 Return the note used to record the death, if there was one. */
10741 remove_death (regno, insn)
10742 int regno;
10743 rtx insn;
10745 register rtx note = find_regno_note (insn, REG_DEAD, regno);
10747 if (note)
10749 REG_N_DEATHS (regno)--;
10750 remove_note (insn, note);
10753 return note;
10756 /* For each register (hardware or pseudo) used within expression X, if its
10757 death is in an instruction with cuid between FROM_CUID (inclusive) and
10758 TO_INSN (exclusive), put a REG_DEAD note for that register in the
10759 list headed by PNOTES.
10761 That said, don't move registers killed by maybe_kill_insn.
10763 This is done when X is being merged by combination into TO_INSN. These
10764 notes will then be distributed as needed. */
10766 static void
10767 move_deaths (x, maybe_kill_insn, from_cuid, to_insn, pnotes)
10768 rtx x;
10769 rtx maybe_kill_insn;
10770 int from_cuid;
10771 rtx to_insn;
10772 rtx *pnotes;
10774 register char *fmt;
10775 register int len, i;
10776 register enum rtx_code code = GET_CODE (x);
10778 if (code == REG)
10780 register int regno = REGNO (x);
10781 register rtx where_dead = reg_last_death[regno];
10782 register rtx before_dead, after_dead;
10784 /* Don't move the register if it gets killed in between from and to */
10785 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
10786 && !reg_referenced_p (x, maybe_kill_insn))
10787 return;
10789 /* WHERE_DEAD could be a USE insn made by combine, so first we
10790 make sure that we have insns with valid INSN_CUID values. */
10791 before_dead = where_dead;
10792 while (before_dead && INSN_UID (before_dead) > max_uid_cuid)
10793 before_dead = PREV_INSN (before_dead);
10794 after_dead = where_dead;
10795 while (after_dead && INSN_UID (after_dead) > max_uid_cuid)
10796 after_dead = NEXT_INSN (after_dead);
10798 if (before_dead && after_dead
10799 && INSN_CUID (before_dead) >= from_cuid
10800 && (INSN_CUID (after_dead) < INSN_CUID (to_insn)
10801 || (where_dead != after_dead
10802 && INSN_CUID (after_dead) == INSN_CUID (to_insn))))
10804 rtx note = remove_death (regno, where_dead);
10806 /* It is possible for the call above to return 0. This can occur
10807 when reg_last_death points to I2 or I1 that we combined with.
10808 In that case make a new note.
10810 We must also check for the case where X is a hard register
10811 and NOTE is a death note for a range of hard registers
10812 including X. In that case, we must put REG_DEAD notes for
10813 the remaining registers in place of NOTE. */
10815 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
10816 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
10817 > GET_MODE_SIZE (GET_MODE (x))))
10819 int deadregno = REGNO (XEXP (note, 0));
10820 int deadend
10821 = (deadregno + HARD_REGNO_NREGS (deadregno,
10822 GET_MODE (XEXP (note, 0))));
10823 int ourend = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
10824 int i;
10826 for (i = deadregno; i < deadend; i++)
10827 if (i < regno || i >= ourend)
10828 REG_NOTES (where_dead)
10829 = gen_rtx (EXPR_LIST, REG_DEAD,
10830 gen_rtx (REG, reg_raw_mode[i], i),
10831 REG_NOTES (where_dead));
10833 /* If we didn't find any note, or if we found a REG_DEAD note that
10834 covers only part of the given reg, and we have a multi-reg hard
10835 register, then to be safe we must check for REG_DEAD notes
10836 for each register other than the first. They could have
10837 their own REG_DEAD notes lying around. */
10838 else if ((note == 0
10839 || (note != 0
10840 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
10841 < GET_MODE_SIZE (GET_MODE (x)))))
10842 && regno < FIRST_PSEUDO_REGISTER
10843 && HARD_REGNO_NREGS (regno, GET_MODE (x)) > 1)
10845 int ourend = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
10846 int i, offset;
10847 rtx oldnotes = 0;
10849 if (note)
10850 offset = HARD_REGNO_NREGS (regno, GET_MODE (XEXP (note, 0)));
10851 else
10852 offset = 1;
10854 for (i = regno + offset; i < ourend; i++)
10855 move_deaths (gen_rtx (REG, reg_raw_mode[i], i),
10856 maybe_kill_insn, from_cuid, to_insn, &oldnotes);
10859 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
10861 XEXP (note, 1) = *pnotes;
10862 *pnotes = note;
10864 else
10865 *pnotes = gen_rtx (EXPR_LIST, REG_DEAD, x, *pnotes);
10867 REG_N_DEATHS (regno)++;
