[Ada] Do not perform useless work in Check_No_Parts_Violations
[official-gcc.git] / gcc / function.c
blob675769509832c4ef937cfa6410cba8f0b5f48ec3
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987-2021 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file handles the generation of rtl code from tree structure
21 at the level of the function as a whole.
22 It creates the rtl expressions for parameters and auto variables
23 and has full responsibility for allocating stack slots.
25 `expand_function_start' is called at the beginning of a function,
26 before the function body is parsed, and `expand_function_end' is
27 called after parsing the body.
29 Call `assign_stack_local' to allocate a stack slot for a local variable.
30 This is usually done during the RTL generation for the function body,
31 but it can also be done in the reload pass when a pseudo-register does
32 not get a hard register. */
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "backend.h"
38 #include "target.h"
39 #include "rtl.h"
40 #include "tree.h"
41 #include "gimple-expr.h"
42 #include "cfghooks.h"
43 #include "df.h"
44 #include "memmodel.h"
45 #include "tm_p.h"
46 #include "stringpool.h"
47 #include "expmed.h"
48 #include "optabs.h"
49 #include "opts.h"
50 #include "regs.h"
51 #include "emit-rtl.h"
52 #include "recog.h"
53 #include "rtl-error.h"
54 #include "hard-reg-set.h"
55 #include "alias.h"
56 #include "fold-const.h"
57 #include "stor-layout.h"
58 #include "varasm.h"
59 #include "except.h"
60 #include "dojump.h"
61 #include "explow.h"
62 #include "calls.h"
63 #include "expr.h"
64 #include "optabs-tree.h"
65 #include "output.h"
66 #include "langhooks.h"
67 #include "common/common-target.h"
68 #include "gimplify.h"
69 #include "tree-pass.h"
70 #include "cfgrtl.h"
71 #include "cfganal.h"
72 #include "cfgbuild.h"
73 #include "cfgcleanup.h"
74 #include "cfgexpand.h"
75 #include "shrink-wrap.h"
76 #include "toplev.h"
77 #include "rtl-iter.h"
78 #include "tree-dfa.h"
79 #include "tree-ssa.h"
80 #include "stringpool.h"
81 #include "attribs.h"
82 #include "gimple.h"
83 #include "options.h"
84 #include "function-abi.h"
85 #include "value-range.h"
86 #include "gimple-range.h"
88 /* So we can assign to cfun in this file. */
89 #undef cfun
91 #ifndef STACK_ALIGNMENT_NEEDED
92 #define STACK_ALIGNMENT_NEEDED 1
93 #endif
95 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
97 /* Round a value to the lowest integer less than it that is a multiple of
98 the required alignment. Avoid using division in case the value is
99 negative. Assume the alignment is a power of two. */
100 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
102 /* Similar, but round to the next highest integer that meets the
103 alignment. */
104 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
106 /* Nonzero once virtual register instantiation has been done.
107 assign_stack_local uses frame_pointer_rtx when this is nonzero.
108 calls.c:emit_library_call_value_1 uses it to set up
109 post-instantiation libcalls. */
110 int virtuals_instantiated;
112 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
113 static GTY(()) int funcdef_no;
115 /* These variables hold pointers to functions to create and destroy
116 target specific, per-function data structures. */
117 struct machine_function * (*init_machine_status) (void);
119 /* The currently compiled function. */
120 struct function *cfun = 0;
122 /* These hashes record the prologue and epilogue insns. */
124 struct insn_cache_hasher : ggc_cache_ptr_hash<rtx_def>
126 static hashval_t hash (rtx x) { return htab_hash_pointer (x); }
127 static bool equal (rtx a, rtx b) { return a == b; }
130 static GTY((cache))
131 hash_table<insn_cache_hasher> *prologue_insn_hash;
132 static GTY((cache))
133 hash_table<insn_cache_hasher> *epilogue_insn_hash;
136 hash_table<used_type_hasher> *types_used_by_vars_hash = NULL;
137 vec<tree, va_gc> *types_used_by_cur_var_decl;
139 /* Forward declarations. */
141 static class temp_slot *find_temp_slot_from_address (rtx);
142 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
143 static void pad_below (struct args_size *, machine_mode, tree);
144 static void reorder_blocks_1 (rtx_insn *, tree, vec<tree> *);
145 static int all_blocks (tree, tree *);
146 static tree *get_block_vector (tree, int *);
147 extern tree debug_find_var_in_block_tree (tree, tree);
148 /* We always define `record_insns' even if it's not used so that we
149 can always export `prologue_epilogue_contains'. */
150 static void record_insns (rtx_insn *, rtx, hash_table<insn_cache_hasher> **)
151 ATTRIBUTE_UNUSED;
152 static bool contains (const rtx_insn *, hash_table<insn_cache_hasher> *);
153 static void prepare_function_start (void);
154 static void do_clobber_return_reg (rtx, void *);
155 static void do_use_return_reg (rtx, void *);
158 /* Stack of nested functions. */
159 /* Keep track of the cfun stack. */
161 static vec<function *> function_context_stack;
163 /* Save the current context for compilation of a nested function.
164 This is called from language-specific code. */
166 void
167 push_function_context (void)
169 if (cfun == 0)
170 allocate_struct_function (NULL, false);
172 function_context_stack.safe_push (cfun);
173 set_cfun (NULL);
176 /* Restore the last saved context, at the end of a nested function.
177 This function is called from language-specific code. */
179 void
180 pop_function_context (void)
182 struct function *p = function_context_stack.pop ();
183 set_cfun (p);
184 current_function_decl = p->decl;
186 /* Reset variables that have known state during rtx generation. */
187 virtuals_instantiated = 0;
188 generating_concat_p = 1;
191 /* Clear out all parts of the state in F that can safely be discarded
192 after the function has been parsed, but not compiled, to let
193 garbage collection reclaim the memory. */
195 void
196 free_after_parsing (struct function *f)
198 f->language = 0;
201 /* Clear out all parts of the state in F that can safely be discarded
202 after the function has been compiled, to let garbage collection
203 reclaim the memory. */
205 void
206 free_after_compilation (struct function *f)
208 prologue_insn_hash = NULL;
209 epilogue_insn_hash = NULL;
211 free (crtl->emit.regno_pointer_align);
213 memset (crtl, 0, sizeof (struct rtl_data));
214 f->eh = NULL;
215 f->machine = NULL;
216 f->cfg = NULL;
217 f->curr_properties &= ~PROP_cfg;
219 regno_reg_rtx = NULL;
222 /* Return size needed for stack frame based on slots so far allocated.
223 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
224 the caller may have to do that. */
226 poly_int64
227 get_frame_size (void)
229 if (FRAME_GROWS_DOWNWARD)
230 return -frame_offset;
231 else
232 return frame_offset;
235 /* Issue an error message and return TRUE if frame OFFSET overflows in
236 the signed target pointer arithmetics for function FUNC. Otherwise
237 return FALSE. */
239 bool
240 frame_offset_overflow (poly_int64 offset, tree func)
242 poly_uint64 size = FRAME_GROWS_DOWNWARD ? -offset : offset;
243 unsigned HOST_WIDE_INT limit
244 = ((HOST_WIDE_INT_1U << (GET_MODE_BITSIZE (Pmode) - 1))
245 /* Leave room for the fixed part of the frame. */
246 - 64 * UNITS_PER_WORD);
248 if (!coeffs_in_range_p (size, 0U, limit))
250 unsigned HOST_WIDE_INT hwisize;
251 if (size.is_constant (&hwisize))
252 error_at (DECL_SOURCE_LOCATION (func),
253 "total size of local objects %wu exceeds maximum %wu",
254 hwisize, limit);
255 else
256 error_at (DECL_SOURCE_LOCATION (func),
257 "total size of local objects exceeds maximum %wu",
258 limit);
259 return true;
262 return false;
265 /* Return the minimum spill slot alignment for a register of mode MODE. */
267 unsigned int
268 spill_slot_alignment (machine_mode mode ATTRIBUTE_UNUSED)
270 return STACK_SLOT_ALIGNMENT (NULL_TREE, mode, GET_MODE_ALIGNMENT (mode));
273 /* Return stack slot alignment in bits for TYPE and MODE. */
275 static unsigned int
276 get_stack_local_alignment (tree type, machine_mode mode)
278 unsigned int alignment;
280 if (mode == BLKmode)
281 alignment = BIGGEST_ALIGNMENT;
282 else
283 alignment = GET_MODE_ALIGNMENT (mode);
285 /* Allow the frond-end to (possibly) increase the alignment of this
286 stack slot. */
287 if (! type)
288 type = lang_hooks.types.type_for_mode (mode, 0);
290 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
293 /* Determine whether it is possible to fit a stack slot of size SIZE and
294 alignment ALIGNMENT into an area in the stack frame that starts at
295 frame offset START and has a length of LENGTH. If so, store the frame
296 offset to be used for the stack slot in *POFFSET and return true;
297 return false otherwise. This function will extend the frame size when
298 given a start/length pair that lies at the end of the frame. */
300 static bool
301 try_fit_stack_local (poly_int64 start, poly_int64 length,
302 poly_int64 size, unsigned int alignment,
303 poly_int64_pod *poffset)
305 poly_int64 this_frame_offset;
306 int frame_off, frame_alignment, frame_phase;
308 /* Calculate how many bytes the start of local variables is off from
309 stack alignment. */
310 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
311 frame_off = targetm.starting_frame_offset () % frame_alignment;
312 frame_phase = frame_off ? frame_alignment - frame_off : 0;
314 /* Round the frame offset to the specified alignment. */
316 if (FRAME_GROWS_DOWNWARD)
317 this_frame_offset
318 = (aligned_lower_bound (start + length - size - frame_phase, alignment)
319 + frame_phase);
320 else
321 this_frame_offset
322 = aligned_upper_bound (start - frame_phase, alignment) + frame_phase;
324 /* See if it fits. If this space is at the edge of the frame,
325 consider extending the frame to make it fit. Our caller relies on
326 this when allocating a new slot. */
327 if (maybe_lt (this_frame_offset, start))
329 if (known_eq (frame_offset, start))
330 frame_offset = this_frame_offset;
331 else
332 return false;
334 else if (maybe_gt (this_frame_offset + size, start + length))
336 if (known_eq (frame_offset, start + length))
337 frame_offset = this_frame_offset + size;
338 else
339 return false;
342 *poffset = this_frame_offset;
343 return true;
346 /* Create a new frame_space structure describing free space in the stack
347 frame beginning at START and ending at END, and chain it into the
348 function's frame_space_list. */
350 static void
351 add_frame_space (poly_int64 start, poly_int64 end)
353 class frame_space *space = ggc_alloc<frame_space> ();
354 space->next = crtl->frame_space_list;
355 crtl->frame_space_list = space;
356 space->start = start;
357 space->length = end - start;
360 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
361 with machine mode MODE.
363 ALIGN controls the amount of alignment for the address of the slot:
364 0 means according to MODE,
365 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
366 -2 means use BITS_PER_UNIT,
367 positive specifies alignment boundary in bits.
369 KIND has ASLK_REDUCE_ALIGN bit set if it is OK to reduce
370 alignment and ASLK_RECORD_PAD bit set if we should remember
371 extra space we allocated for alignment purposes. When we are
372 called from assign_stack_temp_for_type, it is not set so we don't
373 track the same stack slot in two independent lists.
375 We do not round to stack_boundary here. */
378 assign_stack_local_1 (machine_mode mode, poly_int64 size,
379 int align, int kind)
381 rtx x, addr;
382 poly_int64 bigend_correction = 0;
383 poly_int64 slot_offset = 0, old_frame_offset;
384 unsigned int alignment, alignment_in_bits;
386 if (align == 0)
388 alignment = get_stack_local_alignment (NULL, mode);
389 alignment /= BITS_PER_UNIT;
391 else if (align == -1)
393 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
394 size = aligned_upper_bound (size, alignment);
396 else if (align == -2)
397 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
398 else
399 alignment = align / BITS_PER_UNIT;
401 alignment_in_bits = alignment * BITS_PER_UNIT;
403 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
404 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
406 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
407 alignment = MAX_SUPPORTED_STACK_ALIGNMENT / BITS_PER_UNIT;
410 if (SUPPORTS_STACK_ALIGNMENT)
412 if (crtl->stack_alignment_estimated < alignment_in_bits)
414 if (!crtl->stack_realign_processed)
415 crtl->stack_alignment_estimated = alignment_in_bits;
416 else
418 /* If stack is realigned and stack alignment value
419 hasn't been finalized, it is OK not to increase
420 stack_alignment_estimated. The bigger alignment
421 requirement is recorded in stack_alignment_needed
422 below. */
423 gcc_assert (!crtl->stack_realign_finalized);
424 if (!crtl->stack_realign_needed)
426 /* It is OK to reduce the alignment as long as the
427 requested size is 0 or the estimated stack
428 alignment >= mode alignment. */
429 gcc_assert ((kind & ASLK_REDUCE_ALIGN)
430 || known_eq (size, 0)
431 || (crtl->stack_alignment_estimated
432 >= GET_MODE_ALIGNMENT (mode)));
433 alignment_in_bits = crtl->stack_alignment_estimated;
434 alignment = alignment_in_bits / BITS_PER_UNIT;
440 if (crtl->stack_alignment_needed < alignment_in_bits)
441 crtl->stack_alignment_needed = alignment_in_bits;
442 if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
443 crtl->max_used_stack_slot_alignment = alignment_in_bits;
445 if (mode != BLKmode || maybe_ne (size, 0))
447 if (kind & ASLK_RECORD_PAD)
449 class frame_space **psp;
451 for (psp = &crtl->frame_space_list; *psp; psp = &(*psp)->next)
453 class frame_space *space = *psp;
454 if (!try_fit_stack_local (space->start, space->length, size,
455 alignment, &slot_offset))
456 continue;
457 *psp = space->next;
458 if (known_gt (slot_offset, space->start))
459 add_frame_space (space->start, slot_offset);
460 if (known_lt (slot_offset + size, space->start + space->length))
461 add_frame_space (slot_offset + size,
462 space->start + space->length);
463 goto found_space;
467 else if (!STACK_ALIGNMENT_NEEDED)
469 slot_offset = frame_offset;
470 goto found_space;
473 old_frame_offset = frame_offset;
475 if (FRAME_GROWS_DOWNWARD)
477 frame_offset -= size;
478 try_fit_stack_local (frame_offset, size, size, alignment, &slot_offset);
480 if (kind & ASLK_RECORD_PAD)
482 if (known_gt (slot_offset, frame_offset))
483 add_frame_space (frame_offset, slot_offset);
484 if (known_lt (slot_offset + size, old_frame_offset))
485 add_frame_space (slot_offset + size, old_frame_offset);
488 else
490 frame_offset += size;
491 try_fit_stack_local (old_frame_offset, size, size, alignment, &slot_offset);
493 if (kind & ASLK_RECORD_PAD)
495 if (known_gt (slot_offset, old_frame_offset))
496 add_frame_space (old_frame_offset, slot_offset);
497 if (known_lt (slot_offset + size, frame_offset))
498 add_frame_space (slot_offset + size, frame_offset);
502 found_space:
503 /* On a big-endian machine, if we are allocating more space than we will use,
504 use the least significant bytes of those that are allocated. */
505 if (mode != BLKmode)
507 /* The slot size can sometimes be smaller than the mode size;
508 e.g. the rs6000 port allocates slots with a vector mode
509 that have the size of only one element. However, the slot
510 size must always be ordered wrt to the mode size, in the
511 same way as for a subreg. */
512 gcc_checking_assert (ordered_p (GET_MODE_SIZE (mode), size));
513 if (BYTES_BIG_ENDIAN && maybe_lt (GET_MODE_SIZE (mode), size))
514 bigend_correction = size - GET_MODE_SIZE (mode);
517 /* If we have already instantiated virtual registers, return the actual
518 address relative to the frame pointer. */
519 if (virtuals_instantiated)
520 addr = plus_constant (Pmode, frame_pointer_rtx,
521 trunc_int_for_mode
522 (slot_offset + bigend_correction
523 + targetm.starting_frame_offset (), Pmode));
524 else
525 addr = plus_constant (Pmode, virtual_stack_vars_rtx,
526 trunc_int_for_mode
527 (slot_offset + bigend_correction,
528 Pmode));
530 x = gen_rtx_MEM (mode, addr);
531 set_mem_align (x, alignment_in_bits);
532 MEM_NOTRAP_P (x) = 1;
534 vec_safe_push (stack_slot_list, x);
536 if (frame_offset_overflow (frame_offset, current_function_decl))
537 frame_offset = 0;
539 return x;
542 /* Wrap up assign_stack_local_1 with last parameter as false. */
545 assign_stack_local (machine_mode mode, poly_int64 size, int align)
547 return assign_stack_local_1 (mode, size, align, ASLK_RECORD_PAD);
550 /* In order to evaluate some expressions, such as function calls returning
551 structures in memory, we need to temporarily allocate stack locations.
552 We record each allocated temporary in the following structure.
554 Associated with each temporary slot is a nesting level. When we pop up
555 one level, all temporaries associated with the previous level are freed.
556 Normally, all temporaries are freed after the execution of the statement
557 in which they were created. However, if we are inside a ({...}) grouping,
558 the result may be in a temporary and hence must be preserved. If the
559 result could be in a temporary, we preserve it if we can determine which
560 one it is in. If we cannot determine which temporary may contain the
561 result, all temporaries are preserved. A temporary is preserved by
562 pretending it was allocated at the previous nesting level. */
564 class GTY(()) temp_slot {
565 public:
566 /* Points to next temporary slot. */
567 class temp_slot *next;
568 /* Points to previous temporary slot. */
569 class temp_slot *prev;
570 /* The rtx to used to reference the slot. */
571 rtx slot;
572 /* The size, in units, of the slot. */
573 poly_int64 size;
574 /* The type of the object in the slot, or zero if it doesn't correspond
575 to a type. We use this to determine whether a slot can be reused.
576 It can be reused if objects of the type of the new slot will always
577 conflict with objects of the type of the old slot. */
578 tree type;
579 /* The alignment (in bits) of the slot. */
580 unsigned int align;
581 /* Nonzero if this temporary is currently in use. */
582 char in_use;
583 /* Nesting level at which this slot is being used. */
584 int level;
585 /* The offset of the slot from the frame_pointer, including extra space
586 for alignment. This info is for combine_temp_slots. */
587 poly_int64 base_offset;
588 /* The size of the slot, including extra space for alignment. This
589 info is for combine_temp_slots. */
590 poly_int64 full_size;
593 /* Entry for the below hash table. */
594 struct GTY((for_user)) temp_slot_address_entry {
595 hashval_t hash;
596 rtx address;
597 class temp_slot *temp_slot;
600 struct temp_address_hasher : ggc_ptr_hash<temp_slot_address_entry>
602 static hashval_t hash (temp_slot_address_entry *);
603 static bool equal (temp_slot_address_entry *, temp_slot_address_entry *);
606 /* A table of addresses that represent a stack slot. The table is a mapping
607 from address RTXen to a temp slot. */
608 static GTY(()) hash_table<temp_address_hasher> *temp_slot_address_table;
609 static size_t n_temp_slots_in_use;
611 /* Removes temporary slot TEMP from LIST. */
613 static void
614 cut_slot_from_list (class temp_slot *temp, class temp_slot **list)
616 if (temp->next)
617 temp->next->prev = temp->prev;
618 if (temp->prev)
619 temp->prev->next = temp->next;
620 else
621 *list = temp->next;
623 temp->prev = temp->next = NULL;
626 /* Inserts temporary slot TEMP to LIST. */
628 static void
629 insert_slot_to_list (class temp_slot *temp, class temp_slot **list)
631 temp->next = *list;
632 if (*list)
633 (*list)->prev = temp;
634 temp->prev = NULL;
635 *list = temp;
638 /* Returns the list of used temp slots at LEVEL. */
640 static class temp_slot **
641 temp_slots_at_level (int level)
643 if (level >= (int) vec_safe_length (used_temp_slots))
644 vec_safe_grow_cleared (used_temp_slots, level + 1, true);
646 return &(*used_temp_slots)[level];
649 /* Returns the maximal temporary slot level. */
651 static int
652 max_slot_level (void)
654 if (!used_temp_slots)
655 return -1;
657 return used_temp_slots->length () - 1;
660 /* Moves temporary slot TEMP to LEVEL. */
662 static void
663 move_slot_to_level (class temp_slot *temp, int level)
665 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
666 insert_slot_to_list (temp, temp_slots_at_level (level));
667 temp->level = level;
670 /* Make temporary slot TEMP available. */
672 static void
673 make_slot_available (class temp_slot *temp)
675 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
676 insert_slot_to_list (temp, &avail_temp_slots);
677 temp->in_use = 0;
678 temp->level = -1;
679 n_temp_slots_in_use--;
682 /* Compute the hash value for an address -> temp slot mapping.
683 The value is cached on the mapping entry. */
684 static hashval_t
685 temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
687 int do_not_record = 0;
688 return hash_rtx (t->address, GET_MODE (t->address),
689 &do_not_record, NULL, false);
692 /* Return the hash value for an address -> temp slot mapping. */
693 hashval_t
694 temp_address_hasher::hash (temp_slot_address_entry *t)
696 return t->hash;
699 /* Compare two address -> temp slot mapping entries. */
700 bool
701 temp_address_hasher::equal (temp_slot_address_entry *t1,
702 temp_slot_address_entry *t2)
704 return exp_equiv_p (t1->address, t2->address, 0, true);
707 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
708 static void
709 insert_temp_slot_address (rtx address, class temp_slot *temp_slot)
711 struct temp_slot_address_entry *t = ggc_alloc<temp_slot_address_entry> ();
712 t->address = copy_rtx (address);
713 t->temp_slot = temp_slot;
714 t->hash = temp_slot_address_compute_hash (t);
715 *temp_slot_address_table->find_slot_with_hash (t, t->hash, INSERT) = t;
718 /* Remove an address -> temp slot mapping entry if the temp slot is
719 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
721 remove_unused_temp_slot_addresses_1 (temp_slot_address_entry **slot, void *)
723 const struct temp_slot_address_entry *t = *slot;
724 if (! t->temp_slot->in_use)
725 temp_slot_address_table->clear_slot (slot);
726 return 1;
729 /* Remove all mappings of addresses to unused temp slots. */
730 static void
731 remove_unused_temp_slot_addresses (void)
733 /* Use quicker clearing if there aren't any active temp slots. */
734 if (n_temp_slots_in_use)
735 temp_slot_address_table->traverse
736 <void *, remove_unused_temp_slot_addresses_1> (NULL);
737 else
738 temp_slot_address_table->empty ();
741 /* Find the temp slot corresponding to the object at address X. */
743 static class temp_slot *
744 find_temp_slot_from_address (rtx x)
746 class temp_slot *p;
747 struct temp_slot_address_entry tmp, *t;
749 /* First try the easy way:
750 See if X exists in the address -> temp slot mapping. */
751 tmp.address = x;
752 tmp.temp_slot = NULL;
753 tmp.hash = temp_slot_address_compute_hash (&tmp);
754 t = temp_slot_address_table->find_with_hash (&tmp, tmp.hash);
755 if (t)
756 return t->temp_slot;
758 /* If we have a sum involving a register, see if it points to a temp
759 slot. */
760 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
761 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
762 return p;
763 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
764 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
765 return p;
767 /* Last resort: Address is a virtual stack var address. */
768 poly_int64 offset;
769 if (strip_offset (x, &offset) == virtual_stack_vars_rtx)
771 int i;
772 for (i = max_slot_level (); i >= 0; i--)
773 for (p = *temp_slots_at_level (i); p; p = p->next)
774 if (known_in_range_p (offset, p->base_offset, p->full_size))
775 return p;
778 return NULL;
781 /* Allocate a temporary stack slot and record it for possible later
782 reuse.
784 MODE is the machine mode to be given to the returned rtx.
786 SIZE is the size in units of the space required. We do no rounding here
787 since assign_stack_local will do any required rounding.
789 TYPE is the type that will be used for the stack slot. */
792 assign_stack_temp_for_type (machine_mode mode, poly_int64 size, tree type)
794 unsigned int align;
795 class temp_slot *p, *best_p = 0, *selected = NULL, **pp;
796 rtx slot;
798 gcc_assert (known_size_p (size));
800 align = get_stack_local_alignment (type, mode);
802 /* Try to find an available, already-allocated temporary of the proper
803 mode which meets the size and alignment requirements. Choose the
804 smallest one with the closest alignment.
806 If assign_stack_temp is called outside of the tree->rtl expansion,
807 we cannot reuse the stack slots (that may still refer to
808 VIRTUAL_STACK_VARS_REGNUM). */
809 if (!virtuals_instantiated)
811 for (p = avail_temp_slots; p; p = p->next)
813 if (p->align >= align
814 && known_ge (p->size, size)
815 && GET_MODE (p->slot) == mode
816 && objects_must_conflict_p (p->type, type)
817 && (best_p == 0
818 || (known_eq (best_p->size, p->size)
819 ? best_p->align > p->align
820 : known_ge (best_p->size, p->size))))
822 if (p->align == align && known_eq (p->size, size))
824 selected = p;
825 cut_slot_from_list (selected, &avail_temp_slots);
826 best_p = 0;
827 break;
829 best_p = p;
834 /* Make our best, if any, the one to use. */
835 if (best_p)
837 selected = best_p;
838 cut_slot_from_list (selected, &avail_temp_slots);
840 /* If there are enough aligned bytes left over, make them into a new
841 temp_slot so that the extra bytes don't get wasted. Do this only
842 for BLKmode slots, so that we can be sure of the alignment. */
843 if (GET_MODE (best_p->slot) == BLKmode)
845 int alignment = best_p->align / BITS_PER_UNIT;
846 poly_int64 rounded_size = aligned_upper_bound (size, alignment);
848 if (known_ge (best_p->size - rounded_size, alignment))
850 p = ggc_alloc<temp_slot> ();
851 p->in_use = 0;
852 p->size = best_p->size - rounded_size;
853 p->base_offset = best_p->base_offset + rounded_size;
854 p->full_size = best_p->full_size - rounded_size;
855 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
856 p->align = best_p->align;
857 p->type = best_p->type;
858 insert_slot_to_list (p, &avail_temp_slots);
860 vec_safe_push (stack_slot_list, p->slot);
862 best_p->size = rounded_size;
863 best_p->full_size = rounded_size;
868 /* If we still didn't find one, make a new temporary. */
869 if (selected == 0)
871 poly_int64 frame_offset_old = frame_offset;
873 p = ggc_alloc<temp_slot> ();
875 /* We are passing an explicit alignment request to assign_stack_local.
876 One side effect of that is assign_stack_local will not round SIZE
877 to ensure the frame offset remains suitably aligned.
