2012-08-15 Segher Boessenkool <segher@kernel.crashing.org>
[official-gcc.git] / gcc / ada / sem_ch5.adb
blobf3df8c5c6ab9bdf57722fb528a03540425e533df
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 5 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2012, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Einfo; use Einfo;
30 with Errout; use Errout;
31 with Expander; use Expander;
32 with Exp_Ch6; use Exp_Ch6;
33 with Exp_Util; use Exp_Util;
34 with Freeze; use Freeze;
35 with Lib; use Lib;
36 with Lib.Xref; use Lib.Xref;
37 with Namet; use Namet;
38 with Nlists; use Nlists;
39 with Nmake; use Nmake;
40 with Opt; use Opt;
41 with Restrict; use Restrict;
42 with Rident; use Rident;
43 with Rtsfind; use Rtsfind;
44 with Sem; use Sem;
45 with Sem_Aux; use Sem_Aux;
46 with Sem_Case; use Sem_Case;
47 with Sem_Ch3; use Sem_Ch3;
48 with Sem_Ch6; use Sem_Ch6;
49 with Sem_Ch8; use Sem_Ch8;
50 with Sem_Dim; use Sem_Dim;
51 with Sem_Disp; use Sem_Disp;
52 with Sem_Elab; use Sem_Elab;
53 with Sem_Eval; use Sem_Eval;
54 with Sem_Res; use Sem_Res;
55 with Sem_Type; use Sem_Type;
56 with Sem_Util; use Sem_Util;
57 with Sem_Warn; use Sem_Warn;
58 with Snames; use Snames;
59 with Stand; use Stand;
60 with Sinfo; use Sinfo;
61 with Targparm; use Targparm;
62 with Tbuild; use Tbuild;
63 with Uintp; use Uintp;
65 package body Sem_Ch5 is
67 Unblocked_Exit_Count : Nat := 0;
68 -- This variable is used when processing if statements, case statements,
69 -- and block statements. It counts the number of exit points that are not
70 -- blocked by unconditional transfer instructions: for IF and CASE, these
71 -- are the branches of the conditional; for a block, they are the statement
72 -- sequence of the block, and the statement sequences of any exception
73 -- handlers that are part of the block. When processing is complete, if
74 -- this count is zero, it means that control cannot fall through the IF,
75 -- CASE or block statement. This is used for the generation of warning
76 -- messages. This variable is recursively saved on entry to processing the
77 -- construct, and restored on exit.
79 procedure Preanalyze_Range (R_Copy : Node_Id);
80 -- Determine expected type of range or domain of iteration of Ada 2012
81 -- loop by analyzing separate copy. Do the analysis and resolution of the
82 -- copy of the bound(s) with expansion disabled, to prevent the generation
83 -- of finalization actions. This prevents memory leaks when the bounds
84 -- contain calls to functions returning controlled arrays or when the
85 -- domain of iteration is a container.
87 ------------------------
88 -- Analyze_Assignment --
89 ------------------------
91 procedure Analyze_Assignment (N : Node_Id) is
92 Lhs : constant Node_Id := Name (N);
93 Rhs : constant Node_Id := Expression (N);
94 T1 : Entity_Id;
95 T2 : Entity_Id;
96 Decl : Node_Id;
98 procedure Diagnose_Non_Variable_Lhs (N : Node_Id);
99 -- N is the node for the left hand side of an assignment, and it is not
100 -- a variable. This routine issues an appropriate diagnostic.
102 procedure Kill_Lhs;
103 -- This is called to kill current value settings of a simple variable
104 -- on the left hand side. We call it if we find any error in analyzing
105 -- the assignment, and at the end of processing before setting any new
106 -- current values in place.
108 procedure Set_Assignment_Type
109 (Opnd : Node_Id;
110 Opnd_Type : in out Entity_Id);
111 -- Opnd is either the Lhs or Rhs of the assignment, and Opnd_Type is the
112 -- nominal subtype. This procedure is used to deal with cases where the
113 -- nominal subtype must be replaced by the actual subtype.
115 -------------------------------
116 -- Diagnose_Non_Variable_Lhs --
117 -------------------------------
119 procedure Diagnose_Non_Variable_Lhs (N : Node_Id) is
120 begin
121 -- Not worth posting another error if left hand side already flagged
122 -- as being illegal in some respect.
124 if Error_Posted (N) then
125 return;
127 -- Some special bad cases of entity names
129 elsif Is_Entity_Name (N) then
130 declare
131 Ent : constant Entity_Id := Entity (N);
133 begin
134 if Ekind (Ent) = E_In_Parameter then
135 Error_Msg_N
136 ("assignment to IN mode parameter not allowed", N);
138 -- Renamings of protected private components are turned into
139 -- constants when compiling a protected function. In the case
140 -- of single protected types, the private component appears
141 -- directly.
143 elsif (Is_Prival (Ent)
144 and then
145 (Ekind (Current_Scope) = E_Function
146 or else Ekind (Enclosing_Dynamic_Scope
147 (Current_Scope)) = E_Function))
148 or else
149 (Ekind (Ent) = E_Component
150 and then Is_Protected_Type (Scope (Ent)))
151 then
152 Error_Msg_N
153 ("protected function cannot modify protected object", N);
155 elsif Ekind (Ent) = E_Loop_Parameter then
156 Error_Msg_N
157 ("assignment to loop parameter not allowed", N);
159 else
160 Error_Msg_N
161 ("left hand side of assignment must be a variable", N);
162 end if;
163 end;
165 -- For indexed components or selected components, test prefix
167 elsif Nkind (N) = N_Indexed_Component then
168 Diagnose_Non_Variable_Lhs (Prefix (N));
170 -- Another special case for assignment to discriminant
172 elsif Nkind (N) = N_Selected_Component then
173 if Present (Entity (Selector_Name (N)))
174 and then Ekind (Entity (Selector_Name (N))) = E_Discriminant
175 then
176 Error_Msg_N
177 ("assignment to discriminant not allowed", N);
178 else
179 Diagnose_Non_Variable_Lhs (Prefix (N));
180 end if;
182 else
183 -- If we fall through, we have no special message to issue!
