AArch64: Add cost table for Cortex-A76
[official-gcc.git] / gcc / tree-vectorizer.h
blob0ee4ef32eb2dbe2242327a6ed61c1245a0f59ce6
1 /* Vectorizer
2 Copyright (C) 2003-2020 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #ifndef GCC_TREE_VECTORIZER_H
22 #define GCC_TREE_VECTORIZER_H
24 typedef class _stmt_vec_info *stmt_vec_info;
26 #include "tree-data-ref.h"
27 #include "tree-hash-traits.h"
28 #include "target.h"
29 #include "alloc-pool.h"
32 /* Used for naming of new temporaries. */
33 enum vect_var_kind {
34 vect_simple_var,
35 vect_pointer_var,
36 vect_scalar_var,
37 vect_mask_var
40 /* Defines type of operation. */
41 enum operation_type {
42 unary_op = 1,
43 binary_op,
44 ternary_op
47 /* Define type of available alignment support. */
48 enum dr_alignment_support {
49 dr_unaligned_unsupported,
50 dr_unaligned_supported,
51 dr_explicit_realign,
52 dr_explicit_realign_optimized,
53 dr_aligned
56 /* Define type of def-use cross-iteration cycle. */
57 enum vect_def_type {
58 vect_uninitialized_def = 0,
59 vect_constant_def = 1,
60 vect_external_def,
61 vect_internal_def,
62 vect_induction_def,
63 vect_reduction_def,
64 vect_double_reduction_def,
65 vect_nested_cycle,
66 vect_unknown_def_type
69 /* Define type of reduction. */
70 enum vect_reduction_type {
71 TREE_CODE_REDUCTION,
72 COND_REDUCTION,
73 INTEGER_INDUC_COND_REDUCTION,
74 CONST_COND_REDUCTION,
76 /* Retain a scalar phi and use a FOLD_EXTRACT_LAST within the loop
77 to implement:
79 for (int i = 0; i < VF; ++i)
80 res = cond[i] ? val[i] : res; */
81 EXTRACT_LAST_REDUCTION,
83 /* Use a folding reduction within the loop to implement:
85 for (int i = 0; i < VF; ++i)
86 res = res OP val[i];
88 (with no reassocation). */
89 FOLD_LEFT_REDUCTION
92 #define VECTORIZABLE_CYCLE_DEF(D) (((D) == vect_reduction_def) \
93 || ((D) == vect_double_reduction_def) \
94 || ((D) == vect_nested_cycle))
96 /* Structure to encapsulate information about a group of like
97 instructions to be presented to the target cost model. */
98 struct stmt_info_for_cost {
99 int count;
100 enum vect_cost_for_stmt kind;
101 enum vect_cost_model_location where;
102 stmt_vec_info stmt_info;
103 tree vectype;
104 int misalign;
107 typedef vec<stmt_info_for_cost> stmt_vector_for_cost;
109 /* Maps base addresses to an innermost_loop_behavior that gives the maximum
110 known alignment for that base. */
111 typedef hash_map<tree_operand_hash,
112 innermost_loop_behavior *> vec_base_alignments;
114 /************************************************************************
116 ************************************************************************/
117 typedef struct _slp_tree *slp_tree;
119 extern object_allocator<_slp_tree> *slp_tree_pool;
121 /* A computation tree of an SLP instance. Each node corresponds to a group of
122 stmts to be packed in a SIMD stmt. */
123 struct _slp_tree {
124 _slp_tree ();
125 ~_slp_tree ();
127 /* Nodes that contain def-stmts of this node statements operands. */
128 vec<slp_tree> children;
130 /* A group of scalar stmts to be vectorized together. */
131 vec<stmt_vec_info> stmts;
132 /* A group of scalar operands to be vectorized together. */
133 vec<tree> ops;
134 /* The representative that should be used for analysis and
135 code generation. */
136 stmt_vec_info representative;
138 /* Load permutation relative to the stores, NULL if there is no
139 permutation. */
140 vec<unsigned> load_permutation;
141 /* Lane permutation of the operands scalar lanes encoded as pairs
142 of { operand number, lane number }. The number of elements
143 denotes the number of output lanes. */
144 vec<std::pair<unsigned, unsigned> > lane_permutation;
146 tree vectype;
147 /* Vectorized stmt/s. */
148 vec<gimple *> vec_stmts;
149 vec<tree> vec_defs;
150 /* Number of vector stmts that are created to replace the group of scalar
151 stmts. It is calculated during the transformation phase as the number of
152 scalar elements in one scalar iteration (GROUP_SIZE) multiplied by VF
153 divided by vector size. */
154 unsigned int vec_stmts_size;
156 /* Reference count in the SLP graph. */
157 unsigned int refcnt;
158 /* The maximum number of vector elements for the subtree rooted
159 at this node. */
160 poly_uint64 max_nunits;
161 /* The DEF type of this node. */
162 enum vect_def_type def_type;
163 /* The number of scalar lanes produced by this node. */
164 unsigned int lanes;
165 /* The operation of this node. */
166 enum tree_code code;
168 int vertex;
170 /* Allocate from slp_tree_pool. */
171 static void *operator new (size_t);
173 /* Return memory to slp_tree_pool. */
174 static void operator delete (void *, size_t);
177 /* The enum describes the type of operations that an SLP instance
178 can perform. */
180 enum slp_instance_kind {
181 slp_inst_kind_store,
182 slp_inst_kind_reduc_group,
183 slp_inst_kind_reduc_chain,
184 slp_inst_kind_ctor
187 /* SLP instance is a sequence of stmts in a loop that can be packed into
188 SIMD stmts. */
189 typedef class _slp_instance {
190 public:
191 /* The root of SLP tree. */
192 slp_tree root;
194 /* For vector constructors, the constructor stmt that the SLP tree is built
195 from, NULL otherwise. */
196 stmt_vec_info root_stmt;
198 /* The unrolling factor required to vectorized this SLP instance. */
199 poly_uint64 unrolling_factor;
201 /* The group of nodes that contain loads of this SLP instance. */
202 vec<slp_tree> loads;
204 /* The SLP node containing the reduction PHIs. */
205 slp_tree reduc_phis;
207 /* Vector cost of this entry to the SLP graph. */
208 stmt_vector_for_cost cost_vec;
210 /* If this instance is the main entry of a subgraph the set of
211 entries into the same subgraph, including itself. */
212 vec<_slp_instance *> subgraph_entries;
214 /* The type of operation the SLP instance is performing. */
215 slp_instance_kind kind;
217 dump_user_location_t location () const;
218 } *slp_instance;
221 /* Access Functions. */
222 #define SLP_INSTANCE_TREE(S) (S)->root
223 #define SLP_INSTANCE_UNROLLING_FACTOR(S) (S)->unrolling_factor
224 #define SLP_INSTANCE_LOADS(S) (S)->loads
225 #define SLP_INSTANCE_ROOT_STMT(S) (S)->root_stmt
226 #define SLP_INSTANCE_KIND(S) (S)->kind
228 #define SLP_TREE_CHILDREN(S) (S)->children
229 #define SLP_TREE_SCALAR_STMTS(S) (S)->stmts
230 #define SLP_TREE_SCALAR_OPS(S) (S)->ops
231 #define SLP_TREE_REF_COUNT(S) (S)->refcnt
232 #define SLP_TREE_VEC_STMTS(S) (S)->vec_stmts
233 #define SLP_TREE_VEC_DEFS(S) (S)->vec_defs
234 #define SLP_TREE_NUMBER_OF_VEC_STMTS(S) (S)->vec_stmts_size
235 #define SLP_TREE_LOAD_PERMUTATION(S) (S)->load_permutation
236 #define SLP_TREE_LANE_PERMUTATION(S) (S)->lane_permutation
237 #define SLP_TREE_DEF_TYPE(S) (S)->def_type
238 #define SLP_TREE_VECTYPE(S) (S)->vectype
239 #define SLP_TREE_REPRESENTATIVE(S) (S)->representative
240 #define SLP_TREE_LANES(S) (S)->lanes
241 #define SLP_TREE_CODE(S) (S)->code
243 /* Key for map that records association between
244 scalar conditions and corresponding loop mask, and
245 is populated by vect_record_loop_mask. */
247 struct scalar_cond_masked_key
249 scalar_cond_masked_key (tree t, unsigned ncopies_)
250 : ncopies (ncopies_)
252 get_cond_ops_from_tree (t);
255 void get_cond_ops_from_tree (tree);
257 unsigned ncopies;
258 tree_code code;
259 tree op0;
260 tree op1;
263 template<>
264 struct default_hash_traits<scalar_cond_masked_key>
266 typedef scalar_cond_masked_key compare_type;
267 typedef scalar_cond_masked_key value_type;
269 static inline hashval_t
270 hash (value_type v)
272 inchash::hash h;
273 h.add_int (v.code);
274 inchash::add_expr (v.op0, h, 0);
275 inchash::add_expr (v.op1, h, 0);
276 h.add_int (v.ncopies);
277 return h.end ();
280 static inline bool
281 equal (value_type existing, value_type candidate)
283 return (existing.ncopies == candidate.ncopies
284 && existing.code == candidate.code
285 && operand_equal_p (existing.op0, candidate.op0, 0)
286 && operand_equal_p (existing.op1, candidate.op1, 0));
289 static const bool empty_zero_p = true;
291 static inline void
292 mark_empty (value_type &v)
294 v.ncopies = 0;
297 static inline bool
298 is_empty (value_type v)
300 return v.ncopies == 0;
303 static inline void mark_deleted (value_type &) {}
305 static inline bool is_deleted (const value_type &)
307 return false;
310 static inline void remove (value_type &) {}
313 typedef hash_set<scalar_cond_masked_key> scalar_cond_masked_set_type;
315 /* Describes two objects whose addresses must be unequal for the vectorized
316 loop to be valid. */
317 typedef std::pair<tree, tree> vec_object_pair;
319 /* Records that vectorization is only possible if abs (EXPR) >= MIN_VALUE.
