1 /* Fold a constant sub-tree into a single node for C-compiler
2 Copyright (C) 1987-2018 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /*@@ This file should be rewritten to use an arbitrary precision
21 @@ representation for "struct tree_int_cst" and "struct tree_real_cst".
22 @@ Perhaps the routines could also be used for bc/dc, and made a lib.
23 @@ The routines that translate from the ap rep should
24 @@ warn if precision et. al. is lost.
25 @@ This would also make life easier when this technology is used
26 @@ for cross-compilers. */
28 /* The entry points in this file are fold, size_int_wide and size_binop.
30 fold takes a tree as argument and returns a simplified tree.
32 size_binop takes a tree code for an arithmetic operation
33 and two operands that are trees, and produces a tree for the
34 result, assuming the type comes from `sizetype'.
36 size_int takes an integer value, and creates a tree constant
37 with type from `sizetype'.
39 Note: Since the folders get called on non-gimple code as well as
40 gimple code, we need to handle GIMPLE tuples as well as their
41 corresponding tree equivalents. */
45 #include "coretypes.h"
54 #include "tree-ssa-operands.h"
55 #include "optabs-query.h"
57 #include "diagnostic-core.h"
60 #include "fold-const.h"
61 #include "fold-const-call.h"
62 #include "stor-layout.h"
64 #include "tree-iterator.h"
67 #include "langhooks.h"
72 #include "generic-match.h"
73 #include "gimple-fold.h"
75 #include "tree-into-ssa.h"
77 #include "case-cfn-macros.h"
78 #include "stringpool.h"
80 #include "tree-ssanames.h"
82 #include "stringpool.h"
84 #include "tree-vector-builder.h"
85 #include "vec-perm-indices.h"
87 /* Nonzero if we are folding constants inside an initializer; zero
89 int folding_initializer
= 0;
91 /* The following constants represent a bit based encoding of GCC's
92 comparison operators. This encoding simplifies transformations
93 on relational comparison operators, such as AND and OR. */
94 enum comparison_code
{
113 static bool negate_expr_p (tree
);
114 static tree
negate_expr (tree
);
115 static tree
associate_trees (location_t
, tree
, tree
, enum tree_code
, tree
);
116 static enum comparison_code
comparison_to_compcode (enum tree_code
);
117 static enum tree_code
compcode_to_comparison (enum comparison_code
);
118 static int twoval_comparison_p (tree
, tree
*, tree
*, int *);
119 static tree
eval_subst (location_t
, tree
, tree
, tree
, tree
, tree
);
120 static tree
optimize_bit_field_compare (location_t
, enum tree_code
,
122 static int simple_operand_p (const_tree
);
123 static bool simple_operand_p_2 (tree
);
124 static tree
range_binop (enum tree_code
, tree
, tree
, int, tree
, int);
125 static tree
range_predecessor (tree
);
126 static tree
range_successor (tree
);
127 static tree
fold_range_test (location_t
, enum tree_code
, tree
, tree
, tree
);
128 static tree
fold_cond_expr_with_comparison (location_t
, tree
, tree
, tree
, tree
);
129 static tree
unextend (tree
, int, int, tree
);
130 static tree
extract_muldiv (tree
, tree
, enum tree_code
, tree
, bool *);
131 static tree
extract_muldiv_1 (tree
, tree
, enum tree_code
, tree
, bool *);
132 static tree
fold_binary_op_with_conditional_arg (location_t
,
133 enum tree_code
, tree
,
136 static tree
fold_negate_const (tree
, tree
);
137 static tree
fold_not_const (const_tree
, tree
);
138 static tree
fold_relational_const (enum tree_code
, tree
, tree
, tree
);
139 static tree
fold_convert_const (enum tree_code
, tree
, tree
);
140 static tree
fold_view_convert_expr (tree
, tree
);
141 static tree
fold_negate_expr (location_t
, tree
);
144 /* Return EXPR_LOCATION of T if it is not UNKNOWN_LOCATION.
145 Otherwise, return LOC. */
148 expr_location_or (tree t
, location_t loc
)
150 location_t tloc
= EXPR_LOCATION (t
);
151 return tloc
== UNKNOWN_LOCATION
? loc
: tloc
;
154 /* Similar to protected_set_expr_location, but never modify x in place,
155 if location can and needs to be set, unshare it. */
158 protected_set_expr_location_unshare (tree x
, location_t loc
)
160 if (CAN_HAVE_LOCATION_P (x
)
161 && EXPR_LOCATION (x
) != loc
162 && !(TREE_CODE (x
) == SAVE_EXPR
163 || TREE_CODE (x
) == TARGET_EXPR
164 || TREE_CODE (x
) == BIND_EXPR
))
167 SET_EXPR_LOCATION (x
, loc
);
172 /* If ARG2 divides ARG1 with zero remainder, carries out the exact
173 division and returns the quotient. Otherwise returns
177 div_if_zero_remainder (const_tree arg1
, const_tree arg2
)
181 if (wi::multiple_of_p (wi::to_widest (arg1
), wi::to_widest (arg2
),
183 return wide_int_to_tree (TREE_TYPE (arg1
), quo
);
188 /* This is nonzero if we should defer warnings about undefined
189 overflow. This facility exists because these warnings are a
190 special case. The code to estimate loop iterations does not want
191 to issue any warnings, since it works with expressions which do not
192 occur in user code. Various bits of cleanup code call fold(), but
193 only use the result if it has certain characteristics (e.g., is a
194 constant); that code only wants to issue a warning if the result is
197 static int fold_deferring_overflow_warnings
;
199 /* If a warning about undefined overflow is deferred, this is the
200 warning. Note that this may cause us to turn two warnings into
201 one, but that is fine since it is sufficient to only give one
202 warning per expression. */
204 static const char* fold_deferred_overflow_warning
;
206 /* If a warning about undefined overflow is deferred, this is the
207 level at which the warning should be emitted. */
209 static enum warn_strict_overflow_code fold_deferred_overflow_code
;
211 /* Start deferring overflow warnings. We could use a stack here to
212 permit nested calls, but at present it is not necessary. */
215 fold_defer_overflow_warnings (void)
217 ++fold_deferring_overflow_warnings
;
220 /* Stop deferring overflow warnings. If there is a pending warning,
221 and ISSUE is true, then issue the warning if appropriate. STMT is
222 the statement with which the warning should be associated (used for
223 location information); STMT may be NULL. CODE is the level of the
224 warning--a warn_strict_overflow_code value. This function will use
225 the smaller of CODE and the deferred code when deciding whether to
226 issue the warning. CODE may be zero to mean to always use the
230 fold_undefer_overflow_warnings (bool issue
, const gimple
*stmt
, int code
)
235 gcc_assert (fold_deferring_overflow_warnings
> 0);
236 --fold_deferring_overflow_warnings
;
237 if (fold_deferring_overflow_warnings
> 0)
239 if (fold_deferred_overflow_warning
!= NULL
241 && code
< (int) fold_deferred_overflow_code
)
242 fold_deferred_overflow_code
= (enum warn_strict_overflow_code
) code
;
246 warnmsg
= fold_deferred_overflow_warning
;
247 fold_deferred_overflow_warning
= NULL
;
249 if (!issue
|| warnmsg
== NULL
)
252 if (gimple_no_warning_p (stmt
))
255 /* Use the smallest code level when deciding to issue the
257 if (code
== 0 || code
> (int) fold_deferred_overflow_code
)
258 code
= fold_deferred_overflow_code
;
260 if (!issue_strict_overflow_warning (code
))
264 locus
= input_location
;
266 locus
= gimple_location (stmt
);
267 warning_at (locus
, OPT_Wstrict_overflow
, "%s", warnmsg
);
270 /* Stop deferring overflow warnings, ignoring any deferred
274 fold_undefer_and_ignore_overflow_warnings (void)
276 fold_undefer_overflow_warnings (false, NULL
, 0);
279 /* Whether we are deferring overflow warnings. */
282 fold_deferring_overflow_warnings_p (void)
284 return fold_deferring_overflow_warnings
> 0;
287 /* This is called when we fold something based on the fact that signed
288 overflow is undefined. */
291 fold_overflow_warning (const char* gmsgid
, enum warn_strict_overflow_code wc
)
293 if (fold_deferring_overflow_warnings
> 0)
295 if (fold_deferred_overflow_warning
== NULL
296 || wc
< fold_deferred_overflow_code
)
298 fold_deferred_overflow_warning
= gmsgid
;
299 fold_deferred_overflow_code
= wc
;
302 else if (issue_strict_overflow_warning (wc
))
303 warning (OPT_Wstrict_overflow
, gmsgid
);
306 /* Return true if the built-in mathematical function specified by CODE
307 is odd, i.e. -f(x) == f(-x). */
310 negate_mathfn_p (combined_fn fn
)
343 return !flag_rounding_math
;
351 /* Check whether we may negate an integer constant T without causing
355 may_negate_without_overflow_p (const_tree t
)
359 gcc_assert (TREE_CODE (t
) == INTEGER_CST
);
361 type
= TREE_TYPE (t
);
362 if (TYPE_UNSIGNED (type
))
365 return !wi::only_sign_bit_p (wi::to_wide (t
));
368 /* Determine whether an expression T can be cheaply negated using
369 the function negate_expr without introducing undefined overflow. */
372 negate_expr_p (tree t
)
379 type
= TREE_TYPE (t
);
382 switch (TREE_CODE (t
))
385 if (INTEGRAL_TYPE_P (type
) && TYPE_UNSIGNED (type
))
388 /* Check that -CST will not overflow type. */
389 return may_negate_without_overflow_p (t
);
391 return (INTEGRAL_TYPE_P (type
)
392 && TYPE_OVERFLOW_WRAPS (type
));
398 return !TYPE_OVERFLOW_SANITIZED (type
);
401 /* We want to canonicalize to positive real constants. Pretend
402 that only negative ones can be easily negated. */
403 return REAL_VALUE_NEGATIVE (TREE_REAL_CST (t
));
406 return negate_expr_p (TREE_REALPART (t
))
407 && negate_expr_p (TREE_IMAGPART (t
));
411 if (FLOAT_TYPE_P (TREE_TYPE (type
)) || TYPE_OVERFLOW_WRAPS (type
))
414 /* Steps don't prevent negation. */
415 unsigned int count
= vector_cst_encoded_nelts (t
);
416 for (unsigned int i
= 0; i
< count
; ++i
)
417 if (!negate_expr_p (VECTOR_CST_ENCODED_ELT (t
, i
)))
424 return negate_expr_p (TREE_OPERAND (t
, 0))
425 && negate_expr_p (TREE_OPERAND (t
, 1));
428 return negate_expr_p (TREE_OPERAND (t
, 0));
431 if (HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type
))
432 || HONOR_SIGNED_ZEROS (element_mode (type
))
433 || (ANY_INTEGRAL_TYPE_P (type
)
434 && ! TYPE_OVERFLOW_WRAPS (type
)))
436 /* -(A + B) -> (-B) - A. */
437 if (negate_expr_p (TREE_OPERAND (t
, 1)))
439 /* -(A + B) -> (-A) - B. */
440 return negate_expr_p (TREE_OPERAND (t
, 0));
443 /* We can't turn -(A-B) into B-A when we honor signed zeros. */
444 return !HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type
))
445 && !HONOR_SIGNED_ZEROS (element_mode (type
))
446 && (! ANY_INTEGRAL_TYPE_P (type
)
447 || TYPE_OVERFLOW_WRAPS (type
));
450 if (TYPE_UNSIGNED (type
))
452 /* INT_MIN/n * n doesn't overflow while negating one operand it does
453 if n is a (negative) power of two. */
454 if (INTEGRAL_TYPE_P (TREE_TYPE (t
))
455 && ! TYPE_OVERFLOW_WRAPS (TREE_TYPE (t
))
456 && ! ((TREE_CODE (TREE_OPERAND (t
, 0)) == INTEGER_CST
458 (wi::abs (wi::to_wide (TREE_OPERAND (t
, 0))))) != 1)
459 || (TREE_CODE (TREE_OPERAND (t
, 1)) == INTEGER_CST
461 (wi::abs (wi::to_wide (TREE_OPERAND (t
, 1))))) != 1)))
467 if (! HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (TREE_TYPE (t
))))
468 return negate_expr_p (TREE_OPERAND (t
, 1))
469 || negate_expr_p (TREE_OPERAND (t
, 0));
475 if (TYPE_UNSIGNED (type
))
477 if (negate_expr_p (TREE_OPERAND (t
, 0)))
479 /* In general we can't negate B in A / B, because if A is INT_MIN and
480 B is 1, we may turn this into INT_MIN / -1 which is undefined
481 and actually traps on some architectures. */
482 if (! INTEGRAL_TYPE_P (TREE_TYPE (t
))
483 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (t
))
484 || (TREE_CODE (TREE_OPERAND (t
, 1)) == INTEGER_CST
485 && ! integer_onep (TREE_OPERAND (t
, 1))))
486 return negate_expr_p (TREE_OPERAND (t
, 1));
490 /* Negate -((double)float) as (double)(-float). */
491 if (TREE_CODE (type
) == REAL_TYPE
)
493 tree tem
= strip_float_extensions (t
);
495 return negate_expr_p (tem
);
500 /* Negate -f(x) as f(-x). */
501 if (negate_mathfn_p (get_call_combined_fn (t
)))
502 return negate_expr_p (CALL_EXPR_ARG (t
, 0));
506 /* Optimize -((int)x >> 31) into (unsigned)x >> 31 for int. */
507 if (TREE_CODE (TREE_OPERAND (t
, 1)) == INTEGER_CST
)
509 tree op1
= TREE_OPERAND (t
, 1);
510 if (wi::to_wide (op1
) == TYPE_PRECISION (type
) - 1)
521 /* Given T, an expression, return a folded tree for -T or NULL_TREE, if no
522 simplification is possible.
523 If negate_expr_p would return true for T, NULL_TREE will never be
527 fold_negate_expr_1 (location_t loc
, tree t
)
529 tree type
= TREE_TYPE (t
);
532 switch (TREE_CODE (t
))
534 /* Convert - (~A) to A + 1. */
536 if (INTEGRAL_TYPE_P (type
))
537 return fold_build2_loc (loc
, PLUS_EXPR
, type
, TREE_OPERAND (t
, 0),
538 build_one_cst (type
));
542 tem
= fold_negate_const (t
, type
);
543 if (TREE_OVERFLOW (tem
) == TREE_OVERFLOW (t
)
544 || (ANY_INTEGRAL_TYPE_P (type
)
545 && !TYPE_OVERFLOW_TRAPS (type
)
546 && TYPE_OVERFLOW_WRAPS (type
))
547 || (flag_sanitize
& SANITIZE_SI_OVERFLOW
) == 0)
554 tem
= fold_negate_const (t
, type
);
559 tree rpart
= fold_negate_expr (loc
, TREE_REALPART (t
));
560 tree ipart
= fold_negate_expr (loc
, TREE_IMAGPART (t
));
562 return build_complex (type
, rpart
, ipart
);
568 tree_vector_builder elts
;
569 elts
.new_unary_operation (type
, t
, true);
570 unsigned int count
= elts
.encoded_nelts ();
571 for (unsigned int i
= 0; i
< count
; ++i
)
573 tree elt
= fold_negate_expr (loc
, VECTOR_CST_ELT (t
, i
));
574 if (elt
== NULL_TREE
)
576 elts
.quick_push (elt
);
579 return elts
.build ();
583 if (negate_expr_p (t
))
584 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
,
585 fold_negate_expr (loc
, TREE_OPERAND (t
, 0)),
586 fold_negate_expr (loc
, TREE_OPERAND (t
, 1)));
590 if (negate_expr_p (t
))
591 return fold_build1_loc (loc
, CONJ_EXPR
, type
,
592 fold_negate_expr (loc
, TREE_OPERAND (t
, 0)));
596 if (!TYPE_OVERFLOW_SANITIZED (type
))
597 return TREE_OPERAND (t
, 0);
601 if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type
))
602 && !HONOR_SIGNED_ZEROS (element_mode (type
)))
604 /* -(A + B) -> (-B) - A. */
605 if (negate_expr_p (TREE_OPERAND (t
, 1)))
607 tem
= negate_expr (TREE_OPERAND (t
, 1));
608 return fold_build2_loc (loc
, MINUS_EXPR
, type
,
609 tem
, TREE_OPERAND (t
, 0));
612 /* -(A + B) -> (-A) - B. */
613 if (negate_expr_p (TREE_OPERAND (t
, 0)))
615 tem
= negate_expr (TREE_OPERAND (t
, 0));
616 return fold_build2_loc (loc
, MINUS_EXPR
, type
,
617 tem
, TREE_OPERAND (t
, 1));
623 /* - (A - B) -> B - A */
624 if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type
))
625 && !HONOR_SIGNED_ZEROS (element_mode (type
)))
626 return fold_build2_loc (loc
, MINUS_EXPR
, type
,
627 TREE_OPERAND (t
, 1), TREE_OPERAND (t
, 0));
631 if (TYPE_UNSIGNED (type
))
637 if (! HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type
)))
639 tem
= TREE_OPERAND (t
, 1);
640 if (negate_expr_p (tem
))
641 return fold_build2_loc (loc
, TREE_CODE (t
), type
,
642 TREE_OPERAND (t
, 0), negate_expr (tem
));
643 tem
= TREE_OPERAND (t
, 0);
644 if (negate_expr_p (tem
))
645 return fold_build2_loc (loc
, TREE_CODE (t
), type
,
646 negate_expr (tem
), TREE_OPERAND (t
, 1));
653 if (TYPE_UNSIGNED (type
))
655 if (negate_expr_p (TREE_OPERAND (t
, 0)))
656 return fold_build2_loc (loc
, TREE_CODE (t
), type
,
657 negate_expr (TREE_OPERAND (t
, 0)),
658 TREE_OPERAND (t
, 1));
659 /* In general we can't negate B in A / B, because if A is INT_MIN and
660 B is 1, we may turn this into INT_MIN / -1 which is undefined
661 and actually traps on some architectures. */
662 if ((! INTEGRAL_TYPE_P (TREE_TYPE (t
))
663 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (t
))
664 || (TREE_CODE (TREE_OPERAND (t
, 1)) == INTEGER_CST
665 && ! integer_onep (TREE_OPERAND (t
, 1))))
666 && negate_expr_p (TREE_OPERAND (t
, 1)))
667 return fold_build2_loc (loc
, TREE_CODE (t
), type
,
669 negate_expr (TREE_OPERAND (t
, 1)));
673 /* Convert -((double)float) into (double)(-float). */
674 if (TREE_CODE (type
) == REAL_TYPE
)
676 tem
= strip_float_extensions (t
);
677 if (tem
!= t
&& negate_expr_p (tem
))
678 return fold_convert_loc (loc
, type
, negate_expr (tem
));
683 /* Negate -f(x) as f(-x). */
684 if (negate_mathfn_p (get_call_combined_fn (t
))
685 && negate_expr_p (CALL_EXPR_ARG (t
, 0)))
689 fndecl
= get_callee_fndecl (t
);
690 arg
= negate_expr (CALL_EXPR_ARG (t
, 0));
691 return build_call_expr_loc (loc
, fndecl
, 1, arg
);
696 /* Optimize -((int)x >> 31) into (unsigned)x >> 31 for int. */
697 if (TREE_CODE (TREE_OPERAND (t
, 1)) == INTEGER_CST
)
699 tree op1
= TREE_OPERAND (t
, 1);
700 if (wi::to_wide (op1
) == TYPE_PRECISION (type
) - 1)
702 tree ntype
= TYPE_UNSIGNED (type
)
703 ? signed_type_for (type
)
704 : unsigned_type_for (type
);
705 tree temp
= fold_convert_loc (loc
, ntype
, TREE_OPERAND (t
, 0));
706 temp
= fold_build2_loc (loc
, RSHIFT_EXPR
, ntype
, temp
, op1
);
707 return fold_convert_loc (loc
, type
, temp
);
719 /* A wrapper for fold_negate_expr_1. */
722 fold_negate_expr (location_t loc
, tree t
)
724 tree type
= TREE_TYPE (t
);
726 tree tem
= fold_negate_expr_1 (loc
, t
);
727 if (tem
== NULL_TREE
)
729 return fold_convert_loc (loc
, type
, tem
);
732 /* Like fold_negate_expr, but return a NEGATE_EXPR tree, if T can not be
733 negated in a simpler way. Also allow for T to be NULL_TREE, in which case
745 loc
= EXPR_LOCATION (t
);
746 type
= TREE_TYPE (t
);
749 tem
= fold_negate_expr (loc
, t
);
751 tem
= build1_loc (loc
, NEGATE_EXPR
, TREE_TYPE (t
), t
);
752 return fold_convert_loc (loc
, type
, tem
);
755 /* Split a tree IN into a constant, literal and variable parts that could be
756 combined with CODE to make IN. "constant" means an expression with
757 TREE_CONSTANT but that isn't an actual constant. CODE must be a
758 commutative arithmetic operation. Store the constant part into *CONP,
759 the literal in *LITP and return the variable part. If a part isn't
760 present, set it to null. If the tree does not decompose in this way,
761 return the entire tree as the variable part and the other parts as null.
763 If CODE is PLUS_EXPR we also split trees that use MINUS_EXPR. In that
764 case, we negate an operand that was subtracted. Except if it is a
765 literal for which we use *MINUS_LITP instead.
767 If NEGATE_P is true, we are negating all of IN, again except a literal
768 for which we use *MINUS_LITP instead. If a variable part is of pointer
769 type, it is negated after converting to TYPE. This prevents us from
770 generating illegal MINUS pointer expression. LOC is the location of
771 the converted variable part.
773 If IN is itself a literal or constant, return it as appropriate.
775 Note that we do not guarantee that any of the three values will be the
776 same type as IN, but they will have the same signedness and mode. */
779 split_tree (tree in
, tree type
, enum tree_code code
,
780 tree
*minus_varp
, tree
*conp
, tree
*minus_conp
,
781 tree
*litp
, tree
*minus_litp
, int negate_p
)
790 /* Strip any conversions that don't change the machine mode or signedness. */
791 STRIP_SIGN_NOPS (in
);
793 if (TREE_CODE (in
) == INTEGER_CST
|| TREE_CODE (in
) == REAL_CST
794 || TREE_CODE (in
) == FIXED_CST
)
796 else if (TREE_CODE (in
) == code
797 || ((! FLOAT_TYPE_P (TREE_TYPE (in
)) || flag_associative_math
)
798 && ! SAT_FIXED_POINT_TYPE_P (TREE_TYPE (in
))
799 /* We can associate addition and subtraction together (even
800 though the C standard doesn't say so) for integers because
801 the value is not affected. For reals, the value might be
802 affected, so we can't. */
803 && ((code
== PLUS_EXPR
&& TREE_CODE (in
) == POINTER_PLUS_EXPR
)
804 || (code
== PLUS_EXPR
&& TREE_CODE (in
) == MINUS_EXPR
)
805 || (code
== MINUS_EXPR
806 && (TREE_CODE (in
) == PLUS_EXPR
807 || TREE_CODE (in
) == POINTER_PLUS_EXPR
)))))
809 tree op0
= TREE_OPERAND (in
, 0);
810 tree op1
= TREE_OPERAND (in
, 1);
811 int neg1_p
= TREE_CODE (in
) == MINUS_EXPR
;
812 int neg_litp_p
= 0, neg_conp_p
= 0, neg_var_p
= 0;
814 /* First see if either of the operands is a literal, then a constant. */
815 if (TREE_CODE (op0
) == INTEGER_CST
|| TREE_CODE (op0
) == REAL_CST
816 || TREE_CODE (op0
) == FIXED_CST
)
817 *litp
= op0
, op0
= 0;
818 else if (TREE_CODE (op1
) == INTEGER_CST
|| TREE_CODE (op1
) == REAL_CST
819 || TREE_CODE (op1
) == FIXED_CST
)
820 *litp
= op1
, neg_litp_p
= neg1_p
, op1
= 0;
822 if (op0
!= 0 && TREE_CONSTANT (op0
))
823 *conp
= op0
, op0
= 0;
824 else if (op1
!= 0 && TREE_CONSTANT (op1
))
825 *conp
= op1
, neg_conp_p
= neg1_p
, op1
= 0;
827 /* If we haven't dealt with either operand, this is not a case we can
828 decompose. Otherwise, VAR is either of the ones remaining, if any. */
829 if (op0
!= 0 && op1
!= 0)
834 var
= op1
, neg_var_p
= neg1_p
;
836 /* Now do any needed negations. */
838 *minus_litp
= *litp
, *litp
= 0;
839 if (neg_conp_p
&& *conp
)
840 *minus_conp
= *conp
, *conp
= 0;
841 if (neg_var_p
&& var
)
842 *minus_varp
= var
, var
= 0;
844 else if (TREE_CONSTANT (in
))
846 else if (TREE_CODE (in
) == BIT_NOT_EXPR
847 && code
== PLUS_EXPR
)
849 /* -1 - X is folded to ~X, undo that here. Do _not_ do this
850 when IN is constant. */
851 *litp
= build_minus_one_cst (type
);
852 *minus_varp
= TREE_OPERAND (in
, 0);
860 *minus_litp
= *litp
, *litp
= 0;
861 else if (*minus_litp
)
862 *litp
= *minus_litp
, *minus_litp
= 0;
864 *minus_conp
= *conp
, *conp
= 0;
865 else if (*minus_conp
)
866 *conp
= *minus_conp
, *minus_conp
= 0;
868 *minus_varp
= var
, var
= 0;
869 else if (*minus_varp
)
870 var
= *minus_varp
, *minus_varp
= 0;
874 && TREE_OVERFLOW_P (*litp
))
875 *litp
= drop_tree_overflow (*litp
);
877 && TREE_OVERFLOW_P (*minus_litp
))
878 *minus_litp
= drop_tree_overflow (*minus_litp
);
883 /* Re-associate trees split by the above function. T1 and T2 are
884 either expressions to associate or null. Return the new
885 expression, if any. LOC is the location of the new expression. If
886 we build an operation, do it in TYPE and with CODE. */
889 associate_trees (location_t loc
, tree t1
, tree t2
, enum tree_code code
, tree type
)
893 gcc_assert (t2
== 0 || code
!= MINUS_EXPR
);
899 /* If either input is CODE, a PLUS_EXPR, or a MINUS_EXPR, don't
900 try to fold this since we will have infinite recursion. But do
901 deal with any NEGATE_EXPRs. */
902 if (TREE_CODE (t1
) == code
|| TREE_CODE (t2
) == code
903 || TREE_CODE (t1
) == PLUS_EXPR
|| TREE_CODE (t2
) == PLUS_EXPR
904 || TREE_CODE (t1
) == MINUS_EXPR
|| TREE_CODE (t2
) == MINUS_EXPR
)
906 if (code
== PLUS_EXPR
)
908 if (TREE_CODE (t1
) == NEGATE_EXPR
)
909 return build2_loc (loc
, MINUS_EXPR
, type
,
910 fold_convert_loc (loc
, type
, t2
),
911 fold_convert_loc (loc
, type
,
912 TREE_OPERAND (t1
, 0)));
913 else if (TREE_CODE (t2
) == NEGATE_EXPR
)
914 return build2_loc (loc
, MINUS_EXPR
, type
,
915 fold_convert_loc (loc
, type
, t1
),
916 fold_convert_loc (loc
, type
,
917 TREE_OPERAND (t2
, 0)));
918 else if (integer_zerop (t2
))
919 return fold_convert_loc (loc
, type
, t1
);
921 else if (code
== MINUS_EXPR
)
923 if (integer_zerop (t2
))
924 return fold_convert_loc (loc
, type
, t1
);
927 return build2_loc (loc
, code
, type
, fold_convert_loc (loc
, type
, t1
),
928 fold_convert_loc (loc
, type
, t2
));
931 return fold_build2_loc (loc
, code
, type
, fold_convert_loc (loc
, type
, t1
),
932 fold_convert_loc (loc
, type
, t2
));
935 /* Check whether TYPE1 and TYPE2 are equivalent integer types, suitable
936 for use in int_const_binop, size_binop and size_diffop. */
939 int_binop_types_match_p (enum tree_code code
, const_tree type1
, const_tree type2
)
941 if (!INTEGRAL_TYPE_P (type1
) && !POINTER_TYPE_P (type1
))
943 if (!INTEGRAL_TYPE_P (type2
) && !POINTER_TYPE_P (type2
))
958 return TYPE_UNSIGNED (type1
) == TYPE_UNSIGNED (type2
)
959 && TYPE_PRECISION (type1
) == TYPE_PRECISION (type2
)
960 && TYPE_MODE (type1
) == TYPE_MODE (type2
);
963 /* Subroutine of int_const_binop_1 that handles two INTEGER_CSTs. */
966 int_const_binop_2 (enum tree_code code
, const_tree parg1
, const_tree parg2
,
971 tree type
= TREE_TYPE (parg1
);
972 signop sign
= TYPE_SIGN (type
);
973 bool overflow
= false;
975 wi::tree_to_wide_ref arg1
= wi::to_wide (parg1
);
976 wide_int arg2
= wi::to_wide (parg2
, TYPE_PRECISION (type
));
981 res
= wi::bit_or (arg1
, arg2
);
985 res
= wi::bit_xor (arg1
, arg2
);
989 res
= wi::bit_and (arg1
, arg2
);
994 if (wi::neg_p (arg2
))
997 if (code
== RSHIFT_EXPR
)
1003 if (code
== RSHIFT_EXPR
)
1004 /* It's unclear from the C standard whether shifts can overflow.
1005 The following code ignores overflow; perhaps a C standard
1006 interpretation ruling is needed. */
1007 res
= wi::rshift (arg1
, arg2
, sign
);
1009 res
= wi::lshift (arg1
, arg2
);
1014 if (wi::neg_p (arg2
))
1017 if (code
== RROTATE_EXPR
)
1018 code
= LROTATE_EXPR
;
1020 code
= RROTATE_EXPR
;
1023 if (code
== RROTATE_EXPR
)
1024 res
= wi::rrotate (arg1
, arg2
);
1026 res
= wi::lrotate (arg1
, arg2
);
1030 res
= wi::add (arg1
, arg2
, sign
, &overflow
);
1034 res
= wi::sub (arg1
, arg2
, sign
, &overflow
);
1038 res
= wi::mul (arg1
, arg2
, sign
, &overflow
);
1041 case MULT_HIGHPART_EXPR
:
1042 res
= wi::mul_high (arg1
, arg2
, sign
);
1045 case TRUNC_DIV_EXPR
:
1046 case EXACT_DIV_EXPR
:
1049 res
= wi::div_trunc (arg1
, arg2
, sign
, &overflow
);
1052 case FLOOR_DIV_EXPR
:
1055 res
= wi::div_floor (arg1
, arg2
, sign
, &overflow
);
1061 res
= wi::div_ceil (arg1
, arg2
, sign
, &overflow
);
1064 case ROUND_DIV_EXPR
:
1067 res
= wi::div_round (arg1
, arg2
, sign
, &overflow
);
1070 case TRUNC_MOD_EXPR
:
1073 res
= wi::mod_trunc (arg1
, arg2
, sign
, &overflow
);
1076 case FLOOR_MOD_EXPR
:
1079 res
= wi::mod_floor (arg1
, arg2
, sign
, &overflow
);
1085 res
= wi::mod_ceil (arg1
, arg2
, sign
, &overflow
);
1088 case ROUND_MOD_EXPR
:
1091 res
= wi::mod_round (arg1
, arg2
, sign
, &overflow
);
1095 res
= wi::min (arg1
, arg2
, sign
);
1099 res
= wi::max (arg1
, arg2
, sign
);
1106 t
= force_fit_type (type
, res
, overflowable
,
1107 (((sign
== SIGNED
|| overflowable
== -1)
1109 | TREE_OVERFLOW (parg1
) | TREE_OVERFLOW (parg2
)));
1114 /* Combine two integer constants PARG1 and PARG2 under operation CODE
1115 to produce a new constant. Return NULL_TREE if we don't know how
1116 to evaluate CODE at compile-time. */
1119 int_const_binop_1 (enum tree_code code
, const_tree arg1
, const_tree arg2
,
1122 if (TREE_CODE (arg1
) == INTEGER_CST
&& TREE_CODE (arg2
) == INTEGER_CST
)
1123 return int_const_binop_2 (code
, arg1
, arg2
, overflowable
);
1125 gcc_assert (NUM_POLY_INT_COEFFS
!= 1);
1127 if (poly_int_tree_p (arg1
) && poly_int_tree_p (arg2
))
1131 tree type
= TREE_TYPE (arg1
);
1132 signop sign
= TYPE_SIGN (type
);
1136 res
= wi::add (wi::to_poly_wide (arg1
),
1137 wi::to_poly_wide (arg2
), sign
, &overflow
);
1141 res
= wi::sub (wi::to_poly_wide (arg1
),
1142 wi::to_poly_wide (arg2
), sign
, &overflow
);
1146 if (TREE_CODE (arg2
) == INTEGER_CST
)
1147 res
= wi::mul (wi::to_poly_wide (arg1
),
1148 wi::to_wide (arg2
), sign
, &overflow
);
1149 else if (TREE_CODE (arg1
) == INTEGER_CST
)
1150 res
= wi::mul (wi::to_poly_wide (arg2
),
1151 wi::to_wide (arg1
), sign
, &overflow
);
1157 if (TREE_CODE (arg2
) == INTEGER_CST
)
1158 res
= wi::to_poly_wide (arg1
) << wi::to_wide (arg2
);
1164 if (TREE_CODE (arg2
) != INTEGER_CST
1165 || !can_ior_p (wi::to_poly_wide (arg1
), wi::to_wide (arg2
),
1173 return force_fit_type (type
, res
, overflowable
,
1174 (((sign
== SIGNED
|| overflowable
== -1)
1176 | TREE_OVERFLOW (arg1
) | TREE_OVERFLOW (arg2
)));
1183 int_const_binop (enum tree_code code
, const_tree arg1
, const_tree arg2
)
1185 return int_const_binop_1 (code
, arg1
, arg2
, 1);
1188 /* Return true if binary operation OP distributes over addition in operand
1189 OPNO, with the other operand being held constant. OPNO counts from 1. */
1192 distributes_over_addition_p (tree_code op
, int opno
)
1209 /* Combine two constants ARG1 and ARG2 under operation CODE to produce a new
1210 constant. We assume ARG1 and ARG2 have the same data type, or at least
1211 are the same kind of constant and the same machine mode. Return zero if
1212 combining the constants is not allowed in the current operating mode. */
1215 const_binop (enum tree_code code
, tree arg1
, tree arg2
)
1217 /* Sanity check for the recursive cases. */
1224 if (poly_int_tree_p (arg1
) && poly_int_tree_p (arg2
))
1226 if (code
== POINTER_PLUS_EXPR
)
1227 return int_const_binop (PLUS_EXPR
,
1228 arg1
, fold_convert (TREE_TYPE (arg1
), arg2
));
1230 return int_const_binop (code
, arg1
, arg2
);
1233 if (TREE_CODE (arg1
) == REAL_CST
&& TREE_CODE (arg2
) == REAL_CST
)
1238 REAL_VALUE_TYPE value
;
1239 REAL_VALUE_TYPE result
;
1243 /* The following codes are handled by real_arithmetic. */
1258 d1
= TREE_REAL_CST (arg1
);
1259 d2
= TREE_REAL_CST (arg2
);
1261 type
= TREE_TYPE (arg1
);
1262 mode
= TYPE_MODE (type
);
1264 /* Don't perform operation if we honor signaling NaNs and
1265 either operand is a signaling NaN. */
1266 if (HONOR_SNANS (mode
)
1267 && (REAL_VALUE_ISSIGNALING_NAN (d1
)
1268 || REAL_VALUE_ISSIGNALING_NAN (d2
)))
1271 /* Don't perform operation if it would raise a division
1272 by zero exception. */
1273 if (code
== RDIV_EXPR
1274 && real_equal (&d2
, &dconst0
)
1275 && (flag_trapping_math
|| ! MODE_HAS_INFINITIES (mode
)))
1278 /* If either operand is a NaN, just return it. Otherwise, set up
1279 for floating-point trap; we return an overflow. */
1280 if (REAL_VALUE_ISNAN (d1
))
1282 /* Make resulting NaN value to be qNaN when flag_signaling_nans
1285 t
= build_real (type
, d1
);
1288 else if (REAL_VALUE_ISNAN (d2
))
1290 /* Make resulting NaN value to be qNaN when flag_signaling_nans
1293 t
= build_real (type
, d2
);
1297 inexact
= real_arithmetic (&value
, code
, &d1
, &d2
);
1298 real_convert (&result
, mode
, &value
);
1300 /* Don't constant fold this floating point operation if
1301 the result has overflowed and flag_trapping_math. */
1302 if (flag_trapping_math
1303 && MODE_HAS_INFINITIES (mode
)
1304 && REAL_VALUE_ISINF (result
)
1305 && !REAL_VALUE_ISINF (d1
)
1306 && !REAL_VALUE_ISINF (d2
))
1309 /* Don't constant fold this floating point operation if the
1310 result may dependent upon the run-time rounding mode and
1311 flag_rounding_math is set, or if GCC's software emulation
1312 is unable to accurately represent the result. */
1313 if ((flag_rounding_math
1314 || (MODE_COMPOSITE_P (mode
) && !flag_unsafe_math_optimizations
))
1315 && (inexact
|| !real_identical (&result
, &value
)))
1318 t
= build_real (type
, result
);
1320 TREE_OVERFLOW (t
) = TREE_OVERFLOW (arg1
) | TREE_OVERFLOW (arg2
);
1324 if (TREE_CODE (arg1
) == FIXED_CST
)
1326 FIXED_VALUE_TYPE f1
;
1327 FIXED_VALUE_TYPE f2
;
1328 FIXED_VALUE_TYPE result
;
1333 /* The following codes are handled by fixed_arithmetic. */
1339 case TRUNC_DIV_EXPR
:
1340 if (TREE_CODE (arg2
) != FIXED_CST
)
1342 f2
= TREE_FIXED_CST (arg2
);
1348 if (TREE_CODE (arg2
) != INTEGER_CST
)
1350 wi::tree_to_wide_ref w2
= wi::to_wide (arg2
);
1351 f2
.data
.high
= w2
.elt (1);
1352 f2
.data
.low
= w2
.ulow ();
1361 f1
= TREE_FIXED_CST (arg1
);
1362 type
= TREE_TYPE (arg1
);
1363 sat_p
= TYPE_SATURATING (type
);
1364 overflow_p
= fixed_arithmetic (&result
, code
, &f1
, &f2
, sat_p
);
1365 t
= build_fixed (type
, result
);
1366 /* Propagate overflow flags. */
1367 if (overflow_p
| TREE_OVERFLOW (arg1
) | TREE_OVERFLOW (arg2
))
1368 TREE_OVERFLOW (t
) = 1;
1372 if (TREE_CODE (arg1
) == COMPLEX_CST
&& TREE_CODE (arg2
) == COMPLEX_CST
)
1374 tree type
= TREE_TYPE (arg1
);
1375 tree r1
= TREE_REALPART (arg1
);
1376 tree i1
= TREE_IMAGPART (arg1
);
1377 tree r2
= TREE_REALPART (arg2
);
1378 tree i2
= TREE_IMAGPART (arg2
);
1385 real
= const_binop (code
, r1
, r2
);
1386 imag
= const_binop (code
, i1
, i2
);
1390 if (COMPLEX_FLOAT_TYPE_P (type
))
1391 return do_mpc_arg2 (arg1
, arg2
, type
,
1392 /* do_nonfinite= */ folding_initializer
,
1395 real
= const_binop (MINUS_EXPR
,
1396 const_binop (MULT_EXPR
, r1
, r2
),
1397 const_binop (MULT_EXPR
, i1
, i2
));
1398 imag
= const_binop (PLUS_EXPR
,
1399 const_binop (MULT_EXPR
, r1
, i2
),
1400 const_binop (MULT_EXPR
, i1
, r2
));
1404 if (COMPLEX_FLOAT_TYPE_P (type
))
1405 return do_mpc_arg2 (arg1
, arg2
, type
,
1406 /* do_nonfinite= */ folding_initializer
,
1409 case TRUNC_DIV_EXPR
:
1411 case FLOOR_DIV_EXPR
:
1412 case ROUND_DIV_EXPR
:
1413 if (flag_complex_method
== 0)
1415 /* Keep this algorithm in sync with
1416 tree-complex.c:expand_complex_div_straight().
1418 Expand complex division to scalars, straightforward algorithm.
1419 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1423 = const_binop (PLUS_EXPR
,
1424 const_binop (MULT_EXPR
, r2
, r2
),
1425 const_binop (MULT_EXPR
, i2
, i2
));
1427 = const_binop (PLUS_EXPR
,
1428 const_binop (MULT_EXPR
, r1
, r2
),
1429 const_binop (MULT_EXPR
, i1
, i2
));
1431 = const_binop (MINUS_EXPR
,
1432 const_binop (MULT_EXPR
, i1
, r2
),
1433 const_binop (MULT_EXPR
, r1
, i2
));
1435 real
= const_binop (code
, t1
, magsquared
);
1436 imag
= const_binop (code
, t2
, magsquared
);
1440 /* Keep this algorithm in sync with
1441 tree-complex.c:expand_complex_div_wide().
1443 Expand complex division to scalars, modified algorithm to minimize
1444 overflow with wide input ranges. */
1445 tree compare
= fold_build2 (LT_EXPR
, boolean_type_node
,
1446 fold_abs_const (r2
, TREE_TYPE (type
)),
1447 fold_abs_const (i2
, TREE_TYPE (type
)));
1449 if (integer_nonzerop (compare
))
1451 /* In the TRUE branch, we compute
1453 div = (br * ratio) + bi;
1454 tr = (ar * ratio) + ai;
1455 ti = (ai * ratio) - ar;
1458 tree ratio
= const_binop (code
, r2
, i2
);
1459 tree div
= const_binop (PLUS_EXPR
, i2
,
1460 const_binop (MULT_EXPR
, r2
, ratio
));
1461 real
= const_binop (MULT_EXPR
, r1
, ratio
);
1462 real
= const_binop (PLUS_EXPR
, real
, i1
);
1463 real
= const_binop (code
, real
, div
);
1465 imag
= const_binop (MULT_EXPR
, i1
, ratio
);
1466 imag
= const_binop (MINUS_EXPR
, imag
, r1
);
1467 imag
= const_binop (code
, imag
, div
);
1471 /* In the FALSE branch, we compute
1473 divisor = (d * ratio) + c;
1474 tr = (b * ratio) + a;
1475 ti = b - (a * ratio);
1478 tree ratio
= const_binop (code
, i2
, r2
);
1479 tree div
= const_binop (PLUS_EXPR
, r2
,
1480 const_binop (MULT_EXPR
, i2
, ratio
));
1482 real
= const_binop (MULT_EXPR
, i1
, ratio
);
1483 real
= const_binop (PLUS_EXPR
, real
, r1
);
1484 real
= const_binop (code
, real
, div
);
1486 imag
= const_binop (MULT_EXPR
, r1
, ratio
);
1487 imag
= const_binop (MINUS_EXPR
, i1
, imag
);
1488 imag
= const_binop (code
, imag
, div
);
1498 return build_complex (type
, real
, imag
);
1501 if (TREE_CODE (arg1
) == VECTOR_CST
1502 && TREE_CODE (arg2
) == VECTOR_CST
1503 && known_eq (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1
)),
1504 TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg2
))))
1506 tree type
= TREE_TYPE (arg1
);
1508 if (VECTOR_CST_STEPPED_P (arg1
)
1509 && VECTOR_CST_STEPPED_P (arg2
))
1510 /* We can operate directly on the encoding if:
1512 a3 - a2 == a2 - a1 && b3 - b2 == b2 - b1
1514 (a3 op b3) - (a2 op b2) == (a2 op b2) - (a1 op b1)
1516 Addition and subtraction are the supported operators
1517 for which this is true. */
1518 step_ok_p
= (code
== PLUS_EXPR
|| code
== MINUS_EXPR
);
1519 else if (VECTOR_CST_STEPPED_P (arg1
))
1520 /* We can operate directly on stepped encodings if:
1524 (a3 op c) - (a2 op c) == (a2 op c) - (a1 op c)
1526 which is true if (x -> x op c) distributes over addition. */
1527 step_ok_p
= distributes_over_addition_p (code
, 1);
1529 /* Similarly in reverse. */
1530 step_ok_p
= distributes_over_addition_p (code
, 2);
1531 tree_vector_builder elts
;
1532 if (!elts
.new_binary_operation (type
, arg1
, arg2
, step_ok_p
))
1534 unsigned int count
= elts
.encoded_nelts ();
1535 for (unsigned int i
= 0; i
< count
; ++i
)
1537 tree elem1
= VECTOR_CST_ELT (arg1
, i
);
1538 tree elem2
= VECTOR_CST_ELT (arg2
, i
);
1540 tree elt
= const_binop (code
, elem1
, elem2
);
1542 /* It is possible that const_binop cannot handle the given
1543 code and return NULL_TREE */
1544 if (elt
== NULL_TREE
)
1546 elts
.quick_push (elt
);
1549 return elts
.build ();
1552 /* Shifts allow a scalar offset for a vector. */
1553 if (TREE_CODE (arg1
) == VECTOR_CST
1554 && TREE_CODE (arg2
) == INTEGER_CST
)
1556 tree type
= TREE_TYPE (arg1
);
1557 bool step_ok_p
= distributes_over_addition_p (code
, 1);
1558 tree_vector_builder elts
;
1559 if (!elts
.new_unary_operation (type
, arg1
, step_ok_p
))
1561 unsigned int count
= elts
.encoded_nelts ();
1562 for (unsigned int i
= 0; i
< count
; ++i
)
1564 tree elem1
= VECTOR_CST_ELT (arg1
, i
);
1566 tree elt
= const_binop (code
, elem1
, arg2
);
1568 /* It is possible that const_binop cannot handle the given
1569 code and return NULL_TREE. */
1570 if (elt
== NULL_TREE
)
1572 elts
.quick_push (elt
);
1575 return elts
.build ();
1580 /* Overload that adds a TYPE parameter to be able to dispatch
1581 to fold_relational_const. */
1584 const_binop (enum tree_code code
, tree type
, tree arg1
, tree arg2
)
1586 if (TREE_CODE_CLASS (code
) == tcc_comparison
)
1587 return fold_relational_const (code
, type
, arg1
, arg2
);
1589 /* ??? Until we make the const_binop worker take the type of the
1590 result as argument put those cases that need it here. */
1593 case VEC_SERIES_EXPR
:
1594 if (CONSTANT_CLASS_P (arg1
)
1595 && CONSTANT_CLASS_P (arg2
))
1596 return build_vec_series (type
, arg1
, arg2
);
1600 if ((TREE_CODE (arg1
) == REAL_CST
1601 && TREE_CODE (arg2
) == REAL_CST
)
1602 || (TREE_CODE (arg1
) == INTEGER_CST
1603 && TREE_CODE (arg2
) == INTEGER_CST
))
1604 return build_complex (type
, arg1
, arg2
);
1607 case POINTER_DIFF_EXPR
:
1608 if (TREE_CODE (arg1
) == INTEGER_CST
&& TREE_CODE (arg2
) == INTEGER_CST
)
1610 offset_int res
= wi::sub (wi::to_offset (arg1
),
1611 wi::to_offset (arg2
));
1612 return force_fit_type (type
, res
, 1,
1613 TREE_OVERFLOW (arg1
) | TREE_OVERFLOW (arg2
));
1617 case VEC_PACK_TRUNC_EXPR
:
1618 case VEC_PACK_FIX_TRUNC_EXPR
:
1620 unsigned int HOST_WIDE_INT out_nelts
, in_nelts
, i
;
1622 if (TREE_CODE (arg1
) != VECTOR_CST
1623 || TREE_CODE (arg2
) != VECTOR_CST
)
1626 if (!VECTOR_CST_NELTS (arg1
).is_constant (&in_nelts
))
1629 out_nelts
= in_nelts
* 2;
1630 gcc_assert (known_eq (in_nelts
, VECTOR_CST_NELTS (arg2
))
1631 && known_eq (out_nelts
, TYPE_VECTOR_SUBPARTS (type
)));
1633 tree_vector_builder
elts (type
, out_nelts
, 1);
1634 for (i
= 0; i
< out_nelts
; i
++)
1636 tree elt
= (i
< in_nelts
1637 ? VECTOR_CST_ELT (arg1
, i
)
1638 : VECTOR_CST_ELT (arg2
, i
- in_nelts
));
1639 elt
= fold_convert_const (code
== VEC_PACK_TRUNC_EXPR
1640 ? NOP_EXPR
: FIX_TRUNC_EXPR
,
1641 TREE_TYPE (type
), elt
);
1642 if (elt
== NULL_TREE
|| !CONSTANT_CLASS_P (elt
))
1644 elts
.quick_push (elt
);
1647 return elts
.build ();
1650 case VEC_WIDEN_MULT_LO_EXPR
:
1651 case VEC_WIDEN_MULT_HI_EXPR
:
1652 case VEC_WIDEN_MULT_EVEN_EXPR
:
1653 case VEC_WIDEN_MULT_ODD_EXPR
:
1655 unsigned HOST_WIDE_INT out_nelts
, in_nelts
, out
, ofs
, scale
;
1657 if (TREE_CODE (arg1
) != VECTOR_CST
|| TREE_CODE (arg2
) != VECTOR_CST
)
1660 if (!VECTOR_CST_NELTS (arg1
).is_constant (&in_nelts
))
1662 out_nelts
= in_nelts
/ 2;
1663 gcc_assert (known_eq (in_nelts
, VECTOR_CST_NELTS (arg2
))
1664 && known_eq (out_nelts
, TYPE_VECTOR_SUBPARTS (type
)));
1666 if (code
== VEC_WIDEN_MULT_LO_EXPR
)
1667 scale
= 0, ofs
= BYTES_BIG_ENDIAN
? out_nelts
: 0;
1668 else if (code
== VEC_WIDEN_MULT_HI_EXPR
)
1669 scale
= 0, ofs
= BYTES_BIG_ENDIAN
? 0 : out_nelts
;
1670 else if (code
== VEC_WIDEN_MULT_EVEN_EXPR
)
1672 else /* if (code == VEC_WIDEN_MULT_ODD_EXPR) */
1675 tree_vector_builder
elts (type
, out_nelts
, 1);
1676 for (out
= 0; out
< out_nelts
; out
++)
1678 unsigned int in
= (out
<< scale
) + ofs
;
1679 tree t1
= fold_convert_const (NOP_EXPR
, TREE_TYPE (type
),
1680 VECTOR_CST_ELT (arg1
, in
));
1681 tree t2
= fold_convert_const (NOP_EXPR
, TREE_TYPE (type
),
1682 VECTOR_CST_ELT (arg2
, in
));
1684 if (t1
== NULL_TREE
|| t2
== NULL_TREE
)
1686 tree elt
= const_binop (MULT_EXPR
, t1
, t2
);
1687 if (elt
== NULL_TREE
|| !CONSTANT_CLASS_P (elt
))
1689 elts
.quick_push (elt
);
1692 return elts
.build ();
1698 if (TREE_CODE_CLASS (code
) != tcc_binary
)
1701 /* Make sure type and arg0 have the same saturating flag. */
1702 gcc_checking_assert (TYPE_SATURATING (type
)
1703 == TYPE_SATURATING (TREE_TYPE (arg1
)));
1705 return const_binop (code
, arg1
, arg2
);
1708 /* Compute CODE ARG1 with resulting type TYPE with ARG1 being constant.
1709 Return zero if computing the constants is not possible. */
1712 const_unop (enum tree_code code
, tree type
, tree arg0
)
1714 /* Don't perform the operation, other than NEGATE and ABS, if
1715 flag_signaling_nans is on and the operand is a signaling NaN. */
1716 if (TREE_CODE (arg0
) == REAL_CST
1717 && HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0
)))
1718 && REAL_VALUE_ISSIGNALING_NAN (TREE_REAL_CST (arg0
))
1719 && code
!= NEGATE_EXPR
1720 && code
!= ABS_EXPR
)
1727 case FIX_TRUNC_EXPR
:
1728 case FIXED_CONVERT_EXPR
:
1729 return fold_convert_const (code
, type
, arg0
);
1731 case ADDR_SPACE_CONVERT_EXPR
:
1732 /* If the source address is 0, and the source address space
1733 cannot have a valid object at 0, fold to dest type null. */
1734 if (integer_zerop (arg0
)
1735 && !(targetm
.addr_space
.zero_address_valid
1736 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg0
))))))
1737 return fold_convert_const (code
, type
, arg0
);
1740 case VIEW_CONVERT_EXPR
:
1741 return fold_view_convert_expr (type
, arg0
);
1745 /* Can't call fold_negate_const directly here as that doesn't
1746 handle all cases and we might not be able to negate some
1748 tree tem
= fold_negate_expr (UNKNOWN_LOCATION
, arg0
);
1749 if (tem
&& CONSTANT_CLASS_P (tem
))
1755 if (TREE_CODE (arg0
) == INTEGER_CST
|| TREE_CODE (arg0
) == REAL_CST
)
1756 return fold_abs_const (arg0
, type
);
1760 if (TREE_CODE (arg0
) == COMPLEX_CST
)
1762 tree ipart
= fold_negate_const (TREE_IMAGPART (arg0
),
1764 return build_complex (type
, TREE_REALPART (arg0
), ipart
);
1769 if (TREE_CODE (arg0
) == INTEGER_CST
)
1770 return fold_not_const (arg0
, type
);
1771 else if (POLY_INT_CST_P (arg0
))
1772 return wide_int_to_tree (type
, -poly_int_cst_value (arg0
));
1773 /* Perform BIT_NOT_EXPR on each element individually. */
1774 else if (TREE_CODE (arg0
) == VECTOR_CST
)
1778 /* This can cope with stepped encodings because ~x == -1 - x. */
1779 tree_vector_builder elements
;
1780 elements
.new_unary_operation (type
, arg0
, true);
1781 unsigned int i
, count
= elements
.encoded_nelts ();
1782 for (i
= 0; i
< count
; ++i
)
1784 elem
= VECTOR_CST_ELT (arg0
, i
);
1785 elem
= const_unop (BIT_NOT_EXPR
, TREE_TYPE (type
), elem
);
1786 if (elem
== NULL_TREE
)
1788 elements
.quick_push (elem
);
1791 return elements
.build ();
1795 case TRUTH_NOT_EXPR
:
1796 if (TREE_CODE (arg0
) == INTEGER_CST
)
1797 return constant_boolean_node (integer_zerop (arg0
), type
);
1801 if (TREE_CODE (arg0
) == COMPLEX_CST
)
1802 return fold_convert (type
, TREE_REALPART (arg0
));
1806 if (TREE_CODE (arg0
) == COMPLEX_CST
)
1807 return fold_convert (type
, TREE_IMAGPART (arg0
));
1810 case VEC_UNPACK_LO_EXPR
:
1811 case VEC_UNPACK_HI_EXPR
:
1812 case VEC_UNPACK_FLOAT_LO_EXPR
:
1813 case VEC_UNPACK_FLOAT_HI_EXPR
:
1815 unsigned HOST_WIDE_INT out_nelts
, in_nelts
, i
;
1816 enum tree_code subcode
;
1818 if (TREE_CODE (arg0
) != VECTOR_CST
)
1821 if (!VECTOR_CST_NELTS (arg0
).is_constant (&in_nelts
))
1823 out_nelts
= in_nelts
/ 2;
1824 gcc_assert (known_eq (out_nelts
, TYPE_VECTOR_SUBPARTS (type
)));
1826 unsigned int offset
= 0;
1827 if ((!BYTES_BIG_ENDIAN
) ^ (code
== VEC_UNPACK_LO_EXPR
1828 || code
== VEC_UNPACK_FLOAT_LO_EXPR
))
1831 if (code
== VEC_UNPACK_LO_EXPR
|| code
== VEC_UNPACK_HI_EXPR
)
1834 subcode
= FLOAT_EXPR
;
1836 tree_vector_builder
elts (type
, out_nelts
, 1);
1837 for (i
= 0; i
< out_nelts
; i
++)
1839 tree elt
= fold_convert_const (subcode
, TREE_TYPE (type
),
1840 VECTOR_CST_ELT (arg0
, i
+ offset
));
1841 if (elt
== NULL_TREE
|| !CONSTANT_CLASS_P (elt
))
1843 elts
.quick_push (elt
);
1846 return elts
.build ();
1849 case VEC_DUPLICATE_EXPR
:
1850 if (CONSTANT_CLASS_P (arg0
))
1851 return build_vector_from_val (type
, arg0
);
1861 /* Create a sizetype INT_CST node with NUMBER sign extended. KIND
1862 indicates which particular sizetype to create. */
1865 size_int_kind (poly_int64 number
, enum size_type_kind kind
)
1867 return build_int_cst (sizetype_tab
[(int) kind
], number
);
1870 /* Combine operands OP1 and OP2 with arithmetic operation CODE. CODE
1871 is a tree code. The type of the result is taken from the operands.
1872 Both must be equivalent integer types, ala int_binop_types_match_p.
1873 If the operands are constant, so is the result. */
1876 size_binop_loc (location_t loc
, enum tree_code code
, tree arg0
, tree arg1
)
1878 tree type
= TREE_TYPE (arg0
);
1880 if (arg0
== error_mark_node
|| arg1
== error_mark_node
)
1881 return error_mark_node
;
1883 gcc_assert (int_binop_types_match_p (code
, TREE_TYPE (arg0
),
1886 /* Handle the special case of two poly_int constants faster. */
1887 if (poly_int_tree_p (arg0
) && poly_int_tree_p (arg1
))
1889 /* And some specific cases even faster than that. */
1890 if (code
== PLUS_EXPR
)
1892 if (integer_zerop (arg0
) && !TREE_OVERFLOW (arg0
))
1894 if (integer_zerop (arg1
) && !TREE_OVERFLOW (arg1
))
1897 else if (code
== MINUS_EXPR
)
1899 if (integer_zerop (arg1
) && !TREE_OVERFLOW (arg1
))
1902 else if (code
== MULT_EXPR
)
1904 if (integer_onep (arg0
) && !TREE_OVERFLOW (arg0
))
1908 /* Handle general case of two integer constants. For sizetype
1909 constant calculations we always want to know about overflow,
1910 even in the unsigned case. */
1911 tree res
= int_const_binop_1 (code
, arg0
, arg1
, -1);
1912 if (res
!= NULL_TREE
)
1916 return fold_build2_loc (loc
, code
, type
, arg0
, arg1
);
1919 /* Given two values, either both of sizetype or both of bitsizetype,
1920 compute the difference between the two values. Return the value
1921 in signed type corresponding to the type of the operands. */
1924 size_diffop_loc (location_t loc
, tree arg0
, tree arg1
)
1926 tree type
= TREE_TYPE (arg0
);
1929 gcc_assert (int_binop_types_match_p (MINUS_EXPR
, TREE_TYPE (arg0
),
1932 /* If the type is already signed, just do the simple thing. */
1933 if (!TYPE_UNSIGNED (type
))
1934 return size_binop_loc (loc
, MINUS_EXPR
, arg0
, arg1
);
1936 if (type
== sizetype
)
1938 else if (type
== bitsizetype
)
1939 ctype
= sbitsizetype
;
1941 ctype
= signed_type_for (type
);
1943 /* If either operand is not a constant, do the conversions to the signed
1944 type and subtract. The hardware will do the right thing with any
1945 overflow in the subtraction. */
1946 if (TREE_CODE (arg0
) != INTEGER_CST
|| TREE_CODE (arg1
) != INTEGER_CST
)
1947 return size_binop_loc (loc
, MINUS_EXPR
,
1948 fold_convert_loc (loc
, ctype
, arg0
),
1949 fold_convert_loc (loc
, ctype
, arg1
));
1951 /* If ARG0 is larger than ARG1, subtract and return the result in CTYPE.
1952 Otherwise, subtract the other way, convert to CTYPE (we know that can't
1953 overflow) and negate (which can't either). Special-case a result
1954 of zero while we're here. */
1955 if (tree_int_cst_equal (arg0
, arg1
))
1956 return build_int_cst (ctype
, 0);
1957 else if (tree_int_cst_lt (arg1
, arg0
))
1958 return fold_convert_loc (loc
, ctype
,
1959 size_binop_loc (loc
, MINUS_EXPR
, arg0
, arg1
));
1961 return size_binop_loc (loc
, MINUS_EXPR
, build_int_cst (ctype
, 0),
1962 fold_convert_loc (loc
, ctype
,
1963 size_binop_loc (loc
,
1968 /* A subroutine of fold_convert_const handling conversions of an
1969 INTEGER_CST to another integer type. */
1972 fold_convert_const_int_from_int (tree type
, const_tree arg1
)
1974 /* Given an integer constant, make new constant with new type,
1975 appropriately sign-extended or truncated. Use widest_int
1976 so that any extension is done according ARG1's type. */
1977 return force_fit_type (type
, wi::to_widest (arg1
),
1978 !POINTER_TYPE_P (TREE_TYPE (arg1
)),
1979 TREE_OVERFLOW (arg1
));
1982 /* A subroutine of fold_convert_const handling conversions a REAL_CST
1983 to an integer type. */
1986 fold_convert_const_int_from_real (enum tree_code code
, tree type
, const_tree arg1
)
1988 bool overflow
= false;
1991 /* The following code implements the floating point to integer
1992 conversion rules required by the Java Language Specification,
1993 that IEEE NaNs are mapped to zero and values that overflow
1994 the target precision saturate, i.e. values greater than
1995 INT_MAX are mapped to INT_MAX, and values less than INT_MIN
1996 are mapped to INT_MIN. These semantics are allowed by the
1997 C and C++ standards that simply state that the behavior of
1998 FP-to-integer conversion is unspecified upon overflow. */
2002 REAL_VALUE_TYPE x
= TREE_REAL_CST (arg1
);
2006 case FIX_TRUNC_EXPR
:
2007 real_trunc (&r
, VOIDmode
, &x
);
2014 /* If R is NaN, return zero and show we have an overflow. */
2015 if (REAL_VALUE_ISNAN (r
))
2018 val
= wi::zero (TYPE_PRECISION (type
));
2021 /* See if R is less than the lower bound or greater than the
2026 tree lt
= TYPE_MIN_VALUE (type
);
2027 REAL_VALUE_TYPE l
= real_value_from_int_cst (NULL_TREE
, lt
);
2028 if (real_less (&r
, &l
))
2031 val
= wi::to_wide (lt
);
2037 tree ut
= TYPE_MAX_VALUE (type
);
2040 REAL_VALUE_TYPE u
= real_value_from_int_cst (NULL_TREE
, ut
);
2041 if (real_less (&u
, &r
))
2044 val
= wi::to_wide (ut
);
2050 val
= real_to_integer (&r
, &overflow
, TYPE_PRECISION (type
));
2052 t
= force_fit_type (type
, val
, -1, overflow
| TREE_OVERFLOW (arg1
));
2056 /* A subroutine of fold_convert_const handling conversions of a
2057 FIXED_CST to an integer type. */
2060 fold_convert_const_int_from_fixed (tree type
, const_tree arg1
)
2063 double_int temp
, temp_trunc
;
2066 /* Right shift FIXED_CST to temp by fbit. */
2067 temp
= TREE_FIXED_CST (arg1
).data
;
2068 mode
= TREE_FIXED_CST (arg1
).mode
;
2069 if (GET_MODE_FBIT (mode
) < HOST_BITS_PER_DOUBLE_INT
)
2071 temp
= temp
.rshift (GET_MODE_FBIT (mode
),
2072 HOST_BITS_PER_DOUBLE_INT
,
2073 SIGNED_FIXED_POINT_MODE_P (mode
));
2075 /* Left shift temp to temp_trunc by fbit. */
2076 temp_trunc
= temp
.lshift (GET_MODE_FBIT (mode
),
2077 HOST_BITS_PER_DOUBLE_INT
,
2078 SIGNED_FIXED_POINT_MODE_P (mode
));
2082 temp
= double_int_zero
;
2083 temp_trunc
= double_int_zero
;
2086 /* If FIXED_CST is negative, we need to round the value toward 0.
