1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2018, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Aspects
; use Aspects
;
27 with Atree
; use Atree
;
28 with Debug
; use Debug
;
29 with Einfo
; use Einfo
;
30 with Elists
; use Elists
;
31 with Errout
; use Errout
;
32 with Expander
; use Expander
;
33 with Exp_Ch6
; use Exp_Ch6
;
34 with Exp_Ch7
; use Exp_Ch7
;
35 with Exp_Tss
; use Exp_Tss
;
36 with Exp_Util
; use Exp_Util
;
37 with Fname
; use Fname
;
38 with Fname
.UF
; use Fname
.UF
;
40 with Namet
; use Namet
;
41 with Nmake
; use Nmake
;
42 with Nlists
; use Nlists
;
43 with Output
; use Output
;
44 with Sem_Aux
; use Sem_Aux
;
45 with Sem_Ch8
; use Sem_Ch8
;
46 with Sem_Ch10
; use Sem_Ch10
;
47 with Sem_Ch12
; use Sem_Ch12
;
48 with Sem_Prag
; use Sem_Prag
;
49 with Sem_Util
; use Sem_Util
;
50 with Sinfo
; use Sinfo
;
51 with Sinput
; use Sinput
;
52 with Snames
; use Snames
;
53 with Stand
; use Stand
;
54 with Uname
; use Uname
;
55 with Tbuild
; use Tbuild
;
57 package body Inline
is
59 Check_Inlining_Restrictions
: constant Boolean := True;
60 -- In the following cases the frontend rejects inlining because they
61 -- are not handled well by the backend. This variable facilitates
62 -- disabling these restrictions to evaluate future versions of the
63 -- GCC backend in which some of the restrictions may be supported.
65 -- - subprograms that have:
66 -- - nested subprograms
68 -- - package declarations
69 -- - task or protected object declarations
70 -- - some of the following statements:
72 -- - asynchronous-select
73 -- - conditional-entry-call
79 Inlined_Calls
: Elist_Id
;
80 -- List of frontend inlined calls
82 Backend_Calls
: Elist_Id
;
83 -- List of inline calls passed to the backend
85 Backend_Inlined_Subps
: Elist_Id
;
86 -- List of subprograms inlined by the backend
88 Backend_Not_Inlined_Subps
: Elist_Id
;
89 -- List of subprograms that cannot be inlined by the backend
95 -- Inlined functions are actually placed in line by the backend if the
96 -- corresponding bodies are available (i.e. compiled). Whenever we find
97 -- a call to an inlined subprogram, we add the name of the enclosing
98 -- compilation unit to a worklist. After all compilation, and after
99 -- expansion of generic bodies, we traverse the list of pending bodies
100 -- and compile them as well.
102 package Inlined_Bodies
is new Table
.Table
(
103 Table_Component_Type
=> Entity_Id
,
104 Table_Index_Type
=> Int
,
105 Table_Low_Bound
=> 0,
106 Table_Initial
=> Alloc
.Inlined_Bodies_Initial
,
107 Table_Increment
=> Alloc
.Inlined_Bodies_Increment
,
108 Table_Name
=> "Inlined_Bodies");
110 -----------------------
111 -- Inline Processing --
112 -----------------------
114 -- For each call to an inlined subprogram, we make entries in a table
115 -- that stores caller and callee, and indicates the call direction from
116 -- one to the other. We also record the compilation unit that contains
117 -- the callee. After analyzing the bodies of all such compilation units,
118 -- we compute the transitive closure of inlined subprograms called from
119 -- the main compilation unit and make it available to the code generator
120 -- in no particular order, thus allowing cycles in the call graph.
122 Last_Inlined
: Entity_Id
:= Empty
;
124 -- For each entry in the table we keep a list of successors in topological
125 -- order, i.e. callers of the current subprogram.
127 type Subp_Index
is new Nat
;
128 No_Subp
: constant Subp_Index
:= 0;
130 -- The subprogram entities are hashed into the Inlined table
132 Num_Hash_Headers
: constant := 512;
134 Hash_Headers
: array (Subp_Index
range 0 .. Num_Hash_Headers
- 1)
137 type Succ_Index
is new Nat
;
138 No_Succ
: constant Succ_Index
:= 0;
140 type Succ_Info
is record
145 -- The following table stores list elements for the successor lists. These
146 -- lists cannot be chained directly through entries in the Inlined table,
147 -- because a given subprogram can appear in several such lists.
149 package Successors
is new Table
.Table
(
150 Table_Component_Type
=> Succ_Info
,
151 Table_Index_Type
=> Succ_Index
,
152 Table_Low_Bound
=> 1,
153 Table_Initial
=> Alloc
.Successors_Initial
,
154 Table_Increment
=> Alloc
.Successors_Increment
,
155 Table_Name
=> "Successors");
157 type Subp_Info
is record
158 Name
: Entity_Id
:= Empty
;
159 Next
: Subp_Index
:= No_Subp
;
160 First_Succ
: Succ_Index
:= No_Succ
;
161 Main_Call
: Boolean := False;
162 Processed
: Boolean := False;
165 package Inlined
is new Table
.Table
(
166 Table_Component_Type
=> Subp_Info
,
167 Table_Index_Type
=> Subp_Index
,
168 Table_Low_Bound
=> 1,
169 Table_Initial
=> Alloc
.Inlined_Initial
,
170 Table_Increment
=> Alloc
.Inlined_Increment
,
171 Table_Name
=> "Inlined");
173 -----------------------
174 -- Local Subprograms --
175 -----------------------
177 procedure Add_Call
(Called
: Entity_Id
; Caller
: Entity_Id
:= Empty
);
178 -- Make two entries in Inlined table, for an inlined subprogram being
179 -- called, and for the inlined subprogram that contains the call. If
180 -- the call is in the main compilation unit, Caller is Empty.
182 procedure Add_Inlined_Subprogram
(E
: Entity_Id
);
183 -- Add subprogram E to the list of inlined subprogram for the unit
185 function Add_Subp
(E
: Entity_Id
) return Subp_Index
;
186 -- Make entry in Inlined table for subprogram E, or return table index
187 -- that already holds E.
189 function Get_Code_Unit_Entity
(E
: Entity_Id
) return Entity_Id
;
190 pragma Inline
(Get_Code_Unit_Entity
);
191 -- Return the entity node for the unit containing E. Always return the spec
194 function Has_Initialized_Type
(E
: Entity_Id
) return Boolean;
195 -- If a candidate for inlining contains type declarations for types with
196 -- nontrivial initialization procedures, they are not worth inlining.
198 function Has_Single_Return
(N
: Node_Id
) return Boolean;
199 -- In general we cannot inline functions that return unconstrained type.
200 -- However, we can handle such functions if all return statements return a
201 -- local variable that is the only declaration in the body of the function.
202 -- In that case the call can be replaced by that local variable as is done
203 -- for other inlined calls.
205 function In_Main_Unit_Or_Subunit
(E
: Entity_Id
) return Boolean;
206 -- Return True if E is in the main unit or its spec or in a subunit
208 function Is_Nested
(E
: Entity_Id
) return Boolean;
209 -- If the function is nested inside some other function, it will always
210 -- be compiled if that function is, so don't add it to the inline list.
211 -- We cannot compile a nested function outside the scope of the containing
212 -- function anyway. This is also the case if the function is defined in a
213 -- task body or within an entry (for example, an initialization procedure).
215 procedure Remove_Aspects_And_Pragmas
(Body_Decl
: Node_Id
);
216 -- Remove all aspects and/or pragmas that have no meaning in inlined body
217 -- Body_Decl. The analysis of these items is performed on the non-inlined
218 -- body. The items currently removed are:
231 ------------------------------
232 -- Deferred Cleanup Actions --
233 ------------------------------
235 -- The cleanup actions for scopes that contain instantiations is delayed
236 -- until after expansion of those instantiations, because they may contain
237 -- finalizable objects or tasks that affect the cleanup code. A scope
238 -- that contains instantiations only needs to be finalized once, even
239 -- if it contains more than one instance. We keep a list of scopes
240 -- that must still be finalized, and call cleanup_actions after all
241 -- the instantiations have been completed.
245 procedure Add_Scope_To_Clean
(Inst
: Entity_Id
);
246 -- Build set of scopes on which cleanup actions must be performed
248 procedure Cleanup_Scopes
;
249 -- Complete cleanup actions on scopes that need it
255 procedure Add_Call
(Called
: Entity_Id
; Caller
: Entity_Id
:= Empty
) is
256 P1
: constant Subp_Index
:= Add_Subp
(Called
);
261 if Present
(Caller
) then
262 P2
:= Add_Subp
(Caller
);
264 -- Add P1 to the list of successors of P2, if not already there.
265 -- Note that P2 may contain more than one call to P1, and only
266 -- one needs to be recorded.
268 J
:= Inlined
.Table
(P2
).First_Succ
;
269 while J
/= No_Succ
loop
270 if Successors
.Table
(J
).Subp
= P1
then
274 J
:= Successors
.Table
(J
).Next
;
277 -- On exit, make a successor entry for P1
279 Successors
.Increment_Last
;
280 Successors
.Table
(Successors
.Last
).Subp
:= P1
;
281 Successors
.Table
(Successors
.Last
).Next
:=
282 Inlined
.Table
(P2
).First_Succ
;
283 Inlined
.Table
(P2
).First_Succ
:= Successors
.Last
;
285 Inlined
.Table
(P1
).Main_Call
:= True;
289 ----------------------
290 -- Add_Inlined_Body --
291 ----------------------
293 procedure Add_Inlined_Body
(E
: Entity_Id
; N
: Node_Id
) is
295 type Inline_Level_Type
is (Dont_Inline
, Inline_Call
, Inline_Package
);
296 -- Level of inlining for the call: Dont_Inline means no inlining,
297 -- Inline_Call means that only the call is considered for inlining,
298 -- Inline_Package means that the call is considered for inlining and
299 -- its package compiled and scanned for more inlining opportunities.
301 function Is_Non_Loading_Expression_Function
302 (Id
: Entity_Id
) return Boolean;
303 -- Determine whether arbitrary entity Id denotes a subprogram which is
306 -- * An expression function
308 -- * A function completed by an expression function where both the
309 -- spec and body are in the same context.
311 function Must_Inline
return Inline_Level_Type
;
312 -- Inlining is only done if the call statement N is in the main unit,
313 -- or within the body of another inlined subprogram.
315 ----------------------------------------
316 -- Is_Non_Loading_Expression_Function --
317 ----------------------------------------
319 function Is_Non_Loading_Expression_Function
320 (Id
: Entity_Id
) return Boolean
327 -- A stand-alone expression function is transformed into a spec-body
328 -- pair in-place. Since both the spec and body are in the same list,
329 -- the inlining of such an expression function does not need to load
332 if Is_Expression_Function
(Id
) then
335 -- A function may be completed by an expression function
337 elsif Ekind
(Id
) = E_Function
then
338 Spec_Decl
:= Unit_Declaration_Node
(Id
);
340 if Nkind
(Spec_Decl
) = N_Subprogram_Declaration
then
341 Body_Id
:= Corresponding_Body
(Spec_Decl
);
343 if Present
(Body_Id
) then
344 Body_Decl
:= Unit_Declaration_Node
(Body_Id
);
346 -- The inlining of a completing expression function does
347 -- not need to load anything extra when both the spec and
348 -- body are in the same context.
351 Was_Expression_Function
(Body_Decl
)
352 and then Parent
(Spec_Decl
) = Parent
(Body_Decl
);
358 end Is_Non_Loading_Expression_Function
;
364 function Must_Inline
return Inline_Level_Type
is
369 -- Check if call is in main unit
371 Scop
:= Current_Scope
;
373 -- Do not try to inline if scope is standard. This could happen, for
374 -- example, for a call to Add_Global_Declaration, and it causes
375 -- trouble to try to inline at this level.
377 if Scop
= Standard_Standard
then
381 -- Otherwise lookup scope stack to outer scope
383 while Scope
(Scop
) /= Standard_Standard
384 and then not Is_Child_Unit
(Scop
)
386 Scop
:= Scope
(Scop
);
389 Comp
:= Parent
(Scop
);
390 while Nkind
(Comp
) /= N_Compilation_Unit
loop
391 Comp
:= Parent
(Comp
);
394 -- If the call is in the main unit, inline the call and compile the
395 -- package of the subprogram to find more calls to be inlined.
397 if Comp
= Cunit
(Main_Unit
)
398 or else Comp
= Library_Unit
(Cunit
(Main_Unit
))
401 return Inline_Package
;
404 -- The call is not in the main unit. See if it is in some subprogram
405 -- that can be inlined outside its unit. If so, inline the call and,
406 -- if the inlining level is set to 1, stop there; otherwise also
407 -- compile the package as above.
409 Scop
:= Current_Scope
;
410 while Scope
(Scop
) /= Standard_Standard
411 and then not Is_Child_Unit
(Scop
)
413 if Is_Overloadable
(Scop
)
414 and then Is_Inlined
(Scop
)
415 and then not Is_Nested
(Scop
)
419 if Inline_Level
= 1 then
422 return Inline_Package
;
426 Scop
:= Scope
(Scop
);
432 Level
: Inline_Level_Type
;
434 -- Start of processing for Add_Inlined_Body
437 Append_New_Elmt
(N
, To
=> Backend_Calls
);
439 -- Skip subprograms that cannot be inlined outside their unit
441 if Is_Abstract_Subprogram
(E
)
442 or else Convention
(E
) = Convention_Protected
443 or else Is_Nested
(E
)
448 -- Find out whether the call must be inlined. Unless the result is
449 -- Dont_Inline, Must_Inline also creates an edge for the call in the
450 -- callgraph; however, it will not be activated until after Is_Called
451 -- is set on the subprogram.
453 Level
:= Must_Inline
;
455 if Level
= Dont_Inline
then
459 -- If the call was generated by the compiler and is to a subprogram in
460 -- a run-time unit, we need to suppress debugging information for it,
461 -- so that the code that is eventually inlined will not affect the
462 -- debugging of the program. We do not do it if the call comes from
463 -- source because, even if the call is inlined, the user may expect it
464 -- to be present in the debugging information.
466 if not Comes_From_Source
(N
)
467 and then In_Extended_Main_Source_Unit
(N
)
468 and then Is_Predefined_Unit
(Get_Source_Unit
(E
))
470 Set_Needs_Debug_Info
(E
, False);
473 -- If the subprogram is an expression function, or is completed by one
474 -- where both the spec and body are in the same context, then there is
475 -- no need to load any package body since the body of the function is
478 if Is_Non_Loading_Expression_Function
(E
) then
483 -- Find unit containing E, and add to list of inlined bodies if needed.
484 -- If the body is already present, no need to load any other unit. This
485 -- is the case for an initialization procedure, which appears in the
486 -- package declaration that contains the type. It is also the case if
487 -- the body has already been analyzed. Finally, if the unit enclosing
488 -- E is an instance, the instance body will be analyzed in any case,
489 -- and there is no need to add the enclosing unit (whose body might not
492 -- Library-level functions must be handled specially, because there is
493 -- no enclosing package to retrieve. In this case, it is the body of
494 -- the function that will have to be loaded.
497 Pack
: constant Entity_Id
:= Get_Code_Unit_Entity
(E
);
502 Inlined_Bodies
.Increment_Last
;
503 Inlined_Bodies
.Table
(Inlined_Bodies
.Last
) := E
;
505 elsif Ekind
(Pack
) = E_Package
then
508 if Is_Generic_Instance
(Pack
) then
511 -- Do not inline the package if the subprogram is an init proc
512 -- or other internally generated subprogram, because in that
513 -- case the subprogram body appears in the same unit that
514 -- declares the type, and that body is visible to the back end.
515 -- Do not inline it either if it is in the main unit.
516 -- Extend the -gnatn2 processing to -gnatn1 for Inline_Always
517 -- calls if the back-end takes care of inlining the call.
518 -- Note that Level in Inline_Package | Inline_Call here.
