1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2018, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Aspects
; use Aspects
;
27 with Atree
; use Atree
;
28 with Checks
; use Checks
;
29 with Einfo
; use Einfo
;
30 with Elists
; use Elists
;
31 with Errout
; use Errout
;
32 with Expander
; use Expander
;
33 with Exp_Ch6
; use Exp_Ch6
;
34 with Exp_Tss
; use Exp_Tss
;
35 with Exp_Util
; use Exp_Util
;
36 with Freeze
; use Freeze
;
37 with Itypes
; use Itypes
;
39 with Lib
.Xref
; use Lib
.Xref
;
40 with Namet
; use Namet
;
41 with Namet
.Sp
; use Namet
.Sp
;
42 with Nmake
; use Nmake
;
43 with Nlists
; use Nlists
;
45 with Restrict
; use Restrict
;
46 with Rident
; use Rident
;
48 with Sem_Aux
; use Sem_Aux
;
49 with Sem_Cat
; use Sem_Cat
;
50 with Sem_Ch3
; use Sem_Ch3
;
51 with Sem_Ch8
; use Sem_Ch8
;
52 with Sem_Ch13
; use Sem_Ch13
;
53 with Sem_Dim
; use Sem_Dim
;
54 with Sem_Eval
; use Sem_Eval
;
55 with Sem_Res
; use Sem_Res
;
56 with Sem_Util
; use Sem_Util
;
57 with Sem_Type
; use Sem_Type
;
58 with Sem_Warn
; use Sem_Warn
;
59 with Sinfo
; use Sinfo
;
60 with Snames
; use Snames
;
61 with Stringt
; use Stringt
;
62 with Stand
; use Stand
;
63 with Style
; use Style
;
64 with Targparm
; use Targparm
;
65 with Tbuild
; use Tbuild
;
66 with Uintp
; use Uintp
;
68 package body Sem_Aggr
is
70 type Case_Bounds
is record
72 -- Low bound of choice. Once we sort the Case_Table, then entries
73 -- will be in order of ascending Choice_Lo values.
76 -- High Bound of choice. The sort does not pay any attention to the
77 -- high bound, so choices 1 .. 4 and 1 .. 5 could be in either order.
80 -- If there are duplicates or missing entries, then in the sorted
81 -- table, this records the highest value among Choice_Hi values
82 -- seen so far, including this entry.
85 -- The node of the choice
88 type Case_Table_Type
is array (Nat
range <>) of Case_Bounds
;
89 -- Table type used by Check_Case_Choices procedure. Entry zero is not
90 -- used (reserved for the sort). Real entries start at one.
92 -----------------------
93 -- Local Subprograms --
94 -----------------------
96 procedure Sort_Case_Table
(Case_Table
: in out Case_Table_Type
);
97 -- Sort the Case Table using the Lower Bound of each Choice as the key. A
98 -- simple insertion sort is used since the choices in a case statement will
99 -- usually be in near sorted order.
101 procedure Check_Can_Never_Be_Null
(Typ
: Entity_Id
; Expr
: Node_Id
);
102 -- Ada 2005 (AI-231): Check bad usage of null for a component for which
103 -- null exclusion (NOT NULL) is specified. Typ can be an E_Array_Type for
104 -- the array case (the component type of the array will be used) or an
105 -- E_Component/E_Discriminant entity in the record case, in which case the
106 -- type of the component will be used for the test. If Typ is any other
107 -- kind of entity, the call is ignored. Expr is the component node in the
108 -- aggregate which is known to have a null value. A warning message will be
109 -- issued if the component is null excluding.
111 -- It would be better to pass the proper type for Typ ???
113 procedure Check_Expr_OK_In_Limited_Aggregate
(Expr
: Node_Id
);
114 -- Check that Expr is either not limited or else is one of the cases of
115 -- expressions allowed for a limited component association (namely, an
116 -- aggregate, function call, or <> notation). Report error for violations.
117 -- Expression is also OK in an instance or inlining context, because we
118 -- have already pre-analyzed and it is known to be type correct.
120 procedure Check_Qualified_Aggregate
(Level
: Nat
; Expr
: Node_Id
);
121 -- Given aggregate Expr, check that sub-aggregates of Expr that are nested
122 -- at Level are qualified. If Level = 0, this applies to Expr directly.
123 -- Only issue errors in formal verification mode.
125 function Is_Top_Level_Aggregate
(Expr
: Node_Id
) return Boolean;
126 -- Return True of Expr is an aggregate not contained directly in another
129 ------------------------------------------------------
130 -- Subprograms used for RECORD AGGREGATE Processing --
131 ------------------------------------------------------
133 procedure Resolve_Record_Aggregate
(N
: Node_Id
; Typ
: Entity_Id
);
134 -- This procedure performs all the semantic checks required for record
135 -- aggregates. Note that for aggregates analysis and resolution go
136 -- hand in hand. Aggregate analysis has been delayed up to here and
137 -- it is done while resolving the aggregate.
139 -- N is the N_Aggregate node.
140 -- Typ is the record type for the aggregate resolution
142 -- While performing the semantic checks, this procedure builds a new
143 -- Component_Association_List where each record field appears alone in a
144 -- Component_Choice_List along with its corresponding expression. The
145 -- record fields in the Component_Association_List appear in the same order
146 -- in which they appear in the record type Typ.
148 -- Once this new Component_Association_List is built and all the semantic
149 -- checks performed, the original aggregate subtree is replaced with the
150 -- new named record aggregate just built. Note that subtree substitution is
151 -- performed with Rewrite so as to be able to retrieve the original
154 -- The aggregate subtree manipulation performed by Resolve_Record_Aggregate
155 -- yields the aggregate format expected by Gigi. Typically, this kind of
156 -- tree manipulations are done in the expander. However, because the
157 -- semantic checks that need to be performed on record aggregates really go
158 -- hand in hand with the record aggregate normalization, the aggregate
159 -- subtree transformation is performed during resolution rather than
160 -- expansion. Had we decided otherwise we would have had to duplicate most
161 -- of the code in the expansion procedure Expand_Record_Aggregate. Note,
162 -- however, that all the expansion concerning aggregates for tagged records
163 -- is done in Expand_Record_Aggregate.
165 -- The algorithm of Resolve_Record_Aggregate proceeds as follows:
167 -- 1. Make sure that the record type against which the record aggregate
168 -- has to be resolved is not abstract. Furthermore if the type is a
169 -- null aggregate make sure the input aggregate N is also null.
171 -- 2. Verify that the structure of the aggregate is that of a record
172 -- aggregate. Specifically, look for component associations and ensure
173 -- that each choice list only has identifiers or the N_Others_Choice
174 -- node. Also make sure that if present, the N_Others_Choice occurs
175 -- last and by itself.
177 -- 3. If Typ contains discriminants, the values for each discriminant is
178 -- looked for. If the record type Typ has variants, we check that the
179 -- expressions corresponding to each discriminant ruling the (possibly
180 -- nested) variant parts of Typ, are static. This allows us to determine
181 -- the variant parts to which the rest of the aggregate must conform.
182 -- The names of discriminants with their values are saved in a new
183 -- association list, New_Assoc_List which is later augmented with the
184 -- names and values of the remaining components in the record type.
186 -- During this phase we also make sure that every discriminant is
187 -- assigned exactly one value. Note that when several values for a given
188 -- discriminant are found, semantic processing continues looking for
189 -- further errors. In this case it's the first discriminant value found
190 -- which we will be recorded.
192 -- IMPORTANT NOTE: For derived tagged types this procedure expects
193 -- First_Discriminant and Next_Discriminant to give the correct list
194 -- of discriminants, in the correct order.
196 -- 4. After all the discriminant values have been gathered, we can set the
197 -- Etype of the record aggregate. If Typ contains no discriminants this
198 -- is straightforward: the Etype of N is just Typ, otherwise a new
199 -- implicit constrained subtype of Typ is built to be the Etype of N.
201 -- 5. Gather the remaining record components according to the discriminant
202 -- values. This involves recursively traversing the record type
203 -- structure to see what variants are selected by the given discriminant
204 -- values. This processing is a little more convoluted if Typ is a
205 -- derived tagged types since we need to retrieve the record structure
206 -- of all the ancestors of Typ.
208 -- 6. After gathering the record components we look for their values in the
209 -- record aggregate and emit appropriate error messages should we not
210 -- find such values or should they be duplicated.
212 -- 7. We then make sure no illegal component names appear in the record
213 -- aggregate and make sure that the type of the record components
214 -- appearing in a same choice list is the same. Finally we ensure that
215 -- the others choice, if present, is used to provide the value of at
216 -- least a record component.
218 -- 8. The original aggregate node is replaced with the new named aggregate
219 -- built in steps 3 through 6, as explained earlier.
221 -- Given the complexity of record aggregate resolution, the primary goal of
222 -- this routine is clarity and simplicity rather than execution and storage
223 -- efficiency. If there are only positional components in the aggregate the
224 -- running time is linear. If there are associations the running time is
225 -- still linear as long as the order of the associations is not too far off
226 -- the order of the components in the record type. If this is not the case
227 -- the running time is at worst quadratic in the size of the association
230 procedure Check_Misspelled_Component
231 (Elements
: Elist_Id
;
232 Component
: Node_Id
);
233 -- Give possible misspelling diagnostic if Component is likely to be a
234 -- misspelling of one of the components of the Assoc_List. This is called
235 -- by Resolve_Aggr_Expr after producing an invalid component error message.
237 procedure Check_Static_Discriminated_Subtype
(T
: Entity_Id
; V
: Node_Id
);
238 -- An optimization: determine whether a discriminated subtype has a static
239 -- constraint, and contains array components whose length is also static,
240 -- either because they are constrained by the discriminant, or because the
241 -- original component bounds are static.
243 -----------------------------------------------------
244 -- Subprograms used for ARRAY AGGREGATE Processing --
245 -----------------------------------------------------
247 function Resolve_Array_Aggregate
250 Index_Constr
: Node_Id
;
251 Component_Typ
: Entity_Id
;
252 Others_Allowed
: Boolean) return Boolean;
253 -- This procedure performs the semantic checks for an array aggregate.
254 -- True is returned if the aggregate resolution succeeds.
256 -- The procedure works by recursively checking each nested aggregate.
257 -- Specifically, after checking a sub-aggregate nested at the i-th level
258 -- we recursively check all the subaggregates at the i+1-st level (if any).
259 -- Note that for aggregates analysis and resolution go hand in hand.
260 -- Aggregate analysis has been delayed up to here and it is done while
261 -- resolving the aggregate.
263 -- N is the current N_Aggregate node to be checked.
265 -- Index is the index node corresponding to the array sub-aggregate that
266 -- we are currently checking (RM 4.3.3 (8)). Its Etype is the
267 -- corresponding index type (or subtype).
269 -- Index_Constr is the node giving the applicable index constraint if
270 -- any (RM 4.3.3 (10)). It "is a constraint provided by certain
271 -- contexts [...] that can be used to determine the bounds of the array
272 -- value specified by the aggregate". If Others_Allowed below is False
273 -- there is no applicable index constraint and this node is set to Index.
275 -- Component_Typ is the array component type.
277 -- Others_Allowed indicates whether an others choice is allowed
278 -- in the context where the top-level aggregate appeared.
280 -- The algorithm of Resolve_Array_Aggregate proceeds as follows:
282 -- 1. Make sure that the others choice, if present, is by itself and
283 -- appears last in the sub-aggregate. Check that we do not have
284 -- positional and named components in the array sub-aggregate (unless
285 -- the named association is an others choice). Finally if an others
286 -- choice is present, make sure it is allowed in the aggregate context.
288 -- 2. If the array sub-aggregate contains discrete_choices:
290 -- (A) Verify their validity. Specifically verify that:
292 -- (a) If a null range is present it must be the only possible
293 -- choice in the array aggregate.
295 -- (b) Ditto for a non static range.
297 -- (c) Ditto for a non static expression.
299 -- In addition this step analyzes and resolves each discrete_choice,
300 -- making sure that its type is the type of the corresponding Index.
301 -- If we are not at the lowest array aggregate level (in the case of
302 -- multi-dimensional aggregates) then invoke Resolve_Array_Aggregate
303 -- recursively on each component expression. Otherwise, resolve the
304 -- bottom level component expressions against the expected component
305 -- type ONLY IF the component corresponds to a single discrete choice
306 -- which is not an others choice (to see why read the DELAYED
307 -- COMPONENT RESOLUTION below).
309 -- (B) Determine the bounds of the sub-aggregate and lowest and
310 -- highest choice values.
312 -- 3. For positional aggregates:
314 -- (A) Loop over the component expressions either recursively invoking
315 -- Resolve_Array_Aggregate on each of these for multi-dimensional
316 -- array aggregates or resolving the bottom level component
317 -- expressions against the expected component type.
319 -- (B) Determine the bounds of the positional sub-aggregates.
321 -- 4. Try to determine statically whether the evaluation of the array
322 -- sub-aggregate raises Constraint_Error. If yes emit proper
323 -- warnings. The precise checks are the following:
325 -- (A) Check that the index range defined by aggregate bounds is
326 -- compatible with corresponding index subtype.
327 -- We also check against the base type. In fact it could be that
328 -- Low/High bounds of the base type are static whereas those of
329 -- the index subtype are not. Thus if we can statically catch
330 -- a problem with respect to the base type we are guaranteed
331 -- that the same problem will arise with the index subtype
333 -- (B) If we are dealing with a named aggregate containing an others
334 -- choice and at least one discrete choice then make sure the range
335 -- specified by the discrete choices does not overflow the
336 -- aggregate bounds. We also check against the index type and base
337 -- type bounds for the same reasons given in (A).
339 -- (C) If we are dealing with a positional aggregate with an others
340 -- choice make sure the number of positional elements specified
341 -- does not overflow the aggregate bounds. We also check against
342 -- the index type and base type bounds as mentioned in (A).
344 -- Finally construct an N_Range node giving the sub-aggregate bounds.
345 -- Set the Aggregate_Bounds field of the sub-aggregate to be this
346 -- N_Range. The routine Array_Aggr_Subtype below uses such N_Ranges
347 -- to build the appropriate aggregate subtype. Aggregate_Bounds
348 -- information is needed during expansion.
350 -- DELAYED COMPONENT RESOLUTION: The resolution of bottom level component
351 -- expressions in an array aggregate may call Duplicate_Subexpr or some
352 -- other routine that inserts code just outside the outermost aggregate.
353 -- If the array aggregate contains discrete choices or an others choice,
354 -- this may be wrong. Consider for instance the following example.
356 -- type Rec is record
360 -- type Acc_Rec is access Rec;
361 -- Arr : array (1..3) of Acc_Rec := (1 .. 3 => new Rec);
363 -- Then the transformation of "new Rec" that occurs during resolution
364 -- entails the following code modifications
366 -- P7b : constant Acc_Rec := new Rec;
368 -- Arr : array (1..3) of Acc_Rec := (1 .. 3 => P7b);
370 -- This code transformation is clearly wrong, since we need to call
371 -- "new Rec" for each of the 3 array elements. To avoid this problem we
372 -- delay resolution of the components of non positional array aggregates
373 -- to the expansion phase. As an optimization, if the discrete choice
374 -- specifies a single value we do not delay resolution.
376 function Array_Aggr_Subtype
(N
: Node_Id
; Typ
: Node_Id
) return Entity_Id
;
377 -- This routine returns the type or subtype of an array aggregate.
379 -- N is the array aggregate node whose type we return.
381 -- Typ is the context type in which N occurs.
383 -- This routine creates an implicit array subtype whose bounds are
384 -- those defined by the aggregate. When this routine is invoked
385 -- Resolve_Array_Aggregate has already processed aggregate N. Thus the
386 -- Aggregate_Bounds of each sub-aggregate, is an N_Range node giving the
387 -- sub-aggregate bounds. When building the aggregate itype, this function
388 -- traverses the array aggregate N collecting such Aggregate_Bounds and
389 -- constructs the proper array aggregate itype.
391 -- Note that in the case of multidimensional aggregates each inner
392 -- sub-aggregate corresponding to a given array dimension, may provide a
393 -- different bounds. If it is possible to determine statically that
394 -- some sub-aggregates corresponding to the same index do not have the
395 -- same bounds, then a warning is emitted. If such check is not possible
396 -- statically (because some sub-aggregate bounds are dynamic expressions)
397 -- then this job is left to the expander. In all cases the particular
398 -- bounds that this function will chose for a given dimension is the first
399 -- N_Range node for a sub-aggregate corresponding to that dimension.
401 -- Note that the Raises_Constraint_Error flag of an array aggregate
402 -- whose evaluation is determined to raise CE by Resolve_Array_Aggregate,
403 -- is set in Resolve_Array_Aggregate but the aggregate is not
404 -- immediately replaced with a raise CE. In fact, Array_Aggr_Subtype must
405 -- first construct the proper itype for the aggregate (Gigi needs
406 -- this). After constructing the proper itype we will eventually replace
407 -- the top-level aggregate with a raise CE (done in Resolve_Aggregate).
408 -- Of course in cases such as:
410 -- type Arr is array (integer range <>) of Integer;
411 -- A : Arr := (positive range -1 .. 2 => 0);
413 -- The bounds of the aggregate itype are cooked up to look reasonable
414 -- (in this particular case the bounds will be 1 .. 2).
416 procedure Make_String_Into_Aggregate
(N
: Node_Id
);
417 -- A string literal can appear in a context in which a one dimensional
418 -- array of characters is expected. This procedure simply rewrites the
419 -- string as an aggregate, prior to resolution.
421 ---------------------------------
422 -- Delta aggregate processing --
423 ---------------------------------
425 procedure Resolve_Delta_Array_Aggregate
(N
: Node_Id
; Typ
: Entity_Id
);
426 procedure Resolve_Delta_Record_Aggregate
(N
: Node_Id
; Typ
: Entity_Id
);
428 ------------------------
429 -- Array_Aggr_Subtype --
430 ------------------------
432 function Array_Aggr_Subtype
434 Typ
: Entity_Id
) return Entity_Id
436 Aggr_Dimension
: constant Pos
:= Number_Dimensions
(Typ
);
437 -- Number of aggregate index dimensions
439 Aggr_Range
: array (1 .. Aggr_Dimension
) of Node_Id
:= (others => Empty
);
440 -- Constrained N_Range of each index dimension in our aggregate itype
442 Aggr_Low
: array (1 .. Aggr_Dimension
) of Node_Id
:= (others => Empty
);
443 Aggr_High
: array (1 .. Aggr_Dimension
) of Node_Id
:= (others => Empty
);
444 -- Low and High bounds for each index dimension in our aggregate itype
446 Is_Fully_Positional
: Boolean := True;
448 procedure Collect_Aggr_Bounds
(N
: Node_Id
; Dim
: Pos
);
449 -- N is an array (sub-)aggregate. Dim is the dimension corresponding
450 -- to (sub-)aggregate N. This procedure collects and removes the side
451 -- effects of the constrained N_Range nodes corresponding to each index
452 -- dimension of our aggregate itype. These N_Range nodes are collected
453 -- in Aggr_Range above.
455 -- Likewise collect in Aggr_Low & Aggr_High above the low and high
456 -- bounds of each index dimension. If, when collecting, two bounds
457 -- corresponding to the same dimension are static and found to differ,
458 -- then emit a warning, and mark N as raising Constraint_Error.
460 -------------------------
461 -- Collect_Aggr_Bounds --
462 -------------------------
464 procedure Collect_Aggr_Bounds
(N
: Node_Id
; Dim
: Pos
) is
465 This_Range
: constant Node_Id
:= Aggregate_Bounds
(N
);
466 -- The aggregate range node of this specific sub-aggregate
468 This_Low
: constant Node_Id
:= Low_Bound
(Aggregate_Bounds
(N
));
469 This_High
: constant Node_Id
:= High_Bound
(Aggregate_Bounds
(N
));
470 -- The aggregate bounds of this specific sub-aggregate
476 Remove_Side_Effects
(This_Low
, Variable_Ref
=> True);
477 Remove_Side_Effects
(This_High
, Variable_Ref
=> True);
479 -- Collect the first N_Range for a given dimension that you find.
480 -- For a given dimension they must be all equal anyway.
482 if No
(Aggr_Range
(Dim
)) then
483 Aggr_Low
(Dim
) := This_Low
;
484 Aggr_High
(Dim
) := This_High
;
485 Aggr_Range
(Dim
) := This_Range
;
488 if Compile_Time_Known_Value
(This_Low
) then
489 if not Compile_Time_Known_Value
(Aggr_Low
(Dim
)) then
490 Aggr_Low
(Dim
) := This_Low
;
492 elsif Expr_Value
(This_Low
) /= Expr_Value
(Aggr_Low
(Dim
)) then
493 Set_Raises_Constraint_Error
(N
);
494 Error_Msg_Warn
:= SPARK_Mode
/= On
;
495 Error_Msg_N
("sub-aggregate low bound mismatch<<", N
);
496 Error_Msg_N
("\Constraint_Error [<<", N
);
500 if Compile_Time_Known_Value
(This_High
) then
501 if not Compile_Time_Known_Value
(Aggr_High
(Dim
)) then
502 Aggr_High
(Dim
) := This_High
;
505 Expr_Value
(This_High
) /= Expr_Value
(Aggr_High
(Dim
))
507 Set_Raises_Constraint_Error
(N
);
508 Error_Msg_Warn
:= SPARK_Mode
/= On
;
509 Error_Msg_N
("sub-aggregate high bound mismatch<<", N
);
510 Error_Msg_N
("\Constraint_Error [<<", N
);
515 if Dim
< Aggr_Dimension
then
517 -- Process positional components
519 if Present
(Expressions
(N
)) then
520 Expr
:= First
(Expressions
(N
));
521 while Present
(Expr
) loop
522 Collect_Aggr_Bounds
(Expr
, Dim
+ 1);
527 -- Process component associations
529 if Present
(Component_Associations
(N
)) then
530 Is_Fully_Positional
:= False;
532 Assoc
:= First
(Component_Associations
(N
));
533 while Present
(Assoc
) loop
534 Expr
:= Expression
(Assoc
);
535 Collect_Aggr_Bounds
(Expr
, Dim
+ 1);
540 end Collect_Aggr_Bounds
;
542 -- Array_Aggr_Subtype variables
545 -- The final itype of the overall aggregate
547 Index_Constraints
: constant List_Id
:= New_List
;
548 -- The list of index constraints of the aggregate itype
550 -- Start of processing for Array_Aggr_Subtype
553 -- Make sure that the list of index constraints is properly attached to
554 -- the tree, and then collect the aggregate bounds.