2087 By checking if the fractional bits are not zero to add 1 to temp. */
2088 if (SIGNED_FIXED_POINT_MODE_P (mode
)
2089 && temp_trunc
.is_negative ()
2090 && TREE_FIXED_CST (arg1
).data
!= temp_trunc
)
2091 temp
+= double_int_one
;
2093 /* Given a fixed-point constant, make new constant with new type,
2094 appropriately sign-extended or truncated. */
2095 t
= force_fit_type (type
, temp
, -1,
2096 (temp
.is_negative ()
2097 && (TYPE_UNSIGNED (type
)
2098 < TYPE_UNSIGNED (TREE_TYPE (arg1
))))
2099 | TREE_OVERFLOW (arg1
));
2104 /* A subroutine of fold_convert_const handling conversions a REAL_CST
2105 to another floating point type. */
2108 fold_convert_const_real_from_real (tree type
, const_tree arg1
)
2110 REAL_VALUE_TYPE value
;
2113 /* Don't perform the operation if flag_signaling_nans is on
2114 and the operand is a signaling NaN. */
2115 if (HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg1
)))
2116 && REAL_VALUE_ISSIGNALING_NAN (TREE_REAL_CST (arg1
)))
2119 real_convert (&value
, TYPE_MODE (type
), &TREE_REAL_CST (arg1
));
2120 t
= build_real (type
, value
);
2122 /* If converting an infinity or NAN to a representation that doesn't
2123 have one, set the overflow bit so that we can produce some kind of
2124 error message at the appropriate point if necessary. It's not the
2125 most user-friendly message, but it's better than nothing. */
2126 if (REAL_VALUE_ISINF (TREE_REAL_CST (arg1
))
2127 && !MODE_HAS_INFINITIES (TYPE_MODE (type
)))
2128 TREE_OVERFLOW (t
) = 1;
2129 else if (REAL_VALUE_ISNAN (TREE_REAL_CST (arg1
))
2130 && !MODE_HAS_NANS (TYPE_MODE (type
)))
2131 TREE_OVERFLOW (t
) = 1;
2132 /* Regular overflow, conversion produced an infinity in a mode that
2133 can't represent them. */
2134 else if (!MODE_HAS_INFINITIES (TYPE_MODE (type
))
2135 && REAL_VALUE_ISINF (value
)
2136 && !REAL_VALUE_ISINF (TREE_REAL_CST (arg1
)))
2137 TREE_OVERFLOW (t
) = 1;
2139 TREE_OVERFLOW (t
) = TREE_OVERFLOW (arg1
);
2143 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
2144 to a floating point type. */
2147 fold_convert_const_real_from_fixed (tree type
, const_tree arg1
)
2149 REAL_VALUE_TYPE value
;
2152 real_convert_from_fixed (&value
, SCALAR_FLOAT_TYPE_MODE (type
),
2153 &TREE_FIXED_CST (arg1
));
2154 t
= build_real (type
, value
);
2156 TREE_OVERFLOW (t
) = TREE_OVERFLOW (arg1
);
2160 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
2161 to another fixed-point type. */
2164 fold_convert_const_fixed_from_fixed (tree type
, const_tree arg1
)
2166 FIXED_VALUE_TYPE value
;
2170 overflow_p
= fixed_convert (&value
, SCALAR_TYPE_MODE (type
),
2171 &TREE_FIXED_CST (arg1
), TYPE_SATURATING (type
));
2172 t
= build_fixed (type
, value
);
2174 /* Propagate overflow flags. */
2175 if (overflow_p
| TREE_OVERFLOW (arg1
))
2176 TREE_OVERFLOW (t
) = 1;
2180 /* A subroutine of fold_convert_const handling conversions an INTEGER_CST
2181 to a fixed-point type. */
2184 fold_convert_const_fixed_from_int (tree type
, const_tree arg1
)
2186 FIXED_VALUE_TYPE value
;
2191 gcc_assert (TREE_INT_CST_NUNITS (arg1
) <= 2);
2193 di
.low
= TREE_INT_CST_ELT (arg1
, 0);
2194 if (TREE_INT_CST_NUNITS (arg1
) == 1)
2195 di
.high
= (HOST_WIDE_INT
) di
.low
< 0 ? HOST_WIDE_INT_M1
: 0;
2197 di
.high
= TREE_INT_CST_ELT (arg1
, 1);
2199 overflow_p
= fixed_convert_from_int (&value
, SCALAR_TYPE_MODE (type
), di
,
2200 TYPE_UNSIGNED (TREE_TYPE (arg1
)),
2201 TYPE_SATURATING (type
));
2202 t
= build_fixed (type
, value
);
2204 /* Propagate overflow flags. */
2205 if (overflow_p
| TREE_OVERFLOW (arg1
))
2206 TREE_OVERFLOW (t
) = 1;
2210 /* A subroutine of fold_convert_const handling conversions a REAL_CST
2211 to a fixed-point type. */
2214 fold_convert_const_fixed_from_real (tree type
, const_tree arg1
)
2216 FIXED_VALUE_TYPE value
;
2220 overflow_p
= fixed_convert_from_real (&value
, SCALAR_TYPE_MODE (type
),
2221 &TREE_REAL_CST (arg1
),
2222 TYPE_SATURATING (type
));
2223 t
= build_fixed (type
, value
);
2225 /* Propagate overflow flags. */
2226 if (overflow_p
| TREE_OVERFLOW (arg1
))
2227 TREE_OVERFLOW (t
) = 1;
2231 /* Attempt to fold type conversion operation CODE of expression ARG1 to
2232 type TYPE. If no simplification can be done return NULL_TREE. */
2235 fold_convert_const (enum tree_code code
, tree type
, tree arg1
)
2237 tree arg_type
= TREE_TYPE (arg1
);
2238 if (arg_type
== type
)
2241 /* We can't widen types, since the runtime value could overflow the
2242 original type before being extended to the new type. */
2243 if (POLY_INT_CST_P (arg1
)
2244 && (POINTER_TYPE_P (type
) || INTEGRAL_TYPE_P (type
))
2245 && TYPE_PRECISION (type
) <= TYPE_PRECISION (arg_type
))
2246 return build_poly_int_cst (type
,
2247 poly_wide_int::from (poly_int_cst_value (arg1
),
2248 TYPE_PRECISION (type
),
2249 TYPE_SIGN (arg_type
)));
2251 if (POINTER_TYPE_P (type
) || INTEGRAL_TYPE_P (type
)
2252 || TREE_CODE (type
) == OFFSET_TYPE
)
2254 if (TREE_CODE (arg1
) == INTEGER_CST
)
2255 return fold_convert_const_int_from_int (type
, arg1
);
2256 else if (TREE_CODE (arg1
) == REAL_CST
)
2257 return fold_convert_const_int_from_real (code
, type
, arg1
);
2258 else if (TREE_CODE (arg1
) == FIXED_CST
)
2259 return fold_convert_const_int_from_fixed (type
, arg1
);
2261 else if (TREE_CODE (type
) == REAL_TYPE
)
2263 if (TREE_CODE (arg1
) == INTEGER_CST
)
2264 return build_real_from_int_cst (type
, arg1
);
2265 else if (TREE_CODE (arg1
) == REAL_CST
)
2266 return fold_convert_const_real_from_real (type
, arg1
);
2267 else if (TREE_CODE (arg1
) == FIXED_CST
)
2268 return fold_convert_const_real_from_fixed (type
, arg1
);
2270 else if (TREE_CODE (type
) == FIXED_POINT_TYPE
)
2272 if (TREE_CODE (arg1
) == FIXED_CST
)
2273 return fold_convert_const_fixed_from_fixed (type
, arg1
);
2274 else if (TREE_CODE (arg1
) == INTEGER_CST
)
2275 return fold_convert_const_fixed_from_int (type
, arg1
);
2276 else if (TREE_CODE (arg1
) == REAL_CST
)
2277 return fold_convert_const_fixed_from_real (type
, arg1
);
2279 else if (TREE_CODE (type
) == VECTOR_TYPE
)
2281 if (TREE_CODE (arg1
) == VECTOR_CST
2282 && known_eq (TYPE_VECTOR_SUBPARTS (type
), VECTOR_CST_NELTS (arg1
)))
2284 tree elttype
= TREE_TYPE (type
);
2285 tree arg1_elttype
= TREE_TYPE (TREE_TYPE (arg1
));
2286 /* We can't handle steps directly when extending, since the
2287 values need to wrap at the original precision first. */
2289 = (INTEGRAL_TYPE_P (elttype
)
2290 && INTEGRAL_TYPE_P (arg1_elttype
)
2291 && TYPE_PRECISION (elttype
) <= TYPE_PRECISION (arg1_elttype
));
2292 tree_vector_builder v
;
2293 if (!v
.new_unary_operation (type
, arg1
, step_ok_p
))
2295 unsigned int len
= v
.encoded_nelts ();
2296 for (unsigned int i
= 0; i
< len
; ++i
)
2298 tree elt
= VECTOR_CST_ELT (arg1
, i
);
2299 tree cvt
= fold_convert_const (code
, elttype
, elt
);
2300 if (cvt
== NULL_TREE
)
2310 /* Construct a vector of zero elements of vector type TYPE. */
2313 build_zero_vector (tree type
)
2317 t
= fold_convert_const (NOP_EXPR
, TREE_TYPE (type
), integer_zero_node
);
2318 return build_vector_from_val (type
, t
);
2321 /* Returns true, if ARG is convertible to TYPE using a NOP_EXPR. */
2324 fold_convertible_p (const_tree type
, const_tree arg
)
2326 tree orig
= TREE_TYPE (arg
);
2331 if (TREE_CODE (arg
) == ERROR_MARK
2332 || TREE_CODE (type
) == ERROR_MARK
2333 || TREE_CODE (orig
) == ERROR_MARK
)
2336 if (TYPE_MAIN_VARIANT (type
) == TYPE_MAIN_VARIANT (orig
))
2339 switch (TREE_CODE (type
))
2341 case INTEGER_TYPE
: case ENUMERAL_TYPE
: case BOOLEAN_TYPE
:
2342 case POINTER_TYPE
: case REFERENCE_TYPE
:
2344 return (INTEGRAL_TYPE_P (orig
) || POINTER_TYPE_P (orig
)
2345 || TREE_CODE (orig
) == OFFSET_TYPE
);
2348 case FIXED_POINT_TYPE
:
2351 return TREE_CODE (type
) == TREE_CODE (orig
);
2358 /* Convert expression ARG to type TYPE. Used by the middle-end for
2359 simple conversions in preference to calling the front-end's convert. */
2362 fold_convert_loc (location_t loc
, tree type
, tree arg
)
2364 tree orig
= TREE_TYPE (arg
);
2370 if (TREE_CODE (arg
) == ERROR_MARK
2371 || TREE_CODE (type
) == ERROR_MARK
2372 || TREE_CODE (orig
) == ERROR_MARK
)
2373 return error_mark_node
;
2375 switch (TREE_CODE (type
))
2378 case REFERENCE_TYPE
:
2379 /* Handle conversions between pointers to different address spaces. */
2380 if (POINTER_TYPE_P (orig
)
2381 && (TYPE_ADDR_SPACE (TREE_TYPE (type
))
2382 != TYPE_ADDR_SPACE (TREE_TYPE (orig
))))
2383 return fold_build1_loc (loc
, ADDR_SPACE_CONVERT_EXPR
, type
, arg
);
2386 case INTEGER_TYPE
: case ENUMERAL_TYPE
: case BOOLEAN_TYPE
:
2388 if (TREE_CODE (arg
) == INTEGER_CST
)
2390 tem
= fold_convert_const (NOP_EXPR
, type
, arg
);
2391 if (tem
!= NULL_TREE
)
2394 if (INTEGRAL_TYPE_P (orig
) || POINTER_TYPE_P (orig
)
2395 || TREE_CODE (orig
) == OFFSET_TYPE
)
2396 return fold_build1_loc (loc
, NOP_EXPR
, type
, arg
);
2397 if (TREE_CODE (orig
) == COMPLEX_TYPE
)
2398 return fold_convert_loc (loc
, type
,
2399 fold_build1_loc (loc
, REALPART_EXPR
,
2400 TREE_TYPE (orig
), arg
));
2401 gcc_assert (TREE_CODE (orig
) == VECTOR_TYPE
2402 && tree_int_cst_equal (TYPE_SIZE (type
), TYPE_SIZE (orig
)));
2403 return fold_build1_loc (loc
, VIEW_CONVERT_EXPR
, type
, arg
);
2406 if (TREE_CODE (arg
) == INTEGER_CST
)
2408 tem
= fold_convert_const (FLOAT_EXPR
, type
, arg
);
2409 if (tem
!= NULL_TREE
)
2412 else if (TREE_CODE (arg
) == REAL_CST
)
2414 tem
= fold_convert_const (NOP_EXPR
, type
, arg
);
2415 if (tem
!= NULL_TREE
)
2418 else if (TREE_CODE (arg
) == FIXED_CST
)
2420 tem
= fold_convert_const (FIXED_CONVERT_EXPR
, type
, arg
);
2421 if (tem
!= NULL_TREE
)
2425 switch (TREE_CODE (orig
))
2428 case BOOLEAN_TYPE
: case ENUMERAL_TYPE
:
2429 case POINTER_TYPE
: case REFERENCE_TYPE
:
2430 return fold_build1_loc (loc
, FLOAT_EXPR
, type
, arg
);
2433 return fold_build1_loc (loc
, NOP_EXPR
, type
, arg
);
2435 case FIXED_POINT_TYPE
:
2436 return fold_build1_loc (loc
, FIXED_CONVERT_EXPR
, type
, arg
);
2439 tem
= fold_build1_loc (loc
, REALPART_EXPR
, TREE_TYPE (orig
), arg
);
2440 return fold_convert_loc (loc
, type
, tem
);
2446 case FIXED_POINT_TYPE
:
2447 if (TREE_CODE (arg
) == FIXED_CST
|| TREE_CODE (arg
) == INTEGER_CST
2448 || TREE_CODE (arg
) == REAL_CST
)
2450 tem
= fold_convert_const (FIXED_CONVERT_EXPR
, type
, arg
);
2451 if (tem
!= NULL_TREE
)
2452 goto fold_convert_exit
;
2455 switch (TREE_CODE (orig
))
2457 case FIXED_POINT_TYPE
:
2462 return fold_build1_loc (loc
, FIXED_CONVERT_EXPR
, type
, arg
);
2465 tem
= fold_build1_loc (loc
, REALPART_EXPR
, TREE_TYPE (orig
), arg
);
2466 return fold_convert_loc (loc
, type
, tem
);
2473 switch (TREE_CODE (orig
))
2476 case BOOLEAN_TYPE
: case ENUMERAL_TYPE
:
2477 case POINTER_TYPE
: case REFERENCE_TYPE
:
2479 case FIXED_POINT_TYPE
:
2480 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
,
2481 fold_convert_loc (loc
, TREE_TYPE (type
), arg
),
2482 fold_convert_loc (loc
, TREE_TYPE (type
),
2483 integer_zero_node
));
2488 if (TREE_CODE (arg
) == COMPLEX_EXPR
)
2490 rpart
= fold_convert_loc (loc
, TREE_TYPE (type
),
2491 TREE_OPERAND (arg
, 0));
2492 ipart
= fold_convert_loc (loc
, TREE_TYPE (type
),
2493 TREE_OPERAND (arg
, 1));
2494 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
, rpart
, ipart
);
2497 arg
= save_expr (arg
);
2498 rpart
= fold_build1_loc (loc
, REALPART_EXPR
, TREE_TYPE (orig
), arg
);
2499 ipart
= fold_build1_loc (loc
, IMAGPART_EXPR
, TREE_TYPE (orig
), arg
);
2500 rpart
= fold_convert_loc (loc
, TREE_TYPE (type
), rpart
);
2501 ipart
= fold_convert_loc (loc
, TREE_TYPE (type
), ipart
);
2502 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
, rpart
, ipart
);
2510 if (integer_zerop (arg
))
2511 return build_zero_vector (type
);
2512 gcc_assert (tree_int_cst_equal (TYPE_SIZE (type
), TYPE_SIZE (orig
)));
2513 gcc_assert (INTEGRAL_TYPE_P (orig
) || POINTER_TYPE_P (orig
)
2514 || TREE_CODE (orig
) == VECTOR_TYPE
);
2515 return fold_build1_loc (loc
, VIEW_CONVERT_EXPR
, type
, arg
);
2518 tem
= fold_ignored_result (arg
);
2519 return fold_build1_loc (loc
, NOP_EXPR
, type
, tem
);
2522 if (TYPE_MAIN_VARIANT (type
) == TYPE_MAIN_VARIANT (orig
))
2523 return fold_build1_loc (loc
, NOP_EXPR
, type
, arg
);
2527 protected_set_expr_location_unshare (tem
, loc
);
2531 /* Return false if expr can be assumed not to be an lvalue, true
2535 maybe_lvalue_p (const_tree x
)
2537 /* We only need to wrap lvalue tree codes. */
2538 switch (TREE_CODE (x
))
2551 case ARRAY_RANGE_REF
:
2557 case PREINCREMENT_EXPR
:
2558 case PREDECREMENT_EXPR
:
2560 case TRY_CATCH_EXPR
:
2561 case WITH_CLEANUP_EXPR
:
2570 /* Assume the worst for front-end tree codes. */
2571 if ((int)TREE_CODE (x
) >= NUM_TREE_CODES
)
2579 /* Return an expr equal to X but certainly not valid as an lvalue. */
2582 non_lvalue_loc (location_t loc
, tree x
)
2584 /* While we are in GIMPLE, NON_LVALUE_EXPR doesn't mean anything to
2589 if (! maybe_lvalue_p (x
))
2591 return build1_loc (loc
, NON_LVALUE_EXPR
, TREE_TYPE (x
), x
);
2594 /* When pedantic, return an expr equal to X but certainly not valid as a
2595 pedantic lvalue. Otherwise, return X. */
2598 pedantic_non_lvalue_loc (location_t loc
, tree x
)
2600 return protected_set_expr_location_unshare (x
, loc
);
2603 /* Given a tree comparison code, return the code that is the logical inverse.
2604 It is generally not safe to do this for floating-point comparisons, except
2605 for EQ_EXPR, NE_EXPR, ORDERED_EXPR and UNORDERED_EXPR, so we return
2606 ERROR_MARK in this case. */
2609 invert_tree_comparison (enum tree_code code
, bool honor_nans
)
2611 if (honor_nans
&& flag_trapping_math
&& code
!= EQ_EXPR
&& code
!= NE_EXPR
2612 && code
!= ORDERED_EXPR
&& code
!= UNORDERED_EXPR
)
2622 return honor_nans
? UNLE_EXPR
: LE_EXPR
;
2624 return honor_nans
? UNLT_EXPR
: LT_EXPR
;
2626 return honor_nans
? UNGE_EXPR
: GE_EXPR
;
2628 return honor_nans
? UNGT_EXPR
: GT_EXPR
;
2642 return UNORDERED_EXPR
;
2643 case UNORDERED_EXPR
:
2644 return ORDERED_EXPR
;
2650 /* Similar, but return the comparison that results if the operands are
2651 swapped. This is safe for floating-point. */
2654 swap_tree_comparison (enum tree_code code
)
2661 case UNORDERED_EXPR
:
2687 /* Convert a comparison tree code from an enum tree_code representation
2688 into a compcode bit-based encoding. This function is the inverse of
2689 compcode_to_comparison. */
2691 static enum comparison_code
2692 comparison_to_compcode (enum tree_code code
)
2709 return COMPCODE_ORD
;
2710 case UNORDERED_EXPR
:
2711 return COMPCODE_UNORD
;
2713 return COMPCODE_UNLT
;
2715 return COMPCODE_UNEQ
;
2717 return COMPCODE_UNLE
;
2719 return COMPCODE_UNGT
;
2721 return COMPCODE_LTGT
;
2723 return COMPCODE_UNGE
;
2729 /* Convert a compcode bit-based encoding of a comparison operator back
2730 to GCC's enum tree_code representation. This function is the
2731 inverse of comparison_to_compcode. */
2733 static enum tree_code
2734 compcode_to_comparison (enum comparison_code code
)
2751 return ORDERED_EXPR
;
2752 case COMPCODE_UNORD
:
2753 return UNORDERED_EXPR
;
2771 /* Return a tree for the comparison which is the combination of
2772 doing the AND or OR (depending on CODE) of the two operations LCODE
2773 and RCODE on the identical operands LL_ARG and LR_ARG. Take into account
2774 the possibility of trapping if the mode has NaNs, and return NULL_TREE
2775 if this makes the transformation invalid. */
2778 combine_comparisons (location_t loc
,
2779 enum tree_code code
, enum tree_code lcode
,
2780 enum tree_code rcode
, tree truth_type
,
2781 tree ll_arg
, tree lr_arg
)
2783 bool honor_nans
= HONOR_NANS (ll_arg
);
2784 enum comparison_code lcompcode
= comparison_to_compcode (lcode
);
2785 enum comparison_code rcompcode
= comparison_to_compcode (rcode
);
2790 case TRUTH_AND_EXPR
: case TRUTH_ANDIF_EXPR
:
2791 compcode
= lcompcode
& rcompcode
;
2794 case TRUTH_OR_EXPR
: case TRUTH_ORIF_EXPR
:
2795 compcode
= lcompcode
| rcompcode
;
2804 /* Eliminate unordered comparisons, as well as LTGT and ORD
2805 which are not used unless the mode has NaNs. */
2806 compcode
&= ~COMPCODE_UNORD
;
2807 if (compcode
== COMPCODE_LTGT
)
2808 compcode
= COMPCODE_NE
;
2809 else if (compcode
== COMPCODE_ORD
)
2810 compcode
= COMPCODE_TRUE
;
2812 else if (flag_trapping_math
)
2814 /* Check that the original operation and the optimized ones will trap
2815 under the same condition. */
2816 bool ltrap
= (lcompcode
& COMPCODE_UNORD
) == 0
2817 && (lcompcode
!= COMPCODE_EQ
)
2818 && (lcompcode
!= COMPCODE_ORD
);
2819 bool rtrap
= (rcompcode
& COMPCODE_UNORD
) == 0
2820 && (rcompcode
!= COMPCODE_EQ
)
2821 && (rcompcode
!= COMPCODE_ORD
);
2822 bool trap
= (compcode
& COMPCODE_UNORD
) == 0
2823 && (compcode
!= COMPCODE_EQ
)
2824 && (compcode
!= COMPCODE_ORD
);
2826 /* In a short-circuited boolean expression the LHS might be
2827 such that the RHS, if evaluated, will never trap. For
2828 example, in ORD (x, y) && (x < y), we evaluate the RHS only
2829 if neither x nor y is NaN. (This is a mixed blessing: for
2830 example, the expression above will never trap, hence
2831 optimizing it to x < y would be invalid). */
2832 if ((code
== TRUTH_ORIF_EXPR
&& (lcompcode
& COMPCODE_UNORD
))
2833 || (code
== TRUTH_ANDIF_EXPR
&& !(lcompcode
& COMPCODE_UNORD
)))
2836 /* If the comparison was short-circuited, and only the RHS
2837 trapped, we may now generate a spurious trap. */
2839 && (code
== TRUTH_ANDIF_EXPR
|| code
== TRUTH_ORIF_EXPR
))
2842 /* If we changed the conditions that cause a trap, we lose. */
2843 if ((ltrap
|| rtrap
) != trap
)
2847 if (compcode
== COMPCODE_TRUE
)
2848 return constant_boolean_node (true, truth_type
);
2849 else if (compcode
== COMPCODE_FALSE
)
2850 return constant_boolean_node (false, truth_type
);
2853 enum tree_code tcode
;
2855 tcode
= compcode_to_comparison ((enum comparison_code
) compcode
);
2856 return fold_build2_loc (loc
, tcode
, truth_type
, ll_arg
, lr_arg
);
2860 /* Return nonzero if two operands (typically of the same tree node)
2861 are necessarily equal. FLAGS modifies behavior as follows:
2863 If OEP_ONLY_CONST is set, only return nonzero for constants.
2864 This function tests whether the operands are indistinguishable;
2865 it does not test whether they are equal using C's == operation.
2866 The distinction is important for IEEE floating point, because
2867 (1) -0.0 and 0.0 are distinguishable, but -0.0==0.0, and
2868 (2) two NaNs may be indistinguishable, but NaN!=NaN.
2870 If OEP_ONLY_CONST is unset, a VAR_DECL is considered equal to itself
2871 even though it may hold multiple values during a function.
2872 This is because a GCC tree node guarantees that nothing else is
2873 executed between the evaluation of its "operands" (which may often
2874 be evaluated in arbitrary order). Hence if the operands themselves
2875 don't side-effect, the VAR_DECLs, PARM_DECLs etc... must hold the
2876 same value in each operand/subexpression. Hence leaving OEP_ONLY_CONST
2877 unset means assuming isochronic (or instantaneous) tree equivalence.
2878 Unless comparing arbitrary expression trees, such as from different
2879 statements, this flag can usually be left unset.
2881 If OEP_PURE_SAME is set, then pure functions with identical arguments
2882 are considered the same. It is used when the caller has other ways
2883 to ensure that global memory is unchanged in between.
2885 If OEP_ADDRESS_OF is set, we are actually comparing addresses of objects,
2886 not values of expressions.
2888 If OEP_LEXICOGRAPHIC is set, then also handle expressions with side-effects
2889 such as MODIFY_EXPR, RETURN_EXPR, as well as STATEMENT_LISTs.
2891 Unless OEP_MATCH_SIDE_EFFECTS is set, the function returns false on
2892 any operand with side effect. This is unnecesarily conservative in the
2893 case we know that arg0 and arg1 are in disjoint code paths (such as in
2894 ?: operator). In addition OEP_MATCH_SIDE_EFFECTS is used when comparing
2895 addresses with TREE_CONSTANT flag set so we know that &var == &var
2896 even if var is volatile. */
2899 operand_equal_p (const_tree arg0
, const_tree arg1
, unsigned int flags
)
2901 /* When checking, verify at the outermost operand_equal_p call that
2902 if operand_equal_p returns non-zero then ARG0 and ARG1 has the same
2904 if (flag_checking
&& !(flags
& OEP_NO_HASH_CHECK
))
2906 if (operand_equal_p (arg0
, arg1
, flags
| OEP_NO_HASH_CHECK
))
2910 inchash::hash
hstate0 (0), hstate1 (0);
2911 inchash::add_expr (arg0
, hstate0
, flags
| OEP_HASH_CHECK
);
2912 inchash::add_expr (arg1
, hstate1
, flags
| OEP_HASH_CHECK
);
2913 hashval_t h0
= hstate0
.end ();
2914 hashval_t h1
= hstate1
.end ();
2915 gcc_assert (h0
== h1
);
2923 /* If either is ERROR_MARK, they aren't equal. */
2924 if (TREE_CODE (arg0
) == ERROR_MARK
|| TREE_CODE (arg1
) == ERROR_MARK
2925 || TREE_TYPE (arg0
) == error_mark_node
2926 || TREE_TYPE (arg1
) == error_mark_node
)
2929 /* Similar, if either does not have a type (like a released SSA name),
2930 they aren't equal. */
2931 if (!TREE_TYPE (arg0
) || !TREE_TYPE (arg1
))
2934 /* We cannot consider pointers to different address space equal. */
2935 if (POINTER_TYPE_P (TREE_TYPE (arg0
))
2936 && POINTER_TYPE_P (TREE_TYPE (arg1
))
2937 && (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg0
)))
2938 != TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg1
)))))
2941 /* Check equality of integer constants before bailing out due to
2942 precision differences. */
2943 if (TREE_CODE (arg0
) == INTEGER_CST
&& TREE_CODE (arg1
) == INTEGER_CST
)
2945 /* Address of INTEGER_CST is not defined; check that we did not forget
2946 to drop the OEP_ADDRESS_OF flags. */
2947 gcc_checking_assert (!(flags
& OEP_ADDRESS_OF
));
2948 return tree_int_cst_equal (arg0
, arg1
);
2951 if (!(flags
& OEP_ADDRESS_OF
))
2953 /* If both types don't have the same signedness, then we can't consider
2954 them equal. We must check this before the STRIP_NOPS calls
2955 because they may change the signedness of the arguments. As pointers
2956 strictly don't have a signedness, require either two pointers or
2957 two non-pointers as well. */
2958 if (TYPE_UNSIGNED (TREE_TYPE (arg0
)) != TYPE_UNSIGNED (TREE_TYPE (arg1
))
2959 || POINTER_TYPE_P (TREE_TYPE (arg0
))
2960 != POINTER_TYPE_P (TREE_TYPE (arg1
)))
2963 /* If both types don't have the same precision, then it is not safe
2965 if (element_precision (TREE_TYPE (arg0
))
2966 != element_precision (TREE_TYPE (arg1
)))
2973 /* FIXME: Fortran FE currently produce ADDR_EXPR of NOP_EXPR. Enable the
2974 sanity check once the issue is solved. */
2976 /* Addresses of conversions and SSA_NAMEs (and many other things)
2977 are not defined. Check that we did not forget to drop the
2978 OEP_ADDRESS_OF/OEP_CONSTANT_ADDRESS_OF flags. */
2979 gcc_checking_assert (!CONVERT_EXPR_P (arg0
) && !CONVERT_EXPR_P (arg1
)
2980 && TREE_CODE (arg0
) != SSA_NAME
);
2983 /* In case both args are comparisons but with different comparison
2984 code, try to swap the comparison operands of one arg to produce
2985 a match and compare that variant. */
2986 if (TREE_CODE (arg0
) != TREE_CODE (arg1
)
2987 && COMPARISON_CLASS_P (arg0
)
2988 && COMPARISON_CLASS_P (arg1
))
2990 enum tree_code swap_code
= swap_tree_comparison (TREE_CODE (arg1
));
2992 if (TREE_CODE (arg0
) == swap_code
)
2993 return operand_equal_p (TREE_OPERAND (arg0
, 0),
2994 TREE_OPERAND (arg1
, 1), flags
)
2995 && operand_equal_p (TREE_OPERAND (arg0
, 1),
2996 TREE_OPERAND (arg1
, 0), flags
);
2999 if (TREE_CODE (arg0
) != TREE_CODE (arg1
))
3001 /* NOP_EXPR and CONVERT_EXPR are considered equal. */
3002 if (CONVERT_EXPR_P (arg0
) && CONVERT_EXPR_P (arg1
))
3004 else if (flags
& OEP_ADDRESS_OF
)
3006 /* If we are interested in comparing addresses ignore
3007 MEM_REF wrappings of the base that can appear just for
3009 if (TREE_CODE (arg0
) == MEM_REF
3011 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == ADDR_EXPR
3012 && TREE_OPERAND (TREE_OPERAND (arg0
, 0), 0) == arg1
3013 && integer_zerop (TREE_OPERAND (arg0
, 1)))
3015 else if (TREE_CODE (arg1
) == MEM_REF
3017 && TREE_CODE (TREE_OPERAND (arg1
, 0)) == ADDR_EXPR
3018 && TREE_OPERAND (TREE_OPERAND (arg1
, 0), 0) == arg0
3019 && integer_zerop (TREE_OPERAND (arg1
, 1)))
3027 /* When not checking adddresses, this is needed for conversions and for
3028 COMPONENT_REF. Might as well play it safe and always test this. */
3029 if (TREE_CODE (TREE_TYPE (arg0
)) == ERROR_MARK
3030 || TREE_CODE (TREE_TYPE (arg1
)) == ERROR_MARK
3031 || (TYPE_MODE (TREE_TYPE (arg0
)) != TYPE_MODE (TREE_TYPE (arg1
))
3032 && !(flags
& OEP_ADDRESS_OF
)))
3035 /* If ARG0 and ARG1 are the same SAVE_EXPR, they are necessarily equal.
3036 We don't care about side effects in that case because the SAVE_EXPR
3037 takes care of that for us. In all other cases, two expressions are
3038 equal if they have no side effects. If we have two identical
3039 expressions with side effects that should be treated the same due
3040 to the only side effects being identical SAVE_EXPR's, that will
3041 be detected in the recursive calls below.
3042 If we are taking an invariant address of two identical objects
3043 they are necessarily equal as well. */
3044 if (arg0
== arg1
&& ! (flags
& OEP_ONLY_CONST
)
3045 && (TREE_CODE (arg0
) == SAVE_EXPR
3046 || (flags
& OEP_MATCH_SIDE_EFFECTS
)
3047 || (! TREE_SIDE_EFFECTS (arg0
) && ! TREE_SIDE_EFFECTS (arg1
))))
3050 /* Next handle constant cases, those for which we can return 1 even
3051 if ONLY_CONST is set. */
3052 if (TREE_CONSTANT (arg0
) && TREE_CONSTANT (arg1
))
3053 switch (TREE_CODE (arg0
))
3056 return tree_int_cst_equal (arg0
, arg1
);
3059 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (arg0
),
3060 TREE_FIXED_CST (arg1
));
3063 if (real_identical (&TREE_REAL_CST (arg0
), &TREE_REAL_CST (arg1
)))
3067 if (!HONOR_SIGNED_ZEROS (arg0
))
3069 /* If we do not distinguish between signed and unsigned zero,
3070 consider them equal. */
3071 if (real_zerop (arg0
) && real_zerop (arg1
))
3078 if (VECTOR_CST_LOG2_NPATTERNS (arg0
)
3079 != VECTOR_CST_LOG2_NPATTERNS (arg1
))
3082 if (VECTOR_CST_NELTS_PER_PATTERN (arg0
)
3083 != VECTOR_CST_NELTS_PER_PATTERN (arg1
))
3086 unsigned int count
= vector_cst_encoded_nelts (arg0
);
3087 for (unsigned int i
= 0; i
< count
; ++i
)
3088 if (!operand_equal_p (VECTOR_CST_ENCODED_ELT (arg0
, i
),
3089 VECTOR_CST_ENCODED_ELT (arg1
, i
), flags
))
3095 return (operand_equal_p (TREE_REALPART (arg0
), TREE_REALPART (arg1
),
3097 && operand_equal_p (TREE_IMAGPART (arg0
), TREE_IMAGPART (arg1
),
3101 return (TREE_STRING_LENGTH (arg0
) == TREE_STRING_LENGTH (arg1
)
3102 && ! memcmp (TREE_STRING_POINTER (arg0
),
3103 TREE_STRING_POINTER (arg1
),
3104 TREE_STRING_LENGTH (arg0
)));
3107 gcc_checking_assert (!(flags
& OEP_ADDRESS_OF
));
3108 return operand_equal_p (TREE_OPERAND (arg0
, 0), TREE_OPERAND (arg1
, 0),
3109 flags
| OEP_ADDRESS_OF
3110 | OEP_MATCH_SIDE_EFFECTS
);
3112 /* In GIMPLE empty constructors are allowed in initializers of
3114 return !CONSTRUCTOR_NELTS (arg0
) && !CONSTRUCTOR_NELTS (arg1
);
3119 if (flags
& OEP_ONLY_CONST
)
3122 /* Define macros to test an operand from arg0 and arg1 for equality and a
3123 variant that allows null and views null as being different from any
3124 non-null value. In the latter case, if either is null, the both
3125 must be; otherwise, do the normal comparison. */
3126 #define OP_SAME(N) operand_equal_p (TREE_OPERAND (arg0, N), \
3127 TREE_OPERAND (arg1, N), flags)
3129 #define OP_SAME_WITH_NULL(N) \
3130 ((!TREE_OPERAND (arg0, N) || !TREE_OPERAND (arg1, N)) \
3131 ? TREE_OPERAND (arg0, N) == TREE_OPERAND (arg1, N) : OP_SAME (N))
3133 switch (TREE_CODE_CLASS (TREE_CODE (arg0
)))
3136 /* Two conversions are equal only if signedness and modes match. */
3137 switch (TREE_CODE (arg0
))
3140 case FIX_TRUNC_EXPR
:
3141 if (TYPE_UNSIGNED (TREE_TYPE (arg0
))
3142 != TYPE_UNSIGNED (TREE_TYPE (arg1
)))
3152 case tcc_comparison
:
3154 if (OP_SAME (0) && OP_SAME (1))
3157 /* For commutative ops, allow the other order. */
3158 return (commutative_tree_code (TREE_CODE (arg0
))
3159 && operand_equal_p (TREE_OPERAND (arg0
, 0),
3160 TREE_OPERAND (arg1
, 1), flags
)
3161 && operand_equal_p (TREE_OPERAND (arg0
, 1),
3162 TREE_OPERAND (arg1
, 0), flags
));
3165 /* If either of the pointer (or reference) expressions we are
3166 dereferencing contain a side effect, these cannot be equal,
3167 but their addresses can be. */
3168 if ((flags
& OEP_MATCH_SIDE_EFFECTS
) == 0
3169 && (TREE_SIDE_EFFECTS (arg0
)
3170 || TREE_SIDE_EFFECTS (arg1
)))
3173 switch (TREE_CODE (arg0
))
3176 if (!(flags
& OEP_ADDRESS_OF
)
3177 && (TYPE_ALIGN (TREE_TYPE (arg0
))
3178 != TYPE_ALIGN (TREE_TYPE (arg1
))))
3180 flags
&= ~OEP_ADDRESS_OF
;
3184 /* Require the same offset. */
3185 if (!operand_equal_p (TYPE_SIZE (TREE_TYPE (arg0
)),
3186 TYPE_SIZE (TREE_TYPE (arg1
)),
3187 flags
& ~OEP_ADDRESS_OF
))
3192 case VIEW_CONVERT_EXPR
:
3195 case TARGET_MEM_REF
:
3197 if (!(flags
& OEP_ADDRESS_OF
))
3199 /* Require equal access sizes */
3200 if (TYPE_SIZE (TREE_TYPE (arg0
)) != TYPE_SIZE (TREE_TYPE (arg1
))
3201 && (!TYPE_SIZE (TREE_TYPE (arg0
))
3202 || !TYPE_SIZE (TREE_TYPE (arg1
))
3203 || !operand_equal_p (TYPE_SIZE (TREE_TYPE (arg0
)),
3204 TYPE_SIZE (TREE_TYPE (arg1
)),
3207 /* Verify that access happens in similar types. */
3208 if (!types_compatible_p (TREE_TYPE (arg0
), TREE_TYPE (arg1
)))
3210 /* Verify that accesses are TBAA compatible. */
3211 if (!alias_ptr_types_compatible_p
3212 (TREE_TYPE (TREE_OPERAND (arg0
, 1)),
3213 TREE_TYPE (TREE_OPERAND (arg1
, 1)))
3214 || (MR_DEPENDENCE_CLIQUE (arg0
)
3215 != MR_DEPENDENCE_CLIQUE (arg1
))
3216 || (MR_DEPENDENCE_BASE (arg0
)
3217 != MR_DEPENDENCE_BASE (arg1
)))
3219 /* Verify that alignment is compatible. */
3220 if (TYPE_ALIGN (TREE_TYPE (arg0
))
3221 != TYPE_ALIGN (TREE_TYPE (arg1
)))
3224 flags
&= ~OEP_ADDRESS_OF
;
3225 return (OP_SAME (0) && OP_SAME (1)
3226 /* TARGET_MEM_REF require equal extra operands. */
3227 && (TREE_CODE (arg0
) != TARGET_MEM_REF
3228 || (OP_SAME_WITH_NULL (2)
3229 && OP_SAME_WITH_NULL (3)
3230 && OP_SAME_WITH_NULL (4))));
3233 case ARRAY_RANGE_REF
:
3236 flags
&= ~OEP_ADDRESS_OF
;
3237 /* Compare the array index by value if it is constant first as we
3238 may have different types but same value here. */
3239 return ((tree_int_cst_equal (TREE_OPERAND (arg0
, 1),
3240 TREE_OPERAND (arg1
, 1))
3242 && OP_SAME_WITH_NULL (2)
3243 && OP_SAME_WITH_NULL (3)
3244 /* Compare low bound and element size as with OEP_ADDRESS_OF
3245 we have to account for the offset of the ref. */
3246 && (TREE_TYPE (TREE_OPERAND (arg0
, 0))
3247 == TREE_TYPE (TREE_OPERAND (arg1
, 0))
3248 || (operand_equal_p (array_ref_low_bound
3249 (CONST_CAST_TREE (arg0
)),
3251 (CONST_CAST_TREE (arg1
)), flags
)
3252 && operand_equal_p (array_ref_element_size
3253 (CONST_CAST_TREE (arg0
)),
3254 array_ref_element_size
3255 (CONST_CAST_TREE (arg1
)),
3259 /* Handle operand 2 the same as for ARRAY_REF. Operand 0
3260 may be NULL when we're called to compare MEM_EXPRs. */
3261 if (!OP_SAME_WITH_NULL (0)
3264 flags
&= ~OEP_ADDRESS_OF
;
3265 return OP_SAME_WITH_NULL (2);
3270 flags
&= ~OEP_ADDRESS_OF
;
3271 return OP_SAME (1) && OP_SAME (2);
3277 case tcc_expression
:
3278 switch (TREE_CODE (arg0
))
3281 /* Be sure we pass right ADDRESS_OF flag. */
3282 gcc_checking_assert (!(flags
& OEP_ADDRESS_OF
));
3283 return operand_equal_p (TREE_OPERAND (arg0
, 0),
3284 TREE_OPERAND (arg1
, 0),
3285 flags
| OEP_ADDRESS_OF
);
3287 case TRUTH_NOT_EXPR
:
3290 case TRUTH_ANDIF_EXPR
:
3291 case TRUTH_ORIF_EXPR
:
3292 return OP_SAME (0) && OP_SAME (1);
3295 case WIDEN_MULT_PLUS_EXPR
:
3296 case WIDEN_MULT_MINUS_EXPR
:
3299 /* The multiplcation operands are commutative. */
3302 case TRUTH_AND_EXPR
:
3304 case TRUTH_XOR_EXPR
:
3305 if (OP_SAME (0) && OP_SAME (1))
3308 /* Otherwise take into account this is a commutative operation. */
3309 return (operand_equal_p (TREE_OPERAND (arg0
, 0),
3310 TREE_OPERAND (arg1
, 1), flags
)
3311 && operand_equal_p (TREE_OPERAND (arg0
, 1),
3312 TREE_OPERAND (arg1
, 0), flags
));
3315 if (! OP_SAME (1) || ! OP_SAME_WITH_NULL (2))
3317 flags
&= ~OEP_ADDRESS_OF
;
3320 case BIT_INSERT_EXPR
:
3321 /* BIT_INSERT_EXPR has an implict operand as the type precision
3322 of op1. Need to check to make sure they are the same. */
3323 if (TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
3324 && TREE_CODE (TREE_OPERAND (arg1
, 1)) == INTEGER_CST
3325 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0
, 1)))
3326 != TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg1
, 1))))
3332 return OP_SAME (0) && OP_SAME (1) && OP_SAME (2);
3337 case PREDECREMENT_EXPR
:
3338 case PREINCREMENT_EXPR
:
3339 case POSTDECREMENT_EXPR
:
3340 case POSTINCREMENT_EXPR
:
3341 if (flags
& OEP_LEXICOGRAPHIC
)
3342 return OP_SAME (0) && OP_SAME (1);
3345 case CLEANUP_POINT_EXPR
:
3347 if (flags
& OEP_LEXICOGRAPHIC
)
3356 switch (TREE_CODE (arg0
))
3359 if ((CALL_EXPR_FN (arg0
) == NULL_TREE
)
3360 != (CALL_EXPR_FN (arg1
) == NULL_TREE
))
3361 /* If not both CALL_EXPRs are either internal or normal function
3362 functions, then they are not equal. */
3364 else if (CALL_EXPR_FN (arg0
) == NULL_TREE
)
3366 /* If the CALL_EXPRs call different internal functions, then they
3368 if (CALL_EXPR_IFN (arg0
) != CALL_EXPR_IFN (arg1
))
3373 /* If the CALL_EXPRs call different functions, then they are not
3375 if (! operand_equal_p (CALL_EXPR_FN (arg0
), CALL_EXPR_FN (arg1
),
3380 /* FIXME: We could skip this test for OEP_MATCH_SIDE_EFFECTS. */
3382 unsigned int cef
= call_expr_flags (arg0
);
3383 if (flags
& OEP_PURE_SAME
)
3384 cef
&= ECF_CONST
| ECF_PURE
;
3387 if (!cef
&& !(flags
& OEP_LEXICOGRAPHIC
))
3391 /* Now see if all the arguments are the same. */
3393 const_call_expr_arg_iterator iter0
, iter1
;
3395 for (a0
= first_const_call_expr_arg (arg0
, &iter0
),
3396 a1
= first_const_call_expr_arg (arg1
, &iter1
);
3398 a0
= next_const_call_expr_arg (&iter0
),
3399 a1
= next_const_call_expr_arg (&iter1
))
3400 if (! operand_equal_p (a0
, a1
, flags
))
3403 /* If we get here and both argument lists are exhausted
3404 then the CALL_EXPRs are equal. */
3405 return ! (a0
|| a1
);
3411 case tcc_declaration
:
3412 /* Consider __builtin_sqrt equal to sqrt. */
3413 return (TREE_CODE (arg0
) == FUNCTION_DECL
3414 && DECL_BUILT_IN (arg0
) && DECL_BUILT_IN (arg1
)
3415 && DECL_BUILT_IN_CLASS (arg0
) == DECL_BUILT_IN_CLASS (arg1
)
3416 && DECL_FUNCTION_CODE (arg0
) == DECL_FUNCTION_CODE (arg1
));
3418 case tcc_exceptional
:
3419 if (TREE_CODE (arg0
) == CONSTRUCTOR
)
3421 /* In GIMPLE constructors are used only to build vectors from
3422 elements. Individual elements in the constructor must be
3423 indexed in increasing order and form an initial sequence.
3425 We make no effort to compare constructors in generic.
3426 (see sem_variable::equals in ipa-icf which can do so for
3428 if (!VECTOR_TYPE_P (TREE_TYPE (arg0
))
3429 || !VECTOR_TYPE_P (TREE_TYPE (arg1
)))
3432 /* Be sure that vectors constructed have the same representation.
3433 We only tested element precision and modes to match.
3434 Vectors may be BLKmode and thus also check that the number of
3436 if (maybe_ne (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0
)),
3437 TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1
))))
3440 vec
<constructor_elt
, va_gc
> *v0
= CONSTRUCTOR_ELTS (arg0
);
3441 vec
<constructor_elt
, va_gc
> *v1
= CONSTRUCTOR_ELTS (arg1
);
3442 unsigned int len
= vec_safe_length (v0
);
3444 if (len
!= vec_safe_length (v1
))
3447 for (unsigned int i
= 0; i
< len
; i
++)
3449 constructor_elt
*c0
= &(*v0
)[i
];
3450 constructor_elt
*c1
= &(*v1
)[i
];
3452 if (!operand_equal_p (c0
->value
, c1
->value
, flags
)
3453 /* In GIMPLE the indexes can be either NULL or matching i.
3454 Double check this so we won't get false
3455 positives for GENERIC. */
3457 && (TREE_CODE (c0
->index
) != INTEGER_CST
3458 || !compare_tree_int (c0
->index
, i
)))
3460 && (TREE_CODE (c1
->index
) != INTEGER_CST
3461 || !compare_tree_int (c1
->index
, i
))))
3466 else if (TREE_CODE (arg0
) == STATEMENT_LIST
3467 && (flags
& OEP_LEXICOGRAPHIC
))
3469 /* Compare the STATEMENT_LISTs. */
3470 tree_stmt_iterator tsi1
, tsi2
;
3471 tree body1
= CONST_CAST_TREE (arg0
);
3472 tree body2
= CONST_CAST_TREE (arg1
);
3473 for (tsi1
= tsi_start (body1
), tsi2
= tsi_start (body2
); ;
3474 tsi_next (&tsi1
), tsi_next (&tsi2
))
3476 /* The lists don't have the same number of statements. */
3477 if (tsi_end_p (tsi1
) ^ tsi_end_p (tsi2
))
3479 if (tsi_end_p (tsi1
) && tsi_end_p (tsi2
))
3481 if (!operand_equal_p (tsi_stmt (tsi1
), tsi_stmt (tsi2
),
3489 switch (TREE_CODE (arg0
))
3492 if (flags
& OEP_LEXICOGRAPHIC
)
3493 return OP_SAME_WITH_NULL (0);
3504 #undef OP_SAME_WITH_NULL
3507 /* Similar to operand_equal_p, but see if ARG0 might be a variant of ARG1
3508 with a different signedness or a narrower precision. */
3511 operand_equal_for_comparison_p (tree arg0
, tree arg1
)
3513 if (operand_equal_p (arg0
, arg1
, 0))
3516 if (! INTEGRAL_TYPE_P (TREE_TYPE (arg0
))
3517 || ! INTEGRAL_TYPE_P (TREE_TYPE (arg1
)))
3520 /* Discard any conversions that don't change the modes of ARG0 and ARG1
3521 and see if the inner values are the same. This removes any
3522 signedness comparison, which doesn't matter here. */
3527 if (operand_equal_p (op0
, op1
, 0))
3530 /* Discard a single widening conversion from ARG1 and see if the inner
3531 value is the same as ARG0. */
3532 if (CONVERT_EXPR_P (arg1
)
3533 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (arg1
, 0)))
3534 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg1
, 0)))
3535 < TYPE_PRECISION (TREE_TYPE (arg1
))
3536 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
3542 /* See if ARG is an expression that is either a comparison or is performing
3543 arithmetic on comparisons. The comparisons must only be comparing
3544 two different values, which will be stored in *CVAL1 and *CVAL2; if
3545 they are nonzero it means that some operands have already been found.
3546 No variables may be used anywhere else in the expression except in the
3547 comparisons. If SAVE_P is true it means we removed a SAVE_EXPR around
3548 the expression and save_expr needs to be called with CVAL1 and CVAL2.
3550 If this is true, return 1. Otherwise, return zero. */
3553 twoval_comparison_p (tree arg
, tree
*cval1
, tree
*cval2
, int *save_p
)
3555 enum tree_code code
= TREE_CODE (arg
);
3556 enum tree_code_class tclass
= TREE_CODE_CLASS (code
);
3558 /* We can handle some of the tcc_expression cases here. */
3559 if (tclass
== tcc_expression
&& code
== TRUTH_NOT_EXPR
)
3561 else if (tclass
== tcc_expression
3562 && (code
== TRUTH_ANDIF_EXPR
|| code
== TRUTH_ORIF_EXPR
3563 || code
== COMPOUND_EXPR
))
3564 tclass
= tcc_binary
;
3566 else if (tclass
== tcc_expression
&& code
== SAVE_EXPR
3567 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg
, 0)))
3569 /* If we've already found a CVAL1 or CVAL2, this expression is
3570 two complex to handle. */
3571 if (*cval1
|| *cval2
)
3581 return twoval_comparison_p (TREE_OPERAND (arg
, 0), cval1
, cval2
, save_p
);
3584 return (twoval_comparison_p (TREE_OPERAND (arg
, 0), cval1
, cval2
, save_p
)
3585 && twoval_comparison_p (TREE_OPERAND (arg
, 1),
3586 cval1
, cval2
, save_p
));
3591 case tcc_expression
:
3592 if (code
== COND_EXPR
)
3593 return (twoval_comparison_p (TREE_OPERAND (arg
, 0),
3594 cval1
, cval2
, save_p
)
3595 && twoval_comparison_p (TREE_OPERAND (arg
, 1),
3596 cval1
, cval2
, save_p
)
3597 && twoval_comparison_p (TREE_OPERAND (arg
, 2),
3598 cval1
, cval2
, save_p
));
3601 case tcc_comparison
:
3602 /* First see if we can handle the first operand, then the second. For
3603 the second operand, we know *CVAL1 can't be zero. It must be that
3604 one side of the comparison is each of the values; test for the
3605 case where this isn't true by failing if the two operands
3608 if (operand_equal_p (TREE_OPERAND (arg
, 0),
3609 TREE_OPERAND (arg
, 1), 0))
3613 *cval1
= TREE_OPERAND (arg
, 0);
3614 else if (operand_equal_p (*cval1
, TREE_OPERAND (arg
, 0), 0))
3616 else if (*cval2
== 0)
3617 *cval2
= TREE_OPERAND (arg
, 0);
3618 else if (operand_equal_p (*cval2
, TREE_OPERAND (arg
, 0), 0))
3623 if (operand_equal_p (*cval1
, TREE_OPERAND (arg
, 1), 0))
3625 else if (*cval2
== 0)
3626 *cval2
= TREE_OPERAND (arg
, 1);
3627 else if (operand_equal_p (*cval2
, TREE_OPERAND (arg
, 1), 0))
3639 /* ARG is a tree that is known to contain just arithmetic operations and
3640 comparisons. Evaluate the operations in the tree substituting NEW0 for
3641 any occurrence of OLD0 as an operand of a comparison and likewise for
3645 eval_subst (location_t loc
, tree arg
, tree old0
, tree new0
,
3646 tree old1
, tree new1
)
3648 tree type
= TREE_TYPE (arg
);
3649 enum tree_code code
= TREE_CODE (arg
);
3650 enum tree_code_class tclass
= TREE_CODE_CLASS (code
);
3652 /* We can handle some of the tcc_expression cases here. */
3653 if (tclass
== tcc_expression
&& code
== TRUTH_NOT_EXPR
)
3655 else if (tclass
== tcc_expression
3656 && (code
== TRUTH_ANDIF_EXPR
|| code
== TRUTH_ORIF_EXPR
))
3657 tclass
= tcc_binary
;
3662 return fold_build1_loc (loc
, code
, type
,
3663 eval_subst (loc
, TREE_OPERAND (arg
, 0),
3664 old0
, new0
, old1
, new1
));
3667 return fold_build2_loc (loc
, code
, type
,
3668 eval_subst (loc
, TREE_OPERAND (arg
, 0),
3669 old0
, new0
, old1
, new1
),
3670 eval_subst (loc
, TREE_OPERAND (arg
, 1),
3671 old0
, new0
, old1
, new1
));
3673 case tcc_expression
:
3677 return eval_subst (loc
, TREE_OPERAND (arg
, 0), old0
, new0
,
3681 return eval_subst (loc
, TREE_OPERAND (arg
, 1), old0
, new0
,
3685 return fold_build3_loc (loc
, code
, type
,
3686 eval_subst (loc
, TREE_OPERAND (arg
, 0),
3687 old0
, new0
, old1
, new1
),
3688 eval_subst (loc
, TREE_OPERAND (arg
, 1),
3689 old0
, new0
, old1
, new1
),
3690 eval_subst (loc
, TREE_OPERAND (arg
, 2),
3691 old0
, new0
, old1
, new1
));
3695 /* Fall through - ??? */
3697 case tcc_comparison
:
3699 tree arg0
= TREE_OPERAND (arg
, 0);
3700 tree arg1
= TREE_OPERAND (arg
, 1);
3702 /* We need to check both for exact equality and tree equality. The
3703 former will be true if the operand has a side-effect. In that
3704 case, we know the operand occurred exactly once. */
3706 if (arg0
== old0
|| operand_equal_p (arg0
, old0
, 0))
3708 else if (arg0
== old1
|| operand_equal_p (arg0
, old1
, 0))
3711 if (arg1
== old0
|| operand_equal_p (arg1
, old0
, 0))
3713 else if (arg1
== old1
|| operand_equal_p (arg1
, old1
, 0))
3716 return fold_build2_loc (loc
, code
, type
, arg0
, arg1
);
3724 /* Return a tree for the case when the result of an expression is RESULT
3725 converted to TYPE and OMITTED was previously an operand of the expression
3726 but is now not needed (e.g., we folded OMITTED * 0).
3728 If OMITTED has side effects, we must evaluate it. Otherwise, just do
3729 the conversion of RESULT to TYPE. */
3732 omit_one_operand_loc (location_t loc
, tree type
, tree result
, tree omitted
)
3734 tree t
= fold_convert_loc (loc
, type
, result
);
3736 /* If the resulting operand is an empty statement, just return the omitted
3737 statement casted to void. */
3738 if (IS_EMPTY_STMT (t
) && TREE_SIDE_EFFECTS (omitted
))
3739 return build1_loc (loc
, NOP_EXPR
, void_type_node
,
3740 fold_ignored_result (omitted
));
3742 if (TREE_SIDE_EFFECTS (omitted
))
3743 return build2_loc (loc
, COMPOUND_EXPR
, type
,
3744 fold_ignored_result (omitted
), t
);
3746 return non_lvalue_loc (loc
, t
);
3749 /* Return a tree for the case when the result of an expression is RESULT
3750 converted to TYPE and OMITTED1 and OMITTED2 were previously operands
3751 of the expression but are now not needed.
3753 If OMITTED1 or OMITTED2 has side effects, they must be evaluated.
3754 If both OMITTED1 and OMITTED2 have side effects, OMITTED1 is
3755 evaluated before OMITTED2. Otherwise, if neither has side effects,
3756 just do the conversion of RESULT to TYPE. */
3759 omit_two_operands_loc (location_t loc
, tree type
, tree result
,
3760 tree omitted1
, tree omitted2
)
3762 tree t
= fold_convert_loc (loc
, type
, result
);
3764 if (TREE_SIDE_EFFECTS (omitted2
))
3765 t
= build2_loc (loc
, COMPOUND_EXPR
, type
, omitted2
, t
);
3766 if (TREE_SIDE_EFFECTS (omitted1
))
3767 t
= build2_loc (loc
, COMPOUND_EXPR
, type
, omitted1
, t
);
3769 return TREE_CODE (t
) != COMPOUND_EXPR
? non_lvalue_loc (loc
, t
) : t
;
3773 /* Return a simplified tree node for the truth-negation of ARG. This
3774 never alters ARG itself. We assume that ARG is an operation that
3775 returns a truth value (0 or 1).
3777 FIXME: one would think we would fold the result, but it causes
3778 problems with the dominator optimizer. */
3781 fold_truth_not_expr (location_t loc
, tree arg
)
3783 tree type
= TREE_TYPE (arg
);
3784 enum tree_code code
= TREE_CODE (arg
);
3785 location_t loc1
, loc2
;
3787 /* If this is a comparison, we can simply invert it, except for
3788 floating-point non-equality comparisons, in which case we just
3789 enclose a TRUTH_NOT_EXPR around what we have. */
3791 if (TREE_CODE_CLASS (code
) == tcc_comparison
)
3793 tree op_type
= TREE_TYPE (TREE_OPERAND (arg
, 0));
3794 if (FLOAT_TYPE_P (op_type
)
3795 && flag_trapping_math
3796 && code
!= ORDERED_EXPR
&& code
!= UNORDERED_EXPR
3797 && code
!= NE_EXPR
&& code
!= EQ_EXPR
)
3800 code
= invert_tree_comparison (code
, HONOR_NANS (op_type
));
3801 if (code
== ERROR_MARK
)
3804 tree ret
= build2_loc (loc
, code
, type
, TREE_OPERAND (arg
, 0),
3805 TREE_OPERAND (arg
, 1));
3806 if (TREE_NO_WARNING (arg
))
3807 TREE_NO_WARNING (ret
) = 1;
3814 return constant_boolean_node (integer_zerop (arg
), type
);
3816 case TRUTH_AND_EXPR
:
3817 loc1
= expr_location_or (TREE_OPERAND (arg
, 0), loc
);
3818 loc2
= expr_location_or (TREE_OPERAND (arg
, 1), loc
);
3819 return build2_loc (loc
, TRUTH_OR_EXPR
, type
,
3820 invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 0)),
3821 invert_truthvalue_loc (loc2
, TREE_OPERAND (arg
, 1)));
3824 loc1
= expr_location_or (TREE_OPERAND (arg
, 0), loc
);
3825 loc2
= expr_location_or (TREE_OPERAND (arg
, 1), loc
);
3826 return build2_loc (loc
, TRUTH_AND_EXPR
, type
,
3827 invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 0)),
3828 invert_truthvalue_loc (loc2
, TREE_OPERAND (arg
, 1)));
3830 case TRUTH_XOR_EXPR
:
3831 /* Here we can invert either operand. We invert the first operand
3832 unless the second operand is a TRUTH_NOT_EXPR in which case our
3833 result is the XOR of the first operand with the inside of the
3834 negation of the second operand. */
3836 if (TREE_CODE (TREE_OPERAND (arg
, 1)) == TRUTH_NOT_EXPR
)
3837 return build2_loc (loc
, TRUTH_XOR_EXPR
, type
, TREE_OPERAND (arg
, 0),
3838 TREE_OPERAND (TREE_OPERAND (arg
, 1), 0));
3840 return build2_loc (loc
, TRUTH_XOR_EXPR
, type
,
3841 invert_truthvalue_loc (loc
, TREE_OPERAND (arg
, 0)),
3842 TREE_OPERAND (arg
, 1));
3844 case TRUTH_ANDIF_EXPR
:
3845 loc1
= expr_location_or (TREE_OPERAND (arg
, 0), loc
);
3846 loc2
= expr_location_or (TREE_OPERAND (arg
, 1), loc
);
3847 return build2_loc (loc
, TRUTH_ORIF_EXPR
, type
,
3848 invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 0)),
3849 invert_truthvalue_loc (loc2
, TREE_OPERAND (arg
, 1)));
3851 case TRUTH_ORIF_EXPR
:
3852 loc1
= expr_location_or (TREE_OPERAND (arg
, 0), loc
);
3853 loc2
= expr_location_or (TREE_OPERAND (arg
, 1), loc
);
3854 return build2_loc (loc
, TRUTH_ANDIF_EXPR
, type
,
3855 invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 0)),
3856 invert_truthvalue_loc (loc2
, TREE_OPERAND (arg
, 1)));
3858 case TRUTH_NOT_EXPR
:
3859 return TREE_OPERAND (arg
, 0);
3863 tree arg1
= TREE_OPERAND (arg
, 1);
3864 tree arg2
= TREE_OPERAND (arg
, 2);
3866 loc1
= expr_location_or (TREE_OPERAND (arg
, 1), loc
);
3867 loc2
= expr_location_or (TREE_OPERAND (arg
, 2), loc
);
3869 /* A COND_EXPR may have a throw as one operand, which
3870 then has void type. Just leave void operands
3872 return build3_loc (loc
, COND_EXPR
, type
, TREE_OPERAND (arg
, 0),
3873 VOID_TYPE_P (TREE_TYPE (arg1
))
3874 ? arg1
: invert_truthvalue_loc (loc1
, arg1
),
3875 VOID_TYPE_P (TREE_TYPE (arg2
))
3876 ? arg2
: invert_truthvalue_loc (loc2
, arg2
));
3880 loc1
= expr_location_or (TREE_OPERAND (arg
, 1), loc
);
3881 return build2_loc (loc
, COMPOUND_EXPR
, type
,
3882 TREE_OPERAND (arg
, 0),
3883 invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 1)));
3885 case NON_LVALUE_EXPR
:
3886 loc1
= expr_location_or (TREE_OPERAND (arg
, 0), loc
);
3887 return invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 0));
3890 if (TREE_CODE (TREE_TYPE (arg
)) == BOOLEAN_TYPE
)
3891 return build1_loc (loc
, TRUTH_NOT_EXPR
, type
, arg
);
3896 loc1
= expr_location_or (TREE_OPERAND (arg
, 0), loc
);
3897 return build1_loc (loc
, TREE_CODE (arg
), type
,
3898 invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 0)));
3901 if (!integer_onep (TREE_OPERAND (arg
, 1)))
3903 return build2_loc (loc
, EQ_EXPR
, type
, arg
, build_int_cst (type
, 0));
3906 return build1_loc (loc
, TRUTH_NOT_EXPR
, type
, arg
);
3908 case CLEANUP_POINT_EXPR
:
3909 loc1
= expr_location_or (TREE_OPERAND (arg
, 0), loc
);
3910 return build1_loc (loc
, CLEANUP_POINT_EXPR
, type
,
3911 invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 0)));
3918 /* Fold the truth-negation of ARG. This never alters ARG itself. We
3919 assume that ARG is an operation that returns a truth value (0 or 1
3920 for scalars, 0 or -1 for vectors). Return the folded expression if
3921 folding is successful. Otherwise, return NULL_TREE. */
3924 fold_invert_truthvalue (location_t loc
, tree arg
)
3926 tree type
= TREE_TYPE (arg
);
3927 return fold_unary_loc (loc
, VECTOR_TYPE_P (type
)
3933 /* Return a simplified tree node for the truth-negation of ARG. This
3934 never alters ARG itself. We assume that ARG is an operation that
3935 returns a truth value (0 or 1 for scalars, 0 or -1 for vectors). */
3938 invert_truthvalue_loc (location_t loc
, tree arg
)
3940 if (TREE_CODE (arg
) == ERROR_MARK
)
3943 tree type
= TREE_TYPE (arg
);
3944 return fold_build1_loc (loc
, VECTOR_TYPE_P (type
)
3950 /* Return a BIT_FIELD_REF of type TYPE to refer to BITSIZE bits of INNER
3951 starting at BITPOS. The field is unsigned if UNSIGNEDP is nonzero
3952 and uses reverse storage order if REVERSEP is nonzero. ORIG_INNER
3953 is the original memory reference used to preserve the alias set of
3957 make_bit_field_ref (location_t loc
, tree inner
, tree orig_inner
, tree type
,
3958 HOST_WIDE_INT bitsize
, poly_int64 bitpos
,
3959 int unsignedp
, int reversep
)
3961 tree result
, bftype
;
3963 /* Attempt not to lose the access path if possible. */
3964 if (TREE_CODE (orig_inner
) == COMPONENT_REF
)
3966 tree ninner
= TREE_OPERAND (orig_inner
, 0);
3968 poly_int64 nbitsize
, nbitpos
;
3970 int nunsignedp
, nreversep
, nvolatilep
= 0;
3971 tree base
= get_inner_reference (ninner
, &nbitsize
, &nbitpos
,
3972 &noffset
, &nmode
, &nunsignedp
,
3973 &nreversep
, &nvolatilep
);
3975 && noffset
== NULL_TREE
3976 && known_subrange_p (bitpos
, bitsize
, nbitpos
, nbitsize
)
3986 alias_set_type iset
= get_alias_set (orig_inner
);
3987 if (iset
== 0 && get_alias_set (inner
) != iset
)
3988 inner
= fold_build2 (MEM_REF
, TREE_TYPE (inner
),
3989 build_fold_addr_expr (inner
),
3990 build_int_cst (ptr_type_node
, 0));
3992 if (known_eq (bitpos
, 0) && !reversep
)
3994 tree size
= TYPE_SIZE (TREE_TYPE (inner
));
3995 if ((INTEGRAL_TYPE_P (TREE_TYPE (inner
))
3996 || POINTER_TYPE_P (TREE_TYPE (inner
)))
3997 && tree_fits_shwi_p (size
)
3998 && tree_to_shwi (size
) == bitsize
)
3999 return fold_convert_loc (loc
, type
, inner
);
4003 if (TYPE_PRECISION (bftype
) != bitsize
4004 || TYPE_UNSIGNED (bftype
) == !unsignedp
)
4005 bftype
= build_nonstandard_integer_type (bitsize
, 0);
4007 result
= build3_loc (loc
, BIT_FIELD_REF
, bftype
, inner
,
4008 bitsize_int (bitsize
), bitsize_int (bitpos
));
4009 REF_REVERSE_STORAGE_ORDER (result
) = reversep
;
4012 result
= fold_convert_loc (loc
, type
, result
);
4017 /* Optimize a bit-field compare.
4019 There are two cases: First is a compare against a constant and the
4020 second is a comparison of two items where the fields are at the same
4021 bit position relative to the start of a chunk (byte, halfword, word)
4022 large enough to contain it. In these cases we can avoid the shift
4023 implicit in bitfield extractions.