520 elsif ((Level
= Inline_Call
521 and then Has_Pragma_Inline_Always
(E
)
522 and then Back_End_Inlining
)
523 or else Level
= Inline_Package
)
524 and then not Is_Inlined
(Pack
)
525 and then not Is_Internal
(E
)
526 and then not In_Main_Unit_Or_Subunit
(Pack
)
528 Set_Is_Inlined
(Pack
);
529 Inlined_Bodies
.Increment_Last
;
530 Inlined_Bodies
.Table
(Inlined_Bodies
.Last
) := Pack
;
534 -- Ensure that Analyze_Inlined_Bodies will be invoked after
535 -- completing the analysis of the current unit.
537 Inline_Processing_Required
:= True;
539 end Add_Inlined_Body
;
541 ----------------------------
542 -- Add_Inlined_Subprogram --
543 ----------------------------
545 procedure Add_Inlined_Subprogram
(E
: Entity_Id
) is
546 Decl
: constant Node_Id
:= Parent
(Declaration_Node
(E
));
547 Pack
: constant Entity_Id
:= Get_Code_Unit_Entity
(E
);
549 procedure Register_Backend_Inlined_Subprogram
(Subp
: Entity_Id
);
550 -- Append Subp to the list of subprograms inlined by the backend
552 procedure Register_Backend_Not_Inlined_Subprogram
(Subp
: Entity_Id
);
553 -- Append Subp to the list of subprograms that cannot be inlined by
556 -----------------------------------------
557 -- Register_Backend_Inlined_Subprogram --
558 -----------------------------------------
560 procedure Register_Backend_Inlined_Subprogram
(Subp
: Entity_Id
) is
562 Append_New_Elmt
(Subp
, To
=> Backend_Inlined_Subps
);
563 end Register_Backend_Inlined_Subprogram
;
565 ---------------------------------------------
566 -- Register_Backend_Not_Inlined_Subprogram --
567 ---------------------------------------------
569 procedure Register_Backend_Not_Inlined_Subprogram
(Subp
: Entity_Id
) is
571 Append_New_Elmt
(Subp
, To
=> Backend_Not_Inlined_Subps
);
572 end Register_Backend_Not_Inlined_Subprogram
;
574 -- Start of processing for Add_Inlined_Subprogram
577 -- If the subprogram is to be inlined, and if its unit is known to be
578 -- inlined or is an instance whose body will be analyzed anyway or the
579 -- subprogram was generated as a body by the compiler (for example an
580 -- initialization procedure) or its declaration was provided along with
581 -- the body (for example an expression function), and if it is declared
582 -- at the library level not in the main unit, and if it can be inlined
583 -- by the back-end, then insert it in the list of inlined subprograms.
586 and then (Is_Inlined
(Pack
)
587 or else Is_Generic_Instance
(Pack
)
588 or else Nkind
(Decl
) = N_Subprogram_Body
589 or else Present
(Corresponding_Body
(Decl
)))
590 and then not In_Main_Unit_Or_Subunit
(E
)
591 and then not Is_Nested
(E
)
592 and then not Has_Initialized_Type
(E
)
594 Register_Backend_Inlined_Subprogram
(E
);
596 if No
(Last_Inlined
) then
597 Set_First_Inlined_Subprogram
(Cunit
(Main_Unit
), E
);
599 Set_Next_Inlined_Subprogram
(Last_Inlined
, E
);
605 Register_Backend_Not_Inlined_Subprogram
(E
);
607 end Add_Inlined_Subprogram
;
609 ------------------------
610 -- Add_Scope_To_Clean --
611 ------------------------
613 procedure Add_Scope_To_Clean
(Inst
: Entity_Id
) is
614 Scop
: constant Entity_Id
:= Enclosing_Dynamic_Scope
(Inst
);
618 -- If the instance appears in a library-level package declaration,
619 -- all finalization is global, and nothing needs doing here.
621 if Scop
= Standard_Standard
then
625 -- If the instance is within a generic unit, no finalization code
626 -- can be generated. Note that at this point all bodies have been
627 -- analyzed, and the scope stack itself is not present, and the flag
628 -- Inside_A_Generic is not set.
635 while Present
(S
) and then S
/= Standard_Standard
loop
636 if Is_Generic_Unit
(S
) then
644 Elmt
:= First_Elmt
(To_Clean
);
645 while Present
(Elmt
) loop
646 if Node
(Elmt
) = Scop
then
650 Elmt
:= Next_Elmt
(Elmt
);
653 Append_Elmt
(Scop
, To_Clean
);
654 end Add_Scope_To_Clean
;
660 function Add_Subp
(E
: Entity_Id
) return Subp_Index
is
661 Index
: Subp_Index
:= Subp_Index
(E
) mod Num_Hash_Headers
;
665 -- Initialize entry in Inlined table
667 procedure New_Entry
is
669 Inlined
.Increment_Last
;
670 Inlined
.Table
(Inlined
.Last
).Name
:= E
;
671 Inlined
.Table
(Inlined
.Last
).Next
:= No_Subp
;
672 Inlined
.Table
(Inlined
.Last
).First_Succ
:= No_Succ
;
673 Inlined
.Table
(Inlined
.Last
).Main_Call
:= False;
674 Inlined
.Table
(Inlined
.Last
).Processed
:= False;
677 -- Start of processing for Add_Subp
680 if Hash_Headers
(Index
) = No_Subp
then
682 Hash_Headers
(Index
) := Inlined
.Last
;
686 J
:= Hash_Headers
(Index
);
687 while J
/= No_Subp
loop
688 if Inlined
.Table
(J
).Name
= E
then
692 J
:= Inlined
.Table
(J
).Next
;
696 -- On exit, subprogram was not found. Enter in table. Index is
697 -- the current last entry on the hash chain.
700 Inlined
.Table
(Index
).Next
:= Inlined
.Last
;
705 ----------------------------
706 -- Analyze_Inlined_Bodies --
707 ----------------------------
709 procedure Analyze_Inlined_Bodies
is
716 type Pending_Index
is new Nat
;
718 package Pending_Inlined
is new Table
.Table
(
719 Table_Component_Type
=> Subp_Index
,
720 Table_Index_Type
=> Pending_Index
,
721 Table_Low_Bound
=> 1,
722 Table_Initial
=> Alloc
.Inlined_Initial
,
723 Table_Increment
=> Alloc
.Inlined_Increment
,
724 Table_Name
=> "Pending_Inlined");
725 -- The workpile used to compute the transitive closure
727 -- Start of processing for Analyze_Inlined_Bodies
730 if Serious_Errors_Detected
= 0 then
731 Push_Scope
(Standard_Standard
);
734 while J
<= Inlined_Bodies
.Last
735 and then Serious_Errors_Detected
= 0
737 Pack
:= Inlined_Bodies
.Table
(J
);
739 and then Scope
(Pack
) /= Standard_Standard
740 and then not Is_Child_Unit
(Pack
)
742 Pack
:= Scope
(Pack
);
745 Comp_Unit
:= Parent
(Pack
);
746 while Present
(Comp_Unit
)
747 and then Nkind
(Comp_Unit
) /= N_Compilation_Unit
749 Comp_Unit
:= Parent
(Comp_Unit
);
752 -- Load the body if it exists and contains inlineable entities,
753 -- unless it is the main unit, or is an instance whose body has
754 -- already been analyzed.
756 if Present
(Comp_Unit
)
757 and then Comp_Unit
/= Cunit
(Main_Unit
)
758 and then Body_Required
(Comp_Unit
)
760 (Nkind
(Unit
(Comp_Unit
)) /= N_Package_Declaration
762 (No
(Corresponding_Body
(Unit
(Comp_Unit
)))
763 and then Body_Needed_For_Inlining
764 (Defining_Entity
(Unit
(Comp_Unit
)))))
767 Bname
: constant Unit_Name_Type
:=
768 Get_Body_Name
(Get_Unit_Name
(Unit
(Comp_Unit
)));
773 if not Is_Loaded
(Bname
) then
774 Style_Check
:= False;
775 Load_Needed_Body
(Comp_Unit
, OK
);
779 -- Warn that a body was not available for inlining
782 Error_Msg_Unit_1
:= Bname
;
784 ("one or more inlined subprograms accessed in $!??",
787 Get_File_Name
(Bname
, Subunit
=> False);
788 Error_Msg_N
("\but file{ was not found!??", Comp_Unit
);
796 if J
> Inlined_Bodies
.Last
then
798 -- The analysis of required bodies may have produced additional
799 -- generic instantiations. To obtain further inlining, we need
800 -- to perform another round of generic body instantiations.
804 -- Symmetrically, the instantiation of required generic bodies
805 -- may have caused additional bodies to be inlined. To obtain
806 -- further inlining, we keep looping over the inlined bodies.
810 -- The list of inlined subprograms is an overestimate, because it
811 -- includes inlined functions called from functions that are compiled
812 -- as part of an inlined package, but are not themselves called. An
813 -- accurate computation of just those subprograms that are needed
814 -- requires that we perform a transitive closure over the call graph,
815 -- starting from calls in the main compilation unit.
817 for Index
in Inlined
.First
.. Inlined
.Last
loop
818 if not Is_Called
(Inlined
.Table
(Index
).Name
) then
820 -- This means that Add_Inlined_Body added the subprogram to the
821 -- table but wasn't able to handle its code unit. Do nothing.
823 Inlined
.Table
(Index
).Processed
:= True;
825 elsif Inlined
.Table
(Index
).Main_Call
then
826 Pending_Inlined
.Increment_Last
;
827 Pending_Inlined
.Table
(Pending_Inlined
.Last
) := Index
;
828 Inlined
.Table
(Index
).Processed
:= True;
831 Set_Is_Called
(Inlined
.Table
(Index
).Name
, False);
835 -- Iterate over the workpile until it is emptied, propagating the
836 -- Is_Called flag to the successors of the processed subprogram.
838 while Pending_Inlined
.Last
>= Pending_Inlined
.First
loop
839 Subp
:= Pending_Inlined
.Table
(Pending_Inlined
.Last
);
840 Pending_Inlined
.Decrement_Last
;
842 S
:= Inlined
.Table
(Subp
).First_Succ
;
844 while S
/= No_Succ
loop
845 Subp
:= Successors
.Table
(S
).Subp
;
847 if not Inlined
.Table
(Subp
).Processed
then
848 Set_Is_Called
(Inlined
.Table
(Subp
).Name
);
849 Pending_Inlined
.Increment_Last
;
850 Pending_Inlined
.Table
(Pending_Inlined
.Last
) := Subp
;
851 Inlined
.Table
(Subp
).Processed
:= True;
854 S
:= Successors
.Table
(S
).Next
;
858 -- Finally add the called subprograms to the list of inlined
859 -- subprograms for the unit.
861 for Index
in Inlined
.First
.. Inlined
.Last
loop
862 if Is_Called
(Inlined
.Table
(Index
).Name
) then
863 Add_Inlined_Subprogram
(Inlined
.Table
(Index
).Name
);
869 end Analyze_Inlined_Bodies
;
871 --------------------------
872 -- Build_Body_To_Inline --
873 --------------------------
875 procedure Build_Body_To_Inline
(N
: Node_Id
; Spec_Id
: Entity_Id
) is
876 Decl
: constant Node_Id
:= Unit_Declaration_Node
(Spec_Id
);
877 Analysis_Status
: constant Boolean := Full_Analysis
;
878 Original_Body
: Node_Id
;
879 Body_To_Analyze
: Node_Id
;
880 Max_Size
: constant := 10;
882 function Has_Pending_Instantiation
return Boolean;
883 -- If some enclosing body contains instantiations that appear before
884 -- the corresponding generic body, the enclosing body has a freeze node
885 -- so that it can be elaborated after the generic itself. This might
886 -- conflict with subsequent inlinings, so that it is unsafe to try to
887 -- inline in such a case.
889 function Has_Single_Return_In_GNATprove_Mode
return Boolean;
890 -- This function is called only in GNATprove mode, and it returns
891 -- True if the subprogram has no return statement or a single return
892 -- statement as last statement. It returns False for subprogram with
893 -- a single return as last statement inside one or more blocks, as
894 -- inlining would generate gotos in that case as well (although the
895 -- goto is useless in that case).
897 function Uses_Secondary_Stack
(Bod
: Node_Id
) return Boolean;
898 -- If the body of the subprogram includes a call that returns an
899 -- unconstrained type, the secondary stack is involved, and it
900 -- is not worth inlining.
902 -------------------------------
903 -- Has_Pending_Instantiation --
904 -------------------------------
906 function Has_Pending_Instantiation
return Boolean is
911 while Present
(S
) loop
912 if Is_Compilation_Unit
(S
)
913 or else Is_Child_Unit
(S
)
917 elsif Ekind
(S
) = E_Package
918 and then Has_Forward_Instantiation
(S
)
927 end Has_Pending_Instantiation
;
929 -----------------------------------------
930 -- Has_Single_Return_In_GNATprove_Mode --
931 -----------------------------------------
933 function Has_Single_Return_In_GNATprove_Mode
return Boolean is
934 Body_To_Inline
: constant Node_Id
:= N
;
935 Last_Statement
: Node_Id
:= Empty
;
937 function Check_Return
(N
: Node_Id
) return Traverse_Result
;
938 -- Returns OK on node N if this is not a return statement different
939 -- from the last statement in the subprogram.
945 function Check_Return
(N
: Node_Id
) return Traverse_Result
is
948 when N_Extended_Return_Statement
949 | N_Simple_Return_Statement
951 if N
= Last_Statement
then
957 -- Skip locally declared subprogram bodies inside the body to
958 -- inline, as the return statements inside those do not count.
960 when N_Subprogram_Body
=>
961 if N
= Body_To_Inline
then
972 function Check_All_Returns
is new Traverse_Func
(Check_Return
);
974 -- Start of processing for Has_Single_Return_In_GNATprove_Mode
977 -- Retrieve the last statement
979 Last_Statement
:= Last
(Statements
(Handled_Statement_Sequence
(N
)));
981 -- Check that the last statement is the only possible return
982 -- statement in the subprogram.
984 return Check_All_Returns
(N
) = OK
;
985 end Has_Single_Return_In_GNATprove_Mode
;
987 --------------------------
988 -- Uses_Secondary_Stack --
989 --------------------------
991 function Uses_Secondary_Stack
(Bod
: Node_Id
) return Boolean is
992 function Check_Call
(N
: Node_Id
) return Traverse_Result
;
993 -- Look for function calls that return an unconstrained type
999 function Check_Call
(N
: Node_Id
) return Traverse_Result
is
1001 if Nkind
(N
) = N_Function_Call
1002 and then Is_Entity_Name
(Name
(N
))
1003 and then Is_Composite_Type
(Etype
(Entity
(Name
(N
))))
1004 and then not Is_Constrained
(Etype
(Entity
(Name
(N
))))
1007 ("cannot inline & (call returns unconstrained type)?",
1015 function Check_Calls
is new Traverse_Func
(Check_Call
);
1018 return Check_Calls
(Bod
) = Abandon
;
1019 end Uses_Secondary_Stack
;
1021 -- Start of processing for Build_Body_To_Inline
1024 -- Return immediately if done already
1026 if Nkind
(Decl
) = N_Subprogram_Declaration
1027 and then Present
(Body_To_Inline
(Decl
))
1031 -- Subprograms that have return statements in the middle of the body are
1032 -- inlined with gotos. GNATprove does not currently support gotos, so
1033 -- we prevent such inlining.
1035 elsif GNATprove_Mode
1036 and then not Has_Single_Return_In_GNATprove_Mode
1038 Cannot_Inline
("cannot inline & (multiple returns)?", N
, Spec_Id
);
1041 -- Functions that return unconstrained composite types require
1042 -- secondary stack handling, and cannot currently be inlined, unless
1043 -- all return statements return a local variable that is the first
1044 -- local declaration in the body.
1046 elsif Ekind
(Spec_Id
) = E_Function
1047 and then not Is_Scalar_Type
(Etype
(Spec_Id
))
1048 and then not Is_Access_Type
(Etype
(Spec_Id
))
1049 and then not Is_Constrained
(Etype
(Spec_Id
))
1051 if not Has_Single_Return
(N
) then
1053 ("cannot inline & (unconstrained return type)?", N
, Spec_Id
);
1057 -- Ditto for functions that return controlled types, where controlled
1058 -- actions interfere in complex ways with inlining.
