compiler: Do not dereference a named pointer type when looking up a method.
[official-gcc.git] / gcc / loop-unroll.c
blobc4c6b0d9768ff7d23a7dc53fafd38405b39950a1
1 /* Loop unrolling.
2 Copyright (C) 2002-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "rtl.h"
25 #include "tree.h"
26 #include "hard-reg-set.h"
27 #include "obstack.h"
28 #include "profile.h"
29 #include "predict.h"
30 #include "vec.h"
31 #include "hashtab.h"
32 #include "hash-set.h"
33 #include "machmode.h"
34 #include "input.h"
35 #include "function.h"
36 #include "dominance.h"
37 #include "cfg.h"
38 #include "cfgrtl.h"
39 #include "basic-block.h"
40 #include "cfgloop.h"
41 #include "params.h"
42 #include "insn-codes.h"
43 #include "optabs.h"
44 #include "expr.h"
45 #include "hash-table.h"
46 #include "recog.h"
47 #include "target.h"
48 #include "dumpfile.h"
50 /* This pass performs loop unrolling. We only perform this
51 optimization on innermost loops (with single exception) because
52 the impact on performance is greatest here, and we want to avoid
53 unnecessary code size growth. The gain is caused by greater sequentiality
54 of code, better code to optimize for further passes and in some cases
55 by fewer testings of exit conditions. The main problem is code growth,
56 that impacts performance negatively due to effect of caches.
58 What we do:
60 -- unrolling of loops that roll constant times; this is almost always
61 win, as we get rid of exit condition tests.
62 -- unrolling of loops that roll number of times that we can compute
63 in runtime; we also get rid of exit condition tests here, but there
64 is the extra expense for calculating the number of iterations
65 -- simple unrolling of remaining loops; this is performed only if we
66 are asked to, as the gain is questionable in this case and often
67 it may even slow down the code
68 For more detailed descriptions of each of those, see comments at
69 appropriate function below.
71 There is a lot of parameters (defined and described in params.def) that
72 control how much we unroll.
74 ??? A great problem is that we don't have a good way how to determine
75 how many times we should unroll the loop; the experiments I have made
76 showed that this choice may affect performance in order of several %.
79 /* Information about induction variables to split. */
81 struct iv_to_split
83 rtx_insn *insn; /* The insn in that the induction variable occurs. */
84 rtx orig_var; /* The variable (register) for the IV before split. */
85 rtx base_var; /* The variable on that the values in the further
86 iterations are based. */
87 rtx step; /* Step of the induction variable. */
88 struct iv_to_split *next; /* Next entry in walking order. */
91 /* Information about accumulators to expand. */
93 struct var_to_expand
95 rtx_insn *insn; /* The insn in that the variable expansion occurs. */
96 rtx reg; /* The accumulator which is expanded. */
97 vec<rtx> var_expansions; /* The copies of the accumulator which is expanded. */
98 struct var_to_expand *next; /* Next entry in walking order. */
99 enum rtx_code op; /* The type of the accumulation - addition, subtraction
100 or multiplication. */
101 int expansion_count; /* Count the number of expansions generated so far. */
102 int reuse_expansion; /* The expansion we intend to reuse to expand
103 the accumulator. If REUSE_EXPANSION is 0 reuse
104 the original accumulator. Else use
105 var_expansions[REUSE_EXPANSION - 1]. */
108 /* Hashtable helper for iv_to_split. */
110 struct iv_split_hasher : typed_free_remove <iv_to_split>
112 typedef iv_to_split value_type;
113 typedef iv_to_split compare_type;
114 static inline hashval_t hash (const value_type *);
115 static inline bool equal (const value_type *, const compare_type *);
119 /* A hash function for information about insns to split. */
121 inline hashval_t
122 iv_split_hasher::hash (const value_type *ivts)
124 return (hashval_t) INSN_UID (ivts->insn);
127 /* An equality functions for information about insns to split. */
129 inline bool
130 iv_split_hasher::equal (const value_type *i1, const compare_type *i2)
132 return i1->insn == i2->insn;
135 /* Hashtable helper for iv_to_split. */
137 struct var_expand_hasher : typed_free_remove <var_to_expand>
139 typedef var_to_expand value_type;
140 typedef var_to_expand compare_type;
141 static inline hashval_t hash (const value_type *);
142 static inline bool equal (const value_type *, const compare_type *);
145 /* Return a hash for VES. */
147 inline hashval_t
148 var_expand_hasher::hash (const value_type *ves)
150 return (hashval_t) INSN_UID (ves->insn);
153 /* Return true if I1 and I2 refer to the same instruction. */
155 inline bool
156 var_expand_hasher::equal (const value_type *i1, const compare_type *i2)
158 return i1->insn == i2->insn;
161 /* Information about optimization applied in
162 the unrolled loop. */
164 struct opt_info
166 hash_table<iv_split_hasher> *insns_to_split; /* A hashtable of insns to
167 split. */
168 struct iv_to_split *iv_to_split_head; /* The first iv to split. */
169 struct iv_to_split **iv_to_split_tail; /* Pointer to the tail of the list. */
170 hash_table<var_expand_hasher> *insns_with_var_to_expand; /* A hashtable of
171 insns with accumulators to expand. */
172 struct var_to_expand *var_to_expand_head; /* The first var to expand. */
173 struct var_to_expand **var_to_expand_tail; /* Pointer to the tail of the list. */
174 unsigned first_new_block; /* The first basic block that was
175 duplicated. */
176 basic_block loop_exit; /* The loop exit basic block. */
177 basic_block loop_preheader; /* The loop preheader basic block. */
180 static void decide_unroll_stupid (struct loop *, int);
181 static void decide_unroll_constant_iterations (struct loop *, int);
182 static void decide_unroll_runtime_iterations (struct loop *, int);
183 static void unroll_loop_stupid (struct loop *);
184 static void decide_unrolling (int);
185 static void unroll_loop_constant_iterations (struct loop *);
186 static void unroll_loop_runtime_iterations (struct loop *);
187 static struct opt_info *analyze_insns_in_loop (struct loop *);
188 static void opt_info_start_duplication (struct opt_info *);
189 static void apply_opt_in_copies (struct opt_info *, unsigned, bool, bool);
190 static void free_opt_info (struct opt_info *);
191 static struct var_to_expand *analyze_insn_to_expand_var (struct loop*, rtx_insn *);
192 static bool referenced_in_one_insn_in_loop_p (struct loop *, rtx, int *);
193 static struct iv_to_split *analyze_iv_to_split_insn (rtx_insn *);
194 static void expand_var_during_unrolling (struct var_to_expand *, rtx_insn *);
195 static void insert_var_expansion_initialization (struct var_to_expand *,
196 basic_block);
197 static void combine_var_copies_in_loop_exit (struct var_to_expand *,
198 basic_block);
199 static rtx get_expansion (struct var_to_expand *);
201 /* Emit a message summarizing the unroll that will be
202 performed for LOOP, along with the loop's location LOCUS, if
203 appropriate given the dump or -fopt-info settings. */
205 static void
206 report_unroll (struct loop *loop, location_t locus)
208 int report_flags = MSG_OPTIMIZED_LOCATIONS | TDF_RTL | TDF_DETAILS;
210 if (loop->lpt_decision.decision == LPT_NONE)
211 return;
213 if (!dump_enabled_p ())
214 return;
216 dump_printf_loc (report_flags, locus,
217 "loop unrolled %d times",
218 loop->lpt_decision.times);
219 if (profile_info)
220 dump_printf (report_flags,