4025 For constants, we emit a compare of the shifted constant with the
4026 BIT_AND_EXPR of a mask and a byte, halfword, or word of the operand being
4027 compared. For two fields at the same position, we do the ANDs with the
4028 similar mask and compare the result of the ANDs.
4030 CODE is the comparison code, known to be either NE_EXPR or EQ_EXPR.
4031 COMPARE_TYPE is the type of the comparison, and LHS and RHS
4032 are the left and right operands of the comparison, respectively.
4034 If the optimization described above can be done, we return the resulting
4035 tree. Otherwise we return zero. */
4038 optimize_bit_field_compare (location_t loc
, enum tree_code code
,
4039 tree compare_type
, tree lhs
, tree rhs
)
4041 poly_int64 plbitpos
, plbitsize
, rbitpos
, rbitsize
;
4042 HOST_WIDE_INT lbitpos
, lbitsize
, nbitpos
, nbitsize
;
4043 tree type
= TREE_TYPE (lhs
);
4045 int const_p
= TREE_CODE (rhs
) == INTEGER_CST
;
4046 machine_mode lmode
, rmode
;
4047 scalar_int_mode nmode
;
4048 int lunsignedp
, runsignedp
;
4049 int lreversep
, rreversep
;
4050 int lvolatilep
= 0, rvolatilep
= 0;
4051 tree linner
, rinner
= NULL_TREE
;
4055 /* Get all the information about the extractions being done. If the bit size
4056 is the same as the size of the underlying object, we aren't doing an
4057 extraction at all and so can do nothing. We also don't want to
4058 do anything if the inner expression is a PLACEHOLDER_EXPR since we
4059 then will no longer be able to replace it. */
4060 linner
= get_inner_reference (lhs
, &plbitsize
, &plbitpos
, &offset
, &lmode
,
4061 &lunsignedp
, &lreversep
, &lvolatilep
);
4063 || !known_size_p (plbitsize
)
4064 || !plbitsize
.is_constant (&lbitsize
)
4065 || !plbitpos
.is_constant (&lbitpos
)
4066 || known_eq (lbitsize
, GET_MODE_BITSIZE (lmode
))
4068 || TREE_CODE (linner
) == PLACEHOLDER_EXPR
4073 rreversep
= lreversep
;
4076 /* If this is not a constant, we can only do something if bit positions,
4077 sizes, signedness and storage order are the same. */
4079 = get_inner_reference (rhs
, &rbitsize
, &rbitpos
, &offset
, &rmode
,
4080 &runsignedp
, &rreversep
, &rvolatilep
);
4083 || maybe_ne (lbitpos
, rbitpos
)
4084 || maybe_ne (lbitsize
, rbitsize
)
4085 || lunsignedp
!= runsignedp
4086 || lreversep
!= rreversep
4088 || TREE_CODE (rinner
) == PLACEHOLDER_EXPR
4093 /* Honor the C++ memory model and mimic what RTL expansion does. */
4094 poly_uint64 bitstart
= 0;
4095 poly_uint64 bitend
= 0;
4096 if (TREE_CODE (lhs
) == COMPONENT_REF
)
4098 get_bit_range (&bitstart
, &bitend
, lhs
, &plbitpos
, &offset
);
4099 if (!plbitpos
.is_constant (&lbitpos
) || offset
!= NULL_TREE
)
4103 /* See if we can find a mode to refer to this field. We should be able to,
4104 but fail if we can't. */
4105 if (!get_best_mode (lbitsize
, lbitpos
, bitstart
, bitend
,
4106 const_p
? TYPE_ALIGN (TREE_TYPE (linner
))
4107 : MIN (TYPE_ALIGN (TREE_TYPE (linner
)),
4108 TYPE_ALIGN (TREE_TYPE (rinner
))),
4109 BITS_PER_WORD
, false, &nmode
))
4112 /* Set signed and unsigned types of the precision of this mode for the
4114 unsigned_type
= lang_hooks
.types
.type_for_mode (nmode
, 1);
4116 /* Compute the bit position and size for the new reference and our offset
4117 within it. If the new reference is the same size as the original, we
4118 won't optimize anything, so return zero. */
4119 nbitsize
= GET_MODE_BITSIZE (nmode
);
4120 nbitpos
= lbitpos
& ~ (nbitsize
- 1);
4122 if (nbitsize
== lbitsize
)
4125 if (lreversep
? !BYTES_BIG_ENDIAN
: BYTES_BIG_ENDIAN
)
4126 lbitpos
= nbitsize
- lbitsize
- lbitpos
;
4128 /* Make the mask to be used against the extracted field. */
4129 mask
= build_int_cst_type (unsigned_type
, -1);
4130 mask
= const_binop (LSHIFT_EXPR
, mask
, size_int (nbitsize
- lbitsize
));
4131 mask
= const_binop (RSHIFT_EXPR
, mask
,
4132 size_int (nbitsize
- lbitsize
- lbitpos
));
4139 /* If not comparing with constant, just rework the comparison
4141 tree t1
= make_bit_field_ref (loc
, linner
, lhs
, unsigned_type
,
4142 nbitsize
, nbitpos
, 1, lreversep
);
4143 t1
= fold_build2_loc (loc
, BIT_AND_EXPR
, unsigned_type
, t1
, mask
);
4144 tree t2
= make_bit_field_ref (loc
, rinner
, rhs
, unsigned_type
,
4145 nbitsize
, nbitpos
, 1, rreversep
);
4146 t2
= fold_build2_loc (loc
, BIT_AND_EXPR
, unsigned_type
, t2
, mask
);
4147 return fold_build2_loc (loc
, code
, compare_type
, t1
, t2
);
4150 /* Otherwise, we are handling the constant case. See if the constant is too
4151 big for the field. Warn and return a tree for 0 (false) if so. We do
4152 this not only for its own sake, but to avoid having to test for this
4153 error case below. If we didn't, we might generate wrong code.
4155 For unsigned fields, the constant shifted right by the field length should
4156 be all zero. For signed fields, the high-order bits should agree with
4161 if (wi::lrshift (wi::to_wide (rhs
), lbitsize
) != 0)
4163 warning (0, "comparison is always %d due to width of bit-field",
4165 return constant_boolean_node (code
== NE_EXPR
, compare_type
);
4170 wide_int tem
= wi::arshift (wi::to_wide (rhs
), lbitsize
- 1);
4171 if (tem
!= 0 && tem
!= -1)
4173 warning (0, "comparison is always %d due to width of bit-field",
4175 return constant_boolean_node (code
== NE_EXPR
, compare_type
);
4182 /* Single-bit compares should always be against zero. */
4183 if (lbitsize
== 1 && ! integer_zerop (rhs
))
4185 code
= code
== EQ_EXPR
? NE_EXPR
: EQ_EXPR
;
4186 rhs
= build_int_cst (type
, 0);
4189 /* Make a new bitfield reference, shift the constant over the
4190 appropriate number of bits and mask it with the computed mask
4191 (in case this was a signed field). If we changed it, make a new one. */
4192 lhs
= make_bit_field_ref (loc
, linner
, lhs
, unsigned_type
,
4193 nbitsize
, nbitpos
, 1, lreversep
);
4195 rhs
= const_binop (BIT_AND_EXPR
,
4196 const_binop (LSHIFT_EXPR
,
4197 fold_convert_loc (loc
, unsigned_type
, rhs
),
4198 size_int (lbitpos
)),
4201 lhs
= build2_loc (loc
, code
, compare_type
,
4202 build2 (BIT_AND_EXPR
, unsigned_type
, lhs
, mask
), rhs
);
4206 /* Subroutine for fold_truth_andor_1: decode a field reference.
4208 If EXP is a comparison reference, we return the innermost reference.
4210 *PBITSIZE is set to the number of bits in the reference, *PBITPOS is
4211 set to the starting bit number.
4213 If the innermost field can be completely contained in a mode-sized
4214 unit, *PMODE is set to that mode. Otherwise, it is set to VOIDmode.
4216 *PVOLATILEP is set to 1 if the any expression encountered is volatile;
4217 otherwise it is not changed.
4219 *PUNSIGNEDP is set to the signedness of the field.
4221 *PREVERSEP is set to the storage order of the field.
4223 *PMASK is set to the mask used. This is either contained in a
4224 BIT_AND_EXPR or derived from the width of the field.
4226 *PAND_MASK is set to the mask found in a BIT_AND_EXPR, if any.
4228 Return 0 if this is not a component reference or is one that we can't
4229 do anything with. */
4232 decode_field_reference (location_t loc
, tree
*exp_
, HOST_WIDE_INT
*pbitsize
,
4233 HOST_WIDE_INT
*pbitpos
, machine_mode
*pmode
,
4234 int *punsignedp
, int *preversep
, int *pvolatilep
,
4235 tree
*pmask
, tree
*pand_mask
)
4238 tree outer_type
= 0;
4240 tree mask
, inner
, offset
;
4242 unsigned int precision
;
4244 /* All the optimizations using this function assume integer fields.
4245 There are problems with FP fields since the type_for_size call
4246 below can fail for, e.g., XFmode. */
4247 if (! INTEGRAL_TYPE_P (TREE_TYPE (exp
)))
4250 /* We are interested in the bare arrangement of bits, so strip everything
4251 that doesn't affect the machine mode. However, record the type of the
4252 outermost expression if it may matter below. */
4253 if (CONVERT_EXPR_P (exp
)
4254 || TREE_CODE (exp
) == NON_LVALUE_EXPR
)
4255 outer_type
= TREE_TYPE (exp
);
4258 if (TREE_CODE (exp
) == BIT_AND_EXPR
)
4260 and_mask
= TREE_OPERAND (exp
, 1);
4261 exp
= TREE_OPERAND (exp
, 0);
4262 STRIP_NOPS (exp
); STRIP_NOPS (and_mask
);
4263 if (TREE_CODE (and_mask
) != INTEGER_CST
)
4267 poly_int64 poly_bitsize
, poly_bitpos
;
4268 inner
= get_inner_reference (exp
, &poly_bitsize
, &poly_bitpos
, &offset
,
4269 pmode
, punsignedp
, preversep
, pvolatilep
);
4270 if ((inner
== exp
&& and_mask
== 0)
4271 || !poly_bitsize
.is_constant (pbitsize
)
4272 || !poly_bitpos
.is_constant (pbitpos
)
4275 || TREE_CODE (inner
) == PLACEHOLDER_EXPR
4276 /* Reject out-of-bound accesses (PR79731). */
4277 || (! AGGREGATE_TYPE_P (TREE_TYPE (inner
))
4278 && compare_tree_int (TYPE_SIZE (TREE_TYPE (inner
)),
4279 *pbitpos
+ *pbitsize
) < 0))
4284 /* If the number of bits in the reference is the same as the bitsize of
4285 the outer type, then the outer type gives the signedness. Otherwise
4286 (in case of a small bitfield) the signedness is unchanged. */
4287 if (outer_type
&& *pbitsize
== TYPE_PRECISION (outer_type
))
4288 *punsignedp
= TYPE_UNSIGNED (outer_type
);
4290 /* Compute the mask to access the bitfield. */
4291 unsigned_type
= lang_hooks
.types
.type_for_size (*pbitsize
, 1);
4292 precision
= TYPE_PRECISION (unsigned_type
);
4294 mask
= build_int_cst_type (unsigned_type
, -1);
4296 mask
= const_binop (LSHIFT_EXPR
, mask
, size_int (precision
- *pbitsize
));
4297 mask
= const_binop (RSHIFT_EXPR
, mask
, size_int (precision
- *pbitsize
));
4299 /* Merge it with the mask we found in the BIT_AND_EXPR, if any. */
4301 mask
= fold_build2_loc (loc
, BIT_AND_EXPR
, unsigned_type
,
4302 fold_convert_loc (loc
, unsigned_type
, and_mask
), mask
);
4305 *pand_mask
= and_mask
;
4309 /* Return nonzero if MASK represents a mask of SIZE ones in the low-order
4310 bit positions and MASK is SIGNED. */
4313 all_ones_mask_p (const_tree mask
, unsigned int size
)
4315 tree type
= TREE_TYPE (mask
);
4316 unsigned int precision
= TYPE_PRECISION (type
);
4318 /* If this function returns true when the type of the mask is
4319 UNSIGNED, then there will be errors. In particular see
4320 gcc.c-torture/execute/990326-1.c. There does not appear to be
4321 any documentation paper trail as to why this is so. But the pre
4322 wide-int worked with that restriction and it has been preserved
4324 if (size
> precision
|| TYPE_SIGN (type
) == UNSIGNED
)
4327 return wi::mask (size
, false, precision
) == wi::to_wide (mask
);
4330 /* Subroutine for fold: determine if VAL is the INTEGER_CONST that
4331 represents the sign bit of EXP's type. If EXP represents a sign
4332 or zero extension, also test VAL against the unextended type.
4333 The return value is the (sub)expression whose sign bit is VAL,
4334 or NULL_TREE otherwise. */
4337 sign_bit_p (tree exp
, const_tree val
)
4342 /* Tree EXP must have an integral type. */
4343 t
= TREE_TYPE (exp
);
4344 if (! INTEGRAL_TYPE_P (t
))
4347 /* Tree VAL must be an integer constant. */
4348 if (TREE_CODE (val
) != INTEGER_CST
4349 || TREE_OVERFLOW (val
))
4352 width
= TYPE_PRECISION (t
);
4353 if (wi::only_sign_bit_p (wi::to_wide (val
), width
))
4356 /* Handle extension from a narrower type. */
4357 if (TREE_CODE (exp
) == NOP_EXPR
4358 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp
, 0))) < width
)
4359 return sign_bit_p (TREE_OPERAND (exp
, 0), val
);
4364 /* Subroutine for fold_truth_andor_1: determine if an operand is simple enough
4365 to be evaluated unconditionally. */
4368 simple_operand_p (const_tree exp
)
4370 /* Strip any conversions that don't change the machine mode. */
4373 return (CONSTANT_CLASS_P (exp
)
4374 || TREE_CODE (exp
) == SSA_NAME
4376 && ! TREE_ADDRESSABLE (exp
)
4377 && ! TREE_THIS_VOLATILE (exp
)
4378 && ! DECL_NONLOCAL (exp
)
4379 /* Don't regard global variables as simple. They may be
4380 allocated in ways unknown to the compiler (shared memory,
4381 #pragma weak, etc). */
4382 && ! TREE_PUBLIC (exp
)
4383 && ! DECL_EXTERNAL (exp
)
4384 /* Weakrefs are not safe to be read, since they can be NULL.
4385 They are !TREE_PUBLIC && !DECL_EXTERNAL but still
4386 have DECL_WEAK flag set. */
4387 && (! VAR_OR_FUNCTION_DECL_P (exp
) || ! DECL_WEAK (exp
))
4388 /* Loading a static variable is unduly expensive, but global
4389 registers aren't expensive. */
4390 && (! TREE_STATIC (exp
) || DECL_REGISTER (exp
))));
4393 /* Subroutine for fold_truth_andor: determine if an operand is simple enough
4394 to be evaluated unconditionally.
4395 I addition to simple_operand_p, we assume that comparisons, conversions,
4396 and logic-not operations are simple, if their operands are simple, too. */
4399 simple_operand_p_2 (tree exp
)
4401 enum tree_code code
;
4403 if (TREE_SIDE_EFFECTS (exp
)
4404 || tree_could_trap_p (exp
))
4407 while (CONVERT_EXPR_P (exp
))
4408 exp
= TREE_OPERAND (exp
, 0);
4410 code
= TREE_CODE (exp
);
4412 if (TREE_CODE_CLASS (code
) == tcc_comparison
)
4413 return (simple_operand_p (TREE_OPERAND (exp
, 0))
4414 && simple_operand_p (TREE_OPERAND (exp
, 1)));
4416 if (code
== TRUTH_NOT_EXPR
)
4417 return simple_operand_p_2 (TREE_OPERAND (exp
, 0));
4419 return simple_operand_p (exp
);
4423 /* The following functions are subroutines to fold_range_test and allow it to
4424 try to change a logical combination of comparisons into a range test.
4427 X == 2 || X == 3 || X == 4 || X == 5
4431 (unsigned) (X - 2) <= 3
4433 We describe each set of comparisons as being either inside or outside
4434 a range, using a variable named like IN_P, and then describe the
4435 range with a lower and upper bound. If one of the bounds is omitted,
4436 it represents either the highest or lowest value of the type.
4438 In the comments below, we represent a range by two numbers in brackets
4439 preceded by a "+" to designate being inside that range, or a "-" to
4440 designate being outside that range, so the condition can be inverted by
4441 flipping the prefix. An omitted bound is represented by a "-". For
4442 example, "- [-, 10]" means being outside the range starting at the lowest
4443 possible value and ending at 10, in other words, being greater than 10.
4444 The range "+ [-, -]" is always true and hence the range "- [-, -]" is
4447 We set up things so that the missing bounds are handled in a consistent
4448 manner so neither a missing bound nor "true" and "false" need to be
4449 handled using a special case. */
4451 /* Return the result of applying CODE to ARG0 and ARG1, but handle the case
4452 of ARG0 and/or ARG1 being omitted, meaning an unlimited range. UPPER0_P
4453 and UPPER1_P are nonzero if the respective argument is an upper bound
4454 and zero for a lower. TYPE, if nonzero, is the type of the result; it
4455 must be specified for a comparison. ARG1 will be converted to ARG0's
4456 type if both are specified. */
4459 range_binop (enum tree_code code
, tree type
, tree arg0
, int upper0_p
,
4460 tree arg1
, int upper1_p
)
4466 /* If neither arg represents infinity, do the normal operation.
4467 Else, if not a comparison, return infinity. Else handle the special
4468 comparison rules. Note that most of the cases below won't occur, but
4469 are handled for consistency. */
4471 if (arg0
!= 0 && arg1
!= 0)
4473 tem
= fold_build2 (code
, type
!= 0 ? type
: TREE_TYPE (arg0
),
4474 arg0
, fold_convert (TREE_TYPE (arg0
), arg1
));
4476 return TREE_CODE (tem
) == INTEGER_CST
? tem
: 0;
4479 if (TREE_CODE_CLASS (code
) != tcc_comparison
)
4482 /* Set SGN[01] to -1 if ARG[01] is a lower bound, 1 for upper, and 0
4483 for neither. In real maths, we cannot assume open ended ranges are
4484 the same. But, this is computer arithmetic, where numbers are finite.
4485 We can therefore make the transformation of any unbounded range with
4486 the value Z, Z being greater than any representable number. This permits
4487 us to treat unbounded ranges as equal. */
4488 sgn0
= arg0
!= 0 ? 0 : (upper0_p
? 1 : -1);
4489 sgn1
= arg1
!= 0 ? 0 : (upper1_p
? 1 : -1);
4493 result
= sgn0
== sgn1
;
4496 result
= sgn0
!= sgn1
;
4499 result
= sgn0
< sgn1
;
4502 result
= sgn0
<= sgn1
;
4505 result
= sgn0
> sgn1
;
4508 result
= sgn0
>= sgn1
;
4514 return constant_boolean_node (result
, type
);
4517 /* Helper routine for make_range. Perform one step for it, return
4518 new expression if the loop should continue or NULL_TREE if it should
4522 make_range_step (location_t loc
, enum tree_code code
, tree arg0
, tree arg1
,
4523 tree exp_type
, tree
*p_low
, tree
*p_high
, int *p_in_p
,
4524 bool *strict_overflow_p
)
4526 tree arg0_type
= TREE_TYPE (arg0
);
4527 tree n_low
, n_high
, low
= *p_low
, high
= *p_high
;
4528 int in_p
= *p_in_p
, n_in_p
;
4532 case TRUTH_NOT_EXPR
:
4533 /* We can only do something if the range is testing for zero. */
4534 if (low
== NULL_TREE
|| high
== NULL_TREE
4535 || ! integer_zerop (low
) || ! integer_zerop (high
))
4540 case EQ_EXPR
: case NE_EXPR
:
4541 case LT_EXPR
: case LE_EXPR
: case GE_EXPR
: case GT_EXPR
:
4542 /* We can only do something if the range is testing for zero
4543 and if the second operand is an integer constant. Note that
4544 saying something is "in" the range we make is done by
4545 complementing IN_P since it will set in the initial case of
4546 being not equal to zero; "out" is leaving it alone. */
4547 if (low
== NULL_TREE
|| high
== NULL_TREE
4548 || ! integer_zerop (low
) || ! integer_zerop (high
)
4549 || TREE_CODE (arg1
) != INTEGER_CST
)
4554 case NE_EXPR
: /* - [c, c] */
4557 case EQ_EXPR
: /* + [c, c] */
4558 in_p
= ! in_p
, low
= high
= arg1
;
4560 case GT_EXPR
: /* - [-, c] */
4561 low
= 0, high
= arg1
;
4563 case GE_EXPR
: /* + [c, -] */
4564 in_p
= ! in_p
, low
= arg1
, high
= 0;
4566 case LT_EXPR
: /* - [c, -] */
4567 low
= arg1
, high
= 0;
4569 case LE_EXPR
: /* + [-, c] */
4570 in_p
= ! in_p
, low
= 0, high
= arg1
;
4576 /* If this is an unsigned comparison, we also know that EXP is
4577 greater than or equal to zero. We base the range tests we make
4578 on that fact, so we record it here so we can parse existing
4579 range tests. We test arg0_type since often the return type
4580 of, e.g. EQ_EXPR, is boolean. */
4581 if (TYPE_UNSIGNED (arg0_type
) && (low
== 0 || high
== 0))
4583 if (! merge_ranges (&n_in_p
, &n_low
, &n_high
,
4585 build_int_cst (arg0_type
, 0),
4589 in_p
= n_in_p
, low
= n_low
, high
= n_high
;
4591 /* If the high bound is missing, but we have a nonzero low
4592 bound, reverse the range so it goes from zero to the low bound
4594 if (high
== 0 && low
&& ! integer_zerop (low
))
4597 high
= range_binop (MINUS_EXPR
, NULL_TREE
, low
, 0,
4598 build_int_cst (TREE_TYPE (low
), 1), 0);
4599 low
= build_int_cst (arg0_type
, 0);
4609 /* If flag_wrapv and ARG0_TYPE is signed, make sure
4610 low and high are non-NULL, then normalize will DTRT. */
4611 if (!TYPE_UNSIGNED (arg0_type
)
4612 && !TYPE_OVERFLOW_UNDEFINED (arg0_type
))
4614 if (low
== NULL_TREE
)
4615 low
= TYPE_MIN_VALUE (arg0_type
);
4616 if (high
== NULL_TREE
)
4617 high
= TYPE_MAX_VALUE (arg0_type
);
4620 /* (-x) IN [a,b] -> x in [-b, -a] */
4621 n_low
= range_binop (MINUS_EXPR
, exp_type
,
4622 build_int_cst (exp_type
, 0),
4624 n_high
= range_binop (MINUS_EXPR
, exp_type
,
4625 build_int_cst (exp_type
, 0),
4627 if (n_high
!= 0 && TREE_OVERFLOW (n_high
))
4633 return build2_loc (loc
, MINUS_EXPR
, exp_type
, negate_expr (arg0
),
4634 build_int_cst (exp_type
, 1));
4638 if (TREE_CODE (arg1
) != INTEGER_CST
)
4641 /* If flag_wrapv and ARG0_TYPE is signed, then we cannot
4642 move a constant to the other side. */
4643 if (!TYPE_UNSIGNED (arg0_type
)
4644 && !TYPE_OVERFLOW_UNDEFINED (arg0_type
))
4647 /* If EXP is signed, any overflow in the computation is undefined,
4648 so we don't worry about it so long as our computations on
4649 the bounds don't overflow. For unsigned, overflow is defined
4650 and this is exactly the right thing. */
4651 n_low
= range_binop (code
== MINUS_EXPR
? PLUS_EXPR
: MINUS_EXPR
,
4652 arg0_type
, low
, 0, arg1
, 0);
4653 n_high
= range_binop (code
== MINUS_EXPR
? PLUS_EXPR
: MINUS_EXPR
,
4654 arg0_type
, high
, 1, arg1
, 0);
4655 if ((n_low
!= 0 && TREE_OVERFLOW (n_low
))
4656 || (n_high
!= 0 && TREE_OVERFLOW (n_high
)))
4659 if (TYPE_OVERFLOW_UNDEFINED (arg0_type
))
4660 *strict_overflow_p
= true;
4663 /* Check for an unsigned range which has wrapped around the maximum
4664 value thus making n_high < n_low, and normalize it. */
4665 if (n_low
&& n_high
&& tree_int_cst_lt (n_high
, n_low
))
4667 low
= range_binop (PLUS_EXPR
, arg0_type
, n_high
, 0,
4668 build_int_cst (TREE_TYPE (n_high
), 1), 0);
4669 high
= range_binop (MINUS_EXPR
, arg0_type
, n_low
, 0,
4670 build_int_cst (TREE_TYPE (n_low
), 1), 0);
4672 /* If the range is of the form +/- [ x+1, x ], we won't
4673 be able to normalize it. But then, it represents the
4674 whole range or the empty set, so make it
4676 if (tree_int_cst_equal (n_low
, low
)
4677 && tree_int_cst_equal (n_high
, high
))
4683 low
= n_low
, high
= n_high
;
4691 case NON_LVALUE_EXPR
:
4692 if (TYPE_PRECISION (arg0_type
) > TYPE_PRECISION (exp_type
))
4695 if (! INTEGRAL_TYPE_P (arg0_type
)
4696 || (low
!= 0 && ! int_fits_type_p (low
, arg0_type
))
4697 || (high
!= 0 && ! int_fits_type_p (high
, arg0_type
)))
4700 n_low
= low
, n_high
= high
;
4703 n_low
= fold_convert_loc (loc
, arg0_type
, n_low
);
4706 n_high
= fold_convert_loc (loc
, arg0_type
, n_high
);
4708 /* If we're converting arg0 from an unsigned type, to exp,
4709 a signed type, we will be doing the comparison as unsigned.
4710 The tests above have already verified that LOW and HIGH
4713 So we have to ensure that we will handle large unsigned
4714 values the same way that the current signed bounds treat
4717 if (!TYPE_UNSIGNED (exp_type
) && TYPE_UNSIGNED (arg0_type
))
4721 /* For fixed-point modes, we need to pass the saturating flag
4722 as the 2nd parameter. */
4723 if (ALL_FIXED_POINT_MODE_P (TYPE_MODE (arg0_type
)))
4725 = lang_hooks
.types
.type_for_mode (TYPE_MODE (arg0_type
),
4726 TYPE_SATURATING (arg0_type
));
4729 = lang_hooks
.types
.type_for_mode (TYPE_MODE (arg0_type
), 1);
4731 /* A range without an upper bound is, naturally, unbounded.
4732 Since convert would have cropped a very large value, use
4733 the max value for the destination type. */
4735 = TYPE_MAX_VALUE (equiv_type
) ? TYPE_MAX_VALUE (equiv_type
)
4736 : TYPE_MAX_VALUE (arg0_type
);
4738 if (TYPE_PRECISION (exp_type
) == TYPE_PRECISION (arg0_type
))
4739 high_positive
= fold_build2_loc (loc
, RSHIFT_EXPR
, arg0_type
,
4740 fold_convert_loc (loc
, arg0_type
,
4742 build_int_cst (arg0_type
, 1));
4744 /* If the low bound is specified, "and" the range with the
4745 range for which the original unsigned value will be
4749 if (! merge_ranges (&n_in_p
, &n_low
, &n_high
, 1, n_low
, n_high
,
4750 1, fold_convert_loc (loc
, arg0_type
,
4755 in_p
= (n_in_p
== in_p
);
4759 /* Otherwise, "or" the range with the range of the input
4760 that will be interpreted as negative. */
4761 if (! merge_ranges (&n_in_p
, &n_low
, &n_high
, 0, n_low
, n_high
,
4762 1, fold_convert_loc (loc
, arg0_type
,
4767 in_p
= (in_p
!= n_in_p
);
4781 /* Given EXP, a logical expression, set the range it is testing into
4782 variables denoted by PIN_P, PLOW, and PHIGH. Return the expression
4783 actually being tested. *PLOW and *PHIGH will be made of the same
4784 type as the returned expression. If EXP is not a comparison, we
4785 will most likely not be returning a useful value and range. Set
4786 *STRICT_OVERFLOW_P to true if the return value is only valid
4787 because signed overflow is undefined; otherwise, do not change
4788 *STRICT_OVERFLOW_P. */
4791 make_range (tree exp
, int *pin_p
, tree
*plow
, tree
*phigh
,
4792 bool *strict_overflow_p
)
4794 enum tree_code code
;
4795 tree arg0
, arg1
= NULL_TREE
;
4796 tree exp_type
, nexp
;
4799 location_t loc
= EXPR_LOCATION (exp
);
4801 /* Start with simply saying "EXP != 0" and then look at the code of EXP
4802 and see if we can refine the range. Some of the cases below may not
4803 happen, but it doesn't seem worth worrying about this. We "continue"
4804 the outer loop when we've changed something; otherwise we "break"
4805 the switch, which will "break" the while. */
4808 low
= high
= build_int_cst (TREE_TYPE (exp
), 0);
4812 code
= TREE_CODE (exp
);
4813 exp_type
= TREE_TYPE (exp
);
4816 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code
)))
4818 if (TREE_OPERAND_LENGTH (exp
) > 0)
4819 arg0
= TREE_OPERAND (exp
, 0);
4820 if (TREE_CODE_CLASS (code
) == tcc_binary
4821 || TREE_CODE_CLASS (code
) == tcc_comparison
4822 || (TREE_CODE_CLASS (code
) == tcc_expression
4823 && TREE_OPERAND_LENGTH (exp
) > 1))
4824 arg1
= TREE_OPERAND (exp
, 1);
4826 if (arg0
== NULL_TREE
)
4829 nexp
= make_range_step (loc
, code
, arg0
, arg1
, exp_type
, &low
,
4830 &high
, &in_p
, strict_overflow_p
);
4831 if (nexp
== NULL_TREE
)
4836 /* If EXP is a constant, we can evaluate whether this is true or false. */
4837 if (TREE_CODE (exp
) == INTEGER_CST
)
4839 in_p
= in_p
== (integer_onep (range_binop (GE_EXPR
, integer_type_node
,
4841 && integer_onep (range_binop (LE_EXPR
, integer_type_node
,
4847 *pin_p
= in_p
, *plow
= low
, *phigh
= high
;
4851 /* Returns TRUE if [LOW, HIGH] range check can be optimized to
4852 a bitwise check i.e. when
4853 LOW == 0xXX...X00...0
4854 HIGH == 0xXX...X11...1
4855 Return corresponding mask in MASK and stem in VALUE. */
4858 maskable_range_p (const_tree low
, const_tree high
, tree type
, tree
*mask
,
4861 if (TREE_CODE (low
) != INTEGER_CST
4862 || TREE_CODE (high
) != INTEGER_CST
)
4865 unsigned prec
= TYPE_PRECISION (type
);
4866 wide_int lo
= wi::to_wide (low
, prec
);
4867 wide_int hi
= wi::to_wide (high
, prec
);
4869 wide_int end_mask
= lo
^ hi
;
4870 if ((end_mask
& (end_mask
+ 1)) != 0
4871 || (lo
& end_mask
) != 0)
4874 wide_int stem_mask
= ~end_mask
;
4875 wide_int stem
= lo
& stem_mask
;
4876 if (stem
!= (hi
& stem_mask
))
4879 *mask
= wide_int_to_tree (type
, stem_mask
);
4880 *value
= wide_int_to_tree (type
, stem
);
4885 /* Helper routine for build_range_check and match.pd. Return the type to
4886 perform the check or NULL if it shouldn't be optimized. */
4889 range_check_type (tree etype
)
4891 /* First make sure that arithmetics in this type is valid, then make sure
4892 that it wraps around. */
4893 if (TREE_CODE (etype
) == ENUMERAL_TYPE
|| TREE_CODE (etype
) == BOOLEAN_TYPE
)
4894 etype
= lang_hooks
.types
.type_for_size (TYPE_PRECISION (etype
),
4895 TYPE_UNSIGNED (etype
));
4897 if (TREE_CODE (etype
) == INTEGER_TYPE
&& !TYPE_OVERFLOW_WRAPS (etype
))
4899 tree utype
, minv
, maxv
;
4901 /* Check if (unsigned) INT_MAX + 1 == (unsigned) INT_MIN
4902 for the type in question, as we rely on this here. */
4903 utype
= unsigned_type_for (etype
);
4904 maxv
= fold_convert (utype
, TYPE_MAX_VALUE (etype
));
4905 maxv
= range_binop (PLUS_EXPR
, NULL_TREE
, maxv
, 1,
4906 build_int_cst (TREE_TYPE (maxv
), 1), 1);
4907 minv
= fold_convert (utype
, TYPE_MIN_VALUE (etype
));
4909 if (integer_zerop (range_binop (NE_EXPR
, integer_type_node
,
4918 /* Given a range, LOW, HIGH, and IN_P, an expression, EXP, and a result
4919 type, TYPE, return an expression to test if EXP is in (or out of, depending
4920 on IN_P) the range. Return 0 if the test couldn't be created. */
4923 build_range_check (location_t loc
, tree type
, tree exp
, int in_p
,
4924 tree low
, tree high
)
4926 tree etype
= TREE_TYPE (exp
), mask
, value
;
4928 /* Disable this optimization for function pointer expressions
4929 on targets that require function pointer canonicalization. */
4930 if (targetm
.have_canonicalize_funcptr_for_compare ()
4931 && TREE_CODE (etype
) == POINTER_TYPE
4932 && TREE_CODE (TREE_TYPE (etype
)) == FUNCTION_TYPE
)
4937 value
= build_range_check (loc
, type
, exp
, 1, low
, high
);
4939 return invert_truthvalue_loc (loc
, value
);
4944 if (low
== 0 && high
== 0)
4945 return omit_one_operand_loc (loc
, type
, build_int_cst (type
, 1), exp
);
4948 return fold_build2_loc (loc
, LE_EXPR
, type
, exp
,
4949 fold_convert_loc (loc
, etype
, high
));
4952 return fold_build2_loc (loc
, GE_EXPR
, type
, exp
,
4953 fold_convert_loc (loc
, etype
, low
));
4955 if (operand_equal_p (low
, high
, 0))
4956 return fold_build2_loc (loc
, EQ_EXPR
, type
, exp
,
4957 fold_convert_loc (loc
, etype
, low
));
4959 if (TREE_CODE (exp
) == BIT_AND_EXPR
4960 && maskable_range_p (low
, high
, etype
, &mask
, &value
))
4961 return fold_build2_loc (loc
, EQ_EXPR
, type
,
4962 fold_build2_loc (loc
, BIT_AND_EXPR
, etype
,
4966 if (integer_zerop (low
))
4968 if (! TYPE_UNSIGNED (etype
))
4970 etype
= unsigned_type_for (etype
);
4971 high
= fold_convert_loc (loc
, etype
, high
);
4972 exp
= fold_convert_loc (loc
, etype
, exp
);
4974 return build_range_check (loc
, type
, exp
, 1, 0, high
);
4977 /* Optimize (c>=1) && (c<=127) into (signed char)c > 0. */
4978 if (integer_onep (low
) && TREE_CODE (high
) == INTEGER_CST
)
4980 int prec
= TYPE_PRECISION (etype
);
4982 if (wi::mask
<widest_int
> (prec
- 1, false) == wi::to_widest (high
))
4984 if (TYPE_UNSIGNED (etype
))
4986 tree signed_etype
= signed_type_for (etype
);
4987 if (TYPE_PRECISION (signed_etype
) != TYPE_PRECISION (etype
))
4989 = build_nonstandard_integer_type (TYPE_PRECISION (etype
), 0);
4991 etype
= signed_etype
;
4992 exp
= fold_convert_loc (loc
, etype
, exp
);
4994 return fold_build2_loc (loc
, GT_EXPR
, type
, exp
,
4995 build_int_cst (etype
, 0));
4999 /* Optimize (c>=low) && (c<=high) into (c-low>=0) && (c-low<=high-low).
5000 This requires wrap-around arithmetics for the type of the expression. */
5001 etype
= range_check_type (etype
);
5002 if (etype
== NULL_TREE
)
5005 if (POINTER_TYPE_P (etype
))
5006 etype
= unsigned_type_for (etype
);
5008 high
= fold_convert_loc (loc
, etype
, high
);
5009 low
= fold_convert_loc (loc
, etype
, low
);
5010 exp
= fold_convert_loc (loc
, etype
, exp
);
5012 value
= const_binop (MINUS_EXPR
, high
, low
);
5014 if (value
!= 0 && !TREE_OVERFLOW (value
))
5015 return build_range_check (loc
, type
,
5016 fold_build2_loc (loc
, MINUS_EXPR
, etype
, exp
, low
),
5017 1, build_int_cst (etype
, 0), value
);
5022 /* Return the predecessor of VAL in its type, handling the infinite case. */
5025 range_predecessor (tree val
)
5027 tree type
= TREE_TYPE (val
);
5029 if (INTEGRAL_TYPE_P (type
)
5030 && operand_equal_p (val
, TYPE_MIN_VALUE (type
), 0))
5033 return range_binop (MINUS_EXPR
, NULL_TREE
, val
, 0,
5034 build_int_cst (TREE_TYPE (val
), 1), 0);
5037 /* Return the successor of VAL in its type, handling the infinite case. */
5040 range_successor (tree val
)
5042 tree type
= TREE_TYPE (val
);
5044 if (INTEGRAL_TYPE_P (type
)
5045 && operand_equal_p (val
, TYPE_MAX_VALUE (type
), 0))
5048 return range_binop (PLUS_EXPR
, NULL_TREE
, val
, 0,
5049 build_int_cst (TREE_TYPE (val
), 1), 0);
5052 /* Given two ranges, see if we can merge them into one. Return 1 if we
5053 can, 0 if we can't. Set the output range into the specified parameters. */
5056 merge_ranges (int *pin_p
, tree
*plow
, tree
*phigh
, int in0_p
, tree low0
,
5057 tree high0
, int in1_p
, tree low1
, tree high1
)
5065 int lowequal
= ((low0
== 0 && low1
== 0)
5066 || integer_onep (range_binop (EQ_EXPR
, integer_type_node
,
5067 low0
, 0, low1
, 0)));
5068 int highequal
= ((high0
== 0 && high1
== 0)
5069 || integer_onep (range_binop (EQ_EXPR
, integer_type_node
,
5070 high0
, 1, high1
, 1)));
5072 /* Make range 0 be the range that starts first, or ends last if they
5073 start at the same value. Swap them if it isn't. */
5074 if (integer_onep (range_binop (GT_EXPR
, integer_type_node
,
5077 && integer_onep (range_binop (GT_EXPR
, integer_type_node
,
5078 high1
, 1, high0
, 1))))
5080 temp
= in0_p
, in0_p
= in1_p
, in1_p
= temp
;
5081 tem
= low0
, low0
= low1
, low1
= tem
;
5082 tem
= high0
, high0
= high1
, high1
= tem
;
5085 /* Now flag two cases, whether the ranges are disjoint or whether the
5086 second range is totally subsumed in the first. Note that the tests
5087 below are simplified by the ones above. */
5088 no_overlap
= integer_onep (range_binop (LT_EXPR
, integer_type_node
,
5089 high0
, 1, low1
, 0));
5090 subset
= integer_onep (range_binop (LE_EXPR
, integer_type_node
,
5091 high1
, 1, high0
, 1));
5093 /* We now have four cases, depending on whether we are including or
5094 excluding the two ranges. */
5097 /* If they don't overlap, the result is false. If the second range
5098 is a subset it is the result. Otherwise, the range is from the start
5099 of the second to the end of the first. */
5101 in_p
= 0, low
= high
= 0;
5103 in_p
= 1, low
= low1
, high
= high1
;
5105 in_p
= 1, low
= low1
, high
= high0
;
5108 else if (in0_p
&& ! in1_p
)
5110 /* If they don't overlap, the result is the first range. If they are
5111 equal, the result is false. If the second range is a subset of the
5112 first, and the ranges begin at the same place, we go from just after
5113 the end of the second range to the end of the first. If the second
5114 range is not a subset of the first, or if it is a subset and both
5115 ranges end at the same place, the range starts at the start of the
5116 first range and ends just before the second range.
5117 Otherwise, we can't describe this as a single range. */
5119 in_p
= 1, low
= low0
, high
= high0
;
5120 else if (lowequal
&& highequal
)
5121 in_p
= 0, low
= high
= 0;
5122 else if (subset
&& lowequal
)
5124 low
= range_successor (high1
);
5129 /* We are in the weird situation where high0 > high1 but
5130 high1 has no successor. Punt. */
5134 else if (! subset
|| highequal
)
5137 high
= range_predecessor (low1
);
5141 /* low0 < low1 but low1 has no predecessor. Punt. */
5149 else if (! in0_p
&& in1_p
)
5151 /* If they don't overlap, the result is the second range. If the second
5152 is a subset of the first, the result is false. Otherwise,
5153 the range starts just after the first range and ends at the
5154 end of the second. */
5156 in_p
= 1, low
= low1
, high
= high1
;
5157 else if (subset
|| highequal
)
5158 in_p
= 0, low
= high
= 0;
5161 low
= range_successor (high0
);
5166 /* high1 > high0 but high0 has no successor. Punt. */
5174 /* The case where we are excluding both ranges. Here the complex case
5175 is if they don't overlap. In that case, the only time we have a
5176 range is if they are adjacent. If the second is a subset of the
5177 first, the result is the first. Otherwise, the range to exclude
5178 starts at the beginning of the first range and ends at the end of the
5182 if (integer_onep (range_binop (EQ_EXPR
, integer_type_node
,
5183 range_successor (high0
),
5185 in_p
= 0, low
= low0
, high
= high1
;
5188 /* Canonicalize - [min, x] into - [-, x]. */
5189 if (low0
&& TREE_CODE (low0
) == INTEGER_CST
)
5190 switch (TREE_CODE (TREE_TYPE (low0
)))
5193 if (maybe_ne (TYPE_PRECISION (TREE_TYPE (low0
)),
5195 (TYPE_MODE (TREE_TYPE (low0
)))))
5199 if (tree_int_cst_equal (low0
,
5200 TYPE_MIN_VALUE (TREE_TYPE (low0
))))
5204 if (TYPE_UNSIGNED (TREE_TYPE (low0
))
5205 && integer_zerop (low0
))
5212 /* Canonicalize - [x, max] into - [x, -]. */
5213 if (high1
&& TREE_CODE (high1
) == INTEGER_CST
)
5214 switch (TREE_CODE (TREE_TYPE (high1
)))
5217 if (maybe_ne (TYPE_PRECISION (TREE_TYPE (high1
)),
5219 (TYPE_MODE (TREE_TYPE (high1
)))))
5223 if (tree_int_cst_equal (high1
,
5224 TYPE_MAX_VALUE (TREE_TYPE (high1
))))
5228 if (TYPE_UNSIGNED (TREE_TYPE (high1
))
5229 && integer_zerop (range_binop (PLUS_EXPR
, NULL_TREE
,
5231 build_int_cst (TREE_TYPE (high1
), 1),
5239 /* The ranges might be also adjacent between the maximum and
5240 minimum values of the given type. For
5241 - [{min,-}, x] and - [y, {max,-}] ranges where x + 1 < y
5242 return + [x + 1, y - 1]. */
5243 if (low0
== 0 && high1
== 0)
5245 low
= range_successor (high0
);
5246 high
= range_predecessor (low1
);
5247 if (low
== 0 || high
== 0)
5257 in_p
= 0, low
= low0
, high
= high0
;
5259 in_p
= 0, low
= low0
, high
= high1
;
5262 *pin_p
= in_p
, *plow
= low
, *phigh
= high
;
5267 /* Subroutine of fold, looking inside expressions of the form
5268 A op B ? A : C, where ARG0, ARG1 and ARG2 are the three operands
5269 of the COND_EXPR. This function is being used also to optimize
5270 A op B ? C : A, by reversing the comparison first.
5272 Return a folded expression whose code is not a COND_EXPR
5273 anymore, or NULL_TREE if no folding opportunity is found. */
5276 fold_cond_expr_with_comparison (location_t loc
, tree type
,
5277 tree arg0
, tree arg1
, tree arg2
)
5279 enum tree_code comp_code
= TREE_CODE (arg0
);
5280 tree arg00
= TREE_OPERAND (arg0
, 0);
5281 tree arg01
= TREE_OPERAND (arg0
, 1);
5282 tree arg1_type
= TREE_TYPE (arg1
);
5288 /* If we have A op 0 ? A : -A, consider applying the following
5291 A == 0? A : -A same as -A
5292 A != 0? A : -A same as A
5293 A >= 0? A : -A same as abs (A)
5294 A > 0? A : -A same as abs (A)
5295 A <= 0? A : -A same as -abs (A)
5296 A < 0? A : -A same as -abs (A)
5298 None of these transformations work for modes with signed
5299 zeros. If A is +/-0, the first two transformations will
5300 change the sign of the result (from +0 to -0, or vice
5301 versa). The last four will fix the sign of the result,
5302 even though the original expressions could be positive or
5303 negative, depending on the sign of A.
5305 Note that all these transformations are correct if A is
5306 NaN, since the two alternatives (A and -A) are also NaNs. */
5307 if (!HONOR_SIGNED_ZEROS (element_mode (type
))
5308 && (FLOAT_TYPE_P (TREE_TYPE (arg01
))
5309 ? real_zerop (arg01
)
5310 : integer_zerop (arg01
))
5311 && ((TREE_CODE (arg2
) == NEGATE_EXPR
5312 && operand_equal_p (TREE_OPERAND (arg2
, 0), arg1
, 0))
5313 /* In the case that A is of the form X-Y, '-A' (arg2) may
5314 have already been folded to Y-X, check for that. */
5315 || (TREE_CODE (arg1
) == MINUS_EXPR
5316 && TREE_CODE (arg2
) == MINUS_EXPR
5317 && operand_equal_p (TREE_OPERAND (arg1
, 0),
5318 TREE_OPERAND (arg2
, 1), 0)
5319 && operand_equal_p (TREE_OPERAND (arg1
, 1),
5320 TREE_OPERAND (arg2
, 0), 0))))
5325 tem
= fold_convert_loc (loc
, arg1_type
, arg1
);
5326 return fold_convert_loc (loc
, type
, negate_expr (tem
));
5329 return fold_convert_loc (loc
, type
, arg1
);
5332 if (flag_trapping_math
)
5337 if (TYPE_UNSIGNED (TREE_TYPE (arg1
)))
5339 tem
= fold_build1_loc (loc
, ABS_EXPR
, TREE_TYPE (arg1
), arg1
);
5340 return fold_convert_loc (loc
, type
, tem
);
5343 if (flag_trapping_math
)
5348 if (TYPE_UNSIGNED (TREE_TYPE (arg1
)))
5350 tem
= fold_build1_loc (loc
, ABS_EXPR
, TREE_TYPE (arg1
), arg1
);
5351 return negate_expr (fold_convert_loc (loc
, type
, tem
));
5353 gcc_assert (TREE_CODE_CLASS (comp_code
) == tcc_comparison
);
5357 /* A != 0 ? A : 0 is simply A, unless A is -0. Likewise
5358 A == 0 ? A : 0 is always 0 unless A is -0. Note that
5359 both transformations are correct when A is NaN: A != 0
5360 is then true, and A == 0 is false. */
5362 if (!HONOR_SIGNED_ZEROS (element_mode (type
))
5363 && integer_zerop (arg01
) && integer_zerop (arg2
))
5365 if (comp_code
== NE_EXPR
)
5366 return fold_convert_loc (loc
, type
, arg1
);
5367 else if (comp_code
== EQ_EXPR
)
5368 return build_zero_cst (type
);
5371 /* Try some transformations of A op B ? A : B.
5373 A == B? A : B same as B
5374 A != B? A : B same as A
5375 A >= B? A : B same as max (A, B)
5376 A > B? A : B same as max (B, A)
5377 A <= B? A : B same as min (A, B)
5378 A < B? A : B same as min (B, A)
5380 As above, these transformations don't work in the presence
5381 of signed zeros. For example, if A and B are zeros of
5382 opposite sign, the first two transformations will change
5383 the sign of the result. In the last four, the original
5384 expressions give different results for (A=+0, B=-0) and
5385 (A=-0, B=+0), but the transformed expressions do not.
5387 The first two transformations are correct if either A or B
5388 is a NaN. In the first transformation, the condition will
5389 be false, and B will indeed be chosen. In the case of the
5390 second transformation, the condition A != B will be true,
5391 and A will be chosen.
5393 The conversions to max() and min() are not correct if B is
5394 a number and A is not. The conditions in the original
5395 expressions will be false, so all four give B. The min()
5396 and max() versions would give a NaN instead. */
5397 if (!HONOR_SIGNED_ZEROS (element_mode (type
))
5398 && operand_equal_for_comparison_p (arg01
, arg2
)
5399 /* Avoid these transformations if the COND_EXPR may be used
5400 as an lvalue in the C++ front-end. PR c++/19199. */
5402 || VECTOR_TYPE_P (type
)
5403 || (! lang_GNU_CXX ()
5404 && strcmp (lang_hooks
.name
, "GNU Objective-C++") != 0)
5405 || ! maybe_lvalue_p (arg1
)
5406 || ! maybe_lvalue_p (arg2
)))
5408 tree comp_op0
= arg00
;
5409 tree comp_op1
= arg01
;
5410 tree comp_type
= TREE_TYPE (comp_op0
);
5415 return fold_convert_loc (loc
, type
, arg2
);
5417 return fold_convert_loc (loc
, type
, arg1
);
5422 /* In C++ a ?: expression can be an lvalue, so put the
5423 operand which will be used if they are equal first
5424 so that we can convert this back to the
5425 corresponding COND_EXPR. */
5426 if (!HONOR_NANS (arg1
))
5428 comp_op0
= fold_convert_loc (loc
, comp_type
, comp_op0
);
5429 comp_op1
= fold_convert_loc (loc
, comp_type
, comp_op1
);
5430 tem
= (comp_code
== LE_EXPR
|| comp_code
== UNLE_EXPR
)
5431 ? fold_build2_loc (loc
, MIN_EXPR
, comp_type
, comp_op0
, comp_op1
)
5432 : fold_build2_loc (loc
, MIN_EXPR
, comp_type
,
5433 comp_op1
, comp_op0
);
5434 return fold_convert_loc (loc
, type
, tem
);
5441 if (!HONOR_NANS (arg1
))
5443 comp_op0
= fold_convert_loc (loc
, comp_type
, comp_op0
);
5444 comp_op1
= fold_convert_loc (loc
, comp_type
, comp_op1
);
5445 tem
= (comp_code
== GE_EXPR
|| comp_code
== UNGE_EXPR
)
5446 ? fold_build2_loc (loc
, MAX_EXPR
, comp_type
, comp_op0
, comp_op1
)
5447 : fold_build2_loc (loc
, MAX_EXPR
, comp_type
,
5448 comp_op1
, comp_op0
);
5449 return fold_convert_loc (loc
, type
, tem
);
5453 if (!HONOR_NANS (arg1
))
5454 return fold_convert_loc (loc
, type
, arg2
);
5457 if (!HONOR_NANS (arg1
))
5458 return fold_convert_loc (loc
, type
, arg1
);
5461 gcc_assert (TREE_CODE_CLASS (comp_code
) == tcc_comparison
);
5471 #ifndef LOGICAL_OP_NON_SHORT_CIRCUIT
5472 #define LOGICAL_OP_NON_SHORT_CIRCUIT \
5473 (BRANCH_COST (optimize_function_for_speed_p (cfun), \
5477 /* EXP is some logical combination of boolean tests. See if we can
5478 merge it into some range test. Return the new tree if so. */
5481 fold_range_test (location_t loc
, enum tree_code code
, tree type
,
5484 int or_op
= (code
== TRUTH_ORIF_EXPR
5485 || code
== TRUTH_OR_EXPR
);
5486 int in0_p
, in1_p
, in_p
;
5487 tree low0
, low1
, low
, high0
, high1
, high
;
5488 bool strict_overflow_p
= false;
5490 const char * const warnmsg
= G_("assuming signed overflow does not occur "
5491 "when simplifying range test");
5493 if (!INTEGRAL_TYPE_P (type
))
5496 lhs
= make_range (op0
, &in0_p
, &low0
, &high0
, &strict_overflow_p
);
5497 rhs
= make_range (op1
, &in1_p
, &low1
, &high1
, &strict_overflow_p
);
5499 /* If this is an OR operation, invert both sides; we will invert
5500 again at the end. */
5502 in0_p
= ! in0_p
, in1_p
= ! in1_p
;
5504 /* If both expressions are the same, if we can merge the ranges, and we
5505 can build the range test, return it or it inverted. If one of the
5506 ranges is always true or always false, consider it to be the same
5507 expression as the other. */
5508 if ((lhs
== 0 || rhs
== 0 || operand_equal_p (lhs
, rhs
, 0))
5509 && merge_ranges (&in_p
, &low
, &high
, in0_p
, low0
, high0
,
5511 && (tem
= (build_range_check (loc
, type
,
5513 : rhs
!= 0 ? rhs
: integer_zero_node
,
5514 in_p
, low
, high
))) != 0)
5516 if (strict_overflow_p
)
5517 fold_overflow_warning (warnmsg
, WARN_STRICT_OVERFLOW_COMPARISON
);
5518 return or_op
? invert_truthvalue_loc (loc
, tem
) : tem
;
5521 /* On machines where the branch cost is expensive, if this is a
5522 short-circuited branch and the underlying object on both sides
5523 is the same, make a non-short-circuit operation. */
5524 else if (LOGICAL_OP_NON_SHORT_CIRCUIT
5525 && !flag_sanitize_coverage
5526 && lhs
!= 0 && rhs
!= 0
5527 && (code
== TRUTH_ANDIF_EXPR
5528 || code
== TRUTH_ORIF_EXPR
)
5529 && operand_equal_p (lhs
, rhs
, 0))
5531 /* If simple enough, just rewrite. Otherwise, make a SAVE_EXPR
5532 unless we are at top level or LHS contains a PLACEHOLDER_EXPR, in
5533 which cases we can't do this. */
5534 if (simple_operand_p (lhs
))
5535 return build2_loc (loc
, code
== TRUTH_ANDIF_EXPR
5536 ? TRUTH_AND_EXPR
: TRUTH_OR_EXPR
,
5539 else if (!lang_hooks
.decls
.global_bindings_p ()
5540 && !CONTAINS_PLACEHOLDER_P (lhs
))
5542 tree common
= save_expr (lhs
);
5544 if ((lhs
= build_range_check (loc
, type
, common
,
5545 or_op
? ! in0_p
: in0_p
,
5547 && (rhs
= build_range_check (loc
, type
, common
,
5548 or_op
? ! in1_p
: in1_p
,
5551 if (strict_overflow_p
)
5552 fold_overflow_warning (warnmsg
,
5553 WARN_STRICT_OVERFLOW_COMPARISON
);
5554 return build2_loc (loc
, code
== TRUTH_ANDIF_EXPR
5555 ? TRUTH_AND_EXPR
: TRUTH_OR_EXPR
,
5564 /* Subroutine for fold_truth_andor_1: C is an INTEGER_CST interpreted as a P
5565 bit value. Arrange things so the extra bits will be set to zero if and
5566 only if C is signed-extended to its full width. If MASK is nonzero,
5567 it is an INTEGER_CST that should be AND'ed with the extra bits. */
5570 unextend (tree c
, int p
, int unsignedp
, tree mask
)
5572 tree type
= TREE_TYPE (c
);
5573 int modesize
= GET_MODE_BITSIZE (SCALAR_INT_TYPE_MODE (type
));
5576 if (p
== modesize
|| unsignedp
)
5579 /* We work by getting just the sign bit into the low-order bit, then
5580 into the high-order bit, then sign-extend. We then XOR that value
5582 temp
= build_int_cst (TREE_TYPE (c
),
5583 wi::extract_uhwi (wi::to_wide (c
), p
- 1, 1));
5585 /* We must use a signed type in order to get an arithmetic right shift.
5586 However, we must also avoid introducing accidental overflows, so that
5587 a subsequent call to integer_zerop will work. Hence we must
5588 do the type conversion here. At this point, the constant is either
5589 zero or one, and the conversion to a signed type can never overflow.
5590 We could get an overflow if this conversion is done anywhere else. */
5591 if (TYPE_UNSIGNED (type
))
5592 temp
= fold_convert (signed_type_for (type
), temp
);
5594 temp
= const_binop (LSHIFT_EXPR
, temp
, size_int (modesize
- 1));
5595 temp
= const_binop (RSHIFT_EXPR
, temp
, size_int (modesize
- p
- 1));
5597 temp
= const_binop (BIT_AND_EXPR
, temp
,
5598 fold_convert (TREE_TYPE (c
), mask
));
5599 /* If necessary, convert the type back to match the type of C. */
5600 if (TYPE_UNSIGNED (type
))
5601 temp
= fold_convert (type
, temp
);
5603 return fold_convert (type
, const_binop (BIT_XOR_EXPR
, c
, temp
));
5606 /* For an expression that has the form
5610 we can drop one of the inner expressions and simplify to
5614 LOC is the location of the resulting expression. OP is the inner
5615 logical operation; the left-hand side in the examples above, while CMPOP
5616 is the right-hand side. RHS_ONLY is used to prevent us from accidentally
5617 removing a condition that guards another, as in
5618 (A != NULL && A->...) || A == NULL
5619 which we must not transform. If RHS_ONLY is true, only eliminate the
5620 right-most operand of the inner logical operation. */
5623 merge_truthop_with_opposite_arm (location_t loc
, tree op
, tree cmpop
,
5626 tree type
= TREE_TYPE (cmpop
);
5627 enum tree_code code
= TREE_CODE (cmpop
);
5628 enum tree_code truthop_code
= TREE_CODE (op
);
5629 tree lhs
= TREE_OPERAND (op
, 0);
5630 tree rhs
= TREE_OPERAND (op
, 1);
5631 tree orig_lhs
= lhs
, orig_rhs
= rhs
;
5632 enum tree_code rhs_code
= TREE_CODE (rhs
);
5633 enum tree_code lhs_code
= TREE_CODE (lhs
);
5634 enum tree_code inv_code
;
5636 if (TREE_SIDE_EFFECTS (op
) || TREE_SIDE_EFFECTS (cmpop
))
5639 if (TREE_CODE_CLASS (code
) != tcc_comparison
)
5642 if (rhs_code
== truthop_code
)
5644 tree newrhs
= merge_truthop_with_opposite_arm (loc
, rhs
, cmpop
, rhs_only
);
5645 if (newrhs
!= NULL_TREE
)
5648 rhs_code
= TREE_CODE (rhs
);
5651 if (lhs_code
== truthop_code
&& !rhs_only
)
5653 tree newlhs
= merge_truthop_with_opposite_arm (loc
, lhs
, cmpop
, false);
5654 if (newlhs
!= NULL_TREE
)
5657 lhs_code
= TREE_CODE (lhs
);
5661 inv_code
= invert_tree_comparison (code
, HONOR_NANS (type
));
5662 if (inv_code
== rhs_code
5663 && operand_equal_p (TREE_OPERAND (rhs
, 0), TREE_OPERAND (cmpop
, 0), 0)
5664 && operand_equal_p (TREE_OPERAND (rhs
, 1), TREE_OPERAND (cmpop
, 1), 0))
5666 if (!rhs_only
&& inv_code
== lhs_code
5667 && operand_equal_p (TREE_OPERAND (lhs
, 0), TREE_OPERAND (cmpop
, 0), 0)
5668 && operand_equal_p (TREE_OPERAND (lhs
, 1), TREE_OPERAND (cmpop
, 1), 0))
5670 if (rhs
!= orig_rhs
|| lhs
!= orig_lhs
)
5671 return fold_build2_loc (loc
, truthop_code
, TREE_TYPE (cmpop
),
5676 /* Find ways of folding logical expressions of LHS and RHS:
5677 Try to merge two comparisons to the same innermost item.
5678 Look for range tests like "ch >= '0' && ch <= '9'".
5679 Look for combinations of simple terms on machines with expensive branches
5680 and evaluate the RHS unconditionally.
5682 For example, if we have p->a == 2 && p->b == 4 and we can make an
5683 object large enough to span both A and B, we can do this with a comparison
5684 against the object ANDed with the a mask.
5686 If we have p->a == q->a && p->b == q->b, we may be able to use bit masking
5687 operations to do this with one comparison.
5689 We check for both normal comparisons and the BIT_AND_EXPRs made this by
5690 function and the one above.
5692 CODE is the logical operation being done. It can be TRUTH_ANDIF_EXPR,
5693 TRUTH_AND_EXPR, TRUTH_ORIF_EXPR, or TRUTH_OR_EXPR.
5695 TRUTH_TYPE is the type of the logical operand and LHS and RHS are its
5698 We return the simplified tree or 0 if no optimization is possible. */
5701 fold_truth_andor_1 (location_t loc
, enum tree_code code
, tree truth_type
,
5704 /* If this is the "or" of two comparisons, we can do something if
5705 the comparisons are NE_EXPR. If this is the "and", we can do something
5706 if the comparisons are EQ_EXPR. I.e.,
5707 (a->b == 2 && a->c == 4) can become (a->new == NEW).
5709 WANTED_CODE is this operation code. For single bit fields, we can
5710 convert EQ_EXPR to NE_EXPR so we need not reject the "wrong"
5711 comparison for one-bit fields. */
5713 enum tree_code wanted_code
;
5714 enum tree_code lcode
, rcode
;
5715 tree ll_arg
, lr_arg
, rl_arg
, rr_arg
;
5716 tree ll_inner
, lr_inner
, rl_inner
, rr_inner
;
5717 HOST_WIDE_INT ll_bitsize
, ll_bitpos
, lr_bitsize
, lr_bitpos
;
5718 HOST_WIDE_INT rl_bitsize
, rl_bitpos
, rr_bitsize
, rr_bitpos
;
5719 HOST_WIDE_INT xll_bitpos
, xlr_bitpos
, xrl_bitpos
, xrr_bitpos
;
5720 HOST_WIDE_INT lnbitsize
, lnbitpos
, rnbitsize
, rnbitpos
;
5721 int ll_unsignedp
, lr_unsignedp
, rl_unsignedp
, rr_unsignedp
;
5722 int ll_reversep
, lr_reversep
, rl_reversep
, rr_reversep
;
5723 machine_mode ll_mode
, lr_mode
, rl_mode
, rr_mode
;
5724 scalar_int_mode lnmode
, rnmode
;
5725 tree ll_mask
, lr_mask
, rl_mask
, rr_mask
;
5726 tree ll_and_mask
, lr_and_mask
, rl_and_mask
, rr_and_mask
;
5727 tree l_const
, r_const
;
5728 tree lntype
, rntype
, result
;
5729 HOST_WIDE_INT first_bit
, end_bit
;
5732 /* Start by getting the comparison codes. Fail if anything is volatile.
5733 If one operand is a BIT_AND_EXPR with the constant one, treat it as if
5734 it were surrounded with a NE_EXPR. */
5736 if (TREE_SIDE_EFFECTS (lhs
) || TREE_SIDE_EFFECTS (rhs
))
5739 lcode
= TREE_CODE (lhs
);
5740 rcode
= TREE_CODE (rhs
);
5742 if (lcode
== BIT_AND_EXPR
&& integer_onep (TREE_OPERAND (lhs
, 1)))
5744 lhs
= build2 (NE_EXPR
, truth_type
, lhs
,
5745 build_int_cst (TREE_TYPE (lhs
), 0));
5749 if (rcode
== BIT_AND_EXPR
&& integer_onep (TREE_OPERAND (rhs
, 1)))
5751 rhs
= build2 (NE_EXPR
, truth_type
, rhs
,
5752 build_int_cst (TREE_TYPE (rhs
), 0));
5756 if (TREE_CODE_CLASS (lcode
) != tcc_comparison
5757 || TREE_CODE_CLASS (rcode
) != tcc_comparison
)
5760 ll_arg
= TREE_OPERAND (lhs
, 0);
5761 lr_arg
= TREE_OPERAND (lhs
, 1);
5762 rl_arg
= TREE_OPERAND (rhs
, 0);
5763 rr_arg
= TREE_OPERAND (rhs
, 1);
5765 /* Simplify (x<y) && (x==y) into (x<=y) and related optimizations. */
5766 if (simple_operand_p (ll_arg
)
5767 && simple_operand_p (lr_arg
))
5769 if (operand_equal_p (ll_arg
, rl_arg
, 0)
5770 && operand_equal_p (lr_arg
, rr_arg
, 0))
5772 result
= combine_comparisons (loc
, code
, lcode
, rcode
,
5773 truth_type
, ll_arg
, lr_arg
);
5777 else if (operand_equal_p (ll_arg
, rr_arg
, 0)
5778 && operand_equal_p (lr_arg
, rl_arg
, 0))
5780 result
= combine_comparisons (loc
, code
, lcode
,
5781 swap_tree_comparison (rcode
),
5782 truth_type
, ll_arg
, lr_arg
);
5788 code
= ((code
== TRUTH_AND_EXPR
|| code
== TRUTH_ANDIF_EXPR
)
5789 ? TRUTH_AND_EXPR
: TRUTH_OR_EXPR
);
5791 /* If the RHS can be evaluated unconditionally and its operands are
5792 simple, it wins to evaluate the RHS unconditionally on machines
5793 with expensive branches. In this case, this isn't a comparison
5794 that can be merged. */
5796 if (BRANCH_COST (optimize_function_for_speed_p (cfun
),
5798 && ! FLOAT_TYPE_P (TREE_TYPE (rl_arg
))
5799 && simple_operand_p (rl_arg
)
5800 && simple_operand_p (rr_arg
))
5802 /* Convert (a != 0) || (b != 0) into (a | b) != 0. */
5803 if (code
== TRUTH_OR_EXPR
5804 && lcode
== NE_EXPR
&& integer_zerop (lr_arg
)
5805 && rcode
== NE_EXPR
&& integer_zerop (rr_arg
)
5806 && TREE_TYPE (ll_arg
) == TREE_TYPE (rl_arg
)
5807 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg
)))
5808 return build2_loc (loc
, NE_EXPR
, truth_type
,
5809 build2 (BIT_IOR_EXPR
, TREE_TYPE (ll_arg
),
5811 build_int_cst (TREE_TYPE (ll_arg
), 0));
5813 /* Convert (a == 0) && (b == 0) into (a | b) == 0. */
5814 if (code
== TRUTH_AND_EXPR
5815 && lcode
== EQ_EXPR
&& integer_zerop (lr_arg
)
5816 && rcode
== EQ_EXPR
&& integer_zerop (rr_arg
)
5817 && TREE_TYPE (ll_arg
) == TREE_TYPE (rl_arg
)
5818 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg
)))
5819 return build2_loc (loc
, EQ_EXPR
, truth_type
,
5820 build2 (BIT_IOR_EXPR
, TREE_TYPE (ll_arg
),
5822 build_int_cst (TREE_TYPE (ll_arg
), 0));
5825 /* See if the comparisons can be merged. Then get all the parameters for
5828 if ((lcode
!= EQ_EXPR
&& lcode
!= NE_EXPR
)
5829 || (rcode
!= EQ_EXPR
&& rcode
!= NE_EXPR
))
5832 ll_reversep
= lr_reversep
= rl_reversep
= rr_reversep
= 0;
5834 ll_inner
= decode_field_reference (loc
, &ll_arg
,
5835 &ll_bitsize
, &ll_bitpos
, &ll_mode
,
5836 &ll_unsignedp
, &ll_reversep
, &volatilep
,
5837 &ll_mask
, &ll_and_mask
);
5838 lr_inner
= decode_field_reference (loc
, &lr_arg
,
5839 &lr_bitsize
, &lr_bitpos
, &lr_mode
,
5840 &lr_unsignedp
, &lr_reversep
, &volatilep
,
5841 &lr_mask
, &lr_and_mask
);
5842 rl_inner
= decode_field_reference (loc
, &rl_arg
,
5843 &rl_bitsize
, &rl_bitpos
, &rl_mode
,
5844 &rl_unsignedp
, &rl_reversep
, &volatilep
,
5845 &rl_mask
, &rl_and_mask
);
5846 rr_inner
= decode_field_reference (loc
, &rr_arg
,
5847 &rr_bitsize
, &rr_bitpos
, &rr_mode
,
5848 &rr_unsignedp
, &rr_reversep
, &volatilep
,
5849 &rr_mask
, &rr_and_mask
);
5851 /* It must be true that the inner operation on the lhs of each
5852 comparison must be the same if we are to be able to do anything.