1060 elsif Ekind
(Spec_Id
) = E_Function
1061 and then Needs_Finalization
(Etype
(Spec_Id
))
1064 ("cannot inline & (controlled return type)?", N
, Spec_Id
);
1068 if Present
(Declarations
(N
))
1069 and then Has_Excluded_Declaration
(Spec_Id
, Declarations
(N
))
1074 if Present
(Handled_Statement_Sequence
(N
)) then
1075 if Present
(Exception_Handlers
(Handled_Statement_Sequence
(N
))) then
1077 ("cannot inline& (exception handler)?",
1078 First
(Exception_Handlers
(Handled_Statement_Sequence
(N
))),
1082 elsif Has_Excluded_Statement
1083 (Spec_Id
, Statements
(Handled_Statement_Sequence
(N
)))
1089 -- We do not inline a subprogram that is too large, unless it is marked
1090 -- Inline_Always or we are in GNATprove mode. This pragma does not
1091 -- suppress the other checks on inlining (forbidden declarations,
1094 if not (Has_Pragma_Inline_Always
(Spec_Id
) or else GNATprove_Mode
)
1095 and then List_Length
1096 (Statements
(Handled_Statement_Sequence
(N
))) > Max_Size
1098 Cannot_Inline
("cannot inline& (body too large)?", N
, Spec_Id
);
1102 if Has_Pending_Instantiation
then
1104 ("cannot inline& (forward instance within enclosing body)?",
1109 -- Within an instance, the body to inline must be treated as a nested
1110 -- generic, so that the proper global references are preserved.
1112 -- Note that we do not do this at the library level, because it is not
1113 -- needed, and furthermore this causes trouble if front-end inlining
1114 -- is activated (-gnatN).
1116 if In_Instance
and then Scope
(Current_Scope
) /= Standard_Standard
then
1117 Save_Env
(Scope
(Current_Scope
), Scope
(Current_Scope
));
1118 Original_Body
:= Copy_Generic_Node
(N
, Empty
, Instantiating
=> True);
1120 Original_Body
:= Copy_Separate_Tree
(N
);
1123 -- We need to capture references to the formals in order to substitute
1124 -- the actuals at the point of inlining, i.e. instantiation. To treat
1125 -- the formals as globals to the body to inline, we nest it within a
1126 -- dummy parameterless subprogram, declared within the real one. To
1127 -- avoid generating an internal name (which is never public, and which
1128 -- affects serial numbers of other generated names), we use an internal
1129 -- symbol that cannot conflict with user declarations.
1131 Set_Parameter_Specifications
(Specification
(Original_Body
), No_List
);
1132 Set_Defining_Unit_Name
1133 (Specification
(Original_Body
),
1134 Make_Defining_Identifier
(Sloc
(N
), Name_uParent
));
1135 Set_Corresponding_Spec
(Original_Body
, Empty
);
1137 -- Remove all aspects/pragmas that have no meaning in an inlined body
1139 Remove_Aspects_And_Pragmas
(Original_Body
);
1142 Copy_Generic_Node
(Original_Body
, Empty
, Instantiating
=> False);
1144 -- Set return type of function, which is also global and does not need
1147 if Ekind
(Spec_Id
) = E_Function
then
1148 Set_Result_Definition
1149 (Specification
(Body_To_Analyze
),
1150 New_Occurrence_Of
(Etype
(Spec_Id
), Sloc
(N
)));
1153 if No
(Declarations
(N
)) then
1154 Set_Declarations
(N
, New_List
(Body_To_Analyze
));
1156 Append
(Body_To_Analyze
, Declarations
(N
));
1159 -- The body to inline is pre-analyzed. In GNATprove mode we must disable
1160 -- full analysis as well so that light expansion does not take place
1161 -- either, and name resolution is unaffected.
1163 Expander_Mode_Save_And_Set
(False);
1164 Full_Analysis
:= False;
1166 Analyze
(Body_To_Analyze
);
1167 Push_Scope
(Defining_Entity
(Body_To_Analyze
));
1168 Save_Global_References
(Original_Body
);
1170 Remove
(Body_To_Analyze
);
1172 Expander_Mode_Restore
;
1173 Full_Analysis
:= Analysis_Status
;
1175 -- Restore environment if previously saved
1177 if In_Instance
and then Scope
(Current_Scope
) /= Standard_Standard
then
1181 -- If secondary stack is used, there is no point in inlining. We have
1182 -- already issued the warning in this case, so nothing to do.
1184 if Uses_Secondary_Stack
(Body_To_Analyze
) then
1188 Set_Body_To_Inline
(Decl
, Original_Body
);
1189 Set_Ekind
(Defining_Entity
(Original_Body
), Ekind
(Spec_Id
));
1190 Set_Is_Inlined
(Spec_Id
);
1191 end Build_Body_To_Inline
;
1193 -------------------------------------------
1194 -- Call_Can_Be_Inlined_In_GNATprove_Mode --
1195 -------------------------------------------
1197 function Call_Can_Be_Inlined_In_GNATprove_Mode
1199 Subp
: Entity_Id
) return Boolean
1205 F
:= First_Formal
(Subp
);
1206 A
:= First_Actual
(N
);
1207 while Present
(F
) loop
1208 if Ekind
(F
) /= E_Out_Parameter
1209 and then not Same_Type
(Etype
(F
), Etype
(A
))
1211 (Is_By_Reference_Type
(Etype
(A
))
1212 or else Is_Limited_Type
(Etype
(A
)))
1222 end Call_Can_Be_Inlined_In_GNATprove_Mode
;
1224 --------------------------------------
1225 -- Can_Be_Inlined_In_GNATprove_Mode --
1226 --------------------------------------
1228 function Can_Be_Inlined_In_GNATprove_Mode
1229 (Spec_Id
: Entity_Id
;
1230 Body_Id
: Entity_Id
) return Boolean
1232 function Has_Formal_With_Discriminant_Dependent_Fields
1233 (Id
: Entity_Id
) return Boolean;
1234 -- Returns true if the subprogram has at least one formal parameter of
1235 -- an unconstrained record type with per-object constraints on component
1238 function Has_Some_Contract
(Id
: Entity_Id
) return Boolean;
1239 -- Return True if subprogram Id has any contract. The presence of
1240 -- Extensions_Visible or Volatile_Function is also considered as a
1243 function Is_Unit_Subprogram
(Id
: Entity_Id
) return Boolean;
1244 -- Return True if subprogram Id defines a compilation unit
1245 -- Shouldn't this be in Sem_Aux???
1247 function In_Package_Spec
(Id
: Entity_Id
) return Boolean;
1248 -- Return True if subprogram Id is defined in the package specification,
1249 -- either its visible or private part.
1251 ---------------------------------------------------
1252 -- Has_Formal_With_Discriminant_Dependent_Fields --
1253 ---------------------------------------------------
1255 function Has_Formal_With_Discriminant_Dependent_Fields
1256 (Id
: Entity_Id
) return Boolean
1258 function Has_Discriminant_Dependent_Component
1259 (Typ
: Entity_Id
) return Boolean;
1260 -- Determine whether unconstrained record type Typ has at least one
1261 -- component that depends on a discriminant.
1263 ------------------------------------------
1264 -- Has_Discriminant_Dependent_Component --
1265 ------------------------------------------
1267 function Has_Discriminant_Dependent_Component
1268 (Typ
: Entity_Id
) return Boolean
1273 -- Inspect all components of the record type looking for one that
1274 -- depends on a discriminant.
1276 Comp
:= First_Component
(Typ
);
1277 while Present
(Comp
) loop
1278 if Has_Discriminant_Dependent_Constraint
(Comp
) then
1282 Next_Component
(Comp
);
1286 end Has_Discriminant_Dependent_Component
;
1290 Subp_Id
: constant Entity_Id
:= Ultimate_Alias
(Id
);
1292 Formal_Typ
: Entity_Id
;
1294 -- Start of processing for
1295 -- Has_Formal_With_Discriminant_Dependent_Fields
1298 -- Inspect all parameters of the subprogram looking for a formal
1299 -- of an unconstrained record type with at least one discriminant
1300 -- dependent component.
1302 Formal
:= First_Formal
(Subp_Id
);
1303 while Present
(Formal
) loop
1304 Formal_Typ
:= Etype
(Formal
);
1306 if Is_Record_Type
(Formal_Typ
)
1307 and then not Is_Constrained
(Formal_Typ
)
1308 and then Has_Discriminant_Dependent_Component
(Formal_Typ
)
1313 Next_Formal
(Formal
);
1317 end Has_Formal_With_Discriminant_Dependent_Fields
;
1319 -----------------------
1320 -- Has_Some_Contract --
1321 -----------------------
1323 function Has_Some_Contract
(Id
: Entity_Id
) return Boolean is
1327 -- A call to an expression function may precede the actual body which
1328 -- is inserted at the end of the enclosing declarations. Ensure that
1329 -- the related entity is decorated before inspecting the contract.
1331 if Is_Subprogram_Or_Generic_Subprogram
(Id
) then
1332 Items
:= Contract
(Id
);
1334 -- Note that Classifications is not Empty when Extensions_Visible
1335 -- or Volatile_Function is present, which causes such subprograms
1336 -- to be considered to have a contract here. This is fine as we
1337 -- want to avoid inlining these too.
1339 return Present
(Items
)
1340 and then (Present
(Pre_Post_Conditions
(Items
)) or else
1341 Present
(Contract_Test_Cases
(Items
)) or else
1342 Present
(Classifications
(Items
)));
1346 end Has_Some_Contract
;
1348 ---------------------
1349 -- In_Package_Spec --
1350 ---------------------
1352 function In_Package_Spec
(Id
: Entity_Id
) return Boolean is
1353 P
: constant Node_Id
:= Parent
(Subprogram_Spec
(Id
));
1354 -- Parent of the subprogram's declaration
1357 return Nkind
(Enclosing_Declaration
(P
)) = N_Package_Declaration
;
1358 end In_Package_Spec
;
1360 ------------------------
1361 -- Is_Unit_Subprogram --
1362 ------------------------
1364 function Is_Unit_Subprogram
(Id
: Entity_Id
) return Boolean is
1365 Decl
: Node_Id
:= Parent
(Parent
(Id
));
1367 if Nkind
(Parent
(Id
)) = N_Defining_Program_Unit_Name
then
1368 Decl
:= Parent
(Decl
);
1371 return Nkind
(Parent
(Decl
)) = N_Compilation_Unit
;
1372 end Is_Unit_Subprogram
;
1374 -- Local declarations
1377 -- Procedure or function entity for the subprogram
1379 -- Start of processing for Can_Be_Inlined_In_GNATprove_Mode
1382 pragma Assert
(Present
(Spec_Id
) or else Present
(Body_Id
));
1384 if Present
(Spec_Id
) then
1390 -- Only local subprograms without contracts are inlined in GNATprove
1391 -- mode, as these are the subprograms which a user is not interested in
1392 -- analyzing in isolation, but rather in the context of their call. This
1393 -- is a convenient convention, that could be changed for an explicit
1394 -- pragma/aspect one day.
1396 -- In a number of special cases, inlining is not desirable or not
1397 -- possible, see below.
1399 -- Do not inline unit-level subprograms
1401 if Is_Unit_Subprogram
(Id
) then
1404 -- Do not inline subprograms declared in package specs, because they are
1405 -- not local, i.e. can be called either from anywhere (if declared in
1406 -- visible part) or from the child units (if declared in private part).
1408 elsif In_Package_Spec
(Id
) then
1411 -- Do not inline subprograms declared in other units. This is important
1412 -- in particular for subprograms defined in the private part of a
1413 -- package spec, when analyzing one of its child packages, as otherwise
1414 -- we issue spurious messages about the impossibility to inline such
1417 elsif not In_Extended_Main_Code_Unit
(Id
) then
1420 -- Do not inline subprograms marked No_Return, possibly used for
1421 -- signaling errors, which GNATprove handles specially.
1423 elsif No_Return
(Id
) then
1426 -- Do not inline subprograms that have a contract on the spec or the
1427 -- body. Use the contract(s) instead in GNATprove. This also prevents
1428 -- inlining of subprograms with Extensions_Visible or Volatile_Function.
1430 elsif (Present
(Spec_Id
) and then Has_Some_Contract
(Spec_Id
))
1432 (Present
(Body_Id
) and then Has_Some_Contract
(Body_Id
))
1436 -- Do not inline expression functions, which are directly inlined at the
1439 elsif (Present
(Spec_Id
) and then Is_Expression_Function
(Spec_Id
))
1441 (Present
(Body_Id
) and then Is_Expression_Function
(Body_Id
))
1445 -- Do not inline generic subprogram instances. The visibility rules of
1446 -- generic instances plays badly with inlining.
1448 elsif Is_Generic_Instance
(Spec_Id
) then
1451 -- Only inline subprograms whose spec is marked SPARK_Mode On. For
1452 -- the subprogram body, a similar check is performed after the body
1453 -- is analyzed, as this is where a pragma SPARK_Mode might be inserted.
1455 elsif Present
(Spec_Id
)
1457 (No
(SPARK_Pragma
(Spec_Id
))
1459 Get_SPARK_Mode_From_Annotation
(SPARK_Pragma
(Spec_Id
)) /= On
)
1463 -- Subprograms in generic instances are currently not inlined, to avoid
1464 -- problems with inlining of standard library subprograms.
1466 elsif Instantiation_Location
(Sloc
(Id
)) /= No_Location
then
1469 -- Do not inline subprograms and entries defined inside protected types,
1470 -- which typically are not helper subprograms, which also avoids getting
1471 -- spurious messages on calls that cannot be inlined.
1473 elsif Within_Protected_Type
(Id
) then
1476 -- Do not inline predicate functions (treated specially by GNATprove)
1478 elsif Is_Predicate_Function
(Id
) then
1481 -- Do not inline subprograms with a parameter of an unconstrained
1482 -- record type if it has discrimiant dependent fields. Indeed, with
1483 -- such parameters, the frontend cannot always ensure type compliance
1484 -- in record component accesses (in particular with records containing
1487 elsif Has_Formal_With_Discriminant_Dependent_Fields
(Id
) then
1490 -- Otherwise, this is a subprogram declared inside the private part of a
1491 -- package, or inside a package body, or locally in a subprogram, and it
1492 -- does not have any contract. Inline it.
1497 end Can_Be_Inlined_In_GNATprove_Mode
;
1503 procedure Cannot_Inline
1507 Is_Serious
: Boolean := False)
1510 -- In GNATprove mode, inlining is the technical means by which the
1511 -- higher-level goal of contextual analysis is reached, so issue
1512 -- messages about failure to apply contextual analysis to a
1513 -- subprogram, rather than failure to inline it.
1516 and then Msg
(Msg
'First .. Msg
'First + 12) = "cannot inline"
1519 Len1
: constant Positive :=
1520 String (String'("cannot inline"))'Length;
1521 Len2 : constant Positive :=
1522 String (String'("info: no contextual analysis of"))'Length;
1524 New_Msg
: String (1 .. Msg
'Length + Len2
- Len1
);
1527 New_Msg
(1 .. Len2
) := "info: no contextual analysis of";
1528 New_Msg
(Len2
+ 1 .. Msg
'Length + Len2
- Len1
) :=
1529 Msg
(Msg
'First + Len1
.. Msg
'Last);
1530 Cannot_Inline
(New_Msg
, N
, Subp
, Is_Serious
);
1535 pragma Assert
(Msg
(Msg
'Last) = '?');
1537 -- Legacy front-end inlining model
1539 if not Back_End_Inlining
then
1541 -- Do not emit warning if this is a predefined unit which is not
1542 -- the main unit. With validity checks enabled, some predefined
1543 -- subprograms may contain nested subprograms and become ineligible
1546 if Is_Predefined_Unit
(Get_Source_Unit
(Subp
))
1547 and then not In_Extended_Main_Source_Unit
(Subp
)
1551 -- In GNATprove mode, issue a warning, and indicate that the
1552 -- subprogram is not always inlined by setting flag Is_Inlined_Always
1555 elsif GNATprove_Mode
then
1556 Set_Is_Inlined_Always
(Subp
, False);
1557 Error_Msg_NE
(Msg
& "p?", N
, Subp
);
1559 elsif Has_Pragma_Inline_Always
(Subp
) then
1561 -- Remove last character (question mark) to make this into an
1562 -- error, because the Inline_Always pragma cannot be obeyed.