185 Error_Msg_N ("left hand side of assignment must be a variable", N);
186 end if;
187 end Diagnose_Non_Variable_Lhs;
189 --------------
190 -- Kill_LHS --
191 --------------
193 procedure Kill_Lhs is
194 begin
195 if Is_Entity_Name (Lhs) then
196 declare
197 Ent : constant Entity_Id := Entity (Lhs);
198 begin
199 if Present (Ent) then
200 Kill_Current_Values (Ent);
201 end if;
202 end;
203 end if;
204 end Kill_Lhs;
206 -------------------------
207 -- Set_Assignment_Type --
208 -------------------------
210 procedure Set_Assignment_Type
211 (Opnd : Node_Id;
212 Opnd_Type : in out Entity_Id)
214 begin
215 Require_Entity (Opnd);
217 -- If the assignment operand is an in-out or out parameter, then we
218 -- get the actual subtype (needed for the unconstrained case). If the
219 -- operand is the actual in an entry declaration, then within the
220 -- accept statement it is replaced with a local renaming, which may
221 -- also have an actual subtype.
223 if Is_Entity_Name (Opnd)
224 and then (Ekind (Entity (Opnd)) = E_Out_Parameter
225 or else Ekind (Entity (Opnd)) =
226 E_In_Out_Parameter
227 or else Ekind (Entity (Opnd)) =
228 E_Generic_In_Out_Parameter
229 or else
230 (Ekind (Entity (Opnd)) = E_Variable
231 and then Nkind (Parent (Entity (Opnd))) =
232 N_Object_Renaming_Declaration
233 and then Nkind (Parent (Parent (Entity (Opnd)))) =
234 N_Accept_Statement))
235 then
236 Opnd_Type := Get_Actual_Subtype (Opnd);
238 -- If assignment operand is a component reference, then we get the
239 -- actual subtype of the component for the unconstrained case.
241 elsif Nkind_In (Opnd, N_Selected_Component, N_Explicit_Dereference)
242 and then not Is_Unchecked_Union (Opnd_Type)
243 then
244 Decl := Build_Actual_Subtype_Of_Component (Opnd_Type, Opnd);
246 if Present (Decl) then
247 Insert_Action (N, Decl);
248 Mark_Rewrite_Insertion (Decl);
249 Analyze (Decl);
250 Opnd_Type := Defining_Identifier (Decl);
251 Set_Etype (Opnd, Opnd_Type);
252 Freeze_Itype (Opnd_Type, N);
254 elsif Is_Constrained (Etype (Opnd)) then
255 Opnd_Type := Etype (Opnd);
256 end if;
258 -- For slice, use the constrained subtype created for the slice
260 elsif Nkind (Opnd) = N_Slice then
261 Opnd_Type := Etype (Opnd);
262 end if;
263 end Set_Assignment_Type;
265 -- Start of processing for Analyze_Assignment
267 begin
268 Mark_Coextensions (N, Rhs);
270 Analyze (Rhs);
271 Analyze (Lhs);
273 -- Ensure that we never do an assignment on a variable marked as
274 -- as Safe_To_Reevaluate.
276 pragma Assert (not Is_Entity_Name (Lhs)
277 or else Ekind (Entity (Lhs)) /= E_Variable
278 or else not Is_Safe_To_Reevaluate (Entity (Lhs)));
280 -- Start type analysis for assignment
282 T1 := Etype (Lhs);
284 -- In the most general case, both Lhs and Rhs can be overloaded, and we
285 -- must compute the intersection of the possible types on each side.
287 if Is_Overloaded (Lhs) then
288 declare
289 I : Interp_Index;
290 It : Interp;
292 begin
293 T1 := Any_Type;
294 Get_First_Interp (Lhs, I, It);
296 while Present (It.Typ) loop
297 if Has_Compatible_Type (Rhs, It.Typ) then
298 if T1 /= Any_Type then
300 -- An explicit dereference is overloaded if the prefix
301 -- is. Try to remove the ambiguity on the prefix, the
302 -- error will be posted there if the ambiguity is real.
304 if Nkind (Lhs) = N_Explicit_Dereference then
305 declare
306 PI : Interp_Index;
307 PI1 : Interp_Index := 0;
308 PIt : Interp;
309 Found : Boolean;
311 begin
312 Found := False;
313 Get_First_Interp (Prefix (Lhs), PI, PIt);
315 while Present (PIt.Typ) loop
316 if Is_Access_Type (PIt.Typ)
317 and then Has_Compatible_Type
318 (Rhs, Designated_Type (PIt.Typ))
319 then
320 if Found then
321 PIt :=
322 Disambiguate (Prefix (Lhs),
323 PI1, PI, Any_Type);
325 if PIt = No_Interp then
326 Error_Msg_N
327 ("ambiguous left-hand side"
328 & " in assignment", Lhs);
329 exit;
330 else
331 Resolve (Prefix (Lhs), PIt.Typ);
332 end if;
334 exit;
335 else
336 Found := True;
337 PI1 := PI;
338 end if;
339 end if;
341 Get_Next_Interp (PI, PIt);
342 end loop;
343 end;
345 else
346 Error_Msg_N
347 ("ambiguous left-hand side in assignment", Lhs);
348 exit;
349 end if;
350 else
351 T1 := It.Typ;
352 end if;
353 end if;
355 Get_Next_Interp (I, It);
356 end loop;
357 end;
359 if T1 = Any_Type then
360 Error_Msg_N
361 ("no valid types for left-hand side for assignment", Lhs);
362 Kill_Lhs;
363 return;
364 end if;
365 end if;
367 -- The resulting assignment type is T1, so now we will resolve the left
368 -- hand side of the assignment using this determined type.
370 Resolve (Lhs, T1);
372 -- Cases where Lhs is not a variable
374 if not Is_Variable (Lhs) then
376 -- Ada 2005 (AI-327): Check assignment to the attribute Priority of a
377 -- protected object.
379 declare
380 Ent : Entity_Id;
381 S : Entity_Id;
383 begin
384 if Ada_Version >= Ada_2005 then
386 -- Handle chains of renamings
388 Ent := Lhs;
389 while Nkind (Ent) in N_Has_Entity
390 and then Present (Entity (Ent))
391 and then Present (Renamed_Object (Entity (Ent)))
392 loop
393 Ent := Renamed_Object (Entity (Ent));
394 end loop;
396 if (Nkind (Ent) = N_Attribute_Reference
397 and then Attribute_Name (Ent) = Name_Priority)
399 -- Renamings of the attribute Priority applied to protected
400 -- objects have been previously expanded into calls to the
401 -- Get_Ceiling run-time subprogram.