5853 Then see if we have constants. If not, the same must be true for
5856 || ll_reversep
!= rl_reversep
5857 || ll_inner
== 0 || rl_inner
== 0
5858 || ! operand_equal_p (ll_inner
, rl_inner
, 0))
5861 if (TREE_CODE (lr_arg
) == INTEGER_CST
5862 && TREE_CODE (rr_arg
) == INTEGER_CST
)
5864 l_const
= lr_arg
, r_const
= rr_arg
;
5865 lr_reversep
= ll_reversep
;
5867 else if (lr_reversep
!= rr_reversep
5868 || lr_inner
== 0 || rr_inner
== 0
5869 || ! operand_equal_p (lr_inner
, rr_inner
, 0))
5872 l_const
= r_const
= 0;
5874 /* If either comparison code is not correct for our logical operation,
5875 fail. However, we can convert a one-bit comparison against zero into
5876 the opposite comparison against that bit being set in the field. */
5878 wanted_code
= (code
== TRUTH_AND_EXPR
? EQ_EXPR
: NE_EXPR
);
5879 if (lcode
!= wanted_code
)
5881 if (l_const
&& integer_zerop (l_const
) && integer_pow2p (ll_mask
))
5883 /* Make the left operand unsigned, since we are only interested
5884 in the value of one bit. Otherwise we are doing the wrong
5893 /* This is analogous to the code for l_const above. */
5894 if (rcode
!= wanted_code
)
5896 if (r_const
&& integer_zerop (r_const
) && integer_pow2p (rl_mask
))
5905 /* See if we can find a mode that contains both fields being compared on
5906 the left. If we can't, fail. Otherwise, update all constants and masks
5907 to be relative to a field of that size. */
5908 first_bit
= MIN (ll_bitpos
, rl_bitpos
);
5909 end_bit
= MAX (ll_bitpos
+ ll_bitsize
, rl_bitpos
+ rl_bitsize
);
5910 if (!get_best_mode (end_bit
- first_bit
, first_bit
, 0, 0,
5911 TYPE_ALIGN (TREE_TYPE (ll_inner
)), BITS_PER_WORD
,
5912 volatilep
, &lnmode
))
5915 lnbitsize
= GET_MODE_BITSIZE (lnmode
);
5916 lnbitpos
= first_bit
& ~ (lnbitsize
- 1);
5917 lntype
= lang_hooks
.types
.type_for_size (lnbitsize
, 1);
5918 xll_bitpos
= ll_bitpos
- lnbitpos
, xrl_bitpos
= rl_bitpos
- lnbitpos
;
5920 if (ll_reversep
? !BYTES_BIG_ENDIAN
: BYTES_BIG_ENDIAN
)
5922 xll_bitpos
= lnbitsize
- xll_bitpos
- ll_bitsize
;
5923 xrl_bitpos
= lnbitsize
- xrl_bitpos
- rl_bitsize
;
5926 ll_mask
= const_binop (LSHIFT_EXPR
, fold_convert_loc (loc
, lntype
, ll_mask
),
5927 size_int (xll_bitpos
));
5928 rl_mask
= const_binop (LSHIFT_EXPR
, fold_convert_loc (loc
, lntype
, rl_mask
),
5929 size_int (xrl_bitpos
));
5933 l_const
= fold_convert_loc (loc
, lntype
, l_const
);
5934 l_const
= unextend (l_const
, ll_bitsize
, ll_unsignedp
, ll_and_mask
);
5935 l_const
= const_binop (LSHIFT_EXPR
, l_const
, size_int (xll_bitpos
));
5936 if (! integer_zerop (const_binop (BIT_AND_EXPR
, l_const
,
5937 fold_build1_loc (loc
, BIT_NOT_EXPR
,
5940 warning (0, "comparison is always %d", wanted_code
== NE_EXPR
);
5942 return constant_boolean_node (wanted_code
== NE_EXPR
, truth_type
);
5947 r_const
= fold_convert_loc (loc
, lntype
, r_const
);
5948 r_const
= unextend (r_const
, rl_bitsize
, rl_unsignedp
, rl_and_mask
);
5949 r_const
= const_binop (LSHIFT_EXPR
, r_const
, size_int (xrl_bitpos
));
5950 if (! integer_zerop (const_binop (BIT_AND_EXPR
, r_const
,
5951 fold_build1_loc (loc
, BIT_NOT_EXPR
,
5954 warning (0, "comparison is always %d", wanted_code
== NE_EXPR
);
5956 return constant_boolean_node (wanted_code
== NE_EXPR
, truth_type
);
5960 /* If the right sides are not constant, do the same for it. Also,
5961 disallow this optimization if a size or signedness mismatch occurs
5962 between the left and right sides. */
5965 if (ll_bitsize
!= lr_bitsize
|| rl_bitsize
!= rr_bitsize
5966 || ll_unsignedp
!= lr_unsignedp
|| rl_unsignedp
!= rr_unsignedp
5967 /* Make sure the two fields on the right
5968 correspond to the left without being swapped. */
5969 || ll_bitpos
- rl_bitpos
!= lr_bitpos
- rr_bitpos
)
5972 first_bit
= MIN (lr_bitpos
, rr_bitpos
);
5973 end_bit
= MAX (lr_bitpos
+ lr_bitsize
, rr_bitpos
+ rr_bitsize
);
5974 if (!get_best_mode (end_bit
- first_bit
, first_bit
, 0, 0,
5975 TYPE_ALIGN (TREE_TYPE (lr_inner
)), BITS_PER_WORD
,
5976 volatilep
, &rnmode
))
5979 rnbitsize
= GET_MODE_BITSIZE (rnmode
);
5980 rnbitpos
= first_bit
& ~ (rnbitsize
- 1);
5981 rntype
= lang_hooks
.types
.type_for_size (rnbitsize
, 1);
5982 xlr_bitpos
= lr_bitpos
- rnbitpos
, xrr_bitpos
= rr_bitpos
- rnbitpos
;
5984 if (lr_reversep
? !BYTES_BIG_ENDIAN
: BYTES_BIG_ENDIAN
)
5986 xlr_bitpos
= rnbitsize
- xlr_bitpos
- lr_bitsize
;
5987 xrr_bitpos
= rnbitsize
- xrr_bitpos
- rr_bitsize
;
5990 lr_mask
= const_binop (LSHIFT_EXPR
, fold_convert_loc (loc
,
5992 size_int (xlr_bitpos
));
5993 rr_mask
= const_binop (LSHIFT_EXPR
, fold_convert_loc (loc
,
5995 size_int (xrr_bitpos
));
5997 /* Make a mask that corresponds to both fields being compared.
5998 Do this for both items being compared. If the operands are the
5999 same size and the bits being compared are in the same position
6000 then we can do this by masking both and comparing the masked
6002 ll_mask
= const_binop (BIT_IOR_EXPR
, ll_mask
, rl_mask
);
6003 lr_mask
= const_binop (BIT_IOR_EXPR
, lr_mask
, rr_mask
);
6004 if (lnbitsize
== rnbitsize
6005 && xll_bitpos
== xlr_bitpos
6009 lhs
= make_bit_field_ref (loc
, ll_inner
, ll_arg
,
6010 lntype
, lnbitsize
, lnbitpos
,
6011 ll_unsignedp
|| rl_unsignedp
, ll_reversep
);
6012 if (! all_ones_mask_p (ll_mask
, lnbitsize
))
6013 lhs
= build2 (BIT_AND_EXPR
, lntype
, lhs
, ll_mask
);
6015 rhs
= make_bit_field_ref (loc
, lr_inner
, lr_arg
,
6016 rntype
, rnbitsize
, rnbitpos
,
6017 lr_unsignedp
|| rr_unsignedp
, lr_reversep
);
6018 if (! all_ones_mask_p (lr_mask
, rnbitsize
))
6019 rhs
= build2 (BIT_AND_EXPR
, rntype
, rhs
, lr_mask
);
6021 return build2_loc (loc
, wanted_code
, truth_type
, lhs
, rhs
);
6024 /* There is still another way we can do something: If both pairs of
6025 fields being compared are adjacent, we may be able to make a wider
6026 field containing them both.
6028 Note that we still must mask the lhs/rhs expressions. Furthermore,
6029 the mask must be shifted to account for the shift done by
6030 make_bit_field_ref. */
6031 if (((ll_bitsize
+ ll_bitpos
== rl_bitpos
6032 && lr_bitsize
+ lr_bitpos
== rr_bitpos
)
6033 || (ll_bitpos
== rl_bitpos
+ rl_bitsize
6034 && lr_bitpos
== rr_bitpos
+ rr_bitsize
))
6042 lhs
= make_bit_field_ref (loc
, ll_inner
, ll_arg
, lntype
,
6043 ll_bitsize
+ rl_bitsize
,
6044 MIN (ll_bitpos
, rl_bitpos
),
6045 ll_unsignedp
, ll_reversep
);
6046 rhs
= make_bit_field_ref (loc
, lr_inner
, lr_arg
, rntype
,
6047 lr_bitsize
+ rr_bitsize
,
6048 MIN (lr_bitpos
, rr_bitpos
),
6049 lr_unsignedp
, lr_reversep
);
6051 ll_mask
= const_binop (RSHIFT_EXPR
, ll_mask
,
6052 size_int (MIN (xll_bitpos
, xrl_bitpos
)));
6053 lr_mask
= const_binop (RSHIFT_EXPR
, lr_mask
,
6054 size_int (MIN (xlr_bitpos
, xrr_bitpos
)));
6056 /* Convert to the smaller type before masking out unwanted bits. */
6058 if (lntype
!= rntype
)
6060 if (lnbitsize
> rnbitsize
)
6062 lhs
= fold_convert_loc (loc
, rntype
, lhs
);
6063 ll_mask
= fold_convert_loc (loc
, rntype
, ll_mask
);
6066 else if (lnbitsize
< rnbitsize
)
6068 rhs
= fold_convert_loc (loc
, lntype
, rhs
);
6069 lr_mask
= fold_convert_loc (loc
, lntype
, lr_mask
);
6074 if (! all_ones_mask_p (ll_mask
, ll_bitsize
+ rl_bitsize
))
6075 lhs
= build2 (BIT_AND_EXPR
, type
, lhs
, ll_mask
);
6077 if (! all_ones_mask_p (lr_mask
, lr_bitsize
+ rr_bitsize
))
6078 rhs
= build2 (BIT_AND_EXPR
, type
, rhs
, lr_mask
);
6080 return build2_loc (loc
, wanted_code
, truth_type
, lhs
, rhs
);
6086 /* Handle the case of comparisons with constants. If there is something in
6087 common between the masks, those bits of the constants must be the same.
6088 If not, the condition is always false. Test for this to avoid generating
6089 incorrect code below. */
6090 result
= const_binop (BIT_AND_EXPR
, ll_mask
, rl_mask
);
6091 if (! integer_zerop (result
)
6092 && simple_cst_equal (const_binop (BIT_AND_EXPR
, result
, l_const
),
6093 const_binop (BIT_AND_EXPR
, result
, r_const
)) != 1)
6095 if (wanted_code
== NE_EXPR
)
6097 warning (0, "%<or%> of unmatched not-equal tests is always 1");
6098 return constant_boolean_node (true, truth_type
);
6102 warning (0, "%<and%> of mutually exclusive equal-tests is always 0");
6103 return constant_boolean_node (false, truth_type
);
6110 /* Construct the expression we will return. First get the component
6111 reference we will make. Unless the mask is all ones the width of
6112 that field, perform the mask operation. Then compare with the
6114 result
= make_bit_field_ref (loc
, ll_inner
, ll_arg
,
6115 lntype
, lnbitsize
, lnbitpos
,
6116 ll_unsignedp
|| rl_unsignedp
, ll_reversep
);
6118 ll_mask
= const_binop (BIT_IOR_EXPR
, ll_mask
, rl_mask
);
6119 if (! all_ones_mask_p (ll_mask
, lnbitsize
))
6120 result
= build2_loc (loc
, BIT_AND_EXPR
, lntype
, result
, ll_mask
);
6122 return build2_loc (loc
, wanted_code
, truth_type
, result
,
6123 const_binop (BIT_IOR_EXPR
, l_const
, r_const
));
6126 /* T is an integer expression that is being multiplied, divided, or taken a
6127 modulus (CODE says which and what kind of divide or modulus) by a
6128 constant C. See if we can eliminate that operation by folding it with
6129 other operations already in T. WIDE_TYPE, if non-null, is a type that
6130 should be used for the computation if wider than our type.
6132 For example, if we are dividing (X * 8) + (Y * 16) by 4, we can return
6133 (X * 2) + (Y * 4). We must, however, be assured that either the original
6134 expression would not overflow or that overflow is undefined for the type
6135 in the language in question.
6137 If we return a non-null expression, it is an equivalent form of the
6138 original computation, but need not be in the original type.
6140 We set *STRICT_OVERFLOW_P to true if the return values depends on
6141 signed overflow being undefined. Otherwise we do not change
6142 *STRICT_OVERFLOW_P. */
6145 extract_muldiv (tree t
, tree c
, enum tree_code code
, tree wide_type
,
6146 bool *strict_overflow_p
)
6148 /* To avoid exponential search depth, refuse to allow recursion past
6149 three levels. Beyond that (1) it's highly unlikely that we'll find
6150 something interesting and (2) we've probably processed it before
6151 when we built the inner expression. */
6160 ret
= extract_muldiv_1 (t
, c
, code
, wide_type
, strict_overflow_p
);
6167 extract_muldiv_1 (tree t
, tree c
, enum tree_code code
, tree wide_type
,
6168 bool *strict_overflow_p
)
6170 tree type
= TREE_TYPE (t
);
6171 enum tree_code tcode
= TREE_CODE (t
);
6172 tree ctype
= (wide_type
!= 0
6173 && (GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (wide_type
))
6174 > GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (type
)))
6175 ? wide_type
: type
);
6177 int same_p
= tcode
== code
;
6178 tree op0
= NULL_TREE
, op1
= NULL_TREE
;
6179 bool sub_strict_overflow_p
;
6181 /* Don't deal with constants of zero here; they confuse the code below. */
6182 if (integer_zerop (c
))
6185 if (TREE_CODE_CLASS (tcode
) == tcc_unary
)
6186 op0
= TREE_OPERAND (t
, 0);
6188 if (TREE_CODE_CLASS (tcode
) == tcc_binary
)
6189 op0
= TREE_OPERAND (t
, 0), op1
= TREE_OPERAND (t
, 1);
6191 /* Note that we need not handle conditional operations here since fold
6192 already handles those cases. So just do arithmetic here. */
6196 /* For a constant, we can always simplify if we are a multiply
6197 or (for divide and modulus) if it is a multiple of our constant. */
6198 if (code
== MULT_EXPR
6199 || wi::multiple_of_p (wi::to_wide (t
), wi::to_wide (c
),
6202 tree tem
= const_binop (code
, fold_convert (ctype
, t
),
6203 fold_convert (ctype
, c
));
6204 /* If the multiplication overflowed, we lost information on it.
6205 See PR68142 and PR69845. */
6206 if (TREE_OVERFLOW (tem
))
6212 CASE_CONVERT
: case NON_LVALUE_EXPR
:
6213 /* If op0 is an expression ... */
6214 if ((COMPARISON_CLASS_P (op0
)
6215 || UNARY_CLASS_P (op0
)
6216 || BINARY_CLASS_P (op0
)
6217 || VL_EXP_CLASS_P (op0
)
6218 || EXPRESSION_CLASS_P (op0
))
6219 /* ... and has wrapping overflow, and its type is smaller
6220 than ctype, then we cannot pass through as widening. */
6221 && (((ANY_INTEGRAL_TYPE_P (TREE_TYPE (op0
))
6222 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (op0
)))
6223 && (TYPE_PRECISION (ctype
)
6224 > TYPE_PRECISION (TREE_TYPE (op0
))))
6225 /* ... or this is a truncation (t is narrower than op0),
6226 then we cannot pass through this narrowing. */
6227 || (TYPE_PRECISION (type
)
6228 < TYPE_PRECISION (TREE_TYPE (op0
)))
6229 /* ... or signedness changes for division or modulus,
6230 then we cannot pass through this conversion. */
6231 || (code
!= MULT_EXPR
6232 && (TYPE_UNSIGNED (ctype
)
6233 != TYPE_UNSIGNED (TREE_TYPE (op0
))))
6234 /* ... or has undefined overflow while the converted to
6235 type has not, we cannot do the operation in the inner type
6236 as that would introduce undefined overflow. */
6237 || ((ANY_INTEGRAL_TYPE_P (TREE_TYPE (op0
))
6238 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0
)))
6239 && !TYPE_OVERFLOW_UNDEFINED (type
))))
6242 /* Pass the constant down and see if we can make a simplification. If
6243 we can, replace this expression with the inner simplification for
6244 possible later conversion to our or some other type. */
6245 if ((t2
= fold_convert (TREE_TYPE (op0
), c
)) != 0
6246 && TREE_CODE (t2
) == INTEGER_CST
6247 && !TREE_OVERFLOW (t2
)
6248 && (t1
= extract_muldiv (op0
, t2
, code
,
6249 code
== MULT_EXPR
? ctype
: NULL_TREE
,
6250 strict_overflow_p
)) != 0)
6255 /* If widening the type changes it from signed to unsigned, then we
6256 must avoid building ABS_EXPR itself as unsigned. */
6257 if (TYPE_UNSIGNED (ctype
) && !TYPE_UNSIGNED (type
))
6259 tree cstype
= (*signed_type_for
) (ctype
);
6260 if ((t1
= extract_muldiv (op0
, c
, code
, cstype
, strict_overflow_p
))
6263 t1
= fold_build1 (tcode
, cstype
, fold_convert (cstype
, t1
));
6264 return fold_convert (ctype
, t1
);
6268 /* If the constant is negative, we cannot simplify this. */
6269 if (tree_int_cst_sgn (c
) == -1)
6273 /* For division and modulus, type can't be unsigned, as e.g.
6274 (-(x / 2U)) / 2U isn't equal to -((x / 2U) / 2U) for x >= 2.
6275 For signed types, even with wrapping overflow, this is fine. */
6276 if (code
!= MULT_EXPR
&& TYPE_UNSIGNED (type
))
6278 if ((t1
= extract_muldiv (op0
, c
, code
, wide_type
, strict_overflow_p
))
6280 return fold_build1 (tcode
, ctype
, fold_convert (ctype
, t1
));
6283 case MIN_EXPR
: case MAX_EXPR
:
6284 /* If widening the type changes the signedness, then we can't perform
6285 this optimization as that changes the result. */
6286 if (TYPE_UNSIGNED (ctype
) != TYPE_UNSIGNED (type
))
6289 /* MIN (a, b) / 5 -> MIN (a / 5, b / 5) */
6290 sub_strict_overflow_p
= false;
6291 if ((t1
= extract_muldiv (op0
, c
, code
, wide_type
,
6292 &sub_strict_overflow_p
)) != 0
6293 && (t2
= extract_muldiv (op1
, c
, code
, wide_type
,
6294 &sub_strict_overflow_p
)) != 0)
6296 if (tree_int_cst_sgn (c
) < 0)
6297 tcode
= (tcode
== MIN_EXPR
? MAX_EXPR
: MIN_EXPR
);
6298 if (sub_strict_overflow_p
)
6299 *strict_overflow_p
= true;
6300 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, t1
),
6301 fold_convert (ctype
, t2
));
6305 case LSHIFT_EXPR
: case RSHIFT_EXPR
:
6306 /* If the second operand is constant, this is a multiplication
6307 or floor division, by a power of two, so we can treat it that
6308 way unless the multiplier or divisor overflows. Signed
6309 left-shift overflow is implementation-defined rather than
6310 undefined in C90, so do not convert signed left shift into
6312 if (TREE_CODE (op1
) == INTEGER_CST
6313 && (tcode
== RSHIFT_EXPR
|| TYPE_UNSIGNED (TREE_TYPE (op0
)))
6314 /* const_binop may not detect overflow correctly,
6315 so check for it explicitly here. */
6316 && wi::gtu_p (TYPE_PRECISION (TREE_TYPE (size_one_node
)),
6318 && (t1
= fold_convert (ctype
,
6319 const_binop (LSHIFT_EXPR
, size_one_node
,
6321 && !TREE_OVERFLOW (t1
))
6322 return extract_muldiv (build2 (tcode
== LSHIFT_EXPR
6323 ? MULT_EXPR
: FLOOR_DIV_EXPR
,
6325 fold_convert (ctype
, op0
),
6327 c
, code
, wide_type
, strict_overflow_p
);
6330 case PLUS_EXPR
: case MINUS_EXPR
:
6331 /* See if we can eliminate the operation on both sides. If we can, we
6332 can return a new PLUS or MINUS. If we can't, the only remaining
6333 cases where we can do anything are if the second operand is a
6335 sub_strict_overflow_p
= false;
6336 t1
= extract_muldiv (op0
, c
, code
, wide_type
, &sub_strict_overflow_p
);
6337 t2
= extract_muldiv (op1
, c
, code
, wide_type
, &sub_strict_overflow_p
);
6338 if (t1
!= 0 && t2
!= 0
6339 && TYPE_OVERFLOW_WRAPS (ctype
)
6340 && (code
== MULT_EXPR
6341 /* If not multiplication, we can only do this if both operands
6342 are divisible by c. */
6343 || (multiple_of_p (ctype
, op0
, c
)
6344 && multiple_of_p (ctype
, op1
, c
))))
6346 if (sub_strict_overflow_p
)
6347 *strict_overflow_p
= true;
6348 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, t1
),
6349 fold_convert (ctype
, t2
));
6352 /* If this was a subtraction, negate OP1 and set it to be an addition.
6353 This simplifies the logic below. */
6354 if (tcode
== MINUS_EXPR
)
6356 tcode
= PLUS_EXPR
, op1
= negate_expr (op1
);
6357 /* If OP1 was not easily negatable, the constant may be OP0. */
6358 if (TREE_CODE (op0
) == INTEGER_CST
)
6360 std::swap (op0
, op1
);
6365 if (TREE_CODE (op1
) != INTEGER_CST
)
6368 /* If either OP1 or C are negative, this optimization is not safe for
6369 some of the division and remainder types while for others we need
6370 to change the code. */
6371 if (tree_int_cst_sgn (op1
) < 0 || tree_int_cst_sgn (c
) < 0)
6373 if (code
== CEIL_DIV_EXPR
)
6374 code
= FLOOR_DIV_EXPR
;
6375 else if (code
== FLOOR_DIV_EXPR
)
6376 code
= CEIL_DIV_EXPR
;
6377 else if (code
!= MULT_EXPR
6378 && code
!= CEIL_MOD_EXPR
&& code
!= FLOOR_MOD_EXPR
)
6382 /* If it's a multiply or a division/modulus operation of a multiple
6383 of our constant, do the operation and verify it doesn't overflow. */
6384 if (code
== MULT_EXPR
6385 || wi::multiple_of_p (wi::to_wide (op1
), wi::to_wide (c
),
6388 op1
= const_binop (code
, fold_convert (ctype
, op1
),
6389 fold_convert (ctype
, c
));
6390 /* We allow the constant to overflow with wrapping semantics. */
6392 || (TREE_OVERFLOW (op1
) && !TYPE_OVERFLOW_WRAPS (ctype
)))
6398 /* If we have an unsigned type, we cannot widen the operation since it
6399 will change the result if the original computation overflowed. */
6400 if (TYPE_UNSIGNED (ctype
) && ctype
!= type
)
6403 /* The last case is if we are a multiply. In that case, we can
6404 apply the distributive law to commute the multiply and addition
6405 if the multiplication of the constants doesn't overflow
6406 and overflow is defined. With undefined overflow
6407 op0 * c might overflow, while (op0 + orig_op1) * c doesn't. */
6408 if (code
== MULT_EXPR
&& TYPE_OVERFLOW_WRAPS (ctype
))
6409 return fold_build2 (tcode
, ctype
,
6410 fold_build2 (code
, ctype
,
6411 fold_convert (ctype
, op0
),
6412 fold_convert (ctype
, c
)),
6418 /* We have a special case here if we are doing something like
6419 (C * 8) % 4 since we know that's zero. */
6420 if ((code
== TRUNC_MOD_EXPR
|| code
== CEIL_MOD_EXPR
6421 || code
== FLOOR_MOD_EXPR
|| code
== ROUND_MOD_EXPR
)
6422 /* If the multiplication can overflow we cannot optimize this. */
6423 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (t
))
6424 && TREE_CODE (TREE_OPERAND (t
, 1)) == INTEGER_CST
6425 && wi::multiple_of_p (wi::to_wide (op1
), wi::to_wide (c
),
6428 *strict_overflow_p
= true;
6429 return omit_one_operand (type
, integer_zero_node
, op0
);
6432 /* ... fall through ... */
6434 case TRUNC_DIV_EXPR
: case CEIL_DIV_EXPR
: case FLOOR_DIV_EXPR
:
6435 case ROUND_DIV_EXPR
: case EXACT_DIV_EXPR
:
6436 /* If we can extract our operation from the LHS, do so and return a
6437 new operation. Likewise for the RHS from a MULT_EXPR. Otherwise,
6438 do something only if the second operand is a constant. */
6440 && TYPE_OVERFLOW_WRAPS (ctype
)
6441 && (t1
= extract_muldiv (op0
, c
, code
, wide_type
,
6442 strict_overflow_p
)) != 0)
6443 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, t1
),
6444 fold_convert (ctype
, op1
));
6445 else if (tcode
== MULT_EXPR
&& code
== MULT_EXPR
6446 && TYPE_OVERFLOW_WRAPS (ctype
)
6447 && (t1
= extract_muldiv (op1
, c
, code
, wide_type
,
6448 strict_overflow_p
)) != 0)
6449 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, op0
),
6450 fold_convert (ctype
, t1
));
6451 else if (TREE_CODE (op1
) != INTEGER_CST
)
6454 /* If these are the same operation types, we can associate them
6455 assuming no overflow. */
6458 bool overflow_p
= false;
6459 bool overflow_mul_p
;
6460 signop sign
= TYPE_SIGN (ctype
);
6461 unsigned prec
= TYPE_PRECISION (ctype
);
6462 wide_int mul
= wi::mul (wi::to_wide (op1
, prec
),
6463 wi::to_wide (c
, prec
),
6464 sign
, &overflow_mul_p
);
6465 overflow_p
= TREE_OVERFLOW (c
) | TREE_OVERFLOW (op1
);
6467 && ((sign
== UNSIGNED
&& tcode
!= MULT_EXPR
) || sign
== SIGNED
))
6470 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, op0
),
6471 wide_int_to_tree (ctype
, mul
));
6474 /* If these operations "cancel" each other, we have the main
6475 optimizations of this pass, which occur when either constant is a
6476 multiple of the other, in which case we replace this with either an
6477 operation or CODE or TCODE.
6479 If we have an unsigned type, we cannot do this since it will change
6480 the result if the original computation overflowed. */
6481 if (TYPE_OVERFLOW_UNDEFINED (ctype
)
6482 && ((code
== MULT_EXPR
&& tcode
== EXACT_DIV_EXPR
)
6483 || (tcode
== MULT_EXPR
6484 && code
!= TRUNC_MOD_EXPR
&& code
!= CEIL_MOD_EXPR
6485 && code
!= FLOOR_MOD_EXPR
&& code
!= ROUND_MOD_EXPR
6486 && code
!= MULT_EXPR
)))
6488 if (wi::multiple_of_p (wi::to_wide (op1
), wi::to_wide (c
),
6491 if (TYPE_OVERFLOW_UNDEFINED (ctype
))
6492 *strict_overflow_p
= true;
6493 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, op0
),
6494 fold_convert (ctype
,
6495 const_binop (TRUNC_DIV_EXPR
,
6498 else if (wi::multiple_of_p (wi::to_wide (c
), wi::to_wide (op1
),
6501 if (TYPE_OVERFLOW_UNDEFINED (ctype
))
6502 *strict_overflow_p
= true;
6503 return fold_build2 (code
, ctype
, fold_convert (ctype
, op0
),
6504 fold_convert (ctype
,
6505 const_binop (TRUNC_DIV_EXPR
,
6518 /* Return a node which has the indicated constant VALUE (either 0 or
6519 1 for scalars or {-1,-1,..} or {0,0,...} for vectors),
6520 and is of the indicated TYPE. */
6523 constant_boolean_node (bool value
, tree type
)
6525 if (type
== integer_type_node
)
6526 return value
? integer_one_node
: integer_zero_node
;
6527 else if (type
== boolean_type_node
)
6528 return value
? boolean_true_node
: boolean_false_node
;
6529 else if (TREE_CODE (type
) == VECTOR_TYPE
)
6530 return build_vector_from_val (type
,
6531 build_int_cst (TREE_TYPE (type
),
6534 return fold_convert (type
, value
? integer_one_node
: integer_zero_node
);
6538 /* Transform `a + (b ? x : y)' into `b ? (a + x) : (a + y)'.
6539 Transform, `a + (x < y)' into `(x < y) ? (a + 1) : (a + 0)'. Here
6540 CODE corresponds to the `+', COND to the `(b ? x : y)' or `(x < y)'
6541 expression, and ARG to `a'. If COND_FIRST_P is nonzero, then the
6542 COND is the first argument to CODE; otherwise (as in the example
6543 given here), it is the second argument. TYPE is the type of the
6544 original expression. Return NULL_TREE if no simplification is
6548 fold_binary_op_with_conditional_arg (location_t loc
,
6549 enum tree_code code
,
6550 tree type
, tree op0
, tree op1
,
6551 tree cond
, tree arg
, int cond_first_p
)
6553 tree cond_type
= cond_first_p
? TREE_TYPE (op0
) : TREE_TYPE (op1
);
6554 tree arg_type
= cond_first_p
? TREE_TYPE (op1
) : TREE_TYPE (op0
);
6555 tree test
, true_value
, false_value
;
6556 tree lhs
= NULL_TREE
;
6557 tree rhs
= NULL_TREE
;
6558 enum tree_code cond_code
= COND_EXPR
;
6560 if (TREE_CODE (cond
) == COND_EXPR
6561 || TREE_CODE (cond
) == VEC_COND_EXPR
)
6563 test
= TREE_OPERAND (cond
, 0);
6564 true_value
= TREE_OPERAND (cond
, 1);
6565 false_value
= TREE_OPERAND (cond
, 2);
6566 /* If this operand throws an expression, then it does not make
6567 sense to try to perform a logical or arithmetic operation
6569 if (VOID_TYPE_P (TREE_TYPE (true_value
)))
6571 if (VOID_TYPE_P (TREE_TYPE (false_value
)))
6574 else if (!(TREE_CODE (type
) != VECTOR_TYPE
6575 && TREE_CODE (TREE_TYPE (cond
)) == VECTOR_TYPE
))
6577 tree testtype
= TREE_TYPE (cond
);
6579 true_value
= constant_boolean_node (true, testtype
);
6580 false_value
= constant_boolean_node (false, testtype
);
6583 /* Detect the case of mixing vector and scalar types - bail out. */
6586 if (TREE_CODE (TREE_TYPE (test
)) == VECTOR_TYPE
)
6587 cond_code
= VEC_COND_EXPR
;
6589 /* This transformation is only worthwhile if we don't have to wrap ARG
6590 in a SAVE_EXPR and the operation can be simplified without recursing
6591 on at least one of the branches once its pushed inside the COND_EXPR. */
6592 if (!TREE_CONSTANT (arg
)
6593 && (TREE_SIDE_EFFECTS (arg
)
6594 || TREE_CODE (arg
) == COND_EXPR
|| TREE_CODE (arg
) == VEC_COND_EXPR
6595 || TREE_CONSTANT (true_value
) || TREE_CONSTANT (false_value
)))
6598 arg
= fold_convert_loc (loc
, arg_type
, arg
);
6601 true_value
= fold_convert_loc (loc
, cond_type
, true_value
);
6603 lhs
= fold_build2_loc (loc
, code
, type
, true_value
, arg
);
6605 lhs
= fold_build2_loc (loc
, code
, type
, arg
, true_value
);
6609 false_value
= fold_convert_loc (loc
, cond_type
, false_value
);
6611 rhs
= fold_build2_loc (loc
, code
, type
, false_value
, arg
);
6613 rhs
= fold_build2_loc (loc
, code
, type
, arg
, false_value
);
6616 /* Check that we have simplified at least one of the branches. */
6617 if (!TREE_CONSTANT (arg
) && !TREE_CONSTANT (lhs
) && !TREE_CONSTANT (rhs
))
6620 return fold_build3_loc (loc
, cond_code
, type
, test
, lhs
, rhs
);
6624 /* Subroutine of fold() that checks for the addition of +/- 0.0.
6626 If !NEGATE, return true if ADDEND is +/-0.0 and, for all X of type
6627 TYPE, X + ADDEND is the same as X. If NEGATE, return true if X -
6628 ADDEND is the same as X.
6630 X + 0 and X - 0 both give X when X is NaN, infinite, or nonzero
6631 and finite. The problematic cases are when X is zero, and its mode
6632 has signed zeros. In the case of rounding towards -infinity,
6633 X - 0 is not the same as X because 0 - 0 is -0. In other rounding
6634 modes, X + 0 is not the same as X because -0 + 0 is 0. */
6637 fold_real_zero_addition_p (const_tree type
, const_tree addend
, int negate
)
6639 if (!real_zerop (addend
))
6642 /* Don't allow the fold with -fsignaling-nans. */
6643 if (HONOR_SNANS (element_mode (type
)))
6646 /* Allow the fold if zeros aren't signed, or their sign isn't important. */
6647 if (!HONOR_SIGNED_ZEROS (element_mode (type
)))
6650 /* In a vector or complex, we would need to check the sign of all zeros. */
6651 if (TREE_CODE (addend
) != REAL_CST
)
6654 /* Treat x + -0 as x - 0 and x - -0 as x + 0. */
6655 if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (addend
)))
6658 /* The mode has signed zeros, and we have to honor their sign.
6659 In this situation, there is only one case we can return true for.
6660 X - 0 is the same as X unless rounding towards -infinity is
6662 return negate
&& !HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type
));
6665 /* Subroutine of match.pd that optimizes comparisons of a division by
6666 a nonzero integer constant against an integer constant, i.e.
6669 CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR,
6670 GE_EXPR or LE_EXPR. ARG01 and ARG1 must be a INTEGER_CST. */
6673 fold_div_compare (enum tree_code code
, tree c1
, tree c2
, tree
*lo
,
6674 tree
*hi
, bool *neg_overflow
)
6676 tree prod
, tmp
, type
= TREE_TYPE (c1
);
6677 signop sign
= TYPE_SIGN (type
);
6680 /* We have to do this the hard way to detect unsigned overflow.
6681 prod = int_const_binop (MULT_EXPR, c1, c2); */
6682 wide_int val
= wi::mul (wi::to_wide (c1
), wi::to_wide (c2
), sign
, &overflow
);
6683 prod
= force_fit_type (type
, val
, -1, overflow
);
6684 *neg_overflow
= false;
6686 if (sign
== UNSIGNED
)
6688 tmp
= int_const_binop (MINUS_EXPR
, c1
, build_int_cst (type
, 1));
6691 /* Likewise *hi = int_const_binop (PLUS_EXPR, prod, tmp). */
6692 val
= wi::add (wi::to_wide (prod
), wi::to_wide (tmp
), sign
, &overflow
);
6693 *hi
= force_fit_type (type
, val
, -1, overflow
| TREE_OVERFLOW (prod
));
6695 else if (tree_int_cst_sgn (c1
) >= 0)
6697 tmp
= int_const_binop (MINUS_EXPR
, c1
, build_int_cst (type
, 1));
6698 switch (tree_int_cst_sgn (c2
))
6701 *neg_overflow
= true;
6702 *lo
= int_const_binop (MINUS_EXPR
, prod
, tmp
);
6707 *lo
= fold_negate_const (tmp
, type
);
6712 *hi
= int_const_binop (PLUS_EXPR
, prod
, tmp
);
6722 /* A negative divisor reverses the relational operators. */
6723 code
= swap_tree_comparison (code
);
6725 tmp
= int_const_binop (PLUS_EXPR
, c1
, build_int_cst (type
, 1));
6726 switch (tree_int_cst_sgn (c2
))
6729 *hi
= int_const_binop (MINUS_EXPR
, prod
, tmp
);
6734 *hi
= fold_negate_const (tmp
, type
);
6739 *neg_overflow
= true;
6740 *lo
= int_const_binop (PLUS_EXPR
, prod
, tmp
);
6749 if (code
!= EQ_EXPR
&& code
!= NE_EXPR
)
6752 if (TREE_OVERFLOW (*lo
)
6753 || operand_equal_p (*lo
, TYPE_MIN_VALUE (type
), 0))
6755 if (TREE_OVERFLOW (*hi
)
6756 || operand_equal_p (*hi
, TYPE_MAX_VALUE (type
), 0))
6763 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6764 equality/inequality test, then return a simplified form of the test
6765 using a sign testing. Otherwise return NULL. TYPE is the desired
6769 fold_single_bit_test_into_sign_test (location_t loc
,
6770 enum tree_code code
, tree arg0
, tree arg1
,
6773 /* If this is testing a single bit, we can optimize the test. */
6774 if ((code
== NE_EXPR
|| code
== EQ_EXPR
)
6775 && TREE_CODE (arg0
) == BIT_AND_EXPR
&& integer_zerop (arg1
)
6776 && integer_pow2p (TREE_OPERAND (arg0
, 1)))
6778 /* If we have (A & C) != 0 where C is the sign bit of A, convert
6779 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
6780 tree arg00
= sign_bit_p (TREE_OPERAND (arg0
, 0), TREE_OPERAND (arg0
, 1));
6782 if (arg00
!= NULL_TREE
6783 /* This is only a win if casting to a signed type is cheap,
6784 i.e. when arg00's type is not a partial mode. */
6785 && type_has_mode_precision_p (TREE_TYPE (arg00
)))
6787 tree stype
= signed_type_for (TREE_TYPE (arg00
));
6788 return fold_build2_loc (loc
, code
== EQ_EXPR
? GE_EXPR
: LT_EXPR
,
6790 fold_convert_loc (loc
, stype
, arg00
),
6791 build_int_cst (stype
, 0));
6798 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6799 equality/inequality test, then return a simplified form of
6800 the test using shifts and logical operations. Otherwise return
6801 NULL. TYPE is the desired result type. */
6804 fold_single_bit_test (location_t loc
, enum tree_code code
,
6805 tree arg0
, tree arg1
, tree result_type
)
6807 /* If this is testing a single bit, we can optimize the test. */
6808 if ((code
== NE_EXPR
|| code
== EQ_EXPR
)
6809 && TREE_CODE (arg0
) == BIT_AND_EXPR
&& integer_zerop (arg1
)
6810 && integer_pow2p (TREE_OPERAND (arg0
, 1)))
6812 tree inner
= TREE_OPERAND (arg0
, 0);
6813 tree type
= TREE_TYPE (arg0
);
6814 int bitnum
= tree_log2 (TREE_OPERAND (arg0
, 1));
6815 scalar_int_mode operand_mode
= SCALAR_INT_TYPE_MODE (type
);
6817 tree signed_type
, unsigned_type
, intermediate_type
;
6820 /* First, see if we can fold the single bit test into a sign-bit
6822 tem
= fold_single_bit_test_into_sign_test (loc
, code
, arg0
, arg1
,
6827 /* Otherwise we have (A & C) != 0 where C is a single bit,
6828 convert that into ((A >> C2) & 1). Where C2 = log2(C).
6829 Similarly for (A & C) == 0. */
6831 /* If INNER is a right shift of a constant and it plus BITNUM does
6832 not overflow, adjust BITNUM and INNER. */
6833 if (TREE_CODE (inner
) == RSHIFT_EXPR
6834 && TREE_CODE (TREE_OPERAND (inner
, 1)) == INTEGER_CST
6835 && bitnum
< TYPE_PRECISION (type
)
6836 && wi::ltu_p (wi::to_wide (TREE_OPERAND (inner
, 1)),
6837 TYPE_PRECISION (type
) - bitnum
))
6839 bitnum
+= tree_to_uhwi (TREE_OPERAND (inner
, 1));
6840 inner
= TREE_OPERAND (inner
, 0);
6843 /* If we are going to be able to omit the AND below, we must do our
6844 operations as unsigned. If we must use the AND, we have a choice.
6845 Normally unsigned is faster, but for some machines signed is. */
6846 ops_unsigned
= (load_extend_op (operand_mode
) == SIGN_EXTEND
6847 && !flag_syntax_only
) ? 0 : 1;
6849 signed_type
= lang_hooks
.types
.type_for_mode (operand_mode
, 0);
6850 unsigned_type
= lang_hooks
.types
.type_for_mode (operand_mode
, 1);
6851 intermediate_type
= ops_unsigned
? unsigned_type
: signed_type
;
6852 inner
= fold_convert_loc (loc
, intermediate_type
, inner
);
6855 inner
= build2 (RSHIFT_EXPR
, intermediate_type
,
6856 inner
, size_int (bitnum
));
6858 one
= build_int_cst (intermediate_type
, 1);
6860 if (code
== EQ_EXPR
)
6861 inner
= fold_build2_loc (loc
, BIT_XOR_EXPR
, intermediate_type
, inner
, one
);
6863 /* Put the AND last so it can combine with more things. */
6864 inner
= build2 (BIT_AND_EXPR
, intermediate_type
, inner
, one
);
6866 /* Make sure to return the proper type. */
6867 inner
= fold_convert_loc (loc
, result_type
, inner
);
6874 /* Test whether it is preferable two swap two operands, ARG0 and
6875 ARG1, for example because ARG0 is an integer constant and ARG1
6879 tree_swap_operands_p (const_tree arg0
, const_tree arg1
)
6881 if (CONSTANT_CLASS_P (arg1
))
6883 if (CONSTANT_CLASS_P (arg0
))
6889 if (TREE_CONSTANT (arg1
))
6891 if (TREE_CONSTANT (arg0
))
6894 /* It is preferable to swap two SSA_NAME to ensure a canonical form
6895 for commutative and comparison operators. Ensuring a canonical
6896 form allows the optimizers to find additional redundancies without
6897 having to explicitly check for both orderings. */
6898 if (TREE_CODE (arg0
) == SSA_NAME
6899 && TREE_CODE (arg1
) == SSA_NAME
6900 && SSA_NAME_VERSION (arg0
) > SSA_NAME_VERSION (arg1
))
6903 /* Put SSA_NAMEs last. */
6904 if (TREE_CODE (arg1
) == SSA_NAME
)
6906 if (TREE_CODE (arg0
) == SSA_NAME
)
6909 /* Put variables last. */
6919 /* Fold A < X && A + 1 > Y to A < X && A >= Y. Normally A + 1 > Y
6920 means A >= Y && A != MAX, but in this case we know that
6921 A < X <= MAX. INEQ is A + 1 > Y, BOUND is A < X. */
6924 fold_to_nonsharp_ineq_using_bound (location_t loc
, tree ineq
, tree bound
)
6926 tree a
, typea
, type
= TREE_TYPE (ineq
), a1
, diff
, y
;
6928 if (TREE_CODE (bound
) == LT_EXPR
)
6929 a
= TREE_OPERAND (bound
, 0);
6930 else if (TREE_CODE (bound
) == GT_EXPR
)
6931 a
= TREE_OPERAND (bound
, 1);
6935 typea
= TREE_TYPE (a
);
6936 if (!INTEGRAL_TYPE_P (typea
)
6937 && !POINTER_TYPE_P (typea
))
6940 if (TREE_CODE (ineq
) == LT_EXPR
)
6942 a1
= TREE_OPERAND (ineq
, 1);
6943 y
= TREE_OPERAND (ineq
, 0);
6945 else if (TREE_CODE (ineq
) == GT_EXPR
)
6947 a1
= TREE_OPERAND (ineq
, 0);
6948 y
= TREE_OPERAND (ineq
, 1);
6953 if (TREE_TYPE (a1
) != typea
)
6956 if (POINTER_TYPE_P (typea
))
6958 /* Convert the pointer types into integer before taking the difference. */
6959 tree ta
= fold_convert_loc (loc
, ssizetype
, a
);
6960 tree ta1
= fold_convert_loc (loc
, ssizetype
, a1
);
6961 diff
= fold_binary_loc (loc
, MINUS_EXPR
, ssizetype
, ta1
, ta
);
6964 diff
= fold_binary_loc (loc
, MINUS_EXPR
, typea
, a1
, a
);
6966 if (!diff
|| !integer_onep (diff
))
6969 return fold_build2_loc (loc
, GE_EXPR
, type
, a
, y
);
6972 /* Fold a sum or difference of at least one multiplication.
6973 Returns the folded tree or NULL if no simplification could be made. */
6976 fold_plusminus_mult_expr (location_t loc
, enum tree_code code
, tree type
,
6977 tree arg0
, tree arg1
)
6979 tree arg00
, arg01
, arg10
, arg11
;
6980 tree alt0
= NULL_TREE
, alt1
= NULL_TREE
, same
;
6982 /* (A * C) +- (B * C) -> (A+-B) * C.
6983 (A * C) +- A -> A * (C+-1).
6984 We are most concerned about the case where C is a constant,
6985 but other combinations show up during loop reduction. Since
6986 it is not difficult, try all four possibilities. */
6988 if (TREE_CODE (arg0
) == MULT_EXPR
)
6990 arg00
= TREE_OPERAND (arg0
, 0);
6991 arg01
= TREE_OPERAND (arg0
, 1);
6993 else if (TREE_CODE (arg0
) == INTEGER_CST
)
6995 arg00
= build_one_cst (type
);
7000 /* We cannot generate constant 1 for fract. */
7001 if (ALL_FRACT_MODE_P (TYPE_MODE (type
)))
7004 arg01
= build_one_cst (type
);
7006 if (TREE_CODE (arg1
) == MULT_EXPR
)
7008 arg10
= TREE_OPERAND (arg1
, 0);
7009 arg11
= TREE_OPERAND (arg1
, 1);
7011 else if (TREE_CODE (arg1
) == INTEGER_CST
)
7013 arg10
= build_one_cst (type
);
7014 /* As we canonicalize A - 2 to A + -2 get rid of that sign for
7015 the purpose of this canonicalization. */
7016 if (wi::neg_p (wi::to_wide (arg1
), TYPE_SIGN (TREE_TYPE (arg1
)))
7017 && negate_expr_p (arg1
)
7018 && code
== PLUS_EXPR
)
7020 arg11
= negate_expr (arg1
);
7028 /* We cannot generate constant 1 for fract. */
7029 if (ALL_FRACT_MODE_P (TYPE_MODE (type
)))
7032 arg11
= build_one_cst (type
);
7036 /* Prefer factoring a common non-constant. */
7037 if (operand_equal_p (arg00
, arg10
, 0))
7038 same
= arg00
, alt0
= arg01
, alt1
= arg11
;
7039 else if (operand_equal_p (arg01
, arg11
, 0))
7040 same
= arg01
, alt0
= arg00
, alt1
= arg10
;
7041 else if (operand_equal_p (arg00
, arg11
, 0))
7042 same
= arg00
, alt0
= arg01
, alt1
= arg10
;
7043 else if (operand_equal_p (arg01
, arg10
, 0))
7044 same
= arg01
, alt0
= arg00
, alt1
= arg11
;
7046 /* No identical multiplicands; see if we can find a common
7047 power-of-two factor in non-power-of-two multiplies. This
7048 can help in multi-dimensional array access. */
7049 else if (tree_fits_shwi_p (arg01
)
7050 && tree_fits_shwi_p (arg11
))
7052 HOST_WIDE_INT int01
, int11
, tmp
;
7055 int01
= tree_to_shwi (arg01
);
7056 int11
= tree_to_shwi (arg11
);
7058 /* Move min of absolute values to int11. */
7059 if (absu_hwi (int01
) < absu_hwi (int11
))
7061 tmp
= int01
, int01
= int11
, int11
= tmp
;
7062 alt0
= arg00
, arg00
= arg10
, arg10
= alt0
;
7069 if (exact_log2 (absu_hwi (int11
)) > 0 && int01
% int11
== 0
7070 /* The remainder should not be a constant, otherwise we
7071 end up folding i * 4 + 2 to (i * 2 + 1) * 2 which has
7072 increased the number of multiplications necessary. */
7073 && TREE_CODE (arg10
) != INTEGER_CST
)
7075 alt0
= fold_build2_loc (loc
, MULT_EXPR
, TREE_TYPE (arg00
), arg00
,
7076 build_int_cst (TREE_TYPE (arg00
),
7081 maybe_same
= alt0
, alt0
= alt1
, alt1
= maybe_same
;
7088 if (! INTEGRAL_TYPE_P (type
)
7089 || TYPE_OVERFLOW_WRAPS (type
)
7090 /* We are neither factoring zero nor minus one. */
7091 || TREE_CODE (same
) == INTEGER_CST
)
7092 return fold_build2_loc (loc
, MULT_EXPR
, type
,
7093 fold_build2_loc (loc
, code
, type
,
7094 fold_convert_loc (loc
, type
, alt0
),
7095 fold_convert_loc (loc
, type
, alt1
)),
7096 fold_convert_loc (loc
, type
, same
));
7098 /* Same may be zero and thus the operation 'code' may overflow. Likewise
7099 same may be minus one and thus the multiplication may overflow. Perform
7100 the operations in an unsigned type. */
7101 tree utype
= unsigned_type_for (type
);
7102 tree tem
= fold_build2_loc (loc
, code
, utype
,
7103 fold_convert_loc (loc
, utype
, alt0
),
7104 fold_convert_loc (loc
, utype
, alt1
));
7105 /* If the sum evaluated to a constant that is not -INF the multiplication
7107 if (TREE_CODE (tem
) == INTEGER_CST
7108 && (wi::to_wide (tem
)
7109 != wi::min_value (TYPE_PRECISION (utype
), SIGNED
)))
7110 return fold_build2_loc (loc
, MULT_EXPR
, type
,
7111 fold_convert (type
, tem
), same
);
7113 return fold_convert_loc (loc
, type
,
7114 fold_build2_loc (loc
, MULT_EXPR
, utype
, tem
,
7115 fold_convert_loc (loc
, utype
, same
)));
7118 /* Subroutine of native_encode_expr. Encode the INTEGER_CST
7119 specified by EXPR into the buffer PTR of length LEN bytes.
7120 Return the number of bytes placed in the buffer, or zero
7124 native_encode_int (const_tree expr
, unsigned char *ptr
, int len
, int off
)
7126 tree type
= TREE_TYPE (expr
);
7127 int total_bytes
= GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (type
));
7128 int byte
, offset
, word
, words
;
7129 unsigned char value
;
7131 if ((off
== -1 && total_bytes
> len
) || off
>= total_bytes
)
7138 return MIN (len
, total_bytes
- off
);
7140 words
= total_bytes
/ UNITS_PER_WORD
;
7142 for (byte
= 0; byte
< total_bytes
; byte
++)
7144 int bitpos
= byte
* BITS_PER_UNIT
;
7145 /* Extend EXPR according to TYPE_SIGN if the precision isn't a whole
7147 value
= wi::extract_uhwi (wi::to_widest (expr
), bitpos
, BITS_PER_UNIT
);
7149 if (total_bytes
> UNITS_PER_WORD
)
7151 word
= byte
/ UNITS_PER_WORD
;
7152 if (WORDS_BIG_ENDIAN
)
7153 word
= (words
- 1) - word
;
7154 offset
= word
* UNITS_PER_WORD
;
7155 if (BYTES_BIG_ENDIAN
)
7156 offset
+= (UNITS_PER_WORD
- 1) - (byte
% UNITS_PER_WORD
);
7158 offset
+= byte
% UNITS_PER_WORD
;
7161 offset
= BYTES_BIG_ENDIAN
? (total_bytes
- 1) - byte
: byte
;
7162 if (offset
>= off
&& offset
- off
< len
)
7163 ptr
[offset
- off
] = value
;
7165 return MIN (len
, total_bytes
- off
);
7169 /* Subroutine of native_encode_expr. Encode the FIXED_CST
7170 specified by EXPR into the buffer PTR of length LEN bytes.
7171 Return the number of bytes placed in the buffer, or zero
7175 native_encode_fixed (const_tree expr
, unsigned char *ptr
, int len
, int off
)
7177 tree type
= TREE_TYPE (expr
);
7178 scalar_mode mode
= SCALAR_TYPE_MODE (type
);
7179 int total_bytes
= GET_MODE_SIZE (mode
);
7180 FIXED_VALUE_TYPE value
;
7181 tree i_value
, i_type
;
7183 if (total_bytes
* BITS_PER_UNIT
> HOST_BITS_PER_DOUBLE_INT
)
7186 i_type
= lang_hooks
.types
.type_for_size (GET_MODE_BITSIZE (mode
), 1);
7188 if (NULL_TREE
== i_type
|| TYPE_PRECISION (i_type
) != total_bytes
)
7191 value
= TREE_FIXED_CST (expr
);
7192 i_value
= double_int_to_tree (i_type
, value
.data
);
7194 return native_encode_int (i_value
, ptr
, len
, off
);
7198 /* Subroutine of native_encode_expr. Encode the REAL_CST
7199 specified by EXPR into the buffer PTR of length LEN bytes.
7200 Return the number of bytes placed in the buffer, or zero
7204 native_encode_real (const_tree expr
, unsigned char *ptr
, int len
, int off
)
7206 tree type
= TREE_TYPE (expr
);
7207 int total_bytes
= GET_MODE_SIZE (SCALAR_FLOAT_TYPE_MODE (type
));
7208 int byte
, offset
, word
, words
, bitpos
;
7209 unsigned char value
;
7211 /* There are always 32 bits in each long, no matter the size of
7212 the hosts long. We handle floating point representations with
7216 if ((off
== -1 && total_bytes
> len
) || off
>= total_bytes
)
7223 return MIN (len
, total_bytes
- off
);
7225 words
= (32 / BITS_PER_UNIT
) / UNITS_PER_WORD
;
7227 real_to_target (tmp
, TREE_REAL_CST_PTR (expr
), TYPE_MODE (type
));
7229 for (bitpos
= 0; bitpos
< total_bytes
* BITS_PER_UNIT
;
7230 bitpos
+= BITS_PER_UNIT
)
7232 byte
= (bitpos
/ BITS_PER_UNIT
) & 3;
7233 value
= (unsigned char) (tmp
[bitpos
/ 32] >> (bitpos
& 31));
7235 if (UNITS_PER_WORD
< 4)
7237 word
= byte
/ UNITS_PER_WORD
;
7238 if (WORDS_BIG_ENDIAN
)
7239 word
= (words
- 1) - word
;
7240 offset
= word
* UNITS_PER_WORD
;
7241 if (BYTES_BIG_ENDIAN
)
7242 offset
+= (UNITS_PER_WORD
- 1) - (byte
% UNITS_PER_WORD
);
7244 offset
+= byte
% UNITS_PER_WORD
;
7249 if (BYTES_BIG_ENDIAN
)
7251 /* Reverse bytes within each long, or within the entire float
7252 if it's smaller than a long (for HFmode). */
7253 offset
= MIN (3, total_bytes
- 1) - offset
;
7254 gcc_assert (offset
>= 0);
7257 offset
= offset
+ ((bitpos
/ BITS_PER_UNIT
) & ~3);
7259 && offset
- off
< len
)
7260 ptr
[offset
- off
] = value
;
7262 return MIN (len
, total_bytes
- off
);
7265 /* Subroutine of native_encode_expr. Encode the COMPLEX_CST
7266 specified by EXPR into the buffer PTR of length LEN bytes.
7267 Return the number of bytes placed in the buffer, or zero
7271 native_encode_complex (const_tree expr
, unsigned char *ptr
, int len
, int off
)
7276 part
= TREE_REALPART (expr
);
7277 rsize
= native_encode_expr (part
, ptr
, len
, off
);
7278 if (off
== -1 && rsize
== 0)
7280 part
= TREE_IMAGPART (expr
);
7282 off
= MAX (0, off
- GET_MODE_SIZE (SCALAR_TYPE_MODE (TREE_TYPE (part
))));
7283 isize
= native_encode_expr (part
, ptr
? ptr
+ rsize
: NULL
,
7285 if (off
== -1 && isize
!= rsize
)
7287 return rsize
+ isize
;
7291 /* Subroutine of native_encode_expr. Encode the VECTOR_CST
7292 specified by EXPR into the buffer PTR of length LEN bytes.
7293 Return the number of bytes placed in the buffer, or zero
7297 native_encode_vector (const_tree expr
, unsigned char *ptr
, int len
, int off
)
7299 unsigned HOST_WIDE_INT i
, count
;
7304 if (!VECTOR_CST_NELTS (expr
).is_constant (&count
))
7306 itype
= TREE_TYPE (TREE_TYPE (expr
));
7307 size
= GET_MODE_SIZE (SCALAR_TYPE_MODE (itype
));
7308 for (i
= 0; i
< count
; i
++)
7315 elem
= VECTOR_CST_ELT (expr
, i
);
7316 int res
= native_encode_expr (elem
, ptr
? ptr
+ offset
: NULL
,
7318 if ((off
== -1 && res
!= size
) || res
== 0)
7330 /* Subroutine of native_encode_expr. Encode the STRING_CST
7331 specified by EXPR into the buffer PTR of length LEN bytes.
7332 Return the number of bytes placed in the buffer, or zero
7336 native_encode_string (const_tree expr
, unsigned char *ptr
, int len
, int off
)
7338 tree type
= TREE_TYPE (expr
);
7340 /* Wide-char strings are encoded in target byte-order so native
7341 encoding them is trivial. */
7342 if (BITS_PER_UNIT
!= CHAR_BIT
7343 || TREE_CODE (type
) != ARRAY_TYPE
7344 || TREE_CODE (TREE_TYPE (type
)) != INTEGER_TYPE
7345 || !tree_fits_shwi_p (TYPE_SIZE_UNIT (type
)))
7348 HOST_WIDE_INT total_bytes
= tree_to_shwi (TYPE_SIZE_UNIT (TREE_TYPE (expr
)));
7349 if ((off
== -1 && total_bytes
> len
) || off
>= total_bytes
)
7355 else if (TREE_STRING_LENGTH (expr
) - off
< MIN (total_bytes
, len
))
7358 if (off
< TREE_STRING_LENGTH (expr
))
7360 written
= MIN (len
, TREE_STRING_LENGTH (expr
) - off
);
7361 memcpy (ptr
, TREE_STRING_POINTER (expr
) + off
, written
);
7363 memset (ptr
+ written
, 0,
7364 MIN (total_bytes
- written
, len
- written
));
7367 memcpy (ptr
, TREE_STRING_POINTER (expr
) + off
, MIN (total_bytes
, len
));
7368 return MIN (total_bytes
- off
, len
);
7372 /* Subroutine of fold_view_convert_expr. Encode the INTEGER_CST,
7373 REAL_CST, COMPLEX_CST or VECTOR_CST specified by EXPR into the
7374 buffer PTR of length LEN bytes. If PTR is NULL, don't actually store
7375 anything, just do a dry run. If OFF is not -1 then start
7376 the encoding at byte offset OFF and encode at most LEN bytes.
7377 Return the number of bytes placed in the buffer, or zero upon failure. */
7380 native_encode_expr (const_tree expr
, unsigned char *ptr
, int len
, int off
)
7382 /* We don't support starting at negative offset and -1 is special. */
7386 switch (TREE_CODE (expr
))
7389 return native_encode_int (expr
, ptr
, len
, off
);
7392 return native_encode_real (expr
, ptr
, len
, off
);
7395 return native_encode_fixed (expr
, ptr
, len
, off
);
7398 return native_encode_complex (expr
, ptr
, len
, off
);
7401 return native_encode_vector (expr
, ptr
, len
, off
);
7404 return native_encode_string (expr
, ptr
, len
, off
);
7412 /* Subroutine of native_interpret_expr. Interpret the contents of
7413 the buffer PTR of length LEN as an INTEGER_CST of type TYPE.
7414 If the buffer cannot be interpreted, return NULL_TREE. */
7417 native_interpret_int (tree type
, const unsigned char *ptr
, int len
)
7419 int total_bytes
= GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (type
));
7421 if (total_bytes
> len
7422 || total_bytes
* BITS_PER_UNIT
> HOST_BITS_PER_DOUBLE_INT
)
7425 wide_int result
= wi::from_buffer (ptr
, total_bytes
);
7427 return wide_int_to_tree (type
, result
);
7431 /* Subroutine of native_interpret_expr. Interpret the contents of
7432 the buffer PTR of length LEN as a FIXED_CST of type TYPE.
7433 If the buffer cannot be interpreted, return NULL_TREE. */
7436 native_interpret_fixed (tree type
, const unsigned char *ptr
, int len
)
7438 scalar_mode mode
= SCALAR_TYPE_MODE (type
);
7439 int total_bytes
= GET_MODE_SIZE (mode
);
7441 FIXED_VALUE_TYPE fixed_value
;
7443 if (total_bytes
> len
7444 || total_bytes
* BITS_PER_UNIT
> HOST_BITS_PER_DOUBLE_INT
)
7447 result
= double_int::from_buffer (ptr
, total_bytes
);
7448 fixed_value
= fixed_from_double_int (result
, mode
);
7450 return build_fixed (type
, fixed_value
);
7454 /* Subroutine of native_interpret_expr. Interpret the contents of
7455 the buffer PTR of length LEN as a REAL_CST of type TYPE.
7456 If the buffer cannot be interpreted, return NULL_TREE. */
7459 native_interpret_real (tree type
, const unsigned char *ptr
, int len
)
7461 scalar_float_mode mode
= SCALAR_FLOAT_TYPE_MODE (type
);
7462 int total_bytes
= GET_MODE_SIZE (mode
);
7463 unsigned char value
;
7464 /* There are always 32 bits in each long, no matter the size of
7465 the hosts long. We handle floating point representations with
7470 if (total_bytes
> len
|| total_bytes
> 24)
7472 int words
= (32 / BITS_PER_UNIT
) / UNITS_PER_WORD
;
7474 memset (tmp
, 0, sizeof (tmp
));
7475 for (int bitpos
= 0; bitpos
< total_bytes
* BITS_PER_UNIT
;
7476 bitpos
+= BITS_PER_UNIT
)
7478 /* Both OFFSET and BYTE index within a long;
7479 bitpos indexes the whole float. */
7480 int offset
, byte
= (bitpos
/ BITS_PER_UNIT
) & 3;
7481 if (UNITS_PER_WORD
< 4)
7483 int word
= byte
/ UNITS_PER_WORD
;
7484 if (WORDS_BIG_ENDIAN
)
7485 word
= (words
- 1) - word
;
7486 offset
= word
* UNITS_PER_WORD
;
7487 if (BYTES_BIG_ENDIAN
)
7488 offset
+= (UNITS_PER_WORD
- 1) - (byte
% UNITS_PER_WORD
);
7490 offset
+= byte
% UNITS_PER_WORD
;
7495 if (BYTES_BIG_ENDIAN
)
7497 /* Reverse bytes within each long, or within the entire float
7498 if it's smaller than a long (for HFmode). */
7499 offset
= MIN (3, total_bytes
- 1) - offset
;
7500 gcc_assert (offset
>= 0);
7503 value
= ptr
[offset
+ ((bitpos
/ BITS_PER_UNIT
) & ~3)];
7505 tmp
[bitpos
/ 32] |= (unsigned long)value
<< (bitpos
& 31);
7508 real_from_target (&r
, tmp
, mode
);
7509 return build_real (type
, r
);
7513 /* Subroutine of native_interpret_expr. Interpret the contents of
7514 the buffer PTR of length LEN as a COMPLEX_CST of type TYPE.