1564 Error_Msg_NE
(Msg
(Msg
'First .. Msg
'Last - 1), N
, Subp
);
1566 elsif Ineffective_Inline_Warnings
then
1567 Error_Msg_NE
(Msg
& "p?", N
, Subp
);
1570 -- New semantics relying on back-end inlining
1572 elsif Is_Serious
then
1574 -- Remove last character (question mark) to make this into an error.
1576 Error_Msg_NE
(Msg
(Msg
'First .. Msg
'Last - 1), N
, Subp
);
1578 -- In GNATprove mode, issue a warning, and indicate that the subprogram
1579 -- is not always inlined by setting flag Is_Inlined_Always to False.
1581 elsif GNATprove_Mode
then
1582 Set_Is_Inlined_Always
(Subp
, False);
1583 Error_Msg_NE
(Msg
& "p?", N
, Subp
);
1587 -- Do not emit warning if this is a predefined unit which is not
1588 -- the main unit. This behavior is currently provided for backward
1589 -- compatibility but it will be removed when we enforce the
1590 -- strictness of the new rules.
1592 if Is_Predefined_Unit
(Get_Source_Unit
(Subp
))
1593 and then not In_Extended_Main_Source_Unit
(Subp
)
1597 elsif Has_Pragma_Inline_Always
(Subp
) then
1599 -- Emit a warning if this is a call to a runtime subprogram
1600 -- which is located inside a generic. Previously this call
1601 -- was silently skipped.
1603 if Is_Generic_Instance
(Subp
) then
1605 Gen_P
: constant Entity_Id
:= Generic_Parent
(Parent
(Subp
));
1607 if Is_Predefined_Unit
(Get_Source_Unit
(Gen_P
)) then
1608 Set_Is_Inlined
(Subp
, False);
1609 Error_Msg_NE
(Msg
& "p?", N
, Subp
);
1615 -- Remove last character (question mark) to make this into an
1616 -- error, because the Inline_Always pragma cannot be obeyed.
1618 Error_Msg_NE
(Msg
(Msg
'First .. Msg
'Last - 1), N
, Subp
);
1621 Set_Is_Inlined
(Subp
, False);
1623 if Ineffective_Inline_Warnings
then
1624 Error_Msg_NE
(Msg
& "p?", N
, Subp
);
1630 --------------------------------------------
1631 -- Check_And_Split_Unconstrained_Function --
1632 --------------------------------------------
1634 procedure Check_And_Split_Unconstrained_Function
1636 Spec_Id
: Entity_Id
;
1637 Body_Id
: Entity_Id
)
1639 procedure Build_Body_To_Inline
(N
: Node_Id
; Spec_Id
: Entity_Id
);
1640 -- Use generic machinery to build an unexpanded body for the subprogram.
1641 -- This body is subsequently used for inline expansions at call sites.
1643 function Can_Split_Unconstrained_Function
(N
: Node_Id
) return Boolean;
1644 -- Return true if we generate code for the function body N, the function
1645 -- body N has no local declarations and its unique statement is a single
1646 -- extended return statement with a handled statements sequence.
1648 procedure Split_Unconstrained_Function
1650 Spec_Id
: Entity_Id
);
1651 -- N is an inlined function body that returns an unconstrained type and
1652 -- has a single extended return statement. Split N in two subprograms:
1653 -- a procedure P' and a function F'. The formals of P' duplicate the
1654 -- formals of N plus an extra formal which is used to return a value;
1655 -- its body is composed by the declarations and list of statements
1656 -- of the extended return statement of N.
1658 --------------------------
1659 -- Build_Body_To_Inline --
1660 --------------------------
1662 procedure Build_Body_To_Inline
(N
: Node_Id
; Spec_Id
: Entity_Id
) is
1663 procedure Generate_Subprogram_Body
1665 Body_To_Inline
: out Node_Id
);
1666 -- Generate a parameterless duplicate of subprogram body N. Note that
1667 -- occurrences of pragmas referencing the formals are removed since
1668 -- they have no meaning when the body is inlined and the formals are
1669 -- rewritten (the analysis of the non-inlined body will handle these
1670 -- pragmas). A new internal name is associated with Body_To_Inline.
1672 -----------------------------
1673 -- Generate_Body_To_Inline --
1674 -----------------------------
1676 procedure Generate_Subprogram_Body
1678 Body_To_Inline
: out Node_Id
)
1681 -- Within an instance, the body to inline must be treated as a
1682 -- nested generic so that proper global references are preserved.
1684 -- Note that we do not do this at the library level, because it
1685 -- is not needed, and furthermore this causes trouble if front
1686 -- end inlining is activated (-gnatN).
1689 and then Scope
(Current_Scope
) /= Standard_Standard
1692 Copy_Generic_Node
(N
, Empty
, Instantiating
=> True);
1694 Body_To_Inline
:= Copy_Separate_Tree
(N
);
1697 -- Remove aspects/pragmas that have no meaning in an inlined body
1699 Remove_Aspects_And_Pragmas
(Body_To_Inline
);
1701 -- We need to capture references to the formals in order
1702 -- to substitute the actuals at the point of inlining, i.e.
1703 -- instantiation. To treat the formals as globals to the body to
1704 -- inline, we nest it within a dummy parameterless subprogram,
1705 -- declared within the real one.
1707 Set_Parameter_Specifications
1708 (Specification
(Body_To_Inline
), No_List
);
1710 -- A new internal name is associated with Body_To_Inline to avoid
1711 -- conflicts when the non-inlined body N is analyzed.
1713 Set_Defining_Unit_Name
(Specification
(Body_To_Inline
),
1714 Make_Defining_Identifier
(Sloc
(N
), New_Internal_Name
('P')));
1715 Set_Corresponding_Spec
(Body_To_Inline
, Empty
);
1716 end Generate_Subprogram_Body
;
1720 Decl
: constant Node_Id
:= Unit_Declaration_Node
(Spec_Id
);
1721 Original_Body
: Node_Id
;
1722 Body_To_Analyze
: Node_Id
;
1725 pragma Assert
(Current_Scope
= Spec_Id
);
1727 -- Within an instance, the body to inline must be treated as a nested
1728 -- generic, so that the proper global references are preserved. We
1729 -- do not do this at the library level, because it is not needed, and
1730 -- furthermore this causes trouble if front-end inlining is activated
1734 and then Scope
(Current_Scope
) /= Standard_Standard
1736 Save_Env
(Scope
(Current_Scope
), Scope
(Current_Scope
));
1739 -- Capture references to formals in order to substitute the actuals
1740 -- at the point of inlining or instantiation. To treat the formals
1741 -- as globals to the body to inline, nest the body within a dummy
1742 -- parameterless subprogram, declared within the real one.
1744 Generate_Subprogram_Body
(N
, Original_Body
);
1746 Copy_Generic_Node
(Original_Body
, Empty
, Instantiating
=> False);
1748 -- Set return type of function, which is also global and does not
1749 -- need to be resolved.
1751 if Ekind
(Spec_Id
) = E_Function
then
1752 Set_Result_Definition
(Specification
(Body_To_Analyze
),
1753 New_Occurrence_Of
(Etype
(Spec_Id
), Sloc
(N
)));
1756 if No
(Declarations
(N
)) then
1757 Set_Declarations
(N
, New_List
(Body_To_Analyze
));
1759 Append_To
(Declarations
(N
), Body_To_Analyze
);
1762 Preanalyze
(Body_To_Analyze
);
1764 Push_Scope
(Defining_Entity
(Body_To_Analyze
));
1765 Save_Global_References
(Original_Body
);
1767 Remove
(Body_To_Analyze
);
1769 -- Restore environment if previously saved
1772 and then Scope
(Current_Scope
) /= Standard_Standard
1777 pragma Assert
(No
(Body_To_Inline
(Decl
)));
1778 Set_Body_To_Inline
(Decl
, Original_Body
);
1779 Set_Ekind
(Defining_Entity
(Original_Body
), Ekind
(Spec_Id
));
1780 end Build_Body_To_Inline
;
1782 --------------------------------------
1783 -- Can_Split_Unconstrained_Function --
1784 --------------------------------------
1786 function Can_Split_Unconstrained_Function
(N
: Node_Id
) return Boolean is
1787 Ret_Node
: constant Node_Id
:=
1788 First
(Statements
(Handled_Statement_Sequence
(N
)));
1792 -- No user defined declarations allowed in the function except inside
1793 -- the unique return statement; implicit labels are the only allowed
1796 if not Is_Empty_List
(Declarations
(N
)) then
1797 D
:= First
(Declarations
(N
));
1798 while Present
(D
) loop
1799 if Nkind
(D
) /= N_Implicit_Label_Declaration
then
1807 -- We only split the inlined function when we are generating the code
1808 -- of its body; otherwise we leave duplicated split subprograms in
1809 -- the tree which (if referenced) generate wrong references at link
1812 return In_Extended_Main_Code_Unit
(N
)
1813 and then Present
(Ret_Node
)
1814 and then Nkind
(Ret_Node
) = N_Extended_Return_Statement
1815 and then No
(Next
(Ret_Node
))
1816 and then Present
(Handled_Statement_Sequence
(Ret_Node
));
1817 end Can_Split_Unconstrained_Function
;
1819 ----------------------------------
1820 -- Split_Unconstrained_Function --
1821 ----------------------------------
1823 procedure Split_Unconstrained_Function
1825 Spec_Id
: Entity_Id
)
1827 Loc
: constant Source_Ptr
:= Sloc
(N
);
1828 Ret_Node
: constant Node_Id
:=
1829 First
(Statements
(Handled_Statement_Sequence
(N
)));
1830 Ret_Obj
: constant Node_Id
:=
1831 First
(Return_Object_Declarations
(Ret_Node
));
1833 procedure Build_Procedure
1834 (Proc_Id
: out Entity_Id
;
1835 Decl_List
: out List_Id
);
1836 -- Build a procedure containing the statements found in the extended
1837 -- return statement of the unconstrained function body N.
1839 ---------------------
1840 -- Build_Procedure --
1841 ---------------------
1843 procedure Build_Procedure
1844 (Proc_Id
: out Entity_Id
;
1845 Decl_List
: out List_Id
)
1848 Formal_List
: constant List_Id
:= New_List
;
1849 Proc_Spec
: Node_Id
;
1850 Proc_Body
: Node_Id
;
1851 Subp_Name
: constant Name_Id
:= New_Internal_Name
('F');
1852 Body_Decl_List
: List_Id
:= No_List
;
1853 Param_Type
: Node_Id
;
1856 if Nkind
(Object_Definition
(Ret_Obj
)) = N_Identifier
then
1858 New_Copy
(Object_Definition
(Ret_Obj
));
1861 New_Copy
(Subtype_Mark
(Object_Definition
(Ret_Obj
)));
1864 Append_To
(Formal_List
,
1865 Make_Parameter_Specification
(Loc
,
1866 Defining_Identifier
=>
1867 Make_Defining_Identifier
(Loc
,
1868 Chars
=> Chars
(Defining_Identifier
(Ret_Obj
))),
1869 In_Present
=> False,
1870 Out_Present
=> True,
1871 Null_Exclusion_Present
=> False,
1872 Parameter_Type
=> Param_Type
));
1874 Formal
:= First_Formal
(Spec_Id
);
1876 -- Note that we copy the parameter type rather than creating
1877 -- a reference to it, because it may be a class-wide entity
1878 -- that will not be retrieved by name.
1880 while Present
(Formal
) loop
1881 Append_To
(Formal_List
,
1882 Make_Parameter_Specification
(Loc
,
1883 Defining_Identifier
=>
1884 Make_Defining_Identifier
(Sloc
(Formal
),
1885 Chars
=> Chars
(Formal
)),
1886 In_Present
=> In_Present
(Parent
(Formal
)),
1887 Out_Present
=> Out_Present
(Parent
(Formal
)),
1888 Null_Exclusion_Present
=>
1889 Null_Exclusion_Present
(Parent
(Formal
)),
1891 New_Copy_Tree
(Parameter_Type
(Parent
(Formal
))),
1893 Copy_Separate_Tree
(Expression
(Parent
(Formal
)))));
1895 Next_Formal
(Formal
);
1898 Proc_Id
:= Make_Defining_Identifier
(Loc
, Chars
=> Subp_Name
);
1901 Make_Procedure_Specification
(Loc
,
1902 Defining_Unit_Name
=> Proc_Id
,
1903 Parameter_Specifications
=> Formal_List
);
1905 Decl_List
:= New_List
;
1907 Append_To
(Decl_List
,
1908 Make_Subprogram_Declaration
(Loc
, Proc_Spec
));
1910 -- Can_Convert_Unconstrained_Function checked that the function
1911 -- has no local declarations except implicit label declarations.
1912 -- Copy these declarations to the built procedure.
1914 if Present
(Declarations
(N
)) then
1915 Body_Decl_List
:= New_List
;
1922 D
:= First
(Declarations
(N
));
1923 while Present
(D
) loop
1924 pragma Assert
(Nkind
(D
) = N_Implicit_Label_Declaration
);
1927 Make_Implicit_Label_Declaration
(Loc
,
1928 Make_Defining_Identifier
(Loc
,
1929 Chars
=> Chars
(Defining_Identifier
(D
))),
1930 Label_Construct
=> Empty
);
1931 Append_To
(Body_Decl_List
, New_D
);
1938 pragma Assert
(Present
(Handled_Statement_Sequence
(Ret_Node
)));
1941 Make_Subprogram_Body
(Loc
,
1942 Specification
=> Copy_Separate_Tree
(Proc_Spec
),
1943 Declarations
=> Body_Decl_List
,
1944 Handled_Statement_Sequence
=>
1945 Copy_Separate_Tree
(Handled_Statement_Sequence
(Ret_Node
)));
1947 Set_Defining_Unit_Name
(Specification
(Proc_Body
),
1948 Make_Defining_Identifier
(Loc
, Subp_Name
));
1950 Append_To
(Decl_List
, Proc_Body
);
1951 end Build_Procedure
;
1955 New_Obj
: constant Node_Id
:= Copy_Separate_Tree
(Ret_Obj
);
1957 Proc_Id
: Entity_Id
;
1958 Proc_Call
: Node_Id
;
1960 -- Start of processing for Split_Unconstrained_Function
1963 -- Build the associated procedure, analyze it and insert it before
1964 -- the function body N.
1967 Scope
: constant Entity_Id
:= Current_Scope
;
1968 Decl_List
: List_Id
;
1971 Build_Procedure
(Proc_Id
, Decl_List
);
1972 Insert_Actions
(N
, Decl_List
);
1973 Set_Is_Inlined
(Proc_Id
);
1977 -- Build the call to the generated procedure
1980 Actual_List
: constant List_Id
:= New_List
;
1984 Append_To
(Actual_List
,
1985 New_Occurrence_Of
(Defining_Identifier
(New_Obj
), Loc
));
1987 Formal
:= First_Formal
(Spec_Id
);
1988 while Present
(Formal
) loop
1989 Append_To
(Actual_List
, New_Occurrence_Of
(Formal
, Loc
));
1991 -- Avoid spurious warning on unreferenced formals
1993 Set_Referenced
(Formal
);
1994 Next_Formal
(Formal
);
1998 Make_Procedure_Call_Statement
(Loc
,
1999 Name
=> New_Occurrence_Of
(Proc_Id
, Loc
),
2000 Parameter_Associations
=> Actual_List
);
2008 -- Proc (New_Obj, ...);
2013 Make_Block_Statement
(Loc
,
2014 Declarations
=> New_List
(New_Obj
),
2015 Handled_Statement_Sequence
=>
2016 Make_Handled_Sequence_Of_Statements
(Loc
,
2017 Statements
=> New_List
(
2021 Make_Simple_Return_Statement
(Loc
,
2024 (Defining_Identifier
(New_Obj
), Loc
)))));
2026 Rewrite
(Ret_Node
, Blk_Stmt
);
2027 end Split_Unconstrained_Function
;
2031 Decl
: constant Node_Id
:= Unit_Declaration_Node
(Spec_Id
);
2033 -- Start of processing for Check_And_Split_Unconstrained_Function
2036 pragma Assert
(Back_End_Inlining
2037 and then Ekind
(Spec_Id
) = E_Function
2038 and then Returns_Unconstrained_Type
(Spec_Id
)
2039 and then Comes_From_Source
(Body_Id
)
2040 and then (Has_Pragma_Inline_Always
(Spec_Id
)
2041 or else Optimization_Level
> 0));
2043 -- This routine must not be used in GNATprove mode since GNATprove
2044 -- relies on frontend inlining
2046 pragma Assert
(not GNATprove_Mode
);
2048 -- No need to split the function if we cannot generate the code
2050 if Serious_Errors_Detected
/= 0 then
2054 -- No action needed in stubs since the attribute Body_To_Inline
2057 if Nkind
(Decl
) = N_Subprogram_Body_Stub
then
2060 -- Cannot build the body to inline if the attribute is already set.