556 Set_Parent
(Index_Constraints
, N
);
557 Collect_Aggr_Bounds
(N
, 1);
559 -- Build the list of constrained indexes of our aggregate itype
561 for J
in 1 .. Aggr_Dimension
loop
562 Create_Index
: declare
563 Index_Base
: constant Entity_Id
:=
564 Base_Type
(Etype
(Aggr_Range
(J
)));
565 Index_Typ
: Entity_Id
;
568 -- Construct the Index subtype, and associate it with the range
569 -- construct that generates it.
572 Create_Itype
(Subtype_Kind
(Ekind
(Index_Base
)), Aggr_Range
(J
));
574 Set_Etype
(Index_Typ
, Index_Base
);
576 if Is_Character_Type
(Index_Base
) then
577 Set_Is_Character_Type
(Index_Typ
);
580 Set_Size_Info
(Index_Typ
, (Index_Base
));
581 Set_RM_Size
(Index_Typ
, RM_Size
(Index_Base
));
582 Set_First_Rep_Item
(Index_Typ
, First_Rep_Item
(Index_Base
));
583 Set_Scalar_Range
(Index_Typ
, Aggr_Range
(J
));
585 if Is_Discrete_Or_Fixed_Point_Type
(Index_Typ
) then
586 Set_RM_Size
(Index_Typ
, UI_From_Int
(Minimum_Size
(Index_Typ
)));
589 Set_Etype
(Aggr_Range
(J
), Index_Typ
);
591 Append
(Aggr_Range
(J
), To
=> Index_Constraints
);
595 -- Now build the Itype
597 Itype
:= Create_Itype
(E_Array_Subtype
, N
);
599 Set_First_Rep_Item
(Itype
, First_Rep_Item
(Typ
));
600 Set_Convention
(Itype
, Convention
(Typ
));
601 Set_Depends_On_Private
(Itype
, Has_Private_Component
(Typ
));
602 Set_Etype
(Itype
, Base_Type
(Typ
));
603 Set_Has_Alignment_Clause
(Itype
, Has_Alignment_Clause
(Typ
));
604 Set_Is_Aliased
(Itype
, Is_Aliased
(Typ
));
605 Set_Depends_On_Private
(Itype
, Depends_On_Private
(Typ
));
607 Copy_Suppress_Status
(Index_Check
, Typ
, Itype
);
608 Copy_Suppress_Status
(Length_Check
, Typ
, Itype
);
610 Set_First_Index
(Itype
, First
(Index_Constraints
));
611 Set_Is_Constrained
(Itype
, True);
612 Set_Is_Internal
(Itype
, True);
614 -- A simple optimization: purely positional aggregates of static
615 -- components should be passed to gigi unexpanded whenever possible, and
616 -- regardless of the staticness of the bounds themselves. Subsequent
617 -- checks in exp_aggr verify that type is not packed, etc.
619 Set_Size_Known_At_Compile_Time
622 and then Comes_From_Source
(N
)
623 and then Size_Known_At_Compile_Time
(Component_Type
(Typ
)));
625 -- We always need a freeze node for a packed array subtype, so that we
626 -- can build the Packed_Array_Impl_Type corresponding to the subtype. If
627 -- expansion is disabled, the packed array subtype is not built, and we
628 -- must not generate a freeze node for the type, or else it will appear
629 -- incomplete to gigi.
632 and then not In_Spec_Expression
633 and then Expander_Active
635 Freeze_Itype
(Itype
, N
);
639 end Array_Aggr_Subtype
;
641 --------------------------------
642 -- Check_Misspelled_Component --
643 --------------------------------
645 procedure Check_Misspelled_Component
646 (Elements
: Elist_Id
;
649 Max_Suggestions
: constant := 2;
651 Nr_Of_Suggestions
: Natural := 0;
652 Suggestion_1
: Entity_Id
:= Empty
;
653 Suggestion_2
: Entity_Id
:= Empty
;
654 Component_Elmt
: Elmt_Id
;
657 -- All the components of List are matched against Component and a count
658 -- is maintained of possible misspellings. When at the end of the
659 -- analysis there are one or two (not more) possible misspellings,
660 -- these misspellings will be suggested as possible corrections.
662 Component_Elmt
:= First_Elmt
(Elements
);
663 while Nr_Of_Suggestions
<= Max_Suggestions
664 and then Present
(Component_Elmt
)
666 if Is_Bad_Spelling_Of
667 (Chars
(Node
(Component_Elmt
)),
670 Nr_Of_Suggestions
:= Nr_Of_Suggestions
+ 1;
672 case Nr_Of_Suggestions
is
673 when 1 => Suggestion_1
:= Node
(Component_Elmt
);
674 when 2 => Suggestion_2
:= Node
(Component_Elmt
);
679 Next_Elmt
(Component_Elmt
);
682 -- Report at most two suggestions
684 if Nr_Of_Suggestions
= 1 then
685 Error_Msg_NE
-- CODEFIX
686 ("\possible misspelling of&", Component
, Suggestion_1
);
688 elsif Nr_Of_Suggestions
= 2 then
689 Error_Msg_Node_2
:= Suggestion_2
;
690 Error_Msg_NE
-- CODEFIX
691 ("\possible misspelling of& or&", Component
, Suggestion_1
);
693 end Check_Misspelled_Component
;
695 ----------------------------------------
696 -- Check_Expr_OK_In_Limited_Aggregate --
697 ----------------------------------------
699 procedure Check_Expr_OK_In_Limited_Aggregate
(Expr
: Node_Id
) is
701 if Is_Limited_Type
(Etype
(Expr
))
702 and then Comes_From_Source
(Expr
)
704 if In_Instance_Body
or else In_Inlined_Body
then
707 elsif not OK_For_Limited_Init
(Etype
(Expr
), Expr
) then
709 ("initialization not allowed for limited types", Expr
);
710 Explain_Limited_Type
(Etype
(Expr
), Expr
);
713 end Check_Expr_OK_In_Limited_Aggregate
;
715 -------------------------------
716 -- Check_Qualified_Aggregate --
717 -------------------------------
719 procedure Check_Qualified_Aggregate
(Level
: Nat
; Expr
: Node_Id
) is
725 if Nkind
(Parent
(Expr
)) /= N_Qualified_Expression
then
726 Check_SPARK_05_Restriction
("aggregate should be qualified", Expr
);
730 Comp_Expr
:= First
(Expressions
(Expr
));
731 while Present
(Comp_Expr
) loop
732 if Nkind
(Comp_Expr
) = N_Aggregate
then
733 Check_Qualified_Aggregate
(Level
- 1, Comp_Expr
);
736 Comp_Expr
:= Next
(Comp_Expr
);
739 Comp_Assn
:= First
(Component_Associations
(Expr
));
740 while Present
(Comp_Assn
) loop
741 Comp_Expr
:= Expression
(Comp_Assn
);
743 if Nkind
(Comp_Expr
) = N_Aggregate
then
744 Check_Qualified_Aggregate
(Level
- 1, Comp_Expr
);
747 Comp_Assn
:= Next
(Comp_Assn
);
750 end Check_Qualified_Aggregate
;
752 ----------------------------------------
753 -- Check_Static_Discriminated_Subtype --
754 ----------------------------------------
756 procedure Check_Static_Discriminated_Subtype
(T
: Entity_Id
; V
: Node_Id
) is
757 Disc
: constant Entity_Id
:= First_Discriminant
(T
);
762 if Has_Record_Rep_Clause
(T
) then
765 elsif Present
(Next_Discriminant
(Disc
)) then
768 elsif Nkind
(V
) /= N_Integer_Literal
then
772 Comp
:= First_Component
(T
);
773 while Present
(Comp
) loop
774 if Is_Scalar_Type
(Etype
(Comp
)) then
777 elsif Is_Private_Type
(Etype
(Comp
))
778 and then Present
(Full_View
(Etype
(Comp
)))
779 and then Is_Scalar_Type
(Full_View
(Etype
(Comp
)))
783 elsif Is_Array_Type
(Etype
(Comp
)) then
784 if Is_Bit_Packed_Array
(Etype
(Comp
)) then
788 Ind
:= First_Index
(Etype
(Comp
));
789 while Present
(Ind
) loop
790 if Nkind
(Ind
) /= N_Range
791 or else Nkind
(Low_Bound
(Ind
)) /= N_Integer_Literal
792 or else Nkind
(High_Bound
(Ind
)) /= N_Integer_Literal
804 Next_Component
(Comp
);
807 -- On exit, all components have statically known sizes
809 Set_Size_Known_At_Compile_Time
(T
);
810 end Check_Static_Discriminated_Subtype
;
812 -------------------------
813 -- Is_Others_Aggregate --
814 -------------------------
816 function Is_Others_Aggregate
(Aggr
: Node_Id
) return Boolean is
818 return No
(Expressions
(Aggr
))
820 Nkind
(First
(Choice_List
(First
(Component_Associations
(Aggr
))))) =
822 end Is_Others_Aggregate
;
824 ----------------------------
825 -- Is_Top_Level_Aggregate --
826 ----------------------------
828 function Is_Top_Level_Aggregate
(Expr
: Node_Id
) return Boolean is
830 return Nkind
(Parent
(Expr
)) /= N_Aggregate
831 and then (Nkind
(Parent
(Expr
)) /= N_Component_Association
832 or else Nkind
(Parent
(Parent
(Expr
))) /= N_Aggregate
);
833 end Is_Top_Level_Aggregate
;
835 --------------------------------
836 -- Make_String_Into_Aggregate --
837 --------------------------------
839 procedure Make_String_Into_Aggregate
(N
: Node_Id
) is
840 Exprs
: constant List_Id
:= New_List
;
841 Loc
: constant Source_Ptr
:= Sloc
(N
);
842 Str
: constant String_Id
:= Strval
(N
);
843 Strlen
: constant Nat
:= String_Length
(Str
);
851 for J
in 1 .. Strlen
loop
852 C
:= Get_String_Char
(Str
, J
);
853 Set_Character_Literal_Name
(C
);
856 Make_Character_Literal
(P
,
858 Char_Literal_Value
=> UI_From_CC
(C
));
859 Set_Etype
(C_Node
, Any_Character
);
860 Append_To
(Exprs
, C_Node
);
863 -- Something special for wide strings???
866 New_N
:= Make_Aggregate
(Loc
, Expressions
=> Exprs
);
867 Set_Analyzed
(New_N
);
868 Set_Etype
(New_N
, Any_Composite
);
871 end Make_String_Into_Aggregate
;
873 -----------------------
874 -- Resolve_Aggregate --
875 -----------------------
877 procedure Resolve_Aggregate
(N
: Node_Id
; Typ
: Entity_Id
) is
878 Loc
: constant Source_Ptr
:= Sloc
(N
);
879 Pkind
: constant Node_Kind
:= Nkind
(Parent
(N
));
881 Aggr_Subtyp
: Entity_Id
;
882 -- The actual aggregate subtype. This is not necessarily the same as Typ
883 -- which is the subtype of the context in which the aggregate was found.
886 -- Ignore junk empty aggregate resulting from parser error
888 if No
(Expressions
(N
))
889 and then No
(Component_Associations
(N
))
890 and then not Null_Record_Present
(N
)
895 -- If the aggregate has box-initialized components, its type must be
896 -- frozen so that initialization procedures can properly be called
897 -- in the resolution that follows. The replacement of boxes with
898 -- initialization calls is properly an expansion activity but it must
899 -- be done during resolution.
902 and then Present
(Component_Associations
(N
))
908 Comp
:= First
(Component_Associations
(N
));
909 while Present
(Comp
) loop
910 if Box_Present
(Comp
) then
911 Insert_Actions
(N
, Freeze_Entity
(Typ
, N
));
920 -- An unqualified aggregate is restricted in SPARK to:
922 -- An aggregate item inside an aggregate for a multi-dimensional array
924 -- An expression being assigned to an unconstrained array, but only if
925 -- the aggregate specifies a value for OTHERS only.
927 if Nkind
(Parent
(N
)) = N_Qualified_Expression
then
928 if Is_Array_Type
(Typ
) then
929 Check_Qualified_Aggregate
(Number_Dimensions
(Typ
), N
);
931 Check_Qualified_Aggregate
(1, N
);
934 if Is_Array_Type
(Typ
)
935 and then Nkind
(Parent
(N
)) = N_Assignment_Statement
936 and then not Is_Constrained
(Etype
(Name
(Parent
(N
))))
938 if not Is_Others_Aggregate
(N
) then
939 Check_SPARK_05_Restriction
940 ("array aggregate should have only OTHERS", N
);
943 elsif Is_Top_Level_Aggregate
(N
) then
944 Check_SPARK_05_Restriction
("aggregate should be qualified", N
);
946 -- The legality of this unqualified aggregate is checked by calling
947 -- Check_Qualified_Aggregate from one of its enclosing aggregate,
948 -- unless one of these already causes an error to be issued.
955 -- Check for aggregates not allowed in configurable run-time mode.
956 -- We allow all cases of aggregates that do not come from source, since
957 -- these are all assumed to be small (e.g. bounds of a string literal).
958 -- We also allow aggregates of types we know to be small.
960 if not Support_Aggregates_On_Target
961 and then Comes_From_Source
(N
)
962 and then (not Known_Static_Esize
(Typ
) or else Esize
(Typ
) > 64)
964 Error_Msg_CRT
("aggregate", N
);
967 -- Ada 2005 (AI-287): Limited aggregates allowed
969 -- In an instance, ignore aggregate subcomponents tnat may be limited,
970 -- because they originate in view conflicts. If the original aggregate
971 -- is legal and the actuals are legal, the aggregate itself is legal.
973 if Is_Limited_Type
(Typ
)
974 and then Ada_Version
< Ada_2005
975 and then not In_Instance
977 Error_Msg_N
("aggregate type cannot be limited", N
);
978 Explain_Limited_Type
(Typ
, N
);
980 elsif Is_Class_Wide_Type
(Typ
) then
981 Error_Msg_N
("type of aggregate cannot be class-wide", N
);
983 elsif Typ
= Any_String
984 or else Typ
= Any_Composite
986 Error_Msg_N
("no unique type for aggregate", N
);
987 Set_Etype
(N
, Any_Composite
);
989 elsif Is_Array_Type
(Typ
) and then Null_Record_Present
(N
) then
990 Error_Msg_N
("null record forbidden in array aggregate", N
);
992 elsif Is_Record_Type
(Typ
) then
993 Resolve_Record_Aggregate
(N
, Typ
);
995 elsif Is_Array_Type
(Typ
) then
997 -- First a special test, for the case of a positional aggregate of
998 -- characters which can be replaced by a string literal.
1000 -- Do not perform this transformation if this was a string literal
1001 -- to start with, whose components needed constraint checks, or if
1002 -- the component type is non-static, because it will require those
1003 -- checks and be transformed back into an aggregate. If the index
1004 -- type is not Integer the aggregate may represent a user-defined
1005 -- string type but the context might need the original type so we
1006 -- do not perform the transformation at this point.
1008 if Number_Dimensions
(Typ
) = 1
1009 and then Is_Standard_Character_Type
(Component_Type
(Typ
))
1010 and then No
(Component_Associations
(N
))
1011 and then not Is_Limited_Composite
(Typ
)
1012 and then not Is_Private_Composite
(Typ
)
1013 and then not Is_Bit_Packed_Array
(Typ
)
1014 and then Nkind
(Original_Node
(Parent
(N
))) /= N_String_Literal
1015 and then Is_OK_Static_Subtype
(Component_Type
(Typ
))
1016 and then Base_Type
(Etype
(First_Index
(Typ
))) =
1017 Base_Type
(Standard_Integer
)
1023 Expr
:= First
(Expressions
(N
));
1024 while Present
(Expr
) loop
1025 exit when Nkind
(Expr
) /= N_Character_Literal
;
1032 Expr
:= First
(Expressions
(N
));
1033 while Present
(Expr
) loop
1034 Store_String_Char
(UI_To_CC
(Char_Literal_Value
(Expr
)));
1038 Rewrite
(N
, Make_String_Literal
(Loc
, End_String
));
1040 Analyze_And_Resolve
(N
, Typ
);
1046 -- Here if we have a real aggregate to deal with
1048 Array_Aggregate
: declare
1049 Aggr_Resolved
: Boolean;
1051 Aggr_Typ
: constant Entity_Id
:= Etype
(Typ
);
1052 -- This is the unconstrained array type, which is the type against
1053 -- which the aggregate is to be resolved. Typ itself is the array
1054 -- type of the context which may not be the same subtype as the
1055 -- subtype for the final aggregate.
1058 -- In the following we determine whether an OTHERS choice is
1059 -- allowed inside the array aggregate. The test checks the context
1060 -- in which the array aggregate occurs. If the context does not
1061 -- permit it, or the aggregate type is unconstrained, an OTHERS
1062 -- choice is not allowed (except that it is always allowed on the
1063 -- right-hand side of an assignment statement; in this case the
1064 -- constrainedness of the type doesn't matter).
1066 -- If expansion is disabled (generic context, or semantics-only
1067 -- mode) actual subtypes cannot be constructed, and the type of an
1068 -- object may be its unconstrained nominal type. However, if the
1069 -- context is an assignment, we assume that OTHERS is allowed,
1070 -- because the target of the assignment will have a constrained
1071 -- subtype when fully compiled.
1073 -- Note that there is no node for Explicit_Actual_Parameter.
1074 -- To test for this context we therefore have to test for node
1075 -- N_Parameter_Association which itself appears only if there is a
1076 -- formal parameter. Consequently we also need to test for
1077 -- N_Procedure_Call_Statement or N_Function_Call.
1079 -- The context may be an N_Reference node, created by expansion.
1080 -- Legality of the others clause was established in the source,
1081 -- so the context is legal.
1083 Set_Etype
(N
, Aggr_Typ
); -- May be overridden later on
1085 if Pkind
= N_Assignment_Statement
1086 or else (Is_Constrained
(Typ
)
1088 (Pkind
= N_Parameter_Association
or else
1089 Pkind
= N_Function_Call
or else
1090 Pkind
= N_Procedure_Call_Statement
or else
1091 Pkind
= N_Generic_Association
or else
1092 Pkind
= N_Formal_Object_Declaration
or else
1093 Pkind
= N_Simple_Return_Statement
or else
1094 Pkind
= N_Object_Declaration
or else
1095 Pkind
= N_Component_Declaration
or else
1096 Pkind
= N_Parameter_Specification
or else
1097 Pkind
= N_Qualified_Expression
or else
1098 Pkind
= N_Reference
or else
1099 Pkind
= N_Aggregate
or else
1100 Pkind
= N_Extension_Aggregate
or else
1101 Pkind
= N_Component_Association
))
1104 Resolve_Array_Aggregate
1106 Index
=> First_Index
(Aggr_Typ
),
1107 Index_Constr
=> First_Index
(Typ
),
1108 Component_Typ
=> Component_Type
(Typ
),
1109 Others_Allowed
=> True);
1112 Resolve_Array_Aggregate
1114 Index
=> First_Index
(Aggr_Typ
),
1115 Index_Constr
=> First_Index
(Aggr_Typ
),
1116 Component_Typ
=> Component_Type
(Typ
),
1117 Others_Allowed
=> False);
1120 if not Aggr_Resolved
then
1122 -- A parenthesized expression may have been intended as an
1123 -- aggregate, leading to a type error when analyzing the
1124 -- component. This can also happen for a nested component
1125 -- (see Analyze_Aggr_Expr).
1127 if Paren_Count
(N
) > 0 then
1129 ("positional aggregate cannot have one component", N
);
1132 Aggr_Subtyp
:= Any_Composite
;
1135 Aggr_Subtyp
:= Array_Aggr_Subtype
(N
, Typ
);
1138 Set_Etype
(N
, Aggr_Subtyp
);
1139 end Array_Aggregate
;
1141 elsif Is_Private_Type
(Typ
)
1142 and then Present
(Full_View
(Typ
))
1143 and then (In_Inlined_Body
or In_Instance_Body
)
1144 and then Is_Composite_Type
(Full_View
(Typ
))
1146 Resolve
(N
, Full_View
(Typ
));
1149 Error_Msg_N
("illegal context for aggregate", N
);
1152 -- If we can determine statically that the evaluation of the aggregate
1153 -- raises Constraint_Error, then replace the aggregate with an
1154 -- N_Raise_Constraint_Error node, but set the Etype to the right
1155 -- aggregate subtype. Gigi needs this.