879 So for requests which depended on the rounding of SIZE, we go ahead
880 and round it now. We also make sure ALIGNMENT is at least
881 BIGGEST_ALIGNMENT. */
882 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
883 p->slot = assign_stack_local_1 (mode,
884 (mode == BLKmode
885 ? aligned_upper_bound (size,
886 (int) align
887 / BITS_PER_UNIT)
888 : size),
889 align, 0);
891 p->align = align;
893 /* The following slot size computation is necessary because we don't
894 know the actual size of the temporary slot until assign_stack_local
895 has performed all the frame alignment and size rounding for the
896 requested temporary. Note that extra space added for alignment
897 can be either above or below this stack slot depending on which
898 way the frame grows. We include the extra space if and only if it
899 is above this slot. */
900 if (FRAME_GROWS_DOWNWARD)
901 p->size = frame_offset_old - frame_offset;
902 else
903 p->size = size;
905 /* Now define the fields used by combine_temp_slots. */
906 if (FRAME_GROWS_DOWNWARD)
908 p->base_offset = frame_offset;
909 p->full_size = frame_offset_old - frame_offset;
911 else
913 p->base_offset = frame_offset_old;
914 p->full_size = frame_offset - frame_offset_old;
917 selected = p;
920 p = selected;
921 p->in_use = 1;
922 p->type = type;
923 p->level = temp_slot_level;
924 n_temp_slots_in_use++;
926 pp = temp_slots_at_level (p->level);
927 insert_slot_to_list (p, pp);
928 insert_temp_slot_address (XEXP (p->slot, 0), p);
930 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
931 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
932 vec_safe_push (stack_slot_list, slot);
934 /* If we know the alias set for the memory that will be used, use
935 it. If there's no TYPE, then we don't know anything about the
936 alias set for the memory. */
937 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
938 set_mem_align (slot, align);
940 /* If a type is specified, set the relevant flags. */
941 if (type != 0)
942 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
943 MEM_NOTRAP_P (slot) = 1;
945 return slot;
948 /* Allocate a temporary stack slot and record it for possible later
949 reuse. First two arguments are same as in preceding function. */
952 assign_stack_temp (machine_mode mode, poly_int64 size)
954 return assign_stack_temp_for_type (mode, size, NULL_TREE);
957 /* Assign a temporary.
958 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
959 and so that should be used in error messages. In either case, we
960 allocate of the given type.
961 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
962 it is 0 if a register is OK.
963 DONT_PROMOTE is 1 if we should not promote values in register
964 to wider modes. */
967 assign_temp (tree type_or_decl, int memory_required,
968 int dont_promote ATTRIBUTE_UNUSED)
970 tree type, decl;
971 machine_mode mode;
972 #ifdef PROMOTE_MODE
973 int unsignedp;
974 #endif
976 if (DECL_P (type_or_decl))
977 decl = type_or_decl, type = TREE_TYPE (decl);
978 else
979 decl = NULL, type = type_or_decl;
981 mode = TYPE_MODE (type);
982 #ifdef PROMOTE_MODE
983 unsignedp = TYPE_UNSIGNED (type);
984 #endif
986 /* Allocating temporaries of TREE_ADDRESSABLE type must be done in the front
987 end. See also create_tmp_var for the gimplification-time check. */
988 gcc_assert (!TREE_ADDRESSABLE (type) && COMPLETE_TYPE_P (type));
990 if (mode == BLKmode || memory_required)
992 poly_int64 size;
993 rtx tmp;
995 /* Unfortunately, we don't yet know how to allocate variable-sized
996 temporaries. However, sometimes we can find a fixed upper limit on
997 the size, so try that instead. */
998 if (!poly_int_tree_p (TYPE_SIZE_UNIT (type), &size))
999 size = max_int_size_in_bytes (type);
1001 /* Zero sized arrays are a GNU C extension. Set size to 1 to avoid
1002 problems with allocating the stack space. */
1003 if (known_eq (size, 0))
1004 size = 1;
1006 /* The size of the temporary may be too large to fit into an integer. */
1007 /* ??? Not sure this should happen except for user silliness, so limit
1008 this to things that aren't compiler-generated temporaries. The
1009 rest of the time we'll die in assign_stack_temp_for_type. */
1010 if (decl
1011 && !known_size_p (size)
1012 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
1014 error ("size of variable %q+D is too large", decl);
1015 size = 1;
1018 tmp = assign_stack_temp_for_type (mode, size, type);
1019 return tmp;
1022 #ifdef PROMOTE_MODE
1023 if (! dont_promote)
1024 mode = promote_mode (type, mode, &unsignedp);
1025 #endif
1027 return gen_reg_rtx (mode);
1030 /* Combine temporary stack slots which are adjacent on the stack.
1032 This allows for better use of already allocated stack space. This is only
1033 done for BLKmode slots because we can be sure that we won't have alignment
1034 problems in this case. */
1036 static void
1037 combine_temp_slots (void)
1039 class temp_slot *p, *q, *next, *next_q;
1040 int num_slots;
1042 /* We can't combine slots, because the information about which slot
1043 is in which alias set will be lost. */
1044 if (flag_strict_aliasing)
1045 return;
1047 /* If there are a lot of temp slots, don't do anything unless
1048 high levels of optimization. */
1049 if (! flag_expensive_optimizations)
1050 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
1051 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
1052 return;
1054 for (p = avail_temp_slots; p; p = next)
1056 int delete_p = 0;
1058 next = p->next;
1060 if (GET_MODE (p->slot) != BLKmode)
1061 continue;
1063 for (q = p->next; q; q = next_q)
1065 int delete_q = 0;
1067 next_q = q->next;
1069 if (GET_MODE (q->slot) != BLKmode)
1070 continue;
1072 if (known_eq (p->base_offset + p->full_size, q->base_offset))
1074 /* Q comes after P; combine Q into P. */
1075 p->size += q->size;
1076 p->full_size += q->full_size;
1077 delete_q = 1;
1079 else if (known_eq (q->base_offset + q->full_size, p->base_offset))
1081 /* P comes after Q; combine P into Q. */
1082 q->size += p->size;
1083 q->full_size += p->full_size;
1084 delete_p = 1;
1085 break;
1087 if (delete_q)
1088 cut_slot_from_list (q, &avail_temp_slots);
1091 /* Either delete P or advance past it. */
1092 if (delete_p)
1093 cut_slot_from_list (p, &avail_temp_slots);
1097 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1098 slot that previously was known by OLD_RTX. */
1100 void
1101 update_temp_slot_address (rtx old_rtx, rtx new_rtx)
1103 class temp_slot *p;
1105 if (rtx_equal_p (old_rtx, new_rtx))
1106 return;
1108 p = find_temp_slot_from_address (old_rtx);
1110 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1111 NEW_RTX is a register, see if one operand of the PLUS is a
1112 temporary location. If so, NEW_RTX points into it. Otherwise,
1113 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1114 in common between them. If so, try a recursive call on those
1115 values. */
1116 if (p == 0)
1118 if (GET_CODE (old_rtx) != PLUS)
1119 return;
1121 if (REG_P (new_rtx))
1123 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1124 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
1125 return;
1127 else if (GET_CODE (new_rtx) != PLUS)
1128 return;
1130 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1131 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1132 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1133 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1134 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1135 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1136 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1137 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
1139 return;
1142 /* Otherwise add an alias for the temp's address. */
1143 insert_temp_slot_address (new_rtx, p);
1146 /* If X could be a reference to a temporary slot, mark that slot as
1147 belonging to the to one level higher than the current level. If X
1148 matched one of our slots, just mark that one. Otherwise, we can't
1149 easily predict which it is, so upgrade all of them.
1151 This is called when an ({...}) construct occurs and a statement
1152 returns a value in memory. */
1154 void
1155 preserve_temp_slots (rtx x)
1157 class temp_slot *p = 0, *next;
1159 if (x == 0)
1160 return;
1162 /* If X is a register that is being used as a pointer, see if we have
1163 a temporary slot we know it points to. */
1164 if (REG_P (x) && REG_POINTER (x))
1165 p = find_temp_slot_from_address (x);
1167 /* If X is not in memory or is at a constant address, it cannot be in
1168 a temporary slot. */
1169 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1170 return;
1172 /* First see if we can find a match. */
1173 if (p == 0)
1174 p = find_temp_slot_from_address (XEXP (x, 0));
1176 if (p != 0)
1178 if (p->level == temp_slot_level)
1179 move_slot_to_level (p, temp_slot_level - 1);
1180 return;
1183 /* Otherwise, preserve all non-kept slots at this level. */
1184 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1186 next = p->next;
1187 move_slot_to_level (p, temp_slot_level - 1);
1191 /* Free all temporaries used so far. This is normally called at the
1192 end of generating code for a statement. */
1194 void
1195 free_temp_slots (void)
1197 class temp_slot *p, *next;
1198 bool some_available = false;
1200 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1202 next = p->next;
1203 make_slot_available (p);
1204 some_available = true;
1207 if (some_available)
1209 remove_unused_temp_slot_addresses ();
1210 combine_temp_slots ();
1214 /* Push deeper into the nesting level for stack temporaries. */
1216 void
1217 push_temp_slots (void)
1219 temp_slot_level++;
1222 /* Pop a temporary nesting level. All slots in use in the current level
1223 are freed. */
1225 void
1226 pop_temp_slots (void)
1228 free_temp_slots ();
1229 temp_slot_level--;
1232 /* Initialize temporary slots. */
1234 void
1235 init_temp_slots (void)
1237 /* We have not allocated any temporaries yet. */
1238 avail_temp_slots = 0;
1239 vec_alloc (used_temp_slots, 0);
1240 temp_slot_level = 0;
1241 n_temp_slots_in_use = 0;
1243 /* Set up the table to map addresses to temp slots. */
1244 if (! temp_slot_address_table)
1245 temp_slot_address_table = hash_table<temp_address_hasher>::create_ggc (32);
1246 else
1247 temp_slot_address_table->empty ();
1250 /* Functions and data structures to keep track of the values hard regs
1251 had at the start of the function. */
1253 /* Private type used by get_hard_reg_initial_reg, get_hard_reg_initial_val,
1254 and has_hard_reg_initial_val.. */
1255 struct GTY(()) initial_value_pair {
1256 rtx hard_reg;
1257 rtx pseudo;
1259 /* ??? This could be a VEC but there is currently no way to define an
1260 opaque VEC type. This could be worked around by defining struct
1261 initial_value_pair in function.h. */
1262 struct GTY(()) initial_value_struct {
1263 int num_entries;
1264 int max_entries;
1265 initial_value_pair * GTY ((length ("%h.num_entries"))) entries;
1268 /* If a pseudo represents an initial hard reg (or expression), return
1269 it, else return NULL_RTX. */
1272 get_hard_reg_initial_reg (rtx reg)
1274 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1275 int i;
1277 if (ivs == 0)
1278 return NULL_RTX;
1280 for (i = 0; i < ivs->num_entries; i++)
1281 if (rtx_equal_p (ivs->entries[i].pseudo, reg))
1282 return ivs->entries[i].hard_reg;
1284 return NULL_RTX;
1287 /* Make sure that there's a pseudo register of mode MODE that stores the
1288 initial value of hard register REGNO. Return an rtx for such a pseudo. */
1291 get_hard_reg_initial_val (machine_mode mode, unsigned int regno)
1293 struct initial_value_struct *ivs;
1294 rtx rv;
1296 rv = has_hard_reg_initial_val (mode, regno);
1297 if (rv)
1298 return rv;
1300 ivs = crtl->hard_reg_initial_vals;
1301 if (ivs == 0)
1303 ivs = ggc_alloc<initial_value_struct> ();
1304 ivs->num_entries = 0;
1305 ivs->max_entries = 5;
1306 ivs->entries = ggc_vec_alloc<initial_value_pair> (5);
1307 crtl->hard_reg_initial_vals = ivs;
1310 if (ivs->num_entries >= ivs->max_entries)
1312 ivs->max_entries += 5;
1313 ivs->entries = GGC_RESIZEVEC (initial_value_pair, ivs->entries,
1314 ivs->max_entries);
1317 ivs->entries[ivs->num_entries].hard_reg = gen_rtx_REG (mode, regno);
1318 ivs->entries[ivs->num_entries].pseudo = gen_reg_rtx (mode);
1320 return ivs->entries[ivs->num_entries++].pseudo;
1323 /* See if get_hard_reg_initial_val has been used to create a pseudo
1324 for the initial value of hard register REGNO in mode MODE. Return
1325 the associated pseudo if so, otherwise return NULL. */
1328 has_hard_reg_initial_val (machine_mode mode, unsigned int regno)
1330 struct initial_value_struct *ivs;
1331 int i;
1333 ivs = crtl->hard_reg_initial_vals;
1334 if (ivs != 0)
1335 for (i = 0; i < ivs->num_entries; i++)
1336 if (GET_MODE (ivs->entries[i].hard_reg) == mode
1337 && REGNO (ivs->entries[i].hard_reg) == regno)
1338 return ivs->entries[i].pseudo;
1340 return NULL_RTX;
1343 unsigned int
1344 emit_initial_value_sets (void)
1346 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1347 int i;
1348 rtx_insn *seq;
1350 if (ivs == 0)
1351 return 0;
1353 start_sequence ();
1354 for (i = 0; i < ivs->num_entries; i++)
1355 emit_move_insn (ivs->entries[i].pseudo, ivs->entries[i].hard_reg);
1356 seq = get_insns ();
1357 end_sequence ();
1359 emit_insn_at_entry (seq);
1360 return 0;
1363 /* Return the hardreg-pseudoreg initial values pair entry I and
1364 TRUE if I is a valid entry, or FALSE if I is not a valid entry. */
1365 bool
1366 initial_value_entry (int i, rtx *hreg, rtx *preg)
1368 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1369 if (!ivs || i >= ivs->num_entries)
1370 return false;
1372 *hreg = ivs->entries[i].hard_reg;
1373 *preg = ivs->entries[i].pseudo;
1374 return true;
1377 /* These routines are responsible for converting virtual register references
1378 to the actual hard register references once RTL generation is complete.
1380 The following four variables are used for communication between the
1381 routines. They contain the offsets of the virtual registers from their
1382 respective hard registers. */
1384 static poly_int64 in_arg_offset;
1385 static poly_int64 var_offset;
1386 static poly_int64 dynamic_offset;
1387 static poly_int64 out_arg_offset;
1388 static poly_int64 cfa_offset;
1390 /* In most machines, the stack pointer register is equivalent to the bottom
1391 of the stack. */
1393 #ifndef STACK_POINTER_OFFSET
1394 #define STACK_POINTER_OFFSET 0
1395 #endif
1397 #if defined (REG_PARM_STACK_SPACE) && !defined (INCOMING_REG_PARM_STACK_SPACE)
1398 #define INCOMING_REG_PARM_STACK_SPACE REG_PARM_STACK_SPACE
1399 #endif
1401 /* If not defined, pick an appropriate default for the offset of dynamically
1402 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1403 INCOMING_REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1405 #ifndef STACK_DYNAMIC_OFFSET
1407 /* The bottom of the stack points to the actual arguments. If
1408 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1409 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1410 stack space for register parameters is not pushed by the caller, but
1411 rather part of the fixed stack areas and hence not included in
1412 `crtl->outgoing_args_size'. Nevertheless, we must allow
1413 for it when allocating stack dynamic objects. */
1415 #ifdef INCOMING_REG_PARM_STACK_SPACE
1416 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1417 ((ACCUMULATE_OUTGOING_ARGS \
1418 ? (crtl->outgoing_args_size \
1419 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1420 : INCOMING_REG_PARM_STACK_SPACE (FNDECL))) \
1421 : 0) + (STACK_POINTER_OFFSET))
1422 #else
1423 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1424 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : poly_int64 (0)) \
1425 + (STACK_POINTER_OFFSET))
1426 #endif
1427 #endif
1430 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1431 is a virtual register, return the equivalent hard register and set the
1432 offset indirectly through the pointer. Otherwise, return 0. */
1434 static rtx
1435 instantiate_new_reg (rtx x, poly_int64_pod *poffset)
1437 rtx new_rtx;
1438 poly_int64 offset;
1440 if (x == virtual_incoming_args_rtx)
1442 if (stack_realign_drap)
1444 /* Replace virtual_incoming_args_rtx with internal arg
1445 pointer if DRAP is used to realign stack. */
1446 new_rtx = crtl->args.internal_arg_pointer;
1447 offset = 0;
1449 else
1450 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1452 else if (x == virtual_stack_vars_rtx)
1453 new_rtx = frame_pointer_rtx, offset = var_offset;
1454 else if (x == virtual_stack_dynamic_rtx)
1455 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1456 else if (x == virtual_outgoing_args_rtx)
1457 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1458 else if (x == virtual_cfa_rtx)
1460 #ifdef FRAME_POINTER_CFA_OFFSET
1461 new_rtx = frame_pointer_rtx;
1462 #else
1463 new_rtx = arg_pointer_rtx;
1464 #endif
1465 offset = cfa_offset;
1467 else if (x == virtual_preferred_stack_boundary_rtx)
1469 new_rtx = GEN_INT (crtl->preferred_stack_boundary / BITS_PER_UNIT);
1470 offset = 0;
1472 else
1473 return NULL_RTX;
1475 *poffset = offset;
1476 return new_rtx;
1479 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1480 registers present inside of *LOC. The expression is simplified,
1481 as much as possible, but is not to be considered "valid" in any sense
1482 implied by the target. Return true if any change is made. */
1484 static bool
1485 instantiate_virtual_regs_in_rtx (rtx *loc)
1487 if (!*loc)
1488 return false;
1489 bool changed = false;
1490 subrtx_ptr_iterator::array_type array;
1491 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
1493 rtx *loc = *iter;
1494 if (rtx x = *loc)
1496 rtx new_rtx;
1497 poly_int64 offset;
1498 switch (GET_CODE (x))
1500 case REG:
1501 new_rtx = instantiate_new_reg (x, &offset);
1502 if (new_rtx)
1504 *loc = plus_constant (GET_MODE (x), new_rtx, offset);
1505 changed = true;
1507 iter.skip_subrtxes ();
1508 break;
1510 case PLUS:
1511 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1512 if (new_rtx)
1514 XEXP (x, 0) = new_rtx;
1515 *loc = plus_constant (GET_MODE (x), x, offset, true);
1516 changed = true;
1517 iter.skip_subrtxes ();
1518 break;
1521 /* FIXME -- from old code */
1522 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1523 we can commute the PLUS and SUBREG because pointers into the
1524 frame are well-behaved. */
1525 break;
1527 default:
1528 break;
1532 return changed;
1535 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1536 matches the predicate for insn CODE operand OPERAND. */
1538 static int
1539 safe_insn_predicate (int code, int operand, rtx x)
1541 return code < 0 || insn_operand_matches ((enum insn_code) code, operand, x);
1544 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1545 registers present inside of insn. The result will be a valid insn. */
1547 static void
1548 instantiate_virtual_regs_in_insn (rtx_insn *insn)
1550 poly_int64 offset;
1551 int insn_code, i;
1552 bool any_change = false;
1553 rtx set, new_rtx, x;
1554 rtx_insn *seq;
1556 /* There are some special cases to be handled first. */
1557 set = single_set (insn);
1558 if (set)
1560 /* We're allowed to assign to a virtual register. This is interpreted
1561 to mean that the underlying register gets assigned the inverse
1562 transformation. This is used, for example, in the handling of
1563 non-local gotos. */
1564 new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1565 if (new_rtx)
1567 start_sequence ();
1569 instantiate_virtual_regs_in_rtx (&SET_SRC (set));
1570 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
1571 gen_int_mode (-offset, GET_MODE (new_rtx)));
1572 x = force_operand (x, new_rtx);
1573 if (x != new_rtx)
1574 emit_move_insn (new_rtx, x);
1576 seq = get_insns ();
1577 end_sequence ();
1579 emit_insn_before (seq, insn);
1580 delete_insn (insn);
1581 return;
1584 /* Handle a straight copy from a virtual register by generating a
1585 new add insn. The difference between this and falling through
1586 to the generic case is avoiding a new pseudo and eliminating a
1587 move insn in the initial rtl stream. */
1588 new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1589 if (new_rtx
1590 && maybe_ne (offset, 0)
1591 && REG_P (SET_DEST (set))
1592 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1594 start_sequence ();
1596 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS, new_rtx,
1597 gen_int_mode (offset,
1598 GET_MODE (SET_DEST (set))),
1599 SET_DEST (set), 1, OPTAB_LIB_WIDEN);
1600 if (x != SET_DEST (set))
1601 emit_move_insn (SET_DEST (set), x);
1603 seq = get_insns ();
1604 end_sequence ();
1606 emit_insn_before (seq, insn);
1607 delete_insn (insn);
1608 return;
1611 extract_insn (insn);
1612 insn_code = INSN_CODE (insn);
1614 /* Handle a plus involving a virtual register by determining if the
1615 operands remain valid if they're modified in place. */
1616 poly_int64 delta;
1617 if (GET_CODE (SET_SRC (set)) == PLUS
1618 && recog_data.n_operands >= 3
1619 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1620 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1621 && poly_int_rtx_p (recog_data.operand[2], &delta)
1622 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
1624 offset += delta;
1626 /* If the sum is zero, then replace with a plain move. */
1627 if (known_eq (offset, 0)
1628 && REG_P (SET_DEST (set))
1629 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1631 start_sequence ();
1632 emit_move_insn (SET_DEST (set), new_rtx);
1633 seq = get_insns ();
1634 end_sequence ();
1636 emit_insn_before (seq, insn);
1637 delete_insn (insn);
1638 return;
1641 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1643 /* Using validate_change and apply_change_group here leaves
1644 recog_data in an invalid state. Since we know exactly what
1645 we want to check, do those two by hand. */
1646 if (safe_insn_predicate (insn_code, 1, new_rtx)
1647 && safe_insn_predicate (insn_code, 2, x))
1649 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1650 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1651 any_change = true;
1653 /* Fall through into the regular operand fixup loop in
1654 order to take care of operands other than 1 and 2. */
1658 else
1660 extract_insn (insn);
1661 insn_code = INSN_CODE (insn);
1664 /* In the general case, we expect virtual registers to appear only in
1665 operands, and then only as either bare registers or inside memories. */
1666 for (i = 0; i < recog_data.n_operands; ++i)
1668 x = recog_data.operand[i];
1669 switch (GET_CODE (x))
1671 case MEM:
1673 rtx addr = XEXP (x, 0);
1675 if (!instantiate_virtual_regs_in_rtx (&addr))
1676 continue;
1678 start_sequence ();
1679 x = replace_equiv_address (x, addr, true);
1680 /* It may happen that the address with the virtual reg
1681 was valid (e.g. based on the virtual stack reg, which might
1682 be acceptable to the predicates with all offsets), whereas
1683 the address now isn't anymore, for instance when the address
1684 is still offsetted, but the base reg isn't virtual-stack-reg
1685 anymore. Below we would do a force_reg on the whole operand,
1686 but this insn might actually only accept memory. Hence,
1687 before doing that last resort, try to reload the address into
1688 a register, so this operand stays a MEM. */
1689 if (!safe_insn_predicate (insn_code, i, x))
1691 addr = force_reg (GET_MODE (addr), addr);
1692 x = replace_equiv_address (x, addr, true);
1694 seq = get_insns ();
1695 end_sequence ();
1696 if (seq)
1697 emit_insn_before (seq, insn);
1699 break;
1701 case REG:
1702 new_rtx = instantiate_new_reg (x, &offset);
1703 if (new_rtx == NULL)
1704 continue;
1705 if (known_eq (offset, 0))
1706 x = new_rtx;
1707 else
1709 start_sequence ();
1711 /* Careful, special mode predicates may have stuff in
1712 insn_data[insn_code].operand[i].mode that isn't useful
1713 to us for computing a new value. */
1714 /* ??? Recognize address_operand and/or "p" constraints
1715 to see if (plus new offset) is a valid before we put
1716 this through expand_simple_binop. */
1717 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1718 gen_int_mode (offset, GET_MODE (x)),
1719 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1720 seq = get_insns ();
1721 end_sequence ();
1722 emit_insn_before (seq, insn);
1724 break;
1726 case SUBREG:
1727 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1728 if (new_rtx == NULL)
1729 continue;
1730 if (maybe_ne (offset, 0))
1732 start_sequence ();
1733 new_rtx = expand_simple_binop
1734 (GET_MODE (new_rtx), PLUS, new_rtx,
1735 gen_int_mode (offset, GET_MODE (new_rtx)),
1736 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1737 seq = get_insns ();
1738 end_sequence ();
1739 emit_insn_before (seq, insn);
1741 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1742 GET_MODE (new_rtx), SUBREG_BYTE (x));
1743 gcc_assert (x);
1744 break;
1746 default:
1747 continue;
1750 /* At this point, X contains the new value for the operand.