7515 If the buffer cannot be interpreted, return NULL_TREE. */
7518 native_interpret_complex (tree type
, const unsigned char *ptr
, int len
)
7520 tree etype
, rpart
, ipart
;
7523 etype
= TREE_TYPE (type
);
7524 size
= GET_MODE_SIZE (SCALAR_TYPE_MODE (etype
));
7527 rpart
= native_interpret_expr (etype
, ptr
, size
);
7530 ipart
= native_interpret_expr (etype
, ptr
+size
, size
);
7533 return build_complex (type
, rpart
, ipart
);
7537 /* Subroutine of native_interpret_expr. Interpret the contents of
7538 the buffer PTR of length LEN as a VECTOR_CST of type TYPE.
7539 If the buffer cannot be interpreted, return NULL_TREE. */
7542 native_interpret_vector (tree type
, const unsigned char *ptr
, unsigned int len
)
7545 unsigned int i
, size
;
7546 unsigned HOST_WIDE_INT count
;
7548 etype
= TREE_TYPE (type
);
7549 size
= GET_MODE_SIZE (SCALAR_TYPE_MODE (etype
));
7550 if (!TYPE_VECTOR_SUBPARTS (type
).is_constant (&count
)
7551 || size
* count
> len
)
7554 tree_vector_builder
elements (type
, count
, 1);
7555 for (i
= 0; i
< count
; ++i
)
7557 elem
= native_interpret_expr (etype
, ptr
+(i
*size
), size
);
7560 elements
.quick_push (elem
);
7562 return elements
.build ();
7566 /* Subroutine of fold_view_convert_expr. Interpret the contents of
7567 the buffer PTR of length LEN as a constant of type TYPE. For
7568 INTEGRAL_TYPE_P we return an INTEGER_CST, for SCALAR_FLOAT_TYPE_P
7569 we return a REAL_CST, etc... If the buffer cannot be interpreted,
7570 return NULL_TREE. */
7573 native_interpret_expr (tree type
, const unsigned char *ptr
, int len
)
7575 switch (TREE_CODE (type
))
7581 case REFERENCE_TYPE
:
7582 return native_interpret_int (type
, ptr
, len
);
7585 return native_interpret_real (type
, ptr
, len
);
7587 case FIXED_POINT_TYPE
:
7588 return native_interpret_fixed (type
, ptr
, len
);
7591 return native_interpret_complex (type
, ptr
, len
);
7594 return native_interpret_vector (type
, ptr
, len
);
7601 /* Returns true if we can interpret the contents of a native encoding
7605 can_native_interpret_type_p (tree type
)
7607 switch (TREE_CODE (type
))
7613 case REFERENCE_TYPE
:
7614 case FIXED_POINT_TYPE
:
7625 /* Fold a VIEW_CONVERT_EXPR of a constant expression EXPR to type
7626 TYPE at compile-time. If we're unable to perform the conversion
7627 return NULL_TREE. */
7630 fold_view_convert_expr (tree type
, tree expr
)
7632 /* We support up to 512-bit values (for V8DFmode). */
7633 unsigned char buffer
[64];
7636 /* Check that the host and target are sane. */
7637 if (CHAR_BIT
!= 8 || BITS_PER_UNIT
!= 8)
7640 len
= native_encode_expr (expr
, buffer
, sizeof (buffer
));
7644 return native_interpret_expr (type
, buffer
, len
);
7647 /* Build an expression for the address of T. Folds away INDIRECT_REF
7648 to avoid confusing the gimplify process. */
7651 build_fold_addr_expr_with_type_loc (location_t loc
, tree t
, tree ptrtype
)
7653 /* The size of the object is not relevant when talking about its address. */
7654 if (TREE_CODE (t
) == WITH_SIZE_EXPR
)
7655 t
= TREE_OPERAND (t
, 0);
7657 if (TREE_CODE (t
) == INDIRECT_REF
)
7659 t
= TREE_OPERAND (t
, 0);
7661 if (TREE_TYPE (t
) != ptrtype
)
7662 t
= build1_loc (loc
, NOP_EXPR
, ptrtype
, t
);
7664 else if (TREE_CODE (t
) == MEM_REF
7665 && integer_zerop (TREE_OPERAND (t
, 1)))
7666 return TREE_OPERAND (t
, 0);
7667 else if (TREE_CODE (t
) == MEM_REF
7668 && TREE_CODE (TREE_OPERAND (t
, 0)) == INTEGER_CST
)
7669 return fold_binary (POINTER_PLUS_EXPR
, ptrtype
,
7670 TREE_OPERAND (t
, 0),
7671 convert_to_ptrofftype (TREE_OPERAND (t
, 1)));
7672 else if (TREE_CODE (t
) == VIEW_CONVERT_EXPR
)
7674 t
= build_fold_addr_expr_loc (loc
, TREE_OPERAND (t
, 0));
7676 if (TREE_TYPE (t
) != ptrtype
)
7677 t
= fold_convert_loc (loc
, ptrtype
, t
);
7680 t
= build1_loc (loc
, ADDR_EXPR
, ptrtype
, t
);
7685 /* Build an expression for the address of T. */
7688 build_fold_addr_expr_loc (location_t loc
, tree t
)
7690 tree ptrtype
= build_pointer_type (TREE_TYPE (t
));
7692 return build_fold_addr_expr_with_type_loc (loc
, t
, ptrtype
);
7695 /* Fold a unary expression of code CODE and type TYPE with operand
7696 OP0. Return the folded expression if folding is successful.
7697 Otherwise, return NULL_TREE. */
7700 fold_unary_loc (location_t loc
, enum tree_code code
, tree type
, tree op0
)
7704 enum tree_code_class kind
= TREE_CODE_CLASS (code
);
7706 gcc_assert (IS_EXPR_CODE_CLASS (kind
)
7707 && TREE_CODE_LENGTH (code
) == 1);
7712 if (CONVERT_EXPR_CODE_P (code
)
7713 || code
== FLOAT_EXPR
|| code
== ABS_EXPR
|| code
== NEGATE_EXPR
)
7715 /* Don't use STRIP_NOPS, because signedness of argument type
7717 STRIP_SIGN_NOPS (arg0
);
7721 /* Strip any conversions that don't change the mode. This
7722 is safe for every expression, except for a comparison
7723 expression because its signedness is derived from its
7726 Note that this is done as an internal manipulation within
7727 the constant folder, in order to find the simplest
7728 representation of the arguments so that their form can be
7729 studied. In any cases, the appropriate type conversions
7730 should be put back in the tree that will get out of the
7735 if (CONSTANT_CLASS_P (arg0
))
7737 tree tem
= const_unop (code
, type
, arg0
);
7740 if (TREE_TYPE (tem
) != type
)
7741 tem
= fold_convert_loc (loc
, type
, tem
);
7747 tem
= generic_simplify (loc
, code
, type
, op0
);
7751 if (TREE_CODE_CLASS (code
) == tcc_unary
)
7753 if (TREE_CODE (arg0
) == COMPOUND_EXPR
)
7754 return build2 (COMPOUND_EXPR
, type
, TREE_OPERAND (arg0
, 0),
7755 fold_build1_loc (loc
, code
, type
,
7756 fold_convert_loc (loc
, TREE_TYPE (op0
),
7757 TREE_OPERAND (arg0
, 1))));
7758 else if (TREE_CODE (arg0
) == COND_EXPR
)
7760 tree arg01
= TREE_OPERAND (arg0
, 1);
7761 tree arg02
= TREE_OPERAND (arg0
, 2);
7762 if (! VOID_TYPE_P (TREE_TYPE (arg01
)))
7763 arg01
= fold_build1_loc (loc
, code
, type
,
7764 fold_convert_loc (loc
,
7765 TREE_TYPE (op0
), arg01
));
7766 if (! VOID_TYPE_P (TREE_TYPE (arg02
)))
7767 arg02
= fold_build1_loc (loc
, code
, type
,
7768 fold_convert_loc (loc
,
7769 TREE_TYPE (op0
), arg02
));
7770 tem
= fold_build3_loc (loc
, COND_EXPR
, type
, TREE_OPERAND (arg0
, 0),
7773 /* If this was a conversion, and all we did was to move into
7774 inside the COND_EXPR, bring it back out. But leave it if
7775 it is a conversion from integer to integer and the
7776 result precision is no wider than a word since such a
7777 conversion is cheap and may be optimized away by combine,
7778 while it couldn't if it were outside the COND_EXPR. Then return
7779 so we don't get into an infinite recursion loop taking the
7780 conversion out and then back in. */
7782 if ((CONVERT_EXPR_CODE_P (code
)
7783 || code
== NON_LVALUE_EXPR
)
7784 && TREE_CODE (tem
) == COND_EXPR
7785 && TREE_CODE (TREE_OPERAND (tem
, 1)) == code
7786 && TREE_CODE (TREE_OPERAND (tem
, 2)) == code
7787 && ! VOID_TYPE_P (TREE_OPERAND (tem
, 1))
7788 && ! VOID_TYPE_P (TREE_OPERAND (tem
, 2))
7789 && (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem
, 1), 0))
7790 == TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem
, 2), 0)))
7791 && (! (INTEGRAL_TYPE_P (TREE_TYPE (tem
))
7793 (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem
, 1), 0))))
7794 && TYPE_PRECISION (TREE_TYPE (tem
)) <= BITS_PER_WORD
)
7795 || flag_syntax_only
))
7796 tem
= build1_loc (loc
, code
, type
,
7798 TREE_TYPE (TREE_OPERAND
7799 (TREE_OPERAND (tem
, 1), 0)),
7800 TREE_OPERAND (tem
, 0),
7801 TREE_OPERAND (TREE_OPERAND (tem
, 1), 0),
7802 TREE_OPERAND (TREE_OPERAND (tem
, 2),
7810 case NON_LVALUE_EXPR
:
7811 if (!maybe_lvalue_p (op0
))
7812 return fold_convert_loc (loc
, type
, op0
);
7817 case FIX_TRUNC_EXPR
:
7818 if (COMPARISON_CLASS_P (op0
))
7820 /* If we have (type) (a CMP b) and type is an integral type, return
7821 new expression involving the new type. Canonicalize
7822 (type) (a CMP b) to (a CMP b) ? (type) true : (type) false for
7824 Do not fold the result as that would not simplify further, also
7825 folding again results in recursions. */
7826 if (TREE_CODE (type
) == BOOLEAN_TYPE
)
7827 return build2_loc (loc
, TREE_CODE (op0
), type
,
7828 TREE_OPERAND (op0
, 0),
7829 TREE_OPERAND (op0
, 1));
7830 else if (!INTEGRAL_TYPE_P (type
) && !VOID_TYPE_P (type
)
7831 && TREE_CODE (type
) != VECTOR_TYPE
)
7832 return build3_loc (loc
, COND_EXPR
, type
, op0
,
7833 constant_boolean_node (true, type
),
7834 constant_boolean_node (false, type
));
7837 /* Handle (T *)&A.B.C for A being of type T and B and C
7838 living at offset zero. This occurs frequently in
7839 C++ upcasting and then accessing the base. */
7840 if (TREE_CODE (op0
) == ADDR_EXPR
7841 && POINTER_TYPE_P (type
)
7842 && handled_component_p (TREE_OPERAND (op0
, 0)))
7844 poly_int64 bitsize
, bitpos
;
7847 int unsignedp
, reversep
, volatilep
;
7849 = get_inner_reference (TREE_OPERAND (op0
, 0), &bitsize
, &bitpos
,
7850 &offset
, &mode
, &unsignedp
, &reversep
,
7852 /* If the reference was to a (constant) zero offset, we can use
7853 the address of the base if it has the same base type
7854 as the result type and the pointer type is unqualified. */
7856 && known_eq (bitpos
, 0)
7857 && (TYPE_MAIN_VARIANT (TREE_TYPE (type
))
7858 == TYPE_MAIN_VARIANT (TREE_TYPE (base
)))
7859 && TYPE_QUALS (type
) == TYPE_UNQUALIFIED
)
7860 return fold_convert_loc (loc
, type
,
7861 build_fold_addr_expr_loc (loc
, base
));
7864 if (TREE_CODE (op0
) == MODIFY_EXPR
7865 && TREE_CONSTANT (TREE_OPERAND (op0
, 1))
7866 /* Detect assigning a bitfield. */
7867 && !(TREE_CODE (TREE_OPERAND (op0
, 0)) == COMPONENT_REF
7869 (TREE_OPERAND (TREE_OPERAND (op0
, 0), 1))))
7871 /* Don't leave an assignment inside a conversion
7872 unless assigning a bitfield. */
7873 tem
= fold_build1_loc (loc
, code
, type
, TREE_OPERAND (op0
, 1));
7874 /* First do the assignment, then return converted constant. */
7875 tem
= build2_loc (loc
, COMPOUND_EXPR
, TREE_TYPE (tem
), op0
, tem
);
7876 TREE_NO_WARNING (tem
) = 1;
7877 TREE_USED (tem
) = 1;
7881 /* Convert (T)(x & c) into (T)x & (T)c, if c is an integer
7882 constants (if x has signed type, the sign bit cannot be set
7883 in c). This folds extension into the BIT_AND_EXPR.
7884 ??? We don't do it for BOOLEAN_TYPE or ENUMERAL_TYPE because they
7885 very likely don't have maximal range for their precision and this
7886 transformation effectively doesn't preserve non-maximal ranges. */
7887 if (TREE_CODE (type
) == INTEGER_TYPE
7888 && TREE_CODE (op0
) == BIT_AND_EXPR
7889 && TREE_CODE (TREE_OPERAND (op0
, 1)) == INTEGER_CST
)
7891 tree and_expr
= op0
;
7892 tree and0
= TREE_OPERAND (and_expr
, 0);
7893 tree and1
= TREE_OPERAND (and_expr
, 1);
7896 if (TYPE_UNSIGNED (TREE_TYPE (and_expr
))
7897 || (TYPE_PRECISION (type
)
7898 <= TYPE_PRECISION (TREE_TYPE (and_expr
))))
7900 else if (TYPE_PRECISION (TREE_TYPE (and1
))
7901 <= HOST_BITS_PER_WIDE_INT
7902 && tree_fits_uhwi_p (and1
))
7904 unsigned HOST_WIDE_INT cst
;
7906 cst
= tree_to_uhwi (and1
);
7907 cst
&= HOST_WIDE_INT_M1U
7908 << (TYPE_PRECISION (TREE_TYPE (and1
)) - 1);
7909 change
= (cst
== 0);
7911 && !flag_syntax_only
7912 && (load_extend_op (TYPE_MODE (TREE_TYPE (and0
)))
7915 tree uns
= unsigned_type_for (TREE_TYPE (and0
));
7916 and0
= fold_convert_loc (loc
, uns
, and0
);
7917 and1
= fold_convert_loc (loc
, uns
, and1
);
7922 tem
= force_fit_type (type
, wi::to_widest (and1
), 0,
7923 TREE_OVERFLOW (and1
));
7924 return fold_build2_loc (loc
, BIT_AND_EXPR
, type
,
7925 fold_convert_loc (loc
, type
, and0
), tem
);
7929 /* Convert (T1)(X p+ Y) into ((T1)X p+ Y), for pointer type, when the new
7930 cast (T1)X will fold away. We assume that this happens when X itself
7932 if (POINTER_TYPE_P (type
)
7933 && TREE_CODE (arg0
) == POINTER_PLUS_EXPR
7934 && CONVERT_EXPR_P (TREE_OPERAND (arg0
, 0)))
7936 tree arg00
= TREE_OPERAND (arg0
, 0);
7937 tree arg01
= TREE_OPERAND (arg0
, 1);
7939 return fold_build_pointer_plus_loc
7940 (loc
, fold_convert_loc (loc
, type
, arg00
), arg01
);
7943 /* Convert (T1)(~(T2)X) into ~(T1)X if T1 and T2 are integral types
7944 of the same precision, and X is an integer type not narrower than
7945 types T1 or T2, i.e. the cast (T2)X isn't an extension. */
7946 if (INTEGRAL_TYPE_P (type
)
7947 && TREE_CODE (op0
) == BIT_NOT_EXPR
7948 && INTEGRAL_TYPE_P (TREE_TYPE (op0
))
7949 && CONVERT_EXPR_P (TREE_OPERAND (op0
, 0))
7950 && TYPE_PRECISION (type
) == TYPE_PRECISION (TREE_TYPE (op0
)))
7952 tem
= TREE_OPERAND (TREE_OPERAND (op0
, 0), 0);
7953 if (INTEGRAL_TYPE_P (TREE_TYPE (tem
))
7954 && TYPE_PRECISION (type
) <= TYPE_PRECISION (TREE_TYPE (tem
)))
7955 return fold_build1_loc (loc
, BIT_NOT_EXPR
, type
,
7956 fold_convert_loc (loc
, type
, tem
));
7959 /* Convert (T1)(X * Y) into (T1)X * (T1)Y if T1 is narrower than the
7960 type of X and Y (integer types only). */
7961 if (INTEGRAL_TYPE_P (type
)
7962 && TREE_CODE (op0
) == MULT_EXPR
7963 && INTEGRAL_TYPE_P (TREE_TYPE (op0
))
7964 && TYPE_PRECISION (type
) < TYPE_PRECISION (TREE_TYPE (op0
)))
7966 /* Be careful not to introduce new overflows. */
7968 if (TYPE_OVERFLOW_WRAPS (type
))
7971 mult_type
= unsigned_type_for (type
);
7973 if (TYPE_PRECISION (mult_type
) < TYPE_PRECISION (TREE_TYPE (op0
)))
7975 tem
= fold_build2_loc (loc
, MULT_EXPR
, mult_type
,
7976 fold_convert_loc (loc
, mult_type
,
7977 TREE_OPERAND (op0
, 0)),
7978 fold_convert_loc (loc
, mult_type
,
7979 TREE_OPERAND (op0
, 1)));
7980 return fold_convert_loc (loc
, type
, tem
);
7986 case VIEW_CONVERT_EXPR
:
7987 if (TREE_CODE (op0
) == MEM_REF
)
7989 if (TYPE_ALIGN (TREE_TYPE (op0
)) != TYPE_ALIGN (type
))
7990 type
= build_aligned_type (type
, TYPE_ALIGN (TREE_TYPE (op0
)));
7991 tem
= fold_build2_loc (loc
, MEM_REF
, type
,
7992 TREE_OPERAND (op0
, 0), TREE_OPERAND (op0
, 1));
7993 REF_REVERSE_STORAGE_ORDER (tem
) = REF_REVERSE_STORAGE_ORDER (op0
);
8000 tem
= fold_negate_expr (loc
, arg0
);
8002 return fold_convert_loc (loc
, type
, tem
);
8006 /* Convert fabs((double)float) into (double)fabsf(float). */
8007 if (TREE_CODE (arg0
) == NOP_EXPR
8008 && TREE_CODE (type
) == REAL_TYPE
)
8010 tree targ0
= strip_float_extensions (arg0
);
8012 return fold_convert_loc (loc
, type
,
8013 fold_build1_loc (loc
, ABS_EXPR
,
8020 /* Convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
8021 if (TREE_CODE (arg0
) == BIT_XOR_EXPR
8022 && (tem
= fold_unary_loc (loc
, BIT_NOT_EXPR
, type
,
8023 fold_convert_loc (loc
, type
,
8024 TREE_OPERAND (arg0
, 0)))))
8025 return fold_build2_loc (loc
, BIT_XOR_EXPR
, type
, tem
,
8026 fold_convert_loc (loc
, type
,
8027 TREE_OPERAND (arg0
, 1)));
8028 else if (TREE_CODE (arg0
) == BIT_XOR_EXPR
8029 && (tem
= fold_unary_loc (loc
, BIT_NOT_EXPR
, type
,
8030 fold_convert_loc (loc
, type
,
8031 TREE_OPERAND (arg0
, 1)))))
8032 return fold_build2_loc (loc
, BIT_XOR_EXPR
, type
,
8033 fold_convert_loc (loc
, type
,
8034 TREE_OPERAND (arg0
, 0)), tem
);
8038 case TRUTH_NOT_EXPR
:
8039 /* Note that the operand of this must be an int
8040 and its values must be 0 or 1.
8041 ("true" is a fixed value perhaps depending on the language,
8042 but we don't handle values other than 1 correctly yet.) */
8043 tem
= fold_truth_not_expr (loc
, arg0
);
8046 return fold_convert_loc (loc
, type
, tem
);
8049 /* Fold *&X to X if X is an lvalue. */
8050 if (TREE_CODE (op0
) == ADDR_EXPR
)
8052 tree op00
= TREE_OPERAND (op0
, 0);
8054 || TREE_CODE (op00
) == PARM_DECL
8055 || TREE_CODE (op00
) == RESULT_DECL
)
8056 && !TREE_READONLY (op00
))
8063 } /* switch (code) */
8067 /* If the operation was a conversion do _not_ mark a resulting constant
8068 with TREE_OVERFLOW if the original constant was not. These conversions
8069 have implementation defined behavior and retaining the TREE_OVERFLOW
8070 flag here would confuse later passes such as VRP. */
8072 fold_unary_ignore_overflow_loc (location_t loc
, enum tree_code code
,
8073 tree type
, tree op0
)
8075 tree res
= fold_unary_loc (loc
, code
, type
, op0
);
8077 && TREE_CODE (res
) == INTEGER_CST
8078 && TREE_CODE (op0
) == INTEGER_CST
8079 && CONVERT_EXPR_CODE_P (code
))
8080 TREE_OVERFLOW (res
) = TREE_OVERFLOW (op0
);
8085 /* Fold a binary bitwise/truth expression of code CODE and type TYPE with
8086 operands OP0 and OP1. LOC is the location of the resulting expression.
8087 ARG0 and ARG1 are the NOP_STRIPed results of OP0 and OP1.
8088 Return the folded expression if folding is successful. Otherwise,
8089 return NULL_TREE. */
8091 fold_truth_andor (location_t loc
, enum tree_code code
, tree type
,
8092 tree arg0
, tree arg1
, tree op0
, tree op1
)
8096 /* We only do these simplifications if we are optimizing. */
8100 /* Check for things like (A || B) && (A || C). We can convert this
8101 to A || (B && C). Note that either operator can be any of the four
8102 truth and/or operations and the transformation will still be
8103 valid. Also note that we only care about order for the
8104 ANDIF and ORIF operators. If B contains side effects, this
8105 might change the truth-value of A. */
8106 if (TREE_CODE (arg0
) == TREE_CODE (arg1
)
8107 && (TREE_CODE (arg0
) == TRUTH_ANDIF_EXPR
8108 || TREE_CODE (arg0
) == TRUTH_ORIF_EXPR
8109 || TREE_CODE (arg0
) == TRUTH_AND_EXPR
8110 || TREE_CODE (arg0
) == TRUTH_OR_EXPR
)
8111 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg0
, 1)))
8113 tree a00
= TREE_OPERAND (arg0
, 0);
8114 tree a01
= TREE_OPERAND (arg0
, 1);
8115 tree a10
= TREE_OPERAND (arg1
, 0);
8116 tree a11
= TREE_OPERAND (arg1
, 1);
8117 int commutative
= ((TREE_CODE (arg0
) == TRUTH_OR_EXPR
8118 || TREE_CODE (arg0
) == TRUTH_AND_EXPR
)
8119 && (code
== TRUTH_AND_EXPR
8120 || code
== TRUTH_OR_EXPR
));
8122 if (operand_equal_p (a00
, a10
, 0))
8123 return fold_build2_loc (loc
, TREE_CODE (arg0
), type
, a00
,
8124 fold_build2_loc (loc
, code
, type
, a01
, a11
));
8125 else if (commutative
&& operand_equal_p (a00
, a11
, 0))
8126 return fold_build2_loc (loc
, TREE_CODE (arg0
), type
, a00
,
8127 fold_build2_loc (loc
, code
, type
, a01
, a10
));
8128 else if (commutative
&& operand_equal_p (a01
, a10
, 0))
8129 return fold_build2_loc (loc
, TREE_CODE (arg0
), type
, a01
,
8130 fold_build2_loc (loc
, code
, type
, a00
, a11
));
8132 /* This case if tricky because we must either have commutative
8133 operators or else A10 must not have side-effects. */
8135 else if ((commutative
|| ! TREE_SIDE_EFFECTS (a10
))
8136 && operand_equal_p (a01
, a11
, 0))
8137 return fold_build2_loc (loc
, TREE_CODE (arg0
), type
,
8138 fold_build2_loc (loc
, code
, type
, a00
, a10
),
8142 /* See if we can build a range comparison. */
8143 if ((tem
= fold_range_test (loc
, code
, type
, op0
, op1
)) != 0)
8146 if ((code
== TRUTH_ANDIF_EXPR
&& TREE_CODE (arg0
) == TRUTH_ORIF_EXPR
)
8147 || (code
== TRUTH_ORIF_EXPR
&& TREE_CODE (arg0
) == TRUTH_ANDIF_EXPR
))
8149 tem
= merge_truthop_with_opposite_arm (loc
, arg0
, arg1
, true);
8151 return fold_build2_loc (loc
, code
, type
, tem
, arg1
);
8154 if ((code
== TRUTH_ANDIF_EXPR
&& TREE_CODE (arg1
) == TRUTH_ORIF_EXPR
)
8155 || (code
== TRUTH_ORIF_EXPR
&& TREE_CODE (arg1
) == TRUTH_ANDIF_EXPR
))
8157 tem
= merge_truthop_with_opposite_arm (loc
, arg1
, arg0
, false);
8159 return fold_build2_loc (loc
, code
, type
, arg0
, tem
);
8162 /* Check for the possibility of merging component references. If our
8163 lhs is another similar operation, try to merge its rhs with our
8164 rhs. Then try to merge our lhs and rhs. */
8165 if (TREE_CODE (arg0
) == code
8166 && (tem
= fold_truth_andor_1 (loc
, code
, type
,
8167 TREE_OPERAND (arg0
, 1), arg1
)) != 0)
8168 return fold_build2_loc (loc
, code
, type
, TREE_OPERAND (arg0
, 0), tem
);
8170 if ((tem
= fold_truth_andor_1 (loc
, code
, type
, arg0
, arg1
)) != 0)
8173 if (LOGICAL_OP_NON_SHORT_CIRCUIT
8174 && !flag_sanitize_coverage
8175 && (code
== TRUTH_AND_EXPR
8176 || code
== TRUTH_ANDIF_EXPR
8177 || code
== TRUTH_OR_EXPR
8178 || code
== TRUTH_ORIF_EXPR
))
8180 enum tree_code ncode
, icode
;
8182 ncode
= (code
== TRUTH_ANDIF_EXPR
|| code
== TRUTH_AND_EXPR
)
8183 ? TRUTH_AND_EXPR
: TRUTH_OR_EXPR
;
8184 icode
= ncode
== TRUTH_AND_EXPR
? TRUTH_ANDIF_EXPR
: TRUTH_ORIF_EXPR
;
8186 /* Transform ((A AND-IF B) AND[-IF] C) into (A AND-IF (B AND C)),
8187 or ((A OR-IF B) OR[-IF] C) into (A OR-IF (B OR C))
8188 We don't want to pack more than two leafs to a non-IF AND/OR
8190 If tree-code of left-hand operand isn't an AND/OR-IF code and not
8191 equal to IF-CODE, then we don't want to add right-hand operand.
8192 If the inner right-hand side of left-hand operand has
8193 side-effects, or isn't simple, then we can't add to it,
8194 as otherwise we might destroy if-sequence. */
8195 if (TREE_CODE (arg0
) == icode
8196 && simple_operand_p_2 (arg1
)
8197 /* Needed for sequence points to handle trappings, and
8199 && simple_operand_p_2 (TREE_OPERAND (arg0
, 1)))
8201 tem
= fold_build2_loc (loc
, ncode
, type
, TREE_OPERAND (arg0
, 1),
8203 return fold_build2_loc (loc
, icode
, type
, TREE_OPERAND (arg0
, 0),
8206 /* Same as above but for (A AND[-IF] (B AND-IF C)) -> ((A AND B) AND-IF C),
8207 or (A OR[-IF] (B OR-IF C) -> ((A OR B) OR-IF C). */
8208 else if (TREE_CODE (arg1
) == icode
8209 && simple_operand_p_2 (arg0
)
8210 /* Needed for sequence points to handle trappings, and
8212 && simple_operand_p_2 (TREE_OPERAND (arg1
, 0)))
8214 tem
= fold_build2_loc (loc
, ncode
, type
,
8215 arg0
, TREE_OPERAND (arg1
, 0));
8216 return fold_build2_loc (loc
, icode
, type
, tem
,
8217 TREE_OPERAND (arg1
, 1));
8219 /* Transform (A AND-IF B) into (A AND B), or (A OR-IF B)
8221 For sequence point consistancy, we need to check for trapping,
8222 and side-effects. */
8223 else if (code
== icode
&& simple_operand_p_2 (arg0
)
8224 && simple_operand_p_2 (arg1
))
8225 return fold_build2_loc (loc
, ncode
, type
, arg0
, arg1
);
8231 /* Helper that tries to canonicalize the comparison ARG0 CODE ARG1
8232 by changing CODE to reduce the magnitude of constants involved in
8233 ARG0 of the comparison.
8234 Returns a canonicalized comparison tree if a simplification was
8235 possible, otherwise returns NULL_TREE.
8236 Set *STRICT_OVERFLOW_P to true if the canonicalization is only
8237 valid if signed overflow is undefined. */
8240 maybe_canonicalize_comparison_1 (location_t loc
, enum tree_code code
, tree type
,
8241 tree arg0
, tree arg1
,
8242 bool *strict_overflow_p
)
8244 enum tree_code code0
= TREE_CODE (arg0
);
8245 tree t
, cst0
= NULL_TREE
;
8248 /* Match A +- CST code arg1. We can change this only if overflow
8250 if (!((ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0
))
8251 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0
)))
8252 /* In principle pointers also have undefined overflow behavior,
8253 but that causes problems elsewhere. */
8254 && !POINTER_TYPE_P (TREE_TYPE (arg0
))
8255 && (code0
== MINUS_EXPR
8256 || code0
== PLUS_EXPR
)
8257 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
))
8260 /* Identify the constant in arg0 and its sign. */
8261 cst0
= TREE_OPERAND (arg0
, 1);
8262 sgn0
= tree_int_cst_sgn (cst0
);
8264 /* Overflowed constants and zero will cause problems. */
8265 if (integer_zerop (cst0
)
8266 || TREE_OVERFLOW (cst0
))
8269 /* See if we can reduce the magnitude of the constant in
8270 arg0 by changing the comparison code. */
8271 /* A - CST < arg1 -> A - CST-1 <= arg1. */
8273 && code0
== ((sgn0
== -1) ? PLUS_EXPR
: MINUS_EXPR
))
8275 /* A + CST > arg1 -> A + CST-1 >= arg1. */
8276 else if (code
== GT_EXPR
8277 && code0
== ((sgn0
== -1) ? MINUS_EXPR
: PLUS_EXPR
))
8279 /* A + CST <= arg1 -> A + CST-1 < arg1. */
8280 else if (code
== LE_EXPR
8281 && code0
== ((sgn0
== -1) ? MINUS_EXPR
: PLUS_EXPR
))
8283 /* A - CST >= arg1 -> A - CST-1 > arg1. */
8284 else if (code
== GE_EXPR
8285 && code0
== ((sgn0
== -1) ? PLUS_EXPR
: MINUS_EXPR
))
8289 *strict_overflow_p
= true;
8291 /* Now build the constant reduced in magnitude. But not if that
8292 would produce one outside of its types range. */
8293 if (INTEGRAL_TYPE_P (TREE_TYPE (cst0
))
8295 && TYPE_MIN_VALUE (TREE_TYPE (cst0
))
8296 && tree_int_cst_equal (cst0
, TYPE_MIN_VALUE (TREE_TYPE (cst0
))))
8298 && TYPE_MAX_VALUE (TREE_TYPE (cst0
))
8299 && tree_int_cst_equal (cst0
, TYPE_MAX_VALUE (TREE_TYPE (cst0
))))))
8302 t
= int_const_binop (sgn0
== -1 ? PLUS_EXPR
: MINUS_EXPR
,
8303 cst0
, build_int_cst (TREE_TYPE (cst0
), 1));
8304 t
= fold_build2_loc (loc
, code0
, TREE_TYPE (arg0
), TREE_OPERAND (arg0
, 0), t
);
8305 t
= fold_convert (TREE_TYPE (arg1
), t
);
8307 return fold_build2_loc (loc
, code
, type
, t
, arg1
);
8310 /* Canonicalize the comparison ARG0 CODE ARG1 with type TYPE with undefined
8311 overflow further. Try to decrease the magnitude of constants involved
8312 by changing LE_EXPR and GE_EXPR to LT_EXPR and GT_EXPR or vice versa
8313 and put sole constants at the second argument position.
8314 Returns the canonicalized tree if changed, otherwise NULL_TREE. */
8317 maybe_canonicalize_comparison (location_t loc
, enum tree_code code
, tree type
,
8318 tree arg0
, tree arg1
)
8321 bool strict_overflow_p
;
8322 const char * const warnmsg
= G_("assuming signed overflow does not occur "
8323 "when reducing constant in comparison");
8325 /* Try canonicalization by simplifying arg0. */
8326 strict_overflow_p
= false;
8327 t
= maybe_canonicalize_comparison_1 (loc
, code
, type
, arg0
, arg1
,
8328 &strict_overflow_p
);
8331 if (strict_overflow_p
)
8332 fold_overflow_warning (warnmsg
, WARN_STRICT_OVERFLOW_MAGNITUDE
);
8336 /* Try canonicalization by simplifying arg1 using the swapped
8338 code
= swap_tree_comparison (code
);
8339 strict_overflow_p
= false;
8340 t
= maybe_canonicalize_comparison_1 (loc
, code
, type
, arg1
, arg0
,
8341 &strict_overflow_p
);
8342 if (t
&& strict_overflow_p
)
8343 fold_overflow_warning (warnmsg
, WARN_STRICT_OVERFLOW_MAGNITUDE
);
8347 /* Return whether BASE + OFFSET + BITPOS may wrap around the address
8348 space. This is used to avoid issuing overflow warnings for
8349 expressions like &p->x which can not wrap. */
8352 pointer_may_wrap_p (tree base
, tree offset
, poly_int64 bitpos
)
8354 if (!POINTER_TYPE_P (TREE_TYPE (base
)))
8357 if (maybe_lt (bitpos
, 0))
8360 poly_wide_int wi_offset
;
8361 int precision
= TYPE_PRECISION (TREE_TYPE (base
));
8362 if (offset
== NULL_TREE
)
8363 wi_offset
= wi::zero (precision
);
8364 else if (!poly_int_tree_p (offset
) || TREE_OVERFLOW (offset
))
8367 wi_offset
= wi::to_poly_wide (offset
);
8370 poly_wide_int units
= wi::shwi (bits_to_bytes_round_down (bitpos
),
8372 poly_wide_int total
= wi::add (wi_offset
, units
, UNSIGNED
, &overflow
);
8376 poly_uint64 total_hwi
, size
;
8377 if (!total
.to_uhwi (&total_hwi
)
8378 || !poly_int_tree_p (TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (base
))),
8380 || known_eq (size
, 0U))
8383 if (known_le (total_hwi
, size
))
8386 /* We can do slightly better for SIZE if we have an ADDR_EXPR of an
8388 if (TREE_CODE (base
) == ADDR_EXPR
8389 && poly_int_tree_p (TYPE_SIZE_UNIT (TREE_TYPE (TREE_OPERAND (base
, 0))),
8391 && maybe_ne (size
, 0U)
8392 && known_le (total_hwi
, size
))
8398 /* Return a positive integer when the symbol DECL is known to have
8399 a nonzero address, zero when it's known not to (e.g., it's a weak
8400 symbol), and a negative integer when the symbol is not yet in the
8401 symbol table and so whether or not its address is zero is unknown.
8402 For function local objects always return positive integer. */
8404 maybe_nonzero_address (tree decl
)
8406 if (DECL_P (decl
) && decl_in_symtab_p (decl
))
8407 if (struct symtab_node
*symbol
= symtab_node::get_create (decl
))
8408 return symbol
->nonzero_address ();
8410 /* Function local objects are never NULL. */
8412 && (DECL_CONTEXT (decl
)
8413 && TREE_CODE (DECL_CONTEXT (decl
)) == FUNCTION_DECL
8414 && auto_var_in_fn_p (decl
, DECL_CONTEXT (decl
))))
8420 /* Subroutine of fold_binary. This routine performs all of the
8421 transformations that are common to the equality/inequality
8422 operators (EQ_EXPR and NE_EXPR) and the ordering operators
8423 (LT_EXPR, LE_EXPR, GE_EXPR and GT_EXPR). Callers other than
8424 fold_binary should call fold_binary. Fold a comparison with
8425 tree code CODE and type TYPE with operands OP0 and OP1. Return
8426 the folded comparison or NULL_TREE. */
8429 fold_comparison (location_t loc
, enum tree_code code
, tree type
,
8432 const bool equality_code
= (code
== EQ_EXPR
|| code
== NE_EXPR
);
8433 tree arg0
, arg1
, tem
;
8438 STRIP_SIGN_NOPS (arg0
);
8439 STRIP_SIGN_NOPS (arg1
);
8441 /* For comparisons of pointers we can decompose it to a compile time
8442 comparison of the base objects and the offsets into the object.
8443 This requires at least one operand being an ADDR_EXPR or a
8444 POINTER_PLUS_EXPR to do more than the operand_equal_p test below. */
8445 if (POINTER_TYPE_P (TREE_TYPE (arg0
))
8446 && (TREE_CODE (arg0
) == ADDR_EXPR
8447 || TREE_CODE (arg1
) == ADDR_EXPR
8448 || TREE_CODE (arg0
) == POINTER_PLUS_EXPR
8449 || TREE_CODE (arg1
) == POINTER_PLUS_EXPR
))
8451 tree base0
, base1
, offset0
= NULL_TREE
, offset1
= NULL_TREE
;
8452 poly_int64 bitsize
, bitpos0
= 0, bitpos1
= 0;
8454 int volatilep
, reversep
, unsignedp
;
8455 bool indirect_base0
= false, indirect_base1
= false;
8457 /* Get base and offset for the access. Strip ADDR_EXPR for
8458 get_inner_reference, but put it back by stripping INDIRECT_REF
8459 off the base object if possible. indirect_baseN will be true
8460 if baseN is not an address but refers to the object itself. */
8462 if (TREE_CODE (arg0
) == ADDR_EXPR
)
8465 = get_inner_reference (TREE_OPERAND (arg0
, 0),
8466 &bitsize
, &bitpos0
, &offset0
, &mode
,
8467 &unsignedp
, &reversep
, &volatilep
);
8468 if (TREE_CODE (base0
) == INDIRECT_REF
)
8469 base0
= TREE_OPERAND (base0
, 0);
8471 indirect_base0
= true;
8473 else if (TREE_CODE (arg0
) == POINTER_PLUS_EXPR
)
8475 base0
= TREE_OPERAND (arg0
, 0);
8476 STRIP_SIGN_NOPS (base0
);
8477 if (TREE_CODE (base0
) == ADDR_EXPR
)
8480 = get_inner_reference (TREE_OPERAND (base0
, 0),
8481 &bitsize
, &bitpos0
, &offset0
, &mode
,
8482 &unsignedp
, &reversep
, &volatilep
);
8483 if (TREE_CODE (base0
) == INDIRECT_REF
)
8484 base0
= TREE_OPERAND (base0
, 0);
8486 indirect_base0
= true;
8488 if (offset0
== NULL_TREE
|| integer_zerop (offset0
))
8489 offset0
= TREE_OPERAND (arg0
, 1);
8491 offset0
= size_binop (PLUS_EXPR
, offset0
,
8492 TREE_OPERAND (arg0
, 1));
8493 if (poly_int_tree_p (offset0
))
8495 poly_offset_int tem
= wi::sext (wi::to_poly_offset (offset0
),
8496 TYPE_PRECISION (sizetype
));
8497 tem
<<= LOG2_BITS_PER_UNIT
;
8499 if (tem
.to_shwi (&bitpos0
))
8500 offset0
= NULL_TREE
;
8505 if (TREE_CODE (arg1
) == ADDR_EXPR
)
8508 = get_inner_reference (TREE_OPERAND (arg1
, 0),
8509 &bitsize
, &bitpos1
, &offset1
, &mode
,
8510 &unsignedp
, &reversep
, &volatilep
);
8511 if (TREE_CODE (base1
) == INDIRECT_REF
)
8512 base1
= TREE_OPERAND (base1
, 0);
8514 indirect_base1
= true;
8516 else if (TREE_CODE (arg1
) == POINTER_PLUS_EXPR
)
8518 base1
= TREE_OPERAND (arg1
, 0);
8519 STRIP_SIGN_NOPS (base1
);
8520 if (TREE_CODE (base1
) == ADDR_EXPR
)
8523 = get_inner_reference (TREE_OPERAND (base1
, 0),
8524 &bitsize
, &bitpos1
, &offset1
, &mode
,
8525 &unsignedp
, &reversep
, &volatilep
);
8526 if (TREE_CODE (base1
) == INDIRECT_REF
)
8527 base1
= TREE_OPERAND (base1
, 0);
8529 indirect_base1
= true;
8531 if (offset1
== NULL_TREE
|| integer_zerop (offset1
))
8532 offset1
= TREE_OPERAND (arg1
, 1);
8534 offset1
= size_binop (PLUS_EXPR
, offset1
,
8535 TREE_OPERAND (arg1
, 1));
8536 if (poly_int_tree_p (offset1
))
8538 poly_offset_int tem
= wi::sext (wi::to_poly_offset (offset1
),
8539 TYPE_PRECISION (sizetype
));
8540 tem
<<= LOG2_BITS_PER_UNIT
;
8542 if (tem
.to_shwi (&bitpos1
))
8543 offset1
= NULL_TREE
;
8547 /* If we have equivalent bases we might be able to simplify. */
8548 if (indirect_base0
== indirect_base1
8549 && operand_equal_p (base0
, base1
,
8550 indirect_base0
? OEP_ADDRESS_OF
: 0))
8552 /* We can fold this expression to a constant if the non-constant
8553 offset parts are equal. */
8554 if (offset0
== offset1
8555 || (offset0
&& offset1
8556 && operand_equal_p (offset0
, offset1
, 0)))
8559 && maybe_ne (bitpos0
, bitpos1
)
8560 && (pointer_may_wrap_p (base0
, offset0
, bitpos0
)
8561 || pointer_may_wrap_p (base1
, offset1
, bitpos1
)))
8562 fold_overflow_warning (("assuming pointer wraparound does not "
8563 "occur when comparing P +- C1 with "
8565 WARN_STRICT_OVERFLOW_CONDITIONAL
);
8570 if (known_eq (bitpos0
, bitpos1
))
8571 return boolean_true_node
;
8572 if (known_ne (bitpos0
, bitpos1
))
8573 return boolean_false_node
;
8576 if (known_ne (bitpos0
, bitpos1
))
8577 return boolean_true_node
;
8578 if (known_eq (bitpos0
, bitpos1
))
8579 return boolean_false_node
;
8582 if (known_lt (bitpos0
, bitpos1
))
8583 return boolean_true_node
;
8584 if (known_ge (bitpos0
, bitpos1
))
8585 return boolean_false_node
;
8588 if (known_le (bitpos0
, bitpos1
))
8589 return boolean_true_node
;
8590 if (known_gt (bitpos0
, bitpos1
))
8591 return boolean_false_node
;
8594 if (known_ge (bitpos0
, bitpos1
))
8595 return boolean_true_node
;
8596 if (known_lt (bitpos0
, bitpos1
))
8597 return boolean_false_node
;
8600 if (known_gt (bitpos0
, bitpos1
))
8601 return boolean_true_node
;
8602 if (known_le (bitpos0
, bitpos1
))
8603 return boolean_false_node
;
8608 /* We can simplify the comparison to a comparison of the variable
8609 offset parts if the constant offset parts are equal.
8610 Be careful to use signed sizetype here because otherwise we
8611 mess with array offsets in the wrong way. This is possible
8612 because pointer arithmetic is restricted to retain within an
8613 object and overflow on pointer differences is undefined as of
8614 6.5.6/8 and /9 with respect to the signed ptrdiff_t. */
8615 else if (known_eq (bitpos0
, bitpos1
))
8617 /* By converting to signed sizetype we cover middle-end pointer
8618 arithmetic which operates on unsigned pointer types of size
8619 type size and ARRAY_REF offsets which are properly sign or
8620 zero extended from their type in case it is narrower than
8622 if (offset0
== NULL_TREE
)
8623 offset0
= build_int_cst (ssizetype
, 0);
8625 offset0
= fold_convert_loc (loc
, ssizetype
, offset0
);
8626 if (offset1
== NULL_TREE
)
8627 offset1
= build_int_cst (ssizetype
, 0);
8629 offset1
= fold_convert_loc (loc
, ssizetype
, offset1
);
8632 && (pointer_may_wrap_p (base0
, offset0
, bitpos0
)
8633 || pointer_may_wrap_p (base1
, offset1
, bitpos1
)))
8634 fold_overflow_warning (("assuming pointer wraparound does not "
8635 "occur when comparing P +- C1 with "
8637 WARN_STRICT_OVERFLOW_COMPARISON
);
8639 return fold_build2_loc (loc
, code
, type
, offset0
, offset1
);
8642 /* For equal offsets we can simplify to a comparison of the
8644 else if (known_eq (bitpos0
, bitpos1
)
8646 ? base0
!= TREE_OPERAND (arg0
, 0) : base0
!= arg0
)
8648 ? base1
!= TREE_OPERAND (arg1
, 0) : base1
!= arg1
)
8649 && ((offset0
== offset1
)
8650 || (offset0
&& offset1
8651 && operand_equal_p (offset0
, offset1
, 0))))
8654 base0
= build_fold_addr_expr_loc (loc
, base0
);
8656 base1
= build_fold_addr_expr_loc (loc
, base1
);
8657 return fold_build2_loc (loc
, code
, type
, base0
, base1
);
8659 /* Comparison between an ordinary (non-weak) symbol and a null
8660 pointer can be eliminated since such symbols must have a non
8661 null address. In C, relational expressions between pointers
8662 to objects and null pointers are undefined. The results
8663 below follow the C++ rules with the additional property that
8664 every object pointer compares greater than a null pointer.
8666 else if (((DECL_P (base0
)
8667 && maybe_nonzero_address (base0
) > 0
8668 /* Avoid folding references to struct members at offset 0 to
8669 prevent tests like '&ptr->firstmember == 0' from getting
8670 eliminated. When ptr is null, although the -> expression
8671 is strictly speaking invalid, GCC retains it as a matter
8672 of QoI. See PR c/44555. */
8673 && (offset0
== NULL_TREE
&& known_ne (bitpos0
, 0)))
8674 || CONSTANT_CLASS_P (base0
))
8676 /* The caller guarantees that when one of the arguments is
8677 constant (i.e., null in this case) it is second. */
8678 && integer_zerop (arg1
))
8685 return constant_boolean_node (false, type
);
8689 return constant_boolean_node (true, type
);
8696 /* Transform comparisons of the form X +- C1 CMP Y +- C2 to
8697 X CMP Y +- C2 +- C1 for signed X, Y. This is valid if
8698 the resulting offset is smaller in absolute value than the
8699 original one and has the same sign. */
8700 if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0
))
8701 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0
))
8702 && (TREE_CODE (arg0
) == PLUS_EXPR
|| TREE_CODE (arg0
) == MINUS_EXPR
)
8703 && (TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
8704 && !TREE_OVERFLOW (TREE_OPERAND (arg0
, 1)))
8705 && (TREE_CODE (arg1
) == PLUS_EXPR
|| TREE_CODE (arg1
) == MINUS_EXPR
)
8706 && (TREE_CODE (TREE_OPERAND (arg1
, 1)) == INTEGER_CST
8707 && !TREE_OVERFLOW (TREE_OPERAND (arg1
, 1))))
8709 tree const1
= TREE_OPERAND (arg0
, 1);
8710 tree const2
= TREE_OPERAND (arg1
, 1);
8711 tree variable1
= TREE_OPERAND (arg0
, 0);
8712 tree variable2
= TREE_OPERAND (arg1
, 0);
8714 const char * const warnmsg
= G_("assuming signed overflow does not "
8715 "occur when combining constants around "
8718 /* Put the constant on the side where it doesn't overflow and is
8719 of lower absolute value and of same sign than before. */
8720 cst
= int_const_binop (TREE_CODE (arg0
) == TREE_CODE (arg1
)
8721 ? MINUS_EXPR
: PLUS_EXPR
,
8723 if (!TREE_OVERFLOW (cst
)
8724 && tree_int_cst_compare (const2
, cst
) == tree_int_cst_sgn (const2
)
8725 && tree_int_cst_sgn (cst
) == tree_int_cst_sgn (const2
))
8727 fold_overflow_warning (warnmsg
, WARN_STRICT_OVERFLOW_COMPARISON
);
8728 return fold_build2_loc (loc
, code
, type
,
8730 fold_build2_loc (loc
, TREE_CODE (arg1
),
8735 cst
= int_const_binop (TREE_CODE (arg0
) == TREE_CODE (arg1
)
8736 ? MINUS_EXPR
: PLUS_EXPR
,
8738 if (!TREE_OVERFLOW (cst
)
8739 && tree_int_cst_compare (const1
, cst
) == tree_int_cst_sgn (const1
)
8740 && tree_int_cst_sgn (cst
) == tree_int_cst_sgn (const1
))
8742 fold_overflow_warning (warnmsg
, WARN_STRICT_OVERFLOW_COMPARISON
);
8743 return fold_build2_loc (loc
, code
, type
,
8744 fold_build2_loc (loc
, TREE_CODE (arg0
),
8751 tem
= maybe_canonicalize_comparison (loc
, code
, type
, arg0
, arg1
);
8755 /* If we are comparing an expression that just has comparisons
8756 of two integer values, arithmetic expressions of those comparisons,
8757 and constants, we can simplify it. There are only three cases
8758 to check: the two values can either be equal, the first can be
8759 greater, or the second can be greater. Fold the expression for
8760 those three values. Since each value must be 0 or 1, we have
8761 eight possibilities, each of which corresponds to the constant 0
8762 or 1 or one of the six possible comparisons.
8764 This handles common cases like (a > b) == 0 but also handles
8765 expressions like ((x > y) - (y > x)) > 0, which supposedly
8766 occur in macroized code. */
8768 if (TREE_CODE (arg1
) == INTEGER_CST
&& TREE_CODE (arg0
) != INTEGER_CST
)
8770 tree cval1
= 0, cval2
= 0;
8773 if (twoval_comparison_p (arg0
, &cval1
, &cval2
, &save_p
)
8774 /* Don't handle degenerate cases here; they should already
8775 have been handled anyway. */
8776 && cval1
!= 0 && cval2
!= 0
8777 && ! (TREE_CONSTANT (cval1
) && TREE_CONSTANT (cval2
))
8778 && TREE_TYPE (cval1
) == TREE_TYPE (cval2
)
8779 && INTEGRAL_TYPE_P (TREE_TYPE (cval1
))
8780 && TYPE_MAX_VALUE (TREE_TYPE (cval1
))
8781 && TYPE_MAX_VALUE (TREE_TYPE (cval2
))
8782 && ! operand_equal_p (TYPE_MIN_VALUE (TREE_TYPE (cval1
)),
8783 TYPE_MAX_VALUE (TREE_TYPE (cval2
)), 0))
8785 tree maxval
= TYPE_MAX_VALUE (TREE_TYPE (cval1
));
8786 tree minval
= TYPE_MIN_VALUE (TREE_TYPE (cval1
));
8788 /* We can't just pass T to eval_subst in case cval1 or cval2
8789 was the same as ARG1. */
8792 = fold_build2_loc (loc
, code
, type
,
8793 eval_subst (loc
, arg0
, cval1
, maxval
,
8797 = fold_build2_loc (loc
, code
, type
,
8798 eval_subst (loc
, arg0
, cval1
, maxval
,
8802 = fold_build2_loc (loc
, code
, type
,
8803 eval_subst (loc
, arg0
, cval1
, minval
,
8807 /* All three of these results should be 0 or 1. Confirm they are.
8808 Then use those values to select the proper code to use. */
8810 if (TREE_CODE (high_result
) == INTEGER_CST
8811 && TREE_CODE (equal_result
) == INTEGER_CST
8812 && TREE_CODE (low_result
) == INTEGER_CST
)
8814 /* Make a 3-bit mask with the high-order bit being the
8815 value for `>', the next for '=', and the low for '<'. */
8816 switch ((integer_onep (high_result
) * 4)
8817 + (integer_onep (equal_result
) * 2)
8818 + integer_onep (low_result
))
8822 return omit_one_operand_loc (loc
, type
, integer_zero_node
, arg0
);
8843 return omit_one_operand_loc (loc
, type
, integer_one_node
, arg0
);
8848 tem
= save_expr (build2 (code
, type
, cval1
, cval2
));
8849 protected_set_expr_location (tem
, loc
);
8852 return fold_build2_loc (loc
, code
, type
, cval1
, cval2
);
8861 /* Subroutine of fold_binary. Optimize complex multiplications of the
8862 form z * conj(z), as pow(realpart(z),2) + pow(imagpart(z),2). The
8863 argument EXPR represents the expression "z" of type TYPE. */
8866 fold_mult_zconjz (location_t loc
, tree type
, tree expr
)
8868 tree itype
= TREE_TYPE (type
);
8869 tree rpart
, ipart
, tem
;
8871 if (TREE_CODE (expr
) == COMPLEX_EXPR
)
8873 rpart
= TREE_OPERAND (expr
, 0);
8874 ipart
= TREE_OPERAND (expr
, 1);
8876 else if (TREE_CODE (expr
) == COMPLEX_CST
)
8878 rpart
= TREE_REALPART (expr
);
8879 ipart
= TREE_IMAGPART (expr
);
8883 expr
= save_expr (expr
);
8884 rpart
= fold_build1_loc (loc
, REALPART_EXPR
, itype
, expr
);
8885 ipart
= fold_build1_loc (loc
, IMAGPART_EXPR
, itype
, expr
);
8888 rpart
= save_expr (rpart
);
8889 ipart
= save_expr (ipart
);
8890 tem
= fold_build2_loc (loc
, PLUS_EXPR
, itype
,
8891 fold_build2_loc (loc
, MULT_EXPR
, itype
, rpart
, rpart
),
8892 fold_build2_loc (loc
, MULT_EXPR
, itype
, ipart
, ipart
));
8893 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
, tem
,
8894 build_zero_cst (itype
));
8898 /* Helper function for fold_vec_perm. Store elements of VECTOR_CST or
8899 CONSTRUCTOR ARG into array ELTS, which has NELTS elements, and return
8900 true if successful. */
8903 vec_cst_ctor_to_array (tree arg
, unsigned int nelts
, tree
*elts
)
8905 unsigned HOST_WIDE_INT i
, nunits
;
8907 if (TREE_CODE (arg
) == VECTOR_CST
8908 && VECTOR_CST_NELTS (arg
).is_constant (&nunits
))
8910 for (i
= 0; i
< nunits
; ++i
)
8911 elts
[i
] = VECTOR_CST_ELT (arg
, i
);
8913 else if (TREE_CODE (arg
) == CONSTRUCTOR
)
8915 constructor_elt
*elt
;
8917 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (arg
), i
, elt
)
8918 if (i
>= nelts
|| TREE_CODE (TREE_TYPE (elt
->value
)) == VECTOR_TYPE
)
8921 elts
[i
] = elt
->value
;
8925 for (; i
< nelts
; i
++)
8927 = fold_convert (TREE_TYPE (TREE_TYPE (arg
)), integer_zero_node
);
8931 /* Attempt to fold vector permutation of ARG0 and ARG1 vectors using SEL
8932 selector. Return the folded VECTOR_CST or CONSTRUCTOR if successful,
8933 NULL_TREE otherwise. */
8936 fold_vec_perm (tree type
, tree arg0
, tree arg1
, const vec_perm_indices
&sel
)
8939 unsigned HOST_WIDE_INT nelts
;
8940 bool need_ctor
= false;
8942 if (!sel
.length ().is_constant (&nelts
))
8944 gcc_assert (known_eq (TYPE_VECTOR_SUBPARTS (type
), nelts
)
8945 && known_eq (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0
)), nelts
)
8946 && known_eq (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1
)), nelts
));
8947 if (TREE_TYPE (TREE_TYPE (arg0
)) != TREE_TYPE (type
)
8948 || TREE_TYPE (TREE_TYPE (arg1
)) != TREE_TYPE (type
))
8951 tree
*in_elts
= XALLOCAVEC (tree
, nelts
* 2);
8952 if (!vec_cst_ctor_to_array (arg0
, nelts
, in_elts
)
8953 || !vec_cst_ctor_to_array (arg1
, nelts
, in_elts
+ nelts
))
8956 tree_vector_builder
out_elts (type
, nelts
, 1);
8957 for (i
= 0; i
< nelts
; i
++)
8959 HOST_WIDE_INT index
;
8960 if (!sel
[i
].is_constant (&index
))
8962 if (!CONSTANT_CLASS_P (in_elts
[index
]))
8964 out_elts
.quick_push (unshare_expr (in_elts
[index
]));
8969 vec
<constructor_elt
, va_gc
> *v
;
8970 vec_alloc (v
, nelts
);
8971 for (i
= 0; i
< nelts
; i
++)
8972 CONSTRUCTOR_APPEND_ELT (v
, NULL_TREE
, out_elts
[i
]);
8973 return build_constructor (type
, v
);
8976 return out_elts
.build ();
8979 /* Try to fold a pointer difference of type TYPE two address expressions of
8980 array references AREF0 and AREF1 using location LOC. Return a
8981 simplified expression for the difference or NULL_TREE. */
8984 fold_addr_of_array_ref_difference (location_t loc
, tree type
,
8985 tree aref0
, tree aref1
,
8986 bool use_pointer_diff
)
8988 tree base0
= TREE_OPERAND (aref0
, 0);
8989 tree base1
= TREE_OPERAND (aref1
, 0);
8990 tree base_offset
= build_int_cst (type
, 0);
8992 /* If the bases are array references as well, recurse. If the bases
8993 are pointer indirections compute the difference of the pointers.
8994 If the bases are equal, we are set. */
8995 if ((TREE_CODE (base0
) == ARRAY_REF
8996 && TREE_CODE (base1
) == ARRAY_REF
8998 = fold_addr_of_array_ref_difference (loc
, type
, base0
, base1
,
9000 || (INDIRECT_REF_P (base0
)
9001 && INDIRECT_REF_P (base1
)
9004 ? fold_binary_loc (loc
, POINTER_DIFF_EXPR
, type
,
9005 TREE_OPERAND (base0
, 0),
9006 TREE_OPERAND (base1
, 0))
9007 : fold_binary_loc (loc
, MINUS_EXPR
, type
,
9009 TREE_OPERAND (base0
, 0)),
9011 TREE_OPERAND (base1
, 0)))))
9012 || operand_equal_p (base0
, base1
, OEP_ADDRESS_OF
))
9014 tree op0
= fold_convert_loc (loc
, type
, TREE_OPERAND (aref0
, 1));
9015 tree op1
= fold_convert_loc (loc
, type
, TREE_OPERAND (aref1
, 1));
9016 tree esz
= fold_convert_loc (loc
, type
, array_ref_element_size (aref0
));
9017 tree diff
= fold_build2_loc (loc
, MINUS_EXPR
, type
, op0
, op1
);
9018 return fold_build2_loc (loc
, PLUS_EXPR
, type
,
9020 fold_build2_loc (loc
, MULT_EXPR
, type
,
9026 /* If the real or vector real constant CST of type TYPE has an exact
9027 inverse, return it, else return NULL. */
9030 exact_inverse (tree type
, tree cst
)
9036 switch (TREE_CODE (cst
))
9039 r
= TREE_REAL_CST (cst
);
9041 if (exact_real_inverse (TYPE_MODE (type
), &r
))
9042 return build_real (type
, r
);
9048 unit_type
= TREE_TYPE (type
);
9049 mode
= TYPE_MODE (unit_type
);
9051 tree_vector_builder elts
;
9052 if (!elts
.new_unary_operation (type
, cst
, false))
9054 unsigned int count
= elts
.encoded_nelts ();
9055 for (unsigned int i
= 0; i
< count
; ++i
)
9057 r
= TREE_REAL_CST (VECTOR_CST_ELT (cst
, i
));
9058 if (!exact_real_inverse (mode
, &r
))
9060 elts
.quick_push (build_real (unit_type
, r
));
9063 return elts
.build ();
9071 /* Mask out the tz least significant bits of X of type TYPE where
9072 tz is the number of trailing zeroes in Y. */
9074 mask_with_tz (tree type
, const wide_int
&x
, const wide_int
&y
)
9076 int tz
= wi::ctz (y
);
9078 return wi::mask (tz
, true, TYPE_PRECISION (type
)) & x
;
9082 /* Return true when T is an address and is known to be nonzero.
9083 For floating point we further ensure that T is not denormal.
9084 Similar logic is present in nonzero_address in rtlanal.h.
9086 If the return value is based on the assumption that signed overflow
9087 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
9088 change *STRICT_OVERFLOW_P. */
9091 tree_expr_nonzero_warnv_p (tree t
, bool *strict_overflow_p
)
9093 tree type
= TREE_TYPE (t
);
9094 enum tree_code code
;
9096 /* Doing something useful for floating point would need more work. */
9097 if (!INTEGRAL_TYPE_P (type
) && !POINTER_TYPE_P (type
))
9100 code
= TREE_CODE (t
);
9101 switch (TREE_CODE_CLASS (code
))
9104 return tree_unary_nonzero_warnv_p (code
, type
, TREE_OPERAND (t
, 0),
9107 case tcc_comparison
:
9108 return tree_binary_nonzero_warnv_p (code
, type
,
9109 TREE_OPERAND (t
, 0),
9110 TREE_OPERAND (t
, 1),
9113 case tcc_declaration
:
9115 return tree_single_nonzero_warnv_p (t
, strict_overflow_p
);
9123 case TRUTH_NOT_EXPR
:
9124 return tree_unary_nonzero_warnv_p (code
, type
, TREE_OPERAND (t
, 0),
9127 case TRUTH_AND_EXPR
:
9129 case TRUTH_XOR_EXPR
:
9130 return tree_binary_nonzero_warnv_p (code
, type
,
9131 TREE_OPERAND (t
, 0),
9132 TREE_OPERAND (t
, 1),
9140 case WITH_SIZE_EXPR
:
9142 return tree_single_nonzero_warnv_p (t
, strict_overflow_p
);
9147 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t
, 1),
9151 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t
, 0),
9156 tree fndecl
= get_callee_fndecl (t
);
9157 if (!fndecl
) return false;
9158 if (flag_delete_null_pointer_checks
&& !flag_check_new
9159 && DECL_IS_OPERATOR_NEW (fndecl
)
9160 && !TREE_NOTHROW (fndecl
))
9162 if (flag_delete_null_pointer_checks
9163 && lookup_attribute ("returns_nonnull",
9164 TYPE_ATTRIBUTES (TREE_TYPE (fndecl
))))
9166 return alloca_call_p (t
);
9175 /* Return true when T is an address and is known to be nonzero.
9176 Handle warnings about undefined signed overflow. */
9179 tree_expr_nonzero_p (tree t
)
9181 bool ret
, strict_overflow_p
;
9183 strict_overflow_p
= false;
9184 ret
= tree_expr_nonzero_warnv_p (t
, &strict_overflow_p
);
9185 if (strict_overflow_p
)
9186 fold_overflow_warning (("assuming signed overflow does not occur when "
9187 "determining that expression is always "
9189 WARN_STRICT_OVERFLOW_MISC
);
9193 /* Return true if T is known not to be equal to an integer W. */
9196 expr_not_equal_to (tree t
, const wide_int
&w
)
9198 wide_int min
, max
, nz
;
9199 value_range_type rtype
;
9200 switch (TREE_CODE (t
))
9203 return wi::to_wide (t
) != w
;
9206 if (!INTEGRAL_TYPE_P (TREE_TYPE (t
)))
9208 rtype
= get_range_info (t
, &min
, &max
);
9209 if (rtype
== VR_RANGE
)
9211 if (wi::lt_p (max
, w
, TYPE_SIGN (TREE_TYPE (t
))))
9213 if (wi::lt_p (w
, min
, TYPE_SIGN (TREE_TYPE (t
))))
9216 else if (rtype
== VR_ANTI_RANGE
9217 && wi::le_p (min
, w
, TYPE_SIGN (TREE_TYPE (t
)))
9218 && wi::le_p (w
, max
, TYPE_SIGN (TREE_TYPE (t
))))
9220 /* If T has some known zero bits and W has any of those bits set,
9221 then T is known not to be equal to W. */
9222 if (wi::ne_p (wi::zext (wi::bit_and_not (w
, get_nonzero_bits (t
)),
9223 TYPE_PRECISION (TREE_TYPE (t
))), 0))
9232 /* Fold a binary expression of code CODE and type TYPE with operands
9233 OP0 and OP1. LOC is the location of the resulting expression.
9234 Return the folded expression if folding is successful. Otherwise,
9235 return NULL_TREE. */
9238 fold_binary_loc (location_t loc
, enum tree_code code
, tree type
,
9241 enum tree_code_class kind
= TREE_CODE_CLASS (code
);
9242 tree arg0
, arg1
, tem
;
9243 tree t1
= NULL_TREE
;
9244 bool strict_overflow_p
;
9247 gcc_assert (IS_EXPR_CODE_CLASS (kind
)
9248 && TREE_CODE_LENGTH (code
) == 2
9250 && op1
!= NULL_TREE
);
9255 /* Strip any conversions that don't change the mode. This is
9256 safe for every expression, except for a comparison expression
9257 because its signedness is derived from its operands. So, in
9258 the latter case, only strip conversions that don't change the
9259 signedness. MIN_EXPR/MAX_EXPR also need signedness of arguments
9262 Note that this is done as an internal manipulation within the
9263 constant folder, in order to find the simplest representation
9264 of the arguments so that their form can be studied. In any
9265 cases, the appropriate type conversions should be put back in
9266 the tree that will get out of the constant folder. */
9268 if (kind
== tcc_comparison
|| code
== MIN_EXPR
|| code
== MAX_EXPR
)
9270 STRIP_SIGN_NOPS (arg0
);
9271 STRIP_SIGN_NOPS (arg1
);
9279 /* Note that TREE_CONSTANT isn't enough: static var addresses are
9280 constant but we can't do arithmetic on them. */
9281 if (CONSTANT_CLASS_P (arg0
) && CONSTANT_CLASS_P (arg1
))
9283 tem
= const_binop (code
, type
, arg0
, arg1
);
9284 if (tem
!= NULL_TREE
)
9286 if (TREE_TYPE (tem
) != type
)
9287 tem
= fold_convert_loc (loc
, type
, tem
);
9292 /* If this is a commutative operation, and ARG0 is a constant, move it
9293 to ARG1 to reduce the number of tests below. */
9294 if (commutative_tree_code (code
)
9295 && tree_swap_operands_p (arg0
, arg1
))
9296 return fold_build2_loc (loc
, code
, type
, op1
, op0
);
9298 /* Likewise if this is a comparison, and ARG0 is a constant, move it
9299 to ARG1 to reduce the number of tests below. */
9300 if (kind
== tcc_comparison
9301 && tree_swap_operands_p (arg0
, arg1
))
9302 return fold_build2_loc (loc
, swap_tree_comparison (code
), type
, op1
, op0
);
9304 tem
= generic_simplify (loc
, code
, type
, op0
, op1
);
9308 /* ARG0 is the first operand of EXPR, and ARG1 is the second operand.