1157 if Raises_Constraint_Error
(N
) then
1158 Aggr_Subtyp
:= Etype
(N
);
1160 Make_Raise_Constraint_Error
(Loc
, Reason
=> CE_Range_Check_Failed
));
1161 Set_Raises_Constraint_Error
(N
);
1162 Set_Etype
(N
, Aggr_Subtyp
);
1166 Check_Function_Writable_Actuals
(N
);
1167 end Resolve_Aggregate
;
1169 -----------------------------
1170 -- Resolve_Array_Aggregate --
1171 -----------------------------
1173 function Resolve_Array_Aggregate
1176 Index_Constr
: Node_Id
;
1177 Component_Typ
: Entity_Id
;
1178 Others_Allowed
: Boolean) return Boolean
1180 Loc
: constant Source_Ptr
:= Sloc
(N
);
1182 Failure
: constant Boolean := False;
1183 Success
: constant Boolean := True;
1185 Index_Typ
: constant Entity_Id
:= Etype
(Index
);
1186 Index_Typ_Low
: constant Node_Id
:= Type_Low_Bound
(Index_Typ
);
1187 Index_Typ_High
: constant Node_Id
:= Type_High_Bound
(Index_Typ
);
1188 -- The type of the index corresponding to the array sub-aggregate along
1189 -- with its low and upper bounds.
1191 Index_Base
: constant Entity_Id
:= Base_Type
(Index_Typ
);
1192 Index_Base_Low
: constant Node_Id
:= Type_Low_Bound
(Index_Base
);
1193 Index_Base_High
: constant Node_Id
:= Type_High_Bound
(Index_Base
);
1194 -- Ditto for the base type
1196 Others_Present
: Boolean := False;
1198 Nb_Choices
: Nat
:= 0;
1199 -- Contains the overall number of named choices in this sub-aggregate
1201 function Add
(Val
: Uint
; To
: Node_Id
) return Node_Id
;
1202 -- Creates a new expression node where Val is added to expression To.
1203 -- Tries to constant fold whenever possible. To must be an already
1204 -- analyzed expression.
1206 procedure Check_Bound
(BH
: Node_Id
; AH
: in out Node_Id
);
1207 -- Checks that AH (the upper bound of an array aggregate) is less than
1208 -- or equal to BH (the upper bound of the index base type). If the check
1209 -- fails, a warning is emitted, the Raises_Constraint_Error flag of N is
1210 -- set, and AH is replaced with a duplicate of BH.
1212 procedure Check_Bounds
(L
, H
: Node_Id
; AL
, AH
: Node_Id
);
1213 -- Checks that range AL .. AH is compatible with range L .. H. Emits a
1214 -- warning if not and sets the Raises_Constraint_Error flag in N.
1216 procedure Check_Length
(L
, H
: Node_Id
; Len
: Uint
);
1217 -- Checks that range L .. H contains at least Len elements. Emits a
1218 -- warning if not and sets the Raises_Constraint_Error flag in N.
1220 function Dynamic_Or_Null_Range
(L
, H
: Node_Id
) return Boolean;
1221 -- Returns True if range L .. H is dynamic or null
1223 procedure Get
(Value
: out Uint
; From
: Node_Id
; OK
: out Boolean);
1224 -- Given expression node From, this routine sets OK to False if it
1225 -- cannot statically evaluate From. Otherwise it stores this static
1226 -- value into Value.
1228 function Resolve_Aggr_Expr
1230 Single_Elmt
: Boolean) return Boolean;
1231 -- Resolves aggregate expression Expr. Returns False if resolution
1232 -- fails. If Single_Elmt is set to False, the expression Expr may be
1233 -- used to initialize several array aggregate elements (this can happen
1234 -- for discrete choices such as "L .. H => Expr" or the OTHERS choice).
1235 -- In this event we do not resolve Expr unless expansion is disabled.
1236 -- To know why, see the DELAYED COMPONENT RESOLUTION note above.
1238 -- NOTE: In the case of "... => <>", we pass the in the
1239 -- N_Component_Association node as Expr, since there is no Expression in
1240 -- that case, and we need a Sloc for the error message.
1242 procedure Resolve_Iterated_Component_Association
1244 Index_Typ
: Entity_Id
);
1251 function Add
(Val
: Uint
; To
: Node_Id
) return Node_Id
is
1257 if Raises_Constraint_Error
(To
) then
1261 -- First test if we can do constant folding
1263 if Compile_Time_Known_Value
(To
)
1264 or else Nkind
(To
) = N_Integer_Literal
1266 Expr_Pos
:= Make_Integer_Literal
(Loc
, Expr_Value
(To
) + Val
);
1267 Set_Is_Static_Expression
(Expr_Pos
);
1268 Set_Etype
(Expr_Pos
, Etype
(To
));
1269 Set_Analyzed
(Expr_Pos
, Analyzed
(To
));
1271 if not Is_Enumeration_Type
(Index_Typ
) then
1274 -- If we are dealing with enumeration return
1275 -- Index_Typ'Val (Expr_Pos)
1279 Make_Attribute_Reference
1281 Prefix
=> New_Occurrence_Of
(Index_Typ
, Loc
),
1282 Attribute_Name
=> Name_Val
,
1283 Expressions
=> New_List
(Expr_Pos
));
1289 -- If we are here no constant folding possible
1291 if not Is_Enumeration_Type
(Index_Base
) then
1294 Left_Opnd
=> Duplicate_Subexpr
(To
),
1295 Right_Opnd
=> Make_Integer_Literal
(Loc
, Val
));
1297 -- If we are dealing with enumeration return
1298 -- Index_Typ'Val (Index_Typ'Pos (To) + Val)
1302 Make_Attribute_Reference
1304 Prefix
=> New_Occurrence_Of
(Index_Typ
, Loc
),
1305 Attribute_Name
=> Name_Pos
,
1306 Expressions
=> New_List
(Duplicate_Subexpr
(To
)));
1310 Left_Opnd
=> To_Pos
,
1311 Right_Opnd
=> Make_Integer_Literal
(Loc
, Val
));
1314 Make_Attribute_Reference
1316 Prefix
=> New_Occurrence_Of
(Index_Typ
, Loc
),
1317 Attribute_Name
=> Name_Val
,
1318 Expressions
=> New_List
(Expr_Pos
));
1320 -- If the index type has a non standard representation, the
1321 -- attributes 'Val and 'Pos expand into function calls and the
1322 -- resulting expression is considered non-safe for reevaluation
1323 -- by the backend. Relocate it into a constant temporary in order
1324 -- to make it safe for reevaluation.
1326 if Has_Non_Standard_Rep
(Etype
(N
)) then
1331 Def_Id
:= Make_Temporary
(Loc
, 'R', Expr
);
1332 Set_Etype
(Def_Id
, Index_Typ
);
1334 Make_Object_Declaration
(Loc
,
1335 Defining_Identifier
=> Def_Id
,
1336 Object_Definition
=>
1337 New_Occurrence_Of
(Index_Typ
, Loc
),
1338 Constant_Present
=> True,
1339 Expression
=> Relocate_Node
(Expr
)));
1341 Expr
:= New_Occurrence_Of
(Def_Id
, Loc
);
1353 procedure Check_Bound
(BH
: Node_Id
; AH
: in out Node_Id
) is
1361 Get
(Value
=> Val_BH
, From
=> BH
, OK
=> OK_BH
);
1362 Get
(Value
=> Val_AH
, From
=> AH
, OK
=> OK_AH
);
1364 if OK_BH
and then OK_AH
and then Val_BH
< Val_AH
then
1365 Set_Raises_Constraint_Error
(N
);
1366 Error_Msg_Warn
:= SPARK_Mode
/= On
;
1367 Error_Msg_N
("upper bound out of range<<", AH
);
1368 Error_Msg_N
("\Constraint_Error [<<", AH
);
1370 -- You need to set AH to BH or else in the case of enumerations
1371 -- indexes we will not be able to resolve the aggregate bounds.
1373 AH
:= Duplicate_Subexpr
(BH
);
1381 procedure Check_Bounds
(L
, H
: Node_Id
; AL
, AH
: Node_Id
) is
1392 pragma Warnings
(Off
, OK_AL
);
1393 pragma Warnings
(Off
, OK_AH
);
1396 if Raises_Constraint_Error
(N
)
1397 or else Dynamic_Or_Null_Range
(AL
, AH
)
1402 Get
(Value
=> Val_L
, From
=> L
, OK
=> OK_L
);
1403 Get
(Value
=> Val_H
, From
=> H
, OK
=> OK_H
);
1405 Get
(Value
=> Val_AL
, From
=> AL
, OK
=> OK_AL
);
1406 Get
(Value
=> Val_AH
, From
=> AH
, OK
=> OK_AH
);
1408 if OK_L
and then Val_L
> Val_AL
then
1409 Set_Raises_Constraint_Error
(N
);
1410 Error_Msg_Warn
:= SPARK_Mode
/= On
;
1411 Error_Msg_N
("lower bound of aggregate out of range<<", N
);
1412 Error_Msg_N
("\Constraint_Error [<<", N
);
1415 if OK_H
and then Val_H
< Val_AH
then
1416 Set_Raises_Constraint_Error
(N
);
1417 Error_Msg_Warn
:= SPARK_Mode
/= On
;
1418 Error_Msg_N
("upper bound of aggregate out of range<<", N
);
1419 Error_Msg_N
("\Constraint_Error [<<", N
);
1427 procedure Check_Length
(L
, H
: Node_Id
; Len
: Uint
) is
1437 if Raises_Constraint_Error
(N
) then
1441 Get
(Value
=> Val_L
, From
=> L
, OK
=> OK_L
);
1442 Get
(Value
=> Val_H
, From
=> H
, OK
=> OK_H
);
1444 if not OK_L
or else not OK_H
then
1448 -- If null range length is zero
1450 if Val_L
> Val_H
then
1451 Range_Len
:= Uint_0
;
1453 Range_Len
:= Val_H
- Val_L
+ 1;
1456 if Range_Len
< Len
then
1457 Set_Raises_Constraint_Error
(N
);
1458 Error_Msg_Warn
:= SPARK_Mode
/= On
;
1459 Error_Msg_N
("too many elements<<", N
);
1460 Error_Msg_N
("\Constraint_Error [<<", N
);
1464 ---------------------------
1465 -- Dynamic_Or_Null_Range --
1466 ---------------------------
1468 function Dynamic_Or_Null_Range
(L
, H
: Node_Id
) return Boolean is
1476 Get
(Value
=> Val_L
, From
=> L
, OK
=> OK_L
);
1477 Get
(Value
=> Val_H
, From
=> H
, OK
=> OK_H
);
1479 return not OK_L
or else not OK_H
1480 or else not Is_OK_Static_Expression
(L
)
1481 or else not Is_OK_Static_Expression
(H
)
1482 or else Val_L
> Val_H
;
1483 end Dynamic_Or_Null_Range
;
1489 procedure Get
(Value
: out Uint
; From
: Node_Id
; OK
: out Boolean) is
1493 if Compile_Time_Known_Value
(From
) then
1494 Value
:= Expr_Value
(From
);
1496 -- If expression From is something like Some_Type'Val (10) then
1499 elsif Nkind
(From
) = N_Attribute_Reference
1500 and then Attribute_Name
(From
) = Name_Val
1501 and then Compile_Time_Known_Value
(First
(Expressions
(From
)))
1503 Value
:= Expr_Value
(First
(Expressions
(From
)));
1510 -----------------------
1511 -- Resolve_Aggr_Expr --
1512 -----------------------
1514 function Resolve_Aggr_Expr
1516 Single_Elmt
: Boolean) return Boolean
1518 Nxt_Ind
: constant Node_Id
:= Next_Index
(Index
);
1519 Nxt_Ind_Constr
: constant Node_Id
:= Next_Index
(Index_Constr
);
1520 -- Index is the current index corresponding to the expression
1522 Resolution_OK
: Boolean := True;
1523 -- Set to False if resolution of the expression failed
1526 -- Defend against previous errors
1528 if Nkind
(Expr
) = N_Error
1529 or else Error_Posted
(Expr
)
1534 -- If the array type against which we are resolving the aggregate
1535 -- has several dimensions, the expressions nested inside the
1536 -- aggregate must be further aggregates (or strings).
1538 if Present
(Nxt_Ind
) then
1539 if Nkind
(Expr
) /= N_Aggregate
then
1541 -- A string literal can appear where a one-dimensional array
1542 -- of characters is expected. If the literal looks like an
1543 -- operator, it is still an operator symbol, which will be
1544 -- transformed into a string when analyzed.
1546 if Is_Character_Type
(Component_Typ
)
1547 and then No
(Next_Index
(Nxt_Ind
))
1548 and then Nkind_In
(Expr
, N_String_Literal
, N_Operator_Symbol
)
1550 -- A string literal used in a multidimensional array
1551 -- aggregate in place of the final one-dimensional
1552 -- aggregate must not be enclosed in parentheses.
1554 if Paren_Count
(Expr
) /= 0 then
1555 Error_Msg_N
("no parenthesis allowed here", Expr
);
1558 Make_String_Into_Aggregate
(Expr
);
1561 Error_Msg_N
("nested array aggregate expected", Expr
);
1563 -- If the expression is parenthesized, this may be
1564 -- a missing component association for a 1-aggregate.
1566 if Paren_Count
(Expr
) > 0 then
1568 ("\if single-component aggregate is intended, "
1569 & "write e.g. (1 ='> ...)", Expr
);
1576 -- If it's "... => <>", nothing to resolve
1578 if Nkind
(Expr
) = N_Component_Association
then
1579 pragma Assert
(Box_Present
(Expr
));
1583 -- Ada 2005 (AI-231): Propagate the type to the nested aggregate.
1584 -- Required to check the null-exclusion attribute (if present).
1585 -- This value may be overridden later on.
1587 Set_Etype
(Expr
, Etype
(N
));
1589 Resolution_OK
:= Resolve_Array_Aggregate
1590 (Expr
, Nxt_Ind
, Nxt_Ind_Constr
, Component_Typ
, Others_Allowed
);
1593 -- If it's "... => <>", nothing to resolve
1595 if Nkind
(Expr
) = N_Component_Association
then
1596 pragma Assert
(Box_Present
(Expr
));
1600 -- Do not resolve the expressions of discrete or others choices
1601 -- unless the expression covers a single component, or the
1602 -- expander is inactive.
1604 -- In SPARK mode, expressions that can perform side effects will
1605 -- be recognized by the gnat2why back-end, and the whole
1606 -- subprogram will be ignored. So semantic analysis can be
1607 -- performed safely.
1610 or else not Expander_Active
1611 or else In_Spec_Expression
1613 Analyze_And_Resolve
(Expr
, Component_Typ
);
1614 Check_Expr_OK_In_Limited_Aggregate
(Expr
);
1615 Check_Non_Static_Context
(Expr
);
1616 Aggregate_Constraint_Checks
(Expr
, Component_Typ
);
1617 Check_Unset_Reference
(Expr
);
1621 -- If an aggregate component has a type with predicates, an explicit
1622 -- predicate check must be applied, as for an assignment statement,
1623 -- because the aggegate might not be expanded into individual
1624 -- component assignments. If the expression covers several components
1625 -- the analysis and the predicate check take place later.
1627 if Present
(Predicate_Function
(Component_Typ
))
1628 and then Analyzed
(Expr
)
1630 Apply_Predicate_Check
(Expr
, Component_Typ
);
1633 if Raises_Constraint_Error
(Expr
)
1634 and then Nkind
(Parent
(Expr
)) /= N_Component_Association
1636 Set_Raises_Constraint_Error
(N
);
1639 -- If the expression has been marked as requiring a range check,
1640 -- then generate it here. It's a bit odd to be generating such
1641 -- checks in the analyzer, but harmless since Generate_Range_Check
1642 -- does nothing (other than making sure Do_Range_Check is set) if
1643 -- the expander is not active.
1645 if Do_Range_Check
(Expr
) then
1646 Generate_Range_Check
(Expr
, Component_Typ
, CE_Range_Check_Failed
);
1649 return Resolution_OK
;
1650 end Resolve_Aggr_Expr
;
1652 --------------------------------------------
1653 -- Resolve_Iterated_Component_Association --
1654 --------------------------------------------
1656 procedure Resolve_Iterated_Component_Association
1658 Index_Typ
: Entity_Id
)
1660 Loc
: constant Source_Ptr
:= Sloc
(N
);
1669 Choice
:= First
(Discrete_Choices
(N
));
1671 while Present
(Choice
) loop
1672 if Nkind
(Choice
) = N_Others_Choice
then
1673 Others_Present
:= True;
1678 -- Choice can be a subtype name, a range, or an expression
1680 if Is_Entity_Name
(Choice
)
1681 and then Is_Type
(Entity
(Choice
))
1682 and then Base_Type
(Entity
(Choice
)) = Base_Type
(Index_Typ
)
1687 Analyze_And_Resolve
(Choice
, Index_Typ
);
1694 -- Create a scope in which to introduce an index, which is usually
1695 -- visible in the expression for the component, and needed for its
1698 Ent
:= New_Internal_Entity
(E_Loop
, Current_Scope
, Loc
, 'L');
1699 Set_Etype
(Ent
, Standard_Void_Type
);
1700 Set_Parent
(Ent
, Parent
(N
));
1703 Make_Defining_Identifier
(Loc
,
1704 Chars
=> Chars
(Defining_Identifier
(N
)));
1706 -- Insert and decorate the index variable in the current scope.
1707 -- The expression has to be analyzed once the index variable is
1708 -- directly visible. Mark the variable as referenced to prevent
1709 -- spurious warnings, given that subsequent uses of its name in the
1710 -- expression will reference the internal (synonym) loop variable.
1713 Set_Etype
(Id
, Index_Typ
);
1714 Set_Ekind
(Id
, E_Variable
);
1715 Set_Scope
(Id
, Ent
);
1716 Set_Referenced
(Id
);
1718 -- Analyze a copy of the expression, to verify legality. We use
1719 -- a copy because the expression will be analyzed anew when the
1720 -- enclosing aggregate is expanded, and the construct is rewritten
1721 -- as a loop with a new index variable.
1723 Expr
:= New_Copy_Tree
(Expression
(N
));
1724 Dummy
:= Resolve_Aggr_Expr
(Expr
, False);
1726 -- An iterated_component_association may appear in a nested
1727 -- aggregate for a multidimensional structure: preserve the bounds
1728 -- computed for the expression, as well as the anonymous array
1729 -- type generated for it; both are needed during array expansion.
1730 -- This does not work for more than two levels of nesting. ???
1732 if Nkind
(Expr
) = N_Aggregate
then
1733 Set_Aggregate_Bounds
(Expression
(N
), Aggregate_Bounds
(Expr
));
1734 Set_Etype
(Expression
(N
), Etype
(Expr
));
1738 end Resolve_Iterated_Component_Association
;
1747 Aggr_Low
: Node_Id
:= Empty
;
1748 Aggr_High
: Node_Id
:= Empty
;
1749 -- The actual low and high bounds of this sub-aggregate
1751 Case_Table_Size
: Nat
;
1752 -- Contains the size of the case table needed to sort aggregate choices
1754 Choices_Low
: Node_Id
:= Empty
;
1755 Choices_High
: Node_Id
:= Empty
;
1756 -- The lowest and highest discrete choices values for a named aggregate
1758 Delete_Choice
: Boolean;
1759 -- Used when replacing a subtype choice with predicate by a list
1761 Nb_Elements
: Uint
:= Uint_0
;
1762 -- The number of elements in a positional aggregate
1764 Nb_Discrete_Choices
: Nat
:= 0;
1765 -- The overall number of discrete choices (not counting others choice)
1767 -- Start of processing for Resolve_Array_Aggregate
1770 -- Ignore junk empty aggregate resulting from parser error
1772 if No
(Expressions
(N
))
1773 and then No
(Component_Associations
(N
))
1774 and then not Null_Record_Present
(N
)
1779 -- STEP 1: make sure the aggregate is correctly formatted
1781 if Present
(Component_Associations
(N
)) then
1782 Assoc
:= First
(Component_Associations
(N
));
1783 while Present
(Assoc
) loop
1784 if Nkind
(Assoc
) = N_Iterated_Component_Association
then
1785 Resolve_Iterated_Component_Association
(Assoc
, Index_Typ
);
1788 Choice
:= First
(Choice_List
(Assoc
));
1789 Delete_Choice
:= False;
1790 while Present
(Choice
) loop
1791 if Nkind
(Choice
) = N_Others_Choice
then
1792 Others_Present
:= True;
1794 if Choice
/= First
(Choice_List
(Assoc
))
1795 or else Present
(Next
(Choice
))
1798 ("OTHERS must appear alone in a choice list", Choice
);
1802 if Present
(Next
(Assoc
)) then
1804 ("OTHERS must appear last in an aggregate", Choice
);
1808 if Ada_Version
= Ada_83
1809 and then Assoc
/= First
(Component_Associations
(N
))
1810 and then Nkind_In
(Parent
(N
), N_Assignment_Statement
,
1811 N_Object_Declaration
)
1814 ("(Ada 83) illegal context for OTHERS choice", N
);
1817 elsif Is_Entity_Name
(Choice
) then
1821 E
: constant Entity_Id
:= Entity
(Choice
);
1827 if Is_Type
(E
) and then Has_Predicates
(E
) then
1828 Freeze_Before
(N
, E
);
1830 if Has_Dynamic_Predicate_Aspect
(E
) then
1832 ("subtype& has dynamic predicate, not allowed "
1833 & "in aggregate choice", Choice
, E
);
1835 elsif not Is_OK_Static_Subtype
(E
) then
1837 ("non-static subtype& has predicate, not allowed "
1838 & "in aggregate choice", Choice
, E
);
1841 -- If the subtype has a static predicate, replace the
1842 -- original choice with the list of individual values
1843 -- covered by the predicate. Do not perform this
1844 -- transformation if we need to preserve the source
1846 -- This should be deferred to expansion time ???