10870 return;
10873 else if (GET_CODE (x) == SET)
10875 rtx dest = SET_DEST (x);
10877 move_deaths (SET_SRC (x), maybe_kill_insn, from_cuid, to_insn, pnotes);
10879 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
10880 that accesses one word of a multi-word item, some
10881 piece of everything register in the expression is used by
10882 this insn, so remove any old death. */
10884 if (GET_CODE (dest) == ZERO_EXTRACT
10885 || GET_CODE (dest) == STRICT_LOW_PART
10886 || (GET_CODE (dest) == SUBREG
10887 && (((GET_MODE_SIZE (GET_MODE (dest))
10888 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
10889 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
10890 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
10892 move_deaths (dest, maybe_kill_insn, from_cuid, to_insn, pnotes);
10893 return;
10896 /* If this is some other SUBREG, we know it replaces the entire
10897 value, so use that as the destination. */
10898 if (GET_CODE (dest) == SUBREG)
10899 dest = SUBREG_REG (dest);
10901 /* If this is a MEM, adjust deaths of anything used in the address.
10902 For a REG (the only other possibility), the entire value is
10903 being replaced so the old value is not used in this insn. */
10905 if (GET_CODE (dest) == MEM)
10906 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_cuid,
10907 to_insn, pnotes);
10908 return;
10911 else if (GET_CODE (x) == CLOBBER)
10912 return;
10914 len = GET_RTX_LENGTH (code);
10915 fmt = GET_RTX_FORMAT (code);
10917 for (i = 0; i < len; i++)
10919 if (fmt[i] == 'E')
10921 register int j;
10922 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
10923 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_cuid,
10924 to_insn, pnotes);
10926 else if (fmt[i] == 'e')
10927 move_deaths (XEXP (x, i), maybe_kill_insn, from_cuid, to_insn, pnotes);
10931 /* Return 1 if X is the target of a bit-field assignment in BODY, the
10932 pattern of an insn. X must be a REG. */
10934 static int
10935 reg_bitfield_target_p (x, body)
10936 rtx x;
10937 rtx body;
10939 int i;
10941 if (GET_CODE (body) == SET)
10943 rtx dest = SET_DEST (body);
10944 rtx target;
10945 int regno, tregno, endregno, endtregno;
10947 if (GET_CODE (dest) == ZERO_EXTRACT)
10948 target = XEXP (dest, 0);
10949 else if (GET_CODE (dest) == STRICT_LOW_PART)
10950 target = SUBREG_REG (XEXP (dest, 0));
10951 else
10952 return 0;
10954 if (GET_CODE (target) == SUBREG)
10955 target = SUBREG_REG (target);
10957 if (GET_CODE (target) != REG)
10958 return 0;
10960 tregno = REGNO (target), regno = REGNO (x);
10961 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
10962 return target == x;
10964 endtregno = tregno + HARD_REGNO_NREGS (tregno, GET_MODE (target));
10965 endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
10967 return endregno > tregno && regno < endtregno;
10970 else if (GET_CODE (body) == PARALLEL)
10971 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
10972 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
10973 return 1;
10975 return 0;
10978 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
10979 as appropriate. I3 and I2 are the insns resulting from the combination
10980 insns including FROM (I2 may be zero).
10982 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
10983 not need REG_DEAD notes because they are being substituted for. This
10984 saves searching in the most common cases.
10986 Each note in the list is either ignored or placed on some insns, depending
10987 on the type of note. */
10989 static void
10990 distribute_notes (notes, from_insn, i3, i2, elim_i2, elim_i1)
10991 rtx notes;
10992 rtx from_insn;
10993 rtx i3, i2;
10994 rtx elim_i2, elim_i1;
10996 rtx note, next_note;
10997 rtx tem;
10999 for (note = notes; note; note = next_note)
11001 rtx place = 0, place2 = 0;
11003 /* If this NOTE references a pseudo register, ensure it references
11004 the latest copy of that register. */
11005 if (XEXP (note, 0) && GET_CODE (XEXP (note, 0)) == REG
11006 && REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER)
11007 XEXP (note, 0) = regno_reg_rtx[REGNO (XEXP (note, 0))];
11009 next_note = XEXP (note, 1);
11010 switch (REG_NOTE_KIND (note))
11012 case REG_BR_PROB:
11013 case REG_EXEC_COUNT:
11014 /* Doesn't matter much where we put this, as long as it's somewhere.