9310 First check for cases where an arithmetic operation is applied to a
9311 compound, conditional, or comparison operation. Push the arithmetic
9312 operation inside the compound or conditional to see if any folding
9313 can then be done. Convert comparison to conditional for this purpose.
9314 The also optimizes non-constant cases that used to be done in
9317 Before we do that, see if this is a BIT_AND_EXPR or a BIT_IOR_EXPR,
9318 one of the operands is a comparison and the other is a comparison, a
9319 BIT_AND_EXPR with the constant 1, or a truth value. In that case, the
9320 code below would make the expression more complex. Change it to a
9321 TRUTH_{AND,OR}_EXPR. Likewise, convert a similar NE_EXPR to
9322 TRUTH_XOR_EXPR and an EQ_EXPR to the inversion of a TRUTH_XOR_EXPR. */
9324 if ((code
== BIT_AND_EXPR
|| code
== BIT_IOR_EXPR
9325 || code
== EQ_EXPR
|| code
== NE_EXPR
)
9326 && TREE_CODE (type
) != VECTOR_TYPE
9327 && ((truth_value_p (TREE_CODE (arg0
))
9328 && (truth_value_p (TREE_CODE (arg1
))
9329 || (TREE_CODE (arg1
) == BIT_AND_EXPR
9330 && integer_onep (TREE_OPERAND (arg1
, 1)))))
9331 || (truth_value_p (TREE_CODE (arg1
))
9332 && (truth_value_p (TREE_CODE (arg0
))
9333 || (TREE_CODE (arg0
) == BIT_AND_EXPR
9334 && integer_onep (TREE_OPERAND (arg0
, 1)))))))
9336 tem
= fold_build2_loc (loc
, code
== BIT_AND_EXPR
? TRUTH_AND_EXPR
9337 : code
== BIT_IOR_EXPR
? TRUTH_OR_EXPR
9340 fold_convert_loc (loc
, boolean_type_node
, arg0
),
9341 fold_convert_loc (loc
, boolean_type_node
, arg1
));
9343 if (code
== EQ_EXPR
)
9344 tem
= invert_truthvalue_loc (loc
, tem
);
9346 return fold_convert_loc (loc
, type
, tem
);
9349 if (TREE_CODE_CLASS (code
) == tcc_binary
9350 || TREE_CODE_CLASS (code
) == tcc_comparison
)
9352 if (TREE_CODE (arg0
) == COMPOUND_EXPR
)
9354 tem
= fold_build2_loc (loc
, code
, type
,
9355 fold_convert_loc (loc
, TREE_TYPE (op0
),
9356 TREE_OPERAND (arg0
, 1)), op1
);
9357 return build2_loc (loc
, COMPOUND_EXPR
, type
, TREE_OPERAND (arg0
, 0),
9360 if (TREE_CODE (arg1
) == COMPOUND_EXPR
)
9362 tem
= fold_build2_loc (loc
, code
, type
, op0
,
9363 fold_convert_loc (loc
, TREE_TYPE (op1
),
9364 TREE_OPERAND (arg1
, 1)));
9365 return build2_loc (loc
, COMPOUND_EXPR
, type
, TREE_OPERAND (arg1
, 0),
9369 if (TREE_CODE (arg0
) == COND_EXPR
9370 || TREE_CODE (arg0
) == VEC_COND_EXPR
9371 || COMPARISON_CLASS_P (arg0
))
9373 tem
= fold_binary_op_with_conditional_arg (loc
, code
, type
, op0
, op1
,
9375 /*cond_first_p=*/1);
9376 if (tem
!= NULL_TREE
)
9380 if (TREE_CODE (arg1
) == COND_EXPR
9381 || TREE_CODE (arg1
) == VEC_COND_EXPR
9382 || COMPARISON_CLASS_P (arg1
))
9384 tem
= fold_binary_op_with_conditional_arg (loc
, code
, type
, op0
, op1
,
9386 /*cond_first_p=*/0);
9387 if (tem
!= NULL_TREE
)
9395 /* MEM[&MEM[p, CST1], CST2] -> MEM[p, CST1 + CST2]. */
9396 if (TREE_CODE (arg0
) == ADDR_EXPR
9397 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == MEM_REF
)
9399 tree iref
= TREE_OPERAND (arg0
, 0);
9400 return fold_build2 (MEM_REF
, type
,
9401 TREE_OPERAND (iref
, 0),
9402 int_const_binop (PLUS_EXPR
, arg1
,
9403 TREE_OPERAND (iref
, 1)));
9406 /* MEM[&a.b, CST2] -> MEM[&a, offsetof (a, b) + CST2]. */
9407 if (TREE_CODE (arg0
) == ADDR_EXPR
9408 && handled_component_p (TREE_OPERAND (arg0
, 0)))
9412 base
= get_addr_base_and_unit_offset (TREE_OPERAND (arg0
, 0),
9416 return fold_build2 (MEM_REF
, type
,
9417 build_fold_addr_expr (base
),
9418 int_const_binop (PLUS_EXPR
, arg1
,
9419 size_int (coffset
)));
9424 case POINTER_PLUS_EXPR
:
9425 /* INT +p INT -> (PTR)(INT + INT). Stripping types allows for this. */
9426 if (INTEGRAL_TYPE_P (TREE_TYPE (arg1
))
9427 && INTEGRAL_TYPE_P (TREE_TYPE (arg0
)))
9428 return fold_convert_loc (loc
, type
,
9429 fold_build2_loc (loc
, PLUS_EXPR
, sizetype
,
9430 fold_convert_loc (loc
, sizetype
,
9432 fold_convert_loc (loc
, sizetype
,
9438 if (INTEGRAL_TYPE_P (type
) || VECTOR_INTEGER_TYPE_P (type
))
9440 /* X + (X / CST) * -CST is X % CST. */
9441 if (TREE_CODE (arg1
) == MULT_EXPR
9442 && TREE_CODE (TREE_OPERAND (arg1
, 0)) == TRUNC_DIV_EXPR
9443 && operand_equal_p (arg0
,
9444 TREE_OPERAND (TREE_OPERAND (arg1
, 0), 0), 0))
9446 tree cst0
= TREE_OPERAND (TREE_OPERAND (arg1
, 0), 1);
9447 tree cst1
= TREE_OPERAND (arg1
, 1);
9448 tree sum
= fold_binary_loc (loc
, PLUS_EXPR
, TREE_TYPE (cst1
),
9450 if (sum
&& integer_zerop (sum
))
9451 return fold_convert_loc (loc
, type
,
9452 fold_build2_loc (loc
, TRUNC_MOD_EXPR
,
9453 TREE_TYPE (arg0
), arg0
,
9458 /* Handle (A1 * C1) + (A2 * C2) with A1, A2 or C1, C2 being the same or
9459 one. Make sure the type is not saturating and has the signedness of
9460 the stripped operands, as fold_plusminus_mult_expr will re-associate.
9461 ??? The latter condition should use TYPE_OVERFLOW_* flags instead. */
9462 if ((TREE_CODE (arg0
) == MULT_EXPR
9463 || TREE_CODE (arg1
) == MULT_EXPR
)
9464 && !TYPE_SATURATING (type
)
9465 && TYPE_UNSIGNED (type
) == TYPE_UNSIGNED (TREE_TYPE (arg0
))
9466 && TYPE_UNSIGNED (type
) == TYPE_UNSIGNED (TREE_TYPE (arg1
))
9467 && (!FLOAT_TYPE_P (type
) || flag_associative_math
))
9469 tree tem
= fold_plusminus_mult_expr (loc
, code
, type
, arg0
, arg1
);
9474 if (! FLOAT_TYPE_P (type
))
9476 /* Reassociate (plus (plus (mult) (foo)) (mult)) as
9477 (plus (plus (mult) (mult)) (foo)) so that we can
9478 take advantage of the factoring cases below. */
9479 if (ANY_INTEGRAL_TYPE_P (type
)
9480 && TYPE_OVERFLOW_WRAPS (type
)
9481 && (((TREE_CODE (arg0
) == PLUS_EXPR
9482 || TREE_CODE (arg0
) == MINUS_EXPR
)
9483 && TREE_CODE (arg1
) == MULT_EXPR
)
9484 || ((TREE_CODE (arg1
) == PLUS_EXPR
9485 || TREE_CODE (arg1
) == MINUS_EXPR
)
9486 && TREE_CODE (arg0
) == MULT_EXPR
)))
9488 tree parg0
, parg1
, parg
, marg
;
9489 enum tree_code pcode
;
9491 if (TREE_CODE (arg1
) == MULT_EXPR
)
9492 parg
= arg0
, marg
= arg1
;
9494 parg
= arg1
, marg
= arg0
;
9495 pcode
= TREE_CODE (parg
);
9496 parg0
= TREE_OPERAND (parg
, 0);
9497 parg1
= TREE_OPERAND (parg
, 1);
9501 if (TREE_CODE (parg0
) == MULT_EXPR
9502 && TREE_CODE (parg1
) != MULT_EXPR
)
9503 return fold_build2_loc (loc
, pcode
, type
,
9504 fold_build2_loc (loc
, PLUS_EXPR
, type
,
9505 fold_convert_loc (loc
, type
,
9507 fold_convert_loc (loc
, type
,
9509 fold_convert_loc (loc
, type
, parg1
));
9510 if (TREE_CODE (parg0
) != MULT_EXPR
9511 && TREE_CODE (parg1
) == MULT_EXPR
)
9513 fold_build2_loc (loc
, PLUS_EXPR
, type
,
9514 fold_convert_loc (loc
, type
, parg0
),
9515 fold_build2_loc (loc
, pcode
, type
,
9516 fold_convert_loc (loc
, type
, marg
),
9517 fold_convert_loc (loc
, type
,
9523 /* Fold __complex__ ( x, 0 ) + __complex__ ( 0, y )
9524 to __complex__ ( x, y ). This is not the same for SNaNs or
9525 if signed zeros are involved. */
9526 if (!HONOR_SNANS (element_mode (arg0
))
9527 && !HONOR_SIGNED_ZEROS (element_mode (arg0
))
9528 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0
)))
9530 tree rtype
= TREE_TYPE (TREE_TYPE (arg0
));
9531 tree arg0r
= fold_unary_loc (loc
, REALPART_EXPR
, rtype
, arg0
);
9532 tree arg0i
= fold_unary_loc (loc
, IMAGPART_EXPR
, rtype
, arg0
);
9533 bool arg0rz
= false, arg0iz
= false;
9534 if ((arg0r
&& (arg0rz
= real_zerop (arg0r
)))
9535 || (arg0i
&& (arg0iz
= real_zerop (arg0i
))))
9537 tree arg1r
= fold_unary_loc (loc
, REALPART_EXPR
, rtype
, arg1
);
9538 tree arg1i
= fold_unary_loc (loc
, IMAGPART_EXPR
, rtype
, arg1
);
9539 if (arg0rz
&& arg1i
&& real_zerop (arg1i
))
9541 tree rp
= arg1r
? arg1r
9542 : build1 (REALPART_EXPR
, rtype
, arg1
);
9543 tree ip
= arg0i
? arg0i
9544 : build1 (IMAGPART_EXPR
, rtype
, arg0
);
9545 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
, rp
, ip
);
9547 else if (arg0iz
&& arg1r
&& real_zerop (arg1r
))
9549 tree rp
= arg0r
? arg0r
9550 : build1 (REALPART_EXPR
, rtype
, arg0
);
9551 tree ip
= arg1i
? arg1i
9552 : build1 (IMAGPART_EXPR
, rtype
, arg1
);
9553 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
, rp
, ip
);
9558 /* Convert a + (b*c + d*e) into (a + b*c) + d*e.
9559 We associate floats only if the user has specified
9560 -fassociative-math. */
9561 if (flag_associative_math
9562 && TREE_CODE (arg1
) == PLUS_EXPR
9563 && TREE_CODE (arg0
) != MULT_EXPR
)
9565 tree tree10
= TREE_OPERAND (arg1
, 0);
9566 tree tree11
= TREE_OPERAND (arg1
, 1);
9567 if (TREE_CODE (tree11
) == MULT_EXPR
9568 && TREE_CODE (tree10
) == MULT_EXPR
)
9571 tree0
= fold_build2_loc (loc
, PLUS_EXPR
, type
, arg0
, tree10
);
9572 return fold_build2_loc (loc
, PLUS_EXPR
, type
, tree0
, tree11
);
9575 /* Convert (b*c + d*e) + a into b*c + (d*e +a).
9576 We associate floats only if the user has specified
9577 -fassociative-math. */
9578 if (flag_associative_math
9579 && TREE_CODE (arg0
) == PLUS_EXPR
9580 && TREE_CODE (arg1
) != MULT_EXPR
)
9582 tree tree00
= TREE_OPERAND (arg0
, 0);
9583 tree tree01
= TREE_OPERAND (arg0
, 1);
9584 if (TREE_CODE (tree01
) == MULT_EXPR
9585 && TREE_CODE (tree00
) == MULT_EXPR
)
9588 tree0
= fold_build2_loc (loc
, PLUS_EXPR
, type
, tree01
, arg1
);
9589 return fold_build2_loc (loc
, PLUS_EXPR
, type
, tree00
, tree0
);
9595 /* (A << C1) + (A >> C2) if A is unsigned and C1+C2 is the size of A
9596 is a rotate of A by C1 bits. */
9597 /* (A << B) + (A >> (Z - B)) if A is unsigned and Z is the size of A
9598 is a rotate of A by B bits.
9599 Similarly for (A << B) | (A >> (-B & C3)) where C3 is Z-1,
9600 though in this case CODE must be | and not + or ^, otherwise
9601 it doesn't return A when B is 0. */
9603 enum tree_code code0
, code1
;
9605 code0
= TREE_CODE (arg0
);
9606 code1
= TREE_CODE (arg1
);
9607 if (((code0
== RSHIFT_EXPR
&& code1
== LSHIFT_EXPR
)
9608 || (code1
== RSHIFT_EXPR
&& code0
== LSHIFT_EXPR
))
9609 && operand_equal_p (TREE_OPERAND (arg0
, 0),
9610 TREE_OPERAND (arg1
, 0), 0)
9611 && (rtype
= TREE_TYPE (TREE_OPERAND (arg0
, 0)),
9612 TYPE_UNSIGNED (rtype
))
9613 /* Only create rotates in complete modes. Other cases are not
9614 expanded properly. */
9615 && (element_precision (rtype
)
9616 == GET_MODE_UNIT_PRECISION (TYPE_MODE (rtype
))))
9618 tree tree01
, tree11
;
9619 tree orig_tree01
, orig_tree11
;
9620 enum tree_code code01
, code11
;
9622 tree01
= orig_tree01
= TREE_OPERAND (arg0
, 1);
9623 tree11
= orig_tree11
= TREE_OPERAND (arg1
, 1);
9624 STRIP_NOPS (tree01
);
9625 STRIP_NOPS (tree11
);
9626 code01
= TREE_CODE (tree01
);
9627 code11
= TREE_CODE (tree11
);
9628 if (code11
!= MINUS_EXPR
9629 && (code01
== MINUS_EXPR
|| code01
== BIT_AND_EXPR
))
9631 std::swap (code0
, code1
);
9632 std::swap (code01
, code11
);
9633 std::swap (tree01
, tree11
);
9634 std::swap (orig_tree01
, orig_tree11
);
9636 if (code01
== INTEGER_CST
9637 && code11
== INTEGER_CST
9638 && (wi::to_widest (tree01
) + wi::to_widest (tree11
)
9639 == element_precision (rtype
)))
9641 tem
= build2_loc (loc
, LROTATE_EXPR
,
9642 rtype
, TREE_OPERAND (arg0
, 0),
9643 code0
== LSHIFT_EXPR
9644 ? orig_tree01
: orig_tree11
);
9645 return fold_convert_loc (loc
, type
, tem
);
9647 else if (code11
== MINUS_EXPR
)
9649 tree tree110
, tree111
;
9650 tree110
= TREE_OPERAND (tree11
, 0);
9651 tree111
= TREE_OPERAND (tree11
, 1);
9652 STRIP_NOPS (tree110
);
9653 STRIP_NOPS (tree111
);
9654 if (TREE_CODE (tree110
) == INTEGER_CST
9655 && compare_tree_int (tree110
,
9656 element_precision (rtype
)) == 0
9657 && operand_equal_p (tree01
, tree111
, 0))
9659 tem
= build2_loc (loc
, (code0
== LSHIFT_EXPR
9660 ? LROTATE_EXPR
: RROTATE_EXPR
),
9661 rtype
, TREE_OPERAND (arg0
, 0),
9663 return fold_convert_loc (loc
, type
, tem
);
9666 else if (code
== BIT_IOR_EXPR
9667 && code11
== BIT_AND_EXPR
9668 && pow2p_hwi (element_precision (rtype
)))
9670 tree tree110
, tree111
;
9671 tree110
= TREE_OPERAND (tree11
, 0);
9672 tree111
= TREE_OPERAND (tree11
, 1);
9673 STRIP_NOPS (tree110
);
9674 STRIP_NOPS (tree111
);
9675 if (TREE_CODE (tree110
) == NEGATE_EXPR
9676 && TREE_CODE (tree111
) == INTEGER_CST
9677 && compare_tree_int (tree111
,
9678 element_precision (rtype
) - 1) == 0
9679 && operand_equal_p (tree01
, TREE_OPERAND (tree110
, 0), 0))
9681 tem
= build2_loc (loc
, (code0
== LSHIFT_EXPR
9682 ? LROTATE_EXPR
: RROTATE_EXPR
),
9683 rtype
, TREE_OPERAND (arg0
, 0),
9685 return fold_convert_loc (loc
, type
, tem
);
9692 /* In most languages, can't associate operations on floats through
9693 parentheses. Rather than remember where the parentheses were, we
9694 don't associate floats at all, unless the user has specified
9696 And, we need to make sure type is not saturating. */
9698 if ((! FLOAT_TYPE_P (type
) || flag_associative_math
)
9699 && !TYPE_SATURATING (type
))
9701 tree var0
, minus_var0
, con0
, minus_con0
, lit0
, minus_lit0
;
9702 tree var1
, minus_var1
, con1
, minus_con1
, lit1
, minus_lit1
;
9706 /* Split both trees into variables, constants, and literals. Then
9707 associate each group together, the constants with literals,
9708 then the result with variables. This increases the chances of
9709 literals being recombined later and of generating relocatable
9710 expressions for the sum of a constant and literal. */
9711 var0
= split_tree (arg0
, type
, code
,
9712 &minus_var0
, &con0
, &minus_con0
,
9713 &lit0
, &minus_lit0
, 0);
9714 var1
= split_tree (arg1
, type
, code
,
9715 &minus_var1
, &con1
, &minus_con1
,
9716 &lit1
, &minus_lit1
, code
== MINUS_EXPR
);
9718 /* Recombine MINUS_EXPR operands by using PLUS_EXPR. */
9719 if (code
== MINUS_EXPR
)
9722 /* With undefined overflow prefer doing association in a type
9723 which wraps on overflow, if that is one of the operand types. */
9724 if (POINTER_TYPE_P (type
)
9725 || (INTEGRAL_TYPE_P (type
) && !TYPE_OVERFLOW_WRAPS (type
)))
9727 if (INTEGRAL_TYPE_P (TREE_TYPE (arg0
))
9728 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0
)))
9729 atype
= TREE_TYPE (arg0
);
9730 else if (INTEGRAL_TYPE_P (TREE_TYPE (arg1
))
9731 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg1
)))
9732 atype
= TREE_TYPE (arg1
);
9733 gcc_assert (TYPE_PRECISION (atype
) == TYPE_PRECISION (type
));
9736 /* With undefined overflow we can only associate constants with one
9737 variable, and constants whose association doesn't overflow. */
9738 if (POINTER_TYPE_P (atype
)
9739 || (INTEGRAL_TYPE_P (atype
) && !TYPE_OVERFLOW_WRAPS (atype
)))
9741 if ((var0
&& var1
) || (minus_var0
&& minus_var1
))
9743 /* ??? If split_tree would handle NEGATE_EXPR we could
9744 simply reject these cases and the allowed cases would
9745 be the var0/minus_var1 ones. */
9746 tree tmp0
= var0
? var0
: minus_var0
;
9747 tree tmp1
= var1
? var1
: minus_var1
;
9748 bool one_neg
= false;
9750 if (TREE_CODE (tmp0
) == NEGATE_EXPR
)
9752 tmp0
= TREE_OPERAND (tmp0
, 0);
9755 if (CONVERT_EXPR_P (tmp0
)
9756 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (tmp0
, 0)))
9757 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (tmp0
, 0)))
9758 <= TYPE_PRECISION (atype
)))
9759 tmp0
= TREE_OPERAND (tmp0
, 0);
9760 if (TREE_CODE (tmp1
) == NEGATE_EXPR
)
9762 tmp1
= TREE_OPERAND (tmp1
, 0);
9765 if (CONVERT_EXPR_P (tmp1
)
9766 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (tmp1
, 0)))
9767 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (tmp1
, 0)))
9768 <= TYPE_PRECISION (atype
)))
9769 tmp1
= TREE_OPERAND (tmp1
, 0);
9770 /* The only case we can still associate with two variables
9771 is if they cancel out. */
9773 || !operand_equal_p (tmp0
, tmp1
, 0))
9776 else if ((var0
&& minus_var1
9777 && ! operand_equal_p (var0
, minus_var1
, 0))
9778 || (minus_var0
&& var1
9779 && ! operand_equal_p (minus_var0
, var1
, 0)))
9783 /* Only do something if we found more than two objects. Otherwise,
9784 nothing has changed and we risk infinite recursion. */
9786 && ((var0
!= 0) + (var1
!= 0)
9787 + (minus_var0
!= 0) + (minus_var1
!= 0)
9788 + (con0
!= 0) + (con1
!= 0)
9789 + (minus_con0
!= 0) + (minus_con1
!= 0)
9790 + (lit0
!= 0) + (lit1
!= 0)
9791 + (minus_lit0
!= 0) + (minus_lit1
!= 0)) > 2)
9793 var0
= associate_trees (loc
, var0
, var1
, code
, atype
);
9794 minus_var0
= associate_trees (loc
, minus_var0
, minus_var1
,
9796 con0
= associate_trees (loc
, con0
, con1
, code
, atype
);
9797 minus_con0
= associate_trees (loc
, minus_con0
, minus_con1
,
9799 lit0
= associate_trees (loc
, lit0
, lit1
, code
, atype
);
9800 minus_lit0
= associate_trees (loc
, minus_lit0
, minus_lit1
,
9803 if (minus_var0
&& var0
)
9805 var0
= associate_trees (loc
, var0
, minus_var0
,
9809 if (minus_con0
&& con0
)
9811 con0
= associate_trees (loc
, con0
, minus_con0
,
9816 /* Preserve the MINUS_EXPR if the negative part of the literal is
9817 greater than the positive part. Otherwise, the multiplicative
9818 folding code (i.e extract_muldiv) may be fooled in case
9819 unsigned constants are subtracted, like in the following
9820 example: ((X*2 + 4) - 8U)/2. */
9821 if (minus_lit0
&& lit0
)
9823 if (TREE_CODE (lit0
) == INTEGER_CST
9824 && TREE_CODE (minus_lit0
) == INTEGER_CST
9825 && tree_int_cst_lt (lit0
, minus_lit0
)
9826 /* But avoid ending up with only negated parts. */
9829 minus_lit0
= associate_trees (loc
, minus_lit0
, lit0
,
9835 lit0
= associate_trees (loc
, lit0
, minus_lit0
,
9841 /* Don't introduce overflows through reassociation. */
9842 if ((lit0
&& TREE_OVERFLOW_P (lit0
))
9843 || (minus_lit0
&& TREE_OVERFLOW_P (minus_lit0
)))
9846 /* Eliminate lit0 and minus_lit0 to con0 and minus_con0. */
9847 con0
= associate_trees (loc
, con0
, lit0
, code
, atype
);
9849 minus_con0
= associate_trees (loc
, minus_con0
, minus_lit0
,
9853 /* Eliminate minus_con0. */
9857 con0
= associate_trees (loc
, con0
, minus_con0
,
9860 var0
= associate_trees (loc
, var0
, minus_con0
,
9867 /* Eliminate minus_var0. */
9871 con0
= associate_trees (loc
, con0
, minus_var0
,
9879 fold_convert_loc (loc
, type
, associate_trees (loc
, var0
, con0
,
9886 case POINTER_DIFF_EXPR
:
9888 /* Fold &a[i] - &a[j] to i-j. */
9889 if (TREE_CODE (arg0
) == ADDR_EXPR
9890 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == ARRAY_REF
9891 && TREE_CODE (arg1
) == ADDR_EXPR
9892 && TREE_CODE (TREE_OPERAND (arg1
, 0)) == ARRAY_REF
)
9894 tree tem
= fold_addr_of_array_ref_difference (loc
, type
,
9895 TREE_OPERAND (arg0
, 0),
9896 TREE_OPERAND (arg1
, 0),
9898 == POINTER_DIFF_EXPR
);
9903 /* Further transformations are not for pointers. */
9904 if (code
== POINTER_DIFF_EXPR
)
9907 /* (-A) - B -> (-B) - A where B is easily negated and we can swap. */
9908 if (TREE_CODE (arg0
) == NEGATE_EXPR
9909 && negate_expr_p (op1
)
9910 /* If arg0 is e.g. unsigned int and type is int, then this could
9911 introduce UB, because if A is INT_MIN at runtime, the original
9912 expression can be well defined while the latter is not.
9914 && !(ANY_INTEGRAL_TYPE_P (type
)
9915 && TYPE_OVERFLOW_UNDEFINED (type
)
9916 && ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0
))
9917 && !TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0
))))
9918 return fold_build2_loc (loc
, MINUS_EXPR
, type
, negate_expr (op1
),
9919 fold_convert_loc (loc
, type
,
9920 TREE_OPERAND (arg0
, 0)));
9922 /* Fold __complex__ ( x, 0 ) - __complex__ ( 0, y ) to
9923 __complex__ ( x, -y ). This is not the same for SNaNs or if
9924 signed zeros are involved. */
9925 if (!HONOR_SNANS (element_mode (arg0
))
9926 && !HONOR_SIGNED_ZEROS (element_mode (arg0
))
9927 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0
)))
9929 tree rtype
= TREE_TYPE (TREE_TYPE (arg0
));
9930 tree arg0r
= fold_unary_loc (loc
, REALPART_EXPR
, rtype
, arg0
);
9931 tree arg0i
= fold_unary_loc (loc
, IMAGPART_EXPR
, rtype
, arg0
);
9932 bool arg0rz
= false, arg0iz
= false;
9933 if ((arg0r
&& (arg0rz
= real_zerop (arg0r
)))
9934 || (arg0i
&& (arg0iz
= real_zerop (arg0i
))))
9936 tree arg1r
= fold_unary_loc (loc
, REALPART_EXPR
, rtype
, arg1
);
9937 tree arg1i
= fold_unary_loc (loc
, IMAGPART_EXPR
, rtype
, arg1
);
9938 if (arg0rz
&& arg1i
&& real_zerop (arg1i
))
9940 tree rp
= fold_build1_loc (loc
, NEGATE_EXPR
, rtype
,
9942 : build1 (REALPART_EXPR
, rtype
, arg1
));
9943 tree ip
= arg0i
? arg0i
9944 : build1 (IMAGPART_EXPR
, rtype
, arg0
);
9945 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
, rp
, ip
);
9947 else if (arg0iz
&& arg1r
&& real_zerop (arg1r
))
9949 tree rp
= arg0r
? arg0r
9950 : build1 (REALPART_EXPR
, rtype
, arg0
);
9951 tree ip
= fold_build1_loc (loc
, NEGATE_EXPR
, rtype
,
9953 : build1 (IMAGPART_EXPR
, rtype
, arg1
));
9954 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
, rp
, ip
);
9959 /* A - B -> A + (-B) if B is easily negatable. */
9960 if (negate_expr_p (op1
)
9961 && ! TYPE_OVERFLOW_SANITIZED (type
)
9962 && ((FLOAT_TYPE_P (type
)
9963 /* Avoid this transformation if B is a positive REAL_CST. */
9964 && (TREE_CODE (op1
) != REAL_CST
9965 || REAL_VALUE_NEGATIVE (TREE_REAL_CST (op1
))))
9966 || INTEGRAL_TYPE_P (type
)))
9967 return fold_build2_loc (loc
, PLUS_EXPR
, type
,
9968 fold_convert_loc (loc
, type
, arg0
),
9971 /* Handle (A1 * C1) - (A2 * C2) with A1, A2 or C1, C2 being the same or
9972 one. Make sure the type is not saturating and has the signedness of
9973 the stripped operands, as fold_plusminus_mult_expr will re-associate.
9974 ??? The latter condition should use TYPE_OVERFLOW_* flags instead. */
9975 if ((TREE_CODE (arg0
) == MULT_EXPR
9976 || TREE_CODE (arg1
) == MULT_EXPR
)
9977 && !TYPE_SATURATING (type
)
9978 && TYPE_UNSIGNED (type
) == TYPE_UNSIGNED (TREE_TYPE (arg0
))
9979 && TYPE_UNSIGNED (type
) == TYPE_UNSIGNED (TREE_TYPE (arg1
))
9980 && (!FLOAT_TYPE_P (type
) || flag_associative_math
))
9982 tree tem
= fold_plusminus_mult_expr (loc
, code
, type
, arg0
, arg1
);
9990 if (! FLOAT_TYPE_P (type
))
9992 /* Transform x * -C into -x * C if x is easily negatable. */
9993 if (TREE_CODE (op1
) == INTEGER_CST
9994 && tree_int_cst_sgn (op1
) == -1
9995 && negate_expr_p (op0
)
9996 && negate_expr_p (op1
)
9997 && (tem
= negate_expr (op1
)) != op1
9998 && ! TREE_OVERFLOW (tem
))
9999 return fold_build2_loc (loc
, MULT_EXPR
, type
,
10000 fold_convert_loc (loc
, type
,
10001 negate_expr (op0
)), tem
);
10003 strict_overflow_p
= false;
10004 if (TREE_CODE (arg1
) == INTEGER_CST
10005 && (tem
= extract_muldiv (op0
, arg1
, code
, NULL_TREE
,
10006 &strict_overflow_p
)) != 0)
10008 if (strict_overflow_p
)
10009 fold_overflow_warning (("assuming signed overflow does not "
10010 "occur when simplifying "
10012 WARN_STRICT_OVERFLOW_MISC
);
10013 return fold_convert_loc (loc
, type
, tem
);
10016 /* Optimize z * conj(z) for integer complex numbers. */
10017 if (TREE_CODE (arg0
) == CONJ_EXPR
10018 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0))
10019 return fold_mult_zconjz (loc
, type
, arg1
);
10020 if (TREE_CODE (arg1
) == CONJ_EXPR
10021 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
10022 return fold_mult_zconjz (loc
, type
, arg0
);
10026 /* Fold z * +-I to __complex__ (-+__imag z, +-__real z).
10027 This is not the same for NaNs or if signed zeros are
10029 if (!HONOR_NANS (arg0
)
10030 && !HONOR_SIGNED_ZEROS (element_mode (arg0
))
10031 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0
))
10032 && TREE_CODE (arg1
) == COMPLEX_CST
10033 && real_zerop (TREE_REALPART (arg1
)))
10035 tree rtype
= TREE_TYPE (TREE_TYPE (arg0
));
10036 if (real_onep (TREE_IMAGPART (arg1
)))
10038 fold_build2_loc (loc
, COMPLEX_EXPR
, type
,
10039 negate_expr (fold_build1_loc (loc
, IMAGPART_EXPR
,
10041 fold_build1_loc (loc
, REALPART_EXPR
, rtype
, arg0
));
10042 else if (real_minus_onep (TREE_IMAGPART (arg1
)))
10044 fold_build2_loc (loc
, COMPLEX_EXPR
, type
,
10045 fold_build1_loc (loc
, IMAGPART_EXPR
, rtype
, arg0
),
10046 negate_expr (fold_build1_loc (loc
, REALPART_EXPR
,
10050 /* Optimize z * conj(z) for floating point complex numbers.
10051 Guarded by flag_unsafe_math_optimizations as non-finite
10052 imaginary components don't produce scalar results. */
10053 if (flag_unsafe_math_optimizations
10054 && TREE_CODE (arg0
) == CONJ_EXPR
10055 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0))
10056 return fold_mult_zconjz (loc
, type
, arg1
);
10057 if (flag_unsafe_math_optimizations
10058 && TREE_CODE (arg1
) == CONJ_EXPR
10059 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
10060 return fold_mult_zconjz (loc
, type
, arg0
);
10065 /* Canonicalize (X & C1) | C2. */
10066 if (TREE_CODE (arg0
) == BIT_AND_EXPR
10067 && TREE_CODE (arg1
) == INTEGER_CST
10068 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
)
10070 int width
= TYPE_PRECISION (type
), w
;
10071 wide_int c1
= wi::to_wide (TREE_OPERAND (arg0
, 1));
10072 wide_int c2
= wi::to_wide (arg1
);
10074 /* If (C1&C2) == C1, then (X&C1)|C2 becomes (X,C2). */
10075 if ((c1
& c2
) == c1
)
10076 return omit_one_operand_loc (loc
, type
, arg1
,
10077 TREE_OPERAND (arg0
, 0));
10079 wide_int msk
= wi::mask (width
, false,
10080 TYPE_PRECISION (TREE_TYPE (arg1
)));
10082 /* If (C1|C2) == ~0 then (X&C1)|C2 becomes X|C2. */
10083 if (wi::bit_and_not (msk
, c1
| c2
) == 0)
10085 tem
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 0));
10086 return fold_build2_loc (loc
, BIT_IOR_EXPR
, type
, tem
, arg1
);
10089 /* Minimize the number of bits set in C1, i.e. C1 := C1 & ~C2,
10090 unless (C1 & ~C2) | (C2 & C3) for some C3 is a mask of some
10091 mode which allows further optimizations. */
10094 wide_int c3
= wi::bit_and_not (c1
, c2
);
10095 for (w
= BITS_PER_UNIT
; w
<= width
; w
<<= 1)
10097 wide_int mask
= wi::mask (w
, false,
10098 TYPE_PRECISION (type
));
10099 if (((c1
| c2
) & mask
) == mask
10100 && wi::bit_and_not (c1
, mask
) == 0)
10109 tem
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 0));
10110 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, type
, tem
,
10111 wide_int_to_tree (type
, c3
));
10112 return fold_build2_loc (loc
, BIT_IOR_EXPR
, type
, tem
, arg1
);
10116 /* See if this can be simplified into a rotate first. If that
10117 is unsuccessful continue in the association code. */
10121 /* Fold (X & 1) ^ 1 as (X & 1) == 0. */
10122 if (TREE_CODE (arg0
) == BIT_AND_EXPR
10123 && INTEGRAL_TYPE_P (type
)
10124 && integer_onep (TREE_OPERAND (arg0
, 1))
10125 && integer_onep (arg1
))
10126 return fold_build2_loc (loc
, EQ_EXPR
, type
, arg0
,
10127 build_zero_cst (TREE_TYPE (arg0
)));
10129 /* See if this can be simplified into a rotate first. If that
10130 is unsuccessful continue in the association code. */
10134 /* Fold (X ^ 1) & 1 as (X & 1) == 0. */
10135 if (TREE_CODE (arg0
) == BIT_XOR_EXPR
10136 && INTEGRAL_TYPE_P (type
)
10137 && integer_onep (TREE_OPERAND (arg0
, 1))
10138 && integer_onep (arg1
))
10141 tem
= TREE_OPERAND (arg0
, 0);
10142 tem2
= fold_convert_loc (loc
, TREE_TYPE (tem
), arg1
);
10143 tem2
= fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (tem
),
10145 return fold_build2_loc (loc
, EQ_EXPR
, type
, tem2
,
10146 build_zero_cst (TREE_TYPE (tem
)));
10148 /* Fold ~X & 1 as (X & 1) == 0. */
10149 if (TREE_CODE (arg0
) == BIT_NOT_EXPR
10150 && INTEGRAL_TYPE_P (type
)
10151 && integer_onep (arg1
))
10154 tem
= TREE_OPERAND (arg0
, 0);
10155 tem2
= fold_convert_loc (loc
, TREE_TYPE (tem
), arg1
);
10156 tem2
= fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (tem
),
10158 return fold_build2_loc (loc
, EQ_EXPR
, type
, tem2
,
10159 build_zero_cst (TREE_TYPE (tem
)));
10161 /* Fold !X & 1 as X == 0. */
10162 if (TREE_CODE (arg0
) == TRUTH_NOT_EXPR
10163 && integer_onep (arg1
))
10165 tem
= TREE_OPERAND (arg0
, 0);
10166 return fold_build2_loc (loc
, EQ_EXPR
, type
, tem
,
10167 build_zero_cst (TREE_TYPE (tem
)));
10170 /* Fold (X * Y) & -(1 << CST) to X * Y if Y is a constant
10171 multiple of 1 << CST. */
10172 if (TREE_CODE (arg1
) == INTEGER_CST
)
10174 wi::tree_to_wide_ref cst1
= wi::to_wide (arg1
);
10175 wide_int ncst1
= -cst1
;
10176 if ((cst1
& ncst1
) == ncst1
10177 && multiple_of_p (type
, arg0
,
10178 wide_int_to_tree (TREE_TYPE (arg1
), ncst1
)))
10179 return fold_convert_loc (loc
, type
, arg0
);
10182 /* Fold (X * CST1) & CST2 to zero if we can, or drop known zero
10184 if (TREE_CODE (arg1
) == INTEGER_CST
10185 && TREE_CODE (arg0
) == MULT_EXPR
10186 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
)
10188 wi::tree_to_wide_ref warg1
= wi::to_wide (arg1
);
10190 = mask_with_tz (type
, warg1
, wi::to_wide (TREE_OPERAND (arg0
, 1)));
10193 return omit_two_operands_loc (loc
, type
, build_zero_cst (type
),
10195 else if (masked
!= warg1
)
10197 /* Avoid the transform if arg1 is a mask of some
10198 mode which allows further optimizations. */
10199 int pop
= wi::popcount (warg1
);
10200 if (!(pop
>= BITS_PER_UNIT
10202 && wi::mask (pop
, false, warg1
.get_precision ()) == warg1
))
10203 return fold_build2_loc (loc
, code
, type
, op0
,
10204 wide_int_to_tree (type
, masked
));
10208 /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
10209 ((A & N) + B) & M -> (A + B) & M
10210 Similarly if (N & M) == 0,
10211 ((A | N) + B) & M -> (A + B) & M
10212 and for - instead of + (or unary - instead of +)
10213 and/or ^ instead of |.
10214 If B is constant and (B & M) == 0, fold into A & M. */
10215 if (TREE_CODE (arg1
) == INTEGER_CST
)
10217 wi::tree_to_wide_ref cst1
= wi::to_wide (arg1
);
10218 if ((~cst1
!= 0) && (cst1
& (cst1
+ 1)) == 0
10219 && INTEGRAL_TYPE_P (TREE_TYPE (arg0
))
10220 && (TREE_CODE (arg0
) == PLUS_EXPR
10221 || TREE_CODE (arg0
) == MINUS_EXPR
10222 || TREE_CODE (arg0
) == NEGATE_EXPR
)
10223 && (TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0
))
10224 || TREE_CODE (TREE_TYPE (arg0
)) == INTEGER_TYPE
))
10230 /* Now we know that arg0 is (C + D) or (C - D) or
10231 -C and arg1 (M) is == (1LL << cst) - 1.
10232 Store C into PMOP[0] and D into PMOP[1]. */
10233 pmop
[0] = TREE_OPERAND (arg0
, 0);
10235 if (TREE_CODE (arg0
) != NEGATE_EXPR
)
10237 pmop
[1] = TREE_OPERAND (arg0
, 1);
10241 if ((wi::max_value (TREE_TYPE (arg0
)) & cst1
) != cst1
)
10244 for (; which
>= 0; which
--)
10245 switch (TREE_CODE (pmop
[which
]))
10250 if (TREE_CODE (TREE_OPERAND (pmop
[which
], 1))
10253 cst0
= wi::to_wide (TREE_OPERAND (pmop
[which
], 1)) & cst1
;
10254 if (TREE_CODE (pmop
[which
]) == BIT_AND_EXPR
)
10259 else if (cst0
!= 0)
10261 /* If C or D is of the form (A & N) where
10262 (N & M) == M, or of the form (A | N) or
10263 (A ^ N) where (N & M) == 0, replace it with A. */
10264 pmop
[which
] = TREE_OPERAND (pmop
[which
], 0);
10267 /* If C or D is a N where (N & M) == 0, it can be
10268 omitted (assumed 0). */
10269 if ((TREE_CODE (arg0
) == PLUS_EXPR
10270 || (TREE_CODE (arg0
) == MINUS_EXPR
&& which
== 0))
10271 && (cst1
& wi::to_wide (pmop
[which
])) == 0)
10272 pmop
[which
] = NULL
;
10278 /* Only build anything new if we optimized one or both arguments
10280 if (pmop
[0] != TREE_OPERAND (arg0
, 0)
10281 || (TREE_CODE (arg0
) != NEGATE_EXPR
10282 && pmop
[1] != TREE_OPERAND (arg0
, 1)))
10284 tree utype
= TREE_TYPE (arg0
);
10285 if (! TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0
)))
10287 /* Perform the operations in a type that has defined
10288 overflow behavior. */
10289 utype
= unsigned_type_for (TREE_TYPE (arg0
));
10290 if (pmop
[0] != NULL
)
10291 pmop
[0] = fold_convert_loc (loc
, utype
, pmop
[0]);
10292 if (pmop
[1] != NULL
)
10293 pmop
[1] = fold_convert_loc (loc
, utype
, pmop
[1]);
10296 if (TREE_CODE (arg0
) == NEGATE_EXPR
)
10297 tem
= fold_build1_loc (loc
, NEGATE_EXPR
, utype
, pmop
[0]);
10298 else if (TREE_CODE (arg0
) == PLUS_EXPR
)
10300 if (pmop
[0] != NULL
&& pmop
[1] != NULL
)
10301 tem
= fold_build2_loc (loc
, PLUS_EXPR
, utype
,
10303 else if (pmop
[0] != NULL
)
10305 else if (pmop
[1] != NULL
)
10308 return build_int_cst (type
, 0);
10310 else if (pmop
[0] == NULL
)
10311 tem
= fold_build1_loc (loc
, NEGATE_EXPR
, utype
, pmop
[1]);
10313 tem
= fold_build2_loc (loc
, MINUS_EXPR
, utype
,
10315 /* TEM is now the new binary +, - or unary - replacement. */
10316 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, utype
, tem
,
10317 fold_convert_loc (loc
, utype
, arg1
));
10318 return fold_convert_loc (loc
, type
, tem
);
10323 /* Simplify ((int)c & 0377) into (int)c, if c is unsigned char. */
10324 if (TREE_CODE (arg1
) == INTEGER_CST
&& TREE_CODE (arg0
) == NOP_EXPR
10325 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0
, 0))))
10327 prec
= element_precision (TREE_TYPE (TREE_OPERAND (arg0
, 0)));
10329 wide_int mask
= wide_int::from (wi::to_wide (arg1
), prec
, UNSIGNED
);
10332 fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 0));
10338 /* Don't touch a floating-point divide by zero unless the mode
10339 of the constant can represent infinity. */
10340 if (TREE_CODE (arg1
) == REAL_CST
10341 && !MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (arg1
)))
10342 && real_zerop (arg1
))
10345 /* (-A) / (-B) -> A / B */
10346 if (TREE_CODE (arg0
) == NEGATE_EXPR
&& negate_expr_p (arg1
))
10347 return fold_build2_loc (loc
, RDIV_EXPR
, type
,
10348 TREE_OPERAND (arg0
, 0),
10349 negate_expr (arg1
));
10350 if (TREE_CODE (arg1
) == NEGATE_EXPR
&& negate_expr_p (arg0
))
10351 return fold_build2_loc (loc
, RDIV_EXPR
, type
,
10352 negate_expr (arg0
),
10353 TREE_OPERAND (arg1
, 0));
10356 case TRUNC_DIV_EXPR
:
10359 case FLOOR_DIV_EXPR
:
10360 /* Simplify A / (B << N) where A and B are positive and B is
10361 a power of 2, to A >> (N + log2(B)). */
10362 strict_overflow_p
= false;
10363 if (TREE_CODE (arg1
) == LSHIFT_EXPR
10364 && (TYPE_UNSIGNED (type
)
10365 || tree_expr_nonnegative_warnv_p (op0
, &strict_overflow_p
)))
10367 tree sval
= TREE_OPERAND (arg1
, 0);
10368 if (integer_pow2p (sval
) && tree_int_cst_sgn (sval
) > 0)
10370 tree sh_cnt
= TREE_OPERAND (arg1
, 1);
10371 tree pow2
= build_int_cst (TREE_TYPE (sh_cnt
),
10372 wi::exact_log2 (wi::to_wide (sval
)));
10374 if (strict_overflow_p
)
10375 fold_overflow_warning (("assuming signed overflow does not "
10376 "occur when simplifying A / (B << N)"),
10377 WARN_STRICT_OVERFLOW_MISC
);
10379 sh_cnt
= fold_build2_loc (loc
, PLUS_EXPR
, TREE_TYPE (sh_cnt
),
10381 return fold_build2_loc (loc
, RSHIFT_EXPR
, type
,
10382 fold_convert_loc (loc
, type
, arg0
), sh_cnt
);
10388 case ROUND_DIV_EXPR
:
10389 case CEIL_DIV_EXPR
:
10390 case EXACT_DIV_EXPR
:
10391 if (integer_zerop (arg1
))
10394 /* Convert -A / -B to A / B when the type is signed and overflow is
10396 if ((!INTEGRAL_TYPE_P (type
) || TYPE_OVERFLOW_UNDEFINED (type
))
10397 && TREE_CODE (op0
) == NEGATE_EXPR
10398 && negate_expr_p (op1
))
10400 if (INTEGRAL_TYPE_P (type
))
10401 fold_overflow_warning (("assuming signed overflow does not occur "
10402 "when distributing negation across "
10404 WARN_STRICT_OVERFLOW_MISC
);
10405 return fold_build2_loc (loc
, code
, type
,
10406 fold_convert_loc (loc
, type
,
10407 TREE_OPERAND (arg0
, 0)),
10408 negate_expr (op1
));
10410 if ((!INTEGRAL_TYPE_P (type
) || TYPE_OVERFLOW_UNDEFINED (type
))
10411 && TREE_CODE (arg1
) == NEGATE_EXPR
10412 && negate_expr_p (op0
))
10414 if (INTEGRAL_TYPE_P (type
))
10415 fold_overflow_warning (("assuming signed overflow does not occur "
10416 "when distributing negation across "
10418 WARN_STRICT_OVERFLOW_MISC
);
10419 return fold_build2_loc (loc
, code
, type
,
10421 fold_convert_loc (loc
, type
,
10422 TREE_OPERAND (arg1
, 0)));
10425 /* If arg0 is a multiple of arg1, then rewrite to the fastest div
10426 operation, EXACT_DIV_EXPR.
10428 Note that only CEIL_DIV_EXPR and FLOOR_DIV_EXPR are rewritten now.
10429 At one time others generated faster code, it's not clear if they do
10430 after the last round to changes to the DIV code in expmed.c. */
10431 if ((code
== CEIL_DIV_EXPR
|| code
== FLOOR_DIV_EXPR
)
10432 && multiple_of_p (type
, arg0
, arg1
))
10433 return fold_build2_loc (loc
, EXACT_DIV_EXPR
, type
,
10434 fold_convert (type
, arg0
),
10435 fold_convert (type
, arg1
));
10437 strict_overflow_p
= false;
10438 if (TREE_CODE (arg1
) == INTEGER_CST
10439 && (tem
= extract_muldiv (op0
, arg1
, code
, NULL_TREE
,
10440 &strict_overflow_p
)) != 0)
10442 if (strict_overflow_p
)
10443 fold_overflow_warning (("assuming signed overflow does not occur "
10444 "when simplifying division"),
10445 WARN_STRICT_OVERFLOW_MISC
);
10446 return fold_convert_loc (loc
, type
, tem
);
10451 case CEIL_MOD_EXPR
:
10452 case FLOOR_MOD_EXPR
:
10453 case ROUND_MOD_EXPR
:
10454 case TRUNC_MOD_EXPR
:
10455 strict_overflow_p
= false;
10456 if (TREE_CODE (arg1
) == INTEGER_CST
10457 && (tem
= extract_muldiv (op0
, arg1
, code
, NULL_TREE
,
10458 &strict_overflow_p
)) != 0)
10460 if (strict_overflow_p
)
10461 fold_overflow_warning (("assuming signed overflow does not occur "
10462 "when simplifying modulus"),
10463 WARN_STRICT_OVERFLOW_MISC
);
10464 return fold_convert_loc (loc
, type
, tem
);
10473 /* Since negative shift count is not well-defined,
10474 don't try to compute it in the compiler. */
10475 if (TREE_CODE (arg1
) == INTEGER_CST
&& tree_int_cst_sgn (arg1
) < 0)
10478 prec
= element_precision (type
);
10480 /* If we have a rotate of a bit operation with the rotate count and
10481 the second operand of the bit operation both constant,
10482 permute the two operations. */
10483 if (code
== RROTATE_EXPR
&& TREE_CODE (arg1
) == INTEGER_CST
10484 && (TREE_CODE (arg0
) == BIT_AND_EXPR
10485 || TREE_CODE (arg0
) == BIT_IOR_EXPR
10486 || TREE_CODE (arg0
) == BIT_XOR_EXPR
)
10487 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
)
10489 tree arg00
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 0));
10490 tree arg01
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 1));
10491 return fold_build2_loc (loc
, TREE_CODE (arg0
), type
,
10492 fold_build2_loc (loc
, code
, type
,
10494 fold_build2_loc (loc
, code
, type
,
10498 /* Two consecutive rotates adding up to the some integer
10499 multiple of the precision of the type can be ignored. */
10500 if (code
== RROTATE_EXPR
&& TREE_CODE (arg1
) == INTEGER_CST
10501 && TREE_CODE (arg0
) == RROTATE_EXPR
10502 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
10503 && wi::umod_trunc (wi::to_wide (arg1
)
10504 + wi::to_wide (TREE_OPERAND (arg0
, 1)),
10506 return fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 0));
10514 case TRUTH_ANDIF_EXPR
:
10515 /* Note that the operands of this must be ints
10516 and their values must be 0 or 1.
10517 ("true" is a fixed value perhaps depending on the language.) */
10518 /* If first arg is constant zero, return it. */
10519 if (integer_zerop (arg0
))
10520 return fold_convert_loc (loc
, type
, arg0
);
10522 case TRUTH_AND_EXPR
:
10523 /* If either arg is constant true, drop it. */
10524 if (TREE_CODE (arg0
) == INTEGER_CST
&& ! integer_zerop (arg0
))
10525 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg1
));
10526 if (TREE_CODE (arg1
) == INTEGER_CST
&& ! integer_zerop (arg1
)
10527 /* Preserve sequence points. */
10528 && (code
!= TRUTH_ANDIF_EXPR
|| ! TREE_SIDE_EFFECTS (arg0
)))
10529 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg0
));
10530 /* If second arg is constant zero, result is zero, but first arg
10531 must be evaluated. */
10532 if (integer_zerop (arg1
))
10533 return omit_one_operand_loc (loc
, type
, arg1
, arg0
);
10534 /* Likewise for first arg, but note that only the TRUTH_AND_EXPR
10535 case will be handled here. */
10536 if (integer_zerop (arg0
))
10537 return omit_one_operand_loc (loc
, type
, arg0
, arg1
);
10539 /* !X && X is always false. */
10540 if (TREE_CODE (arg0
) == TRUTH_NOT_EXPR
10541 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0))
10542 return omit_one_operand_loc (loc
, type
, integer_zero_node
, arg1
);
10543 /* X && !X is always false. */
10544 if (TREE_CODE (arg1
) == TRUTH_NOT_EXPR
10545 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
10546 return omit_one_operand_loc (loc
, type
, integer_zero_node
, arg0
);
10548 /* A < X && A + 1 > Y ==> A < X && A >= Y. Normally A + 1 > Y
10549 means A >= Y && A != MAX, but in this case we know that
10552 if (!TREE_SIDE_EFFECTS (arg0
)
10553 && !TREE_SIDE_EFFECTS (arg1
))
10555 tem
= fold_to_nonsharp_ineq_using_bound (loc
, arg0
, arg1
);
10556 if (tem
&& !operand_equal_p (tem
, arg0
, 0))
10557 return fold_build2_loc (loc
, code
, type
, tem
, arg1
);
10559 tem
= fold_to_nonsharp_ineq_using_bound (loc
, arg1
, arg0
);
10560 if (tem
&& !operand_equal_p (tem
, arg1
, 0))
10561 return fold_build2_loc (loc
, code
, type
, arg0
, tem
);
10564 if ((tem
= fold_truth_andor (loc
, code
, type
, arg0
, arg1
, op0
, op1
))
10570 case TRUTH_ORIF_EXPR
:
10571 /* Note that the operands of this must be ints
10572 and their values must be 0 or true.
10573 ("true" is a fixed value perhaps depending on the language.) */
10574 /* If first arg is constant true, return it. */
10575 if (TREE_CODE (arg0
) == INTEGER_CST
&& ! integer_zerop (arg0
))
10576 return fold_convert_loc (loc
, type
, arg0
);
10578 case TRUTH_OR_EXPR
:
10579 /* If either arg is constant zero, drop it. */
10580 if (TREE_CODE (arg0
) == INTEGER_CST
&& integer_zerop (arg0
))
10581 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg1
));
10582 if (TREE_CODE (arg1
) == INTEGER_CST
&& integer_zerop (arg1
)
10583 /* Preserve sequence points. */
10584 && (code
!= TRUTH_ORIF_EXPR
|| ! TREE_SIDE_EFFECTS (arg0
)))
10585 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg0
));
10586 /* If second arg is constant true, result is true, but we must
10587 evaluate first arg. */
10588 if (TREE_CODE (arg1
) == INTEGER_CST
&& ! integer_zerop (arg1
))
10589 return omit_one_operand_loc (loc
, type
, arg1
, arg0
);
10590 /* Likewise for first arg, but note this only occurs here for
10592 if (TREE_CODE (arg0
) == INTEGER_CST
&& ! integer_zerop (arg0
))
10593 return omit_one_operand_loc (loc
, type
, arg0
, arg1
);
10595 /* !X || X is always true. */
10596 if (TREE_CODE (arg0
) == TRUTH_NOT_EXPR
10597 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0))
10598 return omit_one_operand_loc (loc
, type
, integer_one_node
, arg1
);
10599 /* X || !X is always true. */
10600 if (TREE_CODE (arg1
) == TRUTH_NOT_EXPR
10601 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
10602 return omit_one_operand_loc (loc
, type
, integer_one_node
, arg0
);
10604 /* (X && !Y) || (!X && Y) is X ^ Y */
10605 if (TREE_CODE (arg0
) == TRUTH_AND_EXPR
10606 && TREE_CODE (arg1
) == TRUTH_AND_EXPR
)
10608 tree a0
, a1
, l0
, l1
, n0
, n1
;
10610 a0
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg1
, 0));
10611 a1
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg1
, 1));
10613 l0
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 0));
10614 l1
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 1));
10616 n0
= fold_build1_loc (loc
, TRUTH_NOT_EXPR
, type
, l0
);
10617 n1
= fold_build1_loc (loc
, TRUTH_NOT_EXPR
, type
, l1
);
10619 if ((operand_equal_p (n0
, a0
, 0)
10620 && operand_equal_p (n1
, a1
, 0))
10621 || (operand_equal_p (n0
, a1
, 0)
10622 && operand_equal_p (n1
, a0
, 0)))
10623 return fold_build2_loc (loc
, TRUTH_XOR_EXPR
, type
, l0
, n1
);
10626 if ((tem
= fold_truth_andor (loc
, code
, type
, arg0
, arg1
, op0
, op1
))
10632 case TRUTH_XOR_EXPR
:
10633 /* If the second arg is constant zero, drop it. */
10634 if (integer_zerop (arg1
))
10635 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg0
));
10636 /* If the second arg is constant true, this is a logical inversion. */
10637 if (integer_onep (arg1
))
10639 tem
= invert_truthvalue_loc (loc
, arg0
);
10640 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, tem
));
10642 /* Identical arguments cancel to zero. */
10643 if (operand_equal_p (arg0
, arg1
, 0))
10644 return omit_one_operand_loc (loc
, type
, integer_zero_node
, arg0
);
10646 /* !X ^ X is always true. */
10647 if (TREE_CODE (arg0
) == TRUTH_NOT_EXPR
10648 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0))
10649 return omit_one_operand_loc (loc
, type
, integer_one_node
, arg1
);
10651 /* X ^ !X is always true. */
10652 if (TREE_CODE (arg1
) == TRUTH_NOT_EXPR
10653 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
10654 return omit_one_operand_loc (loc
, type
, integer_one_node
, arg0
);
10663 tem
= fold_comparison (loc
, code
, type
, op0
, op1
);
10664 if (tem
!= NULL_TREE
)
10667 /* bool_var != 1 becomes !bool_var. */
10668 if (TREE_CODE (TREE_TYPE (arg0
)) == BOOLEAN_TYPE
&& integer_onep (arg1
)
10669 && code
== NE_EXPR
)
10670 return fold_convert_loc (loc
, type
,
10671 fold_build1_loc (loc
, TRUTH_NOT_EXPR
,
10672 TREE_TYPE (arg0
), arg0
));
10674 /* bool_var == 0 becomes !bool_var. */
10675 if (TREE_CODE (TREE_TYPE (arg0
)) == BOOLEAN_TYPE
&& integer_zerop (arg1
)
10676 && code
== EQ_EXPR
)
10677 return fold_convert_loc (loc
, type
,
10678 fold_build1_loc (loc
, TRUTH_NOT_EXPR
,
10679 TREE_TYPE (arg0
), arg0
));
10681 /* !exp != 0 becomes !exp */
10682 if (TREE_CODE (arg0
) == TRUTH_NOT_EXPR
&& integer_zerop (arg1
)
10683 && code
== NE_EXPR
)
10684 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg0
));
10686 /* If this is an EQ or NE comparison with zero and ARG0 is
10687 (1 << foo) & bar, convert it to (bar >> foo) & 1. Both require
10688 two operations, but the latter can be done in one less insn
10689 on machines that have only two-operand insns or on which a
10690 constant cannot be the first operand. */
10691 if (TREE_CODE (arg0
) == BIT_AND_EXPR
10692 && integer_zerop (arg1
))
10694 tree arg00
= TREE_OPERAND (arg0
, 0);
10695 tree arg01
= TREE_OPERAND (arg0
, 1);
10696 if (TREE_CODE (arg00
) == LSHIFT_EXPR
10697 && integer_onep (TREE_OPERAND (arg00
, 0)))
10699 tree tem
= fold_build2_loc (loc
, RSHIFT_EXPR
, TREE_TYPE (arg00
),
10700 arg01
, TREE_OPERAND (arg00
, 1));
10701 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (arg0
), tem
,
10702 build_int_cst (TREE_TYPE (arg0
), 1));
10703 return fold_build2_loc (loc
, code
, type
,
10704 fold_convert_loc (loc
, TREE_TYPE (arg1
), tem
),
10707 else if (TREE_CODE (arg01
) == LSHIFT_EXPR
10708 && integer_onep (TREE_OPERAND (arg01
, 0)))
10710 tree tem
= fold_build2_loc (loc
, RSHIFT_EXPR
, TREE_TYPE (arg01
),
10711 arg00
, TREE_OPERAND (arg01
, 1));
10712 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (arg0
), tem
,
10713 build_int_cst (TREE_TYPE (arg0
), 1));
10714 return fold_build2_loc (loc
, code
, type
,
10715 fold_convert_loc (loc
, TREE_TYPE (arg1
), tem
),
10720 /* If this is an NE or EQ comparison of zero against the result of a
10721 signed MOD operation whose second operand is a power of 2, make
10722 the MOD operation unsigned since it is simpler and equivalent. */
10723 if (integer_zerop (arg1
)
10724 && !TYPE_UNSIGNED (TREE_TYPE (arg0
))
10725 && (TREE_CODE (arg0
) == TRUNC_MOD_EXPR
10726 || TREE_CODE (arg0
) == CEIL_MOD_EXPR
10727 || TREE_CODE (arg0
) == FLOOR_MOD_EXPR
10728 || TREE_CODE (arg0
) == ROUND_MOD_EXPR
)
10729 && integer_pow2p (TREE_OPERAND (arg0
, 1)))
10731 tree newtype
= unsigned_type_for (TREE_TYPE (arg0
));
10732 tree newmod
= fold_build2_loc (loc
, TREE_CODE (arg0
), newtype
,
10733 fold_convert_loc (loc
, newtype
,
10734 TREE_OPERAND (arg0
, 0)),
10735 fold_convert_loc (loc
, newtype
,
10736 TREE_OPERAND (arg0
, 1)));
10738 return fold_build2_loc (loc
, code
, type
, newmod
,
10739 fold_convert_loc (loc
, newtype
, arg1
));
10742 /* Fold ((X >> C1) & C2) == 0 and ((X >> C1) & C2) != 0 where
10743 C1 is a valid shift constant, and C2 is a power of two, i.e.
10745 if (TREE_CODE (arg0
) == BIT_AND_EXPR
10746 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == RSHIFT_EXPR
10747 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (arg0
, 0), 1))
10749 && integer_pow2p (TREE_OPERAND (arg0
, 1))
10750 && integer_zerop (arg1
))
10752 tree itype
= TREE_TYPE (arg0
);
10753 tree arg001
= TREE_OPERAND (TREE_OPERAND (arg0
, 0), 1);
10754 prec
= TYPE_PRECISION (itype
);
10756 /* Check for a valid shift count. */
10757 if (wi::ltu_p (wi::to_wide (arg001
), prec
))
10759 tree arg01
= TREE_OPERAND (arg0
, 1);
10760 tree arg000
= TREE_OPERAND (TREE_OPERAND (arg0
, 0), 0);
10761 unsigned HOST_WIDE_INT log2
= tree_log2 (arg01
);
10762 /* If (C2 << C1) doesn't overflow, then ((X >> C1) & C2) != 0
10763 can be rewritten as (X & (C2 << C1)) != 0. */
10764 if ((log2
+ TREE_INT_CST_LOW (arg001
)) < prec
)
10766 tem
= fold_build2_loc (loc
, LSHIFT_EXPR
, itype
, arg01
, arg001
);
10767 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, itype
, arg000
, tem
);
10768 return fold_build2_loc (loc
, code
, type
, tem
,
10769 fold_convert_loc (loc
, itype
, arg1
));
10771 /* Otherwise, for signed (arithmetic) shifts,
10772 ((X >> C1) & C2) != 0 is rewritten as X < 0, and
10773 ((X >> C1) & C2) == 0 is rewritten as X >= 0. */
10774 else if (!TYPE_UNSIGNED (itype
))
10775 return fold_build2_loc (loc
, code
== EQ_EXPR
? GE_EXPR
: LT_EXPR
, type
,
10776 arg000
, build_int_cst (itype
, 0));
10777 /* Otherwise, of unsigned (logical) shifts,
10778 ((X >> C1) & C2) != 0 is rewritten as (X,false), and
10779 ((X >> C1) & C2) == 0 is rewritten as (X,true). */
10781 return omit_one_operand_loc (loc
, type
,
10782 code
== EQ_EXPR
? integer_one_node
10783 : integer_zero_node
,
10788 /* If this is a comparison of a field, we may be able to simplify it. */
10789 if ((TREE_CODE (arg0
) == COMPONENT_REF
10790 || TREE_CODE (arg0
) == BIT_FIELD_REF
)
10791 /* Handle the constant case even without -O
10792 to make sure the warnings are given. */
10793 && (optimize
|| TREE_CODE (arg1
) == INTEGER_CST
))
10795 t1
= optimize_bit_field_compare (loc
, code
, type
, arg0
, arg1
);
10800 /* Optimize comparisons of strlen vs zero to a compare of the
10801 first character of the string vs zero. To wit,
10802 strlen(ptr) == 0 => *ptr == 0
10803 strlen(ptr) != 0 => *ptr != 0
10804 Other cases should reduce to one of these two (or a constant)
10805 due to the return value of strlen being unsigned. */
10806 if (TREE_CODE (arg0
) == CALL_EXPR
10807 && integer_zerop (arg1
))
10809 tree fndecl
= get_callee_fndecl (arg0
);
10812 && DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
10813 && DECL_FUNCTION_CODE (fndecl
) == BUILT_IN_STRLEN
10814 && call_expr_nargs (arg0
) == 1
10815 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (arg0
, 0))) == POINTER_TYPE
)
10817 tree iref
= build_fold_indirect_ref_loc (loc
,
10818 CALL_EXPR_ARG (arg0
, 0));
10819 return fold_build2_loc (loc
, code
, type
, iref
,
10820 build_int_cst (TREE_TYPE (iref
), 0));
10824 /* Fold (X >> C) != 0 into X < 0 if C is one less than the width
10825 of X. Similarly fold (X >> C) == 0 into X >= 0. */
10826 if (TREE_CODE (arg0
) == RSHIFT_EXPR
10827 && integer_zerop (arg1
)
10828 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
)
10830 tree arg00
= TREE_OPERAND (arg0
, 0);
10831 tree arg01
= TREE_OPERAND (arg0
, 1);
10832 tree itype
= TREE_TYPE (arg00
);
10833 if (wi::to_wide (arg01
) == element_precision (itype
) - 1)
10835 if (TYPE_UNSIGNED (itype
))
10837 itype
= signed_type_for (itype
);
10838 arg00
= fold_convert_loc (loc
, itype
, arg00
);
10840 return fold_build2_loc (loc
, code
== EQ_EXPR
? GE_EXPR
: LT_EXPR
,
10841 type
, arg00
, build_zero_cst (itype
));
10845 /* Fold (~X & C) == 0 into (X & C) != 0 and (~X & C) != 0 into
10846 (X & C) == 0 when C is a single bit. */
10847 if (TREE_CODE (arg0
) == BIT_AND_EXPR
10848 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == BIT_NOT_EXPR
10849 && integer_zerop (arg1
)
10850 && integer_pow2p (TREE_OPERAND (arg0
, 1)))
10852 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (arg0
),
10853 TREE_OPERAND (TREE_OPERAND (arg0
, 0), 0),
10854 TREE_OPERAND (arg0
, 1));
10855 return fold_build2_loc (loc
, code
== EQ_EXPR
? NE_EXPR
: EQ_EXPR
,
10857 fold_convert_loc (loc
, TREE_TYPE (arg0
),
10861 /* Fold ((X & C) ^ C) eq/ne 0 into (X & C) ne/eq 0, when the
10862 constant C is a power of two, i.e. a single bit. */
10863 if (TREE_CODE (arg0
) == BIT_XOR_EXPR
10864 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == BIT_AND_EXPR
10865 && integer_zerop (arg1
)
10866 && integer_pow2p (TREE_OPERAND (arg0
, 1))
10867 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0
, 0), 1),
10868 TREE_OPERAND (arg0
, 1), OEP_ONLY_CONST
))
10870 tree arg00
= TREE_OPERAND (arg0
, 0);
10871 return fold_build2_loc (loc
, code
== EQ_EXPR
? NE_EXPR
: EQ_EXPR
, type
,
10872 arg00
, build_int_cst (TREE_TYPE (arg00
), 0));
10875 /* Likewise, fold ((X ^ C) & C) eq/ne 0 into (X & C) ne/eq 0,
10876 when is C is a power of two, i.e. a single bit. */
10877 if (TREE_CODE (arg0
) == BIT_AND_EXPR
10878 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == BIT_XOR_EXPR
10879 && integer_zerop (arg1
)
10880 && integer_pow2p (TREE_OPERAND (arg0
, 1))
10881 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0
, 0), 1),
10882 TREE_OPERAND (arg0
, 1), OEP_ONLY_CONST
))
10884 tree arg000
= TREE_OPERAND (TREE_OPERAND (arg0
, 0), 0);
10885 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (arg000
),
10886 arg000
, TREE_OPERAND (arg0
, 1));
10887 return fold_build2_loc (loc
, code
== EQ_EXPR
? NE_EXPR
: EQ_EXPR
, type
,
10888 tem
, build_int_cst (TREE_TYPE (tem
), 0));
10891 if (integer_zerop (arg1
)
10892 && tree_expr_nonzero_p (arg0
))
10894 tree res
= constant_boolean_node (code
==NE_EXPR
, type
);
10895 return omit_one_operand_loc (loc
, type
, res
, arg0
);
10898 /* Fold (X & C) op (Y & C) as (X ^ Y) & C op 0", and symmetries. */
10899 if (TREE_CODE (arg0
) == BIT_AND_EXPR
10900 && TREE_CODE (arg1
) == BIT_AND_EXPR
)
10902 tree arg00
= TREE_OPERAND (arg0
, 0);
10903 tree arg01
= TREE_OPERAND (arg0
, 1);
10904 tree arg10
= TREE_OPERAND (arg1
, 0);
10905 tree arg11
= TREE_OPERAND (arg1
, 1);
10906 tree itype
= TREE_TYPE (arg0
);
10908 if (operand_equal_p (arg01
, arg11
, 0))
10910 tem
= fold_convert_loc (loc
, itype
, arg10
);
10911 tem
= fold_build2_loc (loc
, BIT_XOR_EXPR
, itype
, arg00
, tem
);
10912 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, itype
, tem
, arg01
);
10913 return fold_build2_loc (loc
, code
, type
, tem
,
10914 build_zero_cst (itype
));
10916 if (operand_equal_p (arg01
, arg10
, 0))
10918 tem
= fold_convert_loc (loc
, itype
, arg11
);
10919 tem
= fold_build2_loc (loc
, BIT_XOR_EXPR
, itype
, arg00
, tem
);
10920 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, itype
, tem
, arg01
);
10921 return fold_build2_loc (loc
, code
, type
, tem
,
10922 build_zero_cst (itype
));
10924 if (operand_equal_p (arg00
, arg11
, 0))
10926 tem
= fold_convert_loc (loc
, itype
, arg10
);
10927 tem
= fold_build2_loc (loc
, BIT_XOR_EXPR
, itype
, arg01
, tem
);
10928 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, itype
, tem
, arg00
);
10929 return fold_build2_loc (loc
, code
, type
, tem
,
10930 build_zero_cst (itype
));
10932 if (operand_equal_p (arg00
, arg10
, 0))
10934 tem
= fold_convert_loc (loc
, itype
, arg11
);
10935 tem
= fold_build2_loc (loc
, BIT_XOR_EXPR
, itype
, arg01
, tem
);
10936 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, itype
, tem
, arg00
);
10937 return fold_build2_loc (loc
, code
, type
, tem
,
10938 build_zero_cst (itype
));
10942 if (TREE_CODE (arg0
) == BIT_XOR_EXPR
10943 && TREE_CODE (arg1
) == BIT_XOR_EXPR
)
10945 tree arg00
= TREE_OPERAND (arg0
, 0);
10946 tree arg01
= TREE_OPERAND (arg0
, 1);
10947 tree arg10
= TREE_OPERAND (arg1
, 0);
10948 tree arg11
= TREE_OPERAND (arg1
, 1);
10949 tree itype
= TREE_TYPE (arg0
);
10951 /* Optimize (X ^ Z) op (Y ^ Z) as X op Y, and symmetries.