221 " (header execution count %d)",
222 (int)loop->header->count);
224 dump_printf (report_flags, "\n");
227 /* Decide whether unroll loops and how much. */
228 static void
229 decide_unrolling (int flags)
231 struct loop *loop;
233 /* Scan the loops, inner ones first. */
234 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
236 loop->lpt_decision.decision = LPT_NONE;
237 location_t locus = get_loop_location (loop);
239 if (dump_enabled_p ())
240 dump_printf_loc (TDF_RTL, locus,
241 ";; *** Considering loop %d at BB %d for "
242 "unrolling ***\n",
243 loop->num, loop->header->index);
245 /* Do not peel cold areas. */
246 if (optimize_loop_for_size_p (loop))
248 if (dump_file)
249 fprintf (dump_file, ";; Not considering loop, cold area\n");
250 continue;
253 /* Can the loop be manipulated? */
254 if (!can_duplicate_loop_p (loop))
256 if (dump_file)
257 fprintf (dump_file,
258 ";; Not considering loop, cannot duplicate\n");
259 continue;
262 /* Skip non-innermost loops. */
263 if (loop->inner)
265 if (dump_file)
266 fprintf (dump_file, ";; Not considering loop, is not innermost\n");
267 continue;
270 loop->ninsns = num_loop_insns (loop);
271 loop->av_ninsns = average_num_loop_insns (loop);
273 /* Try transformations one by one in decreasing order of
274 priority. */
276 decide_unroll_constant_iterations (loop, flags);
277 if (loop->lpt_decision.decision == LPT_NONE)
278 decide_unroll_runtime_iterations (loop, flags);
279 if (loop->lpt_decision.decision == LPT_NONE)
280 decide_unroll_stupid (loop, flags);
282 report_unroll (loop, locus);
286 /* Unroll LOOPS. */
287 void
288 unroll_loops (int flags)
290 struct loop *loop;
291 bool changed = false;
293 /* Now decide rest of unrolling. */
294 decide_unrolling (flags);
296 /* Scan the loops, inner ones first. */
297 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
299 /* And perform the appropriate transformations. */
300 switch (loop->lpt_decision.decision)
302 case LPT_UNROLL_CONSTANT:
303 unroll_loop_constant_iterations (loop);
304 changed = true;
305 break;
306 case LPT_UNROLL_RUNTIME:
307 unroll_loop_runtime_iterations (loop);
308 changed = true;
309 break;
310 case LPT_UNROLL_STUPID:
311 unroll_loop_stupid (loop);
312 changed = true;
313 break;
314 case LPT_NONE:
315 break;
316 default:
317 gcc_unreachable ();
321 if (changed)
323 calculate_dominance_info (CDI_DOMINATORS);
324 fix_loop_structure (NULL);
327 iv_analysis_done ();
330 /* Check whether exit of the LOOP is at the end of loop body. */
332 static bool
333 loop_exit_at_end_p (struct loop *loop)
335 struct niter_desc *desc = get_simple_loop_desc (loop);
336 rtx_insn *insn;
338 /* We should never have conditional in latch block. */
339 gcc_assert (desc->in_edge->dest != loop->header);
341 if (desc->in_edge->dest != loop->latch)
342 return false;
344 /* Check that the latch is empty. */
345 FOR_BB_INSNS (loop->latch, insn)
347 if (INSN_P (insn) && active_insn_p (insn))
348 return false;
351 return true;
354 /* Decide whether to unroll LOOP iterating constant number of times
355 and how much. */
357 static void
358 decide_unroll_constant_iterations (struct loop *loop, int flags)
360 unsigned nunroll, nunroll_by_av, best_copies, best_unroll = 0, n_copies, i;
361 struct niter_desc *desc;
362 widest_int iterations;
364 if (!(flags & UAP_UNROLL))
366 /* We were not asked to, just return back silently. */
367 return;
370 if (dump_file)
371 fprintf (dump_file,
372 "\n;; Considering unrolling loop with constant "
373 "number of iterations\n");
375 /* nunroll = total number of copies of the original loop body in
376 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
377 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
378 nunroll_by_av
379 = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
380 if (nunroll > nunroll_by_av)
381 nunroll = nunroll_by_av;
382 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
383 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
385 if (targetm.loop_unroll_adjust)
386 nunroll = targetm.loop_unroll_adjust (nunroll, loop);
388 /* Skip big loops. */
389 if (nunroll <= 1)
391 if (dump_file)
392 fprintf (dump_file, ";; Not considering loop, is too big\n");
393 return;
396 /* Check for simple loops. */
397 desc = get_simple_loop_desc (loop);
399 /* Check number of iterations. */
400 if (!desc->simple_p || !desc->const_iter || desc->assumptions)
402 if (dump_file)
403 fprintf (dump_file,
404 ";; Unable to prove that the loop iterates constant times\n");
405 return;
408 /* Check whether the loop rolls enough to consider.
409 Consult also loop bounds and profile; in the case the loop has more
410 than one exit it may well loop less than determined maximal number
411 of iterations. */
412 if (desc->niter < 2 * nunroll
413 || ((get_estimated_loop_iterations (loop, &iterations)
414 || get_max_loop_iterations (loop, &iterations))
415 && wi::ltu_p (iterations, 2 * nunroll)))
417 if (dump_file)
418 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
419 return;
422 /* Success; now compute number of iterations to unroll. We alter
423 nunroll so that as few as possible copies of loop body are
424 necessary, while still not decreasing the number of unrollings
425 too much (at most by 1). */
426 best_copies = 2 * nunroll + 10;
428 i = 2 * nunroll + 2;
429 if (i - 1 >= desc->niter)
430 i = desc->niter - 2;
432 for (; i >= nunroll - 1; i--)
434 unsigned exit_mod = desc->niter % (i + 1);
436 if (!loop_exit_at_end_p (loop))
437 n_copies = exit_mod + i + 1;
438 else if (exit_mod != (unsigned) i
439 || desc->noloop_assumptions != NULL_RTX)
440 n_copies = exit_mod + i + 2;
441 else
442 n_copies = i + 1;
444 if (n_copies < best_copies)
446 best_copies = n_copies;
447 best_unroll = i;
451 loop->lpt_decision.decision = LPT_UNROLL_CONSTANT;
452 loop->lpt_decision.times = best_unroll;
455 /* Unroll LOOP with constant number of iterations LOOP->LPT_DECISION.TIMES times.
456 The transformation does this:
458 for (i = 0; i < 102; i++)
459 body;
461 ==> (LOOP->LPT_DECISION.TIMES == 3)
463 i = 0;
464 body; i++;
465 body; i++;
466 while (i < 102)
468 body; i++;
469 body; i++;
470 body; i++;
471 body; i++;
474 static void
475 unroll_loop_constant_iterations (struct loop *loop)
477 unsigned HOST_WIDE_INT niter;
478 unsigned exit_mod;
479 sbitmap wont_exit;
480 unsigned i;
481 edge e;
482 unsigned max_unroll = loop->lpt_decision.times;
483 struct niter_desc *desc = get_simple_loop_desc (loop);
484 bool exit_at_end = loop_exit_at_end_p (loop);
485 struct opt_info *opt_info = NULL;
486 bool ok;
488 niter = desc->niter;
490 /* Should not get here (such loop should be peeled instead). */
491 gcc_assert (niter > max_unroll + 1);
493 exit_mod = niter % (max_unroll + 1);
495 wont_exit = sbitmap_alloc (max_unroll + 1);
496 bitmap_ones (wont_exit);
498 auto_vec<edge> remove_edges;
499 if (flag_split_ivs_in_unroller
500 || flag_variable_expansion_in_unroller)
501 opt_info = analyze_insns_in_loop (loop);
503 if (!exit_at_end)
505 /* The exit is not at the end of the loop; leave exit test
506 in the first copy, so that the loops that start with test
507 of exit condition have continuous body after unrolling. */
509 if (dump_file)
510 fprintf (dump_file, ";; Condition at beginning of loop.\n");
512 /* Peel exit_mod iterations. */
513 bitmap_clear_bit (wont_exit, 0);
514 if (desc->noloop_assumptions)
515 bitmap_clear_bit (wont_exit, 1);
517 if (exit_mod)
519 opt_info_start_duplication (opt_info);