1751 Validate the new value vs the insn predicate. Note that
1752 asm insns will have insn_code -1 here. */
1753 if (!safe_insn_predicate (insn_code, i, x))
1755 start_sequence ();
1756 if (REG_P (x))
1758 gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER);
1759 x = copy_to_reg (x);
1761 else
1762 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1763 seq = get_insns ();
1764 end_sequence ();
1765 if (seq)
1766 emit_insn_before (seq, insn);
1769 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1770 any_change = true;
1773 if (any_change)
1775 /* Propagate operand changes into the duplicates. */
1776 for (i = 0; i < recog_data.n_dups; ++i)
1777 *recog_data.dup_loc[i]
1778 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1780 /* Force re-recognition of the instruction for validation. */
1781 INSN_CODE (insn) = -1;
1784 if (asm_noperands (PATTERN (insn)) >= 0)
1786 if (!check_asm_operands (PATTERN (insn)))
1788 error_for_asm (insn, "impossible constraint in %<asm%>");
1789 /* For asm goto, instead of fixing up all the edges
1790 just clear the template and clear input and output operands
1791 and strip away clobbers. */
1792 if (JUMP_P (insn))
1794 rtx asm_op = extract_asm_operands (PATTERN (insn));
1795 PATTERN (insn) = asm_op;
1796 PUT_MODE (asm_op, VOIDmode);
1797 ASM_OPERANDS_TEMPLATE (asm_op) = ggc_strdup ("");
1798 ASM_OPERANDS_OUTPUT_CONSTRAINT (asm_op) = "";
1799 ASM_OPERANDS_OUTPUT_IDX (asm_op) = 0;
1800 ASM_OPERANDS_INPUT_VEC (asm_op) = rtvec_alloc (0);
1801 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (asm_op) = rtvec_alloc (0);
1803 else
1804 delete_insn (insn);
1807 else
1809 if (recog_memoized (insn) < 0)
1810 fatal_insn_not_found (insn);
1814 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1815 do any instantiation required. */
1817 void
1818 instantiate_decl_rtl (rtx x)
1820 rtx addr;
1822 if (x == 0)
1823 return;
1825 /* If this is a CONCAT, recurse for the pieces. */
1826 if (GET_CODE (x) == CONCAT)
1828 instantiate_decl_rtl (XEXP (x, 0));
1829 instantiate_decl_rtl (XEXP (x, 1));
1830 return;
1833 /* If this is not a MEM, no need to do anything. Similarly if the
1834 address is a constant or a register that is not a virtual register. */
1835 if (!MEM_P (x))
1836 return;
1838 addr = XEXP (x, 0);
1839 if (CONSTANT_P (addr)
1840 || (REG_P (addr)
1841 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1842 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1843 return;
1845 instantiate_virtual_regs_in_rtx (&XEXP (x, 0));
1848 /* Helper for instantiate_decls called via walk_tree: Process all decls
1849 in the given DECL_VALUE_EXPR. */
1851 static tree
1852 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1854 tree t = *tp;
1855 if (! EXPR_P (t))
1857 *walk_subtrees = 0;
1858 if (DECL_P (t))
1860 if (DECL_RTL_SET_P (t))
1861 instantiate_decl_rtl (DECL_RTL (t));
1862 if (TREE_CODE (t) == PARM_DECL && DECL_NAMELESS (t)
1863 && DECL_INCOMING_RTL (t))
1864 instantiate_decl_rtl (DECL_INCOMING_RTL (t));
1865 if ((VAR_P (t) || TREE_CODE (t) == RESULT_DECL)
1866 && DECL_HAS_VALUE_EXPR_P (t))
1868 tree v = DECL_VALUE_EXPR (t);
1869 walk_tree (&v, instantiate_expr, NULL, NULL);
1873 return NULL;
1876 /* Subroutine of instantiate_decls: Process all decls in the given
1877 BLOCK node and all its subblocks. */
1879 static void
1880 instantiate_decls_1 (tree let)
1882 tree t;
1884 for (t = BLOCK_VARS (let); t; t = DECL_CHAIN (t))
1886 if (DECL_RTL_SET_P (t))
1887 instantiate_decl_rtl (DECL_RTL (t));
1888 if (VAR_P (t) && DECL_HAS_VALUE_EXPR_P (t))
1890 tree v = DECL_VALUE_EXPR (t);
1891 walk_tree (&v, instantiate_expr, NULL, NULL);
1895 /* Process all subblocks. */
1896 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1897 instantiate_decls_1 (t);
1900 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1901 all virtual registers in their DECL_RTL's. */
1903 static void
1904 instantiate_decls (tree fndecl)
1906 tree decl;
1907 unsigned ix;
1909 /* Process all parameters of the function. */
1910 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = DECL_CHAIN (decl))
1912 instantiate_decl_rtl (DECL_RTL (decl));
1913 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1914 if (DECL_HAS_VALUE_EXPR_P (decl))
1916 tree v = DECL_VALUE_EXPR (decl);
1917 walk_tree (&v, instantiate_expr, NULL, NULL);
1921 if ((decl = DECL_RESULT (fndecl))
1922 && TREE_CODE (decl) == RESULT_DECL)
1924 if (DECL_RTL_SET_P (decl))
1925 instantiate_decl_rtl (DECL_RTL (decl));
1926 if (DECL_HAS_VALUE_EXPR_P (decl))
1928 tree v = DECL_VALUE_EXPR (decl);
1929 walk_tree (&v, instantiate_expr, NULL, NULL);
1933 /* Process the saved static chain if it exists. */
1934 decl = DECL_STRUCT_FUNCTION (fndecl)->static_chain_decl;
1935 if (decl && DECL_HAS_VALUE_EXPR_P (decl))
1936 instantiate_decl_rtl (DECL_RTL (DECL_VALUE_EXPR (decl)));
1938 /* Now process all variables defined in the function or its subblocks. */
1939 if (DECL_INITIAL (fndecl))
1940 instantiate_decls_1 (DECL_INITIAL (fndecl));
1942 FOR_EACH_LOCAL_DECL (cfun, ix, decl)
1943 if (DECL_RTL_SET_P (decl))
1944 instantiate_decl_rtl (DECL_RTL (decl));
1945 vec_free (cfun->local_decls);
1948 /* Pass through the INSNS of function FNDECL and convert virtual register
1949 references to hard register references. */
1951 static unsigned int
1952 instantiate_virtual_regs (void)
1954 rtx_insn *insn;
1956 /* Compute the offsets to use for this function. */
1957 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1958 var_offset = targetm.starting_frame_offset ();
1959 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1960 out_arg_offset = STACK_POINTER_OFFSET;
1961 #ifdef FRAME_POINTER_CFA_OFFSET
1962 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1963 #else
1964 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1965 #endif
1967 /* Initialize recognition, indicating that volatile is OK. */
1968 init_recog ();
1970 /* Scan through all the insns, instantiating every virtual register still
1971 present. */
1972 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1973 if (INSN_P (insn))
1975 /* These patterns in the instruction stream can never be recognized.
1976 Fortunately, they shouldn't contain virtual registers either. */
1977 if (GET_CODE (PATTERN (insn)) == USE
1978 || GET_CODE (PATTERN (insn)) == CLOBBER
1979 || GET_CODE (PATTERN (insn)) == ASM_INPUT
1980 || DEBUG_MARKER_INSN_P (insn))
1981 continue;
1982 else if (DEBUG_BIND_INSN_P (insn))
1983 instantiate_virtual_regs_in_rtx (INSN_VAR_LOCATION_PTR (insn));
1984 else
1985 instantiate_virtual_regs_in_insn (insn);
1987 if (insn->deleted ())
1988 continue;
1990 instantiate_virtual_regs_in_rtx (&REG_NOTES (insn));
1992 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1993 if (CALL_P (insn))
1994 instantiate_virtual_regs_in_rtx (&CALL_INSN_FUNCTION_USAGE (insn));
1997 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1998 instantiate_decls (current_function_decl);
2000 targetm.instantiate_decls ();
2002 /* Indicate that, from now on, assign_stack_local should use
2003 frame_pointer_rtx. */
2004 virtuals_instantiated = 1;
2006 return 0;
2009 namespace {
2011 const pass_data pass_data_instantiate_virtual_regs =
2013 RTL_PASS, /* type */
2014 "vregs", /* name */
2015 OPTGROUP_NONE, /* optinfo_flags */
2016 TV_NONE, /* tv_id */
2017 0, /* properties_required */
2018 0, /* properties_provided */
2019 0, /* properties_destroyed */
2020 0, /* todo_flags_start */
2021 0, /* todo_flags_finish */
2024 class pass_instantiate_virtual_regs : public rtl_opt_pass
2026 public:
2027 pass_instantiate_virtual_regs (gcc::context *ctxt)
2028 : rtl_opt_pass (pass_data_instantiate_virtual_regs, ctxt)
2031 /* opt_pass methods: */
2032 virtual unsigned int execute (function *)
2034 return instantiate_virtual_regs ();
2037 }; // class pass_instantiate_virtual_regs
2039 } // anon namespace
2041 rtl_opt_pass *
2042 make_pass_instantiate_virtual_regs (gcc::context *ctxt)
2044 return new pass_instantiate_virtual_regs (ctxt);
2048 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
2049 This means a type for which function calls must pass an address to the
2050 function or get an address back from the function.
2051 EXP may be a type node or an expression (whose type is tested). */
2054 aggregate_value_p (const_tree exp, const_tree fntype)
2056 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
2057 int i, regno, nregs;
2058 rtx reg;
2060 if (fntype)
2061 switch (TREE_CODE (fntype))
2063 case CALL_EXPR:
2065 tree fndecl = get_callee_fndecl (fntype);
2066 if (fndecl)
2067 fntype = TREE_TYPE (fndecl);
2068 else if (CALL_EXPR_FN (fntype))
2069 fntype = TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype)));
2070 else
2071 /* For internal functions, assume nothing needs to be
2072 returned in memory. */
2073 return 0;
2075 break;
2076 case FUNCTION_DECL:
2077 fntype = TREE_TYPE (fntype);
2078 break;
2079 case FUNCTION_TYPE:
2080 case METHOD_TYPE:
2081 break;
2082 case IDENTIFIER_NODE:
2083 fntype = NULL_TREE;
2084 break;
2085 default:
2086 /* We don't expect other tree types here. */
2087 gcc_unreachable ();
2090 if (VOID_TYPE_P (type))
2091 return 0;
2093 /* If a record should be passed the same as its first (and only) member
2094 don't pass it as an aggregate. */
2095 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2096 return aggregate_value_p (first_field (type), fntype);
2098 /* If the front end has decided that this needs to be passed by
2099 reference, do so. */
2100 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
2101 && DECL_BY_REFERENCE (exp))
2102 return 1;
2104 /* Function types that are TREE_ADDRESSABLE force return in memory. */
2105 if (fntype && TREE_ADDRESSABLE (fntype))
2106 return 1;
2108 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
2109 and thus can't be returned in registers. */
2110 if (TREE_ADDRESSABLE (type))
2111 return 1;
2113 if (TYPE_EMPTY_P (type))
2114 return 0;
2116 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
2117 return 1;
2119 if (targetm.calls.return_in_memory (type, fntype))
2120 return 1;
2122 /* Make sure we have suitable call-clobbered regs to return
2123 the value in; if not, we must return it in memory. */
2124 reg = hard_function_value (type, 0, fntype, 0);
2126 /* If we have something other than a REG (e.g. a PARALLEL), then assume
2127 it is OK. */
2128 if (!REG_P (reg))
2129 return 0;
2131 /* Use the default ABI if the type of the function isn't known.
2132 The scheme for handling interoperability between different ABIs
2133 requires us to be able to tell when we're calling a function with
2134 a nondefault ABI. */
2135 const predefined_function_abi &abi = (fntype
2136 ? fntype_abi (fntype)
2137 : default_function_abi);
2138 regno = REGNO (reg);
2139 nregs = hard_regno_nregs (regno, TYPE_MODE (type));
2140 for (i = 0; i < nregs; i++)
2141 if (!fixed_regs[regno + i] && !abi.clobbers_full_reg_p (regno + i))
2142 return 1;
2144 return 0;
2147 /* Return true if we should assign DECL a pseudo register; false if it
2148 should live on the local stack. */
2150 bool
2151 use_register_for_decl (const_tree decl)
2153 if (TREE_CODE (decl) == SSA_NAME)
2155 /* We often try to use the SSA_NAME, instead of its underlying
2156 decl, to get type information and guide decisions, to avoid
2157 differences of behavior between anonymous and named
2158 variables, but in this one case we have to go for the actual
2159 variable if there is one. The main reason is that, at least
2160 at -O0, we want to place user variables on the stack, but we
2161 don't mind using pseudos for anonymous or ignored temps.
2162 Should we take the SSA_NAME, we'd conclude all SSA_NAMEs
2163 should go in pseudos, whereas their corresponding variables
2164 might have to go on the stack. So, disregarding the decl
2165 here would negatively impact debug info at -O0, enable
2166 coalescing between SSA_NAMEs that ought to get different
2167 stack/pseudo assignments, and get the incoming argument
2168 processing thoroughly confused by PARM_DECLs expected to live
2169 in stack slots but assigned to pseudos. */
2170 if (!SSA_NAME_VAR (decl))
2171 return TYPE_MODE (TREE_TYPE (decl)) != BLKmode
2172 && !(flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)));
2174 decl = SSA_NAME_VAR (decl);
2177 /* Honor volatile. */
2178 if (TREE_SIDE_EFFECTS (decl))
2179 return false;
2181 /* Honor addressability. */
2182 if (TREE_ADDRESSABLE (decl))
2183 return false;
2185 /* RESULT_DECLs are a bit special in that they're assigned without
2186 regard to use_register_for_decl, but we generally only store in
2187 them. If we coalesce their SSA NAMEs, we'd better return a
2188 result that matches the assignment in expand_function_start. */
2189 if (TREE_CODE (decl) == RESULT_DECL)
2191 /* If it's not an aggregate, we're going to use a REG or a
2192 PARALLEL containing a REG. */
2193 if (!aggregate_value_p (decl, current_function_decl))
2194 return true;
2196 /* If expand_function_start determines the return value, we'll
2197 use MEM if it's not by reference. */
2198 if (cfun->returns_pcc_struct
2199 || (targetm.calls.struct_value_rtx
2200 (TREE_TYPE (current_function_decl), 1)))
2201 return DECL_BY_REFERENCE (decl);
2203 /* Otherwise, we're taking an extra all.function_result_decl
2204 argument. It's set up in assign_parms_augmented_arg_list,
2205 under the (negated) conditions above, and then it's used to
2206 set up the RESULT_DECL rtl in assign_params, after looping
2207 over all parameters. Now, if the RESULT_DECL is not by
2208 reference, we'll use a MEM either way. */
2209 if (!DECL_BY_REFERENCE (decl))
2210 return false;
2212 /* Otherwise, if RESULT_DECL is DECL_BY_REFERENCE, it will take
2213 the function_result_decl's assignment. Since it's a pointer,
2214 we can short-circuit a number of the tests below, and we must
2215 duplicate them because we don't have the function_result_decl
2216 to test. */
2217 if (!targetm.calls.allocate_stack_slots_for_args ())
2218 return true;
2219 /* We don't set DECL_IGNORED_P for the function_result_decl. */
2220 if (optimize)
2221 return true;
2222 if (cfun->tail_call_marked)
2223 return true;
2224 /* We don't set DECL_REGISTER for the function_result_decl. */
2225 return false;
2228 /* Only register-like things go in registers. */
2229 if (DECL_MODE (decl) == BLKmode)
2230 return false;
2232 /* If -ffloat-store specified, don't put explicit float variables
2233 into registers. */
2234 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
2235 propagates values across these stores, and it probably shouldn't. */
2236 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
2237 return false;
2239 if (!targetm.calls.allocate_stack_slots_for_args ())
2240 return true;
2242 /* If we're not interested in tracking debugging information for
2243 this decl, then we can certainly put it in a register. */
2244 if (DECL_IGNORED_P (decl))
2245 return true;
2247 if (optimize)
2248 return true;
2250 /* Thunks force a tail call even at -O0 so we need to avoid creating a
2251 dangling reference in case the parameter is passed by reference. */
2252 if (TREE_CODE (decl) == PARM_DECL && cfun->tail_call_marked)
2253 return true;
2255 if (!DECL_REGISTER (decl))
2256 return false;
2258 /* When not optimizing, disregard register keyword for types that
2259 could have methods, otherwise the methods won't be callable from
2260 the debugger. */
2261 if (RECORD_OR_UNION_TYPE_P (TREE_TYPE (decl)))
2262 return false;
2264 return true;
2267 /* Structures to communicate between the subroutines of assign_parms.
2268 The first holds data persistent across all parameters, the second
2269 is cleared out for each parameter. */
2271 struct assign_parm_data_all
2273 /* When INIT_CUMULATIVE_ARGS gets revamped, allocating CUMULATIVE_ARGS
2274 should become a job of the target or otherwise encapsulated. */
2275 CUMULATIVE_ARGS args_so_far_v;
2276 cumulative_args_t args_so_far;
2277 struct args_size stack_args_size;
2278 tree function_result_decl;
2279 tree orig_fnargs;
2280 rtx_insn *first_conversion_insn;
2281 rtx_insn *last_conversion_insn;
2282 HOST_WIDE_INT pretend_args_size;
2283 HOST_WIDE_INT extra_pretend_bytes;
2284 int reg_parm_stack_space;
2287 struct assign_parm_data_one
2289 tree nominal_type;
2290 function_arg_info arg;
2291 rtx entry_parm;
2292 rtx stack_parm;
2293 machine_mode nominal_mode;
2294 machine_mode passed_mode;
2295 struct locate_and_pad_arg_data locate;
2296 int partial;
2299 /* A subroutine of assign_parms. Initialize ALL. */
2301 static void
2302 assign_parms_initialize_all (struct assign_parm_data_all *all)
2304 tree fntype ATTRIBUTE_UNUSED;
2306 memset (all, 0, sizeof (*all));
2308 fntype = TREE_TYPE (current_function_decl);
2310 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2311 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far_v, fntype, NULL_RTX);
2312 #else
2313 INIT_CUMULATIVE_ARGS (all->args_so_far_v, fntype, NULL_RTX,
2314 current_function_decl, -1);
2315 #endif
2316 all->args_so_far = pack_cumulative_args (&all->args_so_far_v);
2318 #ifdef INCOMING_REG_PARM_STACK_SPACE
2319 all->reg_parm_stack_space
2320 = INCOMING_REG_PARM_STACK_SPACE (current_function_decl);
2321 #endif
2324 /* If ARGS contains entries with complex types, split the entry into two
2325 entries of the component type. Return a new list of substitutions are
2326 needed, else the old list. */
2328 static void
2329 split_complex_args (vec<tree> *args)
2331 unsigned i;
2332 tree p;
2334 FOR_EACH_VEC_ELT (*args, i, p)
2336 tree type = TREE_TYPE (p);
2337 if (TREE_CODE (type) == COMPLEX_TYPE
2338 && targetm.calls.split_complex_arg (type))
2340 tree decl;
2341 tree subtype = TREE_TYPE (type);
2342 bool addressable = TREE_ADDRESSABLE (p);
2344 /* Rewrite the PARM_DECL's type with its component. */
2345 p = copy_node (p);
2346 TREE_TYPE (p) = subtype;
2347 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2348 SET_DECL_MODE (p, VOIDmode);
2349 DECL_SIZE (p) = NULL;
2350 DECL_SIZE_UNIT (p) = NULL;
2351 /* If this arg must go in memory, put it in a pseudo here.
2352 We can't allow it to go in memory as per normal parms,
2353 because the usual place might not have the imag part
2354 adjacent to the real part. */
2355 DECL_ARTIFICIAL (p) = addressable;
2356 DECL_IGNORED_P (p) = addressable;
2357 TREE_ADDRESSABLE (p) = 0;
2358 layout_decl (p, 0);
2359 (*args)[i] = p;
2361 /* Build a second synthetic decl. */
2362 decl = build_decl (EXPR_LOCATION (p),
2363 PARM_DECL, NULL_TREE, subtype);
2364 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2365 DECL_ARTIFICIAL (decl) = addressable;
2366 DECL_IGNORED_P (decl) = addressable;
2367 layout_decl (decl, 0);
2368 args->safe_insert (++i, decl);
2373 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2374 the hidden struct return argument, and (abi willing) complex args.
2375 Return the new parameter list. */
2377 static vec<tree>
2378 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2380 tree fndecl = current_function_decl;
2381 tree fntype = TREE_TYPE (fndecl);
2382 vec<tree> fnargs = vNULL;
2383 tree arg;
2385 for (arg = DECL_ARGUMENTS (fndecl); arg; arg = DECL_CHAIN (arg))
2386 fnargs.safe_push (arg);
2388 all->orig_fnargs = DECL_ARGUMENTS (fndecl);
2390 /* If struct value address is treated as the first argument, make it so. */
2391 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2392 && ! cfun->returns_pcc_struct
2393 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2395 tree type = build_pointer_type (TREE_TYPE (fntype));
2396 tree decl;
2398 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2399 PARM_DECL, get_identifier (".result_ptr"), type);
2400 DECL_ARG_TYPE (decl) = type;
2401 DECL_ARTIFICIAL (decl) = 1;
2402 DECL_NAMELESS (decl) = 1;
2403 TREE_CONSTANT (decl) = 1;
2404 /* We don't set DECL_IGNORED_P or DECL_REGISTER here. If this
2405 changes, the end of the RESULT_DECL handling block in
2406 use_register_for_decl must be adjusted to match. */
2408 DECL_CHAIN (decl) = all->orig_fnargs;
2409 all->orig_fnargs = decl;
2410 fnargs.safe_insert (0, decl);
2412 all->function_result_decl = decl;
2415 /* If the target wants to split complex arguments into scalars, do so. */
2416 if (targetm.calls.split_complex_arg)
2417 split_complex_args (&fnargs);
2419 return fnargs;
2422 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2423 data for the parameter. Incorporate ABI specifics such as pass-by-
2424 reference and type promotion. */
2426 static void
2427 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2428 struct assign_parm_data_one *data)
2430 int unsignedp;
2432 #ifndef BROKEN_VALUE_INITIALIZATION
2433 *data = assign_parm_data_one ();
2434 #else
2435 /* Old versions of GCC used to miscompile the above by only initializing
2436 the members with explicit constructors and copying garbage
2437 to the other members. */
2438 assign_parm_data_one zero_data = {};
2439 *data = zero_data;
2440 #endif
2442 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2443 if (!cfun->stdarg)
2444 data->arg.named = 1; /* No variadic parms. */
2445 else if (DECL_CHAIN (parm))
2446 data->arg.named = 1; /* Not the last non-variadic parm. */
2447 else if (targetm.calls.strict_argument_naming (all->args_so_far))
2448 data->arg.named = 1; /* Only variadic ones are unnamed. */
2449 else
2450 data->arg.named = 0; /* Treat as variadic. */
2452 data->nominal_type = TREE_TYPE (parm);
2453 data->arg.type = DECL_ARG_TYPE (parm);
2455 /* Look out for errors propagating this far. Also, if the parameter's
2456 type is void then its value doesn't matter. */
2457 if (TREE_TYPE (parm) == error_mark_node
2458 /* This can happen after weird syntax errors
2459 or if an enum type is defined among the parms. */
2460 || TREE_CODE (parm) != PARM_DECL
2461 || data->arg.type == NULL
2462 || VOID_TYPE_P (data->nominal_type))
2464 data->nominal_type = data->arg.type = void_type_node;
2465 data->nominal_mode = data->passed_mode = data->arg.mode = VOIDmode;
2466 return;
2469 /* Find mode of arg as it is passed, and mode of arg as it should be
2470 during execution of this function. */
2471 data->passed_mode = data->arg.mode = TYPE_MODE (data->arg.type);
2472 data->nominal_mode = TYPE_MODE (data->nominal_type);
2474 /* If the parm is to be passed as a transparent union or record, use the
2475 type of the first field for the tests below. We have already verified
2476 that the modes are the same. */
2477 if (RECORD_OR_UNION_TYPE_P (data->arg.type)
2478 && TYPE_TRANSPARENT_AGGR (data->arg.type))
2479 data->arg.type = TREE_TYPE (first_field (data->arg.type));
2481 /* See if this arg was passed by invisible reference. */
2482 if (apply_pass_by_reference_rules (&all->args_so_far_v, data->arg))
2484 data->nominal_type = data->arg.type;
2485 data->passed_mode = data->nominal_mode = data->arg.mode;
2488 /* Find mode as it is passed by the ABI. */
2489 unsignedp = TYPE_UNSIGNED (data->arg.type);
2490 data->arg.mode
2491 = promote_function_mode (data->arg.type, data->arg.mode, &unsignedp,
2492 TREE_TYPE (current_function_decl), 0);
2495 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2497 static void
2498 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2499 struct assign_parm_data_one *data, bool no_rtl)
2501 int varargs_pretend_bytes = 0;
2503 function_arg_info last_named_arg = data->arg;
2504 last_named_arg.named = true;
2505 targetm.calls.setup_incoming_varargs (all->args_so_far, last_named_arg,
2506 &varargs_pretend_bytes, no_rtl);
2508 /* If the back-end has requested extra stack space, record how much is
2509 needed. Do not change pretend_args_size otherwise since it may be
2510 nonzero from an earlier partial argument. */
2511 if (varargs_pretend_bytes > 0)
2512 all->pretend_args_size = varargs_pretend_bytes;
2515 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2516 the incoming location of the current parameter. */
2518 static void
2519 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2520 struct assign_parm_data_one *data)
2522 HOST_WIDE_INT pretend_bytes = 0;
2523 rtx entry_parm;
2524 bool in_regs;
2526 if (data->arg.mode == VOIDmode)
2528 data->entry_parm = data->stack_parm = const0_rtx;
2529 return;
2532 targetm.calls.warn_parameter_passing_abi (all->args_so_far,
2533 data->arg.type);
2535 entry_parm = targetm.calls.function_incoming_arg (all->args_so_far,
2536 data->arg);
2537 if (entry_parm == 0)
2538 data->arg.mode = data->passed_mode;
2540 /* Determine parm's home in the stack, in case it arrives in the stack
2541 or we should pretend it did. Compute the stack position and rtx where
2542 the argument arrives and its size.
2544 There is one complexity here: If this was a parameter that would
2545 have been passed in registers, but wasn't only because it is
2546 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2547 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2548 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2549 as it was the previous time. */
2550 in_regs = (entry_parm != 0);
2551 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2552 in_regs = true;
2553 #endif
2554 if (!in_regs && !data->arg.named)
2556 if (targetm.calls.pretend_outgoing_varargs_named (all->args_so_far))
2558 rtx tem;
2559 function_arg_info named_arg = data->arg;
2560 named_arg.named = true;
2561 tem = targetm.calls.function_incoming_arg (all->args_so_far,
2562 named_arg);
2563 in_regs = tem != NULL;
2567 /* If this parameter was passed both in registers and in the stack, use
2568 the copy on the stack. */
2569 if (targetm.calls.must_pass_in_stack (data->arg))
2570 entry_parm = 0;
2572 if (entry_parm)
2574 int partial;
2576 partial = targetm.calls.arg_partial_bytes (all->args_so_far, data->arg);
2577 data->partial = partial;
2579 /* The caller might already have allocated stack space for the
2580 register parameters. */
2581 if (partial != 0 && all->reg_parm_stack_space == 0)
2583 /* Part of this argument is passed in registers and part
2584 is passed on the stack. Ask the prologue code to extend
2585 the stack part so that we can recreate the full value.
2587 PRETEND_BYTES is the size of the registers we need to store.
2588 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2589 stack space that the prologue should allocate.
2591 Internally, gcc assumes that the argument pointer is aligned
2592 to STACK_BOUNDARY bits. This is used both for alignment
2593 optimizations (see init_emit) and to locate arguments that are
2594 aligned to more than PARM_BOUNDARY bits. We must preserve this
2595 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2596 a stack boundary. */
2598 /* We assume at most one partial arg, and it must be the first
2599 argument on the stack. */
2600 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2602 pretend_bytes = partial;
2603 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2605 /* We want to align relative to the actual stack pointer, so
2606 don't include this in the stack size until later. */
2607 all->extra_pretend_bytes = all->pretend_args_size;
2611 locate_and_pad_parm (data->arg.mode, data->arg.type, in_regs,
2612 all->reg_parm_stack_space,
2613 entry_parm ? data->partial : 0, current_function_decl,
2614 &all->stack_args_size, &data->locate);
2616 /* Update parm_stack_boundary if this parameter is passed in the
2617 stack. */
2618 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2619 crtl->parm_stack_boundary = data->locate.boundary;
2621 /* Adjust offsets to include the pretend args. */
2622 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2623 data->locate.slot_offset.constant += pretend_bytes;
2624 data->locate.offset.constant += pretend_bytes;
2626 data->entry_parm = entry_parm;
2629 /* A subroutine of assign_parms. If there is actually space on the stack
2630 for this parm, count it in stack_args_size and return true. */
2632 static bool
2633 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2634 struct assign_parm_data_one *data)
2636 /* Trivially true if we've no incoming register. */
2637 if (data->entry_parm == NULL)
2639 /* Also true if we're partially in registers and partially not,
2640 since we've arranged to drop the entire argument on the stack. */
2641 else if (data->partial != 0)
2643 /* Also true if the target says that it's passed in both registers
2644 and on the stack. */
2645 else if (GET_CODE (data->entry_parm) == PARALLEL
2646 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2648 /* Also true if the target says that there's stack allocated for
2649 all register parameters. */
2650 else if (all->reg_parm_stack_space > 0)
2652 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2653 else
2654 return false;
2656 all->stack_args_size.constant += data->locate.size.constant;
2657 if (data->locate.size.var)
2658 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2660 return true;
2663 /* A subroutine of assign_parms. Given that this parameter is allocated
2664 stack space by the ABI, find it. */
2666 static void
2667 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2669 rtx offset_rtx, stack_parm;
2670 unsigned int align, boundary;
2672 /* If we're passing this arg using a reg, make its stack home the
2673 aligned stack slot. */
2674 if (data->entry_parm)
2675 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2676 else
2677 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2679 stack_parm = crtl->args.internal_arg_pointer;
2680 if (offset_rtx != const0_rtx)
2681 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2682 stack_parm = gen_rtx_MEM (data->arg.mode, stack_parm);
2684 if (!data->arg.pass_by_reference)
2686 set_mem_attributes (stack_parm, parm, 1);
2687 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2688 while promoted mode's size is needed. */
2689 if (data->arg.mode != BLKmode
2690 && data->arg.mode != DECL_MODE (parm))
2692 set_mem_size (stack_parm, GET_MODE_SIZE (data->arg.mode));
2693 if (MEM_EXPR (stack_parm) && MEM_OFFSET_KNOWN_P (stack_parm))
2695 poly_int64 offset = subreg_lowpart_offset (DECL_MODE (parm),
2696 data->arg.mode);
2697 if (maybe_ne (offset, 0))
2698 set_mem_offset (stack_parm, MEM_OFFSET (stack_parm) - offset);
2703 boundary = data->locate.boundary;
2704 align = BITS_PER_UNIT;
2706 /* If we're padding upward, we know that the alignment of the slot
2707 is TARGET_FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2708 intentionally forcing upward padding. Otherwise we have to come
2709 up with a guess at the alignment based on OFFSET_RTX. */
2710 poly_int64 offset;
2711 if (data->locate.where_pad == PAD_NONE || data->entry_parm)
2712 align = boundary;
2713 else if (data->locate.where_pad == PAD_UPWARD)
2715 align = boundary;
2716 /* If the argument offset is actually more aligned than the nominal
2717 stack slot boundary, take advantage of that excess alignment.