320 UNSIGNED_P is true if we can assume that abs (EXPR) == EXPR. */
321 class vec_lower_bound {
322 public:
323 vec_lower_bound () {}
324 vec_lower_bound (tree e, bool u, poly_uint64 m)
325 : expr (e), unsigned_p (u), min_value (m) {}
327 tree expr;
328 bool unsigned_p;
329 poly_uint64 min_value;
332 /* Vectorizer state shared between different analyses like vector sizes
333 of the same CFG region. */
334 class vec_info_shared {
335 public:
336 vec_info_shared();
337 ~vec_info_shared();
339 void save_datarefs();
340 void check_datarefs();
342 /* All data references. Freed by free_data_refs, so not an auto_vec. */
343 vec<data_reference_p> datarefs;
344 vec<data_reference> datarefs_copy;
346 /* The loop nest in which the data dependences are computed. */
347 auto_vec<loop_p> loop_nest;
349 /* All data dependences. Freed by free_dependence_relations, so not
350 an auto_vec. */
351 vec<ddr_p> ddrs;
354 /* Vectorizer state common between loop and basic-block vectorization. */
355 class vec_info {
356 public:
357 typedef hash_set<int_hash<machine_mode, E_VOIDmode, E_BLKmode> > mode_set;
358 enum vec_kind { bb, loop };
360 vec_info (vec_kind, void *, vec_info_shared *);
361 ~vec_info ();
363 stmt_vec_info add_stmt (gimple *);
364 stmt_vec_info lookup_stmt (gimple *);
365 stmt_vec_info lookup_def (tree);
366 stmt_vec_info lookup_single_use (tree);
367 class dr_vec_info *lookup_dr (data_reference *);
368 void move_dr (stmt_vec_info, stmt_vec_info);
369 void remove_stmt (stmt_vec_info);
370 void replace_stmt (gimple_stmt_iterator *, stmt_vec_info, gimple *);
371 void insert_on_entry (stmt_vec_info, gimple *);
372 void insert_seq_on_entry (stmt_vec_info, gimple_seq);
374 /* The type of vectorization. */
375 vec_kind kind;
377 /* Shared vectorizer state. */
378 vec_info_shared *shared;
380 /* The mapping of GIMPLE UID to stmt_vec_info. */
381 vec<stmt_vec_info> stmt_vec_infos;
382 /* Whether the above mapping is complete. */
383 bool stmt_vec_info_ro;
385 /* The SLP graph. */
386 auto_vec<slp_instance> slp_instances;
388 /* Maps base addresses to an innermost_loop_behavior that gives the maximum
389 known alignment for that base. */
390 vec_base_alignments base_alignments;
392 /* All interleaving chains of stores, represented by the first
393 stmt in the chain. */
394 auto_vec<stmt_vec_info> grouped_stores;
396 /* Cost data used by the target cost model. */
397 void *target_cost_data;
399 /* The set of vector modes used in the vectorized region. */
400 mode_set used_vector_modes;
402 /* The argument we should pass to related_vector_mode when looking up
403 the vector mode for a scalar mode, or VOIDmode if we haven't yet
404 made any decisions about which vector modes to use. */
405 machine_mode vector_mode;
407 private:
408 stmt_vec_info new_stmt_vec_info (gimple *stmt);
409 void set_vinfo_for_stmt (gimple *, stmt_vec_info);
410 void free_stmt_vec_infos ();
411 void free_stmt_vec_info (stmt_vec_info);
414 class _loop_vec_info;
415 class _bb_vec_info;
417 template<>
418 template<>
419 inline bool
420 is_a_helper <_loop_vec_info *>::test (vec_info *i)
422 return i->kind == vec_info::loop;
425 template<>
426 template<>
427 inline bool
428 is_a_helper <_bb_vec_info *>::test (vec_info *i)
430 return i->kind == vec_info::bb;
433 /* In general, we can divide the vector statements in a vectorized loop
434 into related groups ("rgroups") and say that for each rgroup there is
435 some nS such that the rgroup operates on nS values from one scalar
436 iteration followed by nS values from the next. That is, if VF is the
437 vectorization factor of the loop, the rgroup operates on a sequence:
439 (1,1) (1,2) ... (1,nS) (2,1) ... (2,nS) ... (VF,1) ... (VF,nS)
441 where (i,j) represents a scalar value with index j in a scalar
442 iteration with index i.
444 [ We use the term "rgroup" to emphasise that this grouping isn't
445 necessarily the same as the grouping of statements used elsewhere.
446 For example, if we implement a group of scalar loads using gather
447 loads, we'll use a separate gather load for each scalar load, and
448 thus each gather load will belong to its own rgroup. ]
450 In general this sequence will occupy nV vectors concatenated
451 together. If these vectors have nL lanes each, the total number
452 of scalar values N is given by:
454 N = nS * VF = nV * nL
456 None of nS, VF, nV and nL are required to be a power of 2. nS and nV
457 are compile-time constants but VF and nL can be variable (if the target
458 supports variable-length vectors).
460 In classical vectorization, each iteration of the vector loop would
461 handle exactly VF iterations of the original scalar loop. However,
462 in vector loops that are able to operate on partial vectors, a
463 particular iteration of the vector loop might handle fewer than VF
464 iterations of the scalar loop. The vector lanes that correspond to
465 iterations of the scalar loop are said to be "active" and the other
466 lanes are said to be "inactive".
468 In such vector loops, many rgroups need to be controlled to ensure
469 that they have no effect for the inactive lanes. Conceptually, each
470 such rgroup needs a sequence of booleans in the same order as above,
471 but with each (i,j) replaced by a boolean that indicates whether
472 iteration i is active. This sequence occupies nV vector controls
473 that again have nL lanes each. Thus the control sequence as a whole
474 consists of VF independent booleans that are each repeated nS times.
476 Taking mask-based approach as a partially-populated vectors example.
477 We make the simplifying assumption that if a sequence of nV masks is
478 suitable for one (nS,nL) pair, we can reuse it for (nS/2,nL/2) by
479 VIEW_CONVERTing it. This holds for all current targets that support
480 fully-masked loops. For example, suppose the scalar loop is:
482 float *f;
483 double *d;
484 for (int i = 0; i < n; ++i)
486 f[i * 2 + 0] += 1.0f;
487 f[i * 2 + 1] += 2.0f;
488 d[i] += 3.0;
491 and suppose that vectors have 256 bits. The vectorized f accesses
492 will belong to one rgroup and the vectorized d access to another:
494 f rgroup: nS = 2, nV = 1, nL = 8
495 d rgroup: nS = 1, nV = 1, nL = 4
496 VF = 4
498 [ In this simple example the rgroups do correspond to the normal
499 SLP grouping scheme. ]
501 If only the first three lanes are active, the masks we need are:
503 f rgroup: 1 1 | 1 1 | 1 1 | 0 0
504 d rgroup: 1 | 1 | 1 | 0
506 Here we can use a mask calculated for f's rgroup for d's, but not
507 vice versa.
509 Thus for each value of nV, it is enough to provide nV masks, with the
510 mask being calculated based on the highest nL (or, equivalently, based
511 on the highest nS) required by any rgroup with that nV. We therefore
512 represent the entire collection of masks as a two-level table, with the
513 first level being indexed by nV - 1 (since nV == 0 doesn't exist) and
514 the second being indexed by the mask index 0 <= i < nV. */
516 /* The controls (like masks or lengths) needed by rgroups with nV vectors,
517 according to the description above. */
518 struct rgroup_controls {
519 /* The largest nS for all rgroups that use these controls. */
520 unsigned int max_nscalars_per_iter;
522 /* For the largest nS recorded above, the loop controls divide each scalar
523 into FACTOR equal-sized pieces. This is useful if we need to split
524 element-based accesses into byte-based accesses. */
525 unsigned int factor;
527 /* This is a vector type with MAX_NSCALARS_PER_ITER * VF / nV elements.
528 For mask-based controls, it is the type of the masks in CONTROLS.
529 For length-based controls, it can be any vector type that has the
530 specified number of elements; the type of the elements doesn't matter. */
531 tree type;
533 /* A vector of nV controls, in iteration order. */
534 vec<tree> controls;
537 typedef auto_vec<rgroup_controls> vec_loop_masks;
539 typedef auto_vec<rgroup_controls> vec_loop_lens;
541 typedef auto_vec<std::pair<data_reference*, tree> > drs_init_vec;
543 /*-----------------------------------------------------------------*/
544 /* Info on vectorized loops. */
545 /*-----------------------------------------------------------------*/
546 typedef class _loop_vec_info : public vec_info {
547 public:
548 _loop_vec_info (class loop *, vec_info_shared *);
549 ~_loop_vec_info ();
551 /* The loop to which this info struct refers to. */
552 class loop *loop;
554 /* The loop basic blocks. */
555 basic_block *bbs;
557 /* Number of latch executions. */
558 tree num_itersm1;
559 /* Number of iterations. */
560 tree num_iters;
561 /* Number of iterations of the original loop. */
562 tree num_iters_unchanged;
563 /* Condition under which this loop is analyzed and versioned. */
564 tree num_iters_assumptions;
566 /* Threshold of number of iterations below which vectorization will not be
567 performed. It is calculated from MIN_PROFITABLE_ITERS and
568 param_min_vect_loop_bound. */
569 unsigned int th;
571 /* When applying loop versioning, the vector form should only be used
572 if the number of scalar iterations is >= this value, on top of all
573 the other requirements. Ignored when loop versioning is not being
574 used. */
575 poly_uint64 versioning_threshold;
577 /* Unrolling factor */
578 poly_uint64 vectorization_factor;
580 /* Maximum runtime vectorization factor, or MAX_VECTORIZATION_FACTOR
581 if there is no particular limit. */
582 unsigned HOST_WIDE_INT max_vectorization_factor;
584 /* The masks that a fully-masked loop should use to avoid operating
585 on inactive scalars. */
586 vec_loop_masks masks;
588 /* The lengths that a loop with length should use to avoid operating
589 on inactive scalars. */
590 vec_loop_lens lens;
592 /* Set of scalar conditions that have loop mask applied. */
593 scalar_cond_masked_set_type scalar_cond_masked_set;
595 /* If we are using a loop mask to align memory addresses, this variable
596 contains the number of vector elements that we should skip in the
597 first iteration of the vector loop (i.e. the number of leading
598 elements that should be false in the first mask). */
599 tree mask_skip_niters;
601 /* The type that the loop control IV should be converted to before
602 testing which of the VF scalars are active and inactive.