1848 if Present
(Static_Discrete_Predicate
(E
))
1849 and then not ASIS_Mode
1851 Delete_Choice
:= True;
1854 P
:= First
(Static_Discrete_Predicate
(E
));
1855 while Present
(P
) loop
1857 Set_Sloc
(C
, Sloc
(Choice
));
1858 Append_To
(New_Cs
, C
);
1862 Insert_List_After
(Choice
, New_Cs
);
1868 Nb_Choices
:= Nb_Choices
+ 1;
1871 C
: constant Node_Id
:= Choice
;
1876 if Delete_Choice
then
1878 Nb_Choices
:= Nb_Choices
- 1;
1879 Delete_Choice
:= False;
1888 -- At this point we know that the others choice, if present, is by
1889 -- itself and appears last in the aggregate. Check if we have mixed
1890 -- positional and discrete associations (other than the others choice).
1892 if Present
(Expressions
(N
))
1893 and then (Nb_Choices
> 1
1894 or else (Nb_Choices
= 1 and then not Others_Present
))
1897 ("named association cannot follow positional association",
1898 First
(Choice_List
(First
(Component_Associations
(N
)))));
1902 -- Test for the validity of an others choice if present
1904 if Others_Present
and then not Others_Allowed
then
1906 ("OTHERS choice not allowed here",
1907 First
(Choices
(First
(Component_Associations
(N
)))));
1911 -- Protect against cascaded errors
1913 if Etype
(Index_Typ
) = Any_Type
then
1917 -- STEP 2: Process named components
1919 if No
(Expressions
(N
)) then
1920 if Others_Present
then
1921 Case_Table_Size
:= Nb_Choices
- 1;
1923 Case_Table_Size
:= Nb_Choices
;
1927 function Empty_Range
(A
: Node_Id
) return Boolean;
1928 -- If an association covers an empty range, some warnings on the
1929 -- expression of the association can be disabled.
1935 function Empty_Range
(A
: Node_Id
) return Boolean is
1936 R
: constant Node_Id
:= First
(Choices
(A
));
1938 return No
(Next
(R
))
1939 and then Nkind
(R
) = N_Range
1940 and then Compile_Time_Compare
1941 (Low_Bound
(R
), High_Bound
(R
), False) = GT
;
1948 -- Denote the lowest and highest values in an aggregate choice
1950 S_Low
: Node_Id
:= Empty
;
1951 S_High
: Node_Id
:= Empty
;
1952 -- if a choice in an aggregate is a subtype indication these
1953 -- denote the lowest and highest values of the subtype
1955 Table
: Case_Table_Type
(0 .. Case_Table_Size
);
1956 -- Used to sort all the different choice values. Entry zero is
1957 -- reserved for sorting purposes.
1959 Single_Choice
: Boolean;
1960 -- Set to true every time there is a single discrete choice in a
1961 -- discrete association
1963 Prev_Nb_Discrete_Choices
: Nat
;
1964 -- Used to keep track of the number of discrete choices in the
1965 -- current association.
1967 Errors_Posted_On_Choices
: Boolean := False;
1968 -- Keeps track of whether any choices have semantic errors
1970 -- Start of processing for Step_2
1973 -- STEP 2 (A): Check discrete choices validity
1975 Assoc
:= First
(Component_Associations
(N
));
1976 while Present
(Assoc
) loop
1977 Prev_Nb_Discrete_Choices
:= Nb_Discrete_Choices
;
1978 Choice
:= First
(Choice_List
(Assoc
));
1983 if Nkind
(Choice
) = N_Others_Choice
then
1984 Single_Choice
:= False;
1987 -- Test for subtype mark without constraint
1989 elsif Is_Entity_Name
(Choice
) and then
1990 Is_Type
(Entity
(Choice
))
1992 if Base_Type
(Entity
(Choice
)) /= Index_Base
then
1994 ("invalid subtype mark in aggregate choice",
1999 -- Case of subtype indication
2001 elsif Nkind
(Choice
) = N_Subtype_Indication
then
2002 Resolve_Discrete_Subtype_Indication
(Choice
, Index_Base
);
2004 if Has_Dynamic_Predicate_Aspect
2005 (Entity
(Subtype_Mark
(Choice
)))
2008 ("subtype& has dynamic predicate, "
2009 & "not allowed in aggregate choice",
2010 Choice
, Entity
(Subtype_Mark
(Choice
)));
2013 -- Does the subtype indication evaluation raise CE?
2015 Get_Index_Bounds
(Subtype_Mark
(Choice
), S_Low
, S_High
);
2016 Get_Index_Bounds
(Choice
, Low
, High
);
2017 Check_Bounds
(S_Low
, S_High
, Low
, High
);
2019 -- Case of range or expression
2022 Resolve
(Choice
, Index_Base
);
2023 Check_Unset_Reference
(Choice
);
2024 Check_Non_Static_Context
(Choice
);
2026 -- If semantic errors were posted on the choice, then
2027 -- record that for possible early return from later
2028 -- processing (see handling of enumeration choices).
2030 if Error_Posted
(Choice
) then
2031 Errors_Posted_On_Choices
:= True;
2034 -- Do not range check a choice. This check is redundant
2035 -- since this test is already done when we check that the
2036 -- bounds of the array aggregate are within range.
2038 Set_Do_Range_Check
(Choice
, False);
2040 -- In SPARK, the choice must be static
2042 if not (Is_OK_Static_Expression
(Choice
)
2043 or else (Nkind
(Choice
) = N_Range
2044 and then Is_OK_Static_Range
(Choice
)))
2046 Check_SPARK_05_Restriction
2047 ("choice should be static", Choice
);
2051 -- If we could not resolve the discrete choice stop here
2053 if Etype
(Choice
) = Any_Type
then
2056 -- If the discrete choice raises CE get its original bounds
2058 elsif Nkind
(Choice
) = N_Raise_Constraint_Error
then
2059 Set_Raises_Constraint_Error
(N
);
2060 Get_Index_Bounds
(Original_Node
(Choice
), Low
, High
);
2062 -- Otherwise get its bounds as usual
2065 Get_Index_Bounds
(Choice
, Low
, High
);
2068 if (Dynamic_Or_Null_Range
(Low
, High
)
2069 or else (Nkind
(Choice
) = N_Subtype_Indication
2071 Dynamic_Or_Null_Range
(S_Low
, S_High
)))
2072 and then Nb_Choices
/= 1
2075 ("dynamic or empty choice in aggregate "
2076 & "must be the only choice", Choice
);
2080 if not (All_Composite_Constraints_Static
(Low
)
2081 and then All_Composite_Constraints_Static
(High
)
2082 and then All_Composite_Constraints_Static
(S_Low
)
2083 and then All_Composite_Constraints_Static
(S_High
))
2085 Check_Restriction
(No_Dynamic_Sized_Objects
, Choice
);
2088 Nb_Discrete_Choices
:= Nb_Discrete_Choices
+ 1;
2089 Table
(Nb_Discrete_Choices
).Lo
:= Low
;
2090 Table
(Nb_Discrete_Choices
).Hi
:= High
;
2091 Table
(Nb_Discrete_Choices
).Choice
:= Choice
;
2097 -- Check if we have a single discrete choice and whether
2098 -- this discrete choice specifies a single value.
2101 (Nb_Discrete_Choices
= Prev_Nb_Discrete_Choices
+ 1)
2102 and then (Low
= High
);
2108 -- Ada 2005 (AI-231)
2110 if Ada_Version
>= Ada_2005
2111 and then Known_Null
(Expression
(Assoc
))
2112 and then not Empty_Range
(Assoc
)
2114 Check_Can_Never_Be_Null
(Etype
(N
), Expression
(Assoc
));
2117 -- Ada 2005 (AI-287): In case of default initialized component
2118 -- we delay the resolution to the expansion phase.
2120 if Box_Present
(Assoc
) then
2122 -- Ada 2005 (AI-287): In case of default initialization of a
2123 -- component the expander will generate calls to the
2124 -- corresponding initialization subprogram. We need to call
2125 -- Resolve_Aggr_Expr to check the rules about
2128 if not Resolve_Aggr_Expr
2129 (Assoc
, Single_Elmt
=> Single_Choice
)
2134 elsif Nkind
(Assoc
) = N_Iterated_Component_Association
then
2135 null; -- handled above, in a loop context.
2137 elsif not Resolve_Aggr_Expr
2138 (Expression
(Assoc
), Single_Elmt
=> Single_Choice
)
2142 -- Check incorrect use of dynamically tagged expression
2144 -- We differentiate here two cases because the expression may
2145 -- not be decorated. For example, the analysis and resolution
2146 -- of the expression associated with the others choice will be
2147 -- done later with the full aggregate. In such case we
2148 -- duplicate the expression tree to analyze the copy and
2149 -- perform the required check.
2151 elsif not Present
(Etype
(Expression
(Assoc
))) then
2153 Save_Analysis
: constant Boolean := Full_Analysis
;
2154 Expr
: constant Node_Id
:=
2155 New_Copy_Tree
(Expression
(Assoc
));
2158 Expander_Mode_Save_And_Set
(False);
2159 Full_Analysis
:= False;
2161 -- Analyze the expression, making sure it is properly
2162 -- attached to the tree before we do the analysis.
2164 Set_Parent
(Expr
, Parent
(Expression
(Assoc
)));
2167 -- Compute its dimensions now, rather than at the end of
2168 -- resolution, because in the case of multidimensional
2169 -- aggregates subsequent expansion may lead to spurious
2172 Check_Expression_Dimensions
(Expr
, Component_Typ
);
2174 -- If the expression is a literal, propagate this info
2175 -- to the expression in the association, to enable some
2176 -- optimizations downstream.
2178 if Is_Entity_Name
(Expr
)
2179 and then Present
(Entity
(Expr
))
2180 and then Ekind
(Entity
(Expr
)) = E_Enumeration_Literal
2183 (Expression
(Assoc
), Component_Typ
);
2186 Full_Analysis
:= Save_Analysis
;
2187 Expander_Mode_Restore
;
2189 if Is_Tagged_Type
(Etype
(Expr
)) then
2190 Check_Dynamically_Tagged_Expression
2192 Typ
=> Component_Type
(Etype
(N
)),
2197 elsif Is_Tagged_Type
(Etype
(Expression
(Assoc
))) then
2198 Check_Dynamically_Tagged_Expression
2199 (Expr
=> Expression
(Assoc
),
2200 Typ
=> Component_Type
(Etype
(N
)),
2207 -- If aggregate contains more than one choice then these must be
2208 -- static. Check for duplicate and missing values.
2210 -- Note: there is duplicated code here wrt Check_Choice_Set in
2211 -- the body of Sem_Case, and it is possible we could just reuse
2212 -- that procedure. To be checked ???
2214 if Nb_Discrete_Choices
> 1 then
2215 Check_Choices
: declare
2217 -- Location of choice for messages
2221 -- High end of one range and Low end of the next. Should be
2222 -- contiguous if there is no hole in the list of values.
2226 -- End points of duplicated range
2228 Missing_Or_Duplicates
: Boolean := False;
2229 -- Set True if missing or duplicate choices found
2231 procedure Output_Bad_Choices
(Lo
, Hi
: Uint
; C
: Node_Id
);
2232 -- Output continuation message with a representation of the
2233 -- bounds (just Lo if Lo = Hi, else Lo .. Hi). C is the
2234 -- choice node where the message is to be posted.
2236 ------------------------
2237 -- Output_Bad_Choices --
2238 ------------------------
2240 procedure Output_Bad_Choices
(Lo
, Hi
: Uint
; C
: Node_Id
) is
2242 -- Enumeration type case
2244 if Is_Enumeration_Type
(Index_Typ
) then
2246 Chars
(Get_Enum_Lit_From_Pos
(Index_Typ
, Lo
, Loc
));
2248 Chars
(Get_Enum_Lit_From_Pos
(Index_Typ
, Hi
, Loc
));
2251 Error_Msg_N
("\\ %!", C
);
2253 Error_Msg_N
("\\ % .. %!", C
);
2256 -- Integer types case
2259 Error_Msg_Uint_1
:= Lo
;
2260 Error_Msg_Uint_2
:= Hi
;
2263 Error_Msg_N
("\\ ^!", C
);
2265 Error_Msg_N
("\\ ^ .. ^!", C
);
2268 end Output_Bad_Choices
;
2270 -- Start of processing for Check_Choices
2273 Sort_Case_Table
(Table
);
2275 -- First we do a quick linear loop to find out if we have
2276 -- any duplicates or missing entries (usually we have a
2277 -- legal aggregate, so this will get us out quickly).
2279 for J
in 1 .. Nb_Discrete_Choices
- 1 loop
2280 Hi_Val
:= Expr_Value
(Table
(J
).Hi
);
2281 Lo_Val
:= Expr_Value
(Table
(J
+ 1).Lo
);
2284 or else (Lo_Val
> Hi_Val
+ 1
2285 and then not Others_Present
)
2287 Missing_Or_Duplicates
:= True;
2292 -- If we have missing or duplicate entries, first fill in
2293 -- the Highest entries to make life easier in the following
2294 -- loops to detect bad entries.
2296 if Missing_Or_Duplicates
then
2297 Table
(1).Highest
:= Expr_Value
(Table
(1).Hi
);
2299 for J
in 2 .. Nb_Discrete_Choices
loop
2300 Table
(J
).Highest
:=
2302 (Table
(J
- 1).Highest
, Expr_Value
(Table
(J
).Hi
));
2305 -- Loop through table entries to find duplicate indexes
2307 for J
in 2 .. Nb_Discrete_Choices
loop
2308 Lo_Val
:= Expr_Value
(Table
(J
).Lo
);
2309 Hi_Val
:= Expr_Value
(Table
(J
).Hi
);
2311 -- Case where we have duplicates (the lower bound of
2312 -- this choice is less than or equal to the highest
2313 -- high bound found so far).
2315 if Lo_Val
<= Table
(J
- 1).Highest
then
2317 -- We move backwards looking for duplicates. We can
2318 -- abandon this loop as soon as we reach a choice
2319 -- highest value that is less than Lo_Val.
2321 for K
in reverse 1 .. J
- 1 loop
2322 exit when Table
(K
).Highest
< Lo_Val
;
2324 -- Here we may have duplicates between entries
2325 -- for K and J. Get range of duplicates.
2328 UI_Max
(Lo_Val
, Expr_Value
(Table
(K
).Lo
));
2330 UI_Min
(Hi_Val
, Expr_Value
(Table
(K
).Hi
));
2332 -- Nothing to do if duplicate range is null
2334 if Lo_Dup
> Hi_Dup
then
2337 -- Otherwise place proper message. Because
2338 -- of the missing expansion of subtypes with
2339 -- predicates in ASIS mode, do not report
2340 -- spurious overlap errors.
2344 ((Is_Type
(Entity
(Table
(J
).Choice
))
2345 and then Has_Predicates
2346 (Entity
(Table
(J
).Choice
)))
2348 (Is_Type
(Entity
(Table
(K
).Choice
))
2349 and then Has_Predicates
2350 (Entity
(Table
(K
).Choice
))))
2355 -- We place message on later choice, with a
2356 -- line reference to the earlier choice.
2358 if Sloc
(Table
(J
).Choice
) <
2359 Sloc
(Table
(K
).Choice
)
2361 Choice
:= Table
(K
).Choice
;
2362 Error_Msg_Sloc
:= Sloc
(Table
(J
).Choice
);
2364 Choice
:= Table
(J
).Choice
;
2365 Error_Msg_Sloc
:= Sloc
(Table
(K
).Choice
);
2368 if Lo_Dup
= Hi_Dup
then
2370 ("index value in array aggregate "
2371 & "duplicates the one given#!", Choice
);
2374 ("index values in array aggregate "
2375 & "duplicate those given#!", Choice
);
2378 Output_Bad_Choices
(Lo_Dup
, Hi_Dup
, Choice
);
2384 -- Loop through entries in table to find missing indexes.
2385 -- Not needed if others, since missing impossible.
2387 if not Others_Present
then
2388 for J
in 2 .. Nb_Discrete_Choices
loop
2389 Lo_Val
:= Expr_Value
(Table
(J
).Lo
);
2390 Hi_Val
:= Table
(J
- 1).Highest
;
2392 if Lo_Val
> Hi_Val
+ 1 then
2395 Error_Node
: Node_Id
;
2398 -- If the choice is the bound of a range in
2399 -- a subtype indication, it is not in the
2400 -- source lists for the aggregate itself, so
2401 -- post the error on the aggregate. Otherwise
2402 -- post it on choice itself.
2404 Choice
:= Table
(J
).Choice
;
2406 if Is_List_Member
(Choice
) then
2407 Error_Node
:= Choice
;
2412 if Hi_Val
+ 1 = Lo_Val
- 1 then
2414 ("missing index value "
2415 & "in array aggregate!", Error_Node
);
2418 ("missing index values "
2419 & "in array aggregate!", Error_Node
);
2423 (Hi_Val
+ 1, Lo_Val
- 1, Error_Node
);
2429 -- If either missing or duplicate values, return failure
2431 Set_Etype
(N
, Any_Composite
);
2437 -- STEP 2 (B): Compute aggregate bounds and min/max choices values
2439 if Nb_Discrete_Choices
> 0 then
2440 Choices_Low
:= Table
(1).Lo
;
2441 Choices_High
:= Table
(Nb_Discrete_Choices
).Hi
;
2444 -- If Others is present, then bounds of aggregate come from the
2445 -- index constraint (not the choices in the aggregate itself).
2447 if Others_Present
then
2448 Get_Index_Bounds
(Index_Constr
, Aggr_Low
, Aggr_High
);
2450 -- Abandon processing if either bound is already signalled as
2451 -- an error (prevents junk cascaded messages and blow ups).
2453 if Nkind
(Aggr_Low
) = N_Error
2455 Nkind
(Aggr_High
) = N_Error
2460 -- No others clause present
2463 -- Special processing if others allowed and not present. This
2464 -- means that the bounds of the aggregate come from the index
2465 -- constraint (and the length must match).
2467 if Others_Allowed
then
2468 Get_Index_Bounds
(Index_Constr
, Aggr_Low
, Aggr_High
);
2470 -- Abandon processing if either bound is already signalled
2471 -- as an error (stop junk cascaded messages and blow ups).
2473 if Nkind
(Aggr_Low
) = N_Error
2475 Nkind
(Aggr_High
) = N_Error
2480 -- If others allowed, and no others present, then the array
2481 -- should cover all index values. If it does not, we will
2482 -- get a length check warning, but there is two cases where
2483 -- an additional warning is useful:
2485 -- If we have no positional components, and the length is
2486 -- wrong (which we can tell by others being allowed with
2487 -- missing components), and the index type is an enumeration
2488 -- type, then issue appropriate warnings about these missing
2489 -- components. They are only warnings, since the aggregate
2490 -- is fine, it's just the wrong length. We skip this check
2491 -- for standard character types (since there are no literals
2492 -- and it is too much trouble to concoct them), and also if
2493 -- any of the bounds have values that are not known at
2496 -- Another case warranting a warning is when the length
2497 -- is right, but as above we have an index type that is
2498 -- an enumeration, and the bounds do not match. This is a
2499 -- case where dubious sliding is allowed and we generate a
2500 -- warning that the bounds do not match.
2502 if No
(Expressions
(N
))
2503 and then Nkind
(Index
) = N_Range
2504 and then Is_Enumeration_Type
(Etype
(Index
))
2505 and then not Is_Standard_Character_Type
(Etype
(Index
))
2506 and then Compile_Time_Known_Value
(Aggr_Low
)
2507 and then Compile_Time_Known_Value
(Aggr_High
)
2508 and then Compile_Time_Known_Value
(Choices_Low
)
2509 and then Compile_Time_Known_Value
(Choices_High
)
2511 -- If any of the expressions or range bounds in choices
2512 -- have semantic errors, then do not attempt further
2513 -- resolution, to prevent cascaded errors.
2515 if Errors_Posted_On_Choices
then
2520 ALo
: constant Node_Id
:= Expr_Value_E
(Aggr_Low
);
2521 AHi
: constant Node_Id
:= Expr_Value_E
(Aggr_High
);
2522 CLo
: constant Node_Id
:= Expr_Value_E
(Choices_Low
);
2523 CHi
: constant Node_Id
:= Expr_Value_E
(Choices_High
);
2528 -- Warning case 1, missing values at start/end. Only
2529 -- do the check if the number of entries is too small.