403 or else
404 (Nkind (Ent) = N_Function_Call
405 and then (Entity (Name (Ent)) = RTE (RE_Get_Ceiling)
406 or else
407 Entity (Name (Ent)) = RTE (RO_PE_Get_Ceiling)))
408 then
409 -- The enclosing subprogram cannot be a protected function
411 S := Current_Scope;
412 while not (Is_Subprogram (S)
413 and then Convention (S) = Convention_Protected)
414 and then S /= Standard_Standard
415 loop
416 S := Scope (S);
417 end loop;
419 if Ekind (S) = E_Function
420 and then Convention (S) = Convention_Protected
421 then
422 Error_Msg_N
423 ("protected function cannot modify protected object",
424 Lhs);
425 end if;
427 -- Changes of the ceiling priority of the protected object
428 -- are only effective if the Ceiling_Locking policy is in
429 -- effect (AARM D.5.2 (5/2)).
431 if Locking_Policy /= 'C' then
432 Error_Msg_N ("assignment to the attribute PRIORITY has " &
433 "no effect?", Lhs);
434 Error_Msg_N ("\since no Locking_Policy has been " &
435 "specified", Lhs);
436 end if;
438 return;
439 end if;
440 end if;
441 end;
443 Diagnose_Non_Variable_Lhs (Lhs);
444 return;
446 -- Error of assigning to limited type. We do however allow this in
447 -- certain cases where the front end generates the assignments.
449 elsif Is_Limited_Type (T1)
450 and then not Assignment_OK (Lhs)
451 and then not Assignment_OK (Original_Node (Lhs))
452 and then not Is_Value_Type (T1)
453 then
454 -- CPP constructors can only be called in declarations
456 if Is_CPP_Constructor_Call (Rhs) then
457 Error_Msg_N ("invalid use of 'C'P'P constructor", Rhs);
458 else
459 Error_Msg_N
460 ("left hand of assignment must not be limited type", Lhs);
461 Explain_Limited_Type (T1, Lhs);
462 end if;
463 return;
465 -- Enforce RM 3.9.3 (8): the target of an assignment operation cannot be
466 -- abstract. This is only checked when the assignment Comes_From_Source,
467 -- because in some cases the expander generates such assignments (such
468 -- in the _assign operation for an abstract type).
470 elsif Is_Abstract_Type (T1) and then Comes_From_Source (N) then
471 Error_Msg_N
472 ("target of assignment operation must not be abstract", Lhs);
473 end if;
475 -- Resolution may have updated the subtype, in case the left-hand side
476 -- is a private protected component. Use the correct subtype to avoid
477 -- scoping issues in the back-end.
479 T1 := Etype (Lhs);
481 -- Ada 2005 (AI-50217, AI-326): Check wrong dereference of incomplete
482 -- type. For example:
484 -- limited with P;
485 -- package Pkg is
486 -- type Acc is access P.T;
487 -- end Pkg;
489 -- with Pkg; use Acc;
490 -- procedure Example is
491 -- A, B : Acc;
492 -- begin
493 -- A.all := B.all; -- ERROR
494 -- end Example;
496 if Nkind (Lhs) = N_Explicit_Dereference
497 and then Ekind (T1) = E_Incomplete_Type
498 then
499 Error_Msg_N ("invalid use of incomplete type", Lhs);
500 Kill_Lhs;
501 return;
502 end if;
504 -- Now we can complete the resolution of the right hand side
506 Set_Assignment_Type (Lhs, T1);
507 Resolve (Rhs, T1);
509 -- This is the point at which we check for an unset reference
511 Check_Unset_Reference (Rhs);
512 Check_Unprotected_Access (Lhs, Rhs);
514 -- Remaining steps are skipped if Rhs was syntactically in error
516 if Rhs = Error then
517 Kill_Lhs;
518 return;
519 end if;
521 T2 := Etype (Rhs);
523 if not Covers (T1, T2) then
524 Wrong_Type (Rhs, Etype (Lhs));
525 Kill_Lhs;
526 return;
527 end if;
529 -- Ada 2005 (AI-326): In case of explicit dereference of incomplete
530 -- types, use the non-limited view if available
532 if Nkind (Rhs) = N_Explicit_Dereference
533 and then Ekind (T2) = E_Incomplete_Type
534 and then Is_Tagged_Type (T2)
535 and then Present (Non_Limited_View (T2))
536 then
537 T2 := Non_Limited_View (T2);
538 end if;
540 Set_Assignment_Type (Rhs, T2);
542 if Total_Errors_Detected /= 0 then
543 if No (T1) then
544 T1 := Any_Type;
545 end if;
547 if No (T2) then
548 T2 := Any_Type;
549 end if;
550 end if;
552 if T1 = Any_Type or else T2 = Any_Type then
553 Kill_Lhs;
554 return;
555 end if;
557 -- If the rhs is class-wide or dynamically tagged, then require the lhs
558 -- to be class-wide. The case where the rhs is a dynamically tagged call
559 -- to a dispatching operation with a controlling access result is
560 -- excluded from this check, since the target has an access type (and
561 -- no tag propagation occurs in that case).
563 if (Is_Class_Wide_Type (T2)
564 or else (Is_Dynamically_Tagged (Rhs)
565 and then not Is_Access_Type (T1)))
566 and then not Is_Class_Wide_Type (T1)
567 then
568 Error_Msg_N ("dynamically tagged expression not allowed!", Rhs);
570 elsif Is_Class_Wide_Type (T1)
571 and then not Is_Class_Wide_Type (T2)
572 and then not Is_Tag_Indeterminate (Rhs)
573 and then not Is_Dynamically_Tagged (Rhs)
574 then
575 Error_Msg_N ("dynamically tagged expression required!", Rhs);
576 end if;
578 -- Propagate the tag from a class-wide target to the rhs when the rhs
579 -- is a tag-indeterminate call.