2718 Don't make any assumptions if STACK_POINTER_OFFSET is in use. */
2719 if (poly_int_rtx_p (offset_rtx, &offset)
2720 && known_eq (STACK_POINTER_OFFSET, 0))
2722 unsigned int offset_align = known_alignment (offset) * BITS_PER_UNIT;
2723 if (offset_align == 0 || offset_align > STACK_BOUNDARY)
2724 offset_align = STACK_BOUNDARY;
2725 align = MAX (align, offset_align);
2728 else if (poly_int_rtx_p (offset_rtx, &offset))
2730 align = least_bit_hwi (boundary);
2731 unsigned int offset_align = known_alignment (offset) * BITS_PER_UNIT;
2732 if (offset_align != 0)
2733 align = MIN (align, offset_align);
2735 set_mem_align (stack_parm, align);
2737 if (data->entry_parm)
2738 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2740 data->stack_parm = stack_parm;
2743 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2744 always valid and contiguous. */
2746 static void
2747 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2749 rtx entry_parm = data->entry_parm;
2750 rtx stack_parm = data->stack_parm;
2752 /* If this parm was passed part in regs and part in memory, pretend it
2753 arrived entirely in memory by pushing the register-part onto the stack.
2754 In the special case of a DImode or DFmode that is split, we could put
2755 it together in a pseudoreg directly, but for now that's not worth
2756 bothering with. */
2757 if (data->partial != 0)
2759 /* Handle calls that pass values in multiple non-contiguous
2760 locations. The Irix 6 ABI has examples of this. */
2761 if (GET_CODE (entry_parm) == PARALLEL)
2762 emit_group_store (validize_mem (copy_rtx (stack_parm)), entry_parm,
2763 data->arg.type, int_size_in_bytes (data->arg.type));
2764 else
2766 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2767 move_block_from_reg (REGNO (entry_parm),
2768 validize_mem (copy_rtx (stack_parm)),
2769 data->partial / UNITS_PER_WORD);
2772 entry_parm = stack_parm;
2775 /* If we didn't decide this parm came in a register, by default it came
2776 on the stack. */
2777 else if (entry_parm == NULL)
2778 entry_parm = stack_parm;
2780 /* When an argument is passed in multiple locations, we can't make use
2781 of this information, but we can save some copying if the whole argument
2782 is passed in a single register. */
2783 else if (GET_CODE (entry_parm) == PARALLEL
2784 && data->nominal_mode != BLKmode
2785 && data->passed_mode != BLKmode)
2787 size_t i, len = XVECLEN (entry_parm, 0);
2789 for (i = 0; i < len; i++)
2790 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2791 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2792 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2793 == data->passed_mode)
2794 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2796 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2797 break;
2801 data->entry_parm = entry_parm;
2804 /* A subroutine of assign_parms. Reconstitute any values which were
2805 passed in multiple registers and would fit in a single register. */
2807 static void
2808 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2810 rtx entry_parm = data->entry_parm;
2812 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2813 This can be done with register operations rather than on the
2814 stack, even if we will store the reconstituted parameter on the
2815 stack later. */
2816 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2818 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2819 emit_group_store (parmreg, entry_parm, data->arg.type,
2820 GET_MODE_SIZE (GET_MODE (entry_parm)));
2821 entry_parm = parmreg;
2824 data->entry_parm = entry_parm;
2827 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2828 always valid and properly aligned. */
2830 static void
2831 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2833 rtx stack_parm = data->stack_parm;
2835 /* If we can't trust the parm stack slot to be aligned enough for its
2836 ultimate type, don't use that slot after entry. We'll make another
2837 stack slot, if we need one. */
2838 if (stack_parm
2839 && ((GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm)
2840 && ((optab_handler (movmisalign_optab, data->nominal_mode)
2841 != CODE_FOR_nothing)
2842 || targetm.slow_unaligned_access (data->nominal_mode,
2843 MEM_ALIGN (stack_parm))))
2844 || (data->nominal_type
2845 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2846 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2847 stack_parm = NULL;
2849 /* If parm was passed in memory, and we need to convert it on entry,
2850 don't store it back in that same slot. */
2851 else if (data->entry_parm == stack_parm
2852 && data->nominal_mode != BLKmode
2853 && data->nominal_mode != data->passed_mode)
2854 stack_parm = NULL;
2856 /* If stack protection is in effect for this function, don't leave any
2857 pointers in their passed stack slots. */
2858 else if (crtl->stack_protect_guard
2859 && (flag_stack_protect == SPCT_FLAG_ALL
2860 || data->arg.pass_by_reference
2861 || POINTER_TYPE_P (data->nominal_type)))
2862 stack_parm = NULL;
2864 data->stack_parm = stack_parm;
2867 /* A subroutine of assign_parms. Return true if the current parameter
2868 should be stored as a BLKmode in the current frame. */
2870 static bool
2871 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2873 if (data->nominal_mode == BLKmode)
2874 return true;
2875 if (GET_MODE (data->entry_parm) == BLKmode)
2876 return true;
2878 #ifdef BLOCK_REG_PADDING
2879 /* Only assign_parm_setup_block knows how to deal with register arguments
2880 that are padded at the least significant end. */
2881 if (REG_P (data->entry_parm)
2882 && known_lt (GET_MODE_SIZE (data->arg.mode), UNITS_PER_WORD)
2883 && (BLOCK_REG_PADDING (data->passed_mode, data->arg.type, 1)
2884 == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)))
2885 return true;
2886 #endif
2888 return false;
2891 /* A subroutine of assign_parms. Arrange for the parameter to be
2892 present and valid in DATA->STACK_RTL. */
2894 static void
2895 assign_parm_setup_block (struct assign_parm_data_all *all,
2896 tree parm, struct assign_parm_data_one *data)
2898 rtx entry_parm = data->entry_parm;
2899 rtx stack_parm = data->stack_parm;
2900 rtx target_reg = NULL_RTX;
2901 bool in_conversion_seq = false;
2902 HOST_WIDE_INT size;
2903 HOST_WIDE_INT size_stored;
2905 if (GET_CODE (entry_parm) == PARALLEL)
2906 entry_parm = emit_group_move_into_temps (entry_parm);
2908 /* If we want the parameter in a pseudo, don't use a stack slot. */
2909 if (is_gimple_reg (parm) && use_register_for_decl (parm))
2911 tree def = ssa_default_def (cfun, parm);
2912 gcc_assert (def);
2913 machine_mode mode = promote_ssa_mode (def, NULL);
2914 rtx reg = gen_reg_rtx (mode);
2915 if (GET_CODE (reg) != CONCAT)
2916 stack_parm = reg;
2917 else
2919 target_reg = reg;
2920 /* Avoid allocating a stack slot, if there isn't one
2921 preallocated by the ABI. It might seem like we should
2922 always prefer a pseudo, but converting between
2923 floating-point and integer modes goes through the stack
2924 on various machines, so it's better to use the reserved
2925 stack slot than to risk wasting it and allocating more
2926 for the conversion. */
2927 if (stack_parm == NULL_RTX)
2929 int save = generating_concat_p;
2930 generating_concat_p = 0;
2931 stack_parm = gen_reg_rtx (mode);
2932 generating_concat_p = save;
2935 data->stack_parm = NULL;
2938 size = int_size_in_bytes (data->arg.type);
2939 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2940 if (stack_parm == 0)
2942 HOST_WIDE_INT parm_align
2943 = (STRICT_ALIGNMENT
2944 ? MAX (DECL_ALIGN (parm), BITS_PER_WORD) : DECL_ALIGN (parm));
2946 SET_DECL_ALIGN (parm, parm_align);
2947 if (DECL_ALIGN (parm) > MAX_SUPPORTED_STACK_ALIGNMENT)
2949 rtx allocsize = gen_int_mode (size_stored, Pmode);
2950 get_dynamic_stack_size (&allocsize, 0, DECL_ALIGN (parm), NULL);
2951 stack_parm = assign_stack_local (BLKmode, UINTVAL (allocsize),
2952 MAX_SUPPORTED_STACK_ALIGNMENT);
2953 rtx addr = align_dynamic_address (XEXP (stack_parm, 0),
2954 DECL_ALIGN (parm));
2955 mark_reg_pointer (addr, DECL_ALIGN (parm));
2956 stack_parm = gen_rtx_MEM (GET_MODE (stack_parm), addr);
2957 MEM_NOTRAP_P (stack_parm) = 1;
2959 else
2960 stack_parm = assign_stack_local (BLKmode, size_stored,
2961 DECL_ALIGN (parm));
2962 if (known_eq (GET_MODE_SIZE (GET_MODE (entry_parm)), size))
2963 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2964 set_mem_attributes (stack_parm, parm, 1);
2967 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2968 calls that pass values in multiple non-contiguous locations. */
2969 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2971 rtx mem;
2973 /* Note that we will be storing an integral number of words.
2974 So we have to be careful to ensure that we allocate an
2975 integral number of words. We do this above when we call
2976 assign_stack_local if space was not allocated in the argument
2977 list. If it was, this will not work if PARM_BOUNDARY is not
2978 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2979 if it becomes a problem. Exception is when BLKmode arrives
2980 with arguments not conforming to word_mode. */
2982 if (data->stack_parm == 0)
2984 else if (GET_CODE (entry_parm) == PARALLEL)
2986 else
2987 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2989 mem = validize_mem (copy_rtx (stack_parm));
2991 /* Handle values in multiple non-contiguous locations. */
2992 if (GET_CODE (entry_parm) == PARALLEL && !MEM_P (mem))
2993 emit_group_store (mem, entry_parm, data->arg.type, size);
2994 else if (GET_CODE (entry_parm) == PARALLEL)
2996 push_to_sequence2 (all->first_conversion_insn,
2997 all->last_conversion_insn);
2998 emit_group_store (mem, entry_parm, data->arg.type, size);
2999 all->first_conversion_insn = get_insns ();
3000 all->last_conversion_insn = get_last_insn ();
3001 end_sequence ();
3002 in_conversion_seq = true;
3005 else if (size == 0)
3008 /* If SIZE is that of a mode no bigger than a word, just use
3009 that mode's store operation. */
3010 else if (size <= UNITS_PER_WORD)
3012 unsigned int bits = size * BITS_PER_UNIT;
3013 machine_mode mode = int_mode_for_size (bits, 0).else_blk ();
3015 if (mode != BLKmode
3016 #ifdef BLOCK_REG_PADDING
3017 && (size == UNITS_PER_WORD
3018 || (BLOCK_REG_PADDING (mode, data->arg.type, 1)
3019 != (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)))
3020 #endif
3023 rtx reg;
3025 /* We are really truncating a word_mode value containing
3026 SIZE bytes into a value of mode MODE. If such an
3027 operation requires no actual instructions, we can refer
3028 to the value directly in mode MODE, otherwise we must
3029 start with the register in word_mode and explicitly
3030 convert it. */
3031 if (mode == word_mode
3032 || TRULY_NOOP_TRUNCATION_MODES_P (mode, word_mode))
3033 reg = gen_rtx_REG (mode, REGNO (entry_parm));
3034 else
3036 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
3037 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
3039 emit_move_insn (change_address (mem, mode, 0), reg);
3042 #ifdef BLOCK_REG_PADDING
3043 /* Storing the register in memory as a full word, as
3044 move_block_from_reg below would do, and then using the
3045 MEM in a smaller mode, has the effect of shifting right
3046 if BYTES_BIG_ENDIAN. If we're bypassing memory, the
3047 shifting must be explicit. */
3048 else if (!MEM_P (mem))
3050 rtx x;
3052 /* If the assert below fails, we should have taken the
3053 mode != BLKmode path above, unless we have downward
3054 padding of smaller-than-word arguments on a machine
3055 with little-endian bytes, which would likely require
3056 additional changes to work correctly. */
3057 gcc_checking_assert (BYTES_BIG_ENDIAN
3058 && (BLOCK_REG_PADDING (mode,
3059 data->arg.type, 1)
3060 == PAD_UPWARD));
3062 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
3064 x = gen_rtx_REG (word_mode, REGNO (entry_parm));
3065 x = expand_shift (RSHIFT_EXPR, word_mode, x, by,
3066 NULL_RTX, 1);
3067 x = force_reg (word_mode, x);
3068 x = gen_lowpart_SUBREG (GET_MODE (mem), x);
3070 emit_move_insn (mem, x);
3072 #endif
3074 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
3075 machine must be aligned to the left before storing
3076 to memory. Note that the previous test doesn't
3077 handle all cases (e.g. SIZE == 3). */
3078 else if (size != UNITS_PER_WORD
3079 #ifdef BLOCK_REG_PADDING
3080 && (BLOCK_REG_PADDING (mode, data->arg.type, 1)
3081 == PAD_DOWNWARD)
3082 #else
3083 && BYTES_BIG_ENDIAN
3084 #endif
3087 rtx tem, x;
3088 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
3089 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
3091 x = expand_shift (LSHIFT_EXPR, word_mode, reg, by, NULL_RTX, 1);
3092 tem = change_address (mem, word_mode, 0);
3093 emit_move_insn (tem, x);
3095 else
3096 move_block_from_reg (REGNO (entry_parm), mem,
3097 size_stored / UNITS_PER_WORD);
3099 else if (!MEM_P (mem))
3101 gcc_checking_assert (size > UNITS_PER_WORD);
3102 #ifdef BLOCK_REG_PADDING
3103 gcc_checking_assert (BLOCK_REG_PADDING (GET_MODE (mem),
3104 data->arg.type, 0)
3105 == PAD_UPWARD);
3106 #endif
3107 emit_move_insn (mem, entry_parm);
3109 else
3110 move_block_from_reg (REGNO (entry_parm), mem,
3111 size_stored / UNITS_PER_WORD);
3113 else if (data->stack_parm == 0 && !TYPE_EMPTY_P (data->arg.type))
3115 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3116 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
3117 BLOCK_OP_NORMAL);
3118 all->first_conversion_insn = get_insns ();
3119 all->last_conversion_insn = get_last_insn ();
3120 end_sequence ();
3121 in_conversion_seq = true;
3124 if (target_reg)
3126 if (!in_conversion_seq)
3127 emit_move_insn (target_reg, stack_parm);
3128 else
3130 push_to_sequence2 (all->first_conversion_insn,
3131 all->last_conversion_insn);
3132 emit_move_insn (target_reg, stack_parm);
3133 all->first_conversion_insn = get_insns ();
3134 all->last_conversion_insn = get_last_insn ();
3135 end_sequence ();
3137 stack_parm = target_reg;
3140 data->stack_parm = stack_parm;
3141 set_parm_rtl (parm, stack_parm);
3144 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
3145 parameter. Get it there. Perform all ABI specified conversions. */
3147 static void
3148 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
3149 struct assign_parm_data_one *data)
3151 rtx parmreg, validated_mem;
3152 rtx equiv_stack_parm;
3153 machine_mode promoted_nominal_mode;
3154 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
3155 bool did_conversion = false;
3156 bool need_conversion, moved;
3157 enum insn_code icode;
3158 rtx rtl;
3160 /* Store the parm in a pseudoregister during the function, but we may
3161 need to do it in a wider mode. Using 2 here makes the result
3162 consistent with promote_decl_mode and thus expand_expr_real_1. */
3163 promoted_nominal_mode
3164 = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
3165 TREE_TYPE (current_function_decl), 2);
3167 parmreg = gen_reg_rtx (promoted_nominal_mode);
3168 if (!DECL_ARTIFICIAL (parm))
3169 mark_user_reg (parmreg);
3171 /* If this was an item that we received a pointer to,
3172 set rtl appropriately. */
3173 if (data->arg.pass_by_reference)
3175 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->arg.type)), parmreg);
3176 set_mem_attributes (rtl, parm, 1);
3178 else
3179 rtl = parmreg;
3181 assign_parm_remove_parallels (data);
3183 /* Copy the value into the register, thus bridging between
3184 assign_parm_find_data_types and expand_expr_real_1. */
3186 equiv_stack_parm = data->stack_parm;
3187 validated_mem = validize_mem (copy_rtx (data->entry_parm));
3189 need_conversion = (data->nominal_mode != data->passed_mode
3190 || promoted_nominal_mode != data->arg.mode);
3191 moved = false;
3193 if (need_conversion
3194 && GET_MODE_CLASS (data->nominal_mode) == MODE_INT
3195 && data->nominal_mode == data->passed_mode
3196 && data->nominal_mode == GET_MODE (data->entry_parm))
3198 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
3199 mode, by the caller. We now have to convert it to
3200 NOMINAL_MODE, if different. However, PARMREG may be in
3201 a different mode than NOMINAL_MODE if it is being stored
3202 promoted.
3204 If ENTRY_PARM is a hard register, it might be in a register
3205 not valid for operating in its mode (e.g., an odd-numbered
3206 register for a DFmode). In that case, moves are the only
3207 thing valid, so we can't do a convert from there. This
3208 occurs when the calling sequence allow such misaligned
3209 usages.
3211 In addition, the conversion may involve a call, which could
3212 clobber parameters which haven't been copied to pseudo
3213 registers yet.
3215 First, we try to emit an insn which performs the necessary
3216 conversion. We verify that this insn does not clobber any
3217 hard registers. */
3219 rtx op0, op1;
3221 icode = can_extend_p (promoted_nominal_mode, data->passed_mode,
3222 unsignedp);
3224 op0 = parmreg;
3225 op1 = validated_mem;
3226 if (icode != CODE_FOR_nothing
3227 && insn_operand_matches (icode, 0, op0)
3228 && insn_operand_matches (icode, 1, op1))
3230 enum rtx_code code = unsignedp ? ZERO_EXTEND : SIGN_EXTEND;
3231 rtx_insn *insn, *insns;
3232 rtx t = op1;
3233 HARD_REG_SET hardregs;
3235 start_sequence ();
3236 /* If op1 is a hard register that is likely spilled, first
3237 force it into a pseudo, otherwise combiner might extend
3238 its lifetime too much. */
3239 if (GET_CODE (t) == SUBREG)
3240 t = SUBREG_REG (t);
3241 if (REG_P (t)
3242 && HARD_REGISTER_P (t)
3243 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (t))
3244 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (t))))
3246 t = gen_reg_rtx (GET_MODE (op1));
3247 emit_move_insn (t, op1);
3249 else
3250 t = op1;
3251 rtx_insn *pat = gen_extend_insn (op0, t, promoted_nominal_mode,
3252 data->passed_mode, unsignedp);
3253 emit_insn (pat);
3254 insns = get_insns ();
3256 moved = true;
3257 CLEAR_HARD_REG_SET (hardregs);
3258 for (insn = insns; insn && moved; insn = NEXT_INSN (insn))
3260 if (INSN_P (insn))
3261 note_stores (insn, record_hard_reg_sets, &hardregs);
3262 if (!hard_reg_set_empty_p (hardregs))
3263 moved = false;
3266 end_sequence ();
3268 if (moved)
3270 emit_insn (insns);
3271 if (equiv_stack_parm != NULL_RTX)
3272 equiv_stack_parm = gen_rtx_fmt_e (code, GET_MODE (parmreg),
3273 equiv_stack_parm);
3278 if (moved)
3279 /* Nothing to do. */
3281 else if (need_conversion)
3283 /* We did not have an insn to convert directly, or the sequence
3284 generated appeared unsafe. We must first copy the parm to a
3285 pseudo reg, and save the conversion until after all
3286 parameters have been moved. */
3288 int save_tree_used;
3289 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3291 emit_move_insn (tempreg, validated_mem);
3293 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3294 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
3296 if (partial_subreg_p (tempreg)
3297 && GET_MODE (tempreg) == data->nominal_mode
3298 && REG_P (SUBREG_REG (tempreg))
3299 && data->nominal_mode == data->passed_mode
3300 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm))
3302 /* The argument is already sign/zero extended, so note it
3303 into the subreg. */
3304 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
3305 SUBREG_PROMOTED_SET (tempreg, unsignedp);
3308 /* TREE_USED gets set erroneously during expand_assignment. */
3309 save_tree_used = TREE_USED (parm);
3310 SET_DECL_RTL (parm, rtl);
3311 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
3312 SET_DECL_RTL (parm, NULL_RTX);
3313 TREE_USED (parm) = save_tree_used;
3314 all->first_conversion_insn = get_insns ();
3315 all->last_conversion_insn = get_last_insn ();
3316 end_sequence ();
3318 did_conversion = true;
3320 else if (MEM_P (data->entry_parm)
3321 && GET_MODE_ALIGNMENT (promoted_nominal_mode)
3322 > MEM_ALIGN (data->entry_parm)
3323 && (((icode = optab_handler (movmisalign_optab,
3324 promoted_nominal_mode))
3325 != CODE_FOR_nothing)
3326 || targetm.slow_unaligned_access (promoted_nominal_mode,
3327 MEM_ALIGN (data->entry_parm))))
3329 if (icode != CODE_FOR_nothing)
3330 emit_insn (GEN_FCN (icode) (parmreg, validated_mem));
3331 else
3332 rtl = parmreg = extract_bit_field (validated_mem,
3333 GET_MODE_BITSIZE (promoted_nominal_mode), 0,
3334 unsignedp, parmreg,
3335 promoted_nominal_mode, VOIDmode, false, NULL);
3337 else
3338 emit_move_insn (parmreg, validated_mem);
3340 /* If we were passed a pointer but the actual value can live in a register,
3341 retrieve it and use it directly. Note that we cannot use nominal_mode,
3342 because it will have been set to Pmode above, we must use the actual mode
3343 of the parameter instead. */
3344 if (data->arg.pass_by_reference && TYPE_MODE (TREE_TYPE (parm)) != BLKmode)
3346 /* Use a stack slot for debugging purposes if possible. */
3347 if (use_register_for_decl (parm))
3349 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
3350 mark_user_reg (parmreg);
3352 else
3354 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3355 TYPE_MODE (TREE_TYPE (parm)),
3356 TYPE_ALIGN (TREE_TYPE (parm)));
3357 parmreg
3358 = assign_stack_local (TYPE_MODE (TREE_TYPE (parm)),
3359 GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (parm))),
3360 align);
3361 set_mem_attributes (parmreg, parm, 1);
3364 /* We need to preserve an address based on VIRTUAL_STACK_VARS_REGNUM for
3365 the debug info in case it is not legitimate. */
3366 if (GET_MODE (parmreg) != GET_MODE (rtl))
3368 rtx tempreg = gen_reg_rtx (GET_MODE (rtl));
3369 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
3371 push_to_sequence2 (all->first_conversion_insn,
3372 all->last_conversion_insn);
3373 emit_move_insn (tempreg, rtl);
3374 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
3375 emit_move_insn (MEM_P (parmreg) ? copy_rtx (parmreg) : parmreg,
3376 tempreg);
3377 all->first_conversion_insn = get_insns ();
3378 all->last_conversion_insn = get_last_insn ();
3379 end_sequence ();
3381 did_conversion = true;
3383 else
3384 emit_move_insn (MEM_P (parmreg) ? copy_rtx (parmreg) : parmreg, rtl);
3386 rtl = parmreg;
3388 /* STACK_PARM is the pointer, not the parm, and PARMREG is
3389 now the parm. */
3390 data->stack_parm = NULL;
3393 set_parm_rtl (parm, rtl);
3395 /* Mark the register as eliminable if we did no conversion and it was
3396 copied from memory at a fixed offset, and the arg pointer was not
3397 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
3398 offset formed an invalid address, such memory-equivalences as we
3399 make here would screw up life analysis for it. */
3400 if (data->nominal_mode == data->passed_mode
3401 && !did_conversion
3402 && data->stack_parm != 0
3403 && MEM_P (data->stack_parm)
3404 && data->locate.offset.var == 0
3405 && reg_mentioned_p (virtual_incoming_args_rtx,
3406 XEXP (data->stack_parm, 0)))
3408 rtx_insn *linsn = get_last_insn ();
3409 rtx_insn *sinsn;
3410 rtx set;
3412 /* Mark complex types separately. */
3413 if (GET_CODE (parmreg) == CONCAT)
3415 scalar_mode submode = GET_MODE_INNER (GET_MODE (parmreg));
3416 int regnor = REGNO (XEXP (parmreg, 0));
3417 int regnoi = REGNO (XEXP (parmreg, 1));
3418 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
3419 rtx stacki = adjust_address_nv (data->stack_parm, submode,
3420 GET_MODE_SIZE (submode));
3422 /* Scan backwards for the set of the real and
3423 imaginary parts. */
3424 for (sinsn = linsn; sinsn != 0;
3425 sinsn = prev_nonnote_insn (sinsn))
3427 set = single_set (sinsn);
3428 if (set == 0)
3429 continue;
3431 if (SET_DEST (set) == regno_reg_rtx [regnoi])
3432 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
3433 else if (SET_DEST (set) == regno_reg_rtx [regnor])
3434 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
3437 else
3438 set_dst_reg_note (linsn, REG_EQUIV, equiv_stack_parm, parmreg);
3441 /* For pointer data type, suggest pointer register. */
3442 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3443 mark_reg_pointer (parmreg,
3444 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
3447 /* A subroutine of assign_parms. Allocate stack space to hold the current
3448 parameter. Get it there. Perform all ABI specified conversions. */
3450 static void
3451 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
3452 struct assign_parm_data_one *data)
3454 /* Value must be stored in the stack slot STACK_PARM during function
3455 execution. */
3456 bool to_conversion = false;
3458 assign_parm_remove_parallels (data);
3460 if (data->arg.mode != data->nominal_mode)
3462 /* Conversion is required. */
3463 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3465 emit_move_insn (tempreg, validize_mem (copy_rtx (data->entry_parm)));
3467 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3468 to_conversion = true;
3470 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
3471 TYPE_UNSIGNED (TREE_TYPE (parm)));
3473 if (data->stack_parm)
3475 poly_int64 offset
3476 = subreg_lowpart_offset (data->nominal_mode,
3477 GET_MODE (data->stack_parm));
3478 /* ??? This may need a big-endian conversion on sparc64. */
3479 data->stack_parm
3480 = adjust_address (data->stack_parm, data->nominal_mode, 0);
3481 if (maybe_ne (offset, 0) && MEM_OFFSET_KNOWN_P (data->stack_parm))
3482 set_mem_offset (data->stack_parm,
3483 MEM_OFFSET (data->stack_parm) + offset);
3487 if (data->entry_parm != data->stack_parm)
3489 rtx src, dest;
3491 if (data->stack_parm == 0)
3493 int align = STACK_SLOT_ALIGNMENT (data->arg.type,
3494 GET_MODE (data->entry_parm),
3495 TYPE_ALIGN (data->arg.type));
3496 if (align < (int)GET_MODE_ALIGNMENT (GET_MODE (data->entry_parm))
3497 && ((optab_handler (movmisalign_optab,