2531 if (Enumeration_Pos
(CHi
) - Enumeration_Pos
(CLo
))
2533 (Enumeration_Pos
(AHi
) - Enumeration_Pos
(ALo
))
2536 ("missing index value(s) in array aggregate??",
2539 -- Output missing value(s) at start
2541 if Chars
(ALo
) /= Chars
(CLo
) then
2544 if Chars
(ALo
) = Chars
(Ent
) then
2545 Error_Msg_Name_1
:= Chars
(ALo
);
2546 Error_Msg_N
("\ %??", N
);
2548 Error_Msg_Name_1
:= Chars
(ALo
);
2549 Error_Msg_Name_2
:= Chars
(Ent
);
2550 Error_Msg_N
("\ % .. %??", N
);
2554 -- Output missing value(s) at end
2556 if Chars
(AHi
) /= Chars
(CHi
) then
2559 if Chars
(AHi
) = Chars
(Ent
) then
2560 Error_Msg_Name_1
:= Chars
(Ent
);
2561 Error_Msg_N
("\ %??", N
);
2563 Error_Msg_Name_1
:= Chars
(Ent
);
2564 Error_Msg_Name_2
:= Chars
(AHi
);
2565 Error_Msg_N
("\ % .. %??", N
);
2569 -- Warning case 2, dubious sliding. The First_Subtype
2570 -- test distinguishes between a constrained type where
2571 -- sliding is not allowed (so we will get a warning
2572 -- later that Constraint_Error will be raised), and
2573 -- the unconstrained case where sliding is permitted.
2575 elsif (Enumeration_Pos
(CHi
) - Enumeration_Pos
(CLo
))
2577 (Enumeration_Pos
(AHi
) - Enumeration_Pos
(ALo
))
2578 and then Chars
(ALo
) /= Chars
(CLo
)
2580 not Is_Constrained
(First_Subtype
(Etype
(N
)))
2583 ("bounds of aggregate do not match target??", N
);
2589 -- If no others, aggregate bounds come from aggregate
2591 Aggr_Low
:= Choices_Low
;
2592 Aggr_High
:= Choices_High
;
2596 -- STEP 3: Process positional components
2599 -- STEP 3 (A): Process positional elements
2601 Expr
:= First
(Expressions
(N
));
2602 Nb_Elements
:= Uint_0
;
2603 while Present
(Expr
) loop
2604 Nb_Elements
:= Nb_Elements
+ 1;
2606 -- Ada 2005 (AI-231)
2608 if Ada_Version
>= Ada_2005
and then Known_Null
(Expr
) then
2609 Check_Can_Never_Be_Null
(Etype
(N
), Expr
);
2612 if not Resolve_Aggr_Expr
(Expr
, Single_Elmt
=> True) then
2616 -- Check incorrect use of dynamically tagged expression
2618 if Is_Tagged_Type
(Etype
(Expr
)) then
2619 Check_Dynamically_Tagged_Expression
2621 Typ
=> Component_Type
(Etype
(N
)),
2628 if Others_Present
then
2629 Assoc
:= Last
(Component_Associations
(N
));
2631 -- Ada 2005 (AI-231)
2633 if Ada_Version
>= Ada_2005
and then Known_Null
(Assoc
) then
2634 Check_Can_Never_Be_Null
(Etype
(N
), Expression
(Assoc
));
2637 -- Ada 2005 (AI-287): In case of default initialized component,
2638 -- we delay the resolution to the expansion phase.
2640 if Box_Present
(Assoc
) then
2642 -- Ada 2005 (AI-287): In case of default initialization of a
2643 -- component the expander will generate calls to the
2644 -- corresponding initialization subprogram. We need to call
2645 -- Resolve_Aggr_Expr to check the rules about
2648 if not Resolve_Aggr_Expr
(Assoc
, Single_Elmt
=> False) then
2652 elsif not Resolve_Aggr_Expr
(Expression
(Assoc
),
2653 Single_Elmt
=> False)
2657 -- Check incorrect use of dynamically tagged expression. The
2658 -- expression of the others choice has not been resolved yet.
2659 -- In order to diagnose the semantic error we create a duplicate
2660 -- tree to analyze it and perform the check.
2664 Save_Analysis
: constant Boolean := Full_Analysis
;
2665 Expr
: constant Node_Id
:=
2666 New_Copy_Tree
(Expression
(Assoc
));
2669 Expander_Mode_Save_And_Set
(False);
2670 Full_Analysis
:= False;
2672 Full_Analysis
:= Save_Analysis
;
2673 Expander_Mode_Restore
;
2675 if Is_Tagged_Type
(Etype
(Expr
)) then
2676 Check_Dynamically_Tagged_Expression
2678 Typ
=> Component_Type
(Etype
(N
)),
2685 -- STEP 3 (B): Compute the aggregate bounds
2687 if Others_Present
then
2688 Get_Index_Bounds
(Index_Constr
, Aggr_Low
, Aggr_High
);
2691 if Others_Allowed
then
2692 Get_Index_Bounds
(Index_Constr
, Aggr_Low
, Discard
);
2694 Aggr_Low
:= Index_Typ_Low
;
2697 Aggr_High
:= Add
(Nb_Elements
- 1, To
=> Aggr_Low
);
2698 Check_Bound
(Index_Base_High
, Aggr_High
);
2702 -- STEP 4: Perform static aggregate checks and save the bounds
2706 Check_Bounds
(Index_Typ_Low
, Index_Typ_High
, Aggr_Low
, Aggr_High
);
2707 Check_Bounds
(Index_Base_Low
, Index_Base_High
, Aggr_Low
, Aggr_High
);
2711 if Others_Present
and then Nb_Discrete_Choices
> 0 then
2712 Check_Bounds
(Aggr_Low
, Aggr_High
, Choices_Low
, Choices_High
);
2713 Check_Bounds
(Index_Typ_Low
, Index_Typ_High
,
2714 Choices_Low
, Choices_High
);
2715 Check_Bounds
(Index_Base_Low
, Index_Base_High
,
2716 Choices_Low
, Choices_High
);
2720 elsif Others_Present
and then Nb_Elements
> 0 then
2721 Check_Length
(Aggr_Low
, Aggr_High
, Nb_Elements
);
2722 Check_Length
(Index_Typ_Low
, Index_Typ_High
, Nb_Elements
);
2723 Check_Length
(Index_Base_Low
, Index_Base_High
, Nb_Elements
);
2726 if Raises_Constraint_Error
(Aggr_Low
)
2727 or else Raises_Constraint_Error
(Aggr_High
)
2729 Set_Raises_Constraint_Error
(N
);
2732 Aggr_Low
:= Duplicate_Subexpr
(Aggr_Low
);
2734 -- Do not duplicate Aggr_High if Aggr_High = Aggr_Low + Nb_Elements
2735 -- since the addition node returned by Add is not yet analyzed. Attach
2736 -- to tree and analyze first. Reset analyzed flag to ensure it will get
2737 -- analyzed when it is a literal bound whose type must be properly set.
2739 if Others_Present
or else Nb_Discrete_Choices
> 0 then
2740 Aggr_High
:= Duplicate_Subexpr
(Aggr_High
);
2742 if Etype
(Aggr_High
) = Universal_Integer
then
2743 Set_Analyzed
(Aggr_High
, False);
2747 -- If the aggregate already has bounds attached to it, it means this is
2748 -- a positional aggregate created as an optimization by
2749 -- Exp_Aggr.Convert_To_Positional, so we don't want to change those
2752 if Present
(Aggregate_Bounds
(N
)) and then not Others_Allowed
then
2753 Aggr_Low
:= Low_Bound
(Aggregate_Bounds
(N
));
2754 Aggr_High
:= High_Bound
(Aggregate_Bounds
(N
));
2757 Set_Aggregate_Bounds
2758 (N
, Make_Range
(Loc
, Low_Bound
=> Aggr_Low
, High_Bound
=> Aggr_High
));
2760 -- The bounds may contain expressions that must be inserted upwards.
2761 -- Attach them fully to the tree. After analysis, remove side effects
2762 -- from upper bound, if still needed.
2764 Set_Parent
(Aggregate_Bounds
(N
), N
);
2765 Analyze_And_Resolve
(Aggregate_Bounds
(N
), Index_Typ
);
2766 Check_Unset_Reference
(Aggregate_Bounds
(N
));
2768 if not Others_Present
and then Nb_Discrete_Choices
= 0 then
2770 (Aggregate_Bounds
(N
),
2771 Duplicate_Subexpr
(High_Bound
(Aggregate_Bounds
(N
))));
2774 -- Check the dimensions of each component in the array aggregate
2776 Analyze_Dimension_Array_Aggregate
(N
, Component_Typ
);
2779 end Resolve_Array_Aggregate
;
2781 -----------------------------
2782 -- Resolve_Delta_Aggregate --
2783 -----------------------------
2785 procedure Resolve_Delta_Aggregate
(N
: Node_Id
; Typ
: Entity_Id
) is
2786 Base
: constant Node_Id
:= Expression
(N
);
2789 if not Is_Composite_Type
(Typ
) then
2790 Error_Msg_N
("not a composite type", N
);
2793 Analyze_And_Resolve
(Base
, Typ
);
2795 if Is_Array_Type
(Typ
) then
2796 Resolve_Delta_Array_Aggregate
(N
, Typ
);
2798 Resolve_Delta_Record_Aggregate
(N
, Typ
);
2802 end Resolve_Delta_Aggregate
;
2804 -----------------------------------
2805 -- Resolve_Delta_Array_Aggregate --
2806 -----------------------------------
2808 procedure Resolve_Delta_Array_Aggregate
(N
: Node_Id
; Typ
: Entity_Id
) is
2809 Deltas
: constant List_Id
:= Component_Associations
(N
);
2813 Index_Type
: Entity_Id
;
2816 Index_Type
:= Etype
(First_Index
(Typ
));
2818 Assoc
:= First
(Deltas
);
2819 while Present
(Assoc
) loop
2820 if Nkind
(Assoc
) = N_Iterated_Component_Association
then
2821 Choice
:= First
(Choice_List
(Assoc
));
2822 while Present
(Choice
) loop
2823 if Nkind
(Choice
) = N_Others_Choice
then
2825 ("others not allowed in delta aggregate", Choice
);
2828 Analyze_And_Resolve
(Choice
, Index_Type
);
2835 Id
: constant Entity_Id
:= Defining_Identifier
(Assoc
);
2836 Ent
: constant Entity_Id
:=
2838 (E_Loop
, Current_Scope
, Sloc
(Assoc
), 'L');
2841 Set_Etype
(Ent
, Standard_Void_Type
);
2842 Set_Parent
(Ent
, Assoc
);
2844 if No
(Scope
(Id
)) then
2846 Set_Etype
(Id
, Index_Type
);
2847 Set_Ekind
(Id
, E_Variable
);
2848 Set_Scope
(Id
, Ent
);
2853 (New_Copy_Tree
(Expression
(Assoc
)), Component_Type
(Typ
));
2858 Choice
:= First
(Choice_List
(Assoc
));
2859 while Present
(Choice
) loop
2860 if Nkind
(Choice
) = N_Others_Choice
then
2862 ("others not allowed in delta aggregate", Choice
);
2867 if Is_Entity_Name
(Choice
)
2868 and then Is_Type
(Entity
(Choice
))
2870 -- Choice covers a range of values
2872 if Base_Type
(Entity
(Choice
)) /=
2873 Base_Type
(Index_Type
)
2876 ("choice does mat match index type of",
2880 Resolve
(Choice
, Index_Type
);
2887 Analyze_And_Resolve
(Expression
(Assoc
), Component_Type
(Typ
));
2892 end Resolve_Delta_Array_Aggregate
;
2894 ------------------------------------
2895 -- Resolve_Delta_Record_Aggregate --
2896 ------------------------------------
2898 procedure Resolve_Delta_Record_Aggregate
(N
: Node_Id
; Typ
: Entity_Id
) is
2900 -- Variables used to verify that discriminant-dependent components
2901 -- appear in the same variant.
2903 Comp_Ref
: Entity_Id
:= Empty
; -- init to avoid warning
2906 procedure Check_Variant
(Id
: Entity_Id
);
2907 -- If a given component of the delta aggregate appears in a variant
2908 -- part, verify that it is within the same variant as that of previous
2909 -- specified variant components of the delta.
2911 function Get_Component_Type
(Nam
: Node_Id
) return Entity_Id
;
2912 -- Locate component with a given name and return its type. If none found
2915 function Nested_In
(V1
: Node_Id
; V2
: Node_Id
) return Boolean;
2916 -- Determine whether variant V1 is within variant V2
2918 function Variant_Depth
(N
: Node_Id
) return Integer;
2919 -- Determine the distance of a variant to the enclosing type
2922 --------------------
2924 --------------------
2926 procedure Check_Variant
(Id
: Entity_Id
) is
2928 Comp_Variant
: Node_Id
;
2931 if not Has_Discriminants
(Typ
) then
2935 Comp
:= First_Entity
(Typ
);
2936 while Present
(Comp
) loop
2937 exit when Chars
(Comp
) = Chars
(Id
);
2938 Next_Component
(Comp
);
2941 -- Find the variant, if any, whose component list includes the
2942 -- component declaration.
2944 Comp_Variant
:= Parent
(Parent
(List_Containing
(Parent
(Comp
))));
2945 if Nkind
(Comp_Variant
) = N_Variant
then
2946 if No
(Variant
) then
2947 Variant
:= Comp_Variant
;
2950 elsif Variant
/= Comp_Variant
then
2952 D1
: constant Integer := Variant_Depth
(Variant
);
2953 D2
: constant Integer := Variant_Depth
(Comp_Variant
);
2958 (D1
> D2
and then not Nested_In
(Variant
, Comp_Variant
))
2960 (D2
> D1
and then not Nested_In
(Comp_Variant
, Variant
))
2962 pragma Assert
(Present
(Comp_Ref
));
2963 Error_Msg_Node_2
:= Comp_Ref
;
2965 ("& and & appear in different variants", Id
, Comp
);
2967 -- Otherwise retain the deeper variant for subsequent tests
2970 Variant
:= Comp_Variant
;
2977 ------------------------
2978 -- Get_Component_Type --
2979 ------------------------
2981 function Get_Component_Type
(Nam
: Node_Id
) return Entity_Id
is
2985 Comp
:= First_Entity
(Typ
);
2986 while Present
(Comp
) loop
2987 if Chars
(Comp
) = Chars
(Nam
) then
2988 if Ekind
(Comp
) = E_Discriminant
then
2989 Error_Msg_N
("delta cannot apply to discriminant", Nam
);
2992 return Etype
(Comp
);
2995 Comp
:= Next_Entity
(Comp
);
2998 Error_Msg_NE
("type& has no component with this name", Nam
, Typ
);
3000 end Get_Component_Type
;
3006 function Nested_In
(V1
, V2
: Node_Id
) return Boolean is
3011 while Nkind
(Par
) /= N_Full_Type_Declaration
loop
3016 Par
:= Parent
(Par
);
3026 function Variant_Depth
(N
: Node_Id
) return Integer is
3033 while Nkind
(Par
) /= N_Full_Type_Declaration
loop
3035 Par
:= Parent
(Par
);
3043 Deltas
: constant List_Id
:= Component_Associations
(N
);
3047 Comp_Type
: Entity_Id
:= Empty
; -- init to avoid warning
3049 -- Start of processing for Resolve_Delta_Record_Aggregate
3054 Assoc
:= First
(Deltas
);
3055 while Present
(Assoc
) loop
3056 Choice
:= First
(Choice_List
(Assoc
));
3057 while Present
(Choice
) loop
3058 Comp_Type
:= Get_Component_Type
(Choice
);
3060 if Comp_Type
/= Any_Type
then
3061 Check_Variant
(Choice
);
3067 pragma Assert
(Present
(Comp_Type
));
3068 Analyze_And_Resolve
(Expression
(Assoc
), Comp_Type
);
3071 end Resolve_Delta_Record_Aggregate
;
3073 ---------------------------------
3074 -- Resolve_Extension_Aggregate --
3075 ---------------------------------
3077 -- There are two cases to consider:
3079 -- a) If the ancestor part is a type mark, the components needed are the
3080 -- difference between the components of the expected type and the
3081 -- components of the given type mark.
3083 -- b) If the ancestor part is an expression, it must be unambiguous, and
3084 -- once we have its type we can also compute the needed components as in
3085 -- the previous case. In both cases, if the ancestor type is not the
3086 -- immediate ancestor, we have to build this ancestor recursively.
3088 -- In both cases, discriminants of the ancestor type do not play a role in
3089 -- the resolution of the needed components, because inherited discriminants
3090 -- cannot be used in a type extension. As a result we can compute
3091 -- independently the list of components of the ancestor type and of the
3094 procedure Resolve_Extension_Aggregate
(N
: Node_Id
; Typ
: Entity_Id
) is
3095 A
: constant Node_Id
:= Ancestor_Part
(N
);
3100 function Valid_Limited_Ancestor
(Anc
: Node_Id
) return Boolean;
3101 -- If the type is limited, verify that the ancestor part is a legal
3102 -- expression (aggregate or function call, including 'Input)) that does
3103 -- not require a copy, as specified in 7.5(2).
3105 function Valid_Ancestor_Type
return Boolean;
3106 -- Verify that the type of the ancestor part is a non-private ancestor
3107 -- of the expected type, which must be a type extension.
3109 procedure Transform_BIP_Assignment
(Typ
: Entity_Id
);
3110 -- For an extension aggregate whose ancestor part is a build-in-place
3111 -- call returning a nonlimited type, this is used to transform the
3112 -- assignment to the ancestor part to use a temp.
3114 ----------------------------
3115 -- Valid_Limited_Ancestor --
3116 ----------------------------
3118 function Valid_Limited_Ancestor
(Anc
: Node_Id
) return Boolean is
3120 if Is_Entity_Name
(Anc
) and then Is_Type
(Entity
(Anc
)) then
3123 -- The ancestor must be a call or an aggregate, but a call may
3124 -- have been expanded into a temporary, so check original node.
3126 elsif Nkind_In
(Anc
, N_Aggregate
,
3127 N_Extension_Aggregate
,
3132 elsif Nkind
(Original_Node
(Anc
)) = N_Function_Call
then
3135 elsif Nkind
(Anc
) = N_Attribute_Reference
3136 and then Attribute_Name
(Anc
) = Name_Input
3140 elsif Nkind
(Anc
) = N_Qualified_Expression
then
3141 return Valid_Limited_Ancestor
(Expression
(Anc
));
3146 end Valid_Limited_Ancestor
;
3148 -------------------------
3149 -- Valid_Ancestor_Type --
3150 -------------------------
3152 function Valid_Ancestor_Type
return Boolean is
3153 Imm_Type
: Entity_Id
;
3156 Imm_Type
:= Base_Type
(Typ
);
3157 while Is_Derived_Type
(Imm_Type
) loop
3158 if Etype
(Imm_Type
) = Base_Type
(A_Type
) then
3161 -- The base type of the parent type may appear as a private
3162 -- extension if it is declared as such in a parent unit of the
3163 -- current one. For consistency of the subsequent analysis use
3164 -- the partial view for the ancestor part.
3166 elsif Is_Private_Type
(Etype
(Imm_Type
))
3167 and then Present
(Full_View
(Etype
(Imm_Type
)))
3168 and then Base_Type
(A_Type
) = Full_View
(Etype
(Imm_Type
))
3170 A_Type
:= Etype
(Imm_Type
);
3173 -- The parent type may be a private extension. The aggregate is
3174 -- legal if the type of the aggregate is an extension of it that
3175 -- is not a private extension.
3177 elsif Is_Private_Type
(A_Type
)
3178 and then not Is_Private_Type
(Imm_Type
)
3179 and then Present
(Full_View
(A_Type
))
3180 and then Base_Type
(Full_View
(A_Type
)) = Etype
(Imm_Type
)
3185 Imm_Type
:= Etype
(Base_Type
(Imm_Type
));
3189 -- If previous loop did not find a proper ancestor, report error
3191 Error_Msg_NE
("expect ancestor type of &", A
, Typ
);
3193 end Valid_Ancestor_Type
;
3195 ------------------------------
3196 -- Transform_BIP_Assignment --
3197 ------------------------------
3199 procedure Transform_BIP_Assignment
(Typ
: Entity_Id
) is
3200 Loc
: constant Source_Ptr
:= Sloc
(N
);
3201 Def_Id
: constant Entity_Id
:= Make_Temporary
(Loc
, 'Y', A
);
3202 Obj_Decl
: constant Node_Id
:=
3203 Make_Object_Declaration
(Loc
,
3204 Defining_Identifier
=> Def_Id
,
3205 Constant_Present
=> True,
3206 Object_Definition
=> New_Occurrence_Of
(Typ
, Loc
),
3208 Has_Init_Expression
=> True);
3210 Set_Etype
(Def_Id
, Typ
);
3211 Set_Ancestor_Part
(N
, New_Occurrence_Of
(Def_Id
, Loc
));
3212 Insert_Action
(N
, Obj_Decl
);
3213 end Transform_BIP_Assignment
;
3215 -- Start of processing for Resolve_Extension_Aggregate
3218 -- Analyze the ancestor part and account for the case where it is a
3219 -- parameterless function call.
3222 Check_Parameterless_Call
(A
);
3224 -- In SPARK, the ancestor part cannot be a type mark
3226 if Is_Entity_Name
(A
) and then Is_Type
(Entity
(A
)) then
3227 Check_SPARK_05_Restriction
("ancestor part cannot be a type mark", A
);
3229 -- AI05-0115: if the ancestor part is a subtype mark, the ancestor
3230 -- must not have unknown discriminants.