581 if Is_Tag_Indeterminate (Rhs) then
582 if Is_Class_Wide_Type (T1) then
583 Propagate_Tag (Lhs, Rhs);
585 elsif Nkind (Rhs) = N_Function_Call
586 and then Is_Entity_Name (Name (Rhs))
587 and then Is_Abstract_Subprogram (Entity (Name (Rhs)))
588 then
589 Error_Msg_N
590 ("call to abstract function must be dispatching", Name (Rhs));
592 elsif Nkind (Rhs) = N_Qualified_Expression
593 and then Nkind (Expression (Rhs)) = N_Function_Call
594 and then Is_Entity_Name (Name (Expression (Rhs)))
595 and then
596 Is_Abstract_Subprogram (Entity (Name (Expression (Rhs))))
597 then
598 Error_Msg_N
599 ("call to abstract function must be dispatching",
600 Name (Expression (Rhs)));
601 end if;
602 end if;
604 -- Ada 2005 (AI-385): When the lhs type is an anonymous access type,
605 -- apply an implicit conversion of the rhs to that type to force
606 -- appropriate static and run-time accessibility checks. This applies
607 -- as well to anonymous access-to-subprogram types that are component
608 -- subtypes or formal parameters.
610 if Ada_Version >= Ada_2005
611 and then Is_Access_Type (T1)
612 then
613 if Is_Local_Anonymous_Access (T1)
614 or else Ekind (T2) = E_Anonymous_Access_Subprogram_Type
616 -- Handle assignment to an Ada 2012 stand-alone object
617 -- of an anonymous access type.
619 or else (Ekind (T1) = E_Anonymous_Access_Type
620 and then Nkind (Associated_Node_For_Itype (T1)) =
621 N_Object_Declaration)
623 then
624 Rewrite (Rhs, Convert_To (T1, Relocate_Node (Rhs)));
625 Analyze_And_Resolve (Rhs, T1);
626 end if;
627 end if;
629 -- Ada 2005 (AI-231): Assignment to not null variable
631 if Ada_Version >= Ada_2005
632 and then Can_Never_Be_Null (T1)
633 and then not Assignment_OK (Lhs)
634 then
635 -- Case where we know the right hand side is null
637 if Known_Null (Rhs) then
638 Apply_Compile_Time_Constraint_Error
639 (N => Rhs,
640 Msg => "(Ada 2005) null not allowed in null-excluding objects?",
641 Reason => CE_Null_Not_Allowed);
643 -- We still mark this as a possible modification, that's necessary
644 -- to reset Is_True_Constant, and desirable for xref purposes.
646 Note_Possible_Modification (Lhs, Sure => True);
647 return;
649 -- If we know the right hand side is non-null, then we convert to the
650 -- target type, since we don't need a run time check in that case.
652 elsif not Can_Never_Be_Null (T2) then
653 Rewrite (Rhs, Convert_To (T1, Relocate_Node (Rhs)));
654 Analyze_And_Resolve (Rhs, T1);
655 end if;
656 end if;
658 if Is_Scalar_Type (T1) then
659 Apply_Scalar_Range_Check (Rhs, Etype (Lhs));
661 -- For array types, verify that lengths match. If the right hand side
662 -- is a function call that has been inlined, the assignment has been
663 -- rewritten as a block, and the constraint check will be applied to the
664 -- assignment within the block.
666 elsif Is_Array_Type (T1)
667 and then
668 (Nkind (Rhs) /= N_Type_Conversion
669 or else Is_Constrained (Etype (Rhs)))
670 and then
671 (Nkind (Rhs) /= N_Function_Call
672 or else Nkind (N) /= N_Block_Statement)
673 then
674 -- Assignment verifies that the length of the Lsh and Rhs are equal,
675 -- but of course the indexes do not have to match. If the right-hand
676 -- side is a type conversion to an unconstrained type, a length check
677 -- is performed on the expression itself during expansion. In rare
678 -- cases, the redundant length check is computed on an index type
679 -- with a different representation, triggering incorrect code in the
680 -- back end.
682 Apply_Length_Check (Rhs, Etype (Lhs));
684 else
685 -- Discriminant checks are applied in the course of expansion
687 null;
688 end if;
690 -- Note: modifications of the Lhs may only be recorded after
691 -- checks have been applied.
693 Note_Possible_Modification (Lhs, Sure => True);
694 Check_Order_Dependence;
696 -- ??? a real accessibility check is needed when ???
698 -- Post warning for redundant assignment or variable to itself
700 if Warn_On_Redundant_Constructs
702 -- We only warn for source constructs
704 and then Comes_From_Source (N)
706 -- Where the object is the same on both sides
708 and then Same_Object (Lhs, Original_Node (Rhs))
710 -- But exclude the case where the right side was an operation that
711 -- got rewritten (e.g. JUNK + K, where K was known to be zero). We
712 -- don't want to warn in such a case, since it is reasonable to write
713 -- such expressions especially when K is defined symbolically in some
714 -- other package.
716 and then Nkind (Original_Node (Rhs)) not in N_Op
717 then
718 if Nkind (Lhs) in N_Has_Entity then
719 Error_Msg_NE -- CODEFIX
720 ("?useless assignment of & to itself!", N, Entity (Lhs));
721 else
722 Error_Msg_N -- CODEFIX
723 ("?useless assignment of object to itself!", N);
724 end if;
725 end if;
727 -- Check for non-allowed composite assignment
729 if not Support_Composite_Assign_On_Target
730 and then (Is_Array_Type (T1) or else Is_Record_Type (T1))
731 and then (not Has_Size_Clause (T1) or else Esize (T1) > 64)
732 then
733 Error_Msg_CRT ("composite assignment", N);
734 end if;
736 -- Check elaboration warning for left side if not in elab code
738 if not In_Subprogram_Or_Concurrent_Unit then
739 Check_Elab_Assign (Lhs);
740 end if;
742 -- Set Referenced_As_LHS if appropriate. We only set this flag if the
743 -- assignment is a source assignment in the extended main source unit.
744 -- We are not interested in any reference information outside this
745 -- context, or in compiler generated assignment statements.
747 if Comes_From_Source (N)
748 and then In_Extended_Main_Source_Unit (Lhs)
749 then
750 Set_Referenced_Modified (Lhs, Out_Param => False);
751 end if;
753 -- Final step. If left side is an entity, then we may be able to reset
754 -- the current tracked values to new safe values. We only have something
755 -- to do if the left side is an entity name, and expansion has not
756 -- modified the node into something other than an assignment, and of
757 -- course we only capture values if it is safe to do so.