520 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
521 exit_mod,
522 wont_exit, desc->out_edge,
523 &remove_edges,
524 DLTHE_FLAG_UPDATE_FREQ
525 | (opt_info && exit_mod > 1
526 ? DLTHE_RECORD_COPY_NUMBER
527 : 0));
528 gcc_assert (ok);
530 if (opt_info && exit_mod > 1)
531 apply_opt_in_copies (opt_info, exit_mod, false, false);
533 desc->noloop_assumptions = NULL_RTX;
534 desc->niter -= exit_mod;
535 loop->nb_iterations_upper_bound -= exit_mod;
536 if (loop->any_estimate
537 && wi::leu_p (exit_mod, loop->nb_iterations_estimate))
538 loop->nb_iterations_estimate -= exit_mod;
539 else
540 loop->any_estimate = false;
543 bitmap_set_bit (wont_exit, 1);
545 else
547 /* Leave exit test in last copy, for the same reason as above if
548 the loop tests the condition at the end of loop body. */
550 if (dump_file)
551 fprintf (dump_file, ";; Condition at end of loop.\n");
553 /* We know that niter >= max_unroll + 2; so we do not need to care of
554 case when we would exit before reaching the loop. So just peel
555 exit_mod + 1 iterations. */
556 if (exit_mod != max_unroll
557 || desc->noloop_assumptions)
559 bitmap_clear_bit (wont_exit, 0);
560 if (desc->noloop_assumptions)
561 bitmap_clear_bit (wont_exit, 1);
563 opt_info_start_duplication (opt_info);
564 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
565 exit_mod + 1,
566 wont_exit, desc->out_edge,
567 &remove_edges,
568 DLTHE_FLAG_UPDATE_FREQ
569 | (opt_info && exit_mod > 0
570 ? DLTHE_RECORD_COPY_NUMBER
571 : 0));
572 gcc_assert (ok);
574 if (opt_info && exit_mod > 0)
575 apply_opt_in_copies (opt_info, exit_mod + 1, false, false);
577 desc->niter -= exit_mod + 1;
578 loop->nb_iterations_upper_bound -= exit_mod + 1;
579 if (loop->any_estimate
580 && wi::leu_p (exit_mod + 1, loop->nb_iterations_estimate))
581 loop->nb_iterations_estimate -= exit_mod + 1;
582 else
583 loop->any_estimate = false;
584 desc->noloop_assumptions = NULL_RTX;
586 bitmap_set_bit (wont_exit, 0);
587 bitmap_set_bit (wont_exit, 1);
590 bitmap_clear_bit (wont_exit, max_unroll);
593 /* Now unroll the loop. */
595 opt_info_start_duplication (opt_info);
596 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
597 max_unroll,
598 wont_exit, desc->out_edge,
599 &remove_edges,
600 DLTHE_FLAG_UPDATE_FREQ
601 | (opt_info
602 ? DLTHE_RECORD_COPY_NUMBER
603 : 0));
604 gcc_assert (ok);
606 if (opt_info)
608 apply_opt_in_copies (opt_info, max_unroll, true, true);
609 free_opt_info (opt_info);
612 free (wont_exit);
614 if (exit_at_end)
616 basic_block exit_block = get_bb_copy (desc->in_edge->src);
617 /* Find a new in and out edge; they are in the last copy we have made. */
619 if (EDGE_SUCC (exit_block, 0)->dest == desc->out_edge->dest)
621 desc->out_edge = EDGE_SUCC (exit_block, 0);
622 desc->in_edge = EDGE_SUCC (exit_block, 1);
624 else
626 desc->out_edge = EDGE_SUCC (exit_block, 1);
627 desc->in_edge = EDGE_SUCC (exit_block, 0);
631 desc->niter /= max_unroll + 1;
632 loop->nb_iterations_upper_bound
633 = wi::udiv_trunc (loop->nb_iterations_upper_bound, max_unroll + 1);
634 if (loop->any_estimate)
635 loop->nb_iterations_estimate
636 = wi::udiv_trunc (loop->nb_iterations_estimate, max_unroll + 1);
637 desc->niter_expr = GEN_INT (desc->niter);
639 /* Remove the edges. */
640 FOR_EACH_VEC_ELT (remove_edges, i, e)
641 remove_path (e);
643 if (dump_file)
644 fprintf (dump_file,
645 ";; Unrolled loop %d times, constant # of iterations %i insns\n",
646 max_unroll, num_loop_insns (loop));
649 /* Decide whether to unroll LOOP iterating runtime computable number of times
650 and how much. */
651 static void
652 decide_unroll_runtime_iterations (struct loop *loop, int flags)
654 unsigned nunroll, nunroll_by_av, i;
655 struct niter_desc *desc;
656 widest_int iterations;
658 if (!(flags & UAP_UNROLL))
660 /* We were not asked to, just return back silently. */
661 return;
664 if (dump_file)
665 fprintf (dump_file,
666 "\n;; Considering unrolling loop with runtime "
667 "computable number of iterations\n");
669 /* nunroll = total number of copies of the original loop body in
670 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
671 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
672 nunroll_by_av = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
673 if (nunroll > nunroll_by_av)
674 nunroll = nunroll_by_av;
675 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
676 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
678 if (targetm.loop_unroll_adjust)
679 nunroll = targetm.loop_unroll_adjust (nunroll, loop);
681 /* Skip big loops. */
682 if (nunroll <= 1)
684 if (dump_file)
685 fprintf (dump_file, ";; Not considering loop, is too big\n");
686 return;
689 /* Check for simple loops. */
690 desc = get_simple_loop_desc (loop);
692 /* Check simpleness. */
693 if (!desc->simple_p || desc->assumptions)
695 if (dump_file)
696 fprintf (dump_file,
697 ";; Unable to prove that the number of iterations "
698 "can be counted in runtime\n");
699 return;
702 if (desc->const_iter)
704 if (dump_file)
705 fprintf (dump_file, ";; Loop iterates constant times\n");
706 return;
709 /* Check whether the loop rolls. */
710 if ((get_estimated_loop_iterations (loop, &iterations)
711 || get_max_loop_iterations (loop, &iterations))
712 && wi::ltu_p (iterations, 2 * nunroll))
714 if (dump_file)
715 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
716 return;
719 /* Success; now force nunroll to be power of 2, as we are unable to
720 cope with overflows in computation of number of iterations. */
721 for (i = 1; 2 * i <= nunroll; i *= 2)
722 continue;
724 loop->lpt_decision.decision = LPT_UNROLL_RUNTIME;
725 loop->lpt_decision.times = i - 1;
728 /* Splits edge E and inserts the sequence of instructions INSNS on it, and
729 returns the newly created block. If INSNS is NULL_RTX, nothing is changed
730 and NULL is returned instead. */
732 basic_block
733 split_edge_and_insert (edge e, rtx_insn *insns)
735 basic_block bb;
737 if (!insns)
738 return NULL;
739 bb = split_edge (e);
740 emit_insn_after (insns, BB_END (bb));
742 /* ??? We used to assume that INSNS can contain control flow insns, and
743 that we had to try to find sub basic blocks in BB to maintain a valid
744 CFG. For this purpose we used to set the BB_SUPERBLOCK flag on BB
745 and call break_superblocks when going out of cfglayout mode. But it
746 turns out that this never happens; and that if it does ever happen,
747 the verify_flow_info at the end of the RTL loop passes would fail.
749 There are two reasons why we expected we could have control flow insns
750 in INSNS. The first is when a comparison has to be done in parts, and
751 the second is when the number of iterations is computed for loops with
752 the number of iterations known at runtime. In both cases, test cases
753 to get control flow in INSNS appear to be impossible to construct:
755 * If do_compare_rtx_and_jump needs several branches to do comparison
756 in a mode that needs comparison by parts, we cannot analyze the
757 number of iterations of the loop, and we never get to unrolling it.
759 * The code in expand_divmod that was suspected to cause creation of
760 branching code seems to be only accessed for signed division. The
761 divisions used by # of iterations analysis are always unsigned.
762 Problems might arise on architectures that emits branching code
763 for some operations that may appear in the unroller (especially
764 for division), but we have no such architectures.