11015 It is preferable to keep these notes on branches, which is most
11016 likely to be i3. */
11017 place = i3;
11018 break;
11020 case REG_UNUSED:
11021 /* Any clobbers for i3 may still exist, and so we must process
11022 REG_UNUSED notes from that insn.
11024 Any clobbers from i2 or i1 can only exist if they were added by
11025 recog_for_combine. In that case, recog_for_combine created the
11026 necessary REG_UNUSED notes. Trying to keep any original
11027 REG_UNUSED notes from these insns can cause incorrect output
11028 if it is for the same register as the original i3 dest.
11029 In that case, we will notice that the register is set in i3,
11030 and then add a REG_UNUSED note for the destination of i3, which
11031 is wrong. However, it is possible to have REG_UNUSED notes from
11032 i2 or i1 for register which were both used and clobbered, so
11033 we keep notes from i2 or i1 if they will turn into REG_DEAD
11034 notes. */
11036 /* If this register is set or clobbered in I3, put the note there
11037 unless there is one already. */
11038 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
11040 if (from_insn != i3)
11041 break;
11043 if (! (GET_CODE (XEXP (note, 0)) == REG
11044 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
11045 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
11046 place = i3;
11048 /* Otherwise, if this register is used by I3, then this register
11049 now dies here, so we must put a REG_DEAD note here unless there
11050 is one already. */
11051 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
11052 && ! (GET_CODE (XEXP (note, 0)) == REG
11053 ? find_regno_note (i3, REG_DEAD, REGNO (XEXP (note, 0)))
11054 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
11056 PUT_REG_NOTE_KIND (note, REG_DEAD);
11057 place = i3;
11059 break;
11061 case REG_EQUAL:
11062 case REG_EQUIV:
11063 case REG_NONNEG:
11064 /* These notes say something about results of an insn. We can
11065 only support them if they used to be on I3 in which case they
11066 remain on I3. Otherwise they are ignored.
11068 If the note refers to an expression that is not a constant, we
11069 must also ignore the note since we cannot tell whether the
11070 equivalence is still true. It might be possible to do
11071 slightly better than this (we only have a problem if I2DEST
11072 or I1DEST is present in the expression), but it doesn't
11073 seem worth the trouble. */
11075 if (from_insn == i3
11076 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
11077 place = i3;
11078 break;
11080 case REG_INC:
11081 case REG_NO_CONFLICT:
11082 case REG_LABEL:
11083 /* These notes say something about how a register is used. They must
11084 be present on any use of the register in I2 or I3. */
11085 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
11086 place = i3;
11088 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
11090 if (place)
11091 place2 = i2;
11092 else
11093 place = i2;
11095 break;
11097 case REG_WAS_0:
11098 /* It is too much trouble to try to see if this note is still
11099 correct in all situations. It is better to simply delete it. */
11100 break;
11102 case REG_RETVAL:
11103 /* If the insn previously containing this note still exists,
11104 put it back where it was. Otherwise move it to the previous
11105 insn. Adjust the corresponding REG_LIBCALL note. */
11106 if (GET_CODE (from_insn) != NOTE)
11107 place = from_insn;
11108 else
11110 tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
11111 place = prev_real_insn (from_insn);
11112 if (tem && place)
11113 XEXP (tem, 0) = place;
11115 break;
11117 case REG_LIBCALL:
11118 /* This is handled similarly to REG_RETVAL. */
11119 if (GET_CODE (from_insn) != NOTE)
11120 place = from_insn;
11121 else
11123 tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
11124 place = next_real_insn (from_insn);
11125 if (tem && place)
11126 XEXP (tem, 0) = place;
11128 break;
11130 case REG_DEAD:
11131 /* If the register is used as an input in I3, it dies there.
11132 Similarly for I2, if it is non-zero and adjacent to I3.
11134 If the register is not used as an input in either I3 or I2
11135 and it is not one of the registers we were supposed to eliminate,
11136 there are two possibilities. We might have a non-adjacent I2
11137 or we might have somehow eliminated an additional register
11138 from a computation. For example, we might have had A & B where
11139 we discover that B will always be zero. In this case we will
11140 eliminate the reference to A.