759 if Is_Entity_Name (Lhs)
760 and then Nkind (N) = N_Assignment_Statement
761 then
762 declare
763 Ent : constant Entity_Id := Entity (Lhs);
765 begin
766 if Safe_To_Capture_Value (N, Ent) then
768 -- If simple variable on left side, warn if this assignment
769 -- blots out another one (rendering it useless). We only do
770 -- this for source assignments, otherwise we can generate bogus
771 -- warnings when an assignment is rewritten as another
772 -- assignment, and gets tied up with itself.
774 if Warn_On_Modified_Unread
775 and then Is_Assignable (Ent)
776 and then Comes_From_Source (N)
777 and then In_Extended_Main_Source_Unit (Ent)
778 then
779 Warn_On_Useless_Assignment (Ent, N);
780 end if;
782 -- If we are assigning an access type and the left side is an
783 -- entity, then make sure that the Is_Known_[Non_]Null flags
784 -- properly reflect the state of the entity after assignment.
786 if Is_Access_Type (T1) then
787 if Known_Non_Null (Rhs) then
788 Set_Is_Known_Non_Null (Ent, True);
790 elsif Known_Null (Rhs)
791 and then not Can_Never_Be_Null (Ent)
792 then
793 Set_Is_Known_Null (Ent, True);
795 else
796 Set_Is_Known_Null (Ent, False);
798 if not Can_Never_Be_Null (Ent) then
799 Set_Is_Known_Non_Null (Ent, False);
800 end if;
801 end if;
803 -- For discrete types, we may be able to set the current value
804 -- if the value is known at compile time.
806 elsif Is_Discrete_Type (T1)
807 and then Compile_Time_Known_Value (Rhs)
808 then
809 Set_Current_Value (Ent, Rhs);
810 else
811 Set_Current_Value (Ent, Empty);
812 end if;
814 -- If not safe to capture values, kill them
816 else
817 Kill_Lhs;
818 end if;
819 end;
820 end if;
822 -- If assigning to an object in whole or in part, note location of
823 -- assignment in case no one references value. We only do this for
824 -- source assignments, otherwise we can generate bogus warnings when an
825 -- assignment is rewritten as another assignment, and gets tied up with
826 -- itself.
828 declare
829 Ent : constant Entity_Id := Get_Enclosing_Object (Lhs);
830 begin
831 if Present (Ent)
832 and then Safe_To_Capture_Value (N, Ent)
833 and then Nkind (N) = N_Assignment_Statement
834 and then Warn_On_Modified_Unread
835 and then Is_Assignable (Ent)
836 and then Comes_From_Source (N)
837 and then In_Extended_Main_Source_Unit (Ent)
838 then
839 Set_Last_Assignment (Ent, Lhs);
840 end if;
841 end;
843 Analyze_Dimension (N);
844 end Analyze_Assignment;
846 -----------------------------
847 -- Analyze_Block_Statement --
848 -----------------------------
850 procedure Analyze_Block_Statement (N : Node_Id) is
851 procedure Install_Return_Entities (Scop : Entity_Id);
852 -- Install all entities of return statement scope Scop in the visibility
853 -- chain except for the return object since its entity is reused in a
854 -- renaming.
856 -----------------------------
857 -- Install_Return_Entities --
858 -----------------------------
860 procedure Install_Return_Entities (Scop : Entity_Id) is
861 Id : Entity_Id;
863 begin
864 Id := First_Entity (Scop);
865 while Present (Id) loop
867 -- Do not install the return object
869 if not Ekind_In (Id, E_Constant, E_Variable)
870 or else not Is_Return_Object (Id)
871 then
872 Install_Entity (Id);
873 end if;
875 Next_Entity (Id);
876 end loop;
877 end Install_Return_Entities;
879 -- Local constants and variables
881 Decls : constant List_Id := Declarations (N);
882 Id : constant Node_Id := Identifier (N);
883 HSS : constant Node_Id := Handled_Statement_Sequence (N);
885 Is_BIP_Return_Statement : Boolean;
887 -- Start of processing for Analyze_Block_Statement
889 begin
890 -- In SPARK mode, we reject block statements. Note that the case of
891 -- block statements generated by the expander is fine.
893 if Nkind (Original_Node (N)) = N_Block_Statement then
894 Check_SPARK_Restriction ("block statement is not allowed", N);
895 end if;
897 -- If no handled statement sequence is present, things are really messed
898 -- up, and we just return immediately (defence against previous errors).
900 if No (HSS) then
901 return;
902 end if;
904 -- Detect whether the block is actually a rewritten return statement of
905 -- a build-in-place function.
907 Is_BIP_Return_Statement :=
908 Present (Id)
909 and then Present (Entity (Id))
910 and then Ekind (Entity (Id)) = E_Return_Statement
911 and then Is_Build_In_Place_Function
912 (Return_Applies_To (Entity (Id)));
914 -- Normal processing with HSS present
916 declare
917 EH : constant List_Id := Exception_Handlers (HSS);
918 Ent : Entity_Id := Empty;
919 S : Entity_Id;
921 Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
922 -- Recursively save value of this global, will be restored on exit
924 begin
925 -- Initialize unblocked exit count for statements of begin block
926 -- plus one for each exception handler that is present.
928 Unblocked_Exit_Count := 1;
930 if Present (EH) then
931 Unblocked_Exit_Count := Unblocked_Exit_Count + List_Length (EH);
932 end if;
934 -- If a label is present analyze it and mark it as referenced
936 if Present (Id) then
937 Analyze (Id);
938 Ent := Entity (Id);
940 -- An error defense. If we have an identifier, but no entity, then
941 -- something is wrong. If previous errors, then just remove the
942 -- identifier and continue, otherwise raise an exception.