2061 -- This attribute may have been set if this is a subprogram renaming
2062 -- declarations (see Freeze.Build_Renamed_Body).
2064 elsif Present
(Body_To_Inline
(Decl
)) then
2067 -- Check excluded declarations
2069 elsif Present
(Declarations
(N
))
2070 and then Has_Excluded_Declaration
(Spec_Id
, Declarations
(N
))
2074 -- Check excluded statements. There is no need to protect us against
2075 -- exception handlers since they are supported by the GCC backend.
2077 elsif Present
(Handled_Statement_Sequence
(N
))
2078 and then Has_Excluded_Statement
2079 (Spec_Id
, Statements
(Handled_Statement_Sequence
(N
)))
2084 -- Build the body to inline only if really needed
2086 if Can_Split_Unconstrained_Function
(N
) then
2087 Split_Unconstrained_Function
(N
, Spec_Id
);
2088 Build_Body_To_Inline
(N
, Spec_Id
);
2089 Set_Is_Inlined
(Spec_Id
);
2091 end Check_And_Split_Unconstrained_Function
;
2093 -------------------------------------
2094 -- Check_Package_Body_For_Inlining --
2095 -------------------------------------
2097 procedure Check_Package_Body_For_Inlining
(N
: Node_Id
; P
: Entity_Id
) is
2098 Bname
: Unit_Name_Type
;
2103 -- Legacy implementation (relying on frontend inlining)
2105 if not Back_End_Inlining
2106 and then Is_Compilation_Unit
(P
)
2107 and then not Is_Generic_Instance
(P
)
2109 Bname
:= Get_Body_Name
(Get_Unit_Name
(Unit
(N
)));
2111 E
:= First_Entity
(P
);
2112 while Present
(E
) loop
2113 if Has_Pragma_Inline_Always
(E
)
2114 or else (Has_Pragma_Inline
(E
) and Front_End_Inlining
)
2116 if not Is_Loaded
(Bname
) then
2117 Load_Needed_Body
(N
, OK
);
2121 -- Check we are not trying to inline a parent whose body
2122 -- depends on a child, when we are compiling the body of
2123 -- the child. Otherwise we have a potential elaboration
2124 -- circularity with inlined subprograms and with
2125 -- Taft-Amendment types.
2128 Comp
: Node_Id
; -- Body just compiled
2129 Child_Spec
: Entity_Id
; -- Spec of main unit
2130 Ent
: Entity_Id
; -- For iteration
2131 With_Clause
: Node_Id
; -- Context of body.
2134 if Nkind
(Unit
(Cunit
(Main_Unit
))) = N_Package_Body
2135 and then Present
(Body_Entity
(P
))
2139 ((Unit
(Library_Unit
(Cunit
(Main_Unit
)))));
2142 Parent
(Unit_Declaration_Node
(Body_Entity
(P
)));
2144 -- Check whether the context of the body just
2145 -- compiled includes a child of itself, and that
2146 -- child is the spec of the main compilation.
2148 With_Clause
:= First
(Context_Items
(Comp
));
2149 while Present
(With_Clause
) loop
2150 if Nkind
(With_Clause
) = N_With_Clause
2152 Scope
(Entity
(Name
(With_Clause
))) = P
2154 Entity
(Name
(With_Clause
)) = Child_Spec
2156 Error_Msg_Node_2
:= Child_Spec
;
2158 ("body of & depends on child unit&??",
2161 ("\subprograms in body cannot be inlined??",
2164 -- Disable further inlining from this unit,
2165 -- and keep Taft-amendment types incomplete.
2167 Ent
:= First_Entity
(P
);
2168 while Present
(Ent
) loop
2170 and then Has_Completion_In_Body
(Ent
)
2172 Set_Full_View
(Ent
, Empty
);
2174 elsif Is_Subprogram
(Ent
) then
2175 Set_Is_Inlined
(Ent
, False);
2189 elsif Ineffective_Inline_Warnings
then
2190 Error_Msg_Unit_1
:= Bname
;
2192 ("unable to inline subprograms defined in $??", P
);
2193 Error_Msg_N
("\body not found??", P
);
2204 end Check_Package_Body_For_Inlining
;
2206 --------------------
2207 -- Cleanup_Scopes --
2208 --------------------
2210 procedure Cleanup_Scopes
is
2216 Elmt
:= First_Elmt
(To_Clean
);
2217 while Present
(Elmt
) loop
2218 Scop
:= Node
(Elmt
);
2220 if Ekind
(Scop
) = E_Entry
then
2221 Scop
:= Protected_Body_Subprogram
(Scop
);
2223 elsif Is_Subprogram
(Scop
)
2224 and then Is_Protected_Type
(Scope
(Scop
))
2225 and then Present
(Protected_Body_Subprogram
(Scop
))
2227 -- If a protected operation contains an instance, its cleanup
2228 -- operations have been delayed, and the subprogram has been
2229 -- rewritten in the expansion of the enclosing protected body. It
2230 -- is the corresponding subprogram that may require the cleanup
2231 -- operations, so propagate the information that triggers cleanup
2235 (Protected_Body_Subprogram
(Scop
),
2236 Uses_Sec_Stack
(Scop
));
2238 Scop
:= Protected_Body_Subprogram
(Scop
);
2241 if Ekind
(Scop
) = E_Block
then
2242 Decl
:= Parent
(Block_Node
(Scop
));
2245 Decl
:= Unit_Declaration_Node
(Scop
);
2247 if Nkind_In
(Decl
, N_Subprogram_Declaration
,
2248 N_Task_Type_Declaration
,
2249 N_Subprogram_Body_Stub
)
2251 Decl
:= Unit_Declaration_Node
(Corresponding_Body
(Decl
));
2256 Expand_Cleanup_Actions
(Decl
);
2259 Elmt
:= Next_Elmt
(Elmt
);
2263 -------------------------
2264 -- Expand_Inlined_Call --
2265 -------------------------
2267 procedure Expand_Inlined_Call
2270 Orig_Subp
: Entity_Id
)
2272 Loc
: constant Source_Ptr
:= Sloc
(N
);
2273 Is_Predef
: constant Boolean :=
2274 Is_Predefined_Unit
(Get_Source_Unit
(Subp
));
2275 Orig_Bod
: constant Node_Id
:=
2276 Body_To_Inline
(Unit_Declaration_Node
(Subp
));
2280 Decls
: constant List_Id
:= New_List
;
2281 Exit_Lab
: Entity_Id
:= Empty
;
2284 Lab_Decl
: Node_Id
:= Empty
;
2288 Ret_Type
: Entity_Id
;
2290 Targ
: Node_Id
:= Empty
;
2291 -- The target of the call. If context is an assignment statement then
2292 -- this is the left-hand side of the assignment, else it is a temporary
2293 -- to which the return value is assigned prior to rewriting the call.
2295 Targ1
: Node_Id
:= Empty
;
2296 -- A separate target used when the return type is unconstrained
2299 Temp_Typ
: Entity_Id
;
2301 Return_Object
: Entity_Id
:= Empty
;
2302 -- Entity in declaration in an extended_return_statement
2305 Is_Unc_Decl
: Boolean;
2306 -- If the type returned by the function is unconstrained and the call
2307 -- can be inlined, special processing is required.
2309 procedure Declare_Postconditions_Result
;
2310 -- When generating C code, declare _Result, which may be used in the
2311 -- inlined _Postconditions procedure to verify the return value.
2313 procedure Make_Exit_Label
;
2314 -- Build declaration for exit label to be used in Return statements,
2315 -- sets Exit_Lab (the label node) and Lab_Decl (corresponding implicit
2316 -- declaration). Does nothing if Exit_Lab already set.
2318 function Process_Formals
(N
: Node_Id
) return Traverse_Result
;
2319 -- Replace occurrence of a formal with the corresponding actual, or the
2320 -- thunk generated for it. Replace a return statement with an assignment
2321 -- to the target of the call, with appropriate conversions if needed.
2323 function Process_Sloc
(Nod
: Node_Id
) return Traverse_Result
;
2324 -- If the call being expanded is that of an internal subprogram, set the
2325 -- sloc of the generated block to that of the call itself, so that the
2326 -- expansion is skipped by the "next" command in gdb. Same processing
2327 -- for a subprogram in a predefined file, e.g. Ada.Tags. If
2328 -- Debug_Generated_Code is true, suppress this change to simplify our
2329 -- own development. Same in GNATprove mode, to ensure that warnings and
2330 -- diagnostics point to the proper location.
2332 procedure Reset_Dispatching_Calls
(N
: Node_Id
);
2333 -- In subtree N search for occurrences of dispatching calls that use the
2334 -- Ada 2005 Object.Operation notation and the object is a formal of the
2335 -- inlined subprogram. Reset the entity associated with Operation in all
2336 -- the found occurrences.
2338 procedure Rewrite_Function_Call
(N
: Node_Id
; Blk
: Node_Id
);
2339 -- If the function body is a single expression, replace call with
2340 -- expression, else insert block appropriately.
2342 procedure Rewrite_Procedure_Call
(N
: Node_Id
; Blk
: Node_Id
);
2343 -- If procedure body has no local variables, inline body without
2344 -- creating block, otherwise rewrite call with block.
2346 function Formal_Is_Used_Once
(Formal
: Entity_Id
) return Boolean;
2347 -- Determine whether a formal parameter is used only once in Orig_Bod
2349 -----------------------------------
2350 -- Declare_Postconditions_Result --
2351 -----------------------------------
2353 procedure Declare_Postconditions_Result
is
2354 Enclosing_Subp
: constant Entity_Id
:= Scope
(Subp
);
2359 and then Is_Subprogram
(Enclosing_Subp
)
2360 and then Present
(Postconditions_Proc
(Enclosing_Subp
)));
2362 if Ekind
(Enclosing_Subp
) = E_Function
then
2363 if Nkind
(First
(Parameter_Associations
(N
))) in
2364 N_Numeric_Or_String_Literal
2366 Append_To
(Declarations
(Blk
),
2367 Make_Object_Declaration
(Loc
,
2368 Defining_Identifier
=>
2369 Make_Defining_Identifier
(Loc
, Name_uResult
),
2370 Constant_Present
=> True,
2371 Object_Definition
=>
2372 New_Occurrence_Of
(Etype
(Enclosing_Subp
), Loc
),
2374 New_Copy_Tree
(First
(Parameter_Associations
(N
)))));
2376 Append_To
(Declarations
(Blk
),
2377 Make_Object_Renaming_Declaration
(Loc
,
2378 Defining_Identifier
=>
2379 Make_Defining_Identifier
(Loc
, Name_uResult
),
2381 New_Occurrence_Of
(Etype
(Enclosing_Subp
), Loc
),
2383 New_Copy_Tree
(First
(Parameter_Associations
(N
)))));
2386 end Declare_Postconditions_Result
;
2388 ---------------------
2389 -- Make_Exit_Label --
2390 ---------------------
2392 procedure Make_Exit_Label
is
2393 Lab_Ent
: Entity_Id
;
2395 if No
(Exit_Lab
) then
2396 Lab_Ent
:= Make_Temporary
(Loc
, 'L');
2397 Lab_Id
:= New_Occurrence_Of
(Lab_Ent
, Loc
);
2398 Exit_Lab
:= Make_Label
(Loc
, Lab_Id
);
2400 Make_Implicit_Label_Declaration
(Loc
,
2401 Defining_Identifier
=> Lab_Ent
,
2402 Label_Construct
=> Exit_Lab
);
2404 end Make_Exit_Label
;
2406 ---------------------
2407 -- Process_Formals --
2408 ---------------------
2410 function Process_Formals
(N
: Node_Id
) return Traverse_Result
is
2416 if Is_Entity_Name
(N
) and then Present
(Entity
(N
)) then
2419 if Is_Formal
(E
) and then Scope
(E
) = Subp
then
2420 A
:= Renamed_Object
(E
);
2422 -- Rewrite the occurrence of the formal into an occurrence of
2423 -- the actual. Also establish visibility on the proper view of
2424 -- the actual's subtype for the body's context (if the actual's
2425 -- subtype is private at the call point but its full view is
2426 -- visible to the body, then the inlined tree here must be
2427 -- analyzed with the full view).
2429 if Is_Entity_Name
(A
) then
2430 Rewrite
(N
, New_Occurrence_Of
(Entity
(A
), Sloc
(N
)));
2431 Check_Private_View
(N
);
2433 elsif Nkind
(A
) = N_Defining_Identifier
then
2434 Rewrite
(N
, New_Occurrence_Of
(A
, Sloc
(N
)));
2435 Check_Private_View
(N
);
2440 Rewrite
(N
, New_Copy
(A
));
2446 elsif Is_Entity_Name
(N
)
2447 and then Present
(Return_Object
)
2448 and then Chars
(N
) = Chars
(Return_Object
)
2450 -- Occurrence within an extended return statement. The return
2451 -- object is local to the body been inlined, and thus the generic
2452 -- copy is not analyzed yet, so we match by name, and replace it
2453 -- with target of call.
2455 if Nkind
(Targ
) = N_Defining_Identifier
then
2456 Rewrite
(N
, New_Occurrence_Of
(Targ
, Loc
));
2458 Rewrite
(N
, New_Copy_Tree
(Targ
));
2463 elsif Nkind
(N
) = N_Simple_Return_Statement
then
2464 if No
(Expression
(N
)) then
2465 Num_Ret
:= Num_Ret
+ 1;
2468 Make_Goto_Statement
(Loc
, Name
=> New_Copy
(Lab_Id
)));
2471 if Nkind
(Parent
(N
)) = N_Handled_Sequence_Of_Statements
2472 and then Nkind
(Parent
(Parent
(N
))) = N_Subprogram_Body
2474 -- Function body is a single expression. No need for
2480 Num_Ret
:= Num_Ret
+ 1;
2484 -- Because of the presence of private types, the views of the
2485 -- expression and the context may be different, so place an
2486 -- unchecked conversion to the context type to avoid spurious
2487 -- errors, e.g. when the expression is a numeric literal and
2488 -- the context is private. If the expression is an aggregate,
2489 -- use a qualified expression, because an aggregate is not a
2490 -- legal argument of a conversion. Ditto for numeric literals
2491 -- and attributes that yield a universal type, because those
2492 -- must be resolved to a specific type.
2494 if Nkind_In
(Expression
(N
), N_Aggregate
, N_Null
)
2495 or else Yields_Universal_Type
(Expression
(N
))
2498 Make_Qualified_Expression
(Sloc
(N
),
2499 Subtype_Mark
=> New_Occurrence_Of
(Ret_Type
, Sloc
(N
)),
2500 Expression
=> Relocate_Node
(Expression
(N
)));
2503 Unchecked_Convert_To
2504 (Ret_Type
, Relocate_Node
(Expression
(N
)));
2507 if Nkind
(Targ
) = N_Defining_Identifier
then
2509 Make_Assignment_Statement
(Loc
,
2510 Name
=> New_Occurrence_Of
(Targ
, Loc
),
2511 Expression
=> Ret
));
2514 Make_Assignment_Statement
(Loc
,
2515 Name
=> New_Copy
(Targ
),
2516 Expression
=> Ret
));
2519 Set_Assignment_OK
(Name
(N
));
2521 if Present
(Exit_Lab
) then
2523 Make_Goto_Statement
(Loc
, Name
=> New_Copy
(Lab_Id
)));
2529 -- An extended return becomes a block whose first statement is the
2530 -- assignment of the initial expression of the return object to the
2531 -- target of the call itself.