603 Only meaningful if LOOP_VINFO_USING_PARTIAL_VECTORS_P. */
604 tree rgroup_compare_type;
606 /* For #pragma omp simd if (x) loops the x expression. If constant 0,
607 the loop should not be vectorized, if constant non-zero, simd_if_cond
608 shouldn't be set and loop vectorized normally, if SSA_NAME, the loop
609 should be versioned on that condition, using scalar loop if the condition
610 is false and vectorized loop otherwise. */
611 tree simd_if_cond;
613 /* The type that the vector loop control IV should have when
614 LOOP_VINFO_USING_PARTIAL_VECTORS_P is true. */
615 tree rgroup_iv_type;
617 /* Unknown DRs according to which loop was peeled. */
618 class dr_vec_info *unaligned_dr;
620 /* peeling_for_alignment indicates whether peeling for alignment will take
621 place, and what the peeling factor should be:
622 peeling_for_alignment = X means:
623 If X=0: Peeling for alignment will not be applied.
624 If X>0: Peel first X iterations.
625 If X=-1: Generate a runtime test to calculate the number of iterations
626 to be peeled, using the dataref recorded in the field
627 unaligned_dr. */
628 int peeling_for_alignment;
630 /* The mask used to check the alignment of pointers or arrays. */
631 int ptr_mask;
633 /* Data Dependence Relations defining address ranges that are candidates
634 for a run-time aliasing check. */
635 auto_vec<ddr_p> may_alias_ddrs;
637 /* Data Dependence Relations defining address ranges together with segment
638 lengths from which the run-time aliasing check is built. */
639 auto_vec<dr_with_seg_len_pair_t> comp_alias_ddrs;
641 /* Check that the addresses of each pair of objects is unequal. */
642 auto_vec<vec_object_pair> check_unequal_addrs;
644 /* List of values that are required to be nonzero. This is used to check
645 whether things like "x[i * n] += 1;" are safe and eventually gets added
646 to the checks for lower bounds below. */
647 auto_vec<tree> check_nonzero;
649 /* List of values that need to be checked for a minimum value. */
650 auto_vec<vec_lower_bound> lower_bounds;
652 /* Statements in the loop that have data references that are candidates for a
653 runtime (loop versioning) misalignment check. */
654 auto_vec<stmt_vec_info> may_misalign_stmts;
656 /* Reduction cycles detected in the loop. Used in loop-aware SLP. */
657 auto_vec<stmt_vec_info> reductions;
659 /* All reduction chains in the loop, represented by the first
660 stmt in the chain. */
661 auto_vec<stmt_vec_info> reduction_chains;
663 /* Cost vector for a single scalar iteration. */
664 auto_vec<stmt_info_for_cost> scalar_cost_vec;
666 /* Map of IV base/step expressions to inserted name in the preheader. */
667 hash_map<tree_operand_hash, tree> *ivexpr_map;
669 /* Map of OpenMP "omp simd array" scan variables to corresponding
670 rhs of the store of the initializer. */
671 hash_map<tree, tree> *scan_map;
673 /* The unrolling factor needed to SLP the loop. In case of that pure SLP is
674 applied to the loop, i.e., no unrolling is needed, this is 1. */
675 poly_uint64 slp_unrolling_factor;
677 /* Cost of a single scalar iteration. */
678 int single_scalar_iteration_cost;
680 /* The cost of the vector prologue and epilogue, including peeled
681 iterations and set-up code. */
682 int vec_outside_cost;
684 /* The cost of the vector loop body. */
685 int vec_inside_cost;
687 /* Is the loop vectorizable? */
688 bool vectorizable;
690 /* Records whether we still have the option of vectorizing this loop
691 using partially-populated vectors; in other words, whether it is
692 still possible for one iteration of the vector loop to handle
693 fewer than VF scalars. */
694 bool can_use_partial_vectors_p;
696 /* True if we've decided to use partially-populated vectors, so that
697 the vector loop can handle fewer than VF scalars. */
698 bool using_partial_vectors_p;
700 /* True if we've decided to use partially-populated vectors for the
701 epilogue of loop. */
702 bool epil_using_partial_vectors_p;
704 /* When we have grouped data accesses with gaps, we may introduce invalid
705 memory accesses. We peel the last iteration of the loop to prevent
706 this. */
707 bool peeling_for_gaps;
709 /* When the number of iterations is not a multiple of the vector size
710 we need to peel off iterations at the end to form an epilogue loop. */
711 bool peeling_for_niter;
713 /* True if there are no loop carried data dependencies in the loop.
714 If loop->safelen <= 1, then this is always true, either the loop
715 didn't have any loop carried data dependencies, or the loop is being
716 vectorized guarded with some runtime alias checks, or couldn't
717 be vectorized at all, but then this field shouldn't be used.
718 For loop->safelen >= 2, the user has asserted that there are no
719 backward dependencies, but there still could be loop carried forward
720 dependencies in such loops. This flag will be false if normal
721 vectorizer data dependency analysis would fail or require versioning
722 for alias, but because of loop->safelen >= 2 it has been vectorized
723 even without versioning for alias. E.g. in:
724 #pragma omp simd
725 for (int i = 0; i < m; i++)
726 a[i] = a[i + k] * c;
727 (or #pragma simd or #pragma ivdep) we can vectorize this and it will
728 DTRT even for k > 0 && k < m, but without safelen we would not
729 vectorize this, so this field would be false. */
730 bool no_data_dependencies;
732 /* Mark loops having masked stores. */
733 bool has_mask_store;
735 /* Queued scaling factor for the scalar loop. */
736 profile_probability scalar_loop_scaling;
738 /* If if-conversion versioned this loop before conversion, this is the
739 loop version without if-conversion. */
740 class loop *scalar_loop;
742 /* For loops being epilogues of already vectorized loops
743 this points to the original vectorized loop. Otherwise NULL. */
744 _loop_vec_info *orig_loop_info;
746 /* Used to store loop_vec_infos of epilogues of this loop during
747 analysis. */
748 vec<_loop_vec_info *> epilogue_vinfos;
750 } *loop_vec_info;
752 /* Access Functions. */
753 #define LOOP_VINFO_LOOP(L) (L)->loop
754 #define LOOP_VINFO_BBS(L) (L)->bbs
755 #define LOOP_VINFO_NITERSM1(L) (L)->num_itersm1
756 #define LOOP_VINFO_NITERS(L) (L)->num_iters
757 /* Since LOOP_VINFO_NITERS and LOOP_VINFO_NITERSM1 can change after
758 prologue peeling retain total unchanged scalar loop iterations for
759 cost model. */
760 #define LOOP_VINFO_NITERS_UNCHANGED(L) (L)->num_iters_unchanged
761 #define LOOP_VINFO_NITERS_ASSUMPTIONS(L) (L)->num_iters_assumptions
762 #define LOOP_VINFO_COST_MODEL_THRESHOLD(L) (L)->th
763 #define LOOP_VINFO_VERSIONING_THRESHOLD(L) (L)->versioning_threshold
764 #define LOOP_VINFO_VECTORIZABLE_P(L) (L)->vectorizable
765 #define LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P(L) (L)->can_use_partial_vectors_p
766 #define LOOP_VINFO_USING_PARTIAL_VECTORS_P(L) (L)->using_partial_vectors_p
767 #define LOOP_VINFO_EPIL_USING_PARTIAL_VECTORS_P(L) \
768 (L)->epil_using_partial_vectors_p
769 #define LOOP_VINFO_VECT_FACTOR(L) (L)->vectorization_factor
770 #define LOOP_VINFO_MAX_VECT_FACTOR(L) (L)->max_vectorization_factor
771 #define LOOP_VINFO_MASKS(L) (L)->masks
772 #define LOOP_VINFO_LENS(L) (L)->lens
773 #define LOOP_VINFO_MASK_SKIP_NITERS(L) (L)->mask_skip_niters
774 #define LOOP_VINFO_RGROUP_COMPARE_TYPE(L) (L)->rgroup_compare_type
775 #define LOOP_VINFO_RGROUP_IV_TYPE(L) (L)->rgroup_iv_type
776 #define LOOP_VINFO_PTR_MASK(L) (L)->ptr_mask
777 #define LOOP_VINFO_LOOP_NEST(L) (L)->shared->loop_nest
778 #define LOOP_VINFO_DATAREFS(L) (L)->shared->datarefs
779 #define LOOP_VINFO_DDRS(L) (L)->shared->ddrs
780 #define LOOP_VINFO_INT_NITERS(L) (TREE_INT_CST_LOW ((L)->num_iters))
781 #define LOOP_VINFO_PEELING_FOR_ALIGNMENT(L) (L)->peeling_for_alignment
782 #define LOOP_VINFO_UNALIGNED_DR(L) (L)->unaligned_dr
783 #define LOOP_VINFO_MAY_MISALIGN_STMTS(L) (L)->may_misalign_stmts
784 #define LOOP_VINFO_MAY_ALIAS_DDRS(L) (L)->may_alias_ddrs
785 #define LOOP_VINFO_COMP_ALIAS_DDRS(L) (L)->comp_alias_ddrs
786 #define LOOP_VINFO_CHECK_UNEQUAL_ADDRS(L) (L)->check_unequal_addrs
787 #define LOOP_VINFO_CHECK_NONZERO(L) (L)->check_nonzero
788 #define LOOP_VINFO_LOWER_BOUNDS(L) (L)->lower_bounds
789 #define LOOP_VINFO_GROUPED_STORES(L) (L)->grouped_stores
790 #define LOOP_VINFO_SLP_INSTANCES(L) (L)->slp_instances
791 #define LOOP_VINFO_SLP_UNROLLING_FACTOR(L) (L)->slp_unrolling_factor
792 #define LOOP_VINFO_REDUCTIONS(L) (L)->reductions
793 #define LOOP_VINFO_REDUCTION_CHAINS(L) (L)->reduction_chains
794 #define LOOP_VINFO_TARGET_COST_DATA(L) (L)->target_cost_data
795 #define LOOP_VINFO_PEELING_FOR_GAPS(L) (L)->peeling_for_gaps
796 #define LOOP_VINFO_PEELING_FOR_NITER(L) (L)->peeling_for_niter
797 #define LOOP_VINFO_NO_DATA_DEPENDENCIES(L) (L)->no_data_dependencies
798 #define LOOP_VINFO_SCALAR_LOOP(L) (L)->scalar_loop
799 #define LOOP_VINFO_SCALAR_LOOP_SCALING(L) (L)->scalar_loop_scaling
800 #define LOOP_VINFO_HAS_MASK_STORE(L) (L)->has_mask_store
801 #define LOOP_VINFO_SCALAR_ITERATION_COST(L) (L)->scalar_cost_vec
802 #define LOOP_VINFO_SINGLE_SCALAR_ITERATION_COST(L) (L)->single_scalar_iteration_cost
803 #define LOOP_VINFO_ORIG_LOOP_INFO(L) (L)->orig_loop_info
804 #define LOOP_VINFO_SIMD_IF_COND(L) (L)->simd_if_cond
806 #define LOOP_VINFO_FULLY_MASKED_P(L) \
807 (LOOP_VINFO_USING_PARTIAL_VECTORS_P (L) \
808 && !LOOP_VINFO_MASKS (L).is_empty ())
810 #define LOOP_VINFO_FULLY_WITH_LENGTH_P(L) \
811 (LOOP_VINFO_USING_PARTIAL_VECTORS_P (L) \
812 && !LOOP_VINFO_LENS (L).is_empty ())
814 #define LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT(L) \
815 ((L)->may_misalign_stmts.length () > 0)
816 #define LOOP_REQUIRES_VERSIONING_FOR_ALIAS(L) \
817 ((L)->comp_alias_ddrs.length () > 0 \