944 if No (Ent) then
945 if Total_Errors_Detected /= 0 then
946 Set_Identifier (N, Empty);
947 else
948 raise Program_Error;
949 end if;
951 else
952 Set_Ekind (Ent, E_Block);
953 Generate_Reference (Ent, N, ' ');
954 Generate_Definition (Ent);
956 if Nkind (Parent (Ent)) = N_Implicit_Label_Declaration then
957 Set_Label_Construct (Parent (Ent), N);
958 end if;
959 end if;
960 end if;
962 -- If no entity set, create a label entity
964 if No (Ent) then
965 Ent := New_Internal_Entity (E_Block, Current_Scope, Sloc (N), 'B');
966 Set_Identifier (N, New_Occurrence_Of (Ent, Sloc (N)));
967 Set_Parent (Ent, N);
968 end if;
970 Set_Etype (Ent, Standard_Void_Type);
971 Set_Block_Node (Ent, Identifier (N));
972 Push_Scope (Ent);
974 -- The block served as an extended return statement. Ensure that any
975 -- entities created during the analysis and expansion of the return
976 -- object declaration are once again visible.
978 if Is_BIP_Return_Statement then
979 Install_Return_Entities (Ent);
980 end if;
982 if Present (Decls) then
983 Analyze_Declarations (Decls);
984 Check_Completion;
985 Inspect_Deferred_Constant_Completion (Decls);
986 end if;
988 Analyze (HSS);
989 Process_End_Label (HSS, 'e', Ent);
991 -- If exception handlers are present, then we indicate that enclosing
992 -- scopes contain a block with handlers. We only need to mark non-
993 -- generic scopes.
995 if Present (EH) then
996 S := Scope (Ent);
997 loop
998 Set_Has_Nested_Block_With_Handler (S);
999 exit when Is_Overloadable (S)
1000 or else Ekind (S) = E_Package
1001 or else Is_Generic_Unit (S);
1002 S := Scope (S);
1003 end loop;
1004 end if;
1006 Check_References (Ent);
1007 Warn_On_Useless_Assignments (Ent);
1008 End_Scope;
1010 if Unblocked_Exit_Count = 0 then
1011 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1012 Check_Unreachable_Code (N);
1013 else
1014 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1015 end if;
1016 end;
1017 end Analyze_Block_Statement;
1019 ----------------------------
1020 -- Analyze_Case_Statement --
1021 ----------------------------
1023 procedure Analyze_Case_Statement (N : Node_Id) is
1024 Exp : Node_Id;
1025 Exp_Type : Entity_Id;
1026 Exp_Btype : Entity_Id;
1027 Last_Choice : Nat;
1028 Dont_Care : Boolean;
1029 Others_Present : Boolean;
1031 pragma Warnings (Off, Last_Choice);
1032 pragma Warnings (Off, Dont_Care);
1033 -- Don't care about assigned values
1035 Statements_Analyzed : Boolean := False;
1036 -- Set True if at least some statement sequences get analyzed. If False
1037 -- on exit, means we had a serious error that prevented full analysis of
1038 -- the case statement, and as a result it is not a good idea to output
1039 -- warning messages about unreachable code.
1041 Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
1042 -- Recursively save value of this global, will be restored on exit
1044 procedure Non_Static_Choice_Error (Choice : Node_Id);
1045 -- Error routine invoked by the generic instantiation below when the
1046 -- case statement has a non static choice.
1048 procedure Process_Statements (Alternative : Node_Id);
1049 -- Analyzes all the statements associated with a case alternative.
1050 -- Needed by the generic instantiation below.
1052 package Case_Choices_Processing is new
1053 Generic_Choices_Processing
1054 (Get_Alternatives => Alternatives,
1055 Get_Choices => Discrete_Choices,
1056 Process_Empty_Choice => No_OP,
1057 Process_Non_Static_Choice => Non_Static_Choice_Error,
1058 Process_Associated_Node => Process_Statements);
1059 use Case_Choices_Processing;
1060 -- Instantiation of the generic choice processing package
1062 -----------------------------
1063 -- Non_Static_Choice_Error --
1064 -----------------------------
1066 procedure Non_Static_Choice_Error (Choice : Node_Id) is
1067 begin
1068 Flag_Non_Static_Expr
1069 ("choice given in case statement is not static!", Choice);
1070 end Non_Static_Choice_Error;
1072 ------------------------
1073 -- Process_Statements --
1074 ------------------------
1076 procedure Process_Statements (Alternative : Node_Id) is
1077 Choices : constant List_Id := Discrete_Choices (Alternative);
1078 Ent : Entity_Id;
1080 begin
1081 Unblocked_Exit_Count := Unblocked_Exit_Count + 1;
1082 Statements_Analyzed := True;
1084 -- An interesting optimization. If the case statement expression
1085 -- is a simple entity, then we can set the current value within an
1086 -- alternative if the alternative has one possible value.
1088 -- case N is
1089 -- when 1 => alpha
1090 -- when 2 | 3 => beta
1091 -- when others => gamma
1093 -- Here we know that N is initially 1 within alpha, but for beta and
1094 -- gamma, we do not know anything more about the initial value.
1096 if Is_Entity_Name (Exp) then
1097 Ent := Entity (Exp);
1099 if Ekind_In (Ent, E_Variable,
1100 E_In_Out_Parameter,
1101 E_Out_Parameter)
1102 then
1103 if List_Length (Choices) = 1
1104 and then Nkind (First (Choices)) in N_Subexpr
1105 and then Compile_Time_Known_Value (First (Choices))
1106 then
1107 Set_Current_Value (Entity (Exp), First (Choices));
1108 end if;
1110 Analyze_Statements (Statements (Alternative));
1112 -- After analyzing the case, set the current value to empty
1113 -- since we won't know what it is for the next alternative
1114 -- (unless reset by this same circuit), or after the case.
1116 Set_Current_Value (Entity (Exp), Empty);
1117 return;
1118 end if;
1119 end if;
1121 -- Case where expression is not an entity name of a variable
1123 Analyze_Statements (Statements (Alternative));
1124 end Process_Statements;
1126 -- Start of processing for Analyze_Case_Statement
1128 begin
1129 Unblocked_Exit_Count := 0;
1130 Exp := Expression (N);
1131 Analyze (Exp);
1133 -- The expression must be of any discrete type. In rare cases, the
1134 -- expander constructs a case statement whose expression has a private
1135 -- type whose full view is discrete. This can happen when generating
1136 -- a stream operation for a variant type after the type is frozen,
1137 -- when the partial of view of the type of the discriminant is private.
1138 -- In that case, use the full view to analyze case alternatives.