3232 if Has_Unknown_Discriminants
(Root_Type
(Typ
)) then
3234 ("aggregate not available for type& whose ancestor "
3235 & "has unknown discriminants", N
, Typ
);
3239 if not Is_Tagged_Type
(Typ
) then
3240 Error_Msg_N
("type of extension aggregate must be tagged", N
);
3243 elsif Is_Limited_Type
(Typ
) then
3245 -- Ada 2005 (AI-287): Limited aggregates are allowed
3247 if Ada_Version
< Ada_2005
then
3248 Error_Msg_N
("aggregate type cannot be limited", N
);
3249 Explain_Limited_Type
(Typ
, N
);
3252 elsif Valid_Limited_Ancestor
(A
) then
3257 ("limited ancestor part must be aggregate or function call", A
);
3260 elsif Is_Class_Wide_Type
(Typ
) then
3261 Error_Msg_N
("aggregate cannot be of a class-wide type", N
);
3265 if Is_Entity_Name
(A
) and then Is_Type
(Entity
(A
)) then
3266 A_Type
:= Get_Full_View
(Entity
(A
));
3268 if Valid_Ancestor_Type
then
3269 Set_Entity
(A
, A_Type
);
3270 Set_Etype
(A
, A_Type
);
3272 Validate_Ancestor_Part
(N
);
3273 Resolve_Record_Aggregate
(N
, Typ
);
3276 elsif Nkind
(A
) /= N_Aggregate
then
3277 if Is_Overloaded
(A
) then
3280 Get_First_Interp
(A
, I
, It
);
3281 while Present
(It
.Typ
) loop
3283 -- Consider limited interpretations if Ada 2005 or higher
3285 if Is_Tagged_Type
(It
.Typ
)
3286 and then (Ada_Version
>= Ada_2005
3287 or else not Is_Limited_Type
(It
.Typ
))
3289 if A_Type
/= Any_Type
then
3290 Error_Msg_N
("cannot resolve expression", A
);
3297 Get_Next_Interp
(I
, It
);
3300 if A_Type
= Any_Type
then
3301 if Ada_Version
>= Ada_2005
then
3303 ("ancestor part must be of a tagged type", A
);
3306 ("ancestor part must be of a nonlimited tagged type", A
);
3313 A_Type
:= Etype
(A
);
3316 if Valid_Ancestor_Type
then
3317 Resolve
(A
, A_Type
);
3318 Check_Unset_Reference
(A
);
3319 Check_Non_Static_Context
(A
);
3321 -- The aggregate is illegal if the ancestor expression is a call
3322 -- to a function with a limited unconstrained result, unless the
3323 -- type of the aggregate is a null extension. This restriction
3324 -- was added in AI05-67 to simplify implementation.
3326 if Nkind
(A
) = N_Function_Call
3327 and then Is_Limited_Type
(A_Type
)
3328 and then not Is_Null_Extension
(Typ
)
3329 and then not Is_Constrained
(A_Type
)
3332 ("type of limited ancestor part must be constrained", A
);
3334 -- Reject the use of CPP constructors that leave objects partially
3335 -- initialized. For example:
3337 -- type CPP_Root is tagged limited record ...
3338 -- pragma Import (CPP, CPP_Root);
3340 -- type CPP_DT is new CPP_Root and Iface ...
3341 -- pragma Import (CPP, CPP_DT);
3343 -- type Ada_DT is new CPP_DT with ...
3345 -- Obj : Ada_DT := Ada_DT'(New_CPP_Root with others => <>);
3347 -- Using the constructor of CPP_Root the slots of the dispatch
3348 -- table of CPP_DT cannot be set, and the secondary tag of
3349 -- CPP_DT is unknown.
3351 elsif Nkind
(A
) = N_Function_Call
3352 and then Is_CPP_Constructor_Call
(A
)
3353 and then Enclosing_CPP_Parent
(Typ
) /= A_Type
3356 ("??must use 'C'P'P constructor for type &", A
,
3357 Enclosing_CPP_Parent
(Typ
));
3359 -- The following call is not needed if the previous warning
3360 -- is promoted to an error.
3362 Resolve_Record_Aggregate
(N
, Typ
);
3364 elsif Is_Class_Wide_Type
(Etype
(A
))
3365 and then Nkind
(Original_Node
(A
)) = N_Function_Call
3367 -- If the ancestor part is a dispatching call, it appears
3368 -- statically to be a legal ancestor, but it yields any member
3369 -- of the class, and it is not possible to determine whether
3370 -- it is an ancestor of the extension aggregate (much less
3371 -- which ancestor). It is not possible to determine the
3372 -- components of the extension part.
3374 -- This check implements AI-306, which in fact was motivated by
3375 -- an AdaCore query to the ARG after this test was added.
3377 Error_Msg_N
("ancestor part must be statically tagged", A
);
3379 -- We are using the build-in-place protocol, but we can't build
3380 -- in place, because we need to call the function before
3381 -- allocating the aggregate. Could do better for null
3382 -- extensions, and maybe for nondiscriminated types.
3383 -- This is wrong for limited, but those were wrong already.
3385 if not Is_Limited_View
(A_Type
)
3386 and then Is_Build_In_Place_Function_Call
(A
)
3388 Transform_BIP_Assignment
(A_Type
);
3391 Resolve_Record_Aggregate
(N
, Typ
);
3396 Error_Msg_N
("no unique type for this aggregate", A
);
3399 Check_Function_Writable_Actuals
(N
);
3400 end Resolve_Extension_Aggregate
;
3402 ------------------------------
3403 -- Resolve_Record_Aggregate --
3404 ------------------------------
3406 procedure Resolve_Record_Aggregate
(N
: Node_Id
; Typ
: Entity_Id
) is
3407 New_Assoc_List
: constant List_Id
:= New_List
;
3408 -- New_Assoc_List is the newly built list of N_Component_Association
3411 Others_Etype
: Entity_Id
:= Empty
;
3412 -- This variable is used to save the Etype of the last record component
3413 -- that takes its value from the others choice. Its purpose is:
3415 -- (a) make sure the others choice is useful
3417 -- (b) make sure the type of all the components whose value is
3418 -- subsumed by the others choice are the same.
3420 -- This variable is updated as a side effect of function Get_Value.
3422 Box_Node
: Node_Id
:= Empty
;
3423 Is_Box_Present
: Boolean := False;
3424 Others_Box
: Integer := 0;
3425 -- Ada 2005 (AI-287): Variables used in case of default initialization
3426 -- to provide a functionality similar to Others_Etype. Box_Present
3427 -- indicates that the component takes its default initialization;
3428 -- Others_Box counts the number of components of the current aggregate
3429 -- (which may be a sub-aggregate of a larger one) that are default-
3430 -- initialized. A value of One indicates that an others_box is present.
3431 -- Any larger value indicates that the others_box is not redundant.
3432 -- These variables, similar to Others_Etype, are also updated as a side
3433 -- effect of function Get_Value. Box_Node is used to place a warning on
3434 -- a redundant others_box.
3436 procedure Add_Association
3437 (Component
: Entity_Id
;
3439 Assoc_List
: List_Id
;
3440 Is_Box_Present
: Boolean := False);
3441 -- Builds a new N_Component_Association node which associates Component
3442 -- to expression Expr and adds it to the association list being built,
3443 -- either New_Assoc_List, or the association being built for an inner
3446 procedure Add_Discriminant_Values
3447 (New_Aggr
: Node_Id
;
3448 Assoc_List
: List_Id
);
3449 -- The constraint to a component may be given by a discriminant of the
3450 -- enclosing type, in which case we have to retrieve its value, which is
3451 -- part of the enclosing aggregate. Assoc_List provides the discriminant
3452 -- associations of the current type or of some enclosing record.
3454 function Discriminant_Present
(Input_Discr
: Entity_Id
) return Boolean;
3455 -- If aggregate N is a regular aggregate this routine will return True.
3456 -- Otherwise, if N is an extension aggregate, then Input_Discr denotes
3457 -- a discriminant whose value may already have been specified by N's
3458 -- ancestor part. This routine checks whether this is indeed the case
3459 -- and if so returns False, signaling that no value for Input_Discr
3460 -- should appear in N's aggregate part. Also, in this case, the routine
3461 -- appends to New_Assoc_List the discriminant value specified in the
3464 -- If the aggregate is in a context with expansion delayed, it will be
3465 -- reanalyzed. The inherited discriminant values must not be reinserted
3466 -- in the component list to prevent spurious errors, but they must be
3467 -- present on first analysis to build the proper subtype indications.
3468 -- The flag Inherited_Discriminant is used to prevent the re-insertion.
3470 function Find_Private_Ancestor
(Typ
: Entity_Id
) return Entity_Id
;
3471 -- AI05-0115: Find earlier ancestor in the derivation chain that is
3472 -- derived from private view Typ. Whether the aggregate is legal depends
3473 -- on the current visibility of the type as well as that of the parent
3479 Consider_Others_Choice
: Boolean := False) return Node_Id
;
3480 -- Given a record component stored in parameter Compon, this function
3481 -- returns its value as it appears in the list From, which is a list
3482 -- of N_Component_Association nodes.
3484 -- If no component association has a choice for the searched component,
3485 -- the value provided by the others choice is returned, if there is one,
3486 -- and Consider_Others_Choice is set to true. Otherwise Empty is
3487 -- returned. If there is more than one component association giving a
3488 -- value for the searched record component, an error message is emitted
3489 -- and the first found value is returned.
3491 -- If Consider_Others_Choice is set and the returned expression comes
3492 -- from the others choice, then Others_Etype is set as a side effect.
3493 -- An error message is emitted if the components taking their value from
3494 -- the others choice do not have same type.
3496 procedure Propagate_Discriminants
3498 Assoc_List
: List_Id
);
3499 -- Nested components may themselves be discriminated types constrained
3500 -- by outer discriminants, whose values must be captured before the
3501 -- aggregate is expanded into assignments.
3503 procedure Resolve_Aggr_Expr
(Expr
: Node_Id
; Component
: Entity_Id
);
3504 -- Analyzes and resolves expression Expr against the Etype of the
3505 -- Component. This routine also applies all appropriate checks to Expr.
3506 -- It finally saves a Expr in the newly created association list that
3507 -- will be attached to the final record aggregate. Note that if the
3508 -- Parent pointer of Expr is not set then Expr was produced with a
3509 -- New_Copy_Tree or some such.
3511 procedure Rewrite_Range
(Root_Type
: Entity_Id
; Rge
: Node_Id
);
3512 -- Rewrite a range node Rge when its bounds refer to non-stored
3513 -- discriminants from Root_Type, to replace them with the stored
3514 -- discriminant values. This is required in GNATprove mode, and is
3515 -- adopted in all modes to avoid special-casing GNATprove mode.
3517 ---------------------
3518 -- Add_Association --
3519 ---------------------
3521 procedure Add_Association
3522 (Component
: Entity_Id
;
3524 Assoc_List
: List_Id
;
3525 Is_Box_Present
: Boolean := False)
3527 Choice_List
: constant List_Id
:= New_List
;
3531 -- If this is a box association the expression is missing, so use the
3532 -- Sloc of the aggregate itself for the new association.
3534 if Present
(Expr
) then
3540 Append_To
(Choice_List
, New_Occurrence_Of
(Component
, Loc
));
3542 Append_To
(Assoc_List
,
3543 Make_Component_Association
(Loc
,
3544 Choices
=> Choice_List
,
3546 Box_Present
=> Is_Box_Present
));
3547 end Add_Association
;
3549 -----------------------------
3550 -- Add_Discriminant_Values --
3551 -----------------------------
3553 procedure Add_Discriminant_Values
3554 (New_Aggr
: Node_Id
;
3555 Assoc_List
: List_Id
)
3559 Discr_Elmt
: Elmt_Id
;
3560 Discr_Val
: Node_Id
;
3564 Discr
:= First_Discriminant
(Etype
(New_Aggr
));
3565 Discr_Elmt
:= First_Elmt
(Discriminant_Constraint
(Etype
(New_Aggr
)));
3566 while Present
(Discr_Elmt
) loop
3567 Discr_Val
:= Node
(Discr_Elmt
);
3569 -- If the constraint is given by a discriminant then it is a
3570 -- discriminant of an enclosing record, and its value has already
3571 -- been placed in the association list.
3573 if Is_Entity_Name
(Discr_Val
)
3574 and then Ekind
(Entity
(Discr_Val
)) = E_Discriminant
3576 Val
:= Entity
(Discr_Val
);
3578 Assoc
:= First
(Assoc_List
);
3579 while Present
(Assoc
) loop
3580 if Present
(Entity
(First
(Choices
(Assoc
))))
3581 and then Entity
(First
(Choices
(Assoc
))) = Val
3583 Discr_Val
:= Expression
(Assoc
);
3592 (Discr
, New_Copy_Tree
(Discr_Val
),
3593 Component_Associations
(New_Aggr
));
3595 -- If the discriminant constraint is a current instance, mark the
3596 -- current aggregate so that the self-reference can be expanded
3597 -- later. The constraint may refer to the subtype of aggregate, so
3598 -- use base type for comparison.
3600 if Nkind
(Discr_Val
) = N_Attribute_Reference
3601 and then Is_Entity_Name
(Prefix
(Discr_Val
))
3602 and then Is_Type
(Entity
(Prefix
(Discr_Val
)))
3603 and then Base_Type
(Etype
(N
)) = Entity
(Prefix
(Discr_Val
))
3605 Set_Has_Self_Reference
(N
);
3608 Next_Elmt
(Discr_Elmt
);
3609 Next_Discriminant
(Discr
);
3611 end Add_Discriminant_Values
;
3613 --------------------------
3614 -- Discriminant_Present --
3615 --------------------------
3617 function Discriminant_Present
(Input_Discr
: Entity_Id
) return Boolean is
3618 Regular_Aggr
: constant Boolean := Nkind
(N
) /= N_Extension_Aggregate
;
3620 Ancestor_Is_Subtyp
: Boolean;
3625 Ancestor_Typ
: Entity_Id
;
3626 Comp_Assoc
: Node_Id
;
3628 Discr_Expr
: Node_Id
;
3629 Discr_Val
: Elmt_Id
:= No_Elmt
;
3630 Orig_Discr
: Entity_Id
;
3633 if Regular_Aggr
then
3637 -- Check whether inherited discriminant values have already been
3638 -- inserted in the aggregate. This will be the case if we are
3639 -- re-analyzing an aggregate whose expansion was delayed.
3641 if Present
(Component_Associations
(N
)) then
3642 Comp_Assoc
:= First
(Component_Associations
(N
));
3643 while Present
(Comp_Assoc
) loop
3644 if Inherited_Discriminant
(Comp_Assoc
) then
3652 Ancestor
:= Ancestor_Part
(N
);
3653 Ancestor_Typ
:= Etype
(Ancestor
);
3654 Loc
:= Sloc
(Ancestor
);
3656 -- For a private type with unknown discriminants, use the underlying
3657 -- record view if it is available.
3659 if Has_Unknown_Discriminants
(Ancestor_Typ
)
3660 and then Present
(Full_View
(Ancestor_Typ
))
3661 and then Present
(Underlying_Record_View
(Full_View
(Ancestor_Typ
)))
3663 Ancestor_Typ
:= Underlying_Record_View
(Full_View
(Ancestor_Typ
));
3666 Ancestor_Is_Subtyp
:=
3667 Is_Entity_Name
(Ancestor
) and then Is_Type
(Entity
(Ancestor
));
3669 -- If the ancestor part has no discriminants clearly N's aggregate
3670 -- part must provide a value for Discr.
3672 if not Has_Discriminants
(Ancestor_Typ
) then
3675 -- If the ancestor part is an unconstrained subtype mark then the
3676 -- Discr must be present in N's aggregate part.
3678 elsif Ancestor_Is_Subtyp
3679 and then not Is_Constrained
(Entity
(Ancestor
))
3684 -- Now look to see if Discr was specified in the ancestor part
3686 if Ancestor_Is_Subtyp
then
3688 First_Elmt
(Discriminant_Constraint
(Entity
(Ancestor
)));
3691 Orig_Discr
:= Original_Record_Component
(Input_Discr
);
3693 Discr
:= First_Discriminant
(Ancestor_Typ
);
3694 while Present
(Discr
) loop
3696 -- If Ancestor has already specified Disc value then insert its
3697 -- value in the final aggregate.
3699 if Original_Record_Component
(Discr
) = Orig_Discr
then
3700 if Ancestor_Is_Subtyp
then
3701 Discr_Expr
:= New_Copy_Tree
(Node
(Discr_Val
));
3704 Make_Selected_Component
(Loc
,
3705 Prefix
=> Duplicate_Subexpr
(Ancestor
),
3706 Selector_Name
=> New_Occurrence_Of
(Input_Discr
, Loc
));
3709 Resolve_Aggr_Expr
(Discr_Expr
, Input_Discr
);
3710 Set_Inherited_Discriminant
(Last
(New_Assoc_List
));
3714 Next_Discriminant
(Discr
);
3716 if Ancestor_Is_Subtyp
then
3717 Next_Elmt
(Discr_Val
);
3722 end Discriminant_Present
;
3724 ---------------------------
3725 -- Find_Private_Ancestor --
3726 ---------------------------
3728 function Find_Private_Ancestor
(Typ
: Entity_Id
) return Entity_Id
is
3734 if Has_Private_Ancestor
(Par
)
3735 and then not Has_Private_Ancestor
(Etype
(Base_Type
(Par
)))
3739 elsif not Is_Derived_Type
(Par
) then
3743 Par
:= Etype
(Base_Type
(Par
));
3746 end Find_Private_Ancestor
;
3755 Consider_Others_Choice
: Boolean := False) return Node_Id
3757 Typ
: constant Entity_Id
:= Etype
(Compon
);
3759 Expr
: Node_Id
:= Empty
;
3760 Selector_Name
: Node_Id
;
3763 Is_Box_Present
:= False;
3769 Assoc
:= First
(From
);
3770 while Present
(Assoc
) loop
3771 Selector_Name
:= First
(Choices
(Assoc
));
3772 while Present
(Selector_Name
) loop
3773 if Nkind
(Selector_Name
) = N_Others_Choice
then
3774 if Consider_Others_Choice
and then No
(Expr
) then
3776 -- We need to duplicate the expression for each
3777 -- successive component covered by the others choice.
3778 -- This is redundant if the others_choice covers only
3779 -- one component (small optimization possible???), but
3780 -- indispensable otherwise, because each one must be
3781 -- expanded individually to preserve side effects.
3783 -- Ada 2005 (AI-287): In case of default initialization
3784 -- of components, we duplicate the corresponding default
3785 -- expression (from the record type declaration). The
3786 -- copy must carry the sloc of the association (not the
3787 -- original expression) to prevent spurious elaboration
3788 -- checks when the default includes function calls.
3790 if Box_Present
(Assoc
) then
3791 Others_Box
:= Others_Box
+ 1;
3792 Is_Box_Present
:= True;
3794 if Expander_Active
then
3796 New_Copy_Tree_And_Copy_Dimensions
3797 (Expression
(Parent
(Compon
)),
3798 New_Sloc
=> Sloc
(Assoc
));
3800 return Expression
(Parent
(Compon
));
3804 if Present
(Others_Etype
)
3805 and then Base_Type
(Others_Etype
) /= Base_Type
(Typ
)
3807 -- If the components are of an anonymous access
3808 -- type they are distinct, but this is legal in
3809 -- Ada 2012 as long as designated types match.
3811 if (Ekind
(Typ
) = E_Anonymous_Access_Type
3812 or else Ekind
(Typ
) =
3813 E_Anonymous_Access_Subprogram_Type
)
3814 and then Designated_Type
(Typ
) =
3815 Designated_Type
(Others_Etype
)
3820 ("components in OTHERS choice must have same "
3821 & "type", Selector_Name
);
3825 Others_Etype
:= Typ
;
3827 -- Copy the expression so that it is resolved
3828 -- independently for each component, This is needed
3829 -- for accessibility checks on compoents of anonymous
3830 -- access types, even in compile_only mode.
3832 if not Inside_A_Generic
then
3834 -- In ASIS mode, preanalyze the expression in an
3835 -- others association before making copies for
3836 -- separate resolution and accessibility checks.
3837 -- This ensures that the type of the expression is
3838 -- available to ASIS in all cases, in particular if
3839 -- the expression is itself an aggregate.
3842 Preanalyze_And_Resolve
(Expression
(Assoc
), Typ
);
3846 New_Copy_Tree_And_Copy_Dimensions
3847 (Expression
(Assoc
));
3850 return Expression
(Assoc
);
3855 elsif Chars
(Compon
) = Chars
(Selector_Name
) then
3858 -- Ada 2005 (AI-231)
3860 if Ada_Version
>= Ada_2005
3861 and then Known_Null
(Expression
(Assoc
))
3863 Check_Can_Never_Be_Null
(Compon
, Expression
(Assoc
));
3866 -- We need to duplicate the expression when several
3867 -- components are grouped together with a "|" choice.
3868 -- For instance "filed1 | filed2 => Expr"
3870 -- Ada 2005 (AI-287)
3872 if Box_Present
(Assoc
) then
3873 Is_Box_Present
:= True;
3875 -- Duplicate the default expression of the component
3876 -- from the record type declaration, so a new copy
3877 -- can be attached to the association.
3879 -- Note that we always copy the default expression,
3880 -- even when the association has a single choice, in
3881 -- order to create a proper association for the
3882 -- expanded aggregate.
3884 -- Component may have no default, in which case the
3885 -- expression is empty and the component is default-
3886 -- initialized, but an association for the component
3887 -- exists, and it is not covered by an others clause.
3889 -- Scalar and private types have no initialization
3890 -- procedure, so they remain uninitialized. If the
3891 -- target of the aggregate is a constant this
3892 -- deserves a warning.