818 || (L)->check_unequal_addrs.length () > 0 \
819 || (L)->lower_bounds.length () > 0)
820 #define LOOP_REQUIRES_VERSIONING_FOR_NITERS(L) \
821 (LOOP_VINFO_NITERS_ASSUMPTIONS (L))
822 #define LOOP_REQUIRES_VERSIONING_FOR_SIMD_IF_COND(L) \
823 (LOOP_VINFO_SIMD_IF_COND (L))
824 #define LOOP_REQUIRES_VERSIONING(L) \
825 (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (L) \
826 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (L) \
827 || LOOP_REQUIRES_VERSIONING_FOR_NITERS (L) \
828 || LOOP_REQUIRES_VERSIONING_FOR_SIMD_IF_COND (L))
830 #define LOOP_VINFO_NITERS_KNOWN_P(L) \
831 (tree_fits_shwi_p ((L)->num_iters) && tree_to_shwi ((L)->num_iters) > 0)
833 #define LOOP_VINFO_EPILOGUE_P(L) \
834 (LOOP_VINFO_ORIG_LOOP_INFO (L) != NULL)
836 #define LOOP_VINFO_ORIG_MAX_VECT_FACTOR(L) \
837 (LOOP_VINFO_MAX_VECT_FACTOR (LOOP_VINFO_ORIG_LOOP_INFO (L)))
839 /* Wrapper for loop_vec_info, for tracking success/failure, where a non-NULL
840 value signifies success, and a NULL value signifies failure, supporting
841 propagating an opt_problem * describing the failure back up the call
842 stack. */
843 typedef opt_pointer_wrapper <loop_vec_info> opt_loop_vec_info;
845 static inline loop_vec_info
846 loop_vec_info_for_loop (class loop *loop)
848 return (loop_vec_info) loop->aux;
851 typedef class _bb_vec_info : public vec_info
853 public:
854 _bb_vec_info (vec<basic_block> bbs, vec_info_shared *);
855 ~_bb_vec_info ();
857 /* The region we are operating on. bbs[0] is the entry, excluding
858 its PHI nodes. In the future we might want to track an explicit
859 entry edge to cover bbs[0] PHI nodes and have a region entry
860 insert location. */
861 vec<basic_block> bbs;
862 } *bb_vec_info;
864 #define BB_VINFO_BB(B) (B)->bb
865 #define BB_VINFO_GROUPED_STORES(B) (B)->grouped_stores
866 #define BB_VINFO_SLP_INSTANCES(B) (B)->slp_instances
867 #define BB_VINFO_DATAREFS(B) (B)->shared->datarefs
868 #define BB_VINFO_DDRS(B) (B)->shared->ddrs
870 static inline bb_vec_info
871 vec_info_for_bb (basic_block bb)
873 return (bb_vec_info) bb->aux;
876 /*-----------------------------------------------------------------*/
877 /* Info on vectorized defs. */
878 /*-----------------------------------------------------------------*/
879 enum stmt_vec_info_type {
880 undef_vec_info_type = 0,
881 load_vec_info_type,
882 store_vec_info_type,
883 shift_vec_info_type,
884 op_vec_info_type,
885 call_vec_info_type,
886 call_simd_clone_vec_info_type,
887 assignment_vec_info_type,
888 condition_vec_info_type,
889 comparison_vec_info_type,
890 reduc_vec_info_type,
891 induc_vec_info_type,
892 type_promotion_vec_info_type,
893 type_demotion_vec_info_type,
894 type_conversion_vec_info_type,
895 cycle_phi_info_type,
896 lc_phi_info_type,
897 phi_info_type,
898 loop_exit_ctrl_vec_info_type
901 /* Indicates whether/how a variable is used in the scope of loop/basic
902 block. */
903 enum vect_relevant {
904 vect_unused_in_scope = 0,
906 /* The def is only used outside the loop. */
907 vect_used_only_live,
908 /* The def is in the inner loop, and the use is in the outer loop, and the
909 use is a reduction stmt. */
910 vect_used_in_outer_by_reduction,
911 /* The def is in the inner loop, and the use is in the outer loop (and is
912 not part of reduction). */
913 vect_used_in_outer,
915 /* defs that feed computations that end up (only) in a reduction. These
916 defs may be used by non-reduction stmts, but eventually, any
917 computations/values that are affected by these defs are used to compute
918 a reduction (i.e. don't get stored to memory, for example). We use this
919 to identify computations that we can change the order in which they are
920 computed. */
921 vect_used_by_reduction,
923 vect_used_in_scope
926 /* The type of vectorization that can be applied to the stmt: regular loop-based
927 vectorization; pure SLP - the stmt is a part of SLP instances and does not
928 have uses outside SLP instances; or hybrid SLP and loop-based - the stmt is
929 a part of SLP instance and also must be loop-based vectorized, since it has
930 uses outside SLP sequences.
932 In the loop context the meanings of pure and hybrid SLP are slightly
933 different. By saying that pure SLP is applied to the loop, we mean that we
934 exploit only intra-iteration parallelism in the loop; i.e., the loop can be
935 vectorized without doing any conceptual unrolling, cause we don't pack
936 together stmts from different iterations, only within a single iteration.
937 Loop hybrid SLP means that we exploit both intra-iteration and
938 inter-iteration parallelism (e.g., number of elements in the vector is 4
939 and the slp-group-size is 2, in which case we don't have enough parallelism
940 within an iteration, so we obtain the rest of the parallelism from subsequent
941 iterations by unrolling the loop by 2). */
942 enum slp_vect_type {
943 loop_vect = 0,
944 pure_slp,
945 hybrid
948 /* Says whether a statement is a load, a store of a vectorized statement
949 result, or a store of an invariant value. */
950 enum vec_load_store_type {
951 VLS_LOAD,
952 VLS_STORE,
953 VLS_STORE_INVARIANT
956 /* Describes how we're going to vectorize an individual load or store,
957 or a group of loads or stores. */
958 enum vect_memory_access_type {
959 /* An access to an invariant address. This is used only for loads. */
960 VMAT_INVARIANT,
962 /* A simple contiguous access. */
963 VMAT_CONTIGUOUS,
965 /* A contiguous access that goes down in memory rather than up,
966 with no additional permutation. This is used only for stores
967 of invariants. */
968 VMAT_CONTIGUOUS_DOWN,
970 /* A simple contiguous access in which the elements need to be permuted
971 after loading or before storing. Only used for loop vectorization;
972 SLP uses separate permutes. */
973 VMAT_CONTIGUOUS_PERMUTE,
975 /* A simple contiguous access in which the elements need to be reversed
976 after loading or before storing. */
977 VMAT_CONTIGUOUS_REVERSE,
979 /* An access that uses IFN_LOAD_LANES or IFN_STORE_LANES. */
980 VMAT_LOAD_STORE_LANES,
982 /* An access in which each scalar element is loaded or stored
983 individually. */
984 VMAT_ELEMENTWISE,
986 /* A hybrid of VMAT_CONTIGUOUS and VMAT_ELEMENTWISE, used for grouped
987 SLP accesses. Each unrolled iteration uses a contiguous load
988 or store for the whole group, but the groups from separate iterations
989 are combined in the same way as for VMAT_ELEMENTWISE. */
990 VMAT_STRIDED_SLP,
992 /* The access uses gather loads or scatter stores. */
993 VMAT_GATHER_SCATTER
996 class dr_vec_info {
997 public:
998 /* The data reference itself. */
999 data_reference *dr;
1000 /* The statement that contains the data reference. */
1001 stmt_vec_info stmt;
1002 /* The misalignment in bytes of the reference, or -1 if not known. */
1003 int misalignment;
1004 /* The byte alignment that we'd ideally like the reference to have,
1005 and the value that misalignment is measured against. */
1006 poly_uint64 target_alignment;
1007 /* If true the alignment of base_decl needs to be increased. */
1008 bool base_misaligned;
1009 tree base_decl;
1011 /* Stores current vectorized loop's offset. To be added to the DR's
1012 offset to calculate current offset of data reference. */
1013 tree offset;
1016 typedef struct data_reference *dr_p;
1018 class _stmt_vec_info {
1019 public:
1021 enum stmt_vec_info_type type;
1023 /* Indicates whether this stmts is part of a computation whose result is
1024 used outside the loop. */
1025 bool live;
1027 /* Stmt is part of some pattern (computation idiom) */
1028 bool in_pattern_p;
1030 /* True if the statement was created during pattern recognition as
1031 part of the replacement for RELATED_STMT. This implies that the
1032 statement isn't part of any basic block, although for convenience
1033 its gimple_bb is the same as for RELATED_STMT. */
1034 bool pattern_stmt_p;
1036 /* Is this statement vectorizable or should it be skipped in (partial)
1037 vectorization. */
1038 bool vectorizable;
1040 /* The stmt to which this info struct refers to. */
1041 gimple *stmt;
1043 /* The vector type to be used for the LHS of this statement. */
1044 tree vectype;
1046 /* The vectorized stmts. */
1047 vec<gimple *> vec_stmts;
1049 /* The following is relevant only for stmts that contain a non-scalar
1050 data-ref (array/pointer/struct access). A GIMPLE stmt is expected to have
1051 at most one such data-ref. */
1053 dr_vec_info dr_aux;
1055 /* Information about the data-ref relative to this loop
1056 nest (the loop that is being considered for vectorization). */
1057 innermost_loop_behavior dr_wrt_vec_loop;
1059 /* For loop PHI nodes, the base and evolution part of it. This makes sure
1060 this information is still available in vect_update_ivs_after_vectorizer
1061 where we may not be able to re-analyze the PHI nodes evolution as
1062 peeling for the prologue loop can make it unanalyzable. The evolution
1063 part is still correct after peeling, but the base may have changed from
1064 the version here. */
1065 tree loop_phi_evolution_base_unchanged;
1066 tree loop_phi_evolution_part;
1068 /* Used for various bookkeeping purposes, generally holding a pointer to
1069 some other stmt S that is in some way "related" to this stmt.
1070 Current use of this field is:
1071 If this stmt is part of a pattern (i.e. the field 'in_pattern_p' is
1072 true): S is the "pattern stmt" that represents (and replaces) the
1073 sequence of stmts that constitutes the pattern. Similarly, the
1074 related_stmt of the "pattern stmt" points back to this stmt (which is
1075 the last stmt in the original sequence of stmts that constitutes the
1076 pattern). */
1077 stmt_vec_info related_stmt;
1079 /* Used to keep a sequence of def stmts of a pattern stmt if such exists.