1140 if not Is_Overloaded (Exp)
1141 and then not Comes_From_Source (N)
1142 and then Is_Private_Type (Etype (Exp))
1143 and then Present (Full_View (Etype (Exp)))
1144 and then Is_Discrete_Type (Full_View (Etype (Exp)))
1145 then
1146 Resolve (Exp, Etype (Exp));
1147 Exp_Type := Full_View (Etype (Exp));
1149 else
1150 Analyze_And_Resolve (Exp, Any_Discrete);
1151 Exp_Type := Etype (Exp);
1152 end if;
1154 Check_Unset_Reference (Exp);
1155 Exp_Btype := Base_Type (Exp_Type);
1157 -- The expression must be of a discrete type which must be determinable
1158 -- independently of the context in which the expression occurs, but
1159 -- using the fact that the expression must be of a discrete type.
1160 -- Moreover, the type this expression must not be a character literal
1161 -- (which is always ambiguous) or, for Ada-83, a generic formal type.
1163 -- If error already reported by Resolve, nothing more to do
1165 if Exp_Btype = Any_Discrete
1166 or else Exp_Btype = Any_Type
1167 then
1168 return;
1170 elsif Exp_Btype = Any_Character then
1171 Error_Msg_N
1172 ("character literal as case expression is ambiguous", Exp);
1173 return;
1175 elsif Ada_Version = Ada_83
1176 and then (Is_Generic_Type (Exp_Btype)
1177 or else Is_Generic_Type (Root_Type (Exp_Btype)))
1178 then
1179 Error_Msg_N
1180 ("(Ada 83) case expression cannot be of a generic type", Exp);
1181 return;
1182 end if;
1184 -- If the case expression is a formal object of mode in out, then treat
1185 -- it as having a nonstatic subtype by forcing use of the base type
1186 -- (which has to get passed to Check_Case_Choices below). Also use base
1187 -- type when the case expression is parenthesized.
1189 if Paren_Count (Exp) > 0
1190 or else (Is_Entity_Name (Exp)
1191 and then Ekind (Entity (Exp)) = E_Generic_In_Out_Parameter)
1192 then
1193 Exp_Type := Exp_Btype;
1194 end if;
1196 -- Call instantiated Analyze_Choices which does the rest of the work
1198 Analyze_Choices (N, Exp_Type, Dont_Care, Others_Present);
1200 -- A case statement with a single OTHERS alternative is not allowed
1201 -- in SPARK.
1203 if Others_Present
1204 and then List_Length (Alternatives (N)) = 1
1205 then
1206 Check_SPARK_Restriction
1207 ("OTHERS as unique case alternative is not allowed", N);
1208 end if;
1210 if Exp_Type = Universal_Integer and then not Others_Present then
1211 Error_Msg_N ("case on universal integer requires OTHERS choice", Exp);
1212 end if;
1214 -- If all our exits were blocked by unconditional transfers of control,
1215 -- then the entire CASE statement acts as an unconditional transfer of
1216 -- control, so treat it like one, and check unreachable code. Skip this
1217 -- test if we had serious errors preventing any statement analysis.
1219 if Unblocked_Exit_Count = 0 and then Statements_Analyzed then
1220 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1221 Check_Unreachable_Code (N);
1222 else
1223 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1224 end if;
1226 if not Expander_Active
1227 and then Compile_Time_Known_Value (Expression (N))
1228 and then Serious_Errors_Detected = 0
1229 then
1230 declare
1231 Chosen : constant Node_Id := Find_Static_Alternative (N);
1232 Alt : Node_Id;
1234 begin
1235 Alt := First (Alternatives (N));
1236 while Present (Alt) loop
1237 if Alt /= Chosen then
1238 Remove_Warning_Messages (Statements (Alt));
1239 end if;
1241 Next (Alt);
1242 end loop;
1243 end;
1244 end if;
1245 end Analyze_Case_Statement;
1247 ----------------------------
1248 -- Analyze_Exit_Statement --
1249 ----------------------------
1251 -- If the exit includes a name, it must be the name of a currently open
1252 -- loop. Otherwise there must be an innermost open loop on the stack, to
1253 -- which the statement implicitly refers.
1255 -- Additionally, in SPARK mode:
1257 -- The exit can only name the closest enclosing loop;
1259 -- An exit with a when clause must be directly contained in a loop;
1261 -- An exit without a when clause must be directly contained in an
1262 -- if-statement with no elsif or else, which is itself directly contained
1263 -- in a loop. The exit must be the last statement in the if-statement.
1265 procedure Analyze_Exit_Statement (N : Node_Id) is
1266 Target : constant Node_Id := Name (N);
1267 Cond : constant Node_Id := Condition (N);
1268 Scope_Id : Entity_Id;
1269 U_Name : Entity_Id;
1270 Kind : Entity_Kind;
1272 begin
1273 if No (Cond) then
1274 Check_Unreachable_Code (N);
1275 end if;
1277 if Present (Target) then
1278 Analyze (Target);
1279 U_Name := Entity (Target);
1281 if not In_Open_Scopes (U_Name) or else Ekind (U_Name) /= E_Loop then
1282 Error_Msg_N ("invalid loop name in exit statement", N);
1283 return;
1285 else
1286 if Has_Loop_In_Inner_Open_Scopes (U_Name) then
1287 Check_SPARK_Restriction
1288 ("exit label must name the closest enclosing loop", N);
1289 end if;
1291 Set_Has_Exit (U_Name);
1292 end if;
1294 else
1295 U_Name := Empty;
1296 end if;
1298 for J in reverse 0 .. Scope_Stack.Last loop
1299 Scope_Id := Scope_Stack.Table (J).Entity;
1300 Kind := Ekind (Scope_Id);
1302 if Kind = E_Loop
1303 and then (No (Target) or else Scope_Id = U_Name)
1304 then
1305 Set_Has_Exit (Scope_Id);
1306 exit;
1308 elsif Kind = E_Block
1309 or else Kind = E_Loop
1310 or else Kind = E_Return_Statement
1311 then
1312 null;
1314 else
1315 Error_Msg_N
1316 ("cannot exit from program unit or accept statement", N);
1317 return;
1318 end if;
1319 end loop;
1321 -- Verify that if present the condition is a Boolean expression
1323 if Present (Cond) then
1324 Analyze_And_Resolve (Cond, Any_Boolean);
1325 Check_Unset_Reference (Cond);
1326 end if;
1328 -- In SPARK mode, verify that the exit statement respects the SPARK
1329 -- restrictions.