766 Considering all this, it was decided that we should for now assume
767 that INSNS can in theory contain control flow insns, but in practice
768 it never does. So we don't handle the theoretical case, and should
769 a real failure ever show up, we have a pretty good clue for how to
770 fix it. */
772 return bb;
775 /* Prepare a sequence comparing OP0 with OP1 using COMP and jumping to LABEL if
776 true, with probability PROB. If CINSN is not NULL, it is the insn to copy
777 in order to create a jump. */
779 static rtx_insn *
780 compare_and_jump_seq (rtx op0, rtx op1, enum rtx_code comp, rtx label, int prob,
781 rtx_insn *cinsn)
783 rtx_insn *seq, *jump;
784 rtx cond;
785 machine_mode mode;
787 mode = GET_MODE (op0);
788 if (mode == VOIDmode)
789 mode = GET_MODE (op1);
791 start_sequence ();
792 if (GET_MODE_CLASS (mode) == MODE_CC)
794 /* A hack -- there seems to be no easy generic way how to make a
795 conditional jump from a ccmode comparison. */
796 gcc_assert (cinsn);
797 cond = XEXP (SET_SRC (pc_set (cinsn)), 0);
798 gcc_assert (GET_CODE (cond) == comp);
799 gcc_assert (rtx_equal_p (op0, XEXP (cond, 0)));
800 gcc_assert (rtx_equal_p (op1, XEXP (cond, 1)));
801 emit_jump_insn (copy_insn (PATTERN (cinsn)));
802 jump = get_last_insn ();
803 gcc_assert (JUMP_P (jump));
804 JUMP_LABEL (jump) = JUMP_LABEL (cinsn);
805 LABEL_NUSES (JUMP_LABEL (jump))++;
806 redirect_jump (jump, label, 0);
808 else
810 gcc_assert (!cinsn);
812 op0 = force_operand (op0, NULL_RTX);
813 op1 = force_operand (op1, NULL_RTX);
814 do_compare_rtx_and_jump (op0, op1, comp, 0,
815 mode, NULL_RTX, NULL_RTX, label, -1);
816 jump = get_last_insn ();
817 gcc_assert (JUMP_P (jump));
818 JUMP_LABEL (jump) = label;
819 LABEL_NUSES (label)++;
821 add_int_reg_note (jump, REG_BR_PROB, prob);
823 seq = get_insns ();
824 end_sequence ();
826 return seq;
829 /* Unroll LOOP for which we are able to count number of iterations in runtime
830 LOOP->LPT_DECISION.TIMES times. The transformation does this (with some
831 extra care for case n < 0):
833 for (i = 0; i < n; i++)
834 body;
836 ==> (LOOP->LPT_DECISION.TIMES == 3)
838 i = 0;
839 mod = n % 4;
841 switch (mod)
843 case 3:
844 body; i++;
845 case 2:
846 body; i++;
847 case 1:
848 body; i++;
849 case 0: ;
852 while (i < n)
854 body; i++;
855 body; i++;
856 body; i++;
857 body; i++;
860 static void
861 unroll_loop_runtime_iterations (struct loop *loop)
863 rtx old_niter, niter, tmp;
864 rtx_insn *init_code, *branch_code;
865 unsigned i, j, p;
866 basic_block preheader, *body, swtch, ezc_swtch;
867 sbitmap wont_exit;
868 int may_exit_copy;
869 unsigned n_peel;
870 edge e;
871 bool extra_zero_check, last_may_exit;
872 unsigned max_unroll = loop->lpt_decision.times;
873 struct niter_desc *desc = get_simple_loop_desc (loop);
874 bool exit_at_end = loop_exit_at_end_p (loop);
875 struct opt_info *opt_info = NULL;
876 bool ok;
878 if (flag_split_ivs_in_unroller
879 || flag_variable_expansion_in_unroller)
880 opt_info = analyze_insns_in_loop (loop);
882 /* Remember blocks whose dominators will have to be updated. */
883 auto_vec<basic_block> dom_bbs;
885 body = get_loop_body (loop);
886 for (i = 0; i < loop->num_nodes; i++)
888 vec<basic_block> ldom;
889 basic_block bb;
891 ldom = get_dominated_by (CDI_DOMINATORS, body[i]);
892 FOR_EACH_VEC_ELT (ldom, j, bb)
893 if (!flow_bb_inside_loop_p (loop, bb))
894 dom_bbs.safe_push (bb);
896 ldom.release ();
898 free (body);
900 if (!exit_at_end)
902 /* Leave exit in first copy (for explanation why see comment in
903 unroll_loop_constant_iterations). */
904 may_exit_copy = 0;
905 n_peel = max_unroll - 1;
906 extra_zero_check = true;
907 last_may_exit = false;
909 else
911 /* Leave exit in last copy (for explanation why see comment in
912 unroll_loop_constant_iterations). */
913 may_exit_copy = max_unroll;
914 n_peel = max_unroll;
915 extra_zero_check = false;
916 last_may_exit = true;
919 /* Get expression for number of iterations. */
920 start_sequence ();
921 old_niter = niter = gen_reg_rtx (desc->mode);
922 tmp = force_operand (copy_rtx (desc->niter_expr), niter);
923 if (tmp != niter)
924 emit_move_insn (niter, tmp);
926 /* Count modulo by ANDing it with max_unroll; we use the fact that
927 the number of unrollings is a power of two, and thus this is correct
928 even if there is overflow in the computation. */
929 niter = expand_simple_binop (desc->mode, AND,
930 niter, gen_int_mode (max_unroll, desc->mode),
931 NULL_RTX, 0, OPTAB_LIB_WIDEN);
933 init_code = get_insns ();
934 end_sequence ();
935 unshare_all_rtl_in_chain (init_code);
937 /* Precondition the loop. */
938 split_edge_and_insert (loop_preheader_edge (loop), init_code);
940 auto_vec<edge> remove_edges;
942 wont_exit = sbitmap_alloc (max_unroll + 2);
944 /* Peel the first copy of loop body (almost always we must leave exit test
945 here; the only exception is when we have extra zero check and the number
946 of iterations is reliable. Also record the place of (possible) extra
947 zero check. */
948 bitmap_clear (wont_exit);
949 if (extra_zero_check
950 && !desc->noloop_assumptions)
951 bitmap_set_bit (wont_exit, 1);
952 ezc_swtch = loop_preheader_edge (loop)->src;
953 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
954 1, wont_exit, desc->out_edge,
955 &remove_edges,
956 DLTHE_FLAG_UPDATE_FREQ);
957 gcc_assert (ok);
959 /* Record the place where switch will be built for preconditioning. */
960 swtch = split_edge (loop_preheader_edge (loop));
962 for (i = 0; i < n_peel; i++)
964 /* Peel the copy. */
965 bitmap_clear (wont_exit);
966 if (i != n_peel - 1 || !last_may_exit)
967 bitmap_set_bit (wont_exit, 1);
968 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
969 1, wont_exit, desc->out_edge,
970 &remove_edges,
971 DLTHE_FLAG_UPDATE_FREQ);
972 gcc_assert (ok);
974 /* Create item for switch. */
975 j = n_peel - i - (extra_zero_check ? 0 : 1);
976 p = REG_BR_PROB_BASE / (i + 2);
978 preheader = split_edge (loop_preheader_edge (loop));
979 branch_code = compare_and_jump_seq (copy_rtx (niter), GEN_INT (j), EQ,
980 block_label (preheader), p,
981 NULL);
983 /* We rely on the fact that the compare and jump cannot be optimized out,
984 and hence the cfg we create is correct. */
985 gcc_assert (branch_code != NULL_RTX);
987 swtch = split_edge_and_insert (single_pred_edge (swtch), branch_code);
988 set_immediate_dominator (CDI_DOMINATORS, preheader, swtch);
989 single_pred_edge (swtch)->probability = REG_BR_PROB_BASE - p;
990 e = make_edge (swtch, preheader,
991 single_succ_edge (swtch)->flags & EDGE_IRREDUCIBLE_LOOP);
992 e->count = RDIV (preheader->count * REG_BR_PROB_BASE, p);
993 e->probability = p;
996 if (extra_zero_check)
998 /* Add branch for zero iterations. */
999 p = REG_BR_PROB_BASE / (max_unroll + 1);
1000 swtch = ezc_swtch;
1001 preheader = split_edge (loop_preheader_edge (loop));
1002 branch_code = compare_and_jump_seq (copy_rtx (niter), const0_rtx, EQ,
1003 block_label (preheader), p,
1004 NULL);
1005 gcc_assert (branch_code != NULL_RTX);
1007 swtch = split_edge_and_insert (single_succ_edge (swtch), branch_code);
1008 set_immediate_dominator (CDI_DOMINATORS, preheader, swtch);
1009 single_succ_edge (swtch)->probability = REG_BR_PROB_BASE - p;
1010 e = make_edge (swtch, preheader,
1011 single_succ_edge (swtch)->flags & EDGE_IRREDUCIBLE_LOOP);
1012 e->count = RDIV (preheader->count * REG_BR_PROB_BASE, p);
1013 e->probability = p;
1016 /* Recount dominators for outer blocks. */
1017 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
1019 /* And unroll loop. */
1021 bitmap_ones (wont_exit);
1022 bitmap_clear_bit (wont_exit, may_exit_copy);
1023 opt_info_start_duplication (opt_info);
1025 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