10952 operand_equal_p guarantees no side-effects so we don't need
10953 to use omit_one_operand on Z. */
10954 if (operand_equal_p (arg01
, arg11
, 0))
10955 return fold_build2_loc (loc
, code
, type
, arg00
,
10956 fold_convert_loc (loc
, TREE_TYPE (arg00
),
10958 if (operand_equal_p (arg01
, arg10
, 0))
10959 return fold_build2_loc (loc
, code
, type
, arg00
,
10960 fold_convert_loc (loc
, TREE_TYPE (arg00
),
10962 if (operand_equal_p (arg00
, arg11
, 0))
10963 return fold_build2_loc (loc
, code
, type
, arg01
,
10964 fold_convert_loc (loc
, TREE_TYPE (arg01
),
10966 if (operand_equal_p (arg00
, arg10
, 0))
10967 return fold_build2_loc (loc
, code
, type
, arg01
,
10968 fold_convert_loc (loc
, TREE_TYPE (arg01
),
10971 /* Optimize (X ^ C1) op (Y ^ C2) as (X ^ (C1 ^ C2)) op Y. */
10972 if (TREE_CODE (arg01
) == INTEGER_CST
10973 && TREE_CODE (arg11
) == INTEGER_CST
)
10975 tem
= fold_build2_loc (loc
, BIT_XOR_EXPR
, itype
, arg01
,
10976 fold_convert_loc (loc
, itype
, arg11
));
10977 tem
= fold_build2_loc (loc
, BIT_XOR_EXPR
, itype
, arg00
, tem
);
10978 return fold_build2_loc (loc
, code
, type
, tem
,
10979 fold_convert_loc (loc
, itype
, arg10
));
10983 /* Attempt to simplify equality/inequality comparisons of complex
10984 values. Only lower the comparison if the result is known or
10985 can be simplified to a single scalar comparison. */
10986 if ((TREE_CODE (arg0
) == COMPLEX_EXPR
10987 || TREE_CODE (arg0
) == COMPLEX_CST
)
10988 && (TREE_CODE (arg1
) == COMPLEX_EXPR
10989 || TREE_CODE (arg1
) == COMPLEX_CST
))
10991 tree real0
, imag0
, real1
, imag1
;
10994 if (TREE_CODE (arg0
) == COMPLEX_EXPR
)
10996 real0
= TREE_OPERAND (arg0
, 0);
10997 imag0
= TREE_OPERAND (arg0
, 1);
11001 real0
= TREE_REALPART (arg0
);
11002 imag0
= TREE_IMAGPART (arg0
);
11005 if (TREE_CODE (arg1
) == COMPLEX_EXPR
)
11007 real1
= TREE_OPERAND (arg1
, 0);
11008 imag1
= TREE_OPERAND (arg1
, 1);
11012 real1
= TREE_REALPART (arg1
);
11013 imag1
= TREE_IMAGPART (arg1
);
11016 rcond
= fold_binary_loc (loc
, code
, type
, real0
, real1
);
11017 if (rcond
&& TREE_CODE (rcond
) == INTEGER_CST
)
11019 if (integer_zerop (rcond
))
11021 if (code
== EQ_EXPR
)
11022 return omit_two_operands_loc (loc
, type
, boolean_false_node
,
11024 return fold_build2_loc (loc
, NE_EXPR
, type
, imag0
, imag1
);
11028 if (code
== NE_EXPR
)
11029 return omit_two_operands_loc (loc
, type
, boolean_true_node
,
11031 return fold_build2_loc (loc
, EQ_EXPR
, type
, imag0
, imag1
);
11035 icond
= fold_binary_loc (loc
, code
, type
, imag0
, imag1
);
11036 if (icond
&& TREE_CODE (icond
) == INTEGER_CST
)
11038 if (integer_zerop (icond
))
11040 if (code
== EQ_EXPR
)
11041 return omit_two_operands_loc (loc
, type
, boolean_false_node
,
11043 return fold_build2_loc (loc
, NE_EXPR
, type
, real0
, real1
);
11047 if (code
== NE_EXPR
)
11048 return omit_two_operands_loc (loc
, type
, boolean_true_node
,
11050 return fold_build2_loc (loc
, EQ_EXPR
, type
, real0
, real1
);
11061 tem
= fold_comparison (loc
, code
, type
, op0
, op1
);
11062 if (tem
!= NULL_TREE
)
11065 /* Transform comparisons of the form X +- C CMP X. */
11066 if ((TREE_CODE (arg0
) == PLUS_EXPR
|| TREE_CODE (arg0
) == MINUS_EXPR
)
11067 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0)
11068 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == REAL_CST
11069 && !HONOR_SNANS (arg0
))
11071 tree arg01
= TREE_OPERAND (arg0
, 1);
11072 enum tree_code code0
= TREE_CODE (arg0
);
11073 int is_positive
= REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg01
)) ? -1 : 1;
11075 /* (X - c) > X becomes false. */
11076 if (code
== GT_EXPR
11077 && ((code0
== MINUS_EXPR
&& is_positive
>= 0)
11078 || (code0
== PLUS_EXPR
&& is_positive
<= 0)))
11079 return constant_boolean_node (0, type
);
11081 /* Likewise (X + c) < X becomes false. */
11082 if (code
== LT_EXPR
11083 && ((code0
== PLUS_EXPR
&& is_positive
>= 0)
11084 || (code0
== MINUS_EXPR
&& is_positive
<= 0)))
11085 return constant_boolean_node (0, type
);
11087 /* Convert (X - c) <= X to true. */
11088 if (!HONOR_NANS (arg1
)
11090 && ((code0
== MINUS_EXPR
&& is_positive
>= 0)
11091 || (code0
== PLUS_EXPR
&& is_positive
<= 0)))
11092 return constant_boolean_node (1, type
);
11094 /* Convert (X + c) >= X to true. */
11095 if (!HONOR_NANS (arg1
)
11097 && ((code0
== PLUS_EXPR
&& is_positive
>= 0)
11098 || (code0
== MINUS_EXPR
&& is_positive
<= 0)))
11099 return constant_boolean_node (1, type
);
11102 /* If we are comparing an ABS_EXPR with a constant, we can
11103 convert all the cases into explicit comparisons, but they may
11104 well not be faster than doing the ABS and one comparison.
11105 But ABS (X) <= C is a range comparison, which becomes a subtraction
11106 and a comparison, and is probably faster. */
11107 if (code
== LE_EXPR
11108 && TREE_CODE (arg1
) == INTEGER_CST
11109 && TREE_CODE (arg0
) == ABS_EXPR
11110 && ! TREE_SIDE_EFFECTS (arg0
)
11111 && (tem
= negate_expr (arg1
)) != 0
11112 && TREE_CODE (tem
) == INTEGER_CST
11113 && !TREE_OVERFLOW (tem
))
11114 return fold_build2_loc (loc
, TRUTH_ANDIF_EXPR
, type
,
11115 build2 (GE_EXPR
, type
,
11116 TREE_OPERAND (arg0
, 0), tem
),
11117 build2 (LE_EXPR
, type
,
11118 TREE_OPERAND (arg0
, 0), arg1
));
11120 /* Convert ABS_EXPR<x> >= 0 to true. */
11121 strict_overflow_p
= false;
11122 if (code
== GE_EXPR
11123 && (integer_zerop (arg1
)
11124 || (! HONOR_NANS (arg0
)
11125 && real_zerop (arg1
)))
11126 && tree_expr_nonnegative_warnv_p (arg0
, &strict_overflow_p
))
11128 if (strict_overflow_p
)
11129 fold_overflow_warning (("assuming signed overflow does not occur "
11130 "when simplifying comparison of "
11131 "absolute value and zero"),
11132 WARN_STRICT_OVERFLOW_CONDITIONAL
);
11133 return omit_one_operand_loc (loc
, type
,
11134 constant_boolean_node (true, type
),
11138 /* Convert ABS_EXPR<x> < 0 to false. */
11139 strict_overflow_p
= false;
11140 if (code
== LT_EXPR
11141 && (integer_zerop (arg1
) || real_zerop (arg1
))
11142 && tree_expr_nonnegative_warnv_p (arg0
, &strict_overflow_p
))
11144 if (strict_overflow_p
)
11145 fold_overflow_warning (("assuming signed overflow does not occur "
11146 "when simplifying comparison of "
11147 "absolute value and zero"),
11148 WARN_STRICT_OVERFLOW_CONDITIONAL
);
11149 return omit_one_operand_loc (loc
, type
,
11150 constant_boolean_node (false, type
),
11154 /* If X is unsigned, convert X < (1 << Y) into X >> Y == 0
11155 and similarly for >= into !=. */
11156 if ((code
== LT_EXPR
|| code
== GE_EXPR
)
11157 && TYPE_UNSIGNED (TREE_TYPE (arg0
))
11158 && TREE_CODE (arg1
) == LSHIFT_EXPR
11159 && integer_onep (TREE_OPERAND (arg1
, 0)))
11160 return build2_loc (loc
, code
== LT_EXPR
? EQ_EXPR
: NE_EXPR
, type
,
11161 build2 (RSHIFT_EXPR
, TREE_TYPE (arg0
), arg0
,
11162 TREE_OPERAND (arg1
, 1)),
11163 build_zero_cst (TREE_TYPE (arg0
)));
11165 /* Similarly for X < (cast) (1 << Y). But cast can't be narrowing,
11166 otherwise Y might be >= # of bits in X's type and thus e.g.
11167 (unsigned char) (1 << Y) for Y 15 might be 0.
11168 If the cast is widening, then 1 << Y should have unsigned type,
11169 otherwise if Y is number of bits in the signed shift type minus 1,
11170 we can't optimize this. E.g. (unsigned long long) (1 << Y) for Y
11171 31 might be 0xffffffff80000000. */
11172 if ((code
== LT_EXPR
|| code
== GE_EXPR
)
11173 && TYPE_UNSIGNED (TREE_TYPE (arg0
))
11174 && CONVERT_EXPR_P (arg1
)
11175 && TREE_CODE (TREE_OPERAND (arg1
, 0)) == LSHIFT_EXPR
11176 && (element_precision (TREE_TYPE (arg1
))
11177 >= element_precision (TREE_TYPE (TREE_OPERAND (arg1
, 0))))
11178 && (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg1
, 0)))
11179 || (element_precision (TREE_TYPE (arg1
))
11180 == element_precision (TREE_TYPE (TREE_OPERAND (arg1
, 0)))))
11181 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg1
, 0), 0)))
11183 tem
= build2 (RSHIFT_EXPR
, TREE_TYPE (arg0
), arg0
,
11184 TREE_OPERAND (TREE_OPERAND (arg1
, 0), 1));
11185 return build2_loc (loc
, code
== LT_EXPR
? EQ_EXPR
: NE_EXPR
, type
,
11186 fold_convert_loc (loc
, TREE_TYPE (arg0
), tem
),
11187 build_zero_cst (TREE_TYPE (arg0
)));
11192 case UNORDERED_EXPR
:
11200 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
11202 tree targ0
= strip_float_extensions (arg0
);
11203 tree targ1
= strip_float_extensions (arg1
);
11204 tree newtype
= TREE_TYPE (targ0
);
11206 if (TYPE_PRECISION (TREE_TYPE (targ1
)) > TYPE_PRECISION (newtype
))
11207 newtype
= TREE_TYPE (targ1
);
11209 if (TYPE_PRECISION (newtype
) < TYPE_PRECISION (TREE_TYPE (arg0
)))
11210 return fold_build2_loc (loc
, code
, type
,
11211 fold_convert_loc (loc
, newtype
, targ0
),
11212 fold_convert_loc (loc
, newtype
, targ1
));
11217 case COMPOUND_EXPR
:
11218 /* When pedantic, a compound expression can be neither an lvalue
11219 nor an integer constant expression. */
11220 if (TREE_SIDE_EFFECTS (arg0
) || TREE_CONSTANT (arg1
))
11222 /* Don't let (0, 0) be null pointer constant. */
11223 tem
= integer_zerop (arg1
) ? build1 (NOP_EXPR
, type
, arg1
)
11224 : fold_convert_loc (loc
, type
, arg1
);
11225 return pedantic_non_lvalue_loc (loc
, tem
);
11228 /* An ASSERT_EXPR should never be passed to fold_binary. */
11229 gcc_unreachable ();
11233 } /* switch (code) */
11236 /* Used by contains_label_[p1]. */
11238 struct contains_label_data
11240 hash_set
<tree
> *pset
;
11241 bool inside_switch_p
;
11244 /* Callback for walk_tree, looking for LABEL_EXPR. Return *TP if it is
11245 a LABEL_EXPR or CASE_LABEL_EXPR not inside of another SWITCH_EXPR; otherwise
11246 return NULL_TREE. Do not check the subtrees of GOTO_EXPR. */
11249 contains_label_1 (tree
*tp
, int *walk_subtrees
, void *data
)
11251 contains_label_data
*d
= (contains_label_data
*) data
;
11252 switch (TREE_CODE (*tp
))
11257 case CASE_LABEL_EXPR
:
11258 if (!d
->inside_switch_p
)
11263 if (!d
->inside_switch_p
)
11265 if (walk_tree (&SWITCH_COND (*tp
), contains_label_1
, data
, d
->pset
))
11267 d
->inside_switch_p
= true;
11268 if (walk_tree (&SWITCH_BODY (*tp
), contains_label_1
, data
, d
->pset
))
11270 d
->inside_switch_p
= false;
11271 *walk_subtrees
= 0;
11276 *walk_subtrees
= 0;
11284 /* Return whether the sub-tree ST contains a label which is accessible from
11285 outside the sub-tree. */
11288 contains_label_p (tree st
)
11290 hash_set
<tree
> pset
;
11291 contains_label_data data
= { &pset
, false };
11292 return walk_tree (&st
, contains_label_1
, &data
, &pset
) != NULL_TREE
;
11295 /* Fold a ternary expression of code CODE and type TYPE with operands
11296 OP0, OP1, and OP2. Return the folded expression if folding is
11297 successful. Otherwise, return NULL_TREE. */
11300 fold_ternary_loc (location_t loc
, enum tree_code code
, tree type
,
11301 tree op0
, tree op1
, tree op2
)
11304 tree arg0
= NULL_TREE
, arg1
= NULL_TREE
, arg2
= NULL_TREE
;
11305 enum tree_code_class kind
= TREE_CODE_CLASS (code
);
11307 gcc_assert (IS_EXPR_CODE_CLASS (kind
)
11308 && TREE_CODE_LENGTH (code
) == 3);
11310 /* If this is a commutative operation, and OP0 is a constant, move it
11311 to OP1 to reduce the number of tests below. */
11312 if (commutative_ternary_tree_code (code
)
11313 && tree_swap_operands_p (op0
, op1
))
11314 return fold_build3_loc (loc
, code
, type
, op1
, op0
, op2
);
11316 tem
= generic_simplify (loc
, code
, type
, op0
, op1
, op2
);
11320 /* Strip any conversions that don't change the mode. This is safe
11321 for every expression, except for a comparison expression because
11322 its signedness is derived from its operands. So, in the latter
11323 case, only strip conversions that don't change the signedness.
11325 Note that this is done as an internal manipulation within the
11326 constant folder, in order to find the simplest representation of
11327 the arguments so that their form can be studied. In any cases,
11328 the appropriate type conversions should be put back in the tree
11329 that will get out of the constant folder. */
11350 case COMPONENT_REF
:
11351 if (TREE_CODE (arg0
) == CONSTRUCTOR
11352 && ! type_contains_placeholder_p (TREE_TYPE (arg0
)))
11354 unsigned HOST_WIDE_INT idx
;
11356 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (arg0
), idx
, field
, value
)
11363 case VEC_COND_EXPR
:
11364 /* Pedantic ANSI C says that a conditional expression is never an lvalue,
11365 so all simple results must be passed through pedantic_non_lvalue. */
11366 if (TREE_CODE (arg0
) == INTEGER_CST
)
11368 tree unused_op
= integer_zerop (arg0
) ? op1
: op2
;
11369 tem
= integer_zerop (arg0
) ? op2
: op1
;
11370 /* Only optimize constant conditions when the selected branch
11371 has the same type as the COND_EXPR. This avoids optimizing
11372 away "c ? x : throw", where the throw has a void type.
11373 Avoid throwing away that operand which contains label. */
11374 if ((!TREE_SIDE_EFFECTS (unused_op
)
11375 || !contains_label_p (unused_op
))
11376 && (! VOID_TYPE_P (TREE_TYPE (tem
))
11377 || VOID_TYPE_P (type
)))
11378 return pedantic_non_lvalue_loc (loc
, tem
);
11381 else if (TREE_CODE (arg0
) == VECTOR_CST
)
11383 unsigned HOST_WIDE_INT nelts
;
11384 if ((TREE_CODE (arg1
) == VECTOR_CST
11385 || TREE_CODE (arg1
) == CONSTRUCTOR
)
11386 && (TREE_CODE (arg2
) == VECTOR_CST
11387 || TREE_CODE (arg2
) == CONSTRUCTOR
)
11388 && TYPE_VECTOR_SUBPARTS (type
).is_constant (&nelts
))
11390 vec_perm_builder
sel (nelts
, nelts
, 1);
11391 for (unsigned int i
= 0; i
< nelts
; i
++)
11393 tree val
= VECTOR_CST_ELT (arg0
, i
);
11394 if (integer_all_onesp (val
))
11395 sel
.quick_push (i
);
11396 else if (integer_zerop (val
))
11397 sel
.quick_push (nelts
+ i
);
11398 else /* Currently unreachable. */
11401 tree t
= fold_vec_perm (type
, arg1
, arg2
,
11402 vec_perm_indices (sel
, 2, nelts
));
11403 if (t
!= NULL_TREE
)
11408 /* If we have A op B ? A : C, we may be able to convert this to a
11409 simpler expression, depending on the operation and the values
11410 of B and C. Signed zeros prevent all of these transformations,
11411 for reasons given above each one.
11413 Also try swapping the arguments and inverting the conditional. */
11414 if (COMPARISON_CLASS_P (arg0
)
11415 && operand_equal_for_comparison_p (TREE_OPERAND (arg0
, 0), op1
)
11416 && !HONOR_SIGNED_ZEROS (element_mode (op1
)))
11418 tem
= fold_cond_expr_with_comparison (loc
, type
, arg0
, op1
, op2
);
11423 if (COMPARISON_CLASS_P (arg0
)
11424 && operand_equal_for_comparison_p (TREE_OPERAND (arg0
, 0), op2
)
11425 && !HONOR_SIGNED_ZEROS (element_mode (op2
)))
11427 location_t loc0
= expr_location_or (arg0
, loc
);
11428 tem
= fold_invert_truthvalue (loc0
, arg0
);
11429 if (tem
&& COMPARISON_CLASS_P (tem
))
11431 tem
= fold_cond_expr_with_comparison (loc
, type
, tem
, op2
, op1
);
11437 /* If the second operand is simpler than the third, swap them
11438 since that produces better jump optimization results. */
11439 if (truth_value_p (TREE_CODE (arg0
))
11440 && tree_swap_operands_p (op1
, op2
))
11442 location_t loc0
= expr_location_or (arg0
, loc
);
11443 /* See if this can be inverted. If it can't, possibly because
11444 it was a floating-point inequality comparison, don't do
11446 tem
= fold_invert_truthvalue (loc0
, arg0
);
11448 return fold_build3_loc (loc
, code
, type
, tem
, op2
, op1
);
11451 /* Convert A ? 1 : 0 to simply A. */
11452 if ((code
== VEC_COND_EXPR
? integer_all_onesp (op1
)
11453 : (integer_onep (op1
)
11454 && !VECTOR_TYPE_P (type
)))
11455 && integer_zerop (op2
)
11456 /* If we try to convert OP0 to our type, the
11457 call to fold will try to move the conversion inside
11458 a COND, which will recurse. In that case, the COND_EXPR
11459 is probably the best choice, so leave it alone. */
11460 && type
== TREE_TYPE (arg0
))
11461 return pedantic_non_lvalue_loc (loc
, arg0
);
11463 /* Convert A ? 0 : 1 to !A. This prefers the use of NOT_EXPR
11464 over COND_EXPR in cases such as floating point comparisons. */
11465 if (integer_zerop (op1
)
11466 && code
== COND_EXPR
11467 && integer_onep (op2
)
11468 && !VECTOR_TYPE_P (type
)
11469 && truth_value_p (TREE_CODE (arg0
)))
11470 return pedantic_non_lvalue_loc (loc
,
11471 fold_convert_loc (loc
, type
,
11472 invert_truthvalue_loc (loc
,
11475 /* A < 0 ? <sign bit of A> : 0 is simply (A & <sign bit of A>). */
11476 if (TREE_CODE (arg0
) == LT_EXPR
11477 && integer_zerop (TREE_OPERAND (arg0
, 1))
11478 && integer_zerop (op2
)
11479 && (tem
= sign_bit_p (TREE_OPERAND (arg0
, 0), arg1
)))
11481 /* sign_bit_p looks through both zero and sign extensions,
11482 but for this optimization only sign extensions are
11484 tree tem2
= TREE_OPERAND (arg0
, 0);
11485 while (tem
!= tem2
)
11487 if (TREE_CODE (tem2
) != NOP_EXPR
11488 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (tem2
, 0))))
11493 tem2
= TREE_OPERAND (tem2
, 0);
11495 /* sign_bit_p only checks ARG1 bits within A's precision.
11496 If <sign bit of A> has wider type than A, bits outside
11497 of A's precision in <sign bit of A> need to be checked.
11498 If they are all 0, this optimization needs to be done
11499 in unsigned A's type, if they are all 1 in signed A's type,
11500 otherwise this can't be done. */
11502 && TYPE_PRECISION (TREE_TYPE (tem
))
11503 < TYPE_PRECISION (TREE_TYPE (arg1
))
11504 && TYPE_PRECISION (TREE_TYPE (tem
))
11505 < TYPE_PRECISION (type
))
11507 int inner_width
, outer_width
;
11510 inner_width
= TYPE_PRECISION (TREE_TYPE (tem
));
11511 outer_width
= TYPE_PRECISION (TREE_TYPE (arg1
));
11512 if (outer_width
> TYPE_PRECISION (type
))
11513 outer_width
= TYPE_PRECISION (type
);
11515 wide_int mask
= wi::shifted_mask
11516 (inner_width
, outer_width
- inner_width
, false,
11517 TYPE_PRECISION (TREE_TYPE (arg1
)));
11519 wide_int common
= mask
& wi::to_wide (arg1
);
11520 if (common
== mask
)
11522 tem_type
= signed_type_for (TREE_TYPE (tem
));
11523 tem
= fold_convert_loc (loc
, tem_type
, tem
);
11525 else if (common
== 0)
11527 tem_type
= unsigned_type_for (TREE_TYPE (tem
));
11528 tem
= fold_convert_loc (loc
, tem_type
, tem
);
11536 fold_convert_loc (loc
, type
,
11537 fold_build2_loc (loc
, BIT_AND_EXPR
,
11538 TREE_TYPE (tem
), tem
,
11539 fold_convert_loc (loc
,
11544 /* (A >> N) & 1 ? (1 << N) : 0 is simply A & (1 << N). A & 1 was
11545 already handled above. */
11546 if (TREE_CODE (arg0
) == BIT_AND_EXPR
11547 && integer_onep (TREE_OPERAND (arg0
, 1))
11548 && integer_zerop (op2
)
11549 && integer_pow2p (arg1
))
11551 tree tem
= TREE_OPERAND (arg0
, 0);
11553 if (TREE_CODE (tem
) == RSHIFT_EXPR
11554 && tree_fits_uhwi_p (TREE_OPERAND (tem
, 1))
11555 && (unsigned HOST_WIDE_INT
) tree_log2 (arg1
)
11556 == tree_to_uhwi (TREE_OPERAND (tem
, 1)))
11557 return fold_build2_loc (loc
, BIT_AND_EXPR
, type
,
11558 fold_convert_loc (loc
, type
,
11559 TREE_OPERAND (tem
, 0)),
11563 /* A & N ? N : 0 is simply A & N if N is a power of two. This
11564 is probably obsolete because the first operand should be a
11565 truth value (that's why we have the two cases above), but let's
11566 leave it in until we can confirm this for all front-ends. */
11567 if (integer_zerop (op2
)
11568 && TREE_CODE (arg0
) == NE_EXPR
11569 && integer_zerop (TREE_OPERAND (arg0
, 1))
11570 && integer_pow2p (arg1
)
11571 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == BIT_AND_EXPR
11572 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0
, 0), 1),
11573 arg1
, OEP_ONLY_CONST
))
11574 return pedantic_non_lvalue_loc (loc
,
11575 fold_convert_loc (loc
, type
,
11576 TREE_OPERAND (arg0
, 0)));
11578 /* Disable the transformations below for vectors, since
11579 fold_binary_op_with_conditional_arg may undo them immediately,
11580 yielding an infinite loop. */
11581 if (code
== VEC_COND_EXPR
)
11584 /* Convert A ? B : 0 into A && B if A and B are truth values. */
11585 if (integer_zerop (op2
)
11586 && truth_value_p (TREE_CODE (arg0
))
11587 && truth_value_p (TREE_CODE (arg1
))
11588 && (code
== VEC_COND_EXPR
|| !VECTOR_TYPE_P (type
)))
11589 return fold_build2_loc (loc
, code
== VEC_COND_EXPR
? BIT_AND_EXPR
11590 : TRUTH_ANDIF_EXPR
,
11591 type
, fold_convert_loc (loc
, type
, arg0
), op1
);
11593 /* Convert A ? B : 1 into !A || B if A and B are truth values. */
11594 if (code
== VEC_COND_EXPR
? integer_all_onesp (op2
) : integer_onep (op2
)
11595 && truth_value_p (TREE_CODE (arg0
))
11596 && truth_value_p (TREE_CODE (arg1
))
11597 && (code
== VEC_COND_EXPR
|| !VECTOR_TYPE_P (type
)))
11599 location_t loc0
= expr_location_or (arg0
, loc
);
11600 /* Only perform transformation if ARG0 is easily inverted. */
11601 tem
= fold_invert_truthvalue (loc0
, arg0
);
11603 return fold_build2_loc (loc
, code
== VEC_COND_EXPR
11606 type
, fold_convert_loc (loc
, type
, tem
),
11610 /* Convert A ? 0 : B into !A && B if A and B are truth values. */
11611 if (integer_zerop (arg1
)
11612 && truth_value_p (TREE_CODE (arg0
))
11613 && truth_value_p (TREE_CODE (op2
))
11614 && (code
== VEC_COND_EXPR
|| !VECTOR_TYPE_P (type
)))
11616 location_t loc0
= expr_location_or (arg0
, loc
);
11617 /* Only perform transformation if ARG0 is easily inverted. */
11618 tem
= fold_invert_truthvalue (loc0
, arg0
);
11620 return fold_build2_loc (loc
, code
== VEC_COND_EXPR
11621 ? BIT_AND_EXPR
: TRUTH_ANDIF_EXPR
,
11622 type
, fold_convert_loc (loc
, type
, tem
),
11626 /* Convert A ? 1 : B into A || B if A and B are truth values. */
11627 if (code
== VEC_COND_EXPR
? integer_all_onesp (arg1
) : integer_onep (arg1
)
11628 && truth_value_p (TREE_CODE (arg0
))
11629 && truth_value_p (TREE_CODE (op2
))
11630 && (code
== VEC_COND_EXPR
|| !VECTOR_TYPE_P (type
)))
11631 return fold_build2_loc (loc
, code
== VEC_COND_EXPR
11632 ? BIT_IOR_EXPR
: TRUTH_ORIF_EXPR
,
11633 type
, fold_convert_loc (loc
, type
, arg0
), op2
);
11638 /* CALL_EXPRs used to be ternary exprs. Catch any mistaken uses
11639 of fold_ternary on them. */
11640 gcc_unreachable ();
11642 case BIT_FIELD_REF
:
11643 if (TREE_CODE (arg0
) == VECTOR_CST
11644 && (type
== TREE_TYPE (TREE_TYPE (arg0
))
11645 || (TREE_CODE (type
) == VECTOR_TYPE
11646 && TREE_TYPE (type
) == TREE_TYPE (TREE_TYPE (arg0
))))
11647 && tree_fits_uhwi_p (op1
)
11648 && tree_fits_uhwi_p (op2
))
11650 tree eltype
= TREE_TYPE (TREE_TYPE (arg0
));
11651 unsigned HOST_WIDE_INT width
= tree_to_uhwi (TYPE_SIZE (eltype
));
11652 unsigned HOST_WIDE_INT n
= tree_to_uhwi (arg1
);
11653 unsigned HOST_WIDE_INT idx
= tree_to_uhwi (op2
);
11656 && (idx
% width
) == 0
11657 && (n
% width
) == 0
11658 && known_le ((idx
+ n
) / width
,
11659 TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0
))))
11664 if (TREE_CODE (arg0
) == VECTOR_CST
)
11667 return VECTOR_CST_ELT (arg0
, idx
);
11669 tree_vector_builder
vals (type
, n
, 1);
11670 for (unsigned i
= 0; i
< n
; ++i
)
11671 vals
.quick_push (VECTOR_CST_ELT (arg0
, idx
+ i
));
11672 return vals
.build ();
11677 /* On constants we can use native encode/interpret to constant
11678 fold (nearly) all BIT_FIELD_REFs. */
11679 if (CONSTANT_CLASS_P (arg0
)
11680 && can_native_interpret_type_p (type
)
11681 && BITS_PER_UNIT
== 8
11682 && tree_fits_uhwi_p (op1
)
11683 && tree_fits_uhwi_p (op2
))
11685 unsigned HOST_WIDE_INT bitpos
= tree_to_uhwi (op2
);
11686 unsigned HOST_WIDE_INT bitsize
= tree_to_uhwi (op1
);
11687 /* Limit us to a reasonable amount of work. To relax the
11688 other limitations we need bit-shifting of the buffer
11689 and rounding up the size. */
11690 if (bitpos
% BITS_PER_UNIT
== 0
11691 && bitsize
% BITS_PER_UNIT
== 0
11692 && bitsize
<= MAX_BITSIZE_MODE_ANY_MODE
)
11694 unsigned char b
[MAX_BITSIZE_MODE_ANY_MODE
/ BITS_PER_UNIT
];
11695 unsigned HOST_WIDE_INT len
11696 = native_encode_expr (arg0
, b
, bitsize
/ BITS_PER_UNIT
,
11697 bitpos
/ BITS_PER_UNIT
);
11699 && len
* BITS_PER_UNIT
>= bitsize
)
11701 tree v
= native_interpret_expr (type
, b
,
11702 bitsize
/ BITS_PER_UNIT
);
11712 /* For integers we can decompose the FMA if possible. */
11713 if (TREE_CODE (arg0
) == INTEGER_CST
11714 && TREE_CODE (arg1
) == INTEGER_CST
)
11715 return fold_build2_loc (loc
, PLUS_EXPR
, type
,
11716 const_binop (MULT_EXPR
, arg0
, arg1
), arg2
);
11717 if (integer_zerop (arg2
))
11718 return fold_build2_loc (loc
, MULT_EXPR
, type
, arg0
, arg1
);
11720 return fold_fma (loc
, type
, arg0
, arg1
, arg2
);
11722 case VEC_PERM_EXPR
:
11723 if (TREE_CODE (arg2
) == VECTOR_CST
)
11725 /* Build a vector of integers from the tree mask. */
11726 vec_perm_builder builder
;
11727 if (!tree_to_vec_perm_builder (&builder
, arg2
))
11730 /* Create a vec_perm_indices for the integer vector. */
11731 poly_uint64 nelts
= TYPE_VECTOR_SUBPARTS (type
);
11732 bool single_arg
= (op0
== op1
);
11733 vec_perm_indices
sel (builder
, single_arg
? 1 : 2, nelts
);
11735 /* Check for cases that fold to OP0 or OP1 in their original
11737 if (sel
.series_p (0, 1, 0, 1))
11739 if (sel
.series_p (0, 1, nelts
, 1))
11744 if (sel
.all_from_input_p (0))
11746 else if (sel
.all_from_input_p (1))
11749 sel
.rotate_inputs (1);
11753 if ((TREE_CODE (op0
) == VECTOR_CST
11754 || TREE_CODE (op0
) == CONSTRUCTOR
)
11755 && (TREE_CODE (op1
) == VECTOR_CST
11756 || TREE_CODE (op1
) == CONSTRUCTOR
))
11758 tree t
= fold_vec_perm (type
, op0
, op1
, sel
);
11759 if (t
!= NULL_TREE
)
11763 bool changed
= (op0
== op1
&& !single_arg
);
11765 /* Generate a canonical form of the selector. */
11766 if (arg2
== op2
&& sel
.encoding () != builder
)
11768 /* Some targets are deficient and fail to expand a single
11769 argument permutation while still allowing an equivalent
11770 2-argument version. */
11771 if (sel
.ninputs () == 2
11772 || can_vec_perm_const_p (TYPE_MODE (type
), sel
, false))
11773 op2
= vec_perm_indices_to_tree (TREE_TYPE (arg2
), sel
);
11776 vec_perm_indices
sel2 (builder
, 2, nelts
);
11777 if (can_vec_perm_const_p (TYPE_MODE (type
), sel2
, false))
11778 op2
= vec_perm_indices_to_tree (TREE_TYPE (arg2
), sel2
);
11780 /* Not directly supported with either encoding,
11781 so use the preferred form. */
11782 op2
= vec_perm_indices_to_tree (TREE_TYPE (arg2
), sel
);
11788 return build3_loc (loc
, VEC_PERM_EXPR
, type
, op0
, op1
, op2
);
11792 case BIT_INSERT_EXPR
:
11793 /* Perform (partial) constant folding of BIT_INSERT_EXPR. */
11794 if (TREE_CODE (arg0
) == INTEGER_CST
11795 && TREE_CODE (arg1
) == INTEGER_CST
)
11797 unsigned HOST_WIDE_INT bitpos
= tree_to_uhwi (op2
);
11798 unsigned bitsize
= TYPE_PRECISION (TREE_TYPE (arg1
));
11799 wide_int tem
= (wi::to_wide (arg0
)
11800 & wi::shifted_mask (bitpos
, bitsize
, true,
11801 TYPE_PRECISION (type
)));
11803 = wi::lshift (wi::zext (wi::to_wide (arg1
, TYPE_PRECISION (type
)),
11805 return wide_int_to_tree (type
, wi::bit_or (tem
, tem2
));
11807 else if (TREE_CODE (arg0
) == VECTOR_CST
11808 && CONSTANT_CLASS_P (arg1
)
11809 && types_compatible_p (TREE_TYPE (TREE_TYPE (arg0
)),
11812 unsigned HOST_WIDE_INT bitpos
= tree_to_uhwi (op2
);
11813 unsigned HOST_WIDE_INT elsize
11814 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (arg1
)));
11815 if (bitpos
% elsize
== 0)
11817 unsigned k
= bitpos
/ elsize
;
11818 unsigned HOST_WIDE_INT nelts
;
11819 if (operand_equal_p (VECTOR_CST_ELT (arg0
, k
), arg1
, 0))
11821 else if (VECTOR_CST_NELTS (arg0
).is_constant (&nelts
))
11823 tree_vector_builder
elts (type
, nelts
, 1);
11824 elts
.quick_grow (nelts
);
11825 for (unsigned HOST_WIDE_INT i
= 0; i
< nelts
; ++i
)
11826 elts
[i
] = (i
== k
? arg1
: VECTOR_CST_ELT (arg0
, i
));
11827 return elts
.build ();
11835 } /* switch (code) */
11838 /* Gets the element ACCESS_INDEX from CTOR, which must be a CONSTRUCTOR
11839 of an array (or vector). */
11842 get_array_ctor_element_at_index (tree ctor
, offset_int access_index
)
11844 tree index_type
= NULL_TREE
;
11845 offset_int low_bound
= 0;
11847 if (TREE_CODE (TREE_TYPE (ctor
)) == ARRAY_TYPE
)
11849 tree domain_type
= TYPE_DOMAIN (TREE_TYPE (ctor
));
11850 if (domain_type
&& TYPE_MIN_VALUE (domain_type
))
11852 /* Static constructors for variably sized objects makes no sense. */
11853 gcc_assert (TREE_CODE (TYPE_MIN_VALUE (domain_type
)) == INTEGER_CST
);
11854 index_type
= TREE_TYPE (TYPE_MIN_VALUE (domain_type
));
11855 low_bound
= wi::to_offset (TYPE_MIN_VALUE (domain_type
));
11860 access_index
= wi::ext (access_index
, TYPE_PRECISION (index_type
),
11861 TYPE_SIGN (index_type
));
11863 offset_int index
= low_bound
- 1;
11865 index
= wi::ext (index
, TYPE_PRECISION (index_type
),
11866 TYPE_SIGN (index_type
));
11868 offset_int max_index
;
11869 unsigned HOST_WIDE_INT cnt
;
11872 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor
), cnt
, cfield
, cval
)
11874 /* Array constructor might explicitly set index, or specify a range,
11875 or leave index NULL meaning that it is next index after previous
11879 if (TREE_CODE (cfield
) == INTEGER_CST
)
11880 max_index
= index
= wi::to_offset (cfield
);
11883 gcc_assert (TREE_CODE (cfield
) == RANGE_EXPR
);
11884 index
= wi::to_offset (TREE_OPERAND (cfield
, 0));
11885 max_index
= wi::to_offset (TREE_OPERAND (cfield
, 1));
11892 index
= wi::ext (index
, TYPE_PRECISION (index_type
),
11893 TYPE_SIGN (index_type
));
11897 /* Do we have match? */
11898 if (wi::cmpu (access_index
, index
) >= 0
11899 && wi::cmpu (access_index
, max_index
) <= 0)
11905 /* Perform constant folding and related simplification of EXPR.
11906 The related simplifications include x*1 => x, x*0 => 0, etc.,
11907 and application of the associative law.
11908 NOP_EXPR conversions may be removed freely (as long as we
11909 are careful not to change the type of the overall expression).
11910 We cannot simplify through a CONVERT_EXPR, FIX_EXPR or FLOAT_EXPR,
11911 but we can constant-fold them if they have constant operands. */
11913 #ifdef ENABLE_FOLD_CHECKING
11914 # define fold(x) fold_1 (x)
11915 static tree
fold_1 (tree
);
11921 const tree t
= expr
;
11922 enum tree_code code
= TREE_CODE (t
);
11923 enum tree_code_class kind
= TREE_CODE_CLASS (code
);
11925 location_t loc
= EXPR_LOCATION (expr
);
11927 /* Return right away if a constant. */
11928 if (kind
== tcc_constant
)
11931 /* CALL_EXPR-like objects with variable numbers of operands are
11932 treated specially. */
11933 if (kind
== tcc_vl_exp
)
11935 if (code
== CALL_EXPR
)
11937 tem
= fold_call_expr (loc
, expr
, false);
11938 return tem
? tem
: expr
;
11943 if (IS_EXPR_CODE_CLASS (kind
))
11945 tree type
= TREE_TYPE (t
);
11946 tree op0
, op1
, op2
;
11948 switch (TREE_CODE_LENGTH (code
))
11951 op0
= TREE_OPERAND (t
, 0);
11952 tem
= fold_unary_loc (loc
, code
, type
, op0
);
11953 return tem
? tem
: expr
;
11955 op0
= TREE_OPERAND (t
, 0);
11956 op1
= TREE_OPERAND (t
, 1);
11957 tem
= fold_binary_loc (loc
, code
, type
, op0
, op1
);
11958 return tem
? tem
: expr
;
11960 op0
= TREE_OPERAND (t
, 0);
11961 op1
= TREE_OPERAND (t
, 1);
11962 op2
= TREE_OPERAND (t
, 2);
11963 tem
= fold_ternary_loc (loc
, code
, type
, op0
, op1
, op2
);
11964 return tem
? tem
: expr
;
11974 tree op0
= TREE_OPERAND (t
, 0);
11975 tree op1
= TREE_OPERAND (t
, 1);
11977 if (TREE_CODE (op1
) == INTEGER_CST
11978 && TREE_CODE (op0
) == CONSTRUCTOR
11979 && ! type_contains_placeholder_p (TREE_TYPE (op0
)))
11981 tree val
= get_array_ctor_element_at_index (op0
,
11982 wi::to_offset (op1
));
11990 /* Return a VECTOR_CST if possible. */
11993 tree type
= TREE_TYPE (t
);
11994 if (TREE_CODE (type
) != VECTOR_TYPE
)
11999 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (t
), i
, val
)
12000 if (! CONSTANT_CLASS_P (val
))
12003 return build_vector_from_ctor (type
, CONSTRUCTOR_ELTS (t
));
12007 return fold (DECL_INITIAL (t
));
12011 } /* switch (code) */
12014 #ifdef ENABLE_FOLD_CHECKING
12017 static void fold_checksum_tree (const_tree
, struct md5_ctx
*,
12018 hash_table
<nofree_ptr_hash
<const tree_node
> > *);
12019 static void fold_check_failed (const_tree
, const_tree
);
12020 void print_fold_checksum (const_tree
);
12022 /* When --enable-checking=fold, compute a digest of expr before
12023 and after actual fold call to see if fold did not accidentally
12024 change original expr. */
12030 struct md5_ctx ctx
;
12031 unsigned char checksum_before
[16], checksum_after
[16];
12032 hash_table
<nofree_ptr_hash
<const tree_node
> > ht (32);
12034 md5_init_ctx (&ctx
);
12035 fold_checksum_tree (expr
, &ctx
, &ht
);
12036 md5_finish_ctx (&ctx
, checksum_before
);
12039 ret
= fold_1 (expr
);
12041 md5_init_ctx (&ctx
);
12042 fold_checksum_tree (expr
, &ctx
, &ht
);
12043 md5_finish_ctx (&ctx
, checksum_after
);
12045 if (memcmp (checksum_before
, checksum_after
, 16))
12046 fold_check_failed (expr
, ret
);
12052 print_fold_checksum (const_tree expr
)
12054 struct md5_ctx ctx
;
12055 unsigned char checksum
[16], cnt
;
12056 hash_table
<nofree_ptr_hash
<const tree_node
> > ht (32);
12058 md5_init_ctx (&ctx
);
12059 fold_checksum_tree (expr
, &ctx
, &ht
);
12060 md5_finish_ctx (&ctx
, checksum
);
12061 for (cnt
= 0; cnt
< 16; ++cnt
)
12062 fprintf (stderr
, "%02x", checksum
[cnt
]);
12063 putc ('\n', stderr
);
12067 fold_check_failed (const_tree expr ATTRIBUTE_UNUSED
, const_tree ret ATTRIBUTE_UNUSED
)
12069 internal_error ("fold check: original tree changed by fold");
12073 fold_checksum_tree (const_tree expr
, struct md5_ctx
*ctx
,
12074 hash_table
<nofree_ptr_hash
<const tree_node
> > *ht
)
12076 const tree_node
**slot
;
12077 enum tree_code code
;
12078 union tree_node buf
;
12084 slot
= ht
->find_slot (expr
, INSERT
);
12088 code
= TREE_CODE (expr
);
12089 if (TREE_CODE_CLASS (code
) == tcc_declaration
12090 && HAS_DECL_ASSEMBLER_NAME_P (expr
))
12092 /* Allow DECL_ASSEMBLER_NAME and symtab_node to be modified. */
12093 memcpy ((char *) &buf
, expr
, tree_size (expr
));
12094 SET_DECL_ASSEMBLER_NAME ((tree
)&buf
, NULL
);
12095 buf
.decl_with_vis
.symtab_node
= NULL
;
12096 expr
= (tree
) &buf
;
12098 else if (TREE_CODE_CLASS (code
) == tcc_type
12099 && (TYPE_POINTER_TO (expr
)
12100 || TYPE_REFERENCE_TO (expr
)
12101 || TYPE_CACHED_VALUES_P (expr
)
12102 || TYPE_CONTAINS_PLACEHOLDER_INTERNAL (expr
)
12103 || TYPE_NEXT_VARIANT (expr
)
12104 || TYPE_ALIAS_SET_KNOWN_P (expr
)))
12106 /* Allow these fields to be modified. */
12108 memcpy ((char *) &buf
, expr
, tree_size (expr
));
12109 expr
= tmp
= (tree
) &buf
;
12110 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (tmp
) = 0;
12111 TYPE_POINTER_TO (tmp
) = NULL
;
12112 TYPE_REFERENCE_TO (tmp
) = NULL
;
12113 TYPE_NEXT_VARIANT (tmp
) = NULL
;
12114 TYPE_ALIAS_SET (tmp
) = -1;
12115 if (TYPE_CACHED_VALUES_P (tmp
))
12117 TYPE_CACHED_VALUES_P (tmp
) = 0;
12118 TYPE_CACHED_VALUES (tmp
) = NULL
;
12121 md5_process_bytes (expr
, tree_size (expr
), ctx
);
12122 if (CODE_CONTAINS_STRUCT (code
, TS_TYPED
))
12123 fold_checksum_tree (TREE_TYPE (expr
), ctx
, ht
);
12124 if (TREE_CODE_CLASS (code
) != tcc_type
12125 && TREE_CODE_CLASS (code
) != tcc_declaration
12126 && code
!= TREE_LIST
12127 && code
!= SSA_NAME
12128 && CODE_CONTAINS_STRUCT (code
, TS_COMMON
))
12129 fold_checksum_tree (TREE_CHAIN (expr
), ctx
, ht
);
12130 switch (TREE_CODE_CLASS (code
))
12136 md5_process_bytes (TREE_STRING_POINTER (expr
),
12137 TREE_STRING_LENGTH (expr
), ctx
);
12140 fold_checksum_tree (TREE_REALPART (expr
), ctx
, ht
);
12141 fold_checksum_tree (TREE_IMAGPART (expr
), ctx
, ht
);
12144 len
= vector_cst_encoded_nelts (expr
);
12145 for (i
= 0; i
< len
; ++i
)
12146 fold_checksum_tree (VECTOR_CST_ENCODED_ELT (expr
, i
), ctx
, ht
);
12152 case tcc_exceptional
:
12156 fold_checksum_tree (TREE_PURPOSE (expr
), ctx
, ht
);
12157 fold_checksum_tree (TREE_VALUE (expr
), ctx
, ht
);
12158 expr
= TREE_CHAIN (expr
);
12159 goto recursive_label
;
12162 for (i
= 0; i
< TREE_VEC_LENGTH (expr
); ++i
)
12163 fold_checksum_tree (TREE_VEC_ELT (expr
, i
), ctx
, ht
);
12169 case tcc_expression
:
12170 case tcc_reference
:
12171 case tcc_comparison
:
12174 case tcc_statement
:
12176 len
= TREE_OPERAND_LENGTH (expr
);
12177 for (i
= 0; i
< len
; ++i
)
12178 fold_checksum_tree (TREE_OPERAND (expr
, i
), ctx
, ht
);
12180 case tcc_declaration
:
12181 fold_checksum_tree (DECL_NAME (expr
), ctx
, ht
);
12182 fold_checksum_tree (DECL_CONTEXT (expr
), ctx
, ht
);
12183 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr
), TS_DECL_COMMON
))
12185 fold_checksum_tree (DECL_SIZE (expr
), ctx
, ht
);
12186 fold_checksum_tree (DECL_SIZE_UNIT (expr
), ctx
, ht
);
12187 fold_checksum_tree (DECL_INITIAL (expr
), ctx
, ht
);
12188 fold_checksum_tree (DECL_ABSTRACT_ORIGIN (expr
), ctx
, ht
);
12189 fold_checksum_tree (DECL_ATTRIBUTES (expr
), ctx
, ht
);
12192 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr
), TS_DECL_NON_COMMON
))
12194 if (TREE_CODE (expr
) == FUNCTION_DECL
)
12196 fold_checksum_tree (DECL_VINDEX (expr
), ctx
, ht
);
12197 fold_checksum_tree (DECL_ARGUMENTS (expr
), ctx
, ht
);
12199 fold_checksum_tree (DECL_RESULT_FLD (expr
), ctx
, ht
);
12203 if (TREE_CODE (expr
) == ENUMERAL_TYPE
)
12204 fold_checksum_tree (TYPE_VALUES (expr
), ctx
, ht
);
12205 fold_checksum_tree (TYPE_SIZE (expr
), ctx
, ht
);
12206 fold_checksum_tree (TYPE_SIZE_UNIT (expr
), ctx
, ht
);
12207 fold_checksum_tree (TYPE_ATTRIBUTES (expr
), ctx
, ht
);
12208 fold_checksum_tree (TYPE_NAME (expr
), ctx
, ht
);
12209 if (INTEGRAL_TYPE_P (expr
)
12210 || SCALAR_FLOAT_TYPE_P (expr
))
12212 fold_checksum_tree (TYPE_MIN_VALUE (expr
), ctx
, ht
);
12213 fold_checksum_tree (TYPE_MAX_VALUE (expr
), ctx
, ht
);
12215 fold_checksum_tree (TYPE_MAIN_VARIANT (expr
), ctx
, ht
);
12216 if (TREE_CODE (expr
) == RECORD_TYPE
12217 || TREE_CODE (expr
) == UNION_TYPE
12218 || TREE_CODE (expr
) == QUAL_UNION_TYPE
)
12219 fold_checksum_tree (TYPE_BINFO (expr
), ctx
, ht
);
12220 fold_checksum_tree (TYPE_CONTEXT (expr
), ctx
, ht
);
12227 /* Helper function for outputting the checksum of a tree T. When
12228 debugging with gdb, you can "define mynext" to be "next" followed
12229 by "call debug_fold_checksum (op0)", then just trace down till the
12232 DEBUG_FUNCTION
void
12233 debug_fold_checksum (const_tree t
)
12236 unsigned char checksum
[16];
12237 struct md5_ctx ctx
;
12238 hash_table
<nofree_ptr_hash
<const tree_node
> > ht (32);
12240 md5_init_ctx (&ctx
);
12241 fold_checksum_tree (t
, &ctx
, &ht
);
12242 md5_finish_ctx (&ctx
, checksum
);
12245 for (i
= 0; i
< 16; i
++)
12246 fprintf (stderr
, "%d ", checksum
[i
]);
12248 fprintf (stderr
, "\n");
12253 /* Fold a unary tree expression with code CODE of type TYPE with an
12254 operand OP0. LOC is the location of the resulting expression.
12255 Return a folded expression if successful. Otherwise, return a tree
12256 expression with code CODE of type TYPE with an operand OP0. */
12259 fold_build1_loc (location_t loc
,
12260 enum tree_code code
, tree type
, tree op0 MEM_STAT_DECL
)
12263 #ifdef ENABLE_FOLD_CHECKING
12264 unsigned char checksum_before
[16], checksum_after
[16];
12265 struct md5_ctx ctx
;
12266 hash_table
<nofree_ptr_hash
<const tree_node
> > ht (32);
12268 md5_init_ctx (&ctx
);
12269 fold_checksum_tree (op0
, &ctx
, &ht
);
12270 md5_finish_ctx (&ctx
, checksum_before
);
12274 tem
= fold_unary_loc (loc
, code
, type
, op0
);
12276 tem
= build1_loc (loc
, code
, type
, op0 PASS_MEM_STAT
);
12278 #ifdef ENABLE_FOLD_CHECKING
12279 md5_init_ctx (&ctx
);
12280 fold_checksum_tree (op0
, &ctx
, &ht
);
12281 md5_finish_ctx (&ctx
, checksum_after
);
12283 if (memcmp (checksum_before
, checksum_after
, 16))
12284 fold_check_failed (op0
, tem
);
12289 /* Fold a binary tree expression with code CODE of type TYPE with
12290 operands OP0 and OP1. LOC is the location of the resulting
12291 expression. Return a folded expression if successful. Otherwise,
12292 return a tree expression with code CODE of type TYPE with operands
12296 fold_build2_loc (location_t loc
,
12297 enum tree_code code
, tree type
, tree op0
, tree op1
12301 #ifdef ENABLE_FOLD_CHECKING
12302 unsigned char checksum_before_op0
[16],
12303 checksum_before_op1
[16],
12304 checksum_after_op0
[16],
12305 checksum_after_op1
[16];
12306 struct md5_ctx ctx
;
12307 hash_table
<nofree_ptr_hash
<const tree_node
> > ht (32);
12309 md5_init_ctx (&ctx
);
12310 fold_checksum_tree (op0
, &ctx
, &ht
);
12311 md5_finish_ctx (&ctx
, checksum_before_op0
);
12314 md5_init_ctx (&ctx
);
12315 fold_checksum_tree (op1
, &ctx
, &ht
);
12316 md5_finish_ctx (&ctx
, checksum_before_op1
);
12320 tem
= fold_binary_loc (loc
, code
, type
, op0
, op1
);
12322 tem
= build2_loc (loc
, code
, type
, op0
, op1 PASS_MEM_STAT
);
12324 #ifdef ENABLE_FOLD_CHECKING
12325 md5_init_ctx (&ctx
);
12326 fold_checksum_tree (op0
, &ctx
, &ht
);
12327 md5_finish_ctx (&ctx
, checksum_after_op0
);
12330 if (memcmp (checksum_before_op0
, checksum_after_op0
, 16))
12331 fold_check_failed (op0
, tem
);
12333 md5_init_ctx (&ctx
);
12334 fold_checksum_tree (op1
, &ctx
, &ht
);
12335 md5_finish_ctx (&ctx
, checksum_after_op1
);
12337 if (memcmp (checksum_before_op1
, checksum_after_op1
, 16))
12338 fold_check_failed (op1
, tem
);
12343 /* Fold a ternary tree expression with code CODE of type TYPE with
12344 operands OP0, OP1, and OP2. Return a folded expression if
12345 successful. Otherwise, return a tree expression with code CODE of
12346 type TYPE with operands OP0, OP1, and OP2. */
12349 fold_build3_loc (location_t loc
, enum tree_code code
, tree type
,
12350 tree op0
, tree op1
, tree op2 MEM_STAT_DECL
)
12353 #ifdef ENABLE_FOLD_CHECKING
12354 unsigned char checksum_before_op0
[16],
12355 checksum_before_op1
[16],
12356 checksum_before_op2
[16],
12357 checksum_after_op0
[16],
12358 checksum_after_op1
[16],
12359 checksum_after_op2
[16];
12360 struct md5_ctx ctx
;
12361 hash_table
<nofree_ptr_hash
<const tree_node
> > ht (32);
12363 md5_init_ctx (&ctx
);
12364 fold_checksum_tree (op0
, &ctx
, &ht
);
12365 md5_finish_ctx (&ctx
, checksum_before_op0
);
12368 md5_init_ctx (&ctx
);
12369 fold_checksum_tree (op1
, &ctx
, &ht
);
12370 md5_finish_ctx (&ctx
, checksum_before_op1
);
12373 md5_init_ctx (&ctx
);
12374 fold_checksum_tree (op2
, &ctx
, &ht
);
12375 md5_finish_ctx (&ctx
, checksum_before_op2
);
12379 gcc_assert (TREE_CODE_CLASS (code
) != tcc_vl_exp
);
12380 tem
= fold_ternary_loc (loc
, code
, type
, op0
, op1
, op2
);
12382 tem
= build3_loc (loc
, code
, type
, op0
, op1
, op2 PASS_MEM_STAT
);
12384 #ifdef ENABLE_FOLD_CHECKING
12385 md5_init_ctx (&ctx
);
12386 fold_checksum_tree (op0
, &ctx
, &ht
);
12387 md5_finish_ctx (&ctx
, checksum_after_op0
);
12390 if (memcmp (checksum_before_op0
, checksum_after_op0
, 16))
12391 fold_check_failed (op0
, tem
);
12393 md5_init_ctx (&ctx
);
12394 fold_checksum_tree (op1
, &ctx
, &ht
);
12395 md5_finish_ctx (&ctx
, checksum_after_op1
);
12398 if (memcmp (checksum_before_op1
, checksum_after_op1
, 16))
12399 fold_check_failed (op1
, tem
);
12401 md5_init_ctx (&ctx
);
12402 fold_checksum_tree (op2
, &ctx
, &ht
);
12403 md5_finish_ctx (&ctx
, checksum_after_op2
);
12405 if (memcmp (checksum_before_op2
, checksum_after_op2
, 16))
12406 fold_check_failed (op2
, tem
);
12411 /* Fold a CALL_EXPR expression of type TYPE with operands FN and NARGS
12412 arguments in ARGARRAY, and a null static chain.
12413 Return a folded expression if successful. Otherwise, return a CALL_EXPR
12414 of type TYPE from the given operands as constructed by build_call_array. */
12417 fold_build_call_array_loc (location_t loc
, tree type
, tree fn
,
12418 int nargs
, tree
*argarray
)
12421 #ifdef ENABLE_FOLD_CHECKING
12422 unsigned char checksum_before_fn
[16],
12423 checksum_before_arglist
[16],
12424 checksum_after_fn
[16],
12425 checksum_after_arglist
[16];
12426 struct md5_ctx ctx
;
12427 hash_table
<nofree_ptr_hash
<const tree_node
> > ht (32);
12430 md5_init_ctx (&ctx
);
12431 fold_checksum_tree (fn
, &ctx
, &ht
);
12432 md5_finish_ctx (&ctx
, checksum_before_fn
);
12435 md5_init_ctx (&ctx
);
12436 for (i
= 0; i
< nargs
; i
++)
12437 fold_checksum_tree (argarray
[i
], &ctx
, &ht
);
12438 md5_finish_ctx (&ctx
, checksum_before_arglist
);
12442 tem
= fold_builtin_call_array (loc
, type
, fn
, nargs
, argarray
);
12444 tem
= build_call_array_loc (loc
, type
, fn
, nargs
, argarray
);
12446 #ifdef ENABLE_FOLD_CHECKING
12447 md5_init_ctx (&ctx
);
12448 fold_checksum_tree (fn
, &ctx
, &ht
);
12449 md5_finish_ctx (&ctx
, checksum_after_fn
);
12452 if (memcmp (checksum_before_fn
, checksum_after_fn
, 16))
12453 fold_check_failed (fn
, tem
);
12455 md5_init_ctx (&ctx
);
12456 for (i
= 0; i
< nargs
; i
++)
12457 fold_checksum_tree (argarray
[i
], &ctx
, &ht
);
12458 md5_finish_ctx (&ctx
, checksum_after_arglist
);
12460 if (memcmp (checksum_before_arglist
, checksum_after_arglist
, 16))
12461 fold_check_failed (NULL_TREE
, tem
);
12466 /* Perform constant folding and related simplification of initializer
12467 expression EXPR. These behave identically to "fold_buildN" but ignore
12468 potential run-time traps and exceptions that fold must preserve. */
12470 #define START_FOLD_INIT \
12471 int saved_signaling_nans = flag_signaling_nans;\
12472 int saved_trapping_math = flag_trapping_math;\
12473 int saved_rounding_math = flag_rounding_math;\
12474 int saved_trapv = flag_trapv;\
12475 int saved_folding_initializer = folding_initializer;\
12476 flag_signaling_nans = 0;\
12477 flag_trapping_math = 0;\
12478 flag_rounding_math = 0;\
12480 folding_initializer = 1;
12482 #define END_FOLD_INIT \
12483 flag_signaling_nans = saved_signaling_nans;\
12484 flag_trapping_math = saved_trapping_math;\
12485 flag_rounding_math = saved_rounding_math;\
12486 flag_trapv = saved_trapv;\
12487 folding_initializer = saved_folding_initializer;
12490 fold_build1_initializer_loc (location_t loc
, enum tree_code code
,
12491 tree type
, tree op
)
12496 result
= fold_build1_loc (loc
, code
, type
, op
);
12503 fold_build2_initializer_loc (location_t loc
, enum tree_code code
,
12504 tree type
, tree op0
, tree op1
)
12509 result
= fold_build2_loc (loc
, code
, type
, op0
, op1
);
12516 fold_build_call_array_initializer_loc (location_t loc
, tree type
, tree fn
,
12517 int nargs
, tree
*argarray
)
12522 result
= fold_build_call_array_loc (loc
, type
, fn
, nargs
, argarray
);
12528 #undef START_FOLD_INIT
12529 #undef END_FOLD_INIT
12531 /* Determine if first argument is a multiple of second argument. Return 0 if
12532 it is not, or we cannot easily determined it to be.