1080 The sequence is attached to the original statement rather than the
1081 pattern statement. */
1082 gimple_seq pattern_def_seq;
1084 /* Selected SIMD clone's function info. First vector element
1085 is SIMD clone's function decl, followed by a pair of trees (base + step)
1086 for linear arguments (pair of NULLs for other arguments). */
1087 vec<tree> simd_clone_info;
1089 /* Classify the def of this stmt. */
1090 enum vect_def_type def_type;
1092 /* Whether the stmt is SLPed, loop-based vectorized, or both. */
1093 enum slp_vect_type slp_type;
1095 /* Interleaving and reduction chains info. */
1096 /* First element in the group. */
1097 stmt_vec_info first_element;
1098 /* Pointer to the next element in the group. */
1099 stmt_vec_info next_element;
1100 /* The size of the group. */
1101 unsigned int size;
1102 /* For stores, number of stores from this group seen. We vectorize the last
1103 one. */
1104 unsigned int store_count;
1105 /* For loads only, the gap from the previous load. For consecutive loads, GAP
1106 is 1. */
1107 unsigned int gap;
1109 /* The minimum negative dependence distance this stmt participates in
1110 or zero if none. */
1111 unsigned int min_neg_dist;
1113 /* Not all stmts in the loop need to be vectorized. e.g, the increment
1114 of the loop induction variable and computation of array indexes. relevant
1115 indicates whether the stmt needs to be vectorized. */
1116 enum vect_relevant relevant;
1118 /* For loads if this is a gather, for stores if this is a scatter. */
1119 bool gather_scatter_p;
1121 /* True if this is an access with loop-invariant stride. */
1122 bool strided_p;
1124 /* For both loads and stores. */
1125 unsigned simd_lane_access_p : 3;
1127 /* Classifies how the load or store is going to be implemented
1128 for loop vectorization. */
1129 vect_memory_access_type memory_access_type;
1131 /* For INTEGER_INDUC_COND_REDUCTION, the initial value to be used. */
1132 tree induc_cond_initial_val;
1134 /* If not NULL the value to be added to compute final reduction value. */
1135 tree reduc_epilogue_adjustment;
1137 /* On a reduction PHI the reduction type as detected by
1138 vect_is_simple_reduction and vectorizable_reduction. */
1139 enum vect_reduction_type reduc_type;
1141 /* The original reduction code, to be used in the epilogue. */
1142 enum tree_code reduc_code;
1143 /* An internal function we should use in the epilogue. */
1144 internal_fn reduc_fn;
1146 /* On a stmt participating in the reduction the index of the operand
1147 on the reduction SSA cycle. */
1148 int reduc_idx;
1150 /* On a reduction PHI the def returned by vect_force_simple_reduction.
1151 On the def returned by vect_force_simple_reduction the
1152 corresponding PHI. */
1153 stmt_vec_info reduc_def;
1155 /* The vector input type relevant for reduction vectorization. */
1156 tree reduc_vectype_in;
1158 /* The vector type for performing the actual reduction. */
1159 tree reduc_vectype;
1161 /* Whether we force a single cycle PHI during reduction vectorization. */
1162 bool force_single_cycle;
1164 /* Whether on this stmt reduction meta is recorded. */
1165 bool is_reduc_info;
1167 /* If nonzero, the lhs of the statement could be truncated to this
1168 many bits without affecting any users of the result. */
1169 unsigned int min_output_precision;
1171 /* If nonzero, all non-boolean input operands have the same precision,
1172 and they could each be truncated to this many bits without changing
1173 the result. */
1174 unsigned int min_input_precision;
1176 /* If OPERATION_BITS is nonzero, the statement could be performed on
1177 an integer with the sign and number of bits given by OPERATION_SIGN
1178 and OPERATION_BITS without changing the result. */
1179 unsigned int operation_precision;
1180 signop operation_sign;
1182 /* If the statement produces a boolean result, this value describes
1183 how we should choose the associated vector type. The possible
1184 values are:
1186 - an integer precision N if we should use the vector mask type
1187 associated with N-bit integers. This is only used if all relevant
1188 input booleans also want the vector mask type for N-bit integers,
1189 or if we can convert them into that form by pattern-matching.
1191 - ~0U if we considered choosing a vector mask type but decided
1192 to treat the boolean as a normal integer type instead.
1194 - 0 otherwise. This means either that the operation isn't one that
1195 could have a vector mask type (and so should have a normal vector
1196 type instead) or that we simply haven't made a choice either way. */
1197 unsigned int mask_precision;
1199 /* True if this is only suitable for SLP vectorization. */
1200 bool slp_vect_only_p;
1203 /* Information about a gather/scatter call. */
1204 struct gather_scatter_info {
1205 /* The internal function to use for the gather/scatter operation,
1206 or IFN_LAST if a built-in function should be used instead. */
1207 internal_fn ifn;
1209 /* The FUNCTION_DECL for the built-in gather/scatter function,
1210 or null if an internal function should be used instead. */
1211 tree decl;
1213 /* The loop-invariant base value. */
1214 tree base;
1216 /* The original scalar offset, which is a non-loop-invariant SSA_NAME. */
1217 tree offset;
1219 /* Each offset element should be multiplied by this amount before
1220 being added to the base. */
1221 int scale;
1223 /* The definition type for the vectorized offset. */
1224 enum vect_def_type offset_dt;
1226 /* The type of the vectorized offset. */
1227 tree offset_vectype;
1229 /* The type of the scalar elements after loading or before storing. */
1230 tree element_type;
1232 /* The type of the scalar elements being loaded or stored. */
1233 tree memory_type;
1236 /* Access Functions. */
1237 #define STMT_VINFO_TYPE(S) (S)->type
1238 #define STMT_VINFO_STMT(S) (S)->stmt
1239 #define STMT_VINFO_RELEVANT(S) (S)->relevant
1240 #define STMT_VINFO_LIVE_P(S) (S)->live
1241 #define STMT_VINFO_VECTYPE(S) (S)->vectype
1242 #define STMT_VINFO_VEC_STMTS(S) (S)->vec_stmts
1243 #define STMT_VINFO_VECTORIZABLE(S) (S)->vectorizable
1244 #define STMT_VINFO_DATA_REF(S) ((S)->dr_aux.dr + 0)
1245 #define STMT_VINFO_GATHER_SCATTER_P(S) (S)->gather_scatter_p
1246 #define STMT_VINFO_STRIDED_P(S) (S)->strided_p
1247 #define STMT_VINFO_MEMORY_ACCESS_TYPE(S) (S)->memory_access_type
1248 #define STMT_VINFO_SIMD_LANE_ACCESS_P(S) (S)->simd_lane_access_p
1249 #define STMT_VINFO_VEC_INDUC_COND_INITIAL_VAL(S) (S)->induc_cond_initial_val
1250 #define STMT_VINFO_REDUC_EPILOGUE_ADJUSTMENT(S) (S)->reduc_epilogue_adjustment
1251 #define STMT_VINFO_REDUC_IDX(S) (S)->reduc_idx
1252 #define STMT_VINFO_FORCE_SINGLE_CYCLE(S) (S)->force_single_cycle
1254 #define STMT_VINFO_DR_WRT_VEC_LOOP(S) (S)->dr_wrt_vec_loop
1255 #define STMT_VINFO_DR_BASE_ADDRESS(S) (S)->dr_wrt_vec_loop.base_address
1256 #define STMT_VINFO_DR_INIT(S) (S)->dr_wrt_vec_loop.init
1257 #define STMT_VINFO_DR_OFFSET(S) (S)->dr_wrt_vec_loop.offset
1258 #define STMT_VINFO_DR_STEP(S) (S)->dr_wrt_vec_loop.step
1259 #define STMT_VINFO_DR_BASE_ALIGNMENT(S) (S)->dr_wrt_vec_loop.base_alignment
1260 #define STMT_VINFO_DR_BASE_MISALIGNMENT(S) \
1261 (S)->dr_wrt_vec_loop.base_misalignment
1262 #define STMT_VINFO_DR_OFFSET_ALIGNMENT(S) \
1263 (S)->dr_wrt_vec_loop.offset_alignment
1264 #define STMT_VINFO_DR_STEP_ALIGNMENT(S) \
1265 (S)->dr_wrt_vec_loop.step_alignment
1267 #define STMT_VINFO_DR_INFO(S) \
1268 (gcc_checking_assert ((S)->dr_aux.stmt == (S)), &(S)->dr_aux)
1270 #define STMT_VINFO_IN_PATTERN_P(S) (S)->in_pattern_p
1271 #define STMT_VINFO_RELATED_STMT(S) (S)->related_stmt
1272 #define STMT_VINFO_PATTERN_DEF_SEQ(S) (S)->pattern_def_seq
1273 #define STMT_VINFO_SIMD_CLONE_INFO(S) (S)->simd_clone_info
1274 #define STMT_VINFO_DEF_TYPE(S) (S)->def_type
1275 #define STMT_VINFO_GROUPED_ACCESS(S) \
1276 ((S)->dr_aux.dr && DR_GROUP_FIRST_ELEMENT(S))
1277 #define STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED(S) (S)->loop_phi_evolution_base_unchanged
1278 #define STMT_VINFO_LOOP_PHI_EVOLUTION_PART(S) (S)->loop_phi_evolution_part
1279 #define STMT_VINFO_MIN_NEG_DIST(S) (S)->min_neg_dist
1280 #define STMT_VINFO_REDUC_TYPE(S) (S)->reduc_type
1281 #define STMT_VINFO_REDUC_CODE(S) (S)->reduc_code
1282 #define STMT_VINFO_REDUC_FN(S) (S)->reduc_fn
1283 #define STMT_VINFO_REDUC_DEF(S) (S)->reduc_def
1284 #define STMT_VINFO_REDUC_VECTYPE(S) (S)->reduc_vectype
1285 #define STMT_VINFO_REDUC_VECTYPE_IN(S) (S)->reduc_vectype_in
1286 #define STMT_VINFO_SLP_VECT_ONLY(S) (S)->slp_vect_only_p
1288 #define DR_GROUP_FIRST_ELEMENT(S) \
1289 (gcc_checking_assert ((S)->dr_aux.dr), (S)->first_element)
1290 #define DR_GROUP_NEXT_ELEMENT(S) \
1291 (gcc_checking_assert ((S)->dr_aux.dr), (S)->next_element)
1292 #define DR_GROUP_SIZE(S) \
1293 (gcc_checking_assert ((S)->dr_aux.dr), (S)->size)
1294 #define DR_GROUP_STORE_COUNT(S) \
1295 (gcc_checking_assert ((S)->dr_aux.dr), (S)->store_count)
1296 #define DR_GROUP_GAP(S) \
1297 (gcc_checking_assert ((S)->dr_aux.dr), (S)->gap)
1299 #define REDUC_GROUP_FIRST_ELEMENT(S) \
1300 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->first_element)
1301 #define REDUC_GROUP_NEXT_ELEMENT(S) \
1302 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->next_element)
1303 #define REDUC_GROUP_SIZE(S) \
1304 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->size)
1306 #define STMT_VINFO_RELEVANT_P(S) ((S)->relevant != vect_unused_in_scope)
1308 #define HYBRID_SLP_STMT(S) ((S)->slp_type == hybrid)
1309 #define PURE_SLP_STMT(S) ((S)->slp_type == pure_slp)
1310 #define STMT_SLP_TYPE(S) (S)->slp_type
1312 #define VECT_MAX_COST 1000
1314 /* The maximum number of intermediate steps required in multi-step type
1315 conversion. */
1316 #define MAX_INTERM_CVT_STEPS 3
1318 #define MAX_VECTORIZATION_FACTOR INT_MAX
1320 /* Nonzero if TYPE represents a (scalar) boolean type or type