1026 max_unroll,
1027 wont_exit, desc->out_edge,
1028 &remove_edges,
1029 DLTHE_FLAG_UPDATE_FREQ
1030 | (opt_info
1031 ? DLTHE_RECORD_COPY_NUMBER
1032 : 0));
1033 gcc_assert (ok);
1035 if (opt_info)
1037 apply_opt_in_copies (opt_info, max_unroll, true, true);
1038 free_opt_info (opt_info);
1041 free (wont_exit);
1043 if (exit_at_end)
1045 basic_block exit_block = get_bb_copy (desc->in_edge->src);
1046 /* Find a new in and out edge; they are in the last copy we have
1047 made. */
1049 if (EDGE_SUCC (exit_block, 0)->dest == desc->out_edge->dest)
1051 desc->out_edge = EDGE_SUCC (exit_block, 0);
1052 desc->in_edge = EDGE_SUCC (exit_block, 1);
1054 else
1056 desc->out_edge = EDGE_SUCC (exit_block, 1);
1057 desc->in_edge = EDGE_SUCC (exit_block, 0);
1061 /* Remove the edges. */
1062 FOR_EACH_VEC_ELT (remove_edges, i, e)
1063 remove_path (e);
1065 /* We must be careful when updating the number of iterations due to
1066 preconditioning and the fact that the value must be valid at entry
1067 of the loop. After passing through the above code, we see that
1068 the correct new number of iterations is this: */
1069 gcc_assert (!desc->const_iter);
1070 desc->niter_expr =
1071 simplify_gen_binary (UDIV, desc->mode, old_niter,
1072 gen_int_mode (max_unroll + 1, desc->mode));
1073 loop->nb_iterations_upper_bound
1074 = wi::udiv_trunc (loop->nb_iterations_upper_bound, max_unroll + 1);
1075 if (loop->any_estimate)
1076 loop->nb_iterations_estimate
1077 = wi::udiv_trunc (loop->nb_iterations_estimate, max_unroll + 1);
1078 if (exit_at_end)
1080 desc->niter_expr =
1081 simplify_gen_binary (MINUS, desc->mode, desc->niter_expr, const1_rtx);
1082 desc->noloop_assumptions = NULL_RTX;
1083 --loop->nb_iterations_upper_bound;
1084 if (loop->any_estimate
1085 && loop->nb_iterations_estimate != 0)
1086 --loop->nb_iterations_estimate;
1087 else
1088 loop->any_estimate = false;
1091 if (dump_file)
1092 fprintf (dump_file,
1093 ";; Unrolled loop %d times, counting # of iterations "
1094 "in runtime, %i insns\n",
1095 max_unroll, num_loop_insns (loop));
1098 /* Decide whether to unroll LOOP stupidly and how much. */
1099 static void
1100 decide_unroll_stupid (struct loop *loop, int flags)
1102 unsigned nunroll, nunroll_by_av, i;
1103 struct niter_desc *desc;
1104 widest_int iterations;
1106 if (!(flags & UAP_UNROLL_ALL))
1108 /* We were not asked to, just return back silently. */
1109 return;
1112 if (dump_file)
1113 fprintf (dump_file, "\n;; Considering unrolling loop stupidly\n");
1115 /* nunroll = total number of copies of the original loop body in
1116 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
1117 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
1118 nunroll_by_av
1119 = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
1120 if (nunroll > nunroll_by_av)
1121 nunroll = nunroll_by_av;
1122 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
1123 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
1125 if (targetm.loop_unroll_adjust)
1126 nunroll = targetm.loop_unroll_adjust (nunroll, loop);
1128 /* Skip big loops. */
1129 if (nunroll <= 1)
1131 if (dump_file)
1132 fprintf (dump_file, ";; Not considering loop, is too big\n");
1133 return;
1136 /* Check for simple loops. */
1137 desc = get_simple_loop_desc (loop);
1139 /* Check simpleness. */
1140 if (desc->simple_p && !desc->assumptions)
1142 if (dump_file)
1143 fprintf (dump_file, ";; The loop is simple\n");
1144 return;
1147 /* Do not unroll loops with branches inside -- it increases number
1148 of mispredicts.
1149 TODO: this heuristic needs tunning; call inside the loop body
1150 is also relatively good reason to not unroll. */
1151 if (num_loop_branches (loop) > 1)
1153 if (dump_file)
1154 fprintf (dump_file, ";; Not unrolling, contains branches\n");
1155 return;
1158 /* Check whether the loop rolls. */
1159 if ((get_estimated_loop_iterations (loop, &iterations)
1160 || get_max_loop_iterations (loop, &iterations))
1161 && wi::ltu_p (iterations, 2 * nunroll))
1163 if (dump_file)
1164 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
1165 return;
1168 /* Success. Now force nunroll to be power of 2, as it seems that this
1169 improves results (partially because of better alignments, partially
1170 because of some dark magic). */
1171 for (i = 1; 2 * i <= nunroll; i *= 2)
1172 continue;
1174 loop->lpt_decision.decision = LPT_UNROLL_STUPID;
1175 loop->lpt_decision.times = i - 1;
1178 /* Unroll a LOOP LOOP->LPT_DECISION.TIMES times. The transformation does this:
1180 while (cond)
1181 body;
1183 ==> (LOOP->LPT_DECISION.TIMES == 3)
1185 while (cond)
1187 body;
1188 if (!cond) break;
1189 body;
1190 if (!cond) break;
1191 body;
1192 if (!cond) break;
1193 body;
1196 static void
1197 unroll_loop_stupid (struct loop *loop)
1199 sbitmap wont_exit;
1200 unsigned nunroll = loop->lpt_decision.times;
1201 struct niter_desc *desc = get_simple_loop_desc (loop);
1202 struct opt_info *opt_info = NULL;
1203 bool ok;
1205 if (flag_split_ivs_in_unroller
1206 || flag_variable_expansion_in_unroller)
1207 opt_info = analyze_insns_in_loop (loop);
1210 wont_exit = sbitmap_alloc (nunroll + 1);
1211 bitmap_clear (wont_exit);
1212 opt_info_start_duplication (opt_info);
1214 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
1215 nunroll, wont_exit,
1216 NULL, NULL,
1217 DLTHE_FLAG_UPDATE_FREQ
1218 | (opt_info
1219 ? DLTHE_RECORD_COPY_NUMBER
1220 : 0));
1221 gcc_assert (ok);
1223 if (opt_info)
1225 apply_opt_in_copies (opt_info, nunroll, true, true);
1226 free_opt_info (opt_info);
1229 free (wont_exit);
1231 if (desc->simple_p)
1233 /* We indeed may get here provided that there are nontrivial assumptions
1234 for a loop to be really simple. We could update the counts, but the
1235 problem is that we are unable to decide which exit will be taken
1236 (not really true in case the number of iterations is constant,
1237 but no one will do anything with this information, so we do not
1238 worry about it). */
1239 desc->simple_p = false;
1242 if (dump_file)
1243 fprintf (dump_file, ";; Unrolled loop %d times, %i insns\n",
1244 nunroll, num_loop_insns (loop));
1247 /* Returns true if REG is referenced in one nondebug insn in LOOP.
1248 Set *DEBUG_USES to the number of debug insns that reference the
1249 variable. */
1251 static bool
1252 referenced_in_one_insn_in_loop_p (struct loop *loop, rtx reg,
1253 int *debug_uses)
1255 basic_block *body, bb;
1256 unsigned i;
1257 int count_ref = 0;
1258 rtx_insn *insn;
1260 body = get_loop_body (loop);
1261 for (i = 0; i < loop->num_nodes; i++)
1263 bb = body[i];
1265 FOR_BB_INSNS (bb, insn)
1266 if (!rtx_referenced_p (reg, insn))
1267 continue;
1268 else if (DEBUG_INSN_P (insn))
1269 ++*debug_uses;
1270 else if (++count_ref > 1)
1271 break;
1273 free (body);
1274 return (count_ref == 1);
1277 /* Reset the DEBUG_USES debug insns in LOOP that reference REG. */
1279 static void
1280 reset_debug_uses_in_loop (struct loop *loop, rtx reg, int debug_uses)
1282 basic_block *body, bb;
1283 unsigned i;
1284 rtx_insn *insn;
1286 body = get_loop_body (loop);
1287 for (i = 0; debug_uses && i < loop->num_nodes; i++)
1289 bb = body[i];
1291 FOR_BB_INSNS (bb, insn)
1292 if (!DEBUG_INSN_P (insn) || !rtx_referenced_p (reg, insn))
1293 continue;
1294 else
1296 validate_change (insn, &INSN_VAR_LOCATION_LOC (insn),
1297 gen_rtx_UNKNOWN_VAR_LOC (), 0);
1298 if (!--debug_uses)
1299 break;
1302 free (body);
1305 /* Determine whether INSN contains an accumulator
1306 which can be expanded into separate copies,
1307 one for each copy of the LOOP body.
1309 for (i = 0 ; i < n; i++)
1310 sum += a[i];
1314 sum += a[i]
1315 ....
1316 i = i+1;
1317 sum1 += a[i]
1318 ....
1319 i = i+1
1320 sum2 += a[i];
1321 ....