2533 elsif Nkind
(N
) = N_Extended_Return_Statement
then
2535 Return_Decl
: constant Entity_Id
:=
2536 First
(Return_Object_Declarations
(N
));
2540 Return_Object
:= Defining_Identifier
(Return_Decl
);
2542 if Present
(Expression
(Return_Decl
)) then
2543 if Nkind
(Targ
) = N_Defining_Identifier
then
2545 Make_Assignment_Statement
(Loc
,
2546 Name
=> New_Occurrence_Of
(Targ
, Loc
),
2547 Expression
=> Expression
(Return_Decl
));
2550 Make_Assignment_Statement
(Loc
,
2551 Name
=> New_Copy
(Targ
),
2552 Expression
=> Expression
(Return_Decl
));
2555 Set_Assignment_OK
(Name
(Assign
));
2557 if No
(Handled_Statement_Sequence
(N
)) then
2558 Set_Handled_Statement_Sequence
(N
,
2559 Make_Handled_Sequence_Of_Statements
(Loc
,
2560 Statements
=> New_List
));
2564 Statements
(Handled_Statement_Sequence
(N
)));
2568 Make_Block_Statement
(Loc
,
2569 Handled_Statement_Sequence
=>
2570 Handled_Statement_Sequence
(N
)));
2575 -- Remove pragma Unreferenced since it may refer to formals that
2576 -- are not visible in the inlined body, and in any case we will
2577 -- not be posting warnings on the inlined body so it is unneeded.
2579 elsif Nkind
(N
) = N_Pragma
2580 and then Pragma_Name
(N
) = Name_Unreferenced
2582 Rewrite
(N
, Make_Null_Statement
(Sloc
(N
)));
2588 end Process_Formals
;
2590 procedure Replace_Formals
is new Traverse_Proc
(Process_Formals
);
2596 function Process_Sloc
(Nod
: Node_Id
) return Traverse_Result
is
2598 if not Debug_Generated_Code
then
2599 Set_Sloc
(Nod
, Sloc
(N
));
2600 Set_Comes_From_Source
(Nod
, False);
2606 procedure Reset_Slocs
is new Traverse_Proc
(Process_Sloc
);
2608 ------------------------------
2609 -- Reset_Dispatching_Calls --
2610 ------------------------------
2612 procedure Reset_Dispatching_Calls
(N
: Node_Id
) is
2614 function Do_Reset
(N
: Node_Id
) return Traverse_Result
;
2615 -- Comment required ???
2621 function Do_Reset
(N
: Node_Id
) return Traverse_Result
is
2623 if Nkind
(N
) = N_Procedure_Call_Statement
2624 and then Nkind
(Name
(N
)) = N_Selected_Component
2625 and then Nkind
(Prefix
(Name
(N
))) = N_Identifier
2626 and then Is_Formal
(Entity
(Prefix
(Name
(N
))))
2627 and then Is_Dispatching_Operation
2628 (Entity
(Selector_Name
(Name
(N
))))
2630 Set_Entity
(Selector_Name
(Name
(N
)), Empty
);
2636 function Do_Reset_Calls
is new Traverse_Func
(Do_Reset
);
2640 Dummy
: constant Traverse_Result
:= Do_Reset_Calls
(N
);
2641 pragma Unreferenced
(Dummy
);
2643 -- Start of processing for Reset_Dispatching_Calls
2647 end Reset_Dispatching_Calls
;
2649 ---------------------------
2650 -- Rewrite_Function_Call --
2651 ---------------------------
2653 procedure Rewrite_Function_Call
(N
: Node_Id
; Blk
: Node_Id
) is
2654 HSS
: constant Node_Id
:= Handled_Statement_Sequence
(Blk
);
2655 Fst
: constant Node_Id
:= First
(Statements
(HSS
));
2658 -- Optimize simple case: function body is a single return statement,
2659 -- which has been expanded into an assignment.
2661 if Is_Empty_List
(Declarations
(Blk
))
2662 and then Nkind
(Fst
) = N_Assignment_Statement
2663 and then No
(Next
(Fst
))
2665 -- The function call may have been rewritten as the temporary
2666 -- that holds the result of the call, in which case remove the
2667 -- now useless declaration.
2669 if Nkind
(N
) = N_Identifier
2670 and then Nkind
(Parent
(Entity
(N
))) = N_Object_Declaration
2672 Rewrite
(Parent
(Entity
(N
)), Make_Null_Statement
(Loc
));
2675 Rewrite
(N
, Expression
(Fst
));
2677 elsif Nkind
(N
) = N_Identifier
2678 and then Nkind
(Parent
(Entity
(N
))) = N_Object_Declaration
2680 -- The block assigns the result of the call to the temporary
2682 Insert_After
(Parent
(Entity
(N
)), Blk
);
2684 -- If the context is an assignment, and the left-hand side is free of
2685 -- side-effects, the replacement is also safe.
2686 -- Can this be generalized further???
2688 elsif Nkind
(Parent
(N
)) = N_Assignment_Statement
2690 (Is_Entity_Name
(Name
(Parent
(N
)))
2692 (Nkind
(Name
(Parent
(N
))) = N_Explicit_Dereference
2693 and then Is_Entity_Name
(Prefix
(Name
(Parent
(N
)))))
2696 (Nkind
(Name
(Parent
(N
))) = N_Selected_Component
2697 and then Is_Entity_Name
(Prefix
(Name
(Parent
(N
))))))
2699 -- Replace assignment with the block
2702 Original_Assignment
: constant Node_Id
:= Parent
(N
);
2705 -- Preserve the original assignment node to keep the complete
2706 -- assignment subtree consistent enough for Analyze_Assignment
2707 -- to proceed (specifically, the original Lhs node must still
2708 -- have an assignment statement as its parent).
2710 -- We cannot rely on Original_Node to go back from the block
2711 -- node to the assignment node, because the assignment might
2712 -- already be a rewrite substitution.
2714 Discard_Node
(Relocate_Node
(Original_Assignment
));
2715 Rewrite
(Original_Assignment
, Blk
);
2718 elsif Nkind
(Parent
(N
)) = N_Object_Declaration
then
2720 -- A call to a function which returns an unconstrained type
2721 -- found in the expression initializing an object-declaration is
2722 -- expanded into a procedure call which must be added after the
2723 -- object declaration.
2725 if Is_Unc_Decl
and Back_End_Inlining
then
2726 Insert_Action_After
(Parent
(N
), Blk
);
2728 Set_Expression
(Parent
(N
), Empty
);
2729 Insert_After
(Parent
(N
), Blk
);
2732 elsif Is_Unc
and then not Back_End_Inlining
then
2733 Insert_Before
(Parent
(N
), Blk
);
2735 end Rewrite_Function_Call
;
2737 ----------------------------
2738 -- Rewrite_Procedure_Call --
2739 ----------------------------
2741 procedure Rewrite_Procedure_Call
(N
: Node_Id
; Blk
: Node_Id
) is
2742 HSS
: constant Node_Id
:= Handled_Statement_Sequence
(Blk
);
2745 -- If there is a transient scope for N, this will be the scope of the
2746 -- actions for N, and the statements in Blk need to be within this
2747 -- scope. For example, they need to have visibility on the constant
2748 -- declarations created for the formals.
2750 -- If N needs no transient scope, and if there are no declarations in
2751 -- the inlined body, we can do a little optimization and insert the
2752 -- statements for the body directly after N, and rewrite N to a
2753 -- null statement, instead of rewriting N into a full-blown block
2756 if not Scope_Is_Transient
2757 and then Is_Empty_List
(Declarations
(Blk
))
2759 Insert_List_After
(N
, Statements
(HSS
));
2760 Rewrite
(N
, Make_Null_Statement
(Loc
));
2764 end Rewrite_Procedure_Call
;
2766 -------------------------
2767 -- Formal_Is_Used_Once --
2768 -------------------------
2770 function Formal_Is_Used_Once
(Formal
: Entity_Id
) return Boolean is
2771 Use_Counter
: Int
:= 0;
2773 function Count_Uses
(N
: Node_Id
) return Traverse_Result
;
2774 -- Traverse the tree and count the uses of the formal parameter.
2775 -- In this case, for optimization purposes, we do not need to
2776 -- continue the traversal once more than one use is encountered.
2782 function Count_Uses
(N
: Node_Id
) return Traverse_Result
is
2784 -- The original node is an identifier
2786 if Nkind
(N
) = N_Identifier
2787 and then Present
(Entity
(N
))
2789 -- Original node's entity points to the one in the copied body
2791 and then Nkind
(Entity
(N
)) = N_Identifier
2792 and then Present
(Entity
(Entity
(N
)))
2794 -- The entity of the copied node is the formal parameter
2796 and then Entity
(Entity
(N
)) = Formal
2798 Use_Counter
:= Use_Counter
+ 1;
2800 if Use_Counter
> 1 then
2802 -- Denote more than one use and abandon the traversal
2813 procedure Count_Formal_Uses
is new Traverse_Proc
(Count_Uses
);
2815 -- Start of processing for Formal_Is_Used_Once
2818 Count_Formal_Uses
(Orig_Bod
);
2819 return Use_Counter
= 1;
2820 end Formal_Is_Used_Once
;
2822 -- Start of processing for Expand_Inlined_Call
2825 -- Initializations for old/new semantics
2827 if not Back_End_Inlining
then
2828 Is_Unc
:= Is_Array_Type
(Etype
(Subp
))
2829 and then not Is_Constrained
(Etype
(Subp
));
2830 Is_Unc_Decl
:= False;
2832 Is_Unc
:= Returns_Unconstrained_Type
(Subp
)
2833 and then Optimization_Level
> 0;
2834 Is_Unc_Decl
:= Nkind
(Parent
(N
)) = N_Object_Declaration
2838 -- Check for an illegal attempt to inline a recursive procedure. If the
2839 -- subprogram has parameters this is detected when trying to supply a
2840 -- binding for parameters that already have one. For parameterless
2841 -- subprograms this must be done explicitly.
2843 if In_Open_Scopes
(Subp
) then
2845 ("cannot inline call to recursive subprogram?", N
, Subp
);
2846 Set_Is_Inlined
(Subp
, False);
2849 -- Skip inlining if this is not a true inlining since the attribute
2850 -- Body_To_Inline is also set for renamings (see sinfo.ads). For a
2851 -- true inlining, Orig_Bod has code rather than being an entity.
2853 elsif Nkind
(Orig_Bod
) in N_Entity
then
2856 -- Skip inlining if the function returns an unconstrained type using
2857 -- an extended return statement since this part of the new inlining
2858 -- model which is not yet supported by the current implementation. ???
2862 Nkind
(First
(Statements
(Handled_Statement_Sequence
(Orig_Bod
)))) =
2863 N_Extended_Return_Statement
2864 and then not Back_End_Inlining
2869 if Nkind
(Orig_Bod
) = N_Defining_Identifier
2870 or else Nkind
(Orig_Bod
) = N_Defining_Operator_Symbol
2872 -- Subprogram is renaming_as_body. Calls occurring after the renaming
2873 -- can be replaced with calls to the renamed entity directly, because
2874 -- the subprograms are subtype conformant. If the renamed subprogram
2875 -- is an inherited operation, we must redo the expansion because
2876 -- implicit conversions may be needed. Similarly, if the renamed
2877 -- entity is inlined, expand the call for further optimizations.
2879 Set_Name
(N
, New_Occurrence_Of
(Orig_Bod
, Loc
));
2881 if Present
(Alias
(Orig_Bod
)) or else Is_Inlined
(Orig_Bod
) then
2888 -- Register the call in the list of inlined calls
2890 Append_New_Elmt
(N
, To
=> Inlined_Calls
);
2892 -- Use generic machinery to copy body of inlined subprogram, as if it
2893 -- were an instantiation, resetting source locations appropriately, so
2894 -- that nested inlined calls appear in the main unit.
2896 Save_Env
(Subp
, Empty
);
2897 Set_Copied_Sloc_For_Inlined_Body
(N
, Defining_Entity
(Orig_Bod
));
2901 if not Back_End_Inlining
then
2906 Bod
:= Copy_Generic_Node
(Orig_Bod
, Empty
, Instantiating
=> True);
2908 Make_Block_Statement
(Loc
,
2909 Declarations
=> Declarations
(Bod
),
2910 Handled_Statement_Sequence
=>
2911 Handled_Statement_Sequence
(Bod
));
2913 if No
(Declarations
(Bod
)) then
2914 Set_Declarations
(Blk
, New_List
);
2917 -- When generating C code, declare _Result, which may be used to
2918 -- verify the return value.
2920 if Modify_Tree_For_C
2921 and then Nkind
(N
) = N_Procedure_Call_Statement
2922 and then Chars
(Name
(N
)) = Name_uPostconditions
2924 Declare_Postconditions_Result
;
2927 -- For the unconstrained case, capture the name of the local
2928 -- variable that holds the result. This must be the first
2929 -- declaration in the block, because its bounds cannot depend
2930 -- on local variables. Otherwise there is no way to declare the
2931 -- result outside of the block. Needless to say, in general the
2932 -- bounds will depend on the actuals in the call.
2934 -- If the context is an assignment statement, as is the case
2935 -- for the expansion of an extended return, the left-hand side
2936 -- provides bounds even if the return type is unconstrained.
2940 First_Decl
: Node_Id
;
2943 First_Decl
:= First
(Declarations
(Blk
));
2945 if Nkind
(First_Decl
) /= N_Object_Declaration
then
2949 if Nkind
(Parent
(N
)) /= N_Assignment_Statement
then
2950 Targ1
:= Defining_Identifier
(First_Decl
);
2952 Targ1
:= Name
(Parent
(N
));
2969 Copy_Generic_Node
(Orig_Bod
, Empty
, Instantiating
=> True);
2971 Make_Block_Statement
(Loc
,
2972 Declarations
=> Declarations
(Bod
),
2973 Handled_Statement_Sequence
=>
2974 Handled_Statement_Sequence
(Bod
));
2976 -- Inline a call to a function that returns an unconstrained type.
2977 -- The semantic analyzer checked that frontend-inlined functions
2978 -- returning unconstrained types have no declarations and have
2979 -- a single extended return statement. As part of its processing
2980 -- the function was split into two subprograms: a procedure P' and
2981 -- a function F' that has a block with a call to procedure P' (see
2982 -- Split_Unconstrained_Function).
2988 (Statements
(Handled_Statement_Sequence
(Orig_Bod
)))) =
2992 Blk_Stmt
: constant Node_Id
:=
2993 First
(Statements
(Handled_Statement_Sequence
(Orig_Bod
)));
2994 First_Stmt
: constant Node_Id
:=
2995 First
(Statements
(Handled_Statement_Sequence
(Blk_Stmt
)));
2996 Second_Stmt
: constant Node_Id
:= Next
(First_Stmt
);
3000 (Nkind
(First_Stmt
) = N_Procedure_Call_Statement
3001 and then Nkind
(Second_Stmt
) = N_Simple_Return_Statement
3002 and then No
(Next
(Second_Stmt
)));
3007 (Statements
(Handled_Statement_Sequence
(Orig_Bod
))),
3008 Empty
, Instantiating
=> True);
3011 -- Capture the name of the local variable that holds the
3012 -- result. This must be the first declaration in the block,
3013 -- because its bounds cannot depend on local variables.
3014 -- Otherwise there is no way to declare the result outside
3015 -- of the block. Needless to say, in general the bounds will
3016 -- depend on the actuals in the call.
3018 if Nkind
(Parent
(N
)) /= N_Assignment_Statement
then
3019 Targ1
:= Defining_Identifier
(First
(Declarations
(Blk
)));
3021 -- If the context is an assignment statement, as is the case
3022 -- for the expansion of an extended return, the left-hand
3023 -- side provides bounds even if the return type is
3027 Targ1
:= Name
(Parent
(N
));
3032 if No
(Declarations
(Bod
)) then
3033 Set_Declarations
(Blk
, New_List
);
3038 -- If this is a derived function, establish the proper return type
3040 if Present
(Orig_Subp
) and then Orig_Subp
/= Subp
then
3041 Ret_Type
:= Etype
(Orig_Subp
);
3043 Ret_Type
:= Etype
(Subp
);
3046 -- Create temporaries for the actuals that are expressions, or that are
3047 -- scalars and require copying to preserve semantics.