1321 in the middle-end compatible with it (unsigned precision 1 integral
1322 types). Used to determine which types should be vectorized as
1323 VECTOR_BOOLEAN_TYPE_P. */
1325 #define VECT_SCALAR_BOOLEAN_TYPE_P(TYPE) \
1326 (TREE_CODE (TYPE) == BOOLEAN_TYPE \
1327 || ((TREE_CODE (TYPE) == INTEGER_TYPE \
1328 || TREE_CODE (TYPE) == ENUMERAL_TYPE) \
1329 && TYPE_PRECISION (TYPE) == 1 \
1330 && TYPE_UNSIGNED (TYPE)))
1332 static inline bool
1333 nested_in_vect_loop_p (class loop *loop, stmt_vec_info stmt_info)
1335 return (loop->inner
1336 && (loop->inner == (gimple_bb (stmt_info->stmt))->loop_father));
1339 /* Return true if STMT_INFO should produce a vector mask type rather than
1340 a normal nonmask type. */
1342 static inline bool
1343 vect_use_mask_type_p (stmt_vec_info stmt_info)
1345 return stmt_info->mask_precision && stmt_info->mask_precision != ~0U;
1348 /* Return TRUE if a statement represented by STMT_INFO is a part of a
1349 pattern. */
1351 static inline bool
1352 is_pattern_stmt_p (stmt_vec_info stmt_info)
1354 return stmt_info->pattern_stmt_p;
1357 /* If STMT_INFO is a pattern statement, return the statement that it
1358 replaces, otherwise return STMT_INFO itself. */
1360 inline stmt_vec_info
1361 vect_orig_stmt (stmt_vec_info stmt_info)
1363 if (is_pattern_stmt_p (stmt_info))
1364 return STMT_VINFO_RELATED_STMT (stmt_info);
1365 return stmt_info;
1368 /* Return the later statement between STMT1_INFO and STMT2_INFO. */
1370 static inline stmt_vec_info
1371 get_later_stmt (stmt_vec_info stmt1_info, stmt_vec_info stmt2_info)
1373 if (gimple_uid (vect_orig_stmt (stmt1_info)->stmt)
1374 > gimple_uid (vect_orig_stmt (stmt2_info)->stmt))
1375 return stmt1_info;
1376 else
1377 return stmt2_info;
1380 /* If STMT_INFO has been replaced by a pattern statement, return the
1381 replacement statement, otherwise return STMT_INFO itself. */
1383 inline stmt_vec_info
1384 vect_stmt_to_vectorize (stmt_vec_info stmt_info)
1386 if (STMT_VINFO_IN_PATTERN_P (stmt_info))
1387 return STMT_VINFO_RELATED_STMT (stmt_info);
1388 return stmt_info;
1391 /* Return true if BB is a loop header. */
1393 static inline bool
1394 is_loop_header_bb_p (basic_block bb)
1396 if (bb == (bb->loop_father)->header)
1397 return true;
1398 gcc_checking_assert (EDGE_COUNT (bb->preds) == 1);
1399 return false;
1402 /* Return pow2 (X). */
1404 static inline int
1405 vect_pow2 (int x)
1407 int i, res = 1;
1409 for (i = 0; i < x; i++)
1410 res *= 2;
1412 return res;
1415 /* Alias targetm.vectorize.builtin_vectorization_cost. */
1417 static inline int
1418 builtin_vectorization_cost (enum vect_cost_for_stmt type_of_cost,
1419 tree vectype, int misalign)
1421 return targetm.vectorize.builtin_vectorization_cost (type_of_cost,
1422 vectype, misalign);
1425 /* Get cost by calling cost target builtin. */
1427 static inline
1428 int vect_get_stmt_cost (enum vect_cost_for_stmt type_of_cost)
1430 return builtin_vectorization_cost (type_of_cost, NULL, 0);
1433 /* Alias targetm.vectorize.init_cost. */
1435 static inline void *
1436 init_cost (class loop *loop_info)
1438 return targetm.vectorize.init_cost (loop_info);
1441 extern void dump_stmt_cost (FILE *, void *, int, enum vect_cost_for_stmt,
1442 stmt_vec_info, tree, int, unsigned,
1443 enum vect_cost_model_location);
1445 /* Alias targetm.vectorize.add_stmt_cost. */
1447 static inline unsigned
1448 add_stmt_cost (vec_info *vinfo, void *data, int count,
1449 enum vect_cost_for_stmt kind,
1450 stmt_vec_info stmt_info, tree vectype, int misalign,
1451 enum vect_cost_model_location where)
1453 unsigned cost = targetm.vectorize.add_stmt_cost (vinfo, data, count, kind,
1454 stmt_info, vectype,
1455 misalign, where);
1456 if (dump_file && (dump_flags & TDF_DETAILS))
1457 dump_stmt_cost (dump_file, data, count, kind, stmt_info, vectype, misalign,
1458 cost, where);
1459 return cost;
1462 /* Alias targetm.vectorize.finish_cost. */
1464 static inline void
1465 finish_cost (void *data, unsigned *prologue_cost,
1466 unsigned *body_cost, unsigned *epilogue_cost)
1468 targetm.vectorize.finish_cost (data, prologue_cost, body_cost, epilogue_cost);
1471 /* Alias targetm.vectorize.destroy_cost_data. */
1473 static inline void
1474 destroy_cost_data (void *data)
1476 targetm.vectorize.destroy_cost_data (data);
1479 inline void
1480 add_stmt_costs (vec_info *vinfo, void *data, stmt_vector_for_cost *cost_vec)
1482 stmt_info_for_cost *cost;
1483 unsigned i;
1484 FOR_EACH_VEC_ELT (*cost_vec, i, cost)
1485 add_stmt_cost (vinfo, data, cost->count, cost->kind, cost->stmt_info,
1486 cost->vectype, cost->misalign, cost->where);
1489 /*-----------------------------------------------------------------*/
1490 /* Info on data references alignment. */
1491 /*-----------------------------------------------------------------*/
1492 #define DR_MISALIGNMENT_UNKNOWN (-1)
1493 #define DR_MISALIGNMENT_UNINITIALIZED (-2)
1495 inline void
1496 set_dr_misalignment (dr_vec_info *dr_info, int val)
1498 dr_info->misalignment = val;
1501 inline int
1502 dr_misalignment (dr_vec_info *dr_info)
1504 int misalign = dr_info->misalignment;
1505 gcc_assert (misalign != DR_MISALIGNMENT_UNINITIALIZED);
1506 return misalign;
1509 /* Reflects actual alignment of first access in the vectorized loop,
1510 taking into account peeling/versioning if applied. */
1511 #define DR_MISALIGNMENT(DR) dr_misalignment (DR)
1512 #define SET_DR_MISALIGNMENT(DR, VAL) set_dr_misalignment (DR, VAL)
1514 /* Only defined once DR_MISALIGNMENT is defined. */
1515 #define DR_TARGET_ALIGNMENT(DR) ((DR)->target_alignment)
1517 /* Return true if data access DR_INFO is aligned to its target alignment
1518 (which may be less than a full vector). */
1520 static inline bool
1521 aligned_access_p (dr_vec_info *dr_info)
1523 return (DR_MISALIGNMENT (dr_info) == 0);
1526 /* Return TRUE if the alignment of the data access is known, and FALSE
1527 otherwise. */
1529 static inline bool
1530 known_alignment_for_access_p (dr_vec_info *dr_info)
1532 return (DR_MISALIGNMENT (dr_info) != DR_MISALIGNMENT_UNKNOWN);
1535 /* Return the minimum alignment in bytes that the vectorized version
1536 of DR_INFO is guaranteed to have. */
1538 static inline unsigned int
1539 vect_known_alignment_in_bytes (dr_vec_info *dr_info)
1541 if (DR_MISALIGNMENT (dr_info) == DR_MISALIGNMENT_UNKNOWN)
1542 return TYPE_ALIGN_UNIT (TREE_TYPE (DR_REF (dr_info->dr)));
1543 if (DR_MISALIGNMENT (dr_info) == 0)
1544 return known_alignment (DR_TARGET_ALIGNMENT (dr_info));
1545 return DR_MISALIGNMENT (dr_info) & -DR_MISALIGNMENT (dr_info);
1548 /* Return the behavior of DR_INFO with respect to the vectorization context
1549 (which for outer loop vectorization might not be the behavior recorded
1550 in DR_INFO itself). */
1552 static inline innermost_loop_behavior *
1553 vect_dr_behavior (vec_info *vinfo, dr_vec_info *dr_info)
1555 stmt_vec_info stmt_info = dr_info->stmt;
1556 loop_vec_info loop_vinfo = dyn_cast<loop_vec_info> (vinfo);
1557 if (loop_vinfo == NULL
1558 || !nested_in_vect_loop_p (LOOP_VINFO_LOOP (loop_vinfo), stmt_info))
1559 return &DR_INNERMOST (dr_info->dr);
1560 else
1561 return &STMT_VINFO_DR_WRT_VEC_LOOP (stmt_info);
1564 /* Return the offset calculated by adding the offset of this DR_INFO to the
1565 corresponding data_reference's offset. If CHECK_OUTER then use
1566 vect_dr_behavior to select the appropriate data_reference to use. */
1568 inline tree
1569 get_dr_vinfo_offset (vec_info *vinfo,
1570 dr_vec_info *dr_info, bool check_outer = false)
1572 innermost_loop_behavior *base;
1573 if (check_outer)
1574 base = vect_dr_behavior (vinfo, dr_info);
1575 else
1576 base = &dr_info->dr->innermost;
1578 tree offset = base->offset;
1580 if (!dr_info->offset)
1581 return offset;
1583 offset = fold_convert (sizetype, offset);
1584 return fold_build2 (PLUS_EXPR, TREE_TYPE (dr_info->offset), offset,
1585 dr_info->offset);
1589 /* Return true if the vect cost model is unlimited. */
1590 static inline bool
1591 unlimited_cost_model (loop_p loop)
1593 if (loop != NULL && loop->force_vectorize
1594 && flag_simd_cost_model != VECT_COST_MODEL_DEFAULT)
1595 return flag_simd_cost_model == VECT_COST_MODEL_UNLIMITED;
1596 return (flag_vect_cost_model == VECT_COST_MODEL_UNLIMITED);
1599 /* Return true if the loop described by LOOP_VINFO is fully-masked and
1600 if the first iteration should use a partial mask in order to achieve
1601 alignment. */
1603 static inline bool
1604 vect_use_loop_mask_for_alignment_p (loop_vec_info loop_vinfo)
1606 return (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo)
1607 && LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo));
1610 /* Return the number of vectors of type VECTYPE that are needed to get
1611 NUNITS elements. NUNITS should be based on the vectorization factor,
1612 so it is always a known multiple of the number of elements in VECTYPE. */
1614 static inline unsigned int
1615 vect_get_num_vectors (poly_uint64 nunits, tree vectype)
1617 return exact_div (nunits, TYPE_VECTOR_SUBPARTS (vectype)).to_constant ();
1620 /* Return the number of copies needed for loop vectorization when
1621 a statement operates on vectors of type VECTYPE. This is the
1622 vectorization factor divided by the number of elements in
1623 VECTYPE and is always known at compile time. */
1625 static inline unsigned int
1626 vect_get_num_copies (loop_vec_info loop_vinfo, tree vectype)
1628 return vect_get_num_vectors (LOOP_VINFO_VECT_FACTOR (loop_vinfo), vectype);
1631 /* Update maximum unit count *MAX_NUNITS so that it accounts for
1632 NUNITS. *MAX_NUNITS can be 1 if we haven't yet recorded anything. */
1634 static inline void
1635 vect_update_max_nunits (poly_uint64 *max_nunits, poly_uint64 nunits)
1637 /* All unit counts have the form vec_info::vector_size * X for some
1638 rational X, so two unit sizes must have a common multiple.