1323 Return NULL if INSN contains no opportunity for expansion of accumulator.
1324 Otherwise, allocate a VAR_TO_EXPAND structure, fill it with the relevant
1325 information and return a pointer to it.
1328 static struct var_to_expand *
1329 analyze_insn_to_expand_var (struct loop *loop, rtx_insn *insn)
1331 rtx set, dest, src;
1332 struct var_to_expand *ves;
1333 unsigned accum_pos;
1334 enum rtx_code code;
1335 int debug_uses = 0;
1337 set = single_set (insn);
1338 if (!set)
1339 return NULL;
1341 dest = SET_DEST (set);
1342 src = SET_SRC (set);
1343 code = GET_CODE (src);
1345 if (code != PLUS && code != MINUS && code != MULT && code != FMA)
1346 return NULL;
1348 if (FLOAT_MODE_P (GET_MODE (dest)))
1350 if (!flag_associative_math)
1351 return NULL;
1352 /* In the case of FMA, we're also changing the rounding. */
1353 if (code == FMA && !flag_unsafe_math_optimizations)
1354 return NULL;
1357 /* Hmm, this is a bit paradoxical. We know that INSN is a valid insn
1358 in MD. But if there is no optab to generate the insn, we can not
1359 perform the variable expansion. This can happen if an MD provides
1360 an insn but not a named pattern to generate it, for example to avoid
1361 producing code that needs additional mode switches like for x87/mmx.
1363 So we check have_insn_for which looks for an optab for the operation
1364 in SRC. If it doesn't exist, we can't perform the expansion even
1365 though INSN is valid. */
1366 if (!have_insn_for (code, GET_MODE (src)))
1367 return NULL;
1369 if (!REG_P (dest)
1370 && !(GET_CODE (dest) == SUBREG
1371 && REG_P (SUBREG_REG (dest))))
1372 return NULL;
1374 /* Find the accumulator use within the operation. */
1375 if (code == FMA)
1377 /* We only support accumulation via FMA in the ADD position. */
1378 if (!rtx_equal_p (dest, XEXP (src, 2)))
1379 return NULL;
1380 accum_pos = 2;
1382 else if (rtx_equal_p (dest, XEXP (src, 0)))
1383 accum_pos = 0;
1384 else if (rtx_equal_p (dest, XEXP (src, 1)))
1386 /* The method of expansion that we are using; which includes the
1387 initialization of the expansions with zero and the summation of
1388 the expansions at the end of the computation will yield wrong
1389 results for (x = something - x) thus avoid using it in that case. */
1390 if (code == MINUS)
1391 return NULL;
1392 accum_pos = 1;
1394 else
1395 return NULL;
1397 /* It must not otherwise be used. */
1398 if (code == FMA)
1400 if (rtx_referenced_p (dest, XEXP (src, 0))
1401 || rtx_referenced_p (dest, XEXP (src, 1)))
1402 return NULL;
1404 else if (rtx_referenced_p (dest, XEXP (src, 1 - accum_pos)))
1405 return NULL;
1407 /* It must be used in exactly one insn. */
1408 if (!referenced_in_one_insn_in_loop_p (loop, dest, &debug_uses))
1409 return NULL;
1411 if (dump_file)
1413 fprintf (dump_file, "\n;; Expanding Accumulator ");
1414 print_rtl (dump_file, dest);
1415 fprintf (dump_file, "\n");
1418 if (debug_uses)
1419 /* Instead of resetting the debug insns, we could replace each
1420 debug use in the loop with the sum or product of all expanded
1421 accummulators. Since we'll only know of all expansions at the
1422 end, we'd have to keep track of which vars_to_expand a debug
1423 insn in the loop references, take note of each copy of the
1424 debug insn during unrolling, and when it's all done, compute
1425 the sum or product of each variable and adjust the original
1426 debug insn and each copy thereof. What a pain! */
1427 reset_debug_uses_in_loop (loop, dest, debug_uses);
1429 /* Record the accumulator to expand. */
1430 ves = XNEW (struct var_to_expand);
1431 ves->insn = insn;
1432 ves->reg = copy_rtx (dest);
1433 ves->var_expansions.create (1);
1434 ves->next = NULL;
1435 ves->op = GET_CODE (src);
1436 ves->expansion_count = 0;
1437 ves->reuse_expansion = 0;
1438 return ves;
1441 /* Determine whether there is an induction variable in INSN that
1442 we would like to split during unrolling.
1444 I.e. replace
1446 i = i + 1;
1448 i = i + 1;
1450 i = i + 1;
1453 type chains by
1455 i0 = i + 1
1457 i = i0 + 1
1459 i = i0 + 2
1462 Return NULL if INSN contains no interesting IVs. Otherwise, allocate
1463 an IV_TO_SPLIT structure, fill it with the relevant information and return a
1464 pointer to it. */
1466 static struct iv_to_split *
1467 analyze_iv_to_split_insn (rtx_insn *insn)
1469 rtx set, dest;
1470 struct rtx_iv iv;
1471 struct iv_to_split *ivts;
1472 bool ok;
1474 /* For now we just split the basic induction variables. Later this may be
1475 extended for example by selecting also addresses of memory references. */
1476 set = single_set (insn);
1477 if (!set)
1478 return NULL;
1480 dest = SET_DEST (set);
1481 if (!REG_P (dest))
1482 return NULL;
1484 if (!biv_p (insn, dest))
1485 return NULL;
1487 ok = iv_analyze_result (insn, dest, &iv);
1489 /* This used to be an assert under the assumption that if biv_p returns
1490 true that iv_analyze_result must also return true. However, that
1491 assumption is not strictly correct as evidenced by pr25569.
1493 Returning NULL when iv_analyze_result returns false is safe and
1494 avoids the problems in pr25569 until the iv_analyze_* routines
1495 can be fixed, which is apparently hard and time consuming
1496 according to their author. */
1497 if (! ok)
1498 return NULL;
1500 if (iv.step == const0_rtx
1501 || iv.mode != iv.extend_mode)
1502 return NULL;
1504 /* Record the insn to split. */
1505 ivts = XNEW (struct iv_to_split);
1506 ivts->insn = insn;
1507 ivts->orig_var = dest;
1508 ivts->base_var = NULL_RTX;
1509 ivts->step = iv.step;
1510 ivts->next = NULL;
1512 return ivts;
1515 /* Determines which of insns in LOOP can be optimized.