3049 F
:= First_Formal
(Subp
);
3050 A
:= First_Actual
(N
);
3051 while Present
(F
) loop
3052 if Present
(Renamed_Object
(F
)) then
3054 -- If expander is active, it is an error to try to inline a
3055 -- recursive program. In GNATprove mode, just indicate that the
3056 -- inlining will not happen, and mark the subprogram as not always
3059 if GNATprove_Mode
then
3061 ("cannot inline call to recursive subprogram?", N
, Subp
);
3062 Set_Is_Inlined_Always
(Subp
, False);
3065 ("cannot inline call to recursive subprogram", N
);
3071 -- Reset Last_Assignment for any parameters of mode out or in out, to
3072 -- prevent spurious warnings about overwriting for assignments to the
3073 -- formal in the inlined code.
3075 if Is_Entity_Name
(A
) and then Ekind
(F
) /= E_In_Parameter
then
3076 Set_Last_Assignment
(Entity
(A
), Empty
);
3079 -- If the argument may be a controlling argument in a call within
3080 -- the inlined body, we must preserve its classwide nature to insure
3081 -- that dynamic dispatching take place subsequently. If the formal
3082 -- has a constraint it must be preserved to retain the semantics of
3085 if Is_Class_Wide_Type
(Etype
(F
))
3086 or else (Is_Access_Type
(Etype
(F
))
3087 and then Is_Class_Wide_Type
(Designated_Type
(Etype
(F
))))
3089 Temp_Typ
:= Etype
(F
);
3091 elsif Base_Type
(Etype
(F
)) = Base_Type
(Etype
(A
))
3092 and then Etype
(F
) /= Base_Type
(Etype
(F
))
3093 and then Is_Constrained
(Etype
(F
))
3095 Temp_Typ
:= Etype
(F
);
3098 Temp_Typ
:= Etype
(A
);
3101 -- If the actual is a simple name or a literal, no need to
3102 -- create a temporary, object can be used directly.
3104 -- If the actual is a literal and the formal has its address taken,
3105 -- we cannot pass the literal itself as an argument, so its value
3106 -- must be captured in a temporary. Skip this optimization in
3107 -- GNATprove mode, to make sure any check on a type conversion
3110 if (Is_Entity_Name
(A
)
3112 (not Is_Scalar_Type
(Etype
(A
))
3113 or else Ekind
(Entity
(A
)) = E_Enumeration_Literal
)
3114 and then not GNATprove_Mode
)
3116 -- When the actual is an identifier and the corresponding formal is
3117 -- used only once in the original body, the formal can be substituted
3118 -- directly with the actual parameter. Skip this optimization in
3119 -- GNATprove mode, to make sure any check on a type conversion
3123 (Nkind
(A
) = N_Identifier
3124 and then Formal_Is_Used_Once
(F
)
3125 and then not GNATprove_Mode
)
3128 (Nkind_In
(A
, N_Real_Literal
,
3130 N_Character_Literal
)
3131 and then not Address_Taken
(F
))
3133 if Etype
(F
) /= Etype
(A
) then
3135 (F
, Unchecked_Convert_To
(Etype
(F
), Relocate_Node
(A
)));
3137 Set_Renamed_Object
(F
, A
);
3141 Temp
:= Make_Temporary
(Loc
, 'C');
3143 -- If the actual for an in/in-out parameter is a view conversion,
3144 -- make it into an unchecked conversion, given that an untagged
3145 -- type conversion is not a proper object for a renaming.
3147 -- In-out conversions that involve real conversions have already
3148 -- been transformed in Expand_Actuals.
3150 if Nkind
(A
) = N_Type_Conversion
3151 and then Ekind
(F
) /= E_In_Parameter
3154 Make_Unchecked_Type_Conversion
(Loc
,
3155 Subtype_Mark
=> New_Occurrence_Of
(Etype
(F
), Loc
),
3156 Expression
=> Relocate_Node
(Expression
(A
)));
3158 -- In GNATprove mode, keep the most precise type of the actual for
3159 -- the temporary variable, when the formal type is unconstrained.
3160 -- Otherwise, the AST may contain unexpected assignment statements
3161 -- to a temporary variable of unconstrained type renaming a local
3162 -- variable of constrained type, which is not expected by
3165 elsif Etype
(F
) /= Etype
(A
)
3166 and then (not GNATprove_Mode
or else Is_Constrained
(Etype
(F
)))
3168 New_A
:= Unchecked_Convert_To
(Etype
(F
), Relocate_Node
(A
));
3169 Temp_Typ
:= Etype
(F
);
3172 New_A
:= Relocate_Node
(A
);
3175 Set_Sloc
(New_A
, Sloc
(N
));
3177 -- If the actual has a by-reference type, it cannot be copied,
3178 -- so its value is captured in a renaming declaration. Otherwise
3179 -- declare a local constant initialized with the actual.
3181 -- We also use a renaming declaration for expressions of an array
3182 -- type that is not bit-packed, both for efficiency reasons and to
3183 -- respect the semantics of the call: in most cases the original
3184 -- call will pass the parameter by reference, and thus the inlined
3185 -- code will have the same semantics.
3187 -- Finally, we need a renaming declaration in the case of limited
3188 -- types for which initialization cannot be by copy either.
3190 if Ekind
(F
) = E_In_Parameter
3191 and then not Is_By_Reference_Type
(Etype
(A
))
3192 and then not Is_Limited_Type
(Etype
(A
))
3194 (not Is_Array_Type
(Etype
(A
))
3195 or else not Is_Object_Reference
(A
)
3196 or else Is_Bit_Packed_Array
(Etype
(A
)))
3199 Make_Object_Declaration
(Loc
,
3200 Defining_Identifier
=> Temp
,
3201 Constant_Present
=> True,
3202 Object_Definition
=> New_Occurrence_Of
(Temp_Typ
, Loc
),
3203 Expression
=> New_A
);
3206 -- In GNATprove mode, make an explicit copy of input
3207 -- parameters when formal and actual types differ, to make
3208 -- sure any check on the type conversion will be issued.
3209 -- The legality of the copy is ensured by calling first
3210 -- Call_Can_Be_Inlined_In_GNATprove_Mode.
3213 and then Ekind
(F
) /= E_Out_Parameter
3214 and then not Same_Type
(Etype
(F
), Etype
(A
))
3216 pragma Assert
(not (Is_By_Reference_Type
(Etype
(A
))));
3217 pragma Assert
(not (Is_Limited_Type
(Etype
(A
))));
3220 Make_Object_Declaration
(Loc
,
3221 Defining_Identifier
=> Make_Temporary
(Loc
, 'C'),
3222 Constant_Present
=> True,
3223 Object_Definition
=> New_Occurrence_Of
(Temp_Typ
, Loc
),
3224 Expression
=> New_Copy_Tree
(New_A
)));
3228 Make_Object_Renaming_Declaration
(Loc
,
3229 Defining_Identifier
=> Temp
,
3230 Subtype_Mark
=> New_Occurrence_Of
(Temp_Typ
, Loc
),
3234 Append
(Decl
, Decls
);
3235 Set_Renamed_Object
(F
, Temp
);
3242 -- Establish target of function call. If context is not assignment or
3243 -- declaration, create a temporary as a target. The declaration for the
3244 -- temporary may be subsequently optimized away if the body is a single
3245 -- expression, or if the left-hand side of the assignment is simple
3246 -- enough, i.e. an entity or an explicit dereference of one.
3248 if Ekind
(Subp
) = E_Function
then
3249 if Nkind
(Parent
(N
)) = N_Assignment_Statement
3250 and then Is_Entity_Name
(Name
(Parent
(N
)))
3252 Targ
:= Name
(Parent
(N
));
3254 elsif Nkind
(Parent
(N
)) = N_Assignment_Statement
3255 and then Nkind
(Name
(Parent
(N
))) = N_Explicit_Dereference
3256 and then Is_Entity_Name
(Prefix
(Name
(Parent
(N
))))
3258 Targ
:= Name
(Parent
(N
));
3260 elsif Nkind
(Parent
(N
)) = N_Assignment_Statement
3261 and then Nkind
(Name
(Parent
(N
))) = N_Selected_Component
3262 and then Is_Entity_Name
(Prefix
(Name
(Parent
(N
))))
3264 Targ
:= New_Copy_Tree
(Name
(Parent
(N
)));
3266 elsif Nkind
(Parent
(N
)) = N_Object_Declaration
3267 and then Is_Limited_Type
(Etype
(Subp
))
3269 Targ
:= Defining_Identifier
(Parent
(N
));
3271 -- New semantics: In an object declaration avoid an extra copy
3272 -- of the result of a call to an inlined function that returns
3273 -- an unconstrained type
3275 elsif Back_End_Inlining
3276 and then Nkind
(Parent
(N
)) = N_Object_Declaration
3279 Targ
:= Defining_Identifier
(Parent
(N
));
3282 -- Replace call with temporary and create its declaration
3284 Temp
:= Make_Temporary
(Loc
, 'C');
3285 Set_Is_Internal
(Temp
);
3287 -- For the unconstrained case, the generated temporary has the
3288 -- same constrained declaration as the result variable. It may
3289 -- eventually be possible to remove that temporary and use the
3290 -- result variable directly.
3292 if Is_Unc
and then Nkind
(Parent
(N
)) /= N_Assignment_Statement
3295 Make_Object_Declaration
(Loc
,
3296 Defining_Identifier
=> Temp
,
3297 Object_Definition
=>
3298 New_Copy_Tree
(Object_Definition
(Parent
(Targ1
))));
3300 Replace_Formals
(Decl
);
3304 Make_Object_Declaration
(Loc
,
3305 Defining_Identifier
=> Temp
,
3306 Object_Definition
=> New_Occurrence_Of
(Ret_Type
, Loc
));
3308 Set_Etype
(Temp
, Ret_Type
);
3311 Set_No_Initialization
(Decl
);
3312 Append
(Decl
, Decls
);
3313 Rewrite
(N
, New_Occurrence_Of
(Temp
, Loc
));
3318 Insert_Actions
(N
, Decls
);
3322 -- Special management for inlining a call to a function that returns
3323 -- an unconstrained type and initializes an object declaration: we
3324 -- avoid generating undesired extra calls and goto statements.
3327 -- function Func (...) return String is
3330 -- Result : String (1 .. 4);
3332 -- Proc (Result, ...);
3337 -- Result : String := Func (...);
3339 -- Replace this object declaration by:
3341 -- Result : String (1 .. 4);
3342 -- Proc (Result, ...);
3344 Remove_Homonym
(Targ
);
3347 Make_Object_Declaration
3349 Defining_Identifier
=> Targ
,
3350 Object_Definition
=>
3351 New_Copy_Tree
(Object_Definition
(Parent
(Targ1
))));
3352 Replace_Formals
(Decl
);
3353 Rewrite
(Parent
(N
), Decl
);
3354 Analyze
(Parent
(N
));
3356 -- Avoid spurious warnings since we know that this declaration is
3357 -- referenced by the procedure call.
3359 Set_Never_Set_In_Source
(Targ
, False);
3361 -- Remove the local declaration of the extended return stmt from the
3364 Remove
(Parent
(Targ1
));
3366 -- Update the reference to the result (since we have rewriten the
3367 -- object declaration)
3370 Blk_Call_Stmt
: Node_Id
;
3373 -- Capture the call to the procedure
3376 First
(Statements
(Handled_Statement_Sequence
(Blk
)));
3378 (Nkind
(Blk_Call_Stmt
) = N_Procedure_Call_Statement
);
3380 Remove
(First
(Parameter_Associations
(Blk_Call_Stmt
)));
3381 Prepend_To
(Parameter_Associations
(Blk_Call_Stmt
),
3382 New_Occurrence_Of
(Targ
, Loc
));
3385 -- Remove the return statement
3388 (Nkind
(Last
(Statements
(Handled_Statement_Sequence
(Blk
)))) =
3389 N_Simple_Return_Statement
);
3391 Remove
(Last
(Statements
(Handled_Statement_Sequence
(Blk
))));
3394 -- Traverse the tree and replace formals with actuals or their thunks.
3395 -- Attach block to tree before analysis and rewriting.
3397 Replace_Formals
(Blk
);
3398 Set_Parent
(Blk
, N
);
3400 if GNATprove_Mode
then
3403 elsif not Comes_From_Source
(Subp
) or else Is_Predef
then
3409 -- No action needed since return statement has been already removed
3413 elsif Present
(Exit_Lab
) then
3415 -- If there's a single return statement at the end of the subprogram,
3416 -- the corresponding goto statement and the corresponding label are
3421 Nkind
(Last
(Statements
(Handled_Statement_Sequence
(Blk
)))) =
3424 Remove
(Last
(Statements
(Handled_Statement_Sequence
(Blk
))));
3426 Append
(Lab_Decl
, (Declarations
(Blk
)));
3427 Append
(Exit_Lab
, Statements
(Handled_Statement_Sequence
(Blk
)));
3431 -- Analyze Blk with In_Inlined_Body set, to avoid spurious errors
3432 -- on conflicting private views that Gigi would ignore. If this is a
3433 -- predefined unit, analyze with checks off, as is done in the non-
3434 -- inlined run-time units.
3437 I_Flag
: constant Boolean := In_Inlined_Body
;
3440 In_Inlined_Body
:= True;
3444 Style
: constant Boolean := Style_Check
;
3447 Style_Check
:= False;
3449 -- Search for dispatching calls that use the Object.Operation
3450 -- notation using an Object that is a parameter of the inlined
3451 -- function. We reset the decoration of Operation to force
3452 -- the reanalysis of the inlined dispatching call because
3453 -- the actual object has been inlined.
3455 Reset_Dispatching_Calls
(Blk
);
3457 Analyze
(Blk
, Suppress
=> All_Checks
);
3458 Style_Check
:= Style
;
3465 In_Inlined_Body
:= I_Flag
;
3468 if Ekind
(Subp
) = E_Procedure
then
3469 Rewrite_Procedure_Call
(N
, Blk
);
3472 Rewrite_Function_Call
(N
, Blk
);
3477 -- For the unconstrained case, the replacement of the call has been
3478 -- made prior to the complete analysis of the generated declarations.
3479 -- Propagate the proper type now.
3482 if Nkind
(N
) = N_Identifier
then
3483 Set_Etype
(N
, Etype
(Entity
(N
)));
3485 Set_Etype
(N
, Etype
(Targ1
));
3492 -- Cleanup mapping between formals and actuals for other expansions
3494 F
:= First_Formal
(Subp
);
3495 while Present
(F
) loop
3496 Set_Renamed_Object
(F
, Empty
);
3499 end Expand_Inlined_Call
;
3501 --------------------------
3502 -- Get_Code_Unit_Entity --
3503 --------------------------
3505 function Get_Code_Unit_Entity
(E
: Entity_Id
) return Entity_Id
is
3506 Unit
: Entity_Id
:= Cunit_Entity
(Get_Code_Unit
(E
));
3509 if Ekind
(Unit
) = E_Package_Body
then
3510 Unit
:= Spec_Entity
(Unit
);
3514 end Get_Code_Unit_Entity
;
3516 ------------------------------
3517 -- Has_Excluded_Declaration --
3518 ------------------------------
3520 function Has_Excluded_Declaration
3522 Decls
: List_Id
) return Boolean
3526 function Is_Unchecked_Conversion
(D
: Node_Id
) return Boolean;
3527 -- Nested subprograms make a given body ineligible for inlining, but
3528 -- we make an exception for instantiations of unchecked conversion.
3529 -- The body has not been analyzed yet, so check the name, and verify
3530 -- that the visible entity with that name is the predefined unit.