3498 GET_MODE (data->entry_parm))
3499 != CODE_FOR_nothing)
3500 || targetm.slow_unaligned_access (GET_MODE (data->entry_parm),
3501 align)))
3502 align = GET_MODE_ALIGNMENT (GET_MODE (data->entry_parm));
3503 data->stack_parm
3504 = assign_stack_local (GET_MODE (data->entry_parm),
3505 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
3506 align);
3507 align = MEM_ALIGN (data->stack_parm);
3508 set_mem_attributes (data->stack_parm, parm, 1);
3509 set_mem_align (data->stack_parm, align);
3512 dest = validize_mem (copy_rtx (data->stack_parm));
3513 src = validize_mem (copy_rtx (data->entry_parm));
3515 if (TYPE_EMPTY_P (data->arg.type))
3516 /* Empty types don't really need to be copied. */;
3517 else if (MEM_P (src))
3519 /* Use a block move to handle potentially misaligned entry_parm. */
3520 if (!to_conversion)
3521 push_to_sequence2 (all->first_conversion_insn,
3522 all->last_conversion_insn);
3523 to_conversion = true;
3525 emit_block_move (dest, src,
3526 GEN_INT (int_size_in_bytes (data->arg.type)),
3527 BLOCK_OP_NORMAL);
3529 else
3531 if (!REG_P (src))
3532 src = force_reg (GET_MODE (src), src);
3533 emit_move_insn (dest, src);
3537 if (to_conversion)
3539 all->first_conversion_insn = get_insns ();
3540 all->last_conversion_insn = get_last_insn ();
3541 end_sequence ();
3544 set_parm_rtl (parm, data->stack_parm);
3547 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3548 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3550 static void
3551 assign_parms_unsplit_complex (struct assign_parm_data_all *all,
3552 vec<tree> fnargs)
3554 tree parm;
3555 tree orig_fnargs = all->orig_fnargs;
3556 unsigned i = 0;
3558 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm), ++i)
3560 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3561 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3563 rtx tmp, real, imag;
3564 scalar_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3566 real = DECL_RTL (fnargs[i]);
3567 imag = DECL_RTL (fnargs[i + 1]);
3568 if (inner != GET_MODE (real))
3570 real = gen_lowpart_SUBREG (inner, real);
3571 imag = gen_lowpart_SUBREG (inner, imag);
3574 if (TREE_ADDRESSABLE (parm))
3576 rtx rmem, imem;
3577 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3578 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3579 DECL_MODE (parm),
3580 TYPE_ALIGN (TREE_TYPE (parm)));
3582 /* split_complex_arg put the real and imag parts in
3583 pseudos. Move them to memory. */
3584 tmp = assign_stack_local (DECL_MODE (parm), size, align);
3585 set_mem_attributes (tmp, parm, 1);
3586 rmem = adjust_address_nv (tmp, inner, 0);
3587 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3588 push_to_sequence2 (all->first_conversion_insn,
3589 all->last_conversion_insn);
3590 emit_move_insn (rmem, real);
3591 emit_move_insn (imem, imag);
3592 all->first_conversion_insn = get_insns ();
3593 all->last_conversion_insn = get_last_insn ();
3594 end_sequence ();
3596 else
3597 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3598 set_parm_rtl (parm, tmp);
3600 real = DECL_INCOMING_RTL (fnargs[i]);
3601 imag = DECL_INCOMING_RTL (fnargs[i + 1]);
3602 if (inner != GET_MODE (real))
3604 real = gen_lowpart_SUBREG (inner, real);
3605 imag = gen_lowpart_SUBREG (inner, imag);
3607 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3608 set_decl_incoming_rtl (parm, tmp, false);
3609 i++;
3614 /* Assign RTL expressions to the function's parameters. This may involve
3615 copying them into registers and using those registers as the DECL_RTL. */
3617 static void
3618 assign_parms (tree fndecl)
3620 struct assign_parm_data_all all;
3621 tree parm;
3622 vec<tree> fnargs;
3623 unsigned i;
3625 crtl->args.internal_arg_pointer
3626 = targetm.calls.internal_arg_pointer ();
3628 assign_parms_initialize_all (&all);
3629 fnargs = assign_parms_augmented_arg_list (&all);
3631 FOR_EACH_VEC_ELT (fnargs, i, parm)
3633 struct assign_parm_data_one data;
3635 /* Extract the type of PARM; adjust it according to ABI. */
3636 assign_parm_find_data_types (&all, parm, &data);
3638 /* Early out for errors and void parameters. */
3639 if (data.passed_mode == VOIDmode)
3641 SET_DECL_RTL (parm, const0_rtx);
3642 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3643 continue;
3646 /* Estimate stack alignment from parameter alignment. */
3647 if (SUPPORTS_STACK_ALIGNMENT)
3649 unsigned int align
3650 = targetm.calls.function_arg_boundary (data.arg.mode,
3651 data.arg.type);
3652 align = MINIMUM_ALIGNMENT (data.arg.type, data.arg.mode, align);
3653 if (TYPE_ALIGN (data.nominal_type) > align)
3654 align = MINIMUM_ALIGNMENT (data.nominal_type,
3655 TYPE_MODE (data.nominal_type),
3656 TYPE_ALIGN (data.nominal_type));
3657 if (crtl->stack_alignment_estimated < align)
3659 gcc_assert (!crtl->stack_realign_processed);
3660 crtl->stack_alignment_estimated = align;
3664 /* Find out where the parameter arrives in this function. */
3665 assign_parm_find_entry_rtl (&all, &data);
3667 /* Find out where stack space for this parameter might be. */
3668 if (assign_parm_is_stack_parm (&all, &data))
3670 assign_parm_find_stack_rtl (parm, &data);
3671 assign_parm_adjust_entry_rtl (&data);
3672 /* For arguments that occupy no space in the parameter
3673 passing area, have non-zero size and have address taken,
3674 force creation of a stack slot so that they have distinct
3675 address from other parameters. */
3676 if (TYPE_EMPTY_P (data.arg.type)
3677 && TREE_ADDRESSABLE (parm)
3678 && data.entry_parm == data.stack_parm
3679 && MEM_P (data.entry_parm)
3680 && int_size_in_bytes (data.arg.type))
3681 data.stack_parm = NULL_RTX;
3683 /* Record permanently how this parm was passed. */
3684 if (data.arg.pass_by_reference)
3686 rtx incoming_rtl
3687 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data.arg.type)),
3688 data.entry_parm);
3689 set_decl_incoming_rtl (parm, incoming_rtl, true);
3691 else
3692 set_decl_incoming_rtl (parm, data.entry_parm, false);
3694 assign_parm_adjust_stack_rtl (&data);
3696 if (assign_parm_setup_block_p (&data))
3697 assign_parm_setup_block (&all, parm, &data);
3698 else if (data.arg.pass_by_reference || use_register_for_decl (parm))
3699 assign_parm_setup_reg (&all, parm, &data);
3700 else
3701 assign_parm_setup_stack (&all, parm, &data);
3703 if (cfun->stdarg && !DECL_CHAIN (parm))
3704 assign_parms_setup_varargs (&all, &data, false);
3706 /* Update info on where next arg arrives in registers. */
3707 targetm.calls.function_arg_advance (all.args_so_far, data.arg);
3710 if (targetm.calls.split_complex_arg)
3711 assign_parms_unsplit_complex (&all, fnargs);
3713 fnargs.release ();
3715 /* Output all parameter conversion instructions (possibly including calls)
3716 now that all parameters have been copied out of hard registers. */
3717 emit_insn (all.first_conversion_insn);
3719 /* Estimate reload stack alignment from scalar return mode. */
3720 if (SUPPORTS_STACK_ALIGNMENT)
3722 if (DECL_RESULT (fndecl))
3724 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3725 machine_mode mode = TYPE_MODE (type);
3727 if (mode != BLKmode
3728 && mode != VOIDmode
3729 && !AGGREGATE_TYPE_P (type))
3731 unsigned int align = GET_MODE_ALIGNMENT (mode);
3732 if (crtl->stack_alignment_estimated < align)
3734 gcc_assert (!crtl->stack_realign_processed);
3735 crtl->stack_alignment_estimated = align;
3741 /* If we are receiving a struct value address as the first argument, set up
3742 the RTL for the function result. As this might require code to convert
3743 the transmitted address to Pmode, we do this here to ensure that possible
3744 preliminary conversions of the address have been emitted already. */
3745 if (all.function_result_decl)
3747 tree result = DECL_RESULT (current_function_decl);
3748 rtx addr = DECL_RTL (all.function_result_decl);
3749 rtx x;
3751 if (DECL_BY_REFERENCE (result))
3753 SET_DECL_VALUE_EXPR (result, all.function_result_decl);
3754 x = addr;
3756 else
3758 SET_DECL_VALUE_EXPR (result,
3759 build1 (INDIRECT_REF, TREE_TYPE (result),
3760 all.function_result_decl));
3761 addr = convert_memory_address (Pmode, addr);
3762 x = gen_rtx_MEM (DECL_MODE (result), addr);
3763 set_mem_attributes (x, result, 1);
3766 DECL_HAS_VALUE_EXPR_P (result) = 1;
3768 set_parm_rtl (result, x);
3771 /* We have aligned all the args, so add space for the pretend args. */
3772 crtl->args.pretend_args_size = all.pretend_args_size;
3773 all.stack_args_size.constant += all.extra_pretend_bytes;
3774 crtl->args.size = all.stack_args_size.constant;
3776 /* Adjust function incoming argument size for alignment and
3777 minimum length. */
3779 crtl->args.size = upper_bound (crtl->args.size, all.reg_parm_stack_space);
3780 crtl->args.size = aligned_upper_bound (crtl->args.size,
3781 PARM_BOUNDARY / BITS_PER_UNIT);
3783 if (ARGS_GROW_DOWNWARD)
3785 crtl->args.arg_offset_rtx
3786 = (all.stack_args_size.var == 0
3787 ? gen_int_mode (-all.stack_args_size.constant, Pmode)
3788 : expand_expr (size_diffop (all.stack_args_size.var,
3789 size_int (-all.stack_args_size.constant)),
3790 NULL_RTX, VOIDmode, EXPAND_NORMAL));
3792 else
3793 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3795 /* See how many bytes, if any, of its args a function should try to pop
3796 on return. */
3798 crtl->args.pops_args = targetm.calls.return_pops_args (fndecl,
3799 TREE_TYPE (fndecl),
3800 crtl->args.size);
3802 /* For stdarg.h function, save info about
3803 regs and stack space used by the named args. */
3805 crtl->args.info = all.args_so_far_v;
3807 /* Set the rtx used for the function return value. Put this in its
3808 own variable so any optimizers that need this information don't have
3809 to include tree.h. Do this here so it gets done when an inlined
3810 function gets output. */
3812 crtl->return_rtx
3813 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3814 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3816 /* If scalar return value was computed in a pseudo-reg, or was a named
3817 return value that got dumped to the stack, copy that to the hard
3818 return register. */
3819 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3821 tree decl_result = DECL_RESULT (fndecl);
3822 rtx decl_rtl = DECL_RTL (decl_result);
3824 if (REG_P (decl_rtl)
3825 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3826 : DECL_REGISTER (decl_result))
3828 rtx real_decl_rtl;
3830 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3831 fndecl, true);
3832 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3833 /* The delay slot scheduler assumes that crtl->return_rtx
3834 holds the hard register containing the return value, not a
3835 temporary pseudo. */
3836 crtl->return_rtx = real_decl_rtl;
3841 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3842 For all seen types, gimplify their sizes. */
3844 static tree
3845 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3847 tree t = *tp;
3849 *walk_subtrees = 0;
3850 if (TYPE_P (t))
3852 if (POINTER_TYPE_P (t))
3853 *walk_subtrees = 1;
3854 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3855 && !TYPE_SIZES_GIMPLIFIED (t))
3857 gimplify_type_sizes (t, (gimple_seq *) data);
3858 *walk_subtrees = 1;
3862 return NULL;
3865 /* Gimplify the parameter list for current_function_decl. This involves
3866 evaluating SAVE_EXPRs of variable sized parameters and generating code
3867 to implement callee-copies reference parameters. Returns a sequence of
3868 statements to add to the beginning of the function. */
3870 gimple_seq
3871 gimplify_parameters (gimple_seq *cleanup)
3873 struct assign_parm_data_all all;
3874 tree parm;
3875 gimple_seq stmts = NULL;
3876 vec<tree> fnargs;
3877 unsigned i;
3879 assign_parms_initialize_all (&all);
3880 fnargs = assign_parms_augmented_arg_list (&all);
3882 FOR_EACH_VEC_ELT (fnargs, i, parm)
3884 struct assign_parm_data_one data;
3886 /* Extract the type of PARM; adjust it according to ABI. */
3887 assign_parm_find_data_types (&all, parm, &data);
3889 /* Early out for errors and void parameters. */
3890 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3891 continue;
3893 /* Update info on where next arg arrives in registers. */
3894 targetm.calls.function_arg_advance (all.args_so_far, data.arg);
3896 /* ??? Once upon a time variable_size stuffed parameter list
3897 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3898 turned out to be less than manageable in the gimple world.
3899 Now we have to hunt them down ourselves. */
3900 walk_tree_without_duplicates (&data.arg.type,
3901 gimplify_parm_type, &stmts);
3903 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
3905 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3906 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3909 if (data.arg.pass_by_reference)
3911 tree type = TREE_TYPE (data.arg.type);
3912 function_arg_info orig_arg (type, data.arg.named);
3913 if (reference_callee_copied (&all.args_so_far_v, orig_arg))
3915 tree local, t;
3917 /* For constant-sized objects, this is trivial; for
3918 variable-sized objects, we have to play games. */
3919 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
3920 && !(flag_stack_check == GENERIC_STACK_CHECK
3921 && compare_tree_int (DECL_SIZE_UNIT (parm),
3922 STACK_CHECK_MAX_VAR_SIZE) > 0))
3924 local = create_tmp_var (type, get_name (parm));
3925 DECL_IGNORED_P (local) = 0;
3926 /* If PARM was addressable, move that flag over
3927 to the local copy, as its address will be taken,
3928 not the PARMs. Keep the parms address taken
3929 as we'll query that flag during gimplification. */
3930 if (TREE_ADDRESSABLE (parm))
3931 TREE_ADDRESSABLE (local) = 1;
3932 if (DECL_NOT_GIMPLE_REG_P (parm))
3933 DECL_NOT_GIMPLE_REG_P (local) = 1;
3935 if (!is_gimple_reg (local)
3936 && flag_stack_reuse != SR_NONE)
3938 tree clobber = build_clobber (type);
3939 gimple *clobber_stmt;
3940 clobber_stmt = gimple_build_assign (local, clobber);
3941 gimple_seq_add_stmt (cleanup, clobber_stmt);
3944 else
3946 tree ptr_type, addr;
3948 ptr_type = build_pointer_type (type);
3949 addr = create_tmp_reg (ptr_type, get_name (parm));
3950 DECL_IGNORED_P (addr) = 0;
3951 local = build_fold_indirect_ref (addr);
3953 t = build_alloca_call_expr (DECL_SIZE_UNIT (parm),
3954 DECL_ALIGN (parm),
3955 max_int_size_in_bytes (type));
3956 /* The call has been built for a variable-sized object. */
3957 CALL_ALLOCA_FOR_VAR_P (t) = 1;
3958 t = fold_convert (ptr_type, t);
3959 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
3960 gimplify_and_add (t, &stmts);
3963 gimplify_assign (local, parm, &stmts);
3965 SET_DECL_VALUE_EXPR (parm, local);
3966 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3971 fnargs.release ();
3973 return stmts;
3976 /* Compute the size and offset from the start of the stacked arguments for a
3977 parm passed in mode PASSED_MODE and with type TYPE.
3979 INITIAL_OFFSET_PTR points to the current offset into the stacked
3980 arguments.
3982 The starting offset and size for this parm are returned in
3983 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3984 nonzero, the offset is that of stack slot, which is returned in
3985 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3986 padding required from the initial offset ptr to the stack slot.
3988 IN_REGS is nonzero if the argument will be passed in registers. It will
3989 never be set if REG_PARM_STACK_SPACE is not defined.
3991 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
3992 for arguments which are passed in registers.
3994 FNDECL is the function in which the argument was defined.
3996 There are two types of rounding that are done. The first, controlled by
3997 TARGET_FUNCTION_ARG_BOUNDARY, forces the offset from the start of the
3998 argument list to be aligned to the specific boundary (in bits). This
3999 rounding affects the initial and starting offsets, but not the argument
4000 size.
4002 The second, controlled by TARGET_FUNCTION_ARG_PADDING and PARM_BOUNDARY,
4003 optionally rounds the size of the parm to PARM_BOUNDARY. The
4004 initial offset is not affected by this rounding, while the size always
4005 is and the starting offset may be. */
4007 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
4008 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
4009 callers pass in the total size of args so far as
4010 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
4012 void
4013 locate_and_pad_parm (machine_mode passed_mode, tree type, int in_regs,
4014 int reg_parm_stack_space, int partial,
4015 tree fndecl ATTRIBUTE_UNUSED,
4016 struct args_size *initial_offset_ptr,
4017 struct locate_and_pad_arg_data *locate)
4019 tree sizetree;
4020 pad_direction where_pad;
4021 unsigned int boundary, round_boundary;
4022 int part_size_in_regs;
4024 /* If we have found a stack parm before we reach the end of the
4025 area reserved for registers, skip that area. */
4026 if (! in_regs)
4028 if (reg_parm_stack_space > 0)
4030 if (initial_offset_ptr->var
4031 || !ordered_p (initial_offset_ptr->constant,
4032 reg_parm_stack_space))
4034 initial_offset_ptr->var
4035 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
4036 ssize_int (reg_parm_stack_space));
4037 initial_offset_ptr->constant = 0;
4039 else
4040 initial_offset_ptr->constant
4041 = ordered_max (initial_offset_ptr->constant,
4042 reg_parm_stack_space);
4046 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
4048 sizetree = (type
4049 ? arg_size_in_bytes (type)
4050 : size_int (GET_MODE_SIZE (passed_mode)));
4051 where_pad = targetm.calls.function_arg_padding (passed_mode, type);
4052 boundary = targetm.calls.function_arg_boundary (passed_mode, type);
4053 round_boundary = targetm.calls.function_arg_round_boundary (passed_mode,
4054 type);
4055 locate->where_pad = where_pad;
4057 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
4058 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
4059 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
4061 locate->boundary = boundary;
4063 if (SUPPORTS_STACK_ALIGNMENT)
4065 /* stack_alignment_estimated can't change after stack has been
4066 realigned. */
4067 if (crtl->stack_alignment_estimated < boundary)
4069 if (!crtl->stack_realign_processed)
4070 crtl->stack_alignment_estimated = boundary;
4071 else
4073 /* If stack is realigned and stack alignment value
4074 hasn't been finalized, it is OK not to increase
4075 stack_alignment_estimated. The bigger alignment
4076 requirement is recorded in stack_alignment_needed
4077 below. */
4078 gcc_assert (!crtl->stack_realign_finalized
4079 && crtl->stack_realign_needed);
4084 if (ARGS_GROW_DOWNWARD)
4086 locate->slot_offset.constant = -initial_offset_ptr->constant;
4087 if (initial_offset_ptr->var)
4088 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
4089 initial_offset_ptr->var);
4092 tree s2 = sizetree;
4093 if (where_pad != PAD_NONE
4094 && (!tree_fits_uhwi_p (sizetree)
4095 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
4096 s2 = round_up (s2, round_boundary / BITS_PER_UNIT);
4097 SUB_PARM_SIZE (locate->slot_offset, s2);
4100 locate->slot_offset.constant += part_size_in_regs;
4102 if (!in_regs || reg_parm_stack_space > 0)
4103 pad_to_arg_alignment (&locate->slot_offset, boundary,
4104 &locate->alignment_pad);
4106 locate->size.constant = (-initial_offset_ptr->constant
4107 - locate->slot_offset.constant);
4108 if (initial_offset_ptr->var)
4109 locate->size.var = size_binop (MINUS_EXPR,
4110 size_binop (MINUS_EXPR,
4111 ssize_int (0),
4112 initial_offset_ptr->var),
4113 locate->slot_offset.var);
4115 /* Pad_below needs the pre-rounded size to know how much to pad
4116 below. */
4117 locate->offset = locate->slot_offset;
4118 if (where_pad == PAD_DOWNWARD)
4119 pad_below (&locate->offset, passed_mode, sizetree);
4122 else
4124 if (!in_regs || reg_parm_stack_space > 0)
4125 pad_to_arg_alignment (initial_offset_ptr, boundary,
4126 &locate->alignment_pad);
4127 locate->slot_offset = *initial_offset_ptr;
4129 #ifdef PUSH_ROUNDING
4130 if (passed_mode != BLKmode)
4131 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
4132 #endif
4134 /* Pad_below needs the pre-rounded size to know how much to pad below
4135 so this must be done before rounding up. */
4136 locate->offset = locate->slot_offset;
4137 if (where_pad == PAD_DOWNWARD)
4138 pad_below (&locate->offset, passed_mode, sizetree);
4140 if (where_pad != PAD_NONE
4141 && (!tree_fits_uhwi_p (sizetree)
4142 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
4143 sizetree = round_up (sizetree, round_boundary / BITS_PER_UNIT);
4145 ADD_PARM_SIZE (locate->size, sizetree);
4147 locate->size.constant -= part_size_in_regs;
4150 locate->offset.constant
4151 += targetm.calls.function_arg_offset (passed_mode, type);
4154 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
4155 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
4157 static void
4158 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
4159 struct args_size *alignment_pad)
4161 tree save_var = NULL_TREE;
4162 poly_int64 save_constant = 0;
4163 int boundary_in_bytes = boundary / BITS_PER_UNIT;
4164 poly_int64 sp_offset = STACK_POINTER_OFFSET;
4166 #ifdef SPARC_STACK_BOUNDARY_HACK
4167 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
4168 the real alignment of %sp. However, when it does this, the
4169 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
4170 if (SPARC_STACK_BOUNDARY_HACK)
4171 sp_offset = 0;
4172 #endif
4174 if (boundary > PARM_BOUNDARY)
4176 save_var = offset_ptr->var;
4177 save_constant = offset_ptr->constant;
4180 alignment_pad->var = NULL_TREE;
4181 alignment_pad->constant = 0;
4183 if (boundary > BITS_PER_UNIT)
4185 int misalign;
4186 if (offset_ptr->var
4187 || !known_misalignment (offset_ptr->constant + sp_offset,
4188 boundary_in_bytes, &misalign))
4190 tree sp_offset_tree = ssize_int (sp_offset);
4191 tree offset = size_binop (PLUS_EXPR,
4192 ARGS_SIZE_TREE (*offset_ptr),
4193 sp_offset_tree);
4194 tree rounded;
4195 if (ARGS_GROW_DOWNWARD)
4196 rounded = round_down (offset, boundary / BITS_PER_UNIT);
4197 else
4198 rounded = round_up (offset, boundary / BITS_PER_UNIT);
4200 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
4201 /* ARGS_SIZE_TREE includes constant term. */
4202 offset_ptr->constant = 0;
4203 if (boundary > PARM_BOUNDARY)
4204 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
4205 save_var);
4207 else
4209 if (ARGS_GROW_DOWNWARD)
4210 offset_ptr->constant -= misalign;
4211 else
4212 offset_ptr->constant += -misalign & (boundary_in_bytes - 1);
4214 if (boundary > PARM_BOUNDARY)
4215 alignment_pad->constant = offset_ptr->constant - save_constant;
4220 static void
4221 pad_below (struct args_size *offset_ptr, machine_mode passed_mode, tree sizetree)
4223 unsigned int align = PARM_BOUNDARY / BITS_PER_UNIT;
4224 int misalign;
4225 if (passed_mode != BLKmode
4226 && known_misalignment (GET_MODE_SIZE (passed_mode), align, &misalign))
4227 offset_ptr->constant += -misalign & (align - 1);
4228 else
4230 if (TREE_CODE (sizetree) != INTEGER_CST
4231 || (TREE_INT_CST_LOW (sizetree) & (align - 1)) != 0)
4233 /* Round the size up to multiple of PARM_BOUNDARY bits. */
4234 tree s2 = round_up (sizetree, align);
4235 /* Add it in. */
4236 ADD_PARM_SIZE (*offset_ptr, s2);
4237 SUB_PARM_SIZE (*offset_ptr, sizetree);
4243 /* True if register REGNO was alive at a place where `setjmp' was
4244 called and was set more than once or is an argument. Such regs may
4245 be clobbered by `longjmp'. */
4247 static bool
4248 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
4250 /* There appear to be cases where some local vars never reach the
4251 backend but have bogus regnos. */
4252 if (regno >= max_reg_num ())
4253 return false;
4255 return ((REG_N_SETS (regno) > 1
4256 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
4257 regno))
4258 && REGNO_REG_SET_P (setjmp_crosses, regno));
4261 /* Walk the tree of blocks describing the binding levels within a
4262 function and warn about variables the might be killed by setjmp or
4263 vfork. This is done after calling flow_analysis before register
4264 allocation since that will clobber the pseudo-regs to hard
4265 regs. */
4267 static void
4268 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
4270 tree decl, sub;
4272 for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl))
4274 if (VAR_P (decl)
4275 && DECL_RTL_SET_P (decl)
4276 && REG_P (DECL_RTL (decl))
4277 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4278 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
4279 " %<longjmp%> or %<vfork%>", decl);
4282 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
4283 setjmp_vars_warning (setjmp_crosses, sub);
4286 /* Do the appropriate part of setjmp_vars_warning
4287 but for arguments instead of local variables. */
4289 static void
4290 setjmp_args_warning (bitmap setjmp_crosses)
4292 tree decl;
4293 for (decl = DECL_ARGUMENTS (current_function_decl);
4294 decl; decl = DECL_CHAIN (decl))
4295 if (DECL_RTL (decl) != 0
4296 && REG_P (DECL_RTL (decl))
4297 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4298 warning (OPT_Wclobbered,
4299 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
4300 decl);
4303 /* Generate warning messages for variables live across setjmp. */
4305 void
4306 generate_setjmp_warnings (void)
4308 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
4310 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS
4311 || bitmap_empty_p (setjmp_crosses))
4312 return;
4314 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
4315 setjmp_args_warning (setjmp_crosses);
4319 /* Reverse the order of elements in the fragment chain T of blocks,
4320 and return the new head of the chain (old last element).