1516 Return a OPT_INFO struct with the relevant hash tables filled
1517 with all insns to be optimized. The FIRST_NEW_BLOCK field
1518 is undefined for the return value. */
1520 static struct opt_info *
1521 analyze_insns_in_loop (struct loop *loop)
1523 basic_block *body, bb;
1524 unsigned i;
1525 struct opt_info *opt_info = XCNEW (struct opt_info);
1526 rtx_insn *insn;
1527 struct iv_to_split *ivts = NULL;
1528 struct var_to_expand *ves = NULL;
1529 iv_to_split **slot1;
1530 var_to_expand **slot2;
1531 vec<edge> edges = get_loop_exit_edges (loop);
1532 edge exit;
1533 bool can_apply = false;
1535 iv_analysis_loop_init (loop);
1537 body = get_loop_body (loop);
1539 if (flag_split_ivs_in_unroller)
1541 opt_info->insns_to_split
1542 = new hash_table<iv_split_hasher> (5 * loop->num_nodes);
1543 opt_info->iv_to_split_head = NULL;
1544 opt_info->iv_to_split_tail = &opt_info->iv_to_split_head;
1547 /* Record the loop exit bb and loop preheader before the unrolling. */
1548 opt_info->loop_preheader = loop_preheader_edge (loop)->src;
1550 if (edges.length () == 1)
1552 exit = edges[0];
1553 if (!(exit->flags & EDGE_COMPLEX))
1555 opt_info->loop_exit = split_edge (exit);
1556 can_apply = true;
1560 if (flag_variable_expansion_in_unroller
1561 && can_apply)
1563 opt_info->insns_with_var_to_expand
1564 = new hash_table<var_expand_hasher> (5 * loop->num_nodes);
1565 opt_info->var_to_expand_head = NULL;
1566 opt_info->var_to_expand_tail = &opt_info->var_to_expand_head;
1569 for (i = 0; i < loop->num_nodes; i++)
1571 bb = body[i];
1572 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
1573 continue;
1575 FOR_BB_INSNS (bb, insn)
1577 if (!INSN_P (insn))
1578 continue;
1580 if (opt_info->insns_to_split)
1581 ivts = analyze_iv_to_split_insn (insn);
1583 if (ivts)
1585 slot1 = opt_info->insns_to_split->find_slot (ivts, INSERT);
1586 gcc_assert (*slot1 == NULL);
1587 *slot1 = ivts;
1588 *opt_info->iv_to_split_tail = ivts;
1589 opt_info->iv_to_split_tail = &ivts->next;
1590 continue;
1593 if (opt_info->insns_with_var_to_expand)
1594 ves = analyze_insn_to_expand_var (loop, insn);
1596 if (ves)
1598 slot2 = opt_info->insns_with_var_to_expand->find_slot (ves, INSERT);
1599 gcc_assert (*slot2 == NULL);
1600 *slot2 = ves;
1601 *opt_info->var_to_expand_tail = ves;
1602 opt_info->var_to_expand_tail = &ves->next;
1607 edges.release ();
1608 free (body);
1609 return opt_info;
1612 /* Called just before loop duplication. Records start of duplicated area
1613 to OPT_INFO. */
1615 static void
1616 opt_info_start_duplication (struct opt_info *opt_info)
1618 if (opt_info)
1619 opt_info->first_new_block = last_basic_block_for_fn (cfun);
1622 /* Determine the number of iterations between initialization of the base
1623 variable and the current copy (N_COPY). N_COPIES is the total number
1624 of newly created copies. UNROLLING is true if we are unrolling
1625 (not peeling) the loop. */
1627 static unsigned
1628 determine_split_iv_delta (unsigned n_copy, unsigned n_copies, bool unrolling)
1630 if (unrolling)
1632 /* If we are unrolling, initialization is done in the original loop
1633 body (number 0). */
1634 return n_copy;
1636 else
1638 /* If we are peeling, the copy in that the initialization occurs has
1639 number 1. The original loop (number 0) is the last. */
1640 if (n_copy)
1641 return n_copy - 1;
1642 else
1643 return n_copies;
1647 /* Allocate basic variable for the induction variable chain. */
1649 static void
1650 allocate_basic_variable (struct iv_to_split *ivts)
1652 rtx expr = SET_SRC (single_set (ivts->insn));
1654 ivts->base_var = gen_reg_rtx (GET_MODE (expr));
1657 /* Insert initialization of basic variable of IVTS before INSN, taking
1658 the initial value from INSN. */
1660 static void
1661 insert_base_initialization (struct iv_to_split *ivts, rtx_insn *insn)
1663 rtx expr = copy_rtx (SET_SRC (single_set (insn)));
1664 rtx_insn *seq;
1666 start_sequence ();
1667 expr = force_operand (expr, ivts->base_var);
1668 if (expr != ivts->base_var)
1669 emit_move_insn (ivts->base_var, expr);
1670 seq = get_insns ();
1671 end_sequence ();
1673 emit_insn_before (seq, insn);
1676 /* Replace the use of induction variable described in IVTS in INSN
1677 by base variable + DELTA * step. */
1679 static void
1680 split_iv (struct iv_to_split *ivts, rtx_insn *insn, unsigned delta)
1682 rtx expr, *loc, incr, var;
1683 rtx_insn *seq;
1684 machine_mode mode = GET_MODE (ivts->base_var);
1685 rtx src, dest, set;
1687 /* Construct base + DELTA * step. */
1688 if (!delta)
1689 expr = ivts->base_var;
1690 else
1692 incr = simplify_gen_binary (MULT, mode,
1693 ivts->step, gen_int_mode (delta, mode));
1694 expr = simplify_gen_binary (PLUS, GET_MODE (ivts->base_var),
1695 ivts->base_var, incr);
1698 /* Figure out where to do the replacement. */
1699 loc = &SET_SRC (single_set (insn));
1701 /* If we can make the replacement right away, we're done. */
1702 if (validate_change (insn, loc, expr, 0))
1703 return;
1705 /* Otherwise, force EXPR into a register and try again. */
1706 start_sequence ();
1707 var = gen_reg_rtx (mode);
1708 expr = force_operand (expr, var);
1709 if (expr != var)
1710 emit_move_insn (var, expr);
1711 seq = get_insns ();
1712 end_sequence ();
1713 emit_insn_before (seq, insn);
1715 if (validate_change (insn, loc, var, 0))
1716 return;
1718 /* The last chance. Try recreating the assignment in insn
1719 completely from scratch. */
1720 set = single_set (insn);
1721 gcc_assert (set);
1723 start_sequence ();
1724 *loc = var;
1725 src = copy_rtx (SET_SRC (set));
1726 dest = copy_rtx (SET_DEST (set));
1727 src = force_operand (src, dest);
1728 if (src != dest)
1729 emit_move_insn (dest, src);
1730 seq = get_insns ();
1731 end_sequence ();
1733 emit_insn_before (seq, insn);
1734 delete_insn (insn);
1738 /* Return one expansion of the accumulator recorded in struct VE. */
1740 static rtx
1741 get_expansion (struct var_to_expand *ve)
1743 rtx reg;
1745 if (ve->reuse_expansion == 0)
1746 reg = ve->reg;
1747 else
1748 reg = ve->var_expansions[ve->reuse_expansion - 1];
1750 if (ve->var_expansions.length () == (unsigned) ve->reuse_expansion)
1751 ve->reuse_expansion = 0;
1752 else
1753 ve->reuse_expansion++;
1755 return reg;
1759 /* Given INSN replace the uses of the accumulator recorded in VE
1760 with a new register. */
1762 static void
1763 expand_var_during_unrolling (struct var_to_expand *ve, rtx_insn *insn)
1765 rtx new_reg, set;
1766 bool really_new_expansion = false;
1768 set = single_set (insn);
1769 gcc_assert (set);
1771 /* Generate a new register only if the expansion limit has not been
1772 reached. Else reuse an already existing expansion. */
1773 if (PARAM_VALUE (PARAM_MAX_VARIABLE_EXPANSIONS) > ve->expansion_count)
1775 really_new_expansion = true;
1776 new_reg = gen_reg_rtx (GET_MODE (ve->reg));
1778 else
1779 new_reg = get_expansion (ve);
1781 validate_replace_rtx_group (SET_DEST (set), new_reg, insn);
1782 if (apply_change_group ())
1783 if (really_new_expansion)
1785 ve->var_expansions.safe_push (new_reg);
1786 ve->expansion_count++;
1790 /* Initialize the variable expansions in loop preheader. PLACE is the
1791 loop-preheader basic block where the initialization of the
1792 expansions should take place. The expansions are initialized with
1793 (-0) when the operation is plus or minus to honor sign zero. This
1794 way we can prevent cases where the sign of the final result is
1795 effected by the sign of the expansion. Here is an example to
1796 demonstrate this:
1798 for (i = 0 ; i < n; i++)
1799 sum += something;
1803 sum += something
1804 ....
1805 i = i+1;
1806 sum1 += something
1807 ....
1808 i = i+1
1809 sum2 += something;
1810 ....