1639 Everything is a multiple of the initial value of 1. */
1640 *max_nunits = force_common_multiple (*max_nunits, nunits);
1643 /* Update maximum unit count *MAX_NUNITS so that it accounts for
1644 the number of units in vector type VECTYPE. *MAX_NUNITS can be 1
1645 if we haven't yet recorded any vector types. */
1647 static inline void
1648 vect_update_max_nunits (poly_uint64 *max_nunits, tree vectype)
1650 vect_update_max_nunits (max_nunits, TYPE_VECTOR_SUBPARTS (vectype));
1653 /* Return the vectorization factor that should be used for costing
1654 purposes while vectorizing the loop described by LOOP_VINFO.
1655 Pick a reasonable estimate if the vectorization factor isn't
1656 known at compile time. */
1658 static inline unsigned int
1659 vect_vf_for_cost (loop_vec_info loop_vinfo)
1661 return estimated_poly_value (LOOP_VINFO_VECT_FACTOR (loop_vinfo));
1664 /* Estimate the number of elements in VEC_TYPE for costing purposes.
1665 Pick a reasonable estimate if the exact number isn't known at
1666 compile time. */
1668 static inline unsigned int
1669 vect_nunits_for_cost (tree vec_type)
1671 return estimated_poly_value (TYPE_VECTOR_SUBPARTS (vec_type));
1674 /* Return the maximum possible vectorization factor for LOOP_VINFO. */
1676 static inline unsigned HOST_WIDE_INT
1677 vect_max_vf (loop_vec_info loop_vinfo)
1679 unsigned HOST_WIDE_INT vf;
1680 if (LOOP_VINFO_VECT_FACTOR (loop_vinfo).is_constant (&vf))
1681 return vf;
1682 return MAX_VECTORIZATION_FACTOR;
1685 /* Return the size of the value accessed by unvectorized data reference
1686 DR_INFO. This is only valid once STMT_VINFO_VECTYPE has been calculated
1687 for the associated gimple statement, since that guarantees that DR_INFO
1688 accesses either a scalar or a scalar equivalent. ("Scalar equivalent"
1689 here includes things like V1SI, which can be vectorized in the same way
1690 as a plain SI.) */
1692 inline unsigned int
1693 vect_get_scalar_dr_size (dr_vec_info *dr_info)
1695 return tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr_info->dr))));
1698 /* Return true if LOOP_VINFO requires a runtime check for whether the
1699 vector loop is profitable. */
1701 inline bool
1702 vect_apply_runtime_profitability_check_p (loop_vec_info loop_vinfo)
1704 unsigned int th = LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo);
1705 return (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1706 && th >= vect_vf_for_cost (loop_vinfo));
1709 /* Source location + hotness information. */
1710 extern dump_user_location_t vect_location;
1712 /* A macro for calling:
1713 dump_begin_scope (MSG, vect_location);
1714 via an RAII object, thus printing "=== MSG ===\n" to the dumpfile etc,
1715 and then calling
1716 dump_end_scope ();
1717 once the object goes out of scope, thus capturing the nesting of
1718 the scopes.
1720 These scopes affect dump messages within them: dump messages at the
1721 top level implicitly default to MSG_PRIORITY_USER_FACING, whereas those
1722 in a nested scope implicitly default to MSG_PRIORITY_INTERNALS. */
1724 #define DUMP_VECT_SCOPE(MSG) \
1725 AUTO_DUMP_SCOPE (MSG, vect_location)
1727 /* A sentinel class for ensuring that the "vect_location" global gets
1728 reset at the end of a scope.
1730 The "vect_location" global is used during dumping and contains a
1731 location_t, which could contain references to a tree block via the
1732 ad-hoc data. This data is used for tracking inlining information,
1733 but it's not a GC root; it's simply assumed that such locations never
1734 get accessed if the blocks are optimized away.
1736 Hence we need to ensure that such locations are purged at the end
1737 of any operations using them (e.g. via this class). */
1739 class auto_purge_vect_location
1741 public:
1742 ~auto_purge_vect_location ();
1745 /*-----------------------------------------------------------------*/
1746 /* Function prototypes. */
1747 /*-----------------------------------------------------------------*/
1749 /* Simple loop peeling and versioning utilities for vectorizer's purposes -
1750 in tree-vect-loop-manip.c. */
1751 extern void vect_set_loop_condition (class loop *, loop_vec_info,
1752 tree, tree, tree, bool);
1753 extern bool slpeel_can_duplicate_loop_p (const class loop *, const_edge);
1754 class loop *slpeel_tree_duplicate_loop_to_edge_cfg (class loop *,
1755 class loop *, edge);
1756 class loop *vect_loop_versioning (loop_vec_info, gimple *);
1757 extern class loop *vect_do_peeling (loop_vec_info, tree, tree,
1758 tree *, tree *, tree *, int, bool, bool,
1759 tree *);
1760 extern void vect_prepare_for_masked_peels (loop_vec_info);
1761 extern dump_user_location_t find_loop_location (class loop *);
1762 extern bool vect_can_advance_ivs_p (loop_vec_info);
1763 extern void vect_update_inits_of_drs (loop_vec_info, tree, tree_code);
1765 /* In tree-vect-stmts.c. */
1766 extern tree get_related_vectype_for_scalar_type (machine_mode, tree,
1767 poly_uint64 = 0);
1768 extern tree get_vectype_for_scalar_type (vec_info *, tree, unsigned int = 0);
1769 extern tree get_vectype_for_scalar_type (vec_info *, tree, slp_tree);
1770 extern tree get_mask_type_for_scalar_type (vec_info *, tree, unsigned int = 0);
1771 extern tree get_same_sized_vectype (tree, tree);
1772 extern bool vect_chooses_same_modes_p (vec_info *, machine_mode);
1773 extern bool vect_get_loop_mask_type (loop_vec_info);
1774 extern bool vect_is_simple_use (tree, vec_info *, enum vect_def_type *,
1775 stmt_vec_info * = NULL, gimple ** = NULL);
1776 extern bool vect_is_simple_use (tree, vec_info *, enum vect_def_type *,
1777 tree *, stmt_vec_info * = NULL,
1778 gimple ** = NULL);
1779 extern bool vect_is_simple_use (vec_info *, stmt_vec_info, slp_tree,
1780 unsigned, tree *, slp_tree *,
1781 enum vect_def_type *,
1782 tree *, stmt_vec_info * = NULL);
1783 extern bool vect_maybe_update_slp_op_vectype (slp_tree, tree);
1784 extern bool supportable_widening_operation (vec_info *,
1785 enum tree_code, stmt_vec_info,
1786 tree, tree, enum tree_code *,
1787 enum tree_code *, int *,
1788 vec<tree> *);
1789 extern bool supportable_narrowing_operation (enum tree_code, tree, tree,
1790 enum tree_code *, int *,
1791 vec<tree> *);
1793 extern unsigned record_stmt_cost (stmt_vector_for_cost *, int,
1794 enum vect_cost_for_stmt, stmt_vec_info,
1795 tree, int, enum vect_cost_model_location);
1797 /* Overload of record_stmt_cost with VECTYPE derived from STMT_INFO. */
1799 static inline unsigned
1800 record_stmt_cost (stmt_vector_for_cost *body_cost_vec, int count,
1801 enum vect_cost_for_stmt kind, stmt_vec_info stmt_info,
1802 int misalign, enum vect_cost_model_location where)
1804 return record_stmt_cost (body_cost_vec, count, kind, stmt_info,
1805 STMT_VINFO_VECTYPE (stmt_info), misalign, where);
1808 extern void vect_finish_replace_stmt (vec_info *, stmt_vec_info, gimple *);
1809 extern void vect_finish_stmt_generation (vec_info *, stmt_vec_info, gimple *,
1810 gimple_stmt_iterator *);
1811 extern opt_result vect_mark_stmts_to_be_vectorized (loop_vec_info, bool *);
1812 extern tree vect_get_store_rhs (stmt_vec_info);
1813 void vect_get_vec_defs_for_operand (vec_info *vinfo, stmt_vec_info, unsigned,
1814 tree op, vec<tree> *, tree = NULL);
1815 void vect_get_vec_defs (vec_info *, stmt_vec_info, slp_tree, unsigned,
1816 tree, vec<tree> *,
1817 tree = NULL, vec<tree> * = NULL,
1818 tree = NULL, vec<tree> * = NULL,
1819 tree = NULL, vec<tree> * = NULL);
1820 void vect_get_vec_defs (vec_info *, stmt_vec_info, slp_tree, unsigned,
1821 tree, vec<tree> *, tree,
1822 tree = NULL, vec<tree> * = NULL, tree = NULL,
1823 tree = NULL, vec<tree> * = NULL, tree = NULL,
1824 tree = NULL, vec<tree> * = NULL, tree = NULL);
1825 extern tree vect_init_vector (vec_info *, stmt_vec_info, tree, tree,
1826 gimple_stmt_iterator *);
1827 extern tree vect_get_slp_vect_def (slp_tree, unsigned);
1828 extern bool vect_transform_stmt (vec_info *, stmt_vec_info,
1829 gimple_stmt_iterator *,
1830 slp_tree, slp_instance);
1831 extern void vect_remove_stores (vec_info *, stmt_vec_info);
1832 extern bool vect_nop_conversion_p (stmt_vec_info);
1833 extern opt_result vect_analyze_stmt (vec_info *, stmt_vec_info, bool *,
1834 slp_tree,
1835 slp_instance, stmt_vector_for_cost *);
1836 extern void vect_get_load_cost (vec_info *, stmt_vec_info, int, bool,
1837 unsigned int *, unsigned int *,
1838 stmt_vector_for_cost *,
1839 stmt_vector_for_cost *, bool);
1840 extern void vect_get_store_cost (vec_info *, stmt_vec_info, int,
1841 unsigned int *, stmt_vector_for_cost *);