3894 if No
(Expression
(Parent
(Compon
)))
3895 and then not Has_Non_Null_Base_Init_Proc
(Typ
)
3896 and then not Has_Aspect
(Typ
, Aspect_Default_Value
)
3897 and then not Is_Concurrent_Type
(Typ
)
3898 and then Nkind
(Parent
(N
)) = N_Object_Declaration
3899 and then Constant_Present
(Parent
(N
))
3901 Error_Msg_Node_2
:= Typ
;
3903 ("component&? of type& is uninitialized",
3904 Assoc
, Selector_Name
);
3906 -- An additional reminder if the component type
3907 -- is a generic formal.
3909 if Is_Generic_Type
(Base_Type
(Typ
)) then
3911 ("\instance should provide actual type with "
3912 & "initialization for&", Assoc
, Typ
);
3917 New_Copy_Tree_And_Copy_Dimensions
3918 (Expression
(Parent
(Compon
)));
3921 if Present
(Next
(Selector_Name
)) then
3922 Expr
:= New_Copy_Tree_And_Copy_Dimensions
3923 (Expression
(Assoc
));
3925 Expr
:= Expression
(Assoc
);
3929 Generate_Reference
(Compon
, Selector_Name
, 'm');
3933 ("more than one value supplied for &",
3934 Selector_Name
, Compon
);
3939 Next
(Selector_Name
);
3948 -----------------------------
3949 -- Propagate_Discriminants --
3950 -----------------------------
3952 procedure Propagate_Discriminants
3954 Assoc_List
: List_Id
)
3956 Loc
: constant Source_Ptr
:= Sloc
(N
);
3958 Needs_Box
: Boolean := False;
3960 procedure Process_Component
(Comp
: Entity_Id
);
3961 -- Add one component with a box association to the inner aggregate,
3962 -- and recurse if component is itself composite.
3964 -----------------------
3965 -- Process_Component --
3966 -----------------------
3968 procedure Process_Component
(Comp
: Entity_Id
) is
3969 T
: constant Entity_Id
:= Etype
(Comp
);
3973 if Is_Record_Type
(T
) and then Has_Discriminants
(T
) then
3974 New_Aggr
:= Make_Aggregate
(Loc
, New_List
, New_List
);
3975 Set_Etype
(New_Aggr
, T
);
3978 (Comp
, New_Aggr
, Component_Associations
(Aggr
));
3980 -- Collect discriminant values and recurse
3982 Add_Discriminant_Values
(New_Aggr
, Assoc_List
);
3983 Propagate_Discriminants
(New_Aggr
, Assoc_List
);
3988 end Process_Component
;
3992 Aggr_Type
: constant Entity_Id
:= Base_Type
(Etype
(Aggr
));
3993 Components
: constant Elist_Id
:= New_Elmt_List
;
3994 Def_Node
: constant Node_Id
:=
3995 Type_Definition
(Declaration_Node
(Aggr_Type
));
3998 Comp_Elmt
: Elmt_Id
;
4001 -- Start of processing for Propagate_Discriminants
4004 -- The component type may be a variant type. Collect the components
4005 -- that are ruled by the known values of the discriminants. Their
4006 -- values have already been inserted into the component list of the
4007 -- current aggregate.
4009 if Nkind
(Def_Node
) = N_Record_Definition
4010 and then Present
(Component_List
(Def_Node
))
4011 and then Present
(Variant_Part
(Component_List
(Def_Node
)))
4013 Gather_Components
(Aggr_Type
,
4014 Component_List
(Def_Node
),
4015 Governed_By
=> Component_Associations
(Aggr
),
4017 Report_Errors
=> Errors
);
4019 Comp_Elmt
:= First_Elmt
(Components
);
4020 while Present
(Comp_Elmt
) loop
4021 if Ekind
(Node
(Comp_Elmt
)) /= E_Discriminant
then
4022 Process_Component
(Node
(Comp_Elmt
));
4025 Next_Elmt
(Comp_Elmt
);
4028 -- No variant part, iterate over all components
4031 Comp
:= First_Component
(Etype
(Aggr
));
4032 while Present
(Comp
) loop
4033 Process_Component
(Comp
);
4034 Next_Component
(Comp
);
4039 Append_To
(Component_Associations
(Aggr
),
4040 Make_Component_Association
(Loc
,
4041 Choices
=> New_List
(Make_Others_Choice
(Loc
)),
4042 Expression
=> Empty
,
4043 Box_Present
=> True));
4045 end Propagate_Discriminants
;
4047 -----------------------
4048 -- Resolve_Aggr_Expr --
4049 -----------------------
4051 procedure Resolve_Aggr_Expr
(Expr
: Node_Id
; Component
: Entity_Id
) is
4052 function Has_Expansion_Delayed
(Expr
: Node_Id
) return Boolean;
4053 -- If the expression is an aggregate (possibly qualified) then its
4054 -- expansion is delayed until the enclosing aggregate is expanded
4055 -- into assignments. In that case, do not generate checks on the
4056 -- expression, because they will be generated later, and will other-
4057 -- wise force a copy (to remove side effects) that would leave a
4058 -- dynamic-sized aggregate in the code, something that gigi cannot
4061 ---------------------------
4062 -- Has_Expansion_Delayed --
4063 ---------------------------
4065 function Has_Expansion_Delayed
(Expr
: Node_Id
) return Boolean is
4068 (Nkind_In
(Expr
, N_Aggregate
, N_Extension_Aggregate
)
4069 and then Present
(Etype
(Expr
))
4070 and then Is_Record_Type
(Etype
(Expr
))
4071 and then Expansion_Delayed
(Expr
))
4073 (Nkind
(Expr
) = N_Qualified_Expression
4074 and then Has_Expansion_Delayed
(Expression
(Expr
)));
4075 end Has_Expansion_Delayed
;
4079 Expr_Type
: Entity_Id
:= Empty
;
4080 New_C
: Entity_Id
:= Component
;
4084 -- Set to True if the resolved Expr node needs to be relocated when
4085 -- attached to the newly created association list. This node need not
4086 -- be relocated if its parent pointer is not set. In fact in this
4087 -- case Expr is the output of a New_Copy_Tree call. If Relocate is
4088 -- True then we have analyzed the expression node in the original
4089 -- aggregate and hence it needs to be relocated when moved over to
4090 -- the new association list.
4092 -- Start of processing for Resolve_Aggr_Expr
4095 -- If the type of the component is elementary or the type of the
4096 -- aggregate does not contain discriminants, use the type of the
4097 -- component to resolve Expr.
4099 if Is_Elementary_Type
(Etype
(Component
))
4100 or else not Has_Discriminants
(Etype
(N
))
4102 Expr_Type
:= Etype
(Component
);
4104 -- Otherwise we have to pick up the new type of the component from
4105 -- the new constrained subtype of the aggregate. In fact components
4106 -- which are of a composite type might be constrained by a
4107 -- discriminant, and we want to resolve Expr against the subtype were
4108 -- all discriminant occurrences are replaced with their actual value.
4111 New_C
:= First_Component
(Etype
(N
));
4112 while Present
(New_C
) loop
4113 if Chars
(New_C
) = Chars
(Component
) then
4114 Expr_Type
:= Etype
(New_C
);
4118 Next_Component
(New_C
);
4121 pragma Assert
(Present
(Expr_Type
));
4123 -- For each range in an array type where a discriminant has been
4124 -- replaced with the constraint, check that this range is within
4125 -- the range of the base type. This checks is done in the init
4126 -- proc for regular objects, but has to be done here for
4127 -- aggregates since no init proc is called for them.
4129 if Is_Array_Type
(Expr_Type
) then
4132 -- Range of the current constrained index in the array
4134 Orig_Index
: Node_Id
:= First_Index
(Etype
(Component
));
4135 -- Range corresponding to the range Index above in the
4136 -- original unconstrained record type. The bounds of this
4137 -- range may be governed by discriminants.
4139 Unconstr_Index
: Node_Id
:= First_Index
(Etype
(Expr_Type
));
4140 -- Range corresponding to the range Index above for the
4141 -- unconstrained array type. This range is needed to apply
4145 Index
:= First_Index
(Expr_Type
);
4146 while Present
(Index
) loop
4147 if Depends_On_Discriminant
(Orig_Index
) then
4148 Apply_Range_Check
(Index
, Etype
(Unconstr_Index
));
4152 Next_Index
(Orig_Index
);
4153 Next_Index
(Unconstr_Index
);
4159 -- If the Parent pointer of Expr is not set, Expr is an expression
4160 -- duplicated by New_Tree_Copy (this happens for record aggregates
4161 -- that look like (Field1 | Filed2 => Expr) or (others => Expr)).
4162 -- Such a duplicated expression must be attached to the tree
4163 -- before analysis and resolution to enforce the rule that a tree
4164 -- fragment should never be analyzed or resolved unless it is
4165 -- attached to the current compilation unit.
4167 if No
(Parent
(Expr
)) then
4168 Set_Parent
(Expr
, N
);
4174 Analyze_And_Resolve
(Expr
, Expr_Type
);
4175 Check_Expr_OK_In_Limited_Aggregate
(Expr
);
4176 Check_Non_Static_Context
(Expr
);
4177 Check_Unset_Reference
(Expr
);
4179 -- Check wrong use of class-wide types
4181 if Is_Class_Wide_Type
(Etype
(Expr
)) then
4182 Error_Msg_N
("dynamically tagged expression not allowed", Expr
);
4185 if not Has_Expansion_Delayed
(Expr
) then
4186 Aggregate_Constraint_Checks
(Expr
, Expr_Type
);
4189 -- If an aggregate component has a type with predicates, an explicit
4190 -- predicate check must be applied, as for an assignment statement,
4191 -- because the aggegate might not be expanded into individual
4192 -- component assignments.
4194 if Present
(Predicate_Function
(Expr_Type
))
4195 and then Analyzed
(Expr
)
4197 Apply_Predicate_Check
(Expr
, Expr_Type
);
4200 if Raises_Constraint_Error
(Expr
) then
4201 Set_Raises_Constraint_Error
(N
);
4204 -- If the expression has been marked as requiring a range check, then
4205 -- generate it here. It's a bit odd to be generating such checks in
4206 -- the analyzer, but harmless since Generate_Range_Check does nothing
4207 -- (other than making sure Do_Range_Check is set) if the expander is
4210 if Do_Range_Check
(Expr
) then
4211 Generate_Range_Check
(Expr
, Expr_Type
, CE_Range_Check_Failed
);
4214 -- Add association Component => Expr if the caller requests it
4217 New_Expr
:= Relocate_Node
(Expr
);
4219 -- Since New_Expr is not gonna be analyzed later on, we need to
4220 -- propagate here the dimensions form Expr to New_Expr.
4222 Copy_Dimensions
(Expr
, New_Expr
);
4228 Add_Association
(New_C
, New_Expr
, New_Assoc_List
);
4229 end Resolve_Aggr_Expr
;
4235 procedure Rewrite_Range
(Root_Type
: Entity_Id
; Rge
: Node_Id
) is
4236 procedure Rewrite_Bound
4239 Expr_Disc
: Node_Id
);
4240 -- Rewrite a bound of the range Bound, when it is equal to the
4241 -- non-stored discriminant Disc, into the stored discriminant
4248 procedure Rewrite_Bound
4251 Expr_Disc
: Node_Id
)
4254 if Nkind
(Bound
) = N_Identifier
4255 and then Entity
(Bound
) = Disc
4257 Rewrite
(Bound
, New_Copy_Tree
(Expr_Disc
));
4263 Low
, High
: Node_Id
;
4265 Expr_Disc
: Elmt_Id
;
4267 -- Start of processing for Rewrite_Range
4270 if Has_Discriminants
(Root_Type
)
4271 and then Nkind
(Rge
) = N_Range
4273 Low
:= Low_Bound
(Rge
);
4274 High
:= High_Bound
(Rge
);
4276 Disc
:= First_Discriminant
(Root_Type
);
4277 Expr_Disc
:= First_Elmt
(Stored_Constraint
(Etype
(N
)));
4278 while Present
(Disc
) loop
4279 Rewrite_Bound
(Low
, Disc
, Node
(Expr_Disc
));
4280 Rewrite_Bound
(High
, Disc
, Node
(Expr_Disc
));
4281 Next_Discriminant
(Disc
);
4282 Next_Elmt
(Expr_Disc
);
4289 Components
: constant Elist_Id
:= New_Elmt_List
;
4290 -- Components is the list of the record components whose value must be
4291 -- provided in the aggregate. This list does include discriminants.
4293 Component
: Entity_Id
;
4294 Component_Elmt
: Elmt_Id
;
4296 Positional_Expr
: Node_Id
;
4298 -- Start of processing for Resolve_Record_Aggregate
4301 -- A record aggregate is restricted in SPARK:
4303 -- Each named association can have only a single choice.
4304 -- OTHERS cannot be used.
4305 -- Positional and named associations cannot be mixed.
4307 if Present
(Component_Associations
(N
))
4308 and then Present
(First
(Component_Associations
(N
)))
4310 if Present
(Expressions
(N
)) then
4311 Check_SPARK_05_Restriction
4312 ("named association cannot follow positional one",
4313 First
(Choices
(First
(Component_Associations
(N
)))));
4320 Assoc
:= First
(Component_Associations
(N
));
4321 while Present
(Assoc
) loop
4322 if Nkind
(Assoc
) = N_Iterated_Component_Association
then
4324 ("iterated component association can only appear in an "
4325 & "array aggregate", N
);
4326 raise Unrecoverable_Error
;
4329 if List_Length
(Choices
(Assoc
)) > 1 then
4330 Check_SPARK_05_Restriction
4331 ("component association in record aggregate must "
4332 & "contain a single choice", Assoc
);
4335 if Nkind
(First
(Choices
(Assoc
))) = N_Others_Choice
then
4336 Check_SPARK_05_Restriction
4337 ("record aggregate cannot contain OTHERS", Assoc
);
4341 Assoc
:= Next
(Assoc
);
4346 -- We may end up calling Duplicate_Subexpr on expressions that are
4347 -- attached to New_Assoc_List. For this reason we need to attach it
4348 -- to the tree by setting its parent pointer to N. This parent point
4349 -- will change in STEP 8 below.
4351 Set_Parent
(New_Assoc_List
, N
);
4353 -- STEP 1: abstract type and null record verification
4355 if Is_Abstract_Type
(Typ
) then
4356 Error_Msg_N
("type of aggregate cannot be abstract", N
);
4359 if No
(First_Entity
(Typ
)) and then Null_Record_Present
(N
) then
4363 elsif Present
(First_Entity
(Typ
))
4364 and then Null_Record_Present
(N
)
4365 and then not Is_Tagged_Type
(Typ
)
4367 Error_Msg_N
("record aggregate cannot be null", N
);
4370 -- If the type has no components, then the aggregate should either
4371 -- have "null record", or in Ada 2005 it could instead have a single
4372 -- component association given by "others => <>". For Ada 95 we flag an
4373 -- error at this point, but for Ada 2005 we proceed with checking the
4374 -- associations below, which will catch the case where it's not an
4375 -- aggregate with "others => <>". Note that the legality of a <>
4376 -- aggregate for a null record type was established by AI05-016.
4378 elsif No
(First_Entity
(Typ
))
4379 and then Ada_Version
< Ada_2005
4381 Error_Msg_N
("record aggregate must be null", N
);
4385 -- STEP 2: Verify aggregate structure
4389 Bad_Aggregate
: Boolean := False;
4390 Selector_Name
: Node_Id
;
4393 if Present
(Component_Associations
(N
)) then
4394 Assoc
:= First
(Component_Associations
(N
));
4399 while Present
(Assoc
) loop
4400 Selector_Name
:= First
(Choices
(Assoc
));
4401 while Present
(Selector_Name
) loop
4402 if Nkind
(Selector_Name
) = N_Identifier
then
4405 elsif Nkind
(Selector_Name
) = N_Others_Choice
then
4406 if Selector_Name
/= First
(Choices
(Assoc
))
4407 or else Present
(Next
(Selector_Name
))
4410 ("OTHERS must appear alone in a choice list",
4414 elsif Present
(Next
(Assoc
)) then
4416 ("OTHERS must appear last in an aggregate",
4420 -- (Ada 2005): If this is an association with a box,
4421 -- indicate that the association need not represent
4424 elsif Box_Present
(Assoc
) then
4431 ("selector name should be identifier or OTHERS",
4433 Bad_Aggregate
:= True;
4436 Next
(Selector_Name
);
4442 if Bad_Aggregate
then
4447 -- STEP 3: Find discriminant Values
4450 Discrim
: Entity_Id
;
4451 Missing_Discriminants
: Boolean := False;
4454 if Present
(Expressions
(N
)) then
4455 Positional_Expr
:= First
(Expressions
(N
));
4457 Positional_Expr
:= Empty
;
4460 -- AI05-0115: if the ancestor part is a subtype mark, the ancestor
4461 -- must not have unknown discriminants.
4463 if Is_Derived_Type
(Typ
)
4464 and then Has_Unknown_Discriminants
(Root_Type
(Typ
))
4465 and then Nkind
(N
) /= N_Extension_Aggregate
4468 ("aggregate not available for type& whose ancestor "
4469 & "has unknown discriminants ", N
, Typ
);
4472 if Has_Unknown_Discriminants
(Typ
)
4473 and then Present
(Underlying_Record_View
(Typ
))
4475 Discrim
:= First_Discriminant
(Underlying_Record_View
(Typ
));
4476 elsif Has_Discriminants
(Typ
) then
4477 Discrim
:= First_Discriminant
(Typ
);
4482 -- First find the discriminant values in the positional components
4484 while Present
(Discrim
) and then Present
(Positional_Expr
) loop
4485 if Discriminant_Present
(Discrim
) then
4486 Resolve_Aggr_Expr
(Positional_Expr
, Discrim
);
4488 -- Ada 2005 (AI-231)
4490 if Ada_Version
>= Ada_2005
4491 and then Known_Null
(Positional_Expr
)
4493 Check_Can_Never_Be_Null
(Discrim
, Positional_Expr
);
4496 Next
(Positional_Expr
);
4499 if Present
(Get_Value
(Discrim
, Component_Associations
(N
))) then
4501 ("more than one value supplied for discriminant&",
4505 Next_Discriminant
(Discrim
);
4508 -- Find remaining discriminant values if any among named components
4510 while Present
(Discrim
) loop
4511 Expr
:= Get_Value
(Discrim
, Component_Associations
(N
), True);
4513 if not Discriminant_Present
(Discrim
) then
4514 if Present
(Expr
) then
4516 ("more than one value supplied for discriminant &",
4520 elsif No
(Expr
) then
4522 ("no value supplied for discriminant &", N
, Discrim
);
4523 Missing_Discriminants
:= True;
4526 Resolve_Aggr_Expr
(Expr
, Discrim
);
4529 Next_Discriminant
(Discrim
);
4532 if Missing_Discriminants
then
4536 -- At this point and until the beginning of STEP 6, New_Assoc_List
4537 -- contains only the discriminants and their values.
4541 -- STEP 4: Set the Etype of the record aggregate
4543 -- ??? This code is pretty much a copy of Sem_Ch3.Build_Subtype. That
4544 -- routine should really be exported in sem_util or some such and used
4545 -- in sem_ch3 and here rather than have a copy of the code which is a
4546 -- maintenance nightmare.
4548 -- ??? Performance WARNING. The current implementation creates a new
4549 -- itype for all aggregates whose base type is discriminated. This means
4550 -- that for record aggregates nested inside an array aggregate we will
4551 -- create a new itype for each record aggregate if the array component
4552 -- type has discriminants. For large aggregates this may be a problem.
4553 -- What should be done in this case is to reuse itypes as much as
4556 if Has_Discriminants
(Typ
)
4557 or else (Has_Unknown_Discriminants
(Typ
)
4558 and then Present
(Underlying_Record_View
(Typ
)))
4560 Build_Constrained_Itype
: declare
4561 Constrs
: constant List_Id
:= New_List
;
4562 Loc
: constant Source_Ptr
:= Sloc
(N
);
4565 New_Assoc
: Node_Id
;
4566 Subtyp_Decl
: Node_Id
;
4569 New_Assoc
:= First
(New_Assoc_List
);
4570 while Present
(New_Assoc
) loop
4571 Append_To
(Constrs
, Duplicate_Subexpr
(Expression
(New_Assoc
)));
4575 if Has_Unknown_Discriminants
(Typ
)
4576 and then Present
(Underlying_Record_View
(Typ
))
4579 Make_Subtype_Indication
(Loc
,
4581 New_Occurrence_Of
(Underlying_Record_View
(Typ
), Loc
),
4583 Make_Index_Or_Discriminant_Constraint
(Loc
,
4584 Constraints
=> Constrs
));
4587 Make_Subtype_Indication
(Loc
,
4589 New_Occurrence_Of
(Base_Type
(Typ
), Loc
),
4591 Make_Index_Or_Discriminant_Constraint
(Loc
,
4592 Constraints
=> Constrs
));
4595 Def_Id
:= Create_Itype
(Ekind
(Typ
), N
);
4598 Make_Subtype_Declaration
(Loc
,
4599 Defining_Identifier
=> Def_Id
,
4600 Subtype_Indication
=> Indic
);
4601 Set_Parent
(Subtyp_Decl
, Parent
(N
));
4603 -- Itypes must be analyzed with checks off (see itypes.ads)
4605 Analyze
(Subtyp_Decl
, Suppress
=> All_Checks
);
4607 Set_Etype
(N
, Def_Id
);
4608 Check_Static_Discriminated_Subtype
4609 (Def_Id
, Expression
(First
(New_Assoc_List
)));
4610 end Build_Constrained_Itype
;
4616 -- STEP 5: Get remaining components according to discriminant values
4620 Errors_Found
: Boolean := False;
4621 Record_Def
: Node_Id
;
4622 Parent_Typ
: Entity_Id
;
4623 Parent_Typ_List
: Elist_Id
;
4624 Parent_Elmt
: Elmt_Id
;
4625 Root_Typ
: Entity_Id
;
4628 if Is_Derived_Type
(Typ
) and then Is_Tagged_Type
(Typ
) then
4629 Parent_Typ_List
:= New_Elmt_List
;
4631 -- If this is an extension aggregate, the component list must
4632 -- include all components that are not in the given ancestor type.