4321 In addition to that clear BLOCK_SAME_RANGE flags when needed
4322 and adjust BLOCK_SUPERCONTEXT from the super fragment to
4323 its super fragment origin. */
4325 static tree
4326 block_fragments_nreverse (tree t)
4328 tree prev = 0, block, next, prev_super = 0;
4329 tree super = BLOCK_SUPERCONTEXT (t);
4330 if (BLOCK_FRAGMENT_ORIGIN (super))
4331 super = BLOCK_FRAGMENT_ORIGIN (super);
4332 for (block = t; block; block = next)
4334 next = BLOCK_FRAGMENT_CHAIN (block);
4335 BLOCK_FRAGMENT_CHAIN (block) = prev;
4336 if ((prev && !BLOCK_SAME_RANGE (prev))
4337 || (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (block))
4338 != prev_super))
4339 BLOCK_SAME_RANGE (block) = 0;
4340 prev_super = BLOCK_SUPERCONTEXT (block);
4341 BLOCK_SUPERCONTEXT (block) = super;
4342 prev = block;
4344 t = BLOCK_FRAGMENT_ORIGIN (t);
4345 if (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (t))
4346 != prev_super)
4347 BLOCK_SAME_RANGE (t) = 0;
4348 BLOCK_SUPERCONTEXT (t) = super;
4349 return prev;
4352 /* Reverse the order of elements in the chain T of blocks,
4353 and return the new head of the chain (old last element).
4354 Also do the same on subblocks and reverse the order of elements
4355 in BLOCK_FRAGMENT_CHAIN as well. */
4357 static tree
4358 blocks_nreverse_all (tree t)
4360 tree prev = 0, block, next;
4361 for (block = t; block; block = next)
4363 next = BLOCK_CHAIN (block);
4364 BLOCK_CHAIN (block) = prev;
4365 if (BLOCK_FRAGMENT_CHAIN (block)
4366 && BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE)
4368 BLOCK_FRAGMENT_CHAIN (block)
4369 = block_fragments_nreverse (BLOCK_FRAGMENT_CHAIN (block));
4370 if (!BLOCK_SAME_RANGE (BLOCK_FRAGMENT_CHAIN (block)))
4371 BLOCK_SAME_RANGE (block) = 0;
4373 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4374 prev = block;
4376 return prev;
4380 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
4381 and create duplicate blocks. */
4382 /* ??? Need an option to either create block fragments or to create
4383 abstract origin duplicates of a source block. It really depends
4384 on what optimization has been performed. */
4386 void
4387 reorder_blocks (void)
4389 tree block = DECL_INITIAL (current_function_decl);
4391 if (block == NULL_TREE)
4392 return;
4394 auto_vec<tree, 10> block_stack;
4396 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
4397 clear_block_marks (block);
4399 /* Prune the old trees away, so that they don't get in the way. */
4400 BLOCK_SUBBLOCKS (block) = NULL_TREE;
4401 BLOCK_CHAIN (block) = NULL_TREE;
4403 /* Recreate the block tree from the note nesting. */
4404 reorder_blocks_1 (get_insns (), block, &block_stack);
4405 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4408 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
4410 void
4411 clear_block_marks (tree block)
4413 while (block)
4415 TREE_ASM_WRITTEN (block) = 0;
4416 clear_block_marks (BLOCK_SUBBLOCKS (block));
4417 block = BLOCK_CHAIN (block);
4421 static void
4422 reorder_blocks_1 (rtx_insn *insns, tree current_block,
4423 vec<tree> *p_block_stack)
4425 rtx_insn *insn;
4426 tree prev_beg = NULL_TREE, prev_end = NULL_TREE;
4428 for (insn = insns; insn; insn = NEXT_INSN (insn))
4430 if (NOTE_P (insn))
4432 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
4434 tree block = NOTE_BLOCK (insn);
4435 tree origin;
4437 gcc_assert (BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE);
4438 origin = block;
4440 if (prev_end)
4441 BLOCK_SAME_RANGE (prev_end) = 0;
4442 prev_end = NULL_TREE;
4444 /* If we have seen this block before, that means it now
4445 spans multiple address regions. Create a new fragment. */
4446 if (TREE_ASM_WRITTEN (block))
4448 tree new_block = copy_node (block);
4450 BLOCK_SAME_RANGE (new_block) = 0;
4451 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
4452 BLOCK_FRAGMENT_CHAIN (new_block)
4453 = BLOCK_FRAGMENT_CHAIN (origin);
4454 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
4456 NOTE_BLOCK (insn) = new_block;
4457 block = new_block;
4460 if (prev_beg == current_block && prev_beg)
4461 BLOCK_SAME_RANGE (block) = 1;
4463 prev_beg = origin;
4465 BLOCK_SUBBLOCKS (block) = 0;
4466 TREE_ASM_WRITTEN (block) = 1;
4467 /* When there's only one block for the entire function,
4468 current_block == block and we mustn't do this, it
4469 will cause infinite recursion. */
4470 if (block != current_block)
4472 tree super;
4473 if (block != origin)
4474 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block
4475 || BLOCK_FRAGMENT_ORIGIN (BLOCK_SUPERCONTEXT
4476 (origin))
4477 == current_block);
4478 if (p_block_stack->is_empty ())
4479 super = current_block;
4480 else
4482 super = p_block_stack->last ();
4483 gcc_assert (super == current_block
4484 || BLOCK_FRAGMENT_ORIGIN (super)
4485 == current_block);
4487 BLOCK_SUPERCONTEXT (block) = super;
4488 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
4489 BLOCK_SUBBLOCKS (current_block) = block;
4490 current_block = origin;
4492 p_block_stack->safe_push (block);
4494 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
4496 NOTE_BLOCK (insn) = p_block_stack->pop ();
4497 current_block = BLOCK_SUPERCONTEXT (current_block);
4498 if (BLOCK_FRAGMENT_ORIGIN (current_block))
4499 current_block = BLOCK_FRAGMENT_ORIGIN (current_block);
4500 prev_beg = NULL_TREE;
4501 prev_end = BLOCK_SAME_RANGE (NOTE_BLOCK (insn))
4502 ? NOTE_BLOCK (insn) : NULL_TREE;
4505 else
4507 prev_beg = NULL_TREE;
4508 if (prev_end)
4509 BLOCK_SAME_RANGE (prev_end) = 0;
4510 prev_end = NULL_TREE;
4515 /* Reverse the order of elements in the chain T of blocks,
4516 and return the new head of the chain (old last element). */
4518 tree
4519 blocks_nreverse (tree t)
4521 tree prev = 0, block, next;
4522 for (block = t; block; block = next)
4524 next = BLOCK_CHAIN (block);
4525 BLOCK_CHAIN (block) = prev;
4526 prev = block;
4528 return prev;
4531 /* Concatenate two chains of blocks (chained through BLOCK_CHAIN)
4532 by modifying the last node in chain 1 to point to chain 2. */
4534 tree
4535 block_chainon (tree op1, tree op2)
4537 tree t1;
4539 if (!op1)
4540 return op2;
4541 if (!op2)
4542 return op1;
4544 for (t1 = op1; BLOCK_CHAIN (t1); t1 = BLOCK_CHAIN (t1))
4545 continue;
4546 BLOCK_CHAIN (t1) = op2;
4548 #ifdef ENABLE_TREE_CHECKING
4550 tree t2;
4551 for (t2 = op2; t2; t2 = BLOCK_CHAIN (t2))
4552 gcc_assert (t2 != t1);
4554 #endif
4556 return op1;
4559 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
4560 non-NULL, list them all into VECTOR, in a depth-first preorder
4561 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
4562 blocks. */
4564 static int
4565 all_blocks (tree block, tree *vector)
4567 int n_blocks = 0;
4569 while (block)
4571 TREE_ASM_WRITTEN (block) = 0;
4573 /* Record this block. */
4574 if (vector)
4575 vector[n_blocks] = block;
4577 ++n_blocks;
4579 /* Record the subblocks, and their subblocks... */
4580 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
4581 vector ? vector + n_blocks : 0);
4582 block = BLOCK_CHAIN (block);
4585 return n_blocks;
4588 /* Return a vector containing all the blocks rooted at BLOCK. The
4589 number of elements in the vector is stored in N_BLOCKS_P. The
4590 vector is dynamically allocated; it is the caller's responsibility
4591 to call `free' on the pointer returned. */
4593 static tree *
4594 get_block_vector (tree block, int *n_blocks_p)
4596 tree *block_vector;
4598 *n_blocks_p = all_blocks (block, NULL);
4599 block_vector = XNEWVEC (tree, *n_blocks_p);
4600 all_blocks (block, block_vector);
4602 return block_vector;
4605 static GTY(()) int next_block_index = 2;
4607 /* Set BLOCK_NUMBER for all the blocks in FN. */
4609 void
4610 number_blocks (tree fn)
4612 int i;
4613 int n_blocks;
4614 tree *block_vector;
4616 /* For XCOFF debugging output, we start numbering the blocks
4617 from 1 within each function, rather than keeping a running
4618 count. */
4619 #if defined (XCOFF_DEBUGGING_INFO)
4620 if (write_symbols == XCOFF_DEBUG)
4621 next_block_index = 1;
4622 #endif
4624 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
4626 /* The top-level BLOCK isn't numbered at all. */
4627 for (i = 1; i < n_blocks; ++i)
4628 /* We number the blocks from two. */
4629 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
4631 free (block_vector);
4633 return;
4636 /* If VAR is present in a subblock of BLOCK, return the subblock. */
4638 DEBUG_FUNCTION tree
4639 debug_find_var_in_block_tree (tree var, tree block)
4641 tree t;
4643 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
4644 if (t == var)
4645 return block;
4647 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
4649 tree ret = debug_find_var_in_block_tree (var, t);
4650 if (ret)
4651 return ret;
4654 return NULL_TREE;
4657 /* Keep track of whether we're in a dummy function context. If we are,
4658 we don't want to invoke the set_current_function hook, because we'll
4659 get into trouble if the hook calls target_reinit () recursively or
4660 when the initial initialization is not yet complete. */
4662 static bool in_dummy_function;
4664 /* Invoke the target hook when setting cfun. Update the optimization options
4665 if the function uses different options than the default. */
4667 static void
4668 invoke_set_current_function_hook (tree fndecl)
4670 if (!in_dummy_function)
4672 tree opts = ((fndecl)
4673 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
4674 : optimization_default_node);
4676 if (!opts)
4677 opts = optimization_default_node;
4679 /* Change optimization options if needed. */
4680 if (optimization_current_node != opts)
4682 optimization_current_node = opts;
4683 cl_optimization_restore (&global_options, &global_options_set,
4684 TREE_OPTIMIZATION (opts));
4687 targetm.set_current_function (fndecl);
4688 this_fn_optabs = this_target_optabs;
4690 /* Initialize global alignment variables after op. */
4691 parse_alignment_opts ();
4693 if (opts != optimization_default_node)
4695 init_tree_optimization_optabs (opts);
4696 if (TREE_OPTIMIZATION_OPTABS (opts))
4697 this_fn_optabs = (struct target_optabs *)
4698 TREE_OPTIMIZATION_OPTABS (opts);
4703 /* cfun should never be set directly; use this function. */
4705 void
4706 set_cfun (struct function *new_cfun, bool force)
4708 if (cfun != new_cfun || force)
4710 cfun = new_cfun;
4711 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
4712 redirect_edge_var_map_empty ();
4716 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4718 static vec<function *> cfun_stack;
4720 /* Push the current cfun onto the stack, and set cfun to new_cfun. Also set
4721 current_function_decl accordingly. */
4723 void
4724 push_cfun (struct function *new_cfun)
4726 gcc_assert ((!cfun && !current_function_decl)
4727 || (cfun && current_function_decl == cfun->decl));
4728 cfun_stack.safe_push (cfun);
4729 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4730 set_cfun (new_cfun);
4733 /* Pop cfun from the stack. Also set current_function_decl accordingly. */
4735 void
4736 pop_cfun (void)
4738 struct function *new_cfun = cfun_stack.pop ();
4739 /* When in_dummy_function, we do have a cfun but current_function_decl is
4740 NULL. We also allow pushing NULL cfun and subsequently changing
4741 current_function_decl to something else and have both restored by
4742 pop_cfun. */
4743 gcc_checking_assert (in_dummy_function
4744 || !cfun
4745 || current_function_decl == cfun->decl);
4746 set_cfun (new_cfun);
4747 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4750 /* Return value of funcdef and increase it. */
4752 get_next_funcdef_no (void)
4754 return funcdef_no++;
4757 /* Return value of funcdef. */
4759 get_last_funcdef_no (void)
4761 return funcdef_no;
4764 /* Allocate and initialize the stack usage info data structure for the
4765 current function. */
4766 static void
4767 allocate_stack_usage_info (void)
4769 gcc_assert (!cfun->su);
4770 cfun->su = ggc_cleared_alloc<stack_usage> ();
4771 cfun->su->static_stack_size = -1;
4774 /* Allocate a function structure for FNDECL and set its contents
4775 to the defaults. Set cfun to the newly-allocated object.
4776 Some of the helper functions invoked during initialization assume
4777 that cfun has already been set. Therefore, assign the new object
4778 directly into cfun and invoke the back end hook explicitly at the
4779 very end, rather than initializing a temporary and calling set_cfun
4780 on it.
4782 ABSTRACT_P is true if this is a function that will never be seen by
4783 the middle-end. Such functions are front-end concepts (like C++
4784 function templates) that do not correspond directly to functions
4785 placed in object files. */
4787 void
4788 allocate_struct_function (tree fndecl, bool abstract_p)
4790 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
4792 cfun = ggc_cleared_alloc<function> ();
4794 init_eh_for_function ();
4796 if (init_machine_status)
4797 cfun->machine = (*init_machine_status) ();
4799 #ifdef OVERRIDE_ABI_FORMAT
4800 OVERRIDE_ABI_FORMAT (fndecl);
4801 #endif
4803 if (fndecl != NULL_TREE)
4805 DECL_STRUCT_FUNCTION (fndecl) = cfun;
4806 cfun->decl = fndecl;
4807 current_function_funcdef_no = get_next_funcdef_no ();
4810 invoke_set_current_function_hook (fndecl);
4812 if (fndecl != NULL_TREE)
4814 tree result = DECL_RESULT (fndecl);
4816 if (!abstract_p)
4818 /* Now that we have activated any function-specific attributes
4819 that might affect layout, particularly vector modes, relayout
4820 each of the parameters and the result. */
4821 relayout_decl (result);
4822 for (tree parm = DECL_ARGUMENTS (fndecl); parm;
4823 parm = DECL_CHAIN (parm))
4824 relayout_decl (parm);
4826 /* Similarly relayout the function decl. */
4827 targetm.target_option.relayout_function (fndecl);
4830 if (!abstract_p && aggregate_value_p (result, fndecl))
4832 #ifdef PCC_STATIC_STRUCT_RETURN
4833 cfun->returns_pcc_struct = 1;
4834 #endif
4835 cfun->returns_struct = 1;
4838 cfun->stdarg = stdarg_p (fntype);
4840 /* Assume all registers in stdarg functions need to be saved. */
4841 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
4842 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
4844 /* ??? This could be set on a per-function basis by the front-end
4845 but is this worth the hassle? */
4846 cfun->can_throw_non_call_exceptions = flag_non_call_exceptions;
4847 cfun->can_delete_dead_exceptions = flag_delete_dead_exceptions;
4849 if (!profile_flag && !flag_instrument_function_entry_exit)
4850 DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (fndecl) = 1;
4852 if (flag_callgraph_info)
4853 allocate_stack_usage_info ();
4856 /* Don't enable begin stmt markers if var-tracking at assignments is
4857 disabled. The markers make little sense without the variable
4858 binding annotations among them. */
4859 cfun->debug_nonbind_markers = lang_hooks.emits_begin_stmt
4860 && MAY_HAVE_DEBUG_MARKER_STMTS;
4862 cfun->x_range_query = &global_ranges;
4865 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4866 instead of just setting it. */
4868 void
4869 push_struct_function (tree fndecl)
4871 /* When in_dummy_function we might be in the middle of a pop_cfun and
4872 current_function_decl and cfun may not match. */
4873 gcc_assert (in_dummy_function
4874 || (!cfun && !current_function_decl)
4875 || (cfun && current_function_decl == cfun->decl));
4876 cfun_stack.safe_push (cfun);
4877 current_function_decl = fndecl;
4878 allocate_struct_function (fndecl, false);
4881 /* Reset crtl and other non-struct-function variables to defaults as
4882 appropriate for emitting rtl at the start of a function. */
4884 static void
4885 prepare_function_start (void)
4887 gcc_assert (!get_last_insn ());
4889 if (in_dummy_function)
4890 crtl->abi = &default_function_abi;
4891 else
4892 crtl->abi = &fndecl_abi (cfun->decl).base_abi ();
4894 init_temp_slots ();
4895 init_emit ();
4896 init_varasm_status ();
4897 init_expr ();
4898 default_rtl_profile ();
4900 if (flag_stack_usage_info && !flag_callgraph_info)
4901 allocate_stack_usage_info ();
4903 cse_not_expected = ! optimize;
4905 /* Caller save not needed yet. */
4906 caller_save_needed = 0;
4908 /* We haven't done register allocation yet. */
4909 reg_renumber = 0;
4911 /* Indicate that we have not instantiated virtual registers yet. */
4912 virtuals_instantiated = 0;
4914 /* Indicate that we want CONCATs now. */
4915 generating_concat_p = 1;
4917 /* Indicate we have no need of a frame pointer yet. */
4918 frame_pointer_needed = 0;
4921 void
4922 push_dummy_function (bool with_decl)
4924 tree fn_decl, fn_type, fn_result_decl;
4926 gcc_assert (!in_dummy_function);
4927 in_dummy_function = true;
4929 if (with_decl)
4931 fn_type = build_function_type_list (void_type_node, NULL_TREE);
4932 fn_decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, NULL_TREE,
4933 fn_type);
4934 fn_result_decl = build_decl (UNKNOWN_LOCATION, RESULT_DECL,
4935 NULL_TREE, void_type_node);
4936 DECL_RESULT (fn_decl) = fn_result_decl;
4937 DECL_ARTIFICIAL (fn_decl) = 1;
4938 tree fn_name = get_identifier (" ");
4939 SET_DECL_ASSEMBLER_NAME (fn_decl, fn_name);
4941 else
4942 fn_decl = NULL_TREE;
4944 push_struct_function (fn_decl);
4947 /* Initialize the rtl expansion mechanism so that we can do simple things
4948 like generate sequences. This is used to provide a context during global
4949 initialization of some passes. You must call expand_dummy_function_end
4950 to exit this context. */
4952 void
4953 init_dummy_function_start (void)
4955 push_dummy_function (false);
4956 prepare_function_start ();
4959 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4960 and initialize static variables for generating RTL for the statements
4961 of the function. */
4963 void
4964 init_function_start (tree subr)
4966 /* Initialize backend, if needed. */
4967 initialize_rtl ();
4969 prepare_function_start ();
4970 decide_function_section (subr);
4972 /* Warn if this value is an aggregate type,
4973 regardless of which calling convention we are using for it. */
4974 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4975 warning (OPT_Waggregate_return, "function returns an aggregate");
4978 /* Expand code to verify the stack_protect_guard. This is invoked at
4979 the end of a function to be protected. */
4981 void
4982 stack_protect_epilogue (void)
4984 tree guard_decl = crtl->stack_protect_guard_decl;
4985 rtx_code_label *label = gen_label_rtx ();
4986 rtx x, y;
4987 rtx_insn *seq = NULL;
4989 x = expand_normal (crtl->stack_protect_guard);
4991 if (targetm.have_stack_protect_combined_test () && guard_decl)
4993 gcc_assert (DECL_P (guard_decl));
4994 y = DECL_RTL (guard_decl);
4995 /* Allow the target to compute address of Y and compare it with X without
4996 leaking Y into a register. This combined address + compare pattern
4997 allows the target to prevent spilling of any intermediate results by
4998 splitting it after register allocator. */
4999 seq = targetm.gen_stack_protect_combined_test (x, y, label);
5001 else
5003 if (guard_decl)
5004 y = expand_normal (guard_decl);
5005 else
5006 y = const0_rtx;
5008 /* Allow the target to compare Y with X without leaking either into
5009 a register. */
5010 if (targetm.have_stack_protect_test ())
5011 seq = targetm.gen_stack_protect_test (x, y, label);
5014 if (seq)
5015 emit_insn (seq);
5016 else
5017 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
5019 /* The noreturn predictor has been moved to the tree level. The rtl-level
5020 predictors estimate this branch about 20%, which isn't enough to get
5021 things moved out of line. Since this is the only extant case of adding
5022 a noreturn function at the rtl level, it doesn't seem worth doing ought
5023 except adding the prediction by hand. */
5024 rtx_insn *tmp = get_last_insn ();
5025 if (JUMP_P (tmp))
5026 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
5028 expand_call (targetm.stack_protect_fail (), NULL_RTX, /*ignore=*/true);
5029 free_temp_slots ();
5030 emit_label (label);
5033 /* Start the RTL for a new function, and set variables used for
5034 emitting RTL.
5035 SUBR is the FUNCTION_DECL node.
5036 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
5037 the function's parameters, which must be run at any return statement. */
5039 void
5040 expand_function_start (tree subr)
5042 /* Make sure volatile mem refs aren't considered
5043 valid operands of arithmetic insns. */
5044 init_recog_no_volatile ();
5046 crtl->profile
5047 = (profile_flag
5048 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
5050 crtl->limit_stack
5051 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
5053 /* Make the label for return statements to jump to. Do not special
5054 case machines with special return instructions -- they will be
5055 handled later during jump, ifcvt, or epilogue creation. */
5056 return_label = gen_label_rtx ();
5058 /* Initialize rtx used to return the value. */
5059 /* Do this before assign_parms so that we copy the struct value address
5060 before any library calls that assign parms might generate. */
5062 /* Decide whether to return the value in memory or in a register. */
5063 tree res = DECL_RESULT (subr);
5064 if (aggregate_value_p (res, subr))
5066 /* Returning something that won't go in a register. */
5067 rtx value_address = 0;
5069 #ifdef PCC_STATIC_STRUCT_RETURN
5070 if (cfun->returns_pcc_struct)
5072 int size = int_size_in_bytes (TREE_TYPE (res));
5073 value_address = assemble_static_space (size);
5075 else
5076 #endif
5078 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
5079 /* Expect to be passed the address of a place to store the value.
5080 If it is passed as an argument, assign_parms will take care of
5081 it. */
5082 if (sv)
5084 value_address = gen_reg_rtx (Pmode);
5085 emit_move_insn (value_address, sv);
5088 if (value_address)
5090 rtx x = value_address;
5091 if (!DECL_BY_REFERENCE (res))
5093 x = gen_rtx_MEM (DECL_MODE (res), x);
5094 set_mem_attributes (x, res, 1);
5096 set_parm_rtl (res, x);
5099 else if (DECL_MODE (res) == VOIDmode)
5100 /* If return mode is void, this decl rtl should not be used. */
5101 set_parm_rtl (res, NULL_RTX);
5102 else
5104 /* Compute the return values into a pseudo reg, which we will copy
5105 into the true return register after the cleanups are done. */
5106 tree return_type = TREE_TYPE (res);
5108 /* If we may coalesce this result, make sure it has the expected mode
5109 in case it was promoted. But we need not bother about BLKmode. */
5110 machine_mode promoted_mode
5111 = flag_tree_coalesce_vars && is_gimple_reg (res)
5112 ? promote_ssa_mode (ssa_default_def (cfun, res), NULL)
5113 : BLKmode;
5115 if (promoted_mode != BLKmode)
5116 set_parm_rtl (res, gen_reg_rtx (promoted_mode));
5117 else if (TYPE_MODE (return_type) != BLKmode
5118 && targetm.calls.return_in_msb (return_type))
5119 /* expand_function_end will insert the appropriate padding in
5120 this case. Use the return value's natural (unpadded) mode
5121 within the function proper. */
5122 set_parm_rtl (res, gen_reg_rtx (TYPE_MODE (return_type)));
5123 else
5125 /* In order to figure out what mode to use for the pseudo, we
5126 figure out what the mode of the eventual return register will
5127 actually be, and use that. */
5128 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
5130 /* Structures that are returned in registers are not
5131 aggregate_value_p, so we may see a PARALLEL or a REG. */
5132 if (REG_P (hard_reg))
5133 set_parm_rtl (res, gen_reg_rtx (GET_MODE (hard_reg)));
5134 else
5136 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
5137 set_parm_rtl (res, gen_group_rtx (hard_reg));
5141 /* Set DECL_REGISTER flag so that expand_function_end will copy the
5142 result to the real return register(s). */
5143 DECL_REGISTER (res) = 1;
5146 /* Initialize rtx for parameters and local variables.
5147 In some cases this requires emitting insns. */
5148 assign_parms (subr);
5150 /* If function gets a static chain arg, store it. */
5151 if (cfun->static_chain_decl)
5153 tree parm = cfun->static_chain_decl;
5154 rtx local, chain;
5155 rtx_insn *insn;
5156 int unsignedp;
5158 local = gen_reg_rtx (promote_decl_mode (parm, &unsignedp));
5159 chain = targetm.calls.static_chain (current_function_decl, true);
5161 set_decl_incoming_rtl (parm, chain, false);
5162 set_parm_rtl (parm, local);
5163 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
5165 if (GET_MODE (local) != GET_MODE (chain))
5167 convert_move (local, chain, unsignedp);
5168 insn = get_last_insn ();
5170 else
5171 insn = emit_move_insn (local, chain);
5173 /* Mark the register as eliminable, similar to parameters. */
5174 if (MEM_P (chain)
5175 && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0)))
5176 set_dst_reg_note (insn, REG_EQUIV, chain, local);
5178 /* If we aren't optimizing, save the static chain onto the stack. */
5179 if (!optimize)
5181 tree saved_static_chain_decl
5182 = build_decl (DECL_SOURCE_LOCATION (parm), VAR_DECL,
5183 DECL_NAME (parm), TREE_TYPE (parm));
5184 rtx saved_static_chain_rtx
5185 = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5186 SET_DECL_RTL (saved_static_chain_decl, saved_static_chain_rtx);
5187 emit_move_insn (saved_static_chain_rtx, chain);
5188 SET_DECL_VALUE_EXPR (parm, saved_static_chain_decl);
5189 DECL_HAS_VALUE_EXPR_P (parm) = 1;
5193 /* The following was moved from init_function_start.