1842 extern bool vect_supportable_shift (vec_info *, enum tree_code, tree);
1843 extern tree vect_gen_perm_mask_any (tree, const vec_perm_indices &);
1844 extern tree vect_gen_perm_mask_checked (tree, const vec_perm_indices &);
1845 extern void optimize_mask_stores (class loop*);
1846 extern gcall *vect_gen_while (tree, tree, tree);
1847 extern tree vect_gen_while_not (gimple_seq *, tree, tree, tree);
1848 extern opt_result vect_get_vector_types_for_stmt (vec_info *,
1849 stmt_vec_info, tree *,
1850 tree *, unsigned int = 0);
1851 extern opt_tree vect_get_mask_type_for_stmt (stmt_vec_info, unsigned int = 0);
1853 /* In tree-vect-data-refs.c. */
1854 extern bool vect_can_force_dr_alignment_p (const_tree, poly_uint64);
1855 extern enum dr_alignment_support vect_supportable_dr_alignment
1856 (vec_info *, dr_vec_info *, bool);
1857 extern tree vect_get_smallest_scalar_type (stmt_vec_info, HOST_WIDE_INT *,
1858 HOST_WIDE_INT *);
1859 extern opt_result vect_analyze_data_ref_dependences (loop_vec_info, unsigned int *);
1860 extern bool vect_slp_analyze_instance_dependence (vec_info *, slp_instance);
1861 extern opt_result vect_enhance_data_refs_alignment (loop_vec_info);
1862 extern opt_result vect_analyze_data_refs_alignment (loop_vec_info);
1863 extern bool vect_slp_analyze_instance_alignment (vec_info *, slp_instance);
1864 extern opt_result vect_analyze_data_ref_accesses (vec_info *, vec<int> *);
1865 extern opt_result vect_prune_runtime_alias_test_list (loop_vec_info);
1866 extern bool vect_gather_scatter_fn_p (vec_info *, bool, bool, tree, tree,
1867 tree, int, internal_fn *, tree *);
1868 extern bool vect_check_gather_scatter (stmt_vec_info, loop_vec_info,
1869 gather_scatter_info *);
1870 extern opt_result vect_find_stmt_data_reference (loop_p, gimple *,
1871 vec<data_reference_p> *,
1872 vec<int> *, int);
1873 extern opt_result vect_analyze_data_refs (vec_info *, poly_uint64 *, bool *);
1874 extern void vect_record_base_alignments (vec_info *);
1875 extern tree vect_create_data_ref_ptr (vec_info *,
1876 stmt_vec_info, tree, class loop *, tree,
1877 tree *, gimple_stmt_iterator *,
1878 gimple **, bool,
1879 tree = NULL_TREE, tree = NULL_TREE);
1880 extern tree bump_vector_ptr (vec_info *, tree, gimple *, gimple_stmt_iterator *,
1881 stmt_vec_info, tree);
1882 extern void vect_copy_ref_info (tree, tree);
1883 extern tree vect_create_destination_var (tree, tree);
1884 extern bool vect_grouped_store_supported (tree, unsigned HOST_WIDE_INT);
1885 extern bool vect_store_lanes_supported (tree, unsigned HOST_WIDE_INT, bool);
1886 extern bool vect_grouped_load_supported (tree, bool, unsigned HOST_WIDE_INT);
1887 extern bool vect_load_lanes_supported (tree, unsigned HOST_WIDE_INT, bool);
1888 extern void vect_permute_store_chain (vec_info *,
1889 vec<tree> ,unsigned int, stmt_vec_info,
1890 gimple_stmt_iterator *, vec<tree> *);
1891 extern tree vect_setup_realignment (vec_info *,
1892 stmt_vec_info, gimple_stmt_iterator *,
1893 tree *, enum dr_alignment_support, tree,
1894 class loop **);
1895 extern void vect_transform_grouped_load (vec_info *, stmt_vec_info, vec<tree>,
1896 int, gimple_stmt_iterator *);
1897 extern void vect_record_grouped_load_vectors (vec_info *,
1898 stmt_vec_info, vec<tree>);
1899 extern tree vect_get_new_vect_var (tree, enum vect_var_kind, const char *);
1900 extern tree vect_get_new_ssa_name (tree, enum vect_var_kind,
1901 const char * = NULL);
1902 extern tree vect_create_addr_base_for_vector_ref (vec_info *,
1903 stmt_vec_info, gimple_seq *,
1904 tree, tree = NULL_TREE);
1906 /* In tree-vect-loop.c. */
1907 extern widest_int vect_iv_limit_for_partial_vectors (loop_vec_info loop_vinfo);
1908 bool vect_rgroup_iv_might_wrap_p (loop_vec_info, rgroup_controls *);
1909 /* Used in tree-vect-loop-manip.c */
1910 extern opt_result vect_determine_partial_vectors_and_peeling (loop_vec_info,
1911 bool);
1912 /* Used in gimple-loop-interchange.c and tree-parloops.c. */
1913 extern bool check_reduction_path (dump_user_location_t, loop_p, gphi *, tree,
1914 enum tree_code);
1915 extern bool needs_fold_left_reduction_p (tree, tree_code);
1916 /* Drive for loop analysis stage. */
1917 extern opt_loop_vec_info vect_analyze_loop (class loop *, vec_info_shared *);
1918 extern tree vect_build_loop_niters (loop_vec_info, bool * = NULL);
1919 extern void vect_gen_vector_loop_niters (loop_vec_info, tree, tree *,
1920 tree *, bool);
1921 extern tree vect_halve_mask_nunits (tree, machine_mode);
1922 extern tree vect_double_mask_nunits (tree, machine_mode);
1923 extern void vect_record_loop_mask (loop_vec_info, vec_loop_masks *,
1924 unsigned int, tree, tree);
1925 extern tree vect_get_loop_mask (gimple_stmt_iterator *, vec_loop_masks *,
1926 unsigned int, tree, unsigned int);
1927 extern void vect_record_loop_len (loop_vec_info, vec_loop_lens *, unsigned int,
1928 tree, unsigned int);
1929 extern tree vect_get_loop_len (loop_vec_info, vec_loop_lens *, unsigned int,
1930 unsigned int);
1931 extern gimple_seq vect_gen_len (tree, tree, tree, tree);
1932 extern stmt_vec_info info_for_reduction (vec_info *, stmt_vec_info);
1934 /* Drive for loop transformation stage. */
1935 extern class loop *vect_transform_loop (loop_vec_info, gimple *);
1936 extern opt_loop_vec_info vect_analyze_loop_form (class loop *,
1937 vec_info_shared *);
1938 extern bool vectorizable_live_operation (vec_info *,
1939 stmt_vec_info, gimple_stmt_iterator *,
1940 slp_tree, slp_instance, int,
1941 bool, stmt_vector_for_cost *);
1942 extern bool vectorizable_reduction (loop_vec_info, stmt_vec_info,
1943 slp_tree, slp_instance,
1944 stmt_vector_for_cost *);
1945 extern bool vectorizable_induction (loop_vec_info, stmt_vec_info,
1946 gimple **, slp_tree,
1947 stmt_vector_for_cost *);
1948 extern bool vect_transform_reduction (loop_vec_info, stmt_vec_info,
1949 gimple_stmt_iterator *,
1950 gimple **, slp_tree);
1951 extern bool vect_transform_cycle_phi (loop_vec_info, stmt_vec_info,
1952 gimple **,
1953 slp_tree, slp_instance);
1954 extern bool vectorizable_lc_phi (loop_vec_info, stmt_vec_info,
1955 gimple **, slp_tree);
1956 extern bool vectorizable_phi (vec_info *, stmt_vec_info, gimple **, slp_tree,
1957 stmt_vector_for_cost *);
1958 extern bool vect_worthwhile_without_simd_p (vec_info *, tree_code);
1959 extern int vect_get_known_peeling_cost (loop_vec_info, int, int *,
1960 stmt_vector_for_cost *,
1961 stmt_vector_for_cost *,
1962 stmt_vector_for_cost *);
1963 extern tree cse_and_gimplify_to_preheader (loop_vec_info, tree);
1965 /* In tree-vect-slp.c. */
1966 extern void vect_free_slp_instance (slp_instance);
1967 extern bool vect_transform_slp_perm_load (vec_info *, slp_tree, vec<tree>,
1968 gimple_stmt_iterator *, poly_uint64,
1969 bool, unsigned *,
1970 unsigned * = nullptr);
1971 extern bool vect_slp_analyze_operations (vec_info *);
1972 extern void vect_schedule_slp (vec_info *, vec<slp_instance>);
1973 extern opt_result vect_analyze_slp (vec_info *, unsigned);
1974 extern bool vect_make_slp_decision (loop_vec_info);
1975 extern void vect_detect_hybrid_slp (loop_vec_info);
1976 extern void vect_optimize_slp (vec_info *);
1977 extern void vect_gather_slp_loads (vec_info *);
1978 extern void vect_get_slp_defs (slp_tree, vec<tree> *);
1979 extern void vect_get_slp_defs (vec_info *, slp_tree, vec<vec<tree> > *,
1980 unsigned n = -1U);
1981 extern bool vect_slp_bb (basic_block);
1982 extern bool vect_slp_function (function *);
1983 extern stmt_vec_info vect_find_last_scalar_stmt_in_slp (slp_tree);
1984 extern stmt_vec_info vect_find_first_scalar_stmt_in_slp (slp_tree);
1985 extern bool is_simple_and_all_uses_invariant (stmt_vec_info, loop_vec_info);
1986 extern bool can_duplicate_and_interleave_p (vec_info *, unsigned int, tree,
1987 unsigned int * = NULL,
1988 tree * = NULL, tree * = NULL);
1989 extern void duplicate_and_interleave (vec_info *, gimple_seq *, tree,
1990 vec<tree>, unsigned int, vec<tree> &);
1991 extern int vect_get_place_in_interleaving_chain (stmt_vec_info, stmt_vec_info);
1992 extern bool vect_update_shared_vectype (stmt_vec_info, tree);
1994 /* In tree-vect-patterns.c. */
1995 /* Pattern recognition functions.
1996 Additional pattern recognition functions can (and will) be added
1997 in the future. */
1998 void vect_pattern_recog (vec_info *);
2000 /* In tree-vectorizer.c. */
2001 unsigned vectorize_loops (void);
2002 void vect_free_loop_info_assumptions (class loop *);
2003 gimple *vect_loop_vectorized_call (class loop *, gcond **cond = NULL);
2004 bool vect_stmt_dominates_stmt_p (gimple *, gimple *);
2006 #endif /* GCC_TREE_VECTORIZER_H */