11142 In both cases, we must search to see if we can find a previous
11143 use of A and put the death note there. */
11145 if (from_insn
11146 && GET_CODE (from_insn) == CALL_INSN
11147 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
11148 place = from_insn;
11149 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
11150 place = i3;
11151 else if (i2 != 0 && next_nonnote_insn (i2) == i3
11152 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
11153 place = i2;
11155 if (XEXP (note, 0) == elim_i2 || XEXP (note, 0) == elim_i1)
11156 break;
11158 /* If the register is used in both I2 and I3 and it dies in I3,
11159 we might have added another reference to it. If reg_n_refs
11160 was 2, bump it to 3. This has to be correct since the
11161 register must have been set somewhere. The reason this is
11162 done is because local-alloc.c treats 2 references as a
11163 special case. */
11165 if (place == i3 && i2 != 0 && GET_CODE (XEXP (note, 0)) == REG
11166 && REG_N_REFS (REGNO (XEXP (note, 0)))== 2
11167 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
11168 REG_N_REFS (REGNO (XEXP (note, 0))) = 3;
11170 if (place == 0)
11172 for (tem = prev_nonnote_insn (i3);
11173 place == 0 && tem
11174 && (GET_CODE (tem) == INSN || GET_CODE (tem) == CALL_INSN);
11175 tem = prev_nonnote_insn (tem))
11177 /* If the register is being set at TEM, see if that is all
11178 TEM is doing. If so, delete TEM. Otherwise, make this
11179 into a REG_UNUSED note instead. */
11180 if (reg_set_p (XEXP (note, 0), PATTERN (tem)))
11182 rtx set = single_set (tem);
11184 /* Verify that it was the set, and not a clobber that
11185 modified the register. */
11187 if (set != 0 && ! side_effects_p (SET_SRC (set))
11188 && (rtx_equal_p (XEXP (note, 0), SET_DEST (set))
11189 || (GET_CODE (SET_DEST (set)) == SUBREG
11190 && rtx_equal_p (XEXP (note, 0),
11191 XEXP (SET_DEST (set), 0)))))
11193 /* Move the notes and links of TEM elsewhere.
11194 This might delete other dead insns recursively.
11195 First set the pattern to something that won't use
11196 any register. */
11198 PATTERN (tem) = pc_rtx;
11200 distribute_notes (REG_NOTES (tem), tem, tem,
11201 NULL_RTX, NULL_RTX, NULL_RTX);
11202 distribute_links (LOG_LINKS (tem));
11204 PUT_CODE (tem, NOTE);
11205 NOTE_LINE_NUMBER (tem) = NOTE_INSN_DELETED;
11206 NOTE_SOURCE_FILE (tem) = 0;
11208 else
11210 PUT_REG_NOTE_KIND (note, REG_UNUSED);
11212 /* If there isn't already a REG_UNUSED note, put one
11213 here. */
11214 if (! find_regno_note (tem, REG_UNUSED,
11215 REGNO (XEXP (note, 0))))
11216 place = tem;
11217 break;
11220 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
11221 || (GET_CODE (tem) == CALL_INSN
11222 && find_reg_fusage (tem, USE, XEXP (note, 0))))
11224 place = tem;
11226 /* If we are doing a 3->2 combination, and we have a
11227 register which formerly died in i3 and was not used
11228 by i2, which now no longer dies in i3 and is used in
11229 i2 but does not die in i2, and place is between i2
11230 and i3, then we may need to move a link from place to
11231 i2. */
11232 if (i2 && INSN_UID (place) <= max_uid_cuid
11233 && INSN_CUID (place) > INSN_CUID (i2)
11234 && from_insn && INSN_CUID (from_insn) > INSN_CUID (i2)
11235 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
11237 rtx links = LOG_LINKS (place);
11238 LOG_LINKS (place) = 0;
11239 distribute_links (links);
11241 break;
11245 /* If we haven't found an insn for the death note and it
11246 is still a REG_DEAD note, but we have hit a CODE_LABEL,
11247 insert a USE insn for the register at that label and
11248 put the death node there. This prevents problems with
11249 call-state tracking in caller-save.c. */
11250 if (REG_NOTE_KIND (note) == REG_DEAD && place == 0 && tem != 0)
11252 place
11253 = emit_insn_after (gen_rtx (USE, VOIDmode, XEXP (note, 0)),
11254 tem);
11256 /* If this insn was emitted between blocks, then update
11257 basic_block_head of the current block to include it. */
11258 if (basic_block_end[this_basic_block - 1] == tem)
11259 basic_block_head[this_basic_block] = place;
11263 /* If the register is set or already dead at PLACE, we needn't do
11264 anything with this note if it is still a REG_DEAD note.