5194 The move was supposed to make sdb output more accurate. */
5195 /* Indicate the beginning of the function body,
5196 as opposed to parm setup. */
5197 emit_note (NOTE_INSN_FUNCTION_BEG);
5199 gcc_assert (NOTE_P (get_last_insn ()));
5201 parm_birth_insn = get_last_insn ();
5203 /* If the function receives a non-local goto, then store the
5204 bits we need to restore the frame pointer. */
5205 if (cfun->nonlocal_goto_save_area)
5207 tree t_save;
5208 rtx r_save;
5210 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
5211 gcc_assert (DECL_RTL_SET_P (var));
5213 t_save = build4 (ARRAY_REF,
5214 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
5215 cfun->nonlocal_goto_save_area,
5216 integer_zero_node, NULL_TREE, NULL_TREE);
5217 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
5218 gcc_assert (GET_MODE (r_save) == Pmode);
5220 emit_move_insn (r_save, hard_frame_pointer_rtx);
5221 update_nonlocal_goto_save_area ();
5224 if (crtl->profile)
5226 #ifdef PROFILE_HOOK
5227 PROFILE_HOOK (current_function_funcdef_no);
5228 #endif
5231 /* If we are doing generic stack checking, the probe should go here. */
5232 if (flag_stack_check == GENERIC_STACK_CHECK)
5233 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
5236 void
5237 pop_dummy_function (void)
5239 pop_cfun ();
5240 in_dummy_function = false;
5243 /* Undo the effects of init_dummy_function_start. */
5244 void
5245 expand_dummy_function_end (void)
5247 gcc_assert (in_dummy_function);
5249 /* End any sequences that failed to be closed due to syntax errors. */
5250 while (in_sequence_p ())
5251 end_sequence ();
5253 /* Outside function body, can't compute type's actual size
5254 until next function's body starts. */
5256 free_after_parsing (cfun);
5257 free_after_compilation (cfun);
5258 pop_dummy_function ();
5261 /* Helper for diddle_return_value. */
5263 void
5264 diddle_return_value_1 (void (*doit) (rtx, void *), void *arg, rtx outgoing)
5266 if (! outgoing)
5267 return;
5269 if (REG_P (outgoing))
5270 (*doit) (outgoing, arg);
5271 else if (GET_CODE (outgoing) == PARALLEL)
5273 int i;
5275 for (i = 0; i < XVECLEN (outgoing, 0); i++)
5277 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
5279 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
5280 (*doit) (x, arg);
5285 /* Call DOIT for each hard register used as a return value from
5286 the current function. */
5288 void
5289 diddle_return_value (void (*doit) (rtx, void *), void *arg)
5291 diddle_return_value_1 (doit, arg, crtl->return_rtx);
5294 static void
5295 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
5297 emit_clobber (reg);
5300 void
5301 clobber_return_register (void)
5303 diddle_return_value (do_clobber_return_reg, NULL);
5305 /* In case we do use pseudo to return value, clobber it too. */
5306 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5308 tree decl_result = DECL_RESULT (current_function_decl);
5309 rtx decl_rtl = DECL_RTL (decl_result);
5310 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
5312 do_clobber_return_reg (decl_rtl, NULL);
5317 static void
5318 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
5320 emit_use (reg);
5323 static void
5324 use_return_register (void)
5326 diddle_return_value (do_use_return_reg, NULL);
5329 /* Generate RTL for the end of the current function. */
5331 void
5332 expand_function_end (void)
5334 /* If arg_pointer_save_area was referenced only from a nested
5335 function, we will not have initialized it yet. Do that now. */
5336 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
5337 get_arg_pointer_save_area ();
5339 /* If we are doing generic stack checking and this function makes calls,
5340 do a stack probe at the start of the function to ensure we have enough
5341 space for another stack frame. */
5342 if (flag_stack_check == GENERIC_STACK_CHECK)
5344 rtx_insn *insn, *seq;
5346 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5347 if (CALL_P (insn))
5349 rtx max_frame_size = GEN_INT (STACK_CHECK_MAX_FRAME_SIZE);
5350 start_sequence ();
5351 if (STACK_CHECK_MOVING_SP)
5352 anti_adjust_stack_and_probe (max_frame_size, true);
5353 else
5354 probe_stack_range (STACK_OLD_CHECK_PROTECT, max_frame_size);
5355 seq = get_insns ();
5356 end_sequence ();
5357 set_insn_locations (seq, prologue_location);
5358 emit_insn_before (seq, stack_check_probe_note);
5359 break;
5363 /* End any sequences that failed to be closed due to syntax errors. */
5364 while (in_sequence_p ())
5365 end_sequence ();
5367 clear_pending_stack_adjust ();
5368 do_pending_stack_adjust ();
5370 /* Output a linenumber for the end of the function.
5371 SDB depended on this. */
5372 set_curr_insn_location (input_location);
5374 /* Before the return label (if any), clobber the return
5375 registers so that they are not propagated live to the rest of
5376 the function. This can only happen with functions that drop
5377 through; if there had been a return statement, there would
5378 have either been a return rtx, or a jump to the return label.
5380 We delay actual code generation after the current_function_value_rtx
5381 is computed. */
5382 rtx_insn *clobber_after = get_last_insn ();
5384 /* Output the label for the actual return from the function. */
5385 emit_label (return_label);
5387 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
5389 /* Let except.c know where it should emit the call to unregister
5390 the function context for sjlj exceptions. */
5391 if (flag_exceptions)
5392 sjlj_emit_function_exit_after (get_last_insn ());
5395 /* If this is an implementation of throw, do what's necessary to
5396 communicate between __builtin_eh_return and the epilogue. */
5397 expand_eh_return ();
5399 /* If stack protection is enabled for this function, check the guard. */
5400 if (crtl->stack_protect_guard
5401 && targetm.stack_protect_runtime_enabled_p ()
5402 && naked_return_label == NULL_RTX)
5403 stack_protect_epilogue ();
5405 /* If scalar return value was computed in a pseudo-reg, or was a named
5406 return value that got dumped to the stack, copy that to the hard
5407 return register. */
5408 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5410 tree decl_result = DECL_RESULT (current_function_decl);
5411 rtx decl_rtl = DECL_RTL (decl_result);
5413 if (REG_P (decl_rtl)
5414 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
5415 : DECL_REGISTER (decl_result))
5417 rtx real_decl_rtl = crtl->return_rtx;
5418 complex_mode cmode;
5420 /* This should be set in assign_parms. */
5421 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
5423 /* If this is a BLKmode structure being returned in registers,
5424 then use the mode computed in expand_return. Note that if
5425 decl_rtl is memory, then its mode may have been changed,
5426 but that crtl->return_rtx has not. */
5427 if (GET_MODE (real_decl_rtl) == BLKmode)
5428 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
5430 /* If a non-BLKmode return value should be padded at the least
5431 significant end of the register, shift it left by the appropriate
5432 amount. BLKmode results are handled using the group load/store
5433 machinery. */
5434 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
5435 && REG_P (real_decl_rtl)
5436 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
5438 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
5439 REGNO (real_decl_rtl)),
5440 decl_rtl);
5441 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
5443 else if (GET_CODE (real_decl_rtl) == PARALLEL)
5445 /* If expand_function_start has created a PARALLEL for decl_rtl,
5446 move the result to the real return registers. Otherwise, do
5447 a group load from decl_rtl for a named return. */
5448 if (GET_CODE (decl_rtl) == PARALLEL)
5449 emit_group_move (real_decl_rtl, decl_rtl);
5450 else
5451 emit_group_load (real_decl_rtl, decl_rtl,
5452 TREE_TYPE (decl_result),
5453 int_size_in_bytes (TREE_TYPE (decl_result)));
5455 /* In the case of complex integer modes smaller than a word, we'll
5456 need to generate some non-trivial bitfield insertions. Do that
5457 on a pseudo and not the hard register. */
5458 else if (GET_CODE (decl_rtl) == CONCAT
5459 && is_complex_int_mode (GET_MODE (decl_rtl), &cmode)
5460 && GET_MODE_BITSIZE (cmode) <= BITS_PER_WORD)
5462 int old_generating_concat_p;
5463 rtx tmp;
5465 old_generating_concat_p = generating_concat_p;
5466 generating_concat_p = 0;
5467 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
5468 generating_concat_p = old_generating_concat_p;
5470 emit_move_insn (tmp, decl_rtl);
5471 emit_move_insn (real_decl_rtl, tmp);
5473 /* If a named return value dumped decl_return to memory, then
5474 we may need to re-do the PROMOTE_MODE signed/unsigned
5475 extension. */
5476 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
5478 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
5479 promote_function_mode (TREE_TYPE (decl_result),
5480 GET_MODE (decl_rtl), &unsignedp,
5481 TREE_TYPE (current_function_decl), 1);
5483 convert_move (real_decl_rtl, decl_rtl, unsignedp);
5485 else
5486 emit_move_insn (real_decl_rtl, decl_rtl);
5490 /* If returning a structure, arrange to return the address of the value
5491 in a place where debuggers expect to find it.
5493 If returning a structure PCC style,
5494 the caller also depends on this value.
5495 And cfun->returns_pcc_struct is not necessarily set. */
5496 if ((cfun->returns_struct || cfun->returns_pcc_struct)
5497 && !targetm.calls.omit_struct_return_reg)
5499 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
5500 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
5501 rtx outgoing;
5503 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
5504 type = TREE_TYPE (type);
5505 else
5506 value_address = XEXP (value_address, 0);
5508 outgoing = targetm.calls.function_value (build_pointer_type (type),
5509 current_function_decl, true);
5511 /* Mark this as a function return value so integrate will delete the
5512 assignment and USE below when inlining this function. */
5513 REG_FUNCTION_VALUE_P (outgoing) = 1;
5515 /* The address may be ptr_mode and OUTGOING may be Pmode. */
5516 scalar_int_mode mode = as_a <scalar_int_mode> (GET_MODE (outgoing));
5517 value_address = convert_memory_address (mode, value_address);
5519 emit_move_insn (outgoing, value_address);
5521 /* Show return register used to hold result (in this case the address
5522 of the result. */
5523 crtl->return_rtx = outgoing;
5526 /* Emit the actual code to clobber return register. Don't emit
5527 it if clobber_after is a barrier, then the previous basic block
5528 certainly doesn't fall thru into the exit block. */
5529 if (!BARRIER_P (clobber_after))
5531 start_sequence ();
5532 clobber_return_register ();
5533 rtx_insn *seq = get_insns ();
5534 end_sequence ();
5536 emit_insn_after (seq, clobber_after);
5539 /* Output the label for the naked return from the function. */
5540 if (naked_return_label)
5541 emit_label (naked_return_label);
5543 /* @@@ This is a kludge. We want to ensure that instructions that
5544 may trap are not moved into the epilogue by scheduling, because
5545 we don't always emit unwind information for the epilogue. */
5546 if (cfun->can_throw_non_call_exceptions
5547 && targetm_common.except_unwind_info (&global_options) != UI_SJLJ)
5548 emit_insn (gen_blockage ());
5550 /* If stack protection is enabled for this function, check the guard. */
5551 if (crtl->stack_protect_guard
5552 && targetm.stack_protect_runtime_enabled_p ()
5553 && naked_return_label)
5554 stack_protect_epilogue ();
5556 /* If we had calls to alloca, and this machine needs
5557 an accurate stack pointer to exit the function,
5558 insert some code to save and restore the stack pointer. */
5559 if (! EXIT_IGNORE_STACK
5560 && cfun->calls_alloca)
5562 rtx tem = 0;
5564 start_sequence ();
5565 emit_stack_save (SAVE_FUNCTION, &tem);
5566 rtx_insn *seq = get_insns ();
5567 end_sequence ();
5568 emit_insn_before (seq, parm_birth_insn);
5570 emit_stack_restore (SAVE_FUNCTION, tem);
5573 /* ??? This should no longer be necessary since stupid is no longer with
5574 us, but there are some parts of the compiler (eg reload_combine, and
5575 sh mach_dep_reorg) that still try and compute their own lifetime info
5576 instead of using the general framework. */
5577 use_return_register ();
5581 get_arg_pointer_save_area (void)
5583 rtx ret = arg_pointer_save_area;
5585 if (! ret)
5587 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5588 arg_pointer_save_area = ret;
5591 if (! crtl->arg_pointer_save_area_init)
5593 /* Save the arg pointer at the beginning of the function. The
5594 generated stack slot may not be a valid memory address, so we
5595 have to check it and fix it if necessary. */
5596 start_sequence ();
5597 emit_move_insn (validize_mem (copy_rtx (ret)),
5598 crtl->args.internal_arg_pointer);
5599 rtx_insn *seq = get_insns ();
5600 end_sequence ();
5602 push_topmost_sequence ();
5603 emit_insn_after (seq, entry_of_function ());
5604 pop_topmost_sequence ();
5606 crtl->arg_pointer_save_area_init = true;
5609 return ret;
5613 /* If debugging dumps are requested, dump information about how the
5614 target handled -fstack-check=clash for the prologue.
5616 PROBES describes what if any probes were emitted.
5618 RESIDUALS indicates if the prologue had any residual allocation
5619 (i.e. total allocation was not a multiple of PROBE_INTERVAL). */
5621 void
5622 dump_stack_clash_frame_info (enum stack_clash_probes probes, bool residuals)
5624 if (!dump_file)
5625 return;
5627 switch (probes)
5629 case NO_PROBE_NO_FRAME:
5630 fprintf (dump_file,
5631 "Stack clash no probe no stack adjustment in prologue.\n");
5632 break;
5633 case NO_PROBE_SMALL_FRAME:
5634 fprintf (dump_file,
5635 "Stack clash no probe small stack adjustment in prologue.\n");
5636 break;
5637 case PROBE_INLINE:
5638 fprintf (dump_file, "Stack clash inline probes in prologue.\n");
5639 break;
5640 case PROBE_LOOP:
5641 fprintf (dump_file, "Stack clash probe loop in prologue.\n");
5642 break;
5645 if (residuals)
5646 fprintf (dump_file, "Stack clash residual allocation in prologue.\n");
5647 else
5648 fprintf (dump_file, "Stack clash no residual allocation in prologue.\n");
5650 if (frame_pointer_needed)
5651 fprintf (dump_file, "Stack clash frame pointer needed.\n");
5652 else
5653 fprintf (dump_file, "Stack clash no frame pointer needed.\n");
5655 if (TREE_THIS_VOLATILE (cfun->decl))
5656 fprintf (dump_file,
5657 "Stack clash noreturn prologue, assuming no implicit"
5658 " probes in caller.\n");
5659 else
5660 fprintf (dump_file,
5661 "Stack clash not noreturn prologue.\n");
5664 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
5665 for the first time. */
5667 static void
5668 record_insns (rtx_insn *insns, rtx end, hash_table<insn_cache_hasher> **hashp)
5670 rtx_insn *tmp;
5671 hash_table<insn_cache_hasher> *hash = *hashp;
5673 if (hash == NULL)
5674 *hashp = hash = hash_table<insn_cache_hasher>::create_ggc (17);
5676 for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
5678 rtx *slot = hash->find_slot (tmp, INSERT);
5679 gcc_assert (*slot == NULL);
5680 *slot = tmp;
5684 /* INSN has been duplicated or replaced by as COPY, perhaps by duplicating a
5685 basic block, splitting or peepholes. If INSN is a prologue or epilogue
5686 insn, then record COPY as well. */
5688 void
5689 maybe_copy_prologue_epilogue_insn (rtx insn, rtx copy)
5691 hash_table<insn_cache_hasher> *hash;
5692 rtx *slot;
5694 hash = epilogue_insn_hash;
5695 if (!hash || !hash->find (insn))
5697 hash = prologue_insn_hash;
5698 if (!hash || !hash->find (insn))
5699 return;
5702 slot = hash->find_slot (copy, INSERT);
5703 gcc_assert (*slot == NULL);
5704 *slot = copy;
5707 /* Determine if any INSNs in HASH are, or are part of, INSN. Because
5708 we can be running after reorg, SEQUENCE rtl is possible. */
5710 static bool
5711 contains (const rtx_insn *insn, hash_table<insn_cache_hasher> *hash)
5713 if (hash == NULL)
5714 return false;
5716 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
5718 rtx_sequence *seq = as_a <rtx_sequence *> (PATTERN (insn));
5719 int i;
5720 for (i = seq->len () - 1; i >= 0; i--)
5721 if (hash->find (seq->element (i)))
5722 return true;
5723 return false;
5726 return hash->find (const_cast<rtx_insn *> (insn)) != NULL;
5730 prologue_contains (const rtx_insn *insn)
5732 return contains (insn, prologue_insn_hash);
5736 epilogue_contains (const rtx_insn *insn)
5738 return contains (insn, epilogue_insn_hash);
5742 prologue_epilogue_contains (const rtx_insn *insn)
5744 if (contains (insn, prologue_insn_hash))
5745 return 1;
5746 if (contains (insn, epilogue_insn_hash))
5747 return 1;
5748 return 0;
5751 void
5752 record_prologue_seq (rtx_insn *seq)
5754 record_insns (seq, NULL, &prologue_insn_hash);
5757 void
5758 record_epilogue_seq (rtx_insn *seq)
5760 record_insns (seq, NULL, &epilogue_insn_hash);
5763 /* Set JUMP_LABEL for a return insn. */
5765 void
5766 set_return_jump_label (rtx_insn *returnjump)
5768 rtx pat = PATTERN (returnjump);
5769 if (GET_CODE (pat) == PARALLEL)
5770 pat = XVECEXP (pat, 0, 0);
5771 if (ANY_RETURN_P (pat))
5772 JUMP_LABEL (returnjump) = pat;
5773 else
5774 JUMP_LABEL (returnjump) = ret_rtx;
5777 /* Return a sequence to be used as the split prologue for the current
5778 function, or NULL. */
5780 static rtx_insn *
5781 make_split_prologue_seq (void)
5783 if (!flag_split_stack
5784 || lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (cfun->decl)))
5785 return NULL;
5787 start_sequence ();
5788 emit_insn (targetm.gen_split_stack_prologue ());
5789 rtx_insn *seq = get_insns ();
5790 end_sequence ();
5792 record_insns (seq, NULL, &prologue_insn_hash);
5793 set_insn_locations (seq, prologue_location);
5795 return seq;
5798 /* Return a sequence to be used as the prologue for the current function,
5799 or NULL. */
5801 static rtx_insn *
5802 make_prologue_seq (void)
5804 if (!targetm.have_prologue ())
5805 return NULL;
5807 start_sequence ();
5808 rtx_insn *seq = targetm.gen_prologue ();
5809 emit_insn (seq);
5811 /* Insert an explicit USE for the frame pointer
5812 if the profiling is on and the frame pointer is required. */
5813 if (crtl->profile && frame_pointer_needed)
5814 emit_use (hard_frame_pointer_rtx);
5816 /* Retain a map of the prologue insns. */
5817 record_insns (seq, NULL, &prologue_insn_hash);
5818 emit_note (NOTE_INSN_PROLOGUE_END);
5820 /* Ensure that instructions are not moved into the prologue when
5821 profiling is on. The call to the profiling routine can be
5822 emitted within the live range of a call-clobbered register. */
5823 if (!targetm.profile_before_prologue () && crtl->profile)
5824 emit_insn (gen_blockage ());
5826 seq = get_insns ();
5827 end_sequence ();
5828 set_insn_locations (seq, prologue_location);
5830 return seq;
5833 /* Emit a sequence of insns to zero the call-used registers before RET
5834 according to ZERO_REGS_TYPE. */
5836 static void
5837 gen_call_used_regs_seq (rtx_insn *ret, unsigned int zero_regs_type)
5839 bool only_gpr = true;
5840 bool only_used = true;
5841 bool only_arg = true;
5843 /* No need to zero call-used-regs in main (). */
5844 if (MAIN_NAME_P (DECL_NAME (current_function_decl)))
5845 return;
5847 /* No need to zero call-used-regs if __builtin_eh_return is called
5848 since it isn't a normal function return. */
5849 if (crtl->calls_eh_return)
5850 return;
5852 /* If only_gpr is true, only zero call-used registers that are
5853 general-purpose registers; if only_used is true, only zero
5854 call-used registers that are used in the current function;
5855 if only_arg is true, only zero call-used registers that pass
5856 parameters defined by the flatform's calling conversion. */
5858 using namespace zero_regs_flags;
5860 only_gpr = zero_regs_type & ONLY_GPR;
5861 only_used = zero_regs_type & ONLY_USED;
5862 only_arg = zero_regs_type & ONLY_ARG;
5864 /* For each of the hard registers, we should zero it if:
5865 1. it is a call-used register;
5866 and 2. it is not a fixed register;
5867 and 3. it is not live at the return of the routine;
5868 and 4. it is general registor if only_gpr is true;
5869 and 5. it is used in the routine if only_used is true;
5870 and 6. it is a register that passes parameter if only_arg is true. */
5872 /* First, prepare the data flow information. */
5873 basic_block bb = BLOCK_FOR_INSN (ret);
5874 auto_bitmap live_out;
5875 bitmap_copy (live_out, df_get_live_out (bb));
5876 df_simulate_initialize_backwards (bb, live_out);
5877 df_simulate_one_insn_backwards (bb, ret, live_out);
5879 HARD_REG_SET selected_hardregs;
5880 CLEAR_HARD_REG_SET (selected_hardregs);
5881 for (unsigned int regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5883 if (!crtl->abi->clobbers_full_reg_p (regno))
5884 continue;
5885 if (fixed_regs[regno])
5886 continue;
5887 if (REGNO_REG_SET_P (live_out, regno))
5888 continue;
5889 if (only_gpr
5890 && !TEST_HARD_REG_BIT (reg_class_contents[GENERAL_REGS], regno))
5891 continue;
5892 if (only_used && !df_regs_ever_live_p (regno))
5893 continue;
5894 if (only_arg && !FUNCTION_ARG_REGNO_P (regno))
5895 continue;
5896 #ifdef LEAF_REG_REMAP
5897 if (crtl->uses_only_leaf_regs && LEAF_REG_REMAP (regno) < 0)
5898 continue;
5899 #endif
5901 /* Now this is a register that we might want to zero. */
5902 SET_HARD_REG_BIT (selected_hardregs, regno);
5905 if (hard_reg_set_empty_p (selected_hardregs))
5906 return;
5908 /* Now that we have a hard register set that needs to be zeroed, pass it to
5909 target to generate zeroing sequence. */
5910 HARD_REG_SET zeroed_hardregs;
5911 start_sequence ();
5912 zeroed_hardregs = targetm.calls.zero_call_used_regs (selected_hardregs);
5913 rtx_insn *seq = get_insns ();
5914 end_sequence ();
5915 if (seq)
5917 /* Emit the memory blockage and register clobber asm volatile before
5918 the whole sequence. */
5919 start_sequence ();
5920 expand_asm_reg_clobber_mem_blockage (zeroed_hardregs);
5921 rtx_insn *seq_barrier = get_insns ();
5922 end_sequence ();
5924 emit_insn_before (seq_barrier, ret);
5925 emit_insn_before (seq, ret);
5927 /* Update the data flow information. */
5928 crtl->must_be_zero_on_return |= zeroed_hardregs;
5929 df_set_bb_dirty (EXIT_BLOCK_PTR_FOR_FN (cfun));
5934 /* Return a sequence to be used as the epilogue for the current function,
5935 or NULL. */
5937 static rtx_insn *
5938 make_epilogue_seq (void)
5940 if (!targetm.have_epilogue ())
5941 return NULL;
5943 start_sequence ();
5944 emit_note (NOTE_INSN_EPILOGUE_BEG);
5945 rtx_insn *seq = targetm.gen_epilogue ();
5946 if (seq)
5947 emit_jump_insn (seq);
5949 /* Retain a map of the epilogue insns. */
5950 record_insns (seq, NULL, &epilogue_insn_hash);
5951 set_insn_locations (seq, epilogue_location);
5953 seq = get_insns ();
5954 rtx_insn *returnjump = get_last_insn ();
5955 end_sequence ();
5957 if (JUMP_P (returnjump))
5958 set_return_jump_label (returnjump);
5960 return seq;
5964 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5965 this into place with notes indicating where the prologue ends and where
5966 the epilogue begins. Update the basic block information when possible.
5968 Notes on epilogue placement:
5969 There are several kinds of edges to the exit block:
5970 * a single fallthru edge from LAST_BB
5971 * possibly, edges from blocks containing sibcalls
5972 * possibly, fake edges from infinite loops
5974 The epilogue is always emitted on the fallthru edge from the last basic
5975 block in the function, LAST_BB, into the exit block.
5977 If LAST_BB is empty except for a label, it is the target of every
5978 other basic block in the function that ends in a return. If a
5979 target has a return or simple_return pattern (possibly with
5980 conditional variants), these basic blocks can be changed so that a
5981 return insn is emitted into them, and their target is adjusted to
5982 the real exit block.
5984 Notes on shrink wrapping: We implement a fairly conservative
5985 version of shrink-wrapping rather than the textbook one. We only
5986 generate a single prologue and a single epilogue. This is
5987 sufficient to catch a number of interesting cases involving early
5988 exits.
5990 First, we identify the blocks that require the prologue to occur before
5991 them. These are the ones that modify a call-saved register, or reference
5992 any of the stack or frame pointer registers. To simplify things, we then
5993 mark everything reachable from these blocks as also requiring a prologue.
5994 This takes care of loops automatically, and avoids the need to examine
5995 whether MEMs reference the frame, since it is sufficient to check for
5996 occurrences of the stack or frame pointer.
5998 We then compute the set of blocks for which the need for a prologue
5999 is anticipatable (borrowing terminology from the shrink-wrapping
6000 description in Muchnick's book). These are the blocks which either
6001 require a prologue themselves, or those that have only successors
6002 where the prologue is anticipatable. The prologue needs to be
6003 inserted on all edges from BB1->BB2 where BB2 is in ANTIC and BB1
6004 is not. For the moment, we ensure that only one such edge exists.
6006 The epilogue is placed as described above, but we make a
6007 distinction between inserting return and simple_return patterns
6008 when modifying other blocks that end in a return. Blocks that end
6009 in a sibcall omit the sibcall_epilogue if the block is not in
6010 ANTIC. */
6012 void
6013 thread_prologue_and_epilogue_insns (void)
6015 df_analyze ();
6017 /* Can't deal with multiple successors of the entry block at the
6018 moment. Function should always have at least one entry
6019 point. */
6020 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
6022 edge entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
6023 edge orig_entry_edge = entry_edge;
6025 rtx_insn *split_prologue_seq = make_split_prologue_seq ();
6026 rtx_insn *prologue_seq = make_prologue_seq ();
6027 rtx_insn *epilogue_seq = make_epilogue_seq ();
6029 /* Try to perform a kind of shrink-wrapping, making sure the
6030 prologue/epilogue is emitted only around those parts of the
6031 function that require it. */
6032 try_shrink_wrapping (&entry_edge, prologue_seq);
6034 /* If the target can handle splitting the prologue/epilogue into separate
6035 components, try to shrink-wrap these components separately. */
6036 try_shrink_wrapping_separate (entry_edge->dest);
6038 /* If that did anything for any component we now need the generate the
6039 "main" prologue again. Because some targets require some of these
6040 to be called in a specific order (i386 requires the split prologue
6041 to be first, for example), we create all three sequences again here.