3532 -----------------------------
3533 -- Is_Unchecked_Conversion --
3534 -----------------------------
3536 function Is_Unchecked_Conversion
(D
: Node_Id
) return Boolean is
3537 Id
: constant Node_Id
:= Name
(D
);
3541 if Nkind
(Id
) = N_Identifier
3542 and then Chars
(Id
) = Name_Unchecked_Conversion
3544 Conv
:= Current_Entity
(Id
);
3546 elsif Nkind_In
(Id
, N_Selected_Component
, N_Expanded_Name
)
3547 and then Chars
(Selector_Name
(Id
)) = Name_Unchecked_Conversion
3549 Conv
:= Current_Entity
(Selector_Name
(Id
));
3554 return Present
(Conv
)
3555 and then Is_Predefined_Unit
(Get_Source_Unit
(Conv
))
3556 and then Is_Intrinsic_Subprogram
(Conv
);
3557 end Is_Unchecked_Conversion
;
3559 -- Start of processing for Has_Excluded_Declaration
3562 -- No action needed if the check is not needed
3564 if not Check_Inlining_Restrictions
then
3569 while Present
(D
) loop
3571 -- First declarations universally excluded
3573 if Nkind
(D
) = N_Package_Declaration
then
3575 ("cannot inline & (nested package declaration)?", D
, Subp
);
3578 elsif Nkind
(D
) = N_Package_Instantiation
then
3580 ("cannot inline & (nested package instantiation)?", D
, Subp
);
3584 -- Then declarations excluded only for front-end inlining
3586 if Back_End_Inlining
then
3589 elsif Nkind
(D
) = N_Task_Type_Declaration
3590 or else Nkind
(D
) = N_Single_Task_Declaration
3593 ("cannot inline & (nested task type declaration)?", D
, Subp
);
3596 elsif Nkind
(D
) = N_Protected_Type_Declaration
3597 or else Nkind
(D
) = N_Single_Protected_Declaration
3600 ("cannot inline & (nested protected type declaration)?",
3604 elsif Nkind
(D
) = N_Subprogram_Body
then
3606 ("cannot inline & (nested subprogram)?", D
, Subp
);
3609 elsif Nkind
(D
) = N_Function_Instantiation
3610 and then not Is_Unchecked_Conversion
(D
)
3613 ("cannot inline & (nested function instantiation)?", D
, Subp
);
3616 elsif Nkind
(D
) = N_Procedure_Instantiation
then
3618 ("cannot inline & (nested procedure instantiation)?", D
, Subp
);
3621 -- Subtype declarations with predicates will generate predicate
3622 -- functions, i.e. nested subprogram bodies, so inlining is not
3625 elsif Nkind
(D
) = N_Subtype_Declaration
3626 and then Present
(Aspect_Specifications
(D
))
3633 A
:= First
(Aspect_Specifications
(D
));
3634 while Present
(A
) loop
3635 A_Id
:= Get_Aspect_Id
(Chars
(Identifier
(A
)));
3637 if A_Id
= Aspect_Predicate
3638 or else A_Id
= Aspect_Static_Predicate
3639 or else A_Id
= Aspect_Dynamic_Predicate
3642 ("cannot inline & (subtype declaration with "
3643 & "predicate)?", D
, Subp
);
3656 end Has_Excluded_Declaration
;
3658 ----------------------------
3659 -- Has_Excluded_Statement --
3660 ----------------------------
3662 function Has_Excluded_Statement
3664 Stats
: List_Id
) return Boolean
3670 -- No action needed if the check is not needed
3672 if not Check_Inlining_Restrictions
then
3677 while Present
(S
) loop
3678 if Nkind_In
(S
, N_Abort_Statement
,
3679 N_Asynchronous_Select
,
3680 N_Conditional_Entry_Call
,
3681 N_Delay_Relative_Statement
,
3682 N_Delay_Until_Statement
,
3687 ("cannot inline & (non-allowed statement)?", S
, Subp
);
3690 elsif Nkind
(S
) = N_Block_Statement
then
3691 if Present
(Declarations
(S
))
3692 and then Has_Excluded_Declaration
(Subp
, Declarations
(S
))
3696 elsif Present
(Handled_Statement_Sequence
(S
)) then
3697 if not Back_End_Inlining
3700 (Exception_Handlers
(Handled_Statement_Sequence
(S
)))
3703 ("cannot inline& (exception handler)?",
3704 First
(Exception_Handlers
3705 (Handled_Statement_Sequence
(S
))),
3709 elsif Has_Excluded_Statement
3710 (Subp
, Statements
(Handled_Statement_Sequence
(S
)))
3716 elsif Nkind
(S
) = N_Case_Statement
then
3717 E
:= First
(Alternatives
(S
));
3718 while Present
(E
) loop
3719 if Has_Excluded_Statement
(Subp
, Statements
(E
)) then
3726 elsif Nkind
(S
) = N_If_Statement
then
3727 if Has_Excluded_Statement
(Subp
, Then_Statements
(S
)) then
3731 if Present
(Elsif_Parts
(S
)) then
3732 E
:= First
(Elsif_Parts
(S
));
3733 while Present
(E
) loop
3734 if Has_Excluded_Statement
(Subp
, Then_Statements
(E
)) then
3742 if Present
(Else_Statements
(S
))
3743 and then Has_Excluded_Statement
(Subp
, Else_Statements
(S
))
3748 elsif Nkind
(S
) = N_Loop_Statement
3749 and then Has_Excluded_Statement
(Subp
, Statements
(S
))
3753 elsif Nkind
(S
) = N_Extended_Return_Statement
then
3754 if Present
(Handled_Statement_Sequence
(S
))
3756 Has_Excluded_Statement
3757 (Subp
, Statements
(Handled_Statement_Sequence
(S
)))
3761 elsif not Back_End_Inlining
3762 and then Present
(Handled_Statement_Sequence
(S
))
3764 Present
(Exception_Handlers
3765 (Handled_Statement_Sequence
(S
)))
3768 ("cannot inline& (exception handler)?",
3769 First
(Exception_Handlers
(Handled_Statement_Sequence
(S
))),
3779 end Has_Excluded_Statement
;
3781 --------------------------
3782 -- Has_Initialized_Type --
3783 --------------------------
3785 function Has_Initialized_Type
(E
: Entity_Id
) return Boolean is
3786 E_Body
: constant Node_Id
:= Subprogram_Body
(E
);
3790 if No
(E_Body
) then -- imported subprogram
3794 Decl
:= First
(Declarations
(E_Body
));
3795 while Present
(Decl
) loop
3796 if Nkind
(Decl
) = N_Full_Type_Declaration
3797 and then Present
(Init_Proc
(Defining_Identifier
(Decl
)))
3807 end Has_Initialized_Type
;
3809 -----------------------
3810 -- Has_Single_Return --
3811 -----------------------
3813 function Has_Single_Return
(N
: Node_Id
) return Boolean is
3814 Return_Statement
: Node_Id
:= Empty
;
3816 function Check_Return
(N
: Node_Id
) return Traverse_Result
;
3822 function Check_Return
(N
: Node_Id
) return Traverse_Result
is
3824 if Nkind
(N
) = N_Simple_Return_Statement
then
3825 if Present
(Expression
(N
))
3826 and then Is_Entity_Name
(Expression
(N
))
3828 if No
(Return_Statement
) then
3829 Return_Statement
:= N
;
3832 elsif Chars
(Expression
(N
)) =
3833 Chars
(Expression
(Return_Statement
))
3841 -- A return statement within an extended return is a noop
3844 elsif No
(Expression
(N
))
3846 Nkind
(Parent
(Parent
(N
))) = N_Extended_Return_Statement
3851 -- Expression has wrong form
3856 -- We can only inline a build-in-place function if it has a single
3859 elsif Nkind
(N
) = N_Extended_Return_Statement
then
3860 if No
(Return_Statement
) then
3861 Return_Statement
:= N
;
3873 function Check_All_Returns
is new Traverse_Func
(Check_Return
);
3875 -- Start of processing for Has_Single_Return
3878 if Check_All_Returns
(N
) /= OK
then
3881 elsif Nkind
(Return_Statement
) = N_Extended_Return_Statement
then
3885 return Present
(Declarations
(N
))
3886 and then Present
(First
(Declarations
(N
)))
3887 and then Chars
(Expression
(Return_Statement
)) =
3888 Chars
(Defining_Identifier
(First
(Declarations
(N
))));
3890 end Has_Single_Return
;
3892 -----------------------------
3893 -- In_Main_Unit_Or_Subunit --
3894 -----------------------------
3896 function In_Main_Unit_Or_Subunit
(E
: Entity_Id
) return Boolean is
3897 Comp
: Node_Id
:= Cunit
(Get_Code_Unit
(E
));
3900 -- Check whether the subprogram or package to inline is within the main
3901 -- unit or its spec or within a subunit. In either case there are no
3902 -- additional bodies to process. If the subprogram appears in a parent
3903 -- of the current unit, the check on whether inlining is possible is
3904 -- done in Analyze_Inlined_Bodies.
3906 while Nkind
(Unit
(Comp
)) = N_Subunit
loop
3907 Comp
:= Library_Unit
(Comp
);
3910 return Comp
= Cunit
(Main_Unit
)
3911 or else Comp
= Library_Unit
(Cunit
(Main_Unit
));
3912 end In_Main_Unit_Or_Subunit
;
3918 procedure Initialize
is
3920 Pending_Descriptor
.Init
;
3921 Pending_Instantiations
.Init
;
3922 Inlined_Bodies
.Init
;
3926 for J
in Hash_Headers
'Range loop
3927 Hash_Headers
(J
) := No_Subp
;
3930 Inlined_Calls
:= No_Elist
;
3931 Backend_Calls
:= No_Elist
;
3932 Backend_Inlined_Subps
:= No_Elist
;
3933 Backend_Not_Inlined_Subps
:= No_Elist
;
3936 ------------------------
3937 -- Instantiate_Bodies --
3938 ------------------------
3940 -- Generic bodies contain all the non-local references, so an
3941 -- instantiation does not need any more context than Standard
3942 -- itself, even if the instantiation appears in an inner scope.
3943 -- Generic associations have verified that the contract model is
3944 -- satisfied, so that any error that may occur in the analysis of
3945 -- the body is an internal error.
3947 procedure Instantiate_Bodies
is
3949 Info
: Pending_Body_Info
;
3952 if Serious_Errors_Detected
= 0 then
3953 Expander_Active
:= (Operating_Mode
= Opt
.Generate_Code
);
3954 Push_Scope
(Standard_Standard
);
3955 To_Clean
:= New_Elmt_List
;
3957 if Is_Generic_Unit
(Cunit_Entity
(Main_Unit
)) then
3961 -- A body instantiation may generate additional instantiations, so
3962 -- the following loop must scan to the end of a possibly expanding
3963 -- set (that's why we can't simply use a FOR loop here).
3966 while J
<= Pending_Instantiations
.Last
3967 and then Serious_Errors_Detected
= 0
3969 Info
:= Pending_Instantiations
.Table
(J
);
3971 -- If the instantiation node is absent, it has been removed
3972 -- as part of unreachable code.
3974 if No
(Info
.Inst_Node
) then
3977 elsif Nkind
(Info
.Act_Decl
) = N_Package_Declaration
then
3978 Instantiate_Package_Body
(Info
);
3979 Add_Scope_To_Clean
(Defining_Entity
(Info
.Act_Decl
));
3982 Instantiate_Subprogram_Body
(Info
);
3988 -- Reset the table of instantiations. Additional instantiations
3989 -- may be added through inlining, when additional bodies are
3992 Pending_Instantiations
.Init
;
3994 -- We can now complete the cleanup actions of scopes that contain
3995 -- pending instantiations (skipped for generic units, since we
3996 -- never need any cleanups in generic units).
3999 and then not Is_Generic_Unit
(Main_Unit_Entity
)
4002 elsif Is_Generic_Unit
(Cunit_Entity
(Main_Unit
)) then
4008 end Instantiate_Bodies
;
4014 function Is_Nested
(E
: Entity_Id
) return Boolean is
4019 while Scop
/= Standard_Standard
loop
4020 if Ekind
(Scop
) in Subprogram_Kind
then
4023 elsif Ekind
(Scop
) = E_Task_Type
4024 or else Ekind
(Scop
) = E_Entry
4025 or else Ekind
(Scop
) = E_Entry_Family
4030 Scop
:= Scope
(Scop
);
4036 ------------------------
4037 -- List_Inlining_Info --
4038 ------------------------
4040 procedure List_Inlining_Info
is
4046 if not Debug_Flag_Dot_J
then
4050 -- Generate listing of calls inlined by the frontend
4052 if Present
(Inlined_Calls
) then
4054 Elmt
:= First_Elmt
(Inlined_Calls
);
4055 while Present
(Elmt
) loop
4058 if In_Extended_Main_Code_Unit
(Nod
) then
4062 Write_Str
("List of calls inlined by the frontend");
4069 Write_Location
(Sloc
(Nod
));
4078 -- Generate listing of calls passed to the backend
4080 if Present
(Backend_Calls
) then
4083 Elmt
:= First_Elmt
(Backend_Calls
);
4084 while Present
(Elmt
) loop
4087 if In_Extended_Main_Code_Unit
(Nod
) then
4091 Write_Str
("List of inlined calls passed to the backend");
4098 Write_Location
(Sloc
(Nod
));
4106 -- Generate listing of subprograms passed to the backend
4108 if Present
(Backend_Inlined_Subps
) and then Back_End_Inlining
then
4111 Elmt
:= First_Elmt
(Backend_Inlined_Subps
);
4112 while Present
(Elmt
) loop
4119 ("List of inlined subprograms passed to the backend");
4126 Write_Name
(Chars
(Nod
));
4128 Write_Location
(Sloc
(Nod
));
4136 -- Generate listing of subprograms that cannot be inlined by the backend
4138 if Present
(Backend_Not_Inlined_Subps
) and then Back_End_Inlining
then
4141 Elmt
:= First_Elmt
(Backend_Not_Inlined_Subps
);
4142 while Present
(Elmt
) loop
4149 ("List of subprograms that cannot be inlined by the backend");
4156 Write_Name
(Chars
(Nod
));
4158 Write_Location
(Sloc
(Nod
));
4165 end List_Inlining_Info
;
4173 Pending_Instantiations
.Release
;
4174 Pending_Instantiations
.Locked
:= True;
4175 Inlined_Bodies
.Release
;
4176 Inlined_Bodies
.Locked
:= True;
4178 Successors
.Locked
:= True;
4180 Inlined
.Locked
:= True;
4183 --------------------------------
4184 -- Remove_Aspects_And_Pragmas --
4185 --------------------------------
4187 procedure Remove_Aspects_And_Pragmas
(Body_Decl
: Node_Id
) is
4188 procedure Remove_Items
(List
: List_Id
);
4189 -- Remove all useless aspects/pragmas from a particular list
4195 procedure Remove_Items
(List
: List_Id
) is
4198 Next_Item
: Node_Id
;
4201 -- Traverse the list looking for an aspect specification or a pragma
4203 Item
:= First
(List
);
4204 while Present
(Item
) loop
4205 Next_Item
:= Next
(Item
);
4207 if Nkind
(Item
) = N_Aspect_Specification
then
4208 Item_Id
:= Identifier
(Item
);
4209 elsif Nkind
(Item
) = N_Pragma
then
4210 Item_Id
:= Pragma_Identifier
(Item
);
4215 if Present
(Item_Id
)
4216 and then Nam_In
(Chars
(Item_Id
), Name_Contract_Cases
,
4221 Name_Refined_Global
,
4222 Name_Refined_Depends
,
4236 -- Start of processing for Remove_Aspects_And_Pragmas
4239 Remove_Items
(Aspect_Specifications
(Body_Decl
));
4240 Remove_Items
(Declarations
(Body_Decl
));
4242 -- Pragmas Unmodified, Unreferenced, and Unused may additionally appear
4243 -- in the body of the subprogram.
4245 Remove_Items
(Statements
(Handled_Statement_Sequence
(Body_Decl
)));
4246 end Remove_Aspects_And_Pragmas
;
4248 --------------------------
4249 -- Remove_Dead_Instance --
4250 --------------------------
4252 procedure Remove_Dead_Instance
(N
: Node_Id
) is
4257 while J
<= Pending_Instantiations
.Last
loop
4258 if Pending_Instantiations
.Table
(J
).Inst_Node
= N
then
4259 Pending_Instantiations
.Table
(J
).Inst_Node
:= Empty
;
4265 end Remove_Dead_Instance
;