11266 Note that we cannot use just `dead_or_set_p' here since we can
11267 convert an assignment to a register into a bit-field assignment.
11268 Therefore, we must also omit the note if the register is the
11269 target of a bitfield assignment. */
11271 if (place && REG_NOTE_KIND (note) == REG_DEAD)
11273 int regno = REGNO (XEXP (note, 0));
11275 if (dead_or_set_p (place, XEXP (note, 0))
11276 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
11278 /* Unless the register previously died in PLACE, clear
11279 reg_last_death. [I no longer understand why this is
11280 being done.] */
11281 if (reg_last_death[regno] != place)
11282 reg_last_death[regno] = 0;
11283 place = 0;
11285 else
11286 reg_last_death[regno] = place;
11288 /* If this is a death note for a hard reg that is occupying
11289 multiple registers, ensure that we are still using all
11290 parts of the object. If we find a piece of the object
11291 that is unused, we must add a USE for that piece before
11292 PLACE and put the appropriate REG_DEAD note on it.
11294 An alternative would be to put a REG_UNUSED for the pieces
11295 on the insn that set the register, but that can't be done if
11296 it is not in the same block. It is simpler, though less
11297 efficient, to add the USE insns. */
11299 if (place && regno < FIRST_PSEUDO_REGISTER
11300 && HARD_REGNO_NREGS (regno, GET_MODE (XEXP (note, 0))) > 1)
11302 int endregno
11303 = regno + HARD_REGNO_NREGS (regno,
11304 GET_MODE (XEXP (note, 0)));
11305 int all_used = 1;
11306 int i;
11308 for (i = regno; i < endregno; i++)
11309 if (! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
11310 && ! find_regno_fusage (place, USE, i))
11312 rtx piece = gen_rtx (REG, reg_raw_mode[i], i);
11313 rtx p;
11315 /* See if we already placed a USE note for this
11316 register in front of PLACE. */
11317 for (p = place;
11318 GET_CODE (PREV_INSN (p)) == INSN
11319 && GET_CODE (PATTERN (PREV_INSN (p))) == USE;
11320 p = PREV_INSN (p))
11321 if (rtx_equal_p (piece,
11322 XEXP (PATTERN (PREV_INSN (p)), 0)))
11324 p = 0;
11325 break;
11328 if (p)
11330 rtx use_insn
11331 = emit_insn_before (gen_rtx (USE, VOIDmode,
11332 piece),
11334 REG_NOTES (use_insn)
11335 = gen_rtx (EXPR_LIST, REG_DEAD, piece,
11336 REG_NOTES (use_insn));
11339 all_used = 0;
11342 /* Check for the case where the register dying partially
11343 overlaps the register set by this insn. */
11344 if (all_used)
11345 for (i = regno; i < endregno; i++)
11346 if (dead_or_set_regno_p (place, i))
11348 all_used = 0;
11349 break;
11352 if (! all_used)
11354 /* Put only REG_DEAD notes for pieces that are
11355 still used and that are not already dead or set. */
11357 for (i = regno; i < endregno; i++)
11359 rtx piece = gen_rtx (REG, reg_raw_mode[i], i);
11361 if ((reg_referenced_p (piece, PATTERN (place))
11362 || (GET_CODE (place) == CALL_INSN
11363 && find_reg_fusage (place, USE, piece)))
11364 && ! dead_or_set_p (place, piece)
11365 && ! reg_bitfield_target_p (piece,
11366 PATTERN (place)))
11367 REG_NOTES (place) = gen_rtx (EXPR_LIST, REG_DEAD,
11368 piece,
11369 REG_NOTES (place));
11372 place = 0;
11376 break;
11378 default:
11379 /* Any other notes should not be present at this point in the
11380 compilation. */
11381 abort ();
11384 if (place)
11386 XEXP (note, 1) = REG_NOTES (place);
11387 REG_NOTES (place) = note;
11389 else if ((REG_NOTE_KIND (note) == REG_DEAD
11390 || REG_NOTE_KIND (note) == REG_UNUSED)
11391 && GET_CODE (XEXP (note, 0)) == REG)
11392 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
11394 if (place2)
11396 if ((REG_NOTE_KIND (note) == REG_DEAD
11397 || REG_NOTE_KIND (note) == REG_UNUSED)
11398 && GET_CODE (XEXP (note, 0)) == REG)
11399 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
11401 REG_NOTES (place2) = gen_rtx (GET_CODE (note), REG_NOTE_KIND (note),