6042 If this does not work for some target, that target should not enable
6043 separate shrink-wrapping. */
6044 if (crtl->shrink_wrapped_separate)
6046 split_prologue_seq = make_split_prologue_seq ();
6047 prologue_seq = make_prologue_seq ();
6048 epilogue_seq = make_epilogue_seq ();
6051 rtl_profile_for_bb (EXIT_BLOCK_PTR_FOR_FN (cfun));
6053 /* A small fib -- epilogue is not yet completed, but we wish to re-use
6054 this marker for the splits of EH_RETURN patterns, and nothing else
6055 uses the flag in the meantime. */
6056 epilogue_completed = 1;
6058 /* Find non-fallthru edges that end with EH_RETURN instructions. On
6059 some targets, these get split to a special version of the epilogue
6060 code. In order to be able to properly annotate these with unwind
6061 info, try to split them now. If we get a valid split, drop an
6062 EPILOGUE_BEG note and mark the insns as epilogue insns. */
6063 edge e;
6064 edge_iterator ei;
6065 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6067 rtx_insn *prev, *last, *trial;
6069 if (e->flags & EDGE_FALLTHRU)
6070 continue;
6071 last = BB_END (e->src);
6072 if (!eh_returnjump_p (last))
6073 continue;
6075 prev = PREV_INSN (last);
6076 trial = try_split (PATTERN (last), last, 1);
6077 if (trial == last)
6078 continue;
6080 record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
6081 emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
6084 edge exit_fallthru_edge = find_fallthru_edge (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
6086 if (exit_fallthru_edge)
6088 if (epilogue_seq)
6090 insert_insn_on_edge (epilogue_seq, exit_fallthru_edge);
6091 commit_edge_insertions ();
6093 /* The epilogue insns we inserted may cause the exit edge to no longer
6094 be fallthru. */
6095 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6097 if (((e->flags & EDGE_FALLTHRU) != 0)
6098 && returnjump_p (BB_END (e->src)))
6099 e->flags &= ~EDGE_FALLTHRU;
6102 else if (next_active_insn (BB_END (exit_fallthru_edge->src)))
6104 /* We have a fall-through edge to the exit block, the source is not
6105 at the end of the function, and there will be an assembler epilogue
6106 at the end of the function.
6107 We can't use force_nonfallthru here, because that would try to
6108 use return. Inserting a jump 'by hand' is extremely messy, so
6109 we take advantage of cfg_layout_finalize using
6110 fixup_fallthru_exit_predecessor. */
6111 cfg_layout_initialize (0);
6112 basic_block cur_bb;
6113 FOR_EACH_BB_FN (cur_bb, cfun)
6114 if (cur_bb->index >= NUM_FIXED_BLOCKS
6115 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
6116 cur_bb->aux = cur_bb->next_bb;
6117 cfg_layout_finalize ();
6121 /* Insert the prologue. */
6123 rtl_profile_for_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
6125 if (split_prologue_seq || prologue_seq)
6127 rtx_insn *split_prologue_insn = split_prologue_seq;
6128 if (split_prologue_seq)
6130 while (split_prologue_insn && !NONDEBUG_INSN_P (split_prologue_insn))
6131 split_prologue_insn = NEXT_INSN (split_prologue_insn);
6132 insert_insn_on_edge (split_prologue_seq, orig_entry_edge);
6135 rtx_insn *prologue_insn = prologue_seq;
6136 if (prologue_seq)
6138 while (prologue_insn && !NONDEBUG_INSN_P (prologue_insn))
6139 prologue_insn = NEXT_INSN (prologue_insn);
6140 insert_insn_on_edge (prologue_seq, entry_edge);
6143 commit_edge_insertions ();
6145 /* Look for basic blocks within the prologue insns. */
6146 if (split_prologue_insn
6147 && BLOCK_FOR_INSN (split_prologue_insn) == NULL)
6148 split_prologue_insn = NULL;
6149 if (prologue_insn
6150 && BLOCK_FOR_INSN (prologue_insn) == NULL)
6151 prologue_insn = NULL;
6152 if (split_prologue_insn || prologue_insn)
6154 auto_sbitmap blocks (last_basic_block_for_fn (cfun));
6155 bitmap_clear (blocks);
6156 if (split_prologue_insn)
6157 bitmap_set_bit (blocks,
6158 BLOCK_FOR_INSN (split_prologue_insn)->index);
6159 if (prologue_insn)
6160 bitmap_set_bit (blocks, BLOCK_FOR_INSN (prologue_insn)->index);
6161 find_many_sub_basic_blocks (blocks);
6165 default_rtl_profile ();
6167 /* Emit sibling epilogues before any sibling call sites. */
6168 for (ei = ei_start (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
6169 (e = ei_safe_edge (ei));
6170 ei_next (&ei))
6172 /* Skip those already handled, the ones that run without prologue. */
6173 if (e->flags & EDGE_IGNORE)
6175 e->flags &= ~EDGE_IGNORE;
6176 continue;
6179 rtx_insn *insn = BB_END (e->src);
6181 if (!(CALL_P (insn) && SIBLING_CALL_P (insn)))
6182 continue;
6184 if (rtx_insn *ep_seq = targetm.gen_sibcall_epilogue ())
6186 start_sequence ();
6187 emit_note (NOTE_INSN_EPILOGUE_BEG);
6188 emit_insn (ep_seq);
6189 rtx_insn *seq = get_insns ();
6190 end_sequence ();
6192 /* Retain a map of the epilogue insns. Used in life analysis to
6193 avoid getting rid of sibcall epilogue insns. Do this before we
6194 actually emit the sequence. */
6195 record_insns (seq, NULL, &epilogue_insn_hash);
6196 set_insn_locations (seq, epilogue_location);
6198 emit_insn_before (seq, insn);
6202 if (epilogue_seq)
6204 rtx_insn *insn, *next;
6206 /* Similarly, move any line notes that appear after the epilogue.
6207 There is no need, however, to be quite so anal about the existence
6208 of such a note. Also possibly move
6209 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
6210 info generation. */
6211 for (insn = epilogue_seq; insn; insn = next)
6213 next = NEXT_INSN (insn);
6214 if (NOTE_P (insn)
6215 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
6216 reorder_insns (insn, insn, PREV_INSN (epilogue_seq));
6220 /* Threading the prologue and epilogue changes the artificial refs
6221 in the entry and exit blocks. */
6222 epilogue_completed = 1;
6223 df_update_entry_exit_and_calls ();
6226 /* Reposition the prologue-end and epilogue-begin notes after
6227 instruction scheduling. */
6229 void
6230 reposition_prologue_and_epilogue_notes (void)
6232 if (!targetm.have_prologue ()
6233 && !targetm.have_epilogue ()
6234 && !targetm.have_sibcall_epilogue ())
6235 return;
6237 /* Since the hash table is created on demand, the fact that it is
6238 non-null is a signal that it is non-empty. */
6239 if (prologue_insn_hash != NULL)
6241 size_t len = prologue_insn_hash->elements ();
6242 rtx_insn *insn, *last = NULL, *note = NULL;
6244 /* Scan from the beginning until we reach the last prologue insn. */
6245 /* ??? While we do have the CFG intact, there are two problems:
6246 (1) The prologue can contain loops (typically probing the stack),
6247 which means that the end of the prologue isn't in the first bb.
6248 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
6249 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6251 if (NOTE_P (insn))
6253 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
6254 note = insn;
6256 else if (contains (insn, prologue_insn_hash))
6258 last = insn;
6259 if (--len == 0)
6260 break;
6264 if (last)
6266 if (note == NULL)
6268 /* Scan forward looking for the PROLOGUE_END note. It should
6269 be right at the beginning of the block, possibly with other
6270 insn notes that got moved there. */
6271 for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
6273 if (NOTE_P (note)
6274 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
6275 break;
6279 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
6280 if (LABEL_P (last))
6281 last = NEXT_INSN (last);
6282 reorder_insns (note, note, last);
6286 if (epilogue_insn_hash != NULL)
6288 edge_iterator ei;
6289 edge e;
6291 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6293 rtx_insn *insn, *first = NULL, *note = NULL;
6294 basic_block bb = e->src;
6296 /* Scan from the beginning until we reach the first epilogue insn. */
6297 FOR_BB_INSNS (bb, insn)
6299 if (NOTE_P (insn))
6301 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
6303 note = insn;
6304 if (first != NULL)
6305 break;
6308 else if (first == NULL && contains (insn, epilogue_insn_hash))
6310 first = insn;
6311 if (note != NULL)
6312 break;
6316 if (note)
6318 /* If the function has a single basic block, and no real
6319 epilogue insns (e.g. sibcall with no cleanup), the
6320 epilogue note can get scheduled before the prologue
6321 note. If we have frame related prologue insns, having
6322 them scanned during the epilogue will result in a crash.
6323 In this case re-order the epilogue note to just before
6324 the last insn in the block. */
6325 if (first == NULL)
6326 first = BB_END (bb);
6328 if (PREV_INSN (first) != note)
6329 reorder_insns (note, note, PREV_INSN (first));
6335 /* Returns the name of function declared by FNDECL. */
6336 const char *
6337 fndecl_name (tree fndecl)
6339 if (fndecl == NULL)
6340 return "(nofn)";
6341 return lang_hooks.decl_printable_name (fndecl, 1);
6344 /* Returns the name of function FN. */
6345 const char *
6346 function_name (struct function *fn)
6348 tree fndecl = (fn == NULL) ? NULL : fn->decl;
6349 return fndecl_name (fndecl);
6352 /* Returns the name of the current function. */
6353 const char *
6354 current_function_name (void)
6356 return function_name (cfun);
6360 static unsigned int
6361 rest_of_handle_check_leaf_regs (void)
6363 #ifdef LEAF_REGISTERS
6364 crtl->uses_only_leaf_regs
6365 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
6366 #endif
6367 return 0;
6370 /* Insert a TYPE into the used types hash table of CFUN. */
6372 static void
6373 used_types_insert_helper (tree type, struct function *func)
6375 if (type != NULL && func != NULL)
6377 if (func->used_types_hash == NULL)
6378 func->used_types_hash = hash_set<tree>::create_ggc (37);
6380 func->used_types_hash->add (type);
6384 /* Given a type, insert it into the used hash table in cfun. */
6385 void
6386 used_types_insert (tree t)
6388 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
6389 if (TYPE_NAME (t))
6390 break;
6391 else
6392 t = TREE_TYPE (t);
6393 if (TREE_CODE (t) == ERROR_MARK)
6394 return;
6395 if (TYPE_NAME (t) == NULL_TREE
6396 || TYPE_NAME (t) == TYPE_NAME (TYPE_MAIN_VARIANT (t)))
6397 t = TYPE_MAIN_VARIANT (t);
6398 if (debug_info_level > DINFO_LEVEL_NONE)
6400 if (cfun)
6401 used_types_insert_helper (t, cfun);
6402 else
6404 /* So this might be a type referenced by a global variable.
6405 Record that type so that we can later decide to emit its
6406 debug information. */
6407 vec_safe_push (types_used_by_cur_var_decl, t);
6412 /* Helper to Hash a struct types_used_by_vars_entry. */
6414 static hashval_t
6415 hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry)
6417 gcc_assert (entry && entry->var_decl && entry->type);
6419 return iterative_hash_object (entry->type,
6420 iterative_hash_object (entry->var_decl, 0));
6423 /* Hash function of the types_used_by_vars_entry hash table. */
6425 hashval_t
6426 used_type_hasher::hash (types_used_by_vars_entry *entry)
6428 return hash_types_used_by_vars_entry (entry);
6431 /*Equality function of the types_used_by_vars_entry hash table. */
6433 bool
6434 used_type_hasher::equal (types_used_by_vars_entry *e1,
6435 types_used_by_vars_entry *e2)
6437 return (e1->var_decl == e2->var_decl && e1->type == e2->type);
6440 /* Inserts an entry into the types_used_by_vars_hash hash table. */
6442 void
6443 types_used_by_var_decl_insert (tree type, tree var_decl)
6445 if (type != NULL && var_decl != NULL)
6447 types_used_by_vars_entry **slot;
6448 struct types_used_by_vars_entry e;
6449 e.var_decl = var_decl;
6450 e.type = type;
6451 if (types_used_by_vars_hash == NULL)
6452 types_used_by_vars_hash
6453 = hash_table<used_type_hasher>::create_ggc (37);
6455 slot = types_used_by_vars_hash->find_slot (&e, INSERT);
6456 if (*slot == NULL)
6458 struct types_used_by_vars_entry *entry;
6459 entry = ggc_alloc<types_used_by_vars_entry> ();
6460 entry->type = type;
6461 entry->var_decl = var_decl;
6462 *slot = entry;
6467 namespace {
6469 const pass_data pass_data_leaf_regs =
6471 RTL_PASS, /* type */
6472 "*leaf_regs", /* name */
6473 OPTGROUP_NONE, /* optinfo_flags */
6474 TV_NONE, /* tv_id */
6475 0, /* properties_required */
6476 0, /* properties_provided */
6477 0, /* properties_destroyed */
6478 0, /* todo_flags_start */
6479 0, /* todo_flags_finish */
6482 class pass_leaf_regs : public rtl_opt_pass
6484 public:
6485 pass_leaf_regs (gcc::context *ctxt)
6486 : rtl_opt_pass (pass_data_leaf_regs, ctxt)
6489 /* opt_pass methods: */
6490 virtual unsigned int execute (function *)
6492 return rest_of_handle_check_leaf_regs ();
6495 }; // class pass_leaf_regs
6497 } // anon namespace
6499 rtl_opt_pass *
6500 make_pass_leaf_regs (gcc::context *ctxt)
6502 return new pass_leaf_regs (ctxt);
6505 static unsigned int
6506 rest_of_handle_thread_prologue_and_epilogue (void)
6508 /* prepare_shrink_wrap is sensitive to the block structure of the control
6509 flow graph, so clean it up first. */
6510 if (optimize)
6511 cleanup_cfg (0);
6513 /* On some machines, the prologue and epilogue code, or parts thereof,
6514 can be represented as RTL. Doing so lets us schedule insns between
6515 it and the rest of the code and also allows delayed branch
6516 scheduling to operate in the epilogue. */
6517 thread_prologue_and_epilogue_insns ();
6519 /* Some non-cold blocks may now be only reachable from cold blocks.
6520 Fix that up. */
6521 fixup_partitions ();
6523 /* Shrink-wrapping can result in unreachable edges in the epilogue,
6524 see PR57320. */
6525 cleanup_cfg (optimize ? CLEANUP_EXPENSIVE : 0);
6527 /* The stack usage info is finalized during prologue expansion. */
6528 if (flag_stack_usage_info || flag_callgraph_info)
6529 output_stack_usage ();
6531 return 0;
6534 /* Record a final call to CALLEE at LOCATION. */
6536 void
6537 record_final_call (tree callee, location_t location)
6539 struct callinfo_callee datum = { location, callee };
6540 vec_safe_push (cfun->su->callees, datum);
6543 /* Record a dynamic allocation made for DECL_OR_EXP. */
6545 void
6546 record_dynamic_alloc (tree decl_or_exp)
6548 struct callinfo_dalloc datum;
6550 if (DECL_P (decl_or_exp))
6552 datum.location = DECL_SOURCE_LOCATION (decl_or_exp);
6553 const char *name = lang_hooks.decl_printable_name (decl_or_exp, 2);
6554 const char *dot = strrchr (name, '.');
6555 if (dot)
6556 name = dot + 1;
6557 datum.name = ggc_strdup (name);
6559 else
6561 datum.location = EXPR_LOCATION (decl_or_exp);
6562 datum.name = NULL;
6565 vec_safe_push (cfun->su->dallocs, datum);
6568 namespace {
6570 const pass_data pass_data_thread_prologue_and_epilogue =
6572 RTL_PASS, /* type */
6573 "pro_and_epilogue", /* name */
6574 OPTGROUP_NONE, /* optinfo_flags */
6575 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
6576 0, /* properties_required */
6577 0, /* properties_provided */
6578 0, /* properties_destroyed */
6579 0, /* todo_flags_start */
6580 ( TODO_df_verify | TODO_df_finish ), /* todo_flags_finish */
6583 class pass_thread_prologue_and_epilogue : public rtl_opt_pass
6585 public:
6586 pass_thread_prologue_and_epilogue (gcc::context *ctxt)
6587 : rtl_opt_pass (pass_data_thread_prologue_and_epilogue, ctxt)
6590 /* opt_pass methods: */
6591 virtual unsigned int execute (function *)
6593 return rest_of_handle_thread_prologue_and_epilogue ();
6596 }; // class pass_thread_prologue_and_epilogue
6598 } // anon namespace
6600 rtl_opt_pass *
6601 make_pass_thread_prologue_and_epilogue (gcc::context *ctxt)
6603 return new pass_thread_prologue_and_epilogue (ctxt);
6606 namespace {
6608 const pass_data pass_data_zero_call_used_regs =
6610 RTL_PASS, /* type */
6611 "zero_call_used_regs", /* name */
6612 OPTGROUP_NONE, /* optinfo_flags */
6613 TV_NONE, /* tv_id */
6614 0, /* properties_required */
6615 0, /* properties_provided */
6616 0, /* properties_destroyed */
6617 0, /* todo_flags_start */
6618 0, /* todo_flags_finish */
6621 class pass_zero_call_used_regs: public rtl_opt_pass
6623 public:
6624 pass_zero_call_used_regs (gcc::context *ctxt)
6625 : rtl_opt_pass (pass_data_zero_call_used_regs, ctxt)
6628 /* opt_pass methods: */
6629 virtual unsigned int execute (function *);
6631 }; // class pass_zero_call_used_regs
6633 unsigned int
6634 pass_zero_call_used_regs::execute (function *fun)
6636 using namespace zero_regs_flags;
6637 unsigned int zero_regs_type = UNSET;
6639 tree attr_zero_regs = lookup_attribute ("zero_call_used_regs",
6640 DECL_ATTRIBUTES (fun->decl));
6642 /* Get the type of zero_call_used_regs from function attribute.
6643 We have filtered out invalid attribute values already at this point. */
6644 if (attr_zero_regs)
6646 /* The TREE_VALUE of an attribute is a TREE_LIST whose TREE_VALUE
6647 is the attribute argument's value. */
6648 attr_zero_regs = TREE_VALUE (attr_zero_regs);
6649 gcc_assert (TREE_CODE (attr_zero_regs) == TREE_LIST);
6650 attr_zero_regs = TREE_VALUE (attr_zero_regs);
6651 gcc_assert (TREE_CODE (attr_zero_regs) == STRING_CST);
6653 for (unsigned int i = 0; zero_call_used_regs_opts[i].name != NULL; ++i)
6654 if (strcmp (TREE_STRING_POINTER (attr_zero_regs),
6655 zero_call_used_regs_opts[i].name) == 0)
6657 zero_regs_type = zero_call_used_regs_opts[i].flag;
6658 break;
6662 if (!zero_regs_type)
6663 zero_regs_type = flag_zero_call_used_regs;
6665 /* No need to zero call-used-regs when no user request is present. */
6666 if (!(zero_regs_type & ENABLED))
6667 return 0;
6669 edge_iterator ei;
6670 edge e;
6672 /* This pass needs data flow information. */
6673 df_analyze ();
6675 /* Iterate over the function's return instructions and insert any
6676 register zeroing required by the -fzero-call-used-regs command-line
6677 option or the "zero_call_used_regs" function attribute. */
6678 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6680 rtx_insn *insn = BB_END (e->src);
6681 if (JUMP_P (insn) && ANY_RETURN_P (JUMP_LABEL (insn)))
6682 gen_call_used_regs_seq (insn, zero_regs_type);
6685 return 0;
6688 } // anon namespace
6690 rtl_opt_pass *
6691 make_pass_zero_call_used_regs (gcc::context *ctxt)
6693 return new pass_zero_call_used_regs (ctxt);
6696 /* If CONSTRAINT is a matching constraint, then return its number.
6697 Otherwise, return -1. */
6699 static int
6700 matching_constraint_num (const char *constraint)
6702 if (*constraint == '%')
6703 constraint++;
6705 if (IN_RANGE (*constraint, '0', '9'))
6706 return strtoul (constraint, NULL, 10);
6708 return -1;
6711 /* This mini-pass fixes fall-out from SSA in asm statements that have
6712 in-out constraints. Say you start with
6714 orig = inout;
6715 asm ("": "+mr" (inout));
6716 use (orig);
6718 which is transformed very early to use explicit output and match operands:
6720 orig = inout;
6721 asm ("": "=mr" (inout) : "0" (inout));
6722 use (orig);
6724 Or, after SSA and copyprop,
6726 asm ("": "=mr" (inout_2) : "0" (inout_1));
6727 use (inout_1);
6729 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
6730 they represent two separate values, so they will get different pseudo
6731 registers during expansion. Then, since the two operands need to match
6732 per the constraints, but use different pseudo registers, reload can
6733 only register a reload for these operands. But reloads can only be
6734 satisfied by hardregs, not by memory, so we need a register for this
6735 reload, just because we are presented with non-matching operands.
6736 So, even though we allow memory for this operand, no memory can be
6737 used for it, just because the two operands don't match. This can
6738 cause reload failures on register-starved targets.
6740 So it's a symptom of reload not being able to use memory for reloads
6741 or, alternatively it's also a symptom of both operands not coming into
6742 reload as matching (in which case the pseudo could go to memory just
6743 fine, as the alternative allows it, and no reload would be necessary).
6744 We fix the latter problem here, by transforming
6746 asm ("": "=mr" (inout_2) : "0" (inout_1));
6748 back to
6750 inout_2 = inout_1;
6751 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
6753 static void
6754 match_asm_constraints_1 (rtx_insn *insn, rtx *p_sets, int noutputs)
6756 int i;
6757 bool changed = false;
6758 rtx op = SET_SRC (p_sets[0]);
6759 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
6760 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
6761 bool *output_matched = XALLOCAVEC (bool, noutputs);
6763 memset (output_matched, 0, noutputs * sizeof (bool));
6764 for (i = 0; i < ninputs; i++)
6766 rtx input, output;
6767 rtx_insn *insns;
6768 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
6769 int match, j;
6771 match = matching_constraint_num (constraint);
6772 if (match < 0)
6773 continue;
6775 gcc_assert (match < noutputs);
6776 output = SET_DEST (p_sets[match]);
6777 input = RTVEC_ELT (inputs, i);
6778 /* Only do the transformation for pseudos. */
6779 if (! REG_P (output)
6780 || rtx_equal_p (output, input)
6781 || !(REG_P (input) || SUBREG_P (input)
6782 || MEM_P (input) || CONSTANT_P (input))
6783 || !general_operand (input, GET_MODE (output)))
6784 continue;
6786 /* We can't do anything if the output is also used as input,
6787 as we're going to overwrite it. */
6788 for (j = 0; j < ninputs; j++)
6789 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
6790 break;
6791 if (j != ninputs)
6792 continue;
6794 /* Avoid changing the same input several times. For
6795 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
6796 only change it once (to out1), rather than changing it
6797 first to out1 and afterwards to out2. */
6798 if (i > 0)
6800 for (j = 0; j < noutputs; j++)
6801 if (output_matched[j] && input == SET_DEST (p_sets[j]))
6802 break;
6803 if (j != noutputs)
6804 continue;
6806 output_matched[match] = true;
6808 start_sequence ();
6809 emit_move_insn (output, copy_rtx (input));
6810 insns = get_insns ();
6811 end_sequence ();
6812 emit_insn_before (insns, insn);
6814 constraint = ASM_OPERANDS_OUTPUT_CONSTRAINT(SET_SRC(p_sets[match]));
6815 bool early_clobber_p = strchr (constraint, '&') != NULL;
6817 /* Now replace all mentions of the input with output. We can't
6818 just replace the occurrence in inputs[i], as the register might
6819 also be used in some other input (or even in an address of an
6820 output), which would mean possibly increasing the number of
6821 inputs by one (namely 'output' in addition), which might pose
6822 a too complicated problem for reload to solve. E.g. this situation:
6824 asm ("" : "=r" (output), "=m" (input) : "0" (input))
6826 Here 'input' is used in two occurrences as input (once for the
6827 input operand, once for the address in the second output operand).
6828 If we would replace only the occurrence of the input operand (to
6829 make the matching) we would be left with this:
6831 output = input
6832 asm ("" : "=r" (output), "=m" (input) : "0" (output))
6834 Now we suddenly have two different input values (containing the same
6835 value, but different pseudos) where we formerly had only one.
6836 With more complicated asms this might lead to reload failures
6837 which wouldn't have happen without this pass. So, iterate over
6838 all operands and replace all occurrences of the register used.
6840 However, if one or more of the 'input' uses have a non-matching
6841 constraint and the matched output operand is an early clobber
6842 operand, then do not replace the input operand, since by definition
6843 it conflicts with the output operand and cannot share the same
6844 register. See PR89313 for details. */
6846 for (j = 0; j < noutputs; j++)
6847 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
6848 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
6849 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
6850 input, output);
6851 for (j = 0; j < ninputs; j++)
6852 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
6854 if (!early_clobber_p
6855 || match == matching_constraint_num
6856 (ASM_OPERANDS_INPUT_CONSTRAINT (op, j)))
6857 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
6858 input, output);
6861 changed = true;
6864 if (changed)
6865 df_insn_rescan (insn);
6868 /* Add the decl D to the local_decls list of FUN. */
6870 void
6871 add_local_decl (struct function *fun, tree d)
6873 gcc_assert (VAR_P (d));
6874 vec_safe_push (fun->local_decls, d);
6877 namespace {
6879 const pass_data pass_data_match_asm_constraints =
6881 RTL_PASS, /* type */
6882 "asmcons", /* name */
6883 OPTGROUP_NONE, /* optinfo_flags */
6884 TV_NONE, /* tv_id */
6885 0, /* properties_required */
6886 0, /* properties_provided */
6887 0, /* properties_destroyed */
6888 0, /* todo_flags_start */
6889 0, /* todo_flags_finish */
6892 class pass_match_asm_constraints : public rtl_opt_pass
6894 public:
6895 pass_match_asm_constraints (gcc::context *ctxt)
6896 : rtl_opt_pass (pass_data_match_asm_constraints, ctxt)
6899 /* opt_pass methods: */
6900 virtual unsigned int execute (function *);
6902 }; // class pass_match_asm_constraints
6904 unsigned
6905 pass_match_asm_constraints::execute (function *fun)
6907 basic_block bb;
6908 rtx_insn *insn;
6909 rtx pat, *p_sets;
6910 int noutputs;
6912 if (!crtl->has_asm_statement)
6913 return 0;
6915 df_set_flags (DF_DEFER_INSN_RESCAN);
6916 FOR_EACH_BB_FN (bb, fun)
6918 FOR_BB_INSNS (bb, insn)
6920 if (!INSN_P (insn))
6921 continue;
6923 pat = PATTERN (insn);
6924 if (GET_CODE (pat) == PARALLEL)
6925 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
6926 else if (GET_CODE (pat) == SET)
6927 p_sets = &PATTERN (insn), noutputs = 1;
6928 else
6929 continue;
6931 if (GET_CODE (*p_sets) == SET
6932 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
6933 match_asm_constraints_1 (insn, p_sets, noutputs);
6937 return TODO_df_finish;
6940 } // anon namespace
6942 rtl_opt_pass *
6943 make_pass_match_asm_constraints (gcc::context *ctxt)
6945 return new pass_match_asm_constraints (ctxt);
6949 #include "gt-function.h"