4633 -- Otherwise, the component list must include components of all
4634 -- ancestors, starting with the root.
4636 if Nkind
(N
) = N_Extension_Aggregate
then
4637 Root_Typ
:= Base_Type
(Etype
(Ancestor_Part
(N
)));
4640 -- AI05-0115: check legality of aggregate for type with a
4641 -- private ancestor.
4643 Root_Typ
:= Root_Type
(Typ
);
4644 if Has_Private_Ancestor
(Typ
) then
4646 Ancestor
: constant Entity_Id
:=
4647 Find_Private_Ancestor
(Typ
);
4648 Ancestor_Unit
: constant Entity_Id
:=
4650 (Get_Source_Unit
(Ancestor
));
4651 Parent_Unit
: constant Entity_Id
:=
4652 Cunit_Entity
(Get_Source_Unit
4653 (Base_Type
(Etype
(Ancestor
))));
4655 -- Check whether we are in a scope that has full view
4656 -- over the private ancestor and its parent. This can
4657 -- only happen if the derivation takes place in a child
4658 -- unit of the unit that declares the parent, and we are
4659 -- in the private part or body of that child unit, else
4660 -- the aggregate is illegal.
4662 if Is_Child_Unit
(Ancestor_Unit
)
4663 and then Scope
(Ancestor_Unit
) = Parent_Unit
4664 and then In_Open_Scopes
(Scope
(Ancestor
))
4666 (In_Private_Part
(Scope
(Ancestor
))
4667 or else In_Package_Body
(Scope
(Ancestor
)))
4673 ("type of aggregate has private ancestor&!",
4675 Error_Msg_N
("must use extension aggregate!", N
);
4681 Dnode
:= Declaration_Node
(Base_Type
(Root_Typ
));
4683 -- If we don't get a full declaration, then we have some error
4684 -- which will get signalled later so skip this part. Otherwise
4685 -- gather components of root that apply to the aggregate type.
4686 -- We use the base type in case there is an applicable stored
4687 -- constraint that renames the discriminants of the root.
4689 if Nkind
(Dnode
) = N_Full_Type_Declaration
then
4690 Record_Def
:= Type_Definition
(Dnode
);
4693 Component_List
(Record_Def
),
4694 Governed_By
=> New_Assoc_List
,
4696 Report_Errors
=> Errors_Found
);
4698 if Errors_Found
then
4700 ("discriminant controlling variant part is not static",
4707 Parent_Typ
:= Base_Type
(Typ
);
4708 while Parent_Typ
/= Root_Typ
loop
4709 Prepend_Elmt
(Parent_Typ
, To
=> Parent_Typ_List
);
4710 Parent_Typ
:= Etype
(Parent_Typ
);
4712 if Nkind
(Parent
(Base_Type
(Parent_Typ
))) =
4713 N_Private_Type_Declaration
4714 or else Nkind
(Parent
(Base_Type
(Parent_Typ
))) =
4715 N_Private_Extension_Declaration
4717 if Nkind
(N
) /= N_Extension_Aggregate
then
4719 ("type of aggregate has private ancestor&!",
4721 Error_Msg_N
("must use extension aggregate!", N
);
4724 elsif Parent_Typ
/= Root_Typ
then
4726 ("ancestor part of aggregate must be private type&",
4727 Ancestor_Part
(N
), Parent_Typ
);
4731 -- The current view of ancestor part may be a private type,
4732 -- while the context type is always non-private.
4734 elsif Is_Private_Type
(Root_Typ
)
4735 and then Present
(Full_View
(Root_Typ
))
4736 and then Nkind
(N
) = N_Extension_Aggregate
4738 exit when Base_Type
(Full_View
(Root_Typ
)) = Parent_Typ
;
4742 -- Now collect components from all other ancestors, beginning
4743 -- with the current type. If the type has unknown discriminants
4744 -- use the component list of the Underlying_Record_View, which
4745 -- needs to be used for the subsequent expansion of the aggregate
4746 -- into assignments.
4748 Parent_Elmt
:= First_Elmt
(Parent_Typ_List
);
4749 while Present
(Parent_Elmt
) loop
4750 Parent_Typ
:= Node
(Parent_Elmt
);
4752 if Has_Unknown_Discriminants
(Parent_Typ
)
4753 and then Present
(Underlying_Record_View
(Typ
))
4755 Parent_Typ
:= Underlying_Record_View
(Parent_Typ
);
4758 Record_Def
:= Type_Definition
(Parent
(Base_Type
(Parent_Typ
)));
4759 Gather_Components
(Empty
,
4760 Component_List
(Record_Extension_Part
(Record_Def
)),
4761 Governed_By
=> New_Assoc_List
,
4763 Report_Errors
=> Errors_Found
);
4765 Next_Elmt
(Parent_Elmt
);
4768 -- Typ is not a derived tagged type
4771 Record_Def
:= Type_Definition
(Parent
(Base_Type
(Typ
)));
4773 if Null_Present
(Record_Def
) then
4776 elsif not Has_Unknown_Discriminants
(Typ
) then
4779 Component_List
(Record_Def
),
4780 Governed_By
=> New_Assoc_List
,
4782 Report_Errors
=> Errors_Found
);
4786 (Base_Type
(Underlying_Record_View
(Typ
)),
4787 Component_List
(Record_Def
),
4788 Governed_By
=> New_Assoc_List
,
4790 Report_Errors
=> Errors_Found
);
4794 if Errors_Found
then
4799 -- STEP 6: Find component Values
4802 Component_Elmt
:= First_Elmt
(Components
);
4804 -- First scan the remaining positional associations in the aggregate.
4805 -- Remember that at this point Positional_Expr contains the current
4806 -- positional association if any is left after looking for discriminant
4807 -- values in step 3.
4809 while Present
(Positional_Expr
) and then Present
(Component_Elmt
) loop
4810 Component
:= Node
(Component_Elmt
);
4811 Resolve_Aggr_Expr
(Positional_Expr
, Component
);
4813 -- Ada 2005 (AI-231)
4815 if Ada_Version
>= Ada_2005
and then Known_Null
(Positional_Expr
) then
4816 Check_Can_Never_Be_Null
(Component
, Positional_Expr
);
4819 if Present
(Get_Value
(Component
, Component_Associations
(N
))) then
4821 ("more than one value supplied for Component &", N
, Component
);
4824 Next
(Positional_Expr
);
4825 Next_Elmt
(Component_Elmt
);
4828 if Present
(Positional_Expr
) then
4830 ("too many components for record aggregate", Positional_Expr
);
4833 -- Now scan for the named arguments of the aggregate
4835 while Present
(Component_Elmt
) loop
4836 Component
:= Node
(Component_Elmt
);
4837 Expr
:= Get_Value
(Component
, Component_Associations
(N
), True);
4839 -- Note: The previous call to Get_Value sets the value of the
4840 -- variable Is_Box_Present.
4842 -- Ada 2005 (AI-287): Handle components with default initialization.
4843 -- Note: This feature was originally added to Ada 2005 for limited
4844 -- but it was finally allowed with any type.
4846 if Is_Box_Present
then
4847 Check_Box_Component
: declare
4848 Ctyp
: constant Entity_Id
:= Etype
(Component
);
4851 -- If there is a default expression for the aggregate, copy
4852 -- it into a new association. This copy must modify the scopes
4853 -- of internal types that may be attached to the expression
4854 -- (e.g. index subtypes of arrays) because in general the type
4855 -- declaration and the aggregate appear in different scopes,
4856 -- and the backend requires the scope of the type to match the
4857 -- point at which it is elaborated.
4859 -- If the component has an initialization procedure (IP) we
4860 -- pass the component to the expander, which will generate
4861 -- the call to such IP.
4863 -- If the component has discriminants, their values must
4864 -- be taken from their subtype. This is indispensable for
4865 -- constraints that are given by the current instance of an
4866 -- enclosing type, to allow the expansion of the aggregate to
4867 -- replace the reference to the current instance by the target
4868 -- object of the aggregate.
4870 if Present
(Parent
(Component
))
4871 and then Nkind
(Parent
(Component
)) = N_Component_Declaration
4872 and then Present
(Expression
(Parent
(Component
)))
4875 New_Copy_Tree_And_Copy_Dimensions
4876 (Expression
(Parent
(Component
)),
4877 New_Scope
=> Current_Scope
,
4878 New_Sloc
=> Sloc
(N
));
4880 -- As the type of the copied default expression may refer
4881 -- to discriminants of the record type declaration, these
4882 -- non-stored discriminants need to be rewritten into stored
4883 -- discriminant values for the aggregate. This is required
4884 -- in GNATprove mode, and is adopted in all modes to avoid
4885 -- special-casing GNATprove mode.
4887 if Is_Array_Type
(Etype
(Expr
)) then
4889 Rec_Typ
: constant Entity_Id
:= Scope
(Component
);
4890 -- Root record type whose discriminants may be used as
4891 -- bounds in range nodes.
4896 -- Rewrite the range nodes occurring in the indexes
4899 Index
:= First_Index
(Etype
(Expr
));
4900 while Present
(Index
) loop
4901 Rewrite_Range
(Rec_Typ
, Index
);
4903 (Rec_Typ
, Scalar_Range
(Etype
(Index
)));
4908 -- Rewrite the range nodes occurring as aggregate
4911 if Nkind
(Expr
) = N_Aggregate
4912 and then Present
(Aggregate_Bounds
(Expr
))
4914 Rewrite_Range
(Rec_Typ
, Aggregate_Bounds
(Expr
));
4920 (Component
=> Component
,
4922 Assoc_List
=> New_Assoc_List
);
4923 Set_Has_Self_Reference
(N
);
4925 -- A box-defaulted access component gets the value null. Also
4926 -- included are components of private types whose underlying
4927 -- type is an access type. In either case set the type of the
4928 -- literal, for subsequent use in semantic checks.
4930 elsif Present
(Underlying_Type
(Ctyp
))
4931 and then Is_Access_Type
(Underlying_Type
(Ctyp
))
4933 -- If the component's type is private with an access type as
4934 -- its underlying type then we have to create an unchecked
4935 -- conversion to satisfy type checking.
4937 if Is_Private_Type
(Ctyp
) then
4939 Qual_Null
: constant Node_Id
:=
4940 Make_Qualified_Expression
(Sloc
(N
),
4943 (Underlying_Type
(Ctyp
), Sloc
(N
)),
4944 Expression
=> Make_Null
(Sloc
(N
)));
4946 Convert_Null
: constant Node_Id
:=
4947 Unchecked_Convert_To
4951 Analyze_And_Resolve
(Convert_Null
, Ctyp
);
4953 (Component
=> Component
,
4954 Expr
=> Convert_Null
,
4955 Assoc_List
=> New_Assoc_List
);
4958 -- Otherwise the component type is non-private
4961 Expr
:= Make_Null
(Sloc
(N
));
4962 Set_Etype
(Expr
, Ctyp
);
4965 (Component
=> Component
,
4967 Assoc_List
=> New_Assoc_List
);
4970 -- Ada 2012: If component is scalar with default value, use it
4972 elsif Is_Scalar_Type
(Ctyp
)
4973 and then Has_Default_Aspect
(Ctyp
)
4976 (Component
=> Component
,
4978 Default_Aspect_Value
4979 (First_Subtype
(Underlying_Type
(Ctyp
))),
4980 Assoc_List
=> New_Assoc_List
);
4982 elsif Has_Non_Null_Base_Init_Proc
(Ctyp
)
4983 or else not Expander_Active
4985 if Is_Record_Type
(Ctyp
)
4986 and then Has_Discriminants
(Ctyp
)
4987 and then not Is_Private_Type
(Ctyp
)
4989 -- We build a partially initialized aggregate with the
4990 -- values of the discriminants and box initialization
4991 -- for the rest, if other components are present.
4993 -- The type of the aggregate is the known subtype of
4994 -- the component. The capture of discriminants must be
4995 -- recursive because subcomponents may be constrained
4996 -- (transitively) by discriminants of enclosing types.
4997 -- For a private type with discriminants, a call to the
4998 -- initialization procedure will be generated, and no
4999 -- subaggregate is needed.
5001 Capture_Discriminants
: declare
5002 Loc
: constant Source_Ptr
:= Sloc
(N
);
5006 Expr
:= Make_Aggregate
(Loc
, New_List
, New_List
);
5007 Set_Etype
(Expr
, Ctyp
);
5009 -- If the enclosing type has discriminants, they have
5010 -- been collected in the aggregate earlier, and they
5011 -- may appear as constraints of subcomponents.
5013 -- Similarly if this component has discriminants, they
5014 -- might in turn be propagated to their components.
5016 if Has_Discriminants
(Typ
) then
5017 Add_Discriminant_Values
(Expr
, New_Assoc_List
);
5018 Propagate_Discriminants
(Expr
, New_Assoc_List
);
5020 elsif Has_Discriminants
(Ctyp
) then
5021 Add_Discriminant_Values
5022 (Expr
, Component_Associations
(Expr
));
5023 Propagate_Discriminants
5024 (Expr
, Component_Associations
(Expr
));
5031 -- If the type has additional components, create
5032 -- an OTHERS box association for them.
5034 Comp
:= First_Component
(Ctyp
);
5035 while Present
(Comp
) loop
5036 if Ekind
(Comp
) = E_Component
then
5037 if not Is_Record_Type
(Etype
(Comp
)) then
5039 (Component_Associations
(Expr
),
5040 Make_Component_Association
(Loc
,
5043 Make_Others_Choice
(Loc
)),
5044 Expression
=> Empty
,
5045 Box_Present
=> True));
5051 Next_Component
(Comp
);
5057 (Component
=> Component
,
5059 Assoc_List
=> New_Assoc_List
);
5060 end Capture_Discriminants
;
5062 -- Otherwise the component type is not a record, or it has
5063 -- not discriminants, or it is private.
5067 (Component
=> Component
,
5069 Assoc_List
=> New_Assoc_List
,
5070 Is_Box_Present
=> True);
5073 -- Otherwise we only need to resolve the expression if the
5074 -- component has partially initialized values (required to
5075 -- expand the corresponding assignments and run-time checks).
5077 elsif Present
(Expr
)
5078 and then Is_Partially_Initialized_Type
(Ctyp
)
5080 Resolve_Aggr_Expr
(Expr
, Component
);
5082 end Check_Box_Component
;
5084 elsif No
(Expr
) then
5086 -- Ignore hidden components associated with the position of the
5087 -- interface tags: these are initialized dynamically.
5089 if not Present
(Related_Type
(Component
)) then
5091 ("no value supplied for component &!", N
, Component
);
5095 Resolve_Aggr_Expr
(Expr
, Component
);
5098 Next_Elmt
(Component_Elmt
);
5101 -- STEP 7: check for invalid components + check type in choice list
5105 New_Assoc
: Node_Id
;
5111 -- Type of first component in choice list
5114 if Present
(Component_Associations
(N
)) then
5115 Assoc
:= First
(Component_Associations
(N
));
5120 Verification
: while Present
(Assoc
) loop
5121 Selectr
:= First
(Choices
(Assoc
));
5124 if Nkind
(Selectr
) = N_Others_Choice
then
5126 -- Ada 2005 (AI-287): others choice may have expression or box
5128 if No
(Others_Etype
) and then Others_Box
= 0 then
5130 ("OTHERS must represent at least one component", Selectr
);
5132 elsif Others_Box
= 1 and then Warn_On_Redundant_Constructs
then
5133 Error_Msg_N
("others choice is redundant?", Box_Node
);
5135 ("\previous choices cover all components?", Box_Node
);
5141 while Present
(Selectr
) loop
5142 New_Assoc
:= First
(New_Assoc_List
);
5143 while Present
(New_Assoc
) loop
5144 Component
:= First
(Choices
(New_Assoc
));
5146 if Chars
(Selectr
) = Chars
(Component
) then
5148 Check_Identifier
(Selectr
, Entity
(Component
));
5157 -- If no association, this is not a legal component of the type
5158 -- in question, unless its association is provided with a box.
5160 if No
(New_Assoc
) then
5161 if Box_Present
(Parent
(Selectr
)) then
5163 -- This may still be a bogus component with a box. Scan
5164 -- list of components to verify that a component with
5165 -- that name exists.
5171 C
:= First_Component
(Typ
);
5172 while Present
(C
) loop
5173 if Chars
(C
) = Chars
(Selectr
) then
5175 -- If the context is an extension aggregate,
5176 -- the component must not be inherited from
5177 -- the ancestor part of the aggregate.
5179 if Nkind
(N
) /= N_Extension_Aggregate
5181 Scope
(Original_Record_Component
(C
)) /=
5182 Etype
(Ancestor_Part
(N
))
5192 Error_Msg_Node_2
:= Typ
;
5193 Error_Msg_N
("& is not a component of}", Selectr
);
5197 elsif Chars
(Selectr
) /= Name_uTag
5198 and then Chars
(Selectr
) /= Name_uParent
5200 if not Has_Discriminants
(Typ
) then
5201 Error_Msg_Node_2
:= Typ
;
5202 Error_Msg_N
("& is not a component of}", Selectr
);
5205 ("& is not a component of the aggregate subtype",
5209 Check_Misspelled_Component
(Components
, Selectr
);
5212 elsif No
(Typech
) then
5213 Typech
:= Base_Type
(Etype
(Component
));
5215 -- AI05-0199: In Ada 2012, several components of anonymous
5216 -- access types can appear in a choice list, as long as the
5217 -- designated types match.
5219 elsif Typech
/= Base_Type
(Etype
(Component
)) then
5220 if Ada_Version
>= Ada_2012
5221 and then Ekind
(Typech
) = E_Anonymous_Access_Type
5223 Ekind
(Etype
(Component
)) = E_Anonymous_Access_Type
5224 and then Base_Type
(Designated_Type
(Typech
)) =
5225 Base_Type
(Designated_Type
(Etype
(Component
)))
5227 Subtypes_Statically_Match
(Typech
, (Etype
(Component
)))
5231 elsif not Box_Present
(Parent
(Selectr
)) then
5233 ("components in choice list must have same type",
5242 end loop Verification
;
5245 -- STEP 8: replace the original aggregate
5248 New_Aggregate
: constant Node_Id
:= New_Copy
(N
);
5251 Set_Expressions
(New_Aggregate
, No_List
);
5252 Set_Etype
(New_Aggregate
, Etype
(N
));
5253 Set_Component_Associations
(New_Aggregate
, New_Assoc_List
);
5254 Set_Check_Actuals
(New_Aggregate
, Check_Actuals
(N
));
5256 Rewrite
(N
, New_Aggregate
);
5259 -- Check the dimensions of the components in the record aggregate
5261 Analyze_Dimension_Extension_Or_Record_Aggregate
(N
);
5262 end Resolve_Record_Aggregate
;
5264 -----------------------------
5265 -- Check_Can_Never_Be_Null --
5266 -----------------------------
5268 procedure Check_Can_Never_Be_Null
(Typ
: Entity_Id
; Expr
: Node_Id
) is
5269 Comp_Typ
: Entity_Id
;
5273 (Ada_Version
>= Ada_2005
5274 and then Present
(Expr
)
5275 and then Known_Null
(Expr
));
5278 when E_Array_Type
=>
5279 Comp_Typ
:= Component_Type
(Typ
);
5284 Comp_Typ
:= Etype
(Typ
);
5290 if Can_Never_Be_Null
(Comp_Typ
) then
5292 -- Here we know we have a constraint error. Note that we do not use
5293 -- Apply_Compile_Time_Constraint_Error here to the Expr, which might
5294 -- seem the more natural approach. That's because in some cases the
5295 -- components are rewritten, and the replacement would be missed.
5296 -- We do not mark the whole aggregate as raising a constraint error,
5297 -- because the association may be a null array range.
5300 ("(Ada 2005) null not allowed in null-excluding component??", Expr
);
5302 ("\Constraint_Error will be raised at run time??", Expr
);
5305 Make_Raise_Constraint_Error
5306 (Sloc
(Expr
), Reason
=> CE_Access_Check_Failed
));
5307 Set_Etype
(Expr
, Comp_Typ
);
5308 Set_Analyzed
(Expr
);
5310 end Check_Can_Never_Be_Null
;
5312 ---------------------
5313 -- Sort_Case_Table --
5314 ---------------------
5316 procedure Sort_Case_Table
(Case_Table
: in out Case_Table_Type
) is
5317 U
: constant Int
:= Case_Table
'Last;
5325 T
:= Case_Table
(K
+ 1);
5329 and then Expr_Value
(Case_Table
(J
- 1).Lo
) > Expr_Value
(T
.Lo
)
5331 Case_Table
(J
) := Case_Table
(J
- 1);
5335 Case_Table
(J
) := T
;
5338 end Sort_Case_Table
;