12534 An example of the sort of thing we care about (at this point; this routine
12535 could surely be made more general, and expanded to do what the *_DIV_EXPR's
12536 fold cases do now) is discovering that
12538 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
12544 when we know that the two SAVE_EXPR (J * 8) nodes are the same node.
12546 This code also handles discovering that
12548 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
12550 is a multiple of 8 so we don't have to worry about dealing with a
12551 possible remainder.
12553 Note that we *look* inside a SAVE_EXPR only to determine how it was
12554 calculated; it is not safe for fold to do much of anything else with the
12555 internals of a SAVE_EXPR, since it cannot know when it will be evaluated
12556 at run time. For example, the latter example above *cannot* be implemented
12557 as SAVE_EXPR (I) * J or any variant thereof, since the value of J at
12558 evaluation time of the original SAVE_EXPR is not necessarily the same at
12559 the time the new expression is evaluated. The only optimization of this
12560 sort that would be valid is changing
12562 SAVE_EXPR (I) * SAVE_EXPR (SAVE_EXPR (J) * 8)
12566 SAVE_EXPR (I) * SAVE_EXPR (J)
12568 (where the same SAVE_EXPR (J) is used in the original and the
12569 transformed version). */
12572 multiple_of_p (tree type
, const_tree top
, const_tree bottom
)
12577 if (operand_equal_p (top
, bottom
, 0))
12580 if (TREE_CODE (type
) != INTEGER_TYPE
)
12583 switch (TREE_CODE (top
))
12586 /* Bitwise and provides a power of two multiple. If the mask is
12587 a multiple of BOTTOM then TOP is a multiple of BOTTOM. */
12588 if (!integer_pow2p (bottom
))
12593 return (multiple_of_p (type
, TREE_OPERAND (top
, 1), bottom
)
12594 || multiple_of_p (type
, TREE_OPERAND (top
, 0), bottom
));
12597 /* It is impossible to prove if op0 - op1 is multiple of bottom
12598 precisely, so be conservative here checking if both op0 and op1
12599 are multiple of bottom. Note we check the second operand first
12600 since it's usually simpler. */
12601 return (multiple_of_p (type
, TREE_OPERAND (top
, 1), bottom
)
12602 && multiple_of_p (type
, TREE_OPERAND (top
, 0), bottom
));
12605 /* The same as MINUS_EXPR, but handle cases like op0 + 0xfffffffd
12606 as op0 - 3 if the expression has unsigned type. For example,
12607 (X / 3) + 0xfffffffd is multiple of 3, but 0xfffffffd is not. */
12608 op1
= TREE_OPERAND (top
, 1);
12609 if (TYPE_UNSIGNED (type
)
12610 && TREE_CODE (op1
) == INTEGER_CST
&& tree_int_cst_sign_bit (op1
))
12611 op1
= fold_build1 (NEGATE_EXPR
, type
, op1
);
12612 return (multiple_of_p (type
, op1
, bottom
)
12613 && multiple_of_p (type
, TREE_OPERAND (top
, 0), bottom
));
12616 if (TREE_CODE (TREE_OPERAND (top
, 1)) == INTEGER_CST
)
12618 op1
= TREE_OPERAND (top
, 1);
12619 /* const_binop may not detect overflow correctly,
12620 so check for it explicitly here. */
12621 if (wi::gtu_p (TYPE_PRECISION (TREE_TYPE (size_one_node
)),
12623 && (t1
= fold_convert (type
,
12624 const_binop (LSHIFT_EXPR
, size_one_node
,
12626 && !TREE_OVERFLOW (t1
))
12627 return multiple_of_p (type
, t1
, bottom
);
12632 /* Can't handle conversions from non-integral or wider integral type. */
12633 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (top
, 0))) != INTEGER_TYPE
)
12634 || (TYPE_PRECISION (type
)
12635 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (top
, 0)))))
12641 return multiple_of_p (type
, TREE_OPERAND (top
, 0), bottom
);
12644 return (multiple_of_p (type
, TREE_OPERAND (top
, 1), bottom
)
12645 && multiple_of_p (type
, TREE_OPERAND (top
, 2), bottom
));
12648 if (TREE_CODE (bottom
) != INTEGER_CST
12649 || integer_zerop (bottom
)
12650 || (TYPE_UNSIGNED (type
)
12651 && (tree_int_cst_sgn (top
) < 0
12652 || tree_int_cst_sgn (bottom
) < 0)))
12654 return wi::multiple_of_p (wi::to_widest (top
), wi::to_widest (bottom
),
12658 if (TREE_CODE (bottom
) == INTEGER_CST
12659 && (stmt
= SSA_NAME_DEF_STMT (top
)) != NULL
12660 && gimple_code (stmt
) == GIMPLE_ASSIGN
)
12662 enum tree_code code
= gimple_assign_rhs_code (stmt
);
12664 /* Check for special cases to see if top is defined as multiple
12667 top = (X & ~(bottom - 1) ; bottom is power of 2
12673 if (code
== BIT_AND_EXPR
12674 && (op2
= gimple_assign_rhs2 (stmt
)) != NULL_TREE
12675 && TREE_CODE (op2
) == INTEGER_CST
12676 && integer_pow2p (bottom
)
12677 && wi::multiple_of_p (wi::to_widest (op2
),
12678 wi::to_widest (bottom
), UNSIGNED
))
12681 op1
= gimple_assign_rhs1 (stmt
);
12682 if (code
== MINUS_EXPR
12683 && (op2
= gimple_assign_rhs2 (stmt
)) != NULL_TREE
12684 && TREE_CODE (op2
) == SSA_NAME
12685 && (stmt
= SSA_NAME_DEF_STMT (op2
)) != NULL
12686 && gimple_code (stmt
) == GIMPLE_ASSIGN
12687 && (code
= gimple_assign_rhs_code (stmt
)) == TRUNC_MOD_EXPR
12688 && operand_equal_p (op1
, gimple_assign_rhs1 (stmt
), 0)
12689 && operand_equal_p (bottom
, gimple_assign_rhs2 (stmt
), 0))
12696 if (POLY_INT_CST_P (top
) && poly_int_tree_p (bottom
))
12697 return multiple_p (wi::to_poly_widest (top
),
12698 wi::to_poly_widest (bottom
));
12704 #define tree_expr_nonnegative_warnv_p(X, Y) \
12705 _Pragma ("GCC error \"Use RECURSE for recursive calls\"") 0
12707 #define RECURSE(X) \
12708 ((tree_expr_nonnegative_warnv_p) (X, strict_overflow_p, depth + 1))
12710 /* Return true if CODE or TYPE is known to be non-negative. */
12713 tree_simple_nonnegative_warnv_p (enum tree_code code
, tree type
)
12715 if ((TYPE_PRECISION (type
) != 1 || TYPE_UNSIGNED (type
))
12716 && truth_value_p (code
))
12717 /* Truth values evaluate to 0 or 1, which is nonnegative unless we
12718 have a signed:1 type (where the value is -1 and 0). */
12723 /* Return true if (CODE OP0) is known to be non-negative. If the return
12724 value is based on the assumption that signed overflow is undefined,
12725 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12726 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12729 tree_unary_nonnegative_warnv_p (enum tree_code code
, tree type
, tree op0
,
12730 bool *strict_overflow_p
, int depth
)
12732 if (TYPE_UNSIGNED (type
))
12738 /* We can't return 1 if flag_wrapv is set because
12739 ABS_EXPR<INT_MIN> = INT_MIN. */
12740 if (!ANY_INTEGRAL_TYPE_P (type
))
12742 if (TYPE_OVERFLOW_UNDEFINED (type
))
12744 *strict_overflow_p
= true;
12749 case NON_LVALUE_EXPR
:
12751 case FIX_TRUNC_EXPR
:
12752 return RECURSE (op0
);
12756 tree inner_type
= TREE_TYPE (op0
);
12757 tree outer_type
= type
;
12759 if (TREE_CODE (outer_type
) == REAL_TYPE
)
12761 if (TREE_CODE (inner_type
) == REAL_TYPE
)
12762 return RECURSE (op0
);
12763 if (INTEGRAL_TYPE_P (inner_type
))
12765 if (TYPE_UNSIGNED (inner_type
))
12767 return RECURSE (op0
);
12770 else if (INTEGRAL_TYPE_P (outer_type
))
12772 if (TREE_CODE (inner_type
) == REAL_TYPE
)
12773 return RECURSE (op0
);
12774 if (INTEGRAL_TYPE_P (inner_type
))
12775 return TYPE_PRECISION (inner_type
) < TYPE_PRECISION (outer_type
)
12776 && TYPE_UNSIGNED (inner_type
);
12782 return tree_simple_nonnegative_warnv_p (code
, type
);
12785 /* We don't know sign of `t', so be conservative and return false. */
12789 /* Return true if (CODE OP0 OP1) is known to be non-negative. If the return
12790 value is based on the assumption that signed overflow is undefined,
12791 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12792 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12795 tree_binary_nonnegative_warnv_p (enum tree_code code
, tree type
, tree op0
,
12796 tree op1
, bool *strict_overflow_p
,
12799 if (TYPE_UNSIGNED (type
))
12804 case POINTER_PLUS_EXPR
:
12806 if (FLOAT_TYPE_P (type
))
12807 return RECURSE (op0
) && RECURSE (op1
);
12809 /* zero_extend(x) + zero_extend(y) is non-negative if x and y are
12810 both unsigned and at least 2 bits shorter than the result. */
12811 if (TREE_CODE (type
) == INTEGER_TYPE
12812 && TREE_CODE (op0
) == NOP_EXPR
12813 && TREE_CODE (op1
) == NOP_EXPR
)
12815 tree inner1
= TREE_TYPE (TREE_OPERAND (op0
, 0));
12816 tree inner2
= TREE_TYPE (TREE_OPERAND (op1
, 0));
12817 if (TREE_CODE (inner1
) == INTEGER_TYPE
&& TYPE_UNSIGNED (inner1
)
12818 && TREE_CODE (inner2
) == INTEGER_TYPE
&& TYPE_UNSIGNED (inner2
))
12820 unsigned int prec
= MAX (TYPE_PRECISION (inner1
),
12821 TYPE_PRECISION (inner2
)) + 1;
12822 return prec
< TYPE_PRECISION (type
);
12828 if (FLOAT_TYPE_P (type
) || TYPE_OVERFLOW_UNDEFINED (type
))
12830 /* x * x is always non-negative for floating point x
12831 or without overflow. */
12832 if (operand_equal_p (op0
, op1
, 0)
12833 || (RECURSE (op0
) && RECURSE (op1
)))
12835 if (ANY_INTEGRAL_TYPE_P (type
)
12836 && TYPE_OVERFLOW_UNDEFINED (type
))
12837 *strict_overflow_p
= true;
12842 /* zero_extend(x) * zero_extend(y) is non-negative if x and y are
12843 both unsigned and their total bits is shorter than the result. */
12844 if (TREE_CODE (type
) == INTEGER_TYPE
12845 && (TREE_CODE (op0
) == NOP_EXPR
|| TREE_CODE (op0
) == INTEGER_CST
)
12846 && (TREE_CODE (op1
) == NOP_EXPR
|| TREE_CODE (op1
) == INTEGER_CST
))
12848 tree inner0
= (TREE_CODE (op0
) == NOP_EXPR
)
12849 ? TREE_TYPE (TREE_OPERAND (op0
, 0))
12851 tree inner1
= (TREE_CODE (op1
) == NOP_EXPR
)
12852 ? TREE_TYPE (TREE_OPERAND (op1
, 0))
12855 bool unsigned0
= TYPE_UNSIGNED (inner0
);
12856 bool unsigned1
= TYPE_UNSIGNED (inner1
);
12858 if (TREE_CODE (op0
) == INTEGER_CST
)
12859 unsigned0
= unsigned0
|| tree_int_cst_sgn (op0
) >= 0;
12861 if (TREE_CODE (op1
) == INTEGER_CST
)
12862 unsigned1
= unsigned1
|| tree_int_cst_sgn (op1
) >= 0;
12864 if (TREE_CODE (inner0
) == INTEGER_TYPE
&& unsigned0
12865 && TREE_CODE (inner1
) == INTEGER_TYPE
&& unsigned1
)
12867 unsigned int precision0
= (TREE_CODE (op0
) == INTEGER_CST
)
12868 ? tree_int_cst_min_precision (op0
, UNSIGNED
)
12869 : TYPE_PRECISION (inner0
);
12871 unsigned int precision1
= (TREE_CODE (op1
) == INTEGER_CST
)
12872 ? tree_int_cst_min_precision (op1
, UNSIGNED
)
12873 : TYPE_PRECISION (inner1
);
12875 return precision0
+ precision1
< TYPE_PRECISION (type
);
12882 return RECURSE (op0
) || RECURSE (op1
);
12888 case TRUNC_DIV_EXPR
:
12889 case CEIL_DIV_EXPR
:
12890 case FLOOR_DIV_EXPR
:
12891 case ROUND_DIV_EXPR
:
12892 return RECURSE (op0
) && RECURSE (op1
);
12894 case TRUNC_MOD_EXPR
:
12895 return RECURSE (op0
);
12897 case FLOOR_MOD_EXPR
:
12898 return RECURSE (op1
);
12900 case CEIL_MOD_EXPR
:
12901 case ROUND_MOD_EXPR
:
12903 return tree_simple_nonnegative_warnv_p (code
, type
);
12906 /* We don't know sign of `t', so be conservative and return false. */
12910 /* Return true if T is known to be non-negative. If the return
12911 value is based on the assumption that signed overflow is undefined,
12912 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12913 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12916 tree_single_nonnegative_warnv_p (tree t
, bool *strict_overflow_p
, int depth
)
12918 if (TYPE_UNSIGNED (TREE_TYPE (t
)))
12921 switch (TREE_CODE (t
))
12924 return tree_int_cst_sgn (t
) >= 0;
12927 return ! REAL_VALUE_NEGATIVE (TREE_REAL_CST (t
));
12930 return ! FIXED_VALUE_NEGATIVE (TREE_FIXED_CST (t
));
12933 return RECURSE (TREE_OPERAND (t
, 1)) && RECURSE (TREE_OPERAND (t
, 2));
12936 /* Limit the depth of recursion to avoid quadratic behavior.
12937 This is expected to catch almost all occurrences in practice.
12938 If this code misses important cases that unbounded recursion
12939 would not, passes that need this information could be revised
12940 to provide it through dataflow propagation. */
12941 return (!name_registered_for_update_p (t
)
12942 && depth
< PARAM_VALUE (PARAM_MAX_SSA_NAME_QUERY_DEPTH
)
12943 && gimple_stmt_nonnegative_warnv_p (SSA_NAME_DEF_STMT (t
),
12944 strict_overflow_p
, depth
));
12947 return tree_simple_nonnegative_warnv_p (TREE_CODE (t
), TREE_TYPE (t
));
12951 /* Return true if T is known to be non-negative. If the return
12952 value is based on the assumption that signed overflow is undefined,
12953 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12954 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12957 tree_call_nonnegative_warnv_p (tree type
, combined_fn fn
, tree arg0
, tree arg1
,
12958 bool *strict_overflow_p
, int depth
)
12979 case CFN_BUILT_IN_BSWAP32
:
12980 case CFN_BUILT_IN_BSWAP64
:
12986 /* sqrt(-0.0) is -0.0. */
12987 if (!HONOR_SIGNED_ZEROS (element_mode (type
)))
12989 return RECURSE (arg0
);
13017 CASE_CFN_NEARBYINT
:
13018 CASE_CFN_NEARBYINT_FN
:
13027 CASE_CFN_SIGNIFICAND
:
13032 /* True if the 1st argument is nonnegative. */
13033 return RECURSE (arg0
);
13037 /* True if the 1st OR 2nd arguments are nonnegative. */
13038 return RECURSE (arg0
) || RECURSE (arg1
);
13042 /* True if the 1st AND 2nd arguments are nonnegative. */
13043 return RECURSE (arg0
) && RECURSE (arg1
);
13046 CASE_CFN_COPYSIGN_FN
:
13047 /* True if the 2nd argument is nonnegative. */
13048 return RECURSE (arg1
);
13051 /* True if the 1st argument is nonnegative or the second
13052 argument is an even integer. */
13053 if (TREE_CODE (arg1
) == INTEGER_CST
13054 && (TREE_INT_CST_LOW (arg1
) & 1) == 0)
13056 return RECURSE (arg0
);
13059 /* True if the 1st argument is nonnegative or the second
13060 argument is an even integer valued real. */
13061 if (TREE_CODE (arg1
) == REAL_CST
)
13066 c
= TREE_REAL_CST (arg1
);
13067 n
= real_to_integer (&c
);
13070 REAL_VALUE_TYPE cint
;
13071 real_from_integer (&cint
, VOIDmode
, n
, SIGNED
);
13072 if (real_identical (&c
, &cint
))
13076 return RECURSE (arg0
);
13081 return tree_simple_nonnegative_warnv_p (CALL_EXPR
, type
);
13084 /* Return true if T is known to be non-negative. If the return
13085 value is based on the assumption that signed overflow is undefined,
13086 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13087 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
13090 tree_invalid_nonnegative_warnv_p (tree t
, bool *strict_overflow_p
, int depth
)
13092 enum tree_code code
= TREE_CODE (t
);
13093 if (TYPE_UNSIGNED (TREE_TYPE (t
)))
13100 tree temp
= TARGET_EXPR_SLOT (t
);
13101 t
= TARGET_EXPR_INITIAL (t
);
13103 /* If the initializer is non-void, then it's a normal expression
13104 that will be assigned to the slot. */
13105 if (!VOID_TYPE_P (t
))
13106 return RECURSE (t
);
13108 /* Otherwise, the initializer sets the slot in some way. One common
13109 way is an assignment statement at the end of the initializer. */
13112 if (TREE_CODE (t
) == BIND_EXPR
)
13113 t
= expr_last (BIND_EXPR_BODY (t
));
13114 else if (TREE_CODE (t
) == TRY_FINALLY_EXPR
13115 || TREE_CODE (t
) == TRY_CATCH_EXPR
)
13116 t
= expr_last (TREE_OPERAND (t
, 0));
13117 else if (TREE_CODE (t
) == STATEMENT_LIST
)
13122 if (TREE_CODE (t
) == MODIFY_EXPR
13123 && TREE_OPERAND (t
, 0) == temp
)
13124 return RECURSE (TREE_OPERAND (t
, 1));
13131 tree arg0
= call_expr_nargs (t
) > 0 ? CALL_EXPR_ARG (t
, 0) : NULL_TREE
;
13132 tree arg1
= call_expr_nargs (t
) > 1 ? CALL_EXPR_ARG (t
, 1) : NULL_TREE
;
13134 return tree_call_nonnegative_warnv_p (TREE_TYPE (t
),
13135 get_call_combined_fn (t
),
13138 strict_overflow_p
, depth
);
13140 case COMPOUND_EXPR
:
13142 return RECURSE (TREE_OPERAND (t
, 1));
13145 return RECURSE (expr_last (TREE_OPERAND (t
, 1)));
13148 return RECURSE (TREE_OPERAND (t
, 0));
13151 return tree_simple_nonnegative_warnv_p (TREE_CODE (t
), TREE_TYPE (t
));
13156 #undef tree_expr_nonnegative_warnv_p
13158 /* Return true if T is known to be non-negative. If the return
13159 value is based on the assumption that signed overflow is undefined,
13160 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13161 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
13164 tree_expr_nonnegative_warnv_p (tree t
, bool *strict_overflow_p
, int depth
)
13166 enum tree_code code
;
13167 if (t
== error_mark_node
)
13170 code
= TREE_CODE (t
);
13171 switch (TREE_CODE_CLASS (code
))
13174 case tcc_comparison
:
13175 return tree_binary_nonnegative_warnv_p (TREE_CODE (t
),
13177 TREE_OPERAND (t
, 0),
13178 TREE_OPERAND (t
, 1),
13179 strict_overflow_p
, depth
);
13182 return tree_unary_nonnegative_warnv_p (TREE_CODE (t
),
13184 TREE_OPERAND (t
, 0),
13185 strict_overflow_p
, depth
);
13188 case tcc_declaration
:
13189 case tcc_reference
:
13190 return tree_single_nonnegative_warnv_p (t
, strict_overflow_p
, depth
);
13198 case TRUTH_AND_EXPR
:
13199 case TRUTH_OR_EXPR
:
13200 case TRUTH_XOR_EXPR
:
13201 return tree_binary_nonnegative_warnv_p (TREE_CODE (t
),
13203 TREE_OPERAND (t
, 0),
13204 TREE_OPERAND (t
, 1),
13205 strict_overflow_p
, depth
);
13206 case TRUTH_NOT_EXPR
:
13207 return tree_unary_nonnegative_warnv_p (TREE_CODE (t
),
13209 TREE_OPERAND (t
, 0),
13210 strict_overflow_p
, depth
);
13217 case WITH_SIZE_EXPR
:
13219 return tree_single_nonnegative_warnv_p (t
, strict_overflow_p
, depth
);
13222 return tree_invalid_nonnegative_warnv_p (t
, strict_overflow_p
, depth
);
13226 /* Return true if `t' is known to be non-negative. Handle warnings
13227 about undefined signed overflow. */
13230 tree_expr_nonnegative_p (tree t
)
13232 bool ret
, strict_overflow_p
;
13234 strict_overflow_p
= false;
13235 ret
= tree_expr_nonnegative_warnv_p (t
, &strict_overflow_p
);
13236 if (strict_overflow_p
)
13237 fold_overflow_warning (("assuming signed overflow does not occur when "
13238 "determining that expression is always "
13240 WARN_STRICT_OVERFLOW_MISC
);
13245 /* Return true when (CODE OP0) is an address and is known to be nonzero.
13246 For floating point we further ensure that T is not denormal.
13247 Similar logic is present in nonzero_address in rtlanal.h.
13249 If the return value is based on the assumption that signed overflow
13250 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
13251 change *STRICT_OVERFLOW_P. */
13254 tree_unary_nonzero_warnv_p (enum tree_code code
, tree type
, tree op0
,
13255 bool *strict_overflow_p
)
13260 return tree_expr_nonzero_warnv_p (op0
,
13261 strict_overflow_p
);
13265 tree inner_type
= TREE_TYPE (op0
);
13266 tree outer_type
= type
;
13268 return (TYPE_PRECISION (outer_type
) >= TYPE_PRECISION (inner_type
)
13269 && tree_expr_nonzero_warnv_p (op0
,
13270 strict_overflow_p
));
13274 case NON_LVALUE_EXPR
:
13275 return tree_expr_nonzero_warnv_p (op0
,
13276 strict_overflow_p
);
13285 /* Return true when (CODE OP0 OP1) is an address and is known to be nonzero.
13286 For floating point we further ensure that T is not denormal.
13287 Similar logic is present in nonzero_address in rtlanal.h.
13289 If the return value is based on the assumption that signed overflow
13290 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
13291 change *STRICT_OVERFLOW_P. */
13294 tree_binary_nonzero_warnv_p (enum tree_code code
,
13297 tree op1
, bool *strict_overflow_p
)
13299 bool sub_strict_overflow_p
;
13302 case POINTER_PLUS_EXPR
:
13304 if (ANY_INTEGRAL_TYPE_P (type
) && TYPE_OVERFLOW_UNDEFINED (type
))
13306 /* With the presence of negative values it is hard
13307 to say something. */
13308 sub_strict_overflow_p
= false;
13309 if (!tree_expr_nonnegative_warnv_p (op0
,
13310 &sub_strict_overflow_p
)
13311 || !tree_expr_nonnegative_warnv_p (op1
,
13312 &sub_strict_overflow_p
))
13314 /* One of operands must be positive and the other non-negative. */
13315 /* We don't set *STRICT_OVERFLOW_P here: even if this value
13316 overflows, on a twos-complement machine the sum of two
13317 nonnegative numbers can never be zero. */
13318 return (tree_expr_nonzero_warnv_p (op0
,
13320 || tree_expr_nonzero_warnv_p (op1
,
13321 strict_overflow_p
));
13326 if (TYPE_OVERFLOW_UNDEFINED (type
))
13328 if (tree_expr_nonzero_warnv_p (op0
,
13330 && tree_expr_nonzero_warnv_p (op1
,
13331 strict_overflow_p
))
13333 *strict_overflow_p
= true;
13340 sub_strict_overflow_p
= false;
13341 if (tree_expr_nonzero_warnv_p (op0
,
13342 &sub_strict_overflow_p
)
13343 && tree_expr_nonzero_warnv_p (op1
,
13344 &sub_strict_overflow_p
))
13346 if (sub_strict_overflow_p
)
13347 *strict_overflow_p
= true;
13352 sub_strict_overflow_p
= false;
13353 if (tree_expr_nonzero_warnv_p (op0
,
13354 &sub_strict_overflow_p
))
13356 if (sub_strict_overflow_p
)
13357 *strict_overflow_p
= true;
13359 /* When both operands are nonzero, then MAX must be too. */
13360 if (tree_expr_nonzero_warnv_p (op1
,
13361 strict_overflow_p
))
13364 /* MAX where operand 0 is positive is positive. */
13365 return tree_expr_nonnegative_warnv_p (op0
,
13366 strict_overflow_p
);
13368 /* MAX where operand 1 is positive is positive. */
13369 else if (tree_expr_nonzero_warnv_p (op1
,
13370 &sub_strict_overflow_p
)
13371 && tree_expr_nonnegative_warnv_p (op1
,
13372 &sub_strict_overflow_p
))
13374 if (sub_strict_overflow_p
)
13375 *strict_overflow_p
= true;
13381 return (tree_expr_nonzero_warnv_p (op1
,
13383 || tree_expr_nonzero_warnv_p (op0
,
13384 strict_overflow_p
));
13393 /* Return true when T is an address and is known to be nonzero.
13394 For floating point we further ensure that T is not denormal.
13395 Similar logic is present in nonzero_address in rtlanal.h.
13397 If the return value is based on the assumption that signed overflow
13398 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
13399 change *STRICT_OVERFLOW_P. */
13402 tree_single_nonzero_warnv_p (tree t
, bool *strict_overflow_p
)
13404 bool sub_strict_overflow_p
;
13405 switch (TREE_CODE (t
))
13408 return !integer_zerop (t
);
13412 tree base
= TREE_OPERAND (t
, 0);
13414 if (!DECL_P (base
))
13415 base
= get_base_address (base
);
13417 if (base
&& TREE_CODE (base
) == TARGET_EXPR
)
13418 base
= TARGET_EXPR_SLOT (base
);
13423 /* For objects in symbol table check if we know they are non-zero.
13424 Don't do anything for variables and functions before symtab is built;
13425 it is quite possible that they will be declared weak later. */
13426 int nonzero_addr
= maybe_nonzero_address (base
);
13427 if (nonzero_addr
>= 0)
13428 return nonzero_addr
;
13430 /* Constants are never weak. */
13431 if (CONSTANT_CLASS_P (base
))
13438 sub_strict_overflow_p
= false;
13439 if (tree_expr_nonzero_warnv_p (TREE_OPERAND (t
, 1),
13440 &sub_strict_overflow_p
)
13441 && tree_expr_nonzero_warnv_p (TREE_OPERAND (t
, 2),
13442 &sub_strict_overflow_p
))
13444 if (sub_strict_overflow_p
)
13445 *strict_overflow_p
= true;
13451 if (!INTEGRAL_TYPE_P (TREE_TYPE (t
)))
13453 return expr_not_equal_to (t
, wi::zero (TYPE_PRECISION (TREE_TYPE (t
))));
13461 #define integer_valued_real_p(X) \
13462 _Pragma ("GCC error \"Use RECURSE for recursive calls\"") 0
13464 #define RECURSE(X) \
13465 ((integer_valued_real_p) (X, depth + 1))
13467 /* Return true if the floating point result of (CODE OP0) has an
13468 integer value. We also allow +Inf, -Inf and NaN to be considered
13469 integer values. Return false for signaling NaN.
13471 DEPTH is the current nesting depth of the query. */
13474 integer_valued_real_unary_p (tree_code code
, tree op0
, int depth
)
13482 return RECURSE (op0
);
13486 tree type
= TREE_TYPE (op0
);
13487 if (TREE_CODE (type
) == INTEGER_TYPE
)
13489 if (TREE_CODE (type
) == REAL_TYPE
)
13490 return RECURSE (op0
);
13500 /* Return true if the floating point result of (CODE OP0 OP1) has an
13501 integer value. We also allow +Inf, -Inf and NaN to be considered
13502 integer values. Return false for signaling NaN.
13504 DEPTH is the current nesting depth of the query. */
13507 integer_valued_real_binary_p (tree_code code
, tree op0
, tree op1
, int depth
)
13516 return RECURSE (op0
) && RECURSE (op1
);
13524 /* Return true if the floating point result of calling FNDECL with arguments
13525 ARG0 and ARG1 has an integer value. We also allow +Inf, -Inf and NaN to be
13526 considered integer values. Return false for signaling NaN. If FNDECL
13527 takes fewer than 2 arguments, the remaining ARGn are null.
13529 DEPTH is the current nesting depth of the query. */
13532 integer_valued_real_call_p (combined_fn fn
, tree arg0
, tree arg1
, int depth
)
13540 CASE_CFN_NEARBYINT
:
13541 CASE_CFN_NEARBYINT_FN
:
13554 return RECURSE (arg0
) && RECURSE (arg1
);
13562 /* Return true if the floating point expression T (a GIMPLE_SINGLE_RHS)
13563 has an integer value. We also allow +Inf, -Inf and NaN to be
13564 considered integer values. Return false for signaling NaN.
13566 DEPTH is the current nesting depth of the query. */
13569 integer_valued_real_single_p (tree t
, int depth
)
13571 switch (TREE_CODE (t
))
13574 return real_isinteger (TREE_REAL_CST_PTR (t
), TYPE_MODE (TREE_TYPE (t
)));
13577 return RECURSE (TREE_OPERAND (t
, 1)) && RECURSE (TREE_OPERAND (t
, 2));
13580 /* Limit the depth of recursion to avoid quadratic behavior.
13581 This is expected to catch almost all occurrences in practice.
13582 If this code misses important cases that unbounded recursion
13583 would not, passes that need this information could be revised
13584 to provide it through dataflow propagation. */
13585 return (!name_registered_for_update_p (t
)
13586 && depth
< PARAM_VALUE (PARAM_MAX_SSA_NAME_QUERY_DEPTH
)
13587 && gimple_stmt_integer_valued_real_p (SSA_NAME_DEF_STMT (t
),
13596 /* Return true if the floating point expression T (a GIMPLE_INVALID_RHS)
13597 has an integer value. We also allow +Inf, -Inf and NaN to be
13598 considered integer values. Return false for signaling NaN.
13600 DEPTH is the current nesting depth of the query. */
13603 integer_valued_real_invalid_p (tree t
, int depth
)
13605 switch (TREE_CODE (t
))
13607 case COMPOUND_EXPR
:
13610 return RECURSE (TREE_OPERAND (t
, 1));
13613 return RECURSE (TREE_OPERAND (t
, 0));
13622 #undef integer_valued_real_p
13624 /* Return true if the floating point expression T has an integer value.
13625 We also allow +Inf, -Inf and NaN to be considered integer values.
13626 Return false for signaling NaN.
13628 DEPTH is the current nesting depth of the query. */
13631 integer_valued_real_p (tree t
, int depth
)
13633 if (t
== error_mark_node
)
13636 tree_code code
= TREE_CODE (t
);
13637 switch (TREE_CODE_CLASS (code
))
13640 case tcc_comparison
:
13641 return integer_valued_real_binary_p (code
, TREE_OPERAND (t
, 0),
13642 TREE_OPERAND (t
, 1), depth
);
13645 return integer_valued_real_unary_p (code
, TREE_OPERAND (t
, 0), depth
);
13648 case tcc_declaration
:
13649 case tcc_reference
:
13650 return integer_valued_real_single_p (t
, depth
);
13660 return integer_valued_real_single_p (t
, depth
);
13664 tree arg0
= (call_expr_nargs (t
) > 0
13665 ? CALL_EXPR_ARG (t
, 0)
13667 tree arg1
= (call_expr_nargs (t
) > 1
13668 ? CALL_EXPR_ARG (t
, 1)
13670 return integer_valued_real_call_p (get_call_combined_fn (t
),
13671 arg0
, arg1
, depth
);
13675 return integer_valued_real_invalid_p (t
, depth
);
13679 /* Given the components of a binary expression CODE, TYPE, OP0 and OP1,
13680 attempt to fold the expression to a constant without modifying TYPE,
13683 If the expression could be simplified to a constant, then return
13684 the constant. If the expression would not be simplified to a
13685 constant, then return NULL_TREE. */
13688 fold_binary_to_constant (enum tree_code code
, tree type
, tree op0
, tree op1
)
13690 tree tem
= fold_binary (code
, type
, op0
, op1
);
13691 return (tem
&& TREE_CONSTANT (tem
)) ? tem
: NULL_TREE
;
13694 /* Given the components of a unary expression CODE, TYPE and OP0,
13695 attempt to fold the expression to a constant without modifying
13698 If the expression could be simplified to a constant, then return
13699 the constant. If the expression would not be simplified to a
13700 constant, then return NULL_TREE. */
13703 fold_unary_to_constant (enum tree_code code
, tree type
, tree op0
)
13705 tree tem
= fold_unary (code
, type
, op0
);
13706 return (tem
&& TREE_CONSTANT (tem
)) ? tem
: NULL_TREE
;
13709 /* If EXP represents referencing an element in a constant string
13710 (either via pointer arithmetic or array indexing), return the
13711 tree representing the value accessed, otherwise return NULL. */
13714 fold_read_from_constant_string (tree exp
)
13716 if ((TREE_CODE (exp
) == INDIRECT_REF
13717 || TREE_CODE (exp
) == ARRAY_REF
)
13718 && TREE_CODE (TREE_TYPE (exp
)) == INTEGER_TYPE
)
13720 tree exp1
= TREE_OPERAND (exp
, 0);
13723 location_t loc
= EXPR_LOCATION (exp
);
13725 if (TREE_CODE (exp
) == INDIRECT_REF
)
13726 string
= string_constant (exp1
, &index
);
13729 tree low_bound
= array_ref_low_bound (exp
);
13730 index
= fold_convert_loc (loc
, sizetype
, TREE_OPERAND (exp
, 1));
13732 /* Optimize the special-case of a zero lower bound.
13734 We convert the low_bound to sizetype to avoid some problems
13735 with constant folding. (E.g. suppose the lower bound is 1,
13736 and its mode is QI. Without the conversion,l (ARRAY
13737 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
13738 +INDEX), which becomes (ARRAY+255+INDEX). Oops!) */
13739 if (! integer_zerop (low_bound
))
13740 index
= size_diffop_loc (loc
, index
,
13741 fold_convert_loc (loc
, sizetype
, low_bound
));
13746 scalar_int_mode char_mode
;
13748 && TYPE_MODE (TREE_TYPE (exp
)) == TYPE_MODE (TREE_TYPE (TREE_TYPE (string
)))
13749 && TREE_CODE (string
) == STRING_CST
13750 && TREE_CODE (index
) == INTEGER_CST
13751 && compare_tree_int (index
, TREE_STRING_LENGTH (string
)) < 0
13752 && is_int_mode (TYPE_MODE (TREE_TYPE (TREE_TYPE (string
))),
13754 && GET_MODE_SIZE (char_mode
) == 1)
13755 return build_int_cst_type (TREE_TYPE (exp
),
13756 (TREE_STRING_POINTER (string
)
13757 [TREE_INT_CST_LOW (index
)]));
13762 /* Return the tree for neg (ARG0) when ARG0 is known to be either
13763 an integer constant, real, or fixed-point constant.
13765 TYPE is the type of the result. */
13768 fold_negate_const (tree arg0
, tree type
)
13770 tree t
= NULL_TREE
;
13772 switch (TREE_CODE (arg0
))
13775 t
= build_real (type
, real_value_negate (&TREE_REAL_CST (arg0
)));
13780 FIXED_VALUE_TYPE f
;
13781 bool overflow_p
= fixed_arithmetic (&f
, NEGATE_EXPR
,
13782 &(TREE_FIXED_CST (arg0
)), NULL
,
13783 TYPE_SATURATING (type
));
13784 t
= build_fixed (type
, f
);
13785 /* Propagate overflow flags. */
13786 if (overflow_p
| TREE_OVERFLOW (arg0
))
13787 TREE_OVERFLOW (t
) = 1;
13792 if (poly_int_tree_p (arg0
))
13795 poly_wide_int res
= wi::neg (wi::to_poly_wide (arg0
), &overflow
);
13796 t
= force_fit_type (type
, res
, 1,
13797 (overflow
&& ! TYPE_UNSIGNED (type
))
13798 || TREE_OVERFLOW (arg0
));
13802 gcc_unreachable ();
13808 /* Return the tree for abs (ARG0) when ARG0 is known to be either
13809 an integer constant or real constant.
13811 TYPE is the type of the result. */
13814 fold_abs_const (tree arg0
, tree type
)
13816 tree t
= NULL_TREE
;
13818 switch (TREE_CODE (arg0
))
13822 /* If the value is unsigned or non-negative, then the absolute value
13823 is the same as the ordinary value. */
13824 if (!wi::neg_p (wi::to_wide (arg0
), TYPE_SIGN (type
)))
13827 /* If the value is negative, then the absolute value is
13832 wide_int val
= wi::neg (wi::to_wide (arg0
), &overflow
);
13833 t
= force_fit_type (type
, val
, -1,
13834 overflow
| TREE_OVERFLOW (arg0
));
13840 if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg0
)))
13841 t
= build_real (type
, real_value_negate (&TREE_REAL_CST (arg0
)));
13847 gcc_unreachable ();
13853 /* Return the tree for not (ARG0) when ARG0 is known to be an integer
13854 constant. TYPE is the type of the result. */
13857 fold_not_const (const_tree arg0
, tree type
)
13859 gcc_assert (TREE_CODE (arg0
) == INTEGER_CST
);
13861 return force_fit_type (type
, ~wi::to_wide (arg0
), 0, TREE_OVERFLOW (arg0
));
13864 /* Given CODE, a relational operator, the target type, TYPE and two
13865 constant operands OP0 and OP1, return the result of the
13866 relational operation. If the result is not a compile time
13867 constant, then return NULL_TREE. */
13870 fold_relational_const (enum tree_code code
, tree type
, tree op0
, tree op1
)
13872 int result
, invert
;
13874 /* From here on, the only cases we handle are when the result is
13875 known to be a constant. */
13877 if (TREE_CODE (op0
) == REAL_CST
&& TREE_CODE (op1
) == REAL_CST
)
13879 const REAL_VALUE_TYPE
*c0
= TREE_REAL_CST_PTR (op0
);
13880 const REAL_VALUE_TYPE
*c1
= TREE_REAL_CST_PTR (op1
);
13882 /* Handle the cases where either operand is a NaN. */
13883 if (real_isnan (c0
) || real_isnan (c1
))
13893 case UNORDERED_EXPR
:
13907 if (flag_trapping_math
)
13913 gcc_unreachable ();
13916 return constant_boolean_node (result
, type
);
13919 return constant_boolean_node (real_compare (code
, c0
, c1
), type
);
13922 if (TREE_CODE (op0
) == FIXED_CST
&& TREE_CODE (op1
) == FIXED_CST
)
13924 const FIXED_VALUE_TYPE
*c0
= TREE_FIXED_CST_PTR (op0
);
13925 const FIXED_VALUE_TYPE
*c1
= TREE_FIXED_CST_PTR (op1
);
13926 return constant_boolean_node (fixed_compare (code
, c0
, c1
), type
);
13929 /* Handle equality/inequality of complex constants. */
13930 if (TREE_CODE (op0
) == COMPLEX_CST
&& TREE_CODE (op1
) == COMPLEX_CST
)
13932 tree rcond
= fold_relational_const (code
, type
,
13933 TREE_REALPART (op0
),
13934 TREE_REALPART (op1
));
13935 tree icond
= fold_relational_const (code
, type
,
13936 TREE_IMAGPART (op0
),
13937 TREE_IMAGPART (op1
));
13938 if (code
== EQ_EXPR
)
13939 return fold_build2 (TRUTH_ANDIF_EXPR
, type
, rcond
, icond
);
13940 else if (code
== NE_EXPR
)
13941 return fold_build2 (TRUTH_ORIF_EXPR
, type
, rcond
, icond
);
13946 if (TREE_CODE (op0
) == VECTOR_CST
&& TREE_CODE (op1
) == VECTOR_CST
)
13948 if (!VECTOR_TYPE_P (type
))
13950 /* Have vector comparison with scalar boolean result. */
13951 gcc_assert ((code
== EQ_EXPR
|| code
== NE_EXPR
)
13952 && known_eq (VECTOR_CST_NELTS (op0
),
13953 VECTOR_CST_NELTS (op1
)));
13954 unsigned HOST_WIDE_INT nunits
;
13955 if (!VECTOR_CST_NELTS (op0
).is_constant (&nunits
))
13957 for (unsigned i
= 0; i
< nunits
; i
++)
13959 tree elem0
= VECTOR_CST_ELT (op0
, i
);
13960 tree elem1
= VECTOR_CST_ELT (op1
, i
);
13961 tree tmp
= fold_relational_const (code
, type
, elem0
, elem1
);
13962 if (tmp
== NULL_TREE
)
13964 if (integer_zerop (tmp
))
13965 return constant_boolean_node (false, type
);
13967 return constant_boolean_node (true, type
);
13969 tree_vector_builder elts
;
13970 if (!elts
.new_binary_operation (type
, op0
, op1
, false))
13972 unsigned int count
= elts
.encoded_nelts ();
13973 for (unsigned i
= 0; i
< count
; i
++)
13975 tree elem_type
= TREE_TYPE (type
);
13976 tree elem0
= VECTOR_CST_ELT (op0
, i
);
13977 tree elem1
= VECTOR_CST_ELT (op1
, i
);
13979 tree tem
= fold_relational_const (code
, elem_type
,
13982 if (tem
== NULL_TREE
)
13985 elts
.quick_push (build_int_cst (elem_type
,
13986 integer_zerop (tem
) ? 0 : -1));
13989 return elts
.build ();
13992 /* From here on we only handle LT, LE, GT, GE, EQ and NE.
13994 To compute GT, swap the arguments and do LT.
13995 To compute GE, do LT and invert the result.
13996 To compute LE, swap the arguments, do LT and invert the result.
13997 To compute NE, do EQ and invert the result.
13999 Therefore, the code below must handle only EQ and LT. */
14001 if (code
== LE_EXPR
|| code
== GT_EXPR
)
14003 std::swap (op0
, op1
);
14004 code
= swap_tree_comparison (code
);
14007 /* Note that it is safe to invert for real values here because we
14008 have already handled the one case that it matters. */
14011 if (code
== NE_EXPR
|| code
== GE_EXPR
)
14014 code
= invert_tree_comparison (code
, false);
14017 /* Compute a result for LT or EQ if args permit;
14018 Otherwise return T. */
14019 if (TREE_CODE (op0
) == INTEGER_CST
&& TREE_CODE (op1
) == INTEGER_CST
)
14021 if (code
== EQ_EXPR
)
14022 result
= tree_int_cst_equal (op0
, op1
);
14024 result
= tree_int_cst_lt (op0
, op1
);
14031 return constant_boolean_node (result
, type
);
14034 /* If necessary, return a CLEANUP_POINT_EXPR for EXPR with the
14035 indicated TYPE. If no CLEANUP_POINT_EXPR is necessary, return EXPR
14039 fold_build_cleanup_point_expr (tree type
, tree expr
)
14041 /* If the expression does not have side effects then we don't have to wrap
14042 it with a cleanup point expression. */
14043 if (!TREE_SIDE_EFFECTS (expr
))
14046 /* If the expression is a return, check to see if the expression inside the
14047 return has no side effects or the right hand side of the modify expression
14048 inside the return. If either don't have side effects set we don't need to
14049 wrap the expression in a cleanup point expression. Note we don't check the
14050 left hand side of the modify because it should always be a return decl. */
14051 if (TREE_CODE (expr
) == RETURN_EXPR
)
14053 tree op
= TREE_OPERAND (expr
, 0);
14054 if (!op
|| !TREE_SIDE_EFFECTS (op
))
14056 op
= TREE_OPERAND (op
, 1);
14057 if (!TREE_SIDE_EFFECTS (op
))
14061 return build1_loc (EXPR_LOCATION (expr
), CLEANUP_POINT_EXPR
, type
, expr
);
14064 /* Given a pointer value OP0 and a type TYPE, return a simplified version
14065 of an indirection through OP0, or NULL_TREE if no simplification is
14069 fold_indirect_ref_1 (location_t loc
, tree type
, tree op0
)
14073 poly_uint64 const_op01
;
14076 subtype
= TREE_TYPE (sub
);
14077 if (!POINTER_TYPE_P (subtype
)
14078 || TYPE_REF_CAN_ALIAS_ALL (TREE_TYPE (op0
)))
14081 if (TREE_CODE (sub
) == ADDR_EXPR
)
14083 tree op
= TREE_OPERAND (sub
, 0);
14084 tree optype
= TREE_TYPE (op
);
14085 /* *&CONST_DECL -> to the value of the const decl. */
14086 if (TREE_CODE (op
) == CONST_DECL
)
14087 return DECL_INITIAL (op
);
14088 /* *&p => p; make sure to handle *&"str"[cst] here. */
14089 if (type
== optype
)
14091 tree fop
= fold_read_from_constant_string (op
);
14097 /* *(foo *)&fooarray => fooarray[0] */
14098 else if (TREE_CODE (optype
) == ARRAY_TYPE
14099 && type
== TREE_TYPE (optype
)
14100 && (!in_gimple_form
14101 || TREE_CODE (TYPE_SIZE (type
)) == INTEGER_CST
))
14103 tree type_domain
= TYPE_DOMAIN (optype
);
14104 tree min_val
= size_zero_node
;
14105 if (type_domain
&& TYPE_MIN_VALUE (type_domain
))
14106 min_val
= TYPE_MIN_VALUE (type_domain
);
14108 && TREE_CODE (min_val
) != INTEGER_CST
)
14110 return build4_loc (loc
, ARRAY_REF
, type
, op
, min_val
,
14111 NULL_TREE
, NULL_TREE
);
14113 /* *(foo *)&complexfoo => __real__ complexfoo */
14114 else if (TREE_CODE (optype
) == COMPLEX_TYPE
14115 && type
== TREE_TYPE (optype
))
14116 return fold_build1_loc (loc
, REALPART_EXPR
, type
, op
);
14117 /* *(foo *)&vectorfoo => BIT_FIELD_REF<vectorfoo,...> */
14118 else if (TREE_CODE (optype
) == VECTOR_TYPE
14119 && type
== TREE_TYPE (optype
))
14121 tree part_width
= TYPE_SIZE (type
);
14122 tree index
= bitsize_int (0);
14123 return fold_build3_loc (loc
, BIT_FIELD_REF
, type
, op
, part_width
, index
);
14127 if (TREE_CODE (sub
) == POINTER_PLUS_EXPR
14128 && poly_int_tree_p (TREE_OPERAND (sub
, 1), &const_op01
))
14130 tree op00
= TREE_OPERAND (sub
, 0);
14131 tree op01
= TREE_OPERAND (sub
, 1);
14134 if (TREE_CODE (op00
) == ADDR_EXPR
)
14137 op00
= TREE_OPERAND (op00
, 0);
14138 op00type
= TREE_TYPE (op00
);
14140 /* ((foo*)&vectorfoo)[1] => BIT_FIELD_REF<vectorfoo,...> */
14141 if (TREE_CODE (op00type
) == VECTOR_TYPE
14142 && type
== TREE_TYPE (op00type
))
14144 tree part_width
= TYPE_SIZE (type
);
14145 poly_uint64 max_offset
14146 = (tree_to_uhwi (part_width
) / BITS_PER_UNIT
14147 * TYPE_VECTOR_SUBPARTS (op00type
));
14148 if (known_lt (const_op01
, max_offset
))
14150 tree index
= bitsize_int (const_op01
* BITS_PER_UNIT
);
14151 return fold_build3_loc (loc
,
14152 BIT_FIELD_REF
, type
, op00
,
14153 part_width
, index
);
14156 /* ((foo*)&complexfoo)[1] => __imag__ complexfoo */
14157 else if (TREE_CODE (op00type
) == COMPLEX_TYPE
14158 && type
== TREE_TYPE (op00type
))
14160 if (known_eq (wi::to_poly_offset (TYPE_SIZE_UNIT (type
)),
14162 return fold_build1_loc (loc
, IMAGPART_EXPR
, type
, op00
);
14164 /* ((foo *)&fooarray)[1] => fooarray[1] */
14165 else if (TREE_CODE (op00type
) == ARRAY_TYPE
14166 && type
== TREE_TYPE (op00type
))
14168 tree type_domain
= TYPE_DOMAIN (op00type
);
14169 tree min
= size_zero_node
;
14170 if (type_domain
&& TYPE_MIN_VALUE (type_domain
))
14171 min
= TYPE_MIN_VALUE (type_domain
);
14172 offset_int off
= wi::to_offset (op01
);
14173 offset_int el_sz
= wi::to_offset (TYPE_SIZE_UNIT (type
));
14174 offset_int remainder
;
14175 off
= wi::divmod_trunc (off
, el_sz
, SIGNED
, &remainder
);
14176 if (remainder
== 0 && TREE_CODE (min
) == INTEGER_CST
)
14178 off
= off
+ wi::to_offset (min
);
14179 op01
= wide_int_to_tree (sizetype
, off
);
14180 return build4_loc (loc
, ARRAY_REF
, type
, op00
, op01
,
14181 NULL_TREE
, NULL_TREE
);
14187 /* *(foo *)fooarrptr => (*fooarrptr)[0] */
14188 if (TREE_CODE (TREE_TYPE (subtype
)) == ARRAY_TYPE
14189 && type
== TREE_TYPE (TREE_TYPE (subtype
))
14190 && (!in_gimple_form
14191 || TREE_CODE (TYPE_SIZE (type
)) == INTEGER_CST
))
14194 tree min_val
= size_zero_node
;
14195 sub
= build_fold_indirect_ref_loc (loc
, sub
);
14196 type_domain
= TYPE_DOMAIN (TREE_TYPE (sub
));
14197 if (type_domain
&& TYPE_MIN_VALUE (type_domain
))
14198 min_val
= TYPE_MIN_VALUE (type_domain
);
14200 && TREE_CODE (min_val
) != INTEGER_CST
)
14202 return build4_loc (loc
, ARRAY_REF
, type
, sub
, min_val
, NULL_TREE
,
14209 /* Builds an expression for an indirection through T, simplifying some
14213 build_fold_indirect_ref_loc (location_t loc
, tree t
)
14215 tree type
= TREE_TYPE (TREE_TYPE (t
));
14216 tree sub
= fold_indirect_ref_1 (loc
, type
, t
);
14221 return build1_loc (loc
, INDIRECT_REF
, type
, t
);
14224 /* Given an INDIRECT_REF T, return either T or a simplified version. */
14227 fold_indirect_ref_loc (location_t loc
, tree t
)
14229 tree sub
= fold_indirect_ref_1 (loc
, TREE_TYPE (t
), TREE_OPERAND (t
, 0));
14237 /* Strip non-trapping, non-side-effecting tree nodes from an expression
14238 whose result is ignored. The type of the returned tree need not be
14239 the same as the original expression. */
14242 fold_ignored_result (tree t
)
14244 if (!TREE_SIDE_EFFECTS (t
))
14245 return integer_zero_node
;
14248 switch (TREE_CODE_CLASS (TREE_CODE (t
)))
14251 t
= TREE_OPERAND (t
, 0);
14255 case tcc_comparison
:
14256 if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t
, 1)))
14257 t
= TREE_OPERAND (t
, 0);
14258 else if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t
, 0)))
14259 t
= TREE_OPERAND (t
, 1);
14264 case tcc_expression
:
14265 switch (TREE_CODE (t
))
14267 case COMPOUND_EXPR
:
14268 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t
, 1)))
14270 t
= TREE_OPERAND (t
, 0);
14274 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t
, 1))
14275 || TREE_SIDE_EFFECTS (TREE_OPERAND (t
, 2)))
14277 t
= TREE_OPERAND (t
, 0);
14290 /* Return the value of VALUE, rounded up to a multiple of DIVISOR. */
14293 round_up_loc (location_t loc
, tree value
, unsigned int divisor
)
14295 tree div
= NULL_TREE
;
14300 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
14301 have to do anything. Only do this when we are not given a const,
14302 because in that case, this check is more expensive than just
14304 if (TREE_CODE (value
) != INTEGER_CST
)
14306 div
= build_int_cst (TREE_TYPE (value
), divisor
);
14308 if (multiple_of_p (TREE_TYPE (value
), value
, div
))
14312 /* If divisor is a power of two, simplify this to bit manipulation. */
14313 if (pow2_or_zerop (divisor
))
14315 if (TREE_CODE (value
) == INTEGER_CST
)
14317 wide_int val
= wi::to_wide (value
);
14320 if ((val
& (divisor
- 1)) == 0)
14323 overflow_p
= TREE_OVERFLOW (value
);
14324 val
+= divisor
- 1;
14325 val
&= (int) -divisor
;
14329 return force_fit_type (TREE_TYPE (value
), val
, -1, overflow_p
);
14335 t
= build_int_cst (TREE_TYPE (value
), divisor
- 1);
14336 value
= size_binop_loc (loc
, PLUS_EXPR
, value
, t
);
14337 t
= build_int_cst (TREE_TYPE (value
), - (int) divisor
);
14338 value
= size_binop_loc (loc
, BIT_AND_EXPR
, value
, t
);
14344 div
= build_int_cst (TREE_TYPE (value
), divisor
);
14345 value
= size_binop_loc (loc
, CEIL_DIV_EXPR
, value
, div
);
14346 value
= size_binop_loc (loc
, MULT_EXPR
, value
, div
);
14352 /* Likewise, but round down. */
14355 round_down_loc (location_t loc
, tree value
, int divisor
)
14357 tree div
= NULL_TREE
;
14359 gcc_assert (divisor
> 0);
14363 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
14364 have to do anything. Only do this when we are not given a const,
14365 because in that case, this check is more expensive than just
14367 if (TREE_CODE (value
) != INTEGER_CST
)
14369 div
= build_int_cst (TREE_TYPE (value
), divisor
);
14371 if (multiple_of_p (TREE_TYPE (value
), value
, div
))
14375 /* If divisor is a power of two, simplify this to bit manipulation. */
14376 if (pow2_or_zerop (divisor
))
14380 t
= build_int_cst (TREE_TYPE (value
), -divisor
);
14381 value
= size_binop_loc (loc
, BIT_AND_EXPR
, value
, t
);
14386 div
= build_int_cst (TREE_TYPE (value
), divisor
);
14387 value
= size_binop_loc (loc
, FLOOR_DIV_EXPR
, value
, div
);
14388 value
= size_binop_loc (loc
, MULT_EXPR
, value
, div
);
14394 /* Returns the pointer to the base of the object addressed by EXP and
14395 extracts the information about the offset of the access, storing it
14396 to PBITPOS and POFFSET. */
14399 split_address_to_core_and_offset (tree exp
,
14400 poly_int64_pod
*pbitpos
, tree
*poffset
)
14404 int unsignedp
, reversep
, volatilep
;
14405 poly_int64 bitsize
;
14406 location_t loc
= EXPR_LOCATION (exp
);
14408 if (TREE_CODE (exp
) == ADDR_EXPR
)
14410 core
= get_inner_reference (TREE_OPERAND (exp
, 0), &bitsize
, pbitpos
,
14411 poffset
, &mode
, &unsignedp
, &reversep
,
14413 core
= build_fold_addr_expr_loc (loc
, core
);
14415 else if (TREE_CODE (exp
) == POINTER_PLUS_EXPR
)
14417 core
= TREE_OPERAND (exp
, 0);
14420 *poffset
= TREE_OPERAND (exp
, 1);
14421 if (poly_int_tree_p (*poffset
))
14423 poly_offset_int tem
14424 = wi::sext (wi::to_poly_offset (*poffset
),
14425 TYPE_PRECISION (TREE_TYPE (*poffset
)));
14426 tem
<<= LOG2_BITS_PER_UNIT
;
14427 if (tem
.to_shwi (pbitpos
))
14428 *poffset
= NULL_TREE
;
14435 *poffset
= NULL_TREE
;
14441 /* Returns true if addresses of E1 and E2 differ by a constant, false
14442 otherwise. If they do, E1 - E2 is stored in *DIFF. */
14445 ptr_difference_const (tree e1
, tree e2
, poly_int64_pod
*diff
)
14448 poly_int64 bitpos1
, bitpos2
;
14449 tree toffset1
, toffset2
, tdiff
, type
;
14451 core1
= split_address_to_core_and_offset (e1
, &bitpos1
, &toffset1
);
14452 core2
= split_address_to_core_and_offset (e2
, &bitpos2
, &toffset2
);
14454 poly_int64 bytepos1
, bytepos2
;
14455 if (!multiple_p (bitpos1
, BITS_PER_UNIT
, &bytepos1
)
14456 || !multiple_p (bitpos2
, BITS_PER_UNIT
, &bytepos2
)
14457 || !operand_equal_p (core1
, core2
, 0))
14460 if (toffset1
&& toffset2
)
14462 type
= TREE_TYPE (toffset1
);
14463 if (type
!= TREE_TYPE (toffset2
))
14464 toffset2
= fold_convert (type
, toffset2
);
14466 tdiff
= fold_build2 (MINUS_EXPR
, type
, toffset1
, toffset2
);
14467 if (!cst_and_fits_in_hwi (tdiff
))
14470 *diff
= int_cst_value (tdiff
);
14472 else if (toffset1
|| toffset2
)
14474 /* If only one of the offsets is non-constant, the difference cannot
14481 *diff
+= bytepos1
- bytepos2
;
14485 /* Return OFF converted to a pointer offset type suitable as offset for
14486 POINTER_PLUS_EXPR. Use location LOC for this conversion. */
14488 convert_to_ptrofftype_loc (location_t loc
, tree off
)
14490 return fold_convert_loc (loc
, sizetype
, off
);
14493 /* Build and fold a POINTER_PLUS_EXPR at LOC offsetting PTR by OFF. */
14495 fold_build_pointer_plus_loc (location_t loc
, tree ptr
, tree off
)
14497 return fold_build2_loc (loc
, POINTER_PLUS_EXPR
, TREE_TYPE (ptr
),
14498 ptr
, convert_to_ptrofftype_loc (loc
, off
));
14501 /* Build and fold a POINTER_PLUS_EXPR at LOC offsetting PTR by OFF. */
14503 fold_build_pointer_plus_hwi_loc (location_t loc
, tree ptr
, HOST_WIDE_INT off
)
14505 return fold_build2_loc (loc
, POINTER_PLUS_EXPR
, TREE_TYPE (ptr
),
14506 ptr
, size_int (off
));
14509 /* Return a char pointer for a C string if it is a string constant
14510 or sum of string constant and integer constant. We only support
14511 string constants properly terminated with '\0' character.
14512 If STRLEN is a valid pointer, length (including terminating character)
14513 of returned string is stored to the argument. */
14516 c_getstr (tree src
, unsigned HOST_WIDE_INT
*strlen
)
14523 src
= string_constant (src
, &offset_node
);
14527 unsigned HOST_WIDE_INT offset
= 0;
14528 if (offset_node
!= NULL_TREE
)
14530 if (!tree_fits_uhwi_p (offset_node
))
14533 offset
= tree_to_uhwi (offset_node
);
14536 unsigned HOST_WIDE_INT string_length
= TREE_STRING_LENGTH (src
);
14537 const char *string
= TREE_STRING_POINTER (src
);
14539 /* Support only properly null-terminated strings. */
14540 if (string_length
== 0
14541 || string
[string_length
- 1] != '\0'
14542 || offset
>= string_length
)
14546 *strlen
= string_length
- offset
;
14547 return string
+ offset
;
14552 namespace selftest
{
14554 /* Helper functions for writing tests of folding trees. */
14556 /* Verify that the binary op (LHS CODE RHS) folds to CONSTANT. */
14559 assert_binop_folds_to_const (tree lhs
, enum tree_code code
, tree rhs
,
14562 ASSERT_EQ (constant
, fold_build2 (code
, TREE_TYPE (lhs
), lhs
, rhs
));
14565 /* Verify that the binary op (LHS CODE RHS) folds to an NON_LVALUE_EXPR
14566 wrapping WRAPPED_EXPR. */
14569 assert_binop_folds_to_nonlvalue (tree lhs
, enum tree_code code
, tree rhs
,
14572 tree result
= fold_build2 (code
, TREE_TYPE (lhs
), lhs
, rhs
);
14573 ASSERT_NE (wrapped_expr
, result
);
14574 ASSERT_EQ (NON_LVALUE_EXPR
, TREE_CODE (result
));
14575 ASSERT_EQ (wrapped_expr
, TREE_OPERAND (result
, 0));
14578 /* Verify that various arithmetic binary operations are folded
14582 test_arithmetic_folding ()
14584 tree type
= integer_type_node
;
14585 tree x
= create_tmp_var_raw (type
, "x");
14586 tree zero
= build_zero_cst (type
);
14587 tree one
= build_int_cst (type
, 1);
14590 /* 1 <-- (0 + 1) */
14591 assert_binop_folds_to_const (zero
, PLUS_EXPR
, one
,
14593 assert_binop_folds_to_const (one
, PLUS_EXPR
, zero
,
14596 /* (nonlvalue)x <-- (x + 0) */
14597 assert_binop_folds_to_nonlvalue (x
, PLUS_EXPR
, zero
,
14601 /* 0 <-- (x - x) */
14602 assert_binop_folds_to_const (x
, MINUS_EXPR
, x
,
14604 assert_binop_folds_to_nonlvalue (x
, MINUS_EXPR
, zero
,
14607 /* Multiplication. */
14608 /* 0 <-- (x * 0) */
14609 assert_binop_folds_to_const (x
, MULT_EXPR
, zero
,
14612 /* (nonlvalue)x <-- (x * 1) */
14613 assert_binop_folds_to_nonlvalue (x
, MULT_EXPR
, one
,
14617 /* Verify that various binary operations on vectors are folded
14621 test_vector_folding ()
14623 tree inner_type
= integer_type_node
;
14624 tree type
= build_vector_type (inner_type
, 4);
14625 tree zero
= build_zero_cst (type
);
14626 tree one
= build_one_cst (type
);
14628 /* Verify equality tests that return a scalar boolean result. */
14629 tree res_type
= boolean_type_node
;
14630 ASSERT_FALSE (integer_nonzerop (fold_build2 (EQ_EXPR
, res_type
, zero
, one
)));
14631 ASSERT_TRUE (integer_nonzerop (fold_build2 (EQ_EXPR
, res_type
, zero
, zero
)));
14632 ASSERT_TRUE (integer_nonzerop (fold_build2 (NE_EXPR
, res_type
, zero
, one
)));
14633 ASSERT_FALSE (integer_nonzerop (fold_build2 (NE_EXPR
, res_type
, one
, one
)));
14636 /* Verify folding of VEC_DUPLICATE_EXPRs. */
14639 test_vec_duplicate_folding ()
14641 scalar_int_mode int_mode
= SCALAR_INT_TYPE_MODE (ssizetype
);
14642 machine_mode vec_mode
= targetm
.vectorize
.preferred_simd_mode (int_mode
);
14643 /* This will be 1 if VEC_MODE isn't a vector mode. */
14644 poly_uint64 nunits
= GET_MODE_NUNITS (vec_mode
);
14646 tree type
= build_vector_type (ssizetype
, nunits
);
14647 tree dup5_expr
= fold_unary (VEC_DUPLICATE_EXPR
, type
, ssize_int (5));
14648 tree dup5_cst
= build_vector_from_val (type
, ssize_int (5));
14649 ASSERT_TRUE (operand_equal_p (dup5_expr
, dup5_cst
, 0));
14652 /* Run all of the selftests within this file. */
14655 fold_const_c_tests ()
14657 test_arithmetic_folding ();
14658 test_vector_folding ();
14659 test_vec_duplicate_folding ();
14662 } // namespace selftest
14664 #endif /* CHECKING_P */