11402 XEXP (note, 0), REG_NOTES (place2));
11407 /* Similarly to above, distribute the LOG_LINKS that used to be present on
11408 I3, I2, and I1 to new locations. This is also called in one case to
11409 add a link pointing at I3 when I3's destination is changed. */
11411 static void
11412 distribute_links (links)
11413 rtx links;
11415 rtx link, next_link;
11417 for (link = links; link; link = next_link)
11419 rtx place = 0;
11420 rtx insn;
11421 rtx set, reg;
11423 next_link = XEXP (link, 1);
11425 /* If the insn that this link points to is a NOTE or isn't a single
11426 set, ignore it. In the latter case, it isn't clear what we
11427 can do other than ignore the link, since we can't tell which
11428 register it was for. Such links wouldn't be used by combine
11429 anyway.
11431 It is not possible for the destination of the target of the link to
11432 have been changed by combine. The only potential of this is if we
11433 replace I3, I2, and I1 by I3 and I2. But in that case the
11434 destination of I2 also remains unchanged. */
11436 if (GET_CODE (XEXP (link, 0)) == NOTE
11437 || (set = single_set (XEXP (link, 0))) == 0)
11438 continue;
11440 reg = SET_DEST (set);
11441 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
11442 || GET_CODE (reg) == SIGN_EXTRACT
11443 || GET_CODE (reg) == STRICT_LOW_PART)
11444 reg = XEXP (reg, 0);
11446 /* A LOG_LINK is defined as being placed on the first insn that uses
11447 a register and points to the insn that sets the register. Start
11448 searching at the next insn after the target of the link and stop
11449 when we reach a set of the register or the end of the basic block.
11451 Note that this correctly handles the link that used to point from
11452 I3 to I2. Also note that not much searching is typically done here
11453 since most links don't point very far away. */
11455 for (insn = NEXT_INSN (XEXP (link, 0));
11456 (insn && (this_basic_block == n_basic_blocks - 1
11457 || basic_block_head[this_basic_block + 1] != insn));
11458 insn = NEXT_INSN (insn))
11459 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
11460 && reg_overlap_mentioned_p (reg, PATTERN (insn)))
11462 if (reg_referenced_p (reg, PATTERN (insn)))
11463 place = insn;
11464 break;
11466 else if (GET_CODE (insn) == CALL_INSN
11467 && find_reg_fusage (insn, USE, reg))
11469 place = insn;
11470 break;
11473 /* If we found a place to put the link, place it there unless there
11474 is already a link to the same insn as LINK at that point. */
11476 if (place)
11478 rtx link2;
11480 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
11481 if (XEXP (link2, 0) == XEXP (link, 0))
11482 break;
11484 if (link2 == 0)
11486 XEXP (link, 1) = LOG_LINKS (place);
11487 LOG_LINKS (place) = link;
11489 /* Set added_links_insn to the earliest insn we added a
11490 link to. */
11491 if (added_links_insn == 0
11492 || INSN_CUID (added_links_insn) > INSN_CUID (place))
11493 added_links_insn = place;
11499 /* Compute INSN_CUID for INSN, which is an insn made by combine. */
11501 static int
11502 insn_cuid (insn)
11503 rtx insn;
11505 while (insn != 0 && INSN_UID (insn) > max_uid_cuid
11506 && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == USE)
11507 insn = NEXT_INSN (insn);
11509 if (INSN_UID (insn) > max_uid_cuid)
11510 abort ();
11512 return INSN_CUID (insn);
11515 void
11516 dump_combine_stats (file)
11517 FILE *file;
11519 fprintf
11520 (file,
11521 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
11522 combine_attempts, combine_merges, combine_extras, combine_successes);
11525 void
11526 dump_combine_total_stats (file)
11527 FILE *file;
11529 fprintf
11530 (file,
11531 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
11532 total_attempts, total_merges, total_extras, total_successes);