1812 When SUM is initialized with -zero and SOMETHING is also -zero; the
1813 final result of sum should be -zero thus the expansions sum1 and sum2
1814 should be initialized with -zero as well (otherwise we will get +zero
1815 as the final result). */
1817 static void
1818 insert_var_expansion_initialization (struct var_to_expand *ve,
1819 basic_block place)
1821 rtx_insn *seq;
1822 rtx var, zero_init;
1823 unsigned i;
1824 machine_mode mode = GET_MODE (ve->reg);
1825 bool honor_signed_zero_p = HONOR_SIGNED_ZEROS (mode);
1827 if (ve->var_expansions.length () == 0)
1828 return;
1830 start_sequence ();
1831 switch (ve->op)
1833 case FMA:
1834 /* Note that we only accumulate FMA via the ADD operand. */
1835 case PLUS:
1836 case MINUS:
1837 FOR_EACH_VEC_ELT (ve->var_expansions, i, var)
1839 if (honor_signed_zero_p)
1840 zero_init = simplify_gen_unary (NEG, mode, CONST0_RTX (mode), mode);
1841 else
1842 zero_init = CONST0_RTX (mode);
1843 emit_move_insn (var, zero_init);
1845 break;
1847 case MULT:
1848 FOR_EACH_VEC_ELT (ve->var_expansions, i, var)
1850 zero_init = CONST1_RTX (GET_MODE (var));
1851 emit_move_insn (var, zero_init);
1853 break;
1855 default:
1856 gcc_unreachable ();
1859 seq = get_insns ();
1860 end_sequence ();
1862 emit_insn_after (seq, BB_END (place));
1865 /* Combine the variable expansions at the loop exit. PLACE is the
1866 loop exit basic block where the summation of the expansions should
1867 take place. */
1869 static void
1870 combine_var_copies_in_loop_exit (struct var_to_expand *ve, basic_block place)
1872 rtx sum = ve->reg;
1873 rtx expr, var;
1874 rtx_insn *seq, *insn;
1875 unsigned i;
1877 if (ve->var_expansions.length () == 0)
1878 return;
1880 start_sequence ();
1881 switch (ve->op)
1883 case FMA:
1884 /* Note that we only accumulate FMA via the ADD operand. */
1885 case PLUS:
1886 case MINUS:
1887 FOR_EACH_VEC_ELT (ve->var_expansions, i, var)
1888 sum = simplify_gen_binary (PLUS, GET_MODE (ve->reg), var, sum);
1889 break;
1891 case MULT:
1892 FOR_EACH_VEC_ELT (ve->var_expansions, i, var)
1893 sum = simplify_gen_binary (MULT, GET_MODE (ve->reg), var, sum);
1894 break;
1896 default:
1897 gcc_unreachable ();
1900 expr = force_operand (sum, ve->reg);
1901 if (expr != ve->reg)
1902 emit_move_insn (ve->reg, expr);
1903 seq = get_insns ();
1904 end_sequence ();
1906 insn = BB_HEAD (place);
1907 while (!NOTE_INSN_BASIC_BLOCK_P (insn))
1908 insn = NEXT_INSN (insn);
1910 emit_insn_after (seq, insn);
1913 /* Strip away REG_EQUAL notes for IVs we're splitting.
1915 Updating REG_EQUAL notes for IVs we split is tricky: We
1916 cannot tell until after unrolling, DF-rescanning, and liveness
1917 updating, whether an EQ_USE is reached by the split IV while
1918 the IV reg is still live. See PR55006.
1920 ??? We cannot use remove_reg_equal_equiv_notes_for_regno,
1921 because RTL loop-iv requires us to defer rescanning insns and
1922 any notes attached to them. So resort to old techniques... */
1924 static void
1925 maybe_strip_eq_note_for_split_iv (struct opt_info *opt_info, rtx_insn *insn)
1927 struct iv_to_split *ivts;
1928 rtx note = find_reg_equal_equiv_note (insn);
1929 if (! note)
1930 return;
1931 for (ivts = opt_info->iv_to_split_head; ivts; ivts = ivts->next)
1932 if (reg_mentioned_p (ivts->orig_var, note))
1934 remove_note (insn, note);
1935 return;
1939 /* Apply loop optimizations in loop copies using the
1940 data which gathered during the unrolling. Structure
1941 OPT_INFO record that data.
1943 UNROLLING is true if we unrolled (not peeled) the loop.
1944 REWRITE_ORIGINAL_BODY is true if we should also rewrite the original body of
1945 the loop (as it should happen in complete unrolling, but not in ordinary
1946 peeling of the loop). */
1948 static void
1949 apply_opt_in_copies (struct opt_info *opt_info,
1950 unsigned n_copies, bool unrolling,
1951 bool rewrite_original_loop)
1953 unsigned i, delta;
1954 basic_block bb, orig_bb;
1955 rtx_insn *insn, *orig_insn, *next;
1956 struct iv_to_split ivts_templ, *ivts;
1957 struct var_to_expand ve_templ, *ves;
1959 /* Sanity check -- we need to put initialization in the original loop
1960 body. */
1961 gcc_assert (!unrolling || rewrite_original_loop);
1963 /* Allocate the basic variables (i0). */
1964 if (opt_info->insns_to_split)
1965 for (ivts = opt_info->iv_to_split_head; ivts; ivts = ivts->next)
1966 allocate_basic_variable (ivts);
1968 for (i = opt_info->first_new_block;
1969 i < (unsigned) last_basic_block_for_fn (cfun);
1970 i++)
1972 bb = BASIC_BLOCK_FOR_FN (cfun, i);
1973 orig_bb = get_bb_original (bb);
1975 /* bb->aux holds position in copy sequence initialized by
1976 duplicate_loop_to_header_edge. */
1977 delta = determine_split_iv_delta ((size_t)bb->aux, n_copies,
1978 unrolling);
1979 bb->aux = 0;
1980 orig_insn = BB_HEAD (orig_bb);
1981 FOR_BB_INSNS_SAFE (bb, insn, next)
1983 if (!INSN_P (insn)
1984 || (DEBUG_INSN_P (insn)
1985 && TREE_CODE (INSN_VAR_LOCATION_DECL (insn)) == LABEL_DECL))
1986 continue;
1988 while (!INSN_P (orig_insn)
1989 || (DEBUG_INSN_P (orig_insn)
1990 && (TREE_CODE (INSN_VAR_LOCATION_DECL (orig_insn))
1991 == LABEL_DECL)))
1992 orig_insn = NEXT_INSN (orig_insn);
1994 ivts_templ.insn = orig_insn;
1995 ve_templ.insn = orig_insn;
1997 /* Apply splitting iv optimization. */
1998 if (opt_info->insns_to_split)
2000 maybe_strip_eq_note_for_split_iv (opt_info, insn);
2002 ivts = opt_info->insns_to_split->find (&ivts_templ);
2004 if (ivts)
2006 gcc_assert (GET_CODE (PATTERN (insn))
2007 == GET_CODE (PATTERN (orig_insn)));
2009 if (!delta)
2010 insert_base_initialization (ivts, insn);
2011 split_iv (ivts, insn, delta);
2014 /* Apply variable expansion optimization. */
2015 if (unrolling && opt_info->insns_with_var_to_expand)
2017 ves = (struct var_to_expand *)
2018 opt_info->insns_with_var_to_expand->find (&ve_templ);
2019 if (ves)
2021 gcc_assert (GET_CODE (PATTERN (insn))
2022 == GET_CODE (PATTERN (orig_insn)));
2023 expand_var_during_unrolling (ves, insn);
2026 orig_insn = NEXT_INSN (orig_insn);
2030 if (!rewrite_original_loop)
2031 return;
2033 /* Initialize the variable expansions in the loop preheader
2034 and take care of combining them at the loop exit. */
2035 if (opt_info->insns_with_var_to_expand)
2037 for (ves = opt_info->var_to_expand_head; ves; ves = ves->next)
2038 insert_var_expansion_initialization (ves, opt_info->loop_preheader);
2039 for (ves = opt_info->var_to_expand_head; ves; ves = ves->next)
2040 combine_var_copies_in_loop_exit (ves, opt_info->loop_exit);
2043 /* Rewrite also the original loop body. Find them as originals of the blocks
2044 in the last copied iteration, i.e. those that have
2045 get_bb_copy (get_bb_original (bb)) == bb. */
2046 for (i = opt_info->first_new_block;
2047 i < (unsigned) last_basic_block_for_fn (cfun);
2048 i++)
2050 bb = BASIC_BLOCK_FOR_FN (cfun, i);
2051 orig_bb = get_bb_original (bb);
2052 if (get_bb_copy (orig_bb) != bb)
2053 continue;
2055 delta = determine_split_iv_delta (0, n_copies, unrolling);
2056 for (orig_insn = BB_HEAD (orig_bb);
2057 orig_insn != NEXT_INSN (BB_END (bb));
2058 orig_insn = next)
2060 next = NEXT_INSN (orig_insn);
2062 if (!INSN_P (orig_insn))
2063 continue;
2065 ivts_templ.insn = orig_insn;
2066 if (opt_info->insns_to_split)
2068 maybe_strip_eq_note_for_split_iv (opt_info, orig_insn);
2070 ivts = (struct iv_to_split *)
2071 opt_info->insns_to_split->find (&ivts_templ);
2072 if (ivts)
2074 if (!delta)
2075 insert_base_initialization (ivts, orig_insn);
2076 split_iv (ivts, orig_insn, delta);
2077 continue;
2085 /* Release OPT_INFO. */
2087 static void
2088 free_opt_info (struct opt_info *opt_info)
2090 delete opt_info->insns_to_split;
2091 opt_info->insns_to_split = NULL;
2092 if (opt_info->insns_with_var_to_expand)
2094 struct var_to_expand *ves;
2096 for (ves = opt_info->var_to_expand_head; ves; ves = ves->next)
2097 ves->var_expansions.release ();
2098 delete opt_info->insns_with_var_to_expand;
2099 opt_info->insns_with_var_to_expand = NULL;
2101 free (opt_info);