1331 if Present (Cond) then
1332 if Nkind (Parent (N)) /= N_Loop_Statement then
1333 Check_SPARK_Restriction
1334 ("exit with when clause must be directly in loop", N);
1335 end if;
1337 else
1338 if Nkind (Parent (N)) /= N_If_Statement then
1339 if Nkind (Parent (N)) = N_Elsif_Part then
1340 Check_SPARK_Restriction
1341 ("exit must be in IF without ELSIF", N);
1342 else
1343 Check_SPARK_Restriction ("exit must be directly in IF", N);
1344 end if;
1346 elsif Nkind (Parent (Parent (N))) /= N_Loop_Statement then
1347 Check_SPARK_Restriction
1348 ("exit must be in IF directly in loop", N);
1350 -- First test the presence of ELSE, so that an exit in an ELSE leads
1351 -- to an error mentioning the ELSE.
1353 elsif Present (Else_Statements (Parent (N))) then
1354 Check_SPARK_Restriction ("exit must be in IF without ELSE", N);
1356 -- An exit in an ELSIF does not reach here, as it would have been
1357 -- detected in the case (Nkind (Parent (N)) /= N_If_Statement).
1359 elsif Present (Elsif_Parts (Parent (N))) then
1360 Check_SPARK_Restriction ("exit must be in IF without ELSIF", N);
1361 end if;
1362 end if;
1364 -- Chain exit statement to associated loop entity
1366 Set_Next_Exit_Statement (N, First_Exit_Statement (Scope_Id));
1367 Set_First_Exit_Statement (Scope_Id, N);
1369 -- Since the exit may take us out of a loop, any previous assignment
1370 -- statement is not useless, so clear last assignment indications. It
1371 -- is OK to keep other current values, since if the exit statement
1372 -- does not exit, then the current values are still valid.
1374 Kill_Current_Values (Last_Assignment_Only => True);
1375 end Analyze_Exit_Statement;
1377 ----------------------------
1378 -- Analyze_Goto_Statement --
1379 ----------------------------
1381 procedure Analyze_Goto_Statement (N : Node_Id) is
1382 Label : constant Node_Id := Name (N);
1383 Scope_Id : Entity_Id;
1384 Label_Scope : Entity_Id;
1385 Label_Ent : Entity_Id;
1387 begin
1388 Check_SPARK_Restriction ("goto statement is not allowed", N);
1390 -- Actual semantic checks
1392 Check_Unreachable_Code (N);
1393 Kill_Current_Values (Last_Assignment_Only => True);
1395 Analyze (Label);
1396 Label_Ent := Entity (Label);
1398 -- Ignore previous error
1400 if Label_Ent = Any_Id then
1401 return;
1403 -- We just have a label as the target of a goto
1405 elsif Ekind (Label_Ent) /= E_Label then
1406 Error_Msg_N ("target of goto statement must be a label", Label);
1407 return;
1409 -- Check that the target of the goto is reachable according to Ada
1410 -- scoping rules. Note: the special gotos we generate for optimizing
1411 -- local handling of exceptions would violate these rules, but we mark
1412 -- such gotos as analyzed when built, so this code is never entered.
1414 elsif not Reachable (Label_Ent) then
1415 Error_Msg_N ("target of goto statement is not reachable", Label);
1416 return;
1417 end if;
1419 -- Here if goto passes initial validity checks
1421 Label_Scope := Enclosing_Scope (Label_Ent);
1423 for J in reverse 0 .. Scope_Stack.Last loop
1424 Scope_Id := Scope_Stack.Table (J).Entity;
1426 if Label_Scope = Scope_Id
1427 or else (Ekind (Scope_Id) /= E_Block
1428 and then Ekind (Scope_Id) /= E_Loop
1429 and then Ekind (Scope_Id) /= E_Return_Statement)
1430 then
1431 if Scope_Id /= Label_Scope then
1432 Error_Msg_N
1433 ("cannot exit from program unit or accept statement", N);
1434 end if;
1436 return;
1437 end if;
1438 end loop;
1440 raise Program_Error;
1441 end Analyze_Goto_Statement;
1443 --------------------------
1444 -- Analyze_If_Statement --
1445 --------------------------
1447 -- A special complication arises in the analysis of if statements
1449 -- The expander has circuitry to completely delete code that it can tell
1450 -- will not be executed (as a result of compile time known conditions). In
1451 -- the analyzer, we ensure that code that will be deleted in this manner is
1452 -- analyzed but not expanded. This is obviously more efficient, but more
1453 -- significantly, difficulties arise if code is expanded and then
1454 -- eliminated (e.g. exception table entries disappear). Similarly, itypes
1455 -- generated in deleted code must be frozen from start, because the nodes
1456 -- on which they depend will not be available at the freeze point.
1458 procedure Analyze_If_Statement (N : Node_Id) is
1459 E : Node_Id;
1461 Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
1462 -- Recursively save value of this global, will be restored on exit
1464 Save_In_Deleted_Code : Boolean;
1466 Del : Boolean := False;
1467 -- This flag gets set True if a True condition has been found, which
1468 -- means that remaining ELSE/ELSIF parts are deleted.
1470 procedure Analyze_Cond_Then (Cnode : Node_Id);
1471 -- This is applied to either the N_If_Statement node itself or to an
1472 -- N_Elsif_Part node. It deals with analyzing the condition and the THEN
1473 -- statements associated with it.
1475 -----------------------
1476 -- Analyze_Cond_Then --
1477 -----------------------
1479 procedure Analyze_Cond_Then (Cnode : Node_Id) is
1480 Cond : constant Node_Id := Condition (Cnode);
1481 Tstm : constant List_Id := Then_Statements (Cnode);
1483 begin
1484 Unblocked_Exit_Count := Unblocked_Exit_Count + 1;
1485 Analyze_And_Resolve (Cond, Any_Boolean);
1486 Check_Unset_Reference (Cond);
1487 Set_Current_Value_Condition (Cnode);
1489 -- If already deleting, then just analyze then statements
1491 if Del then
1492 Analyze_Statements (Tstm);
1494 -- Compile time known value, not deleting yet
1496 elsif Compile_Time_Known_Value (Cond) then
1497 Save_In_Deleted_Code := In_Deleted_Code;
1499 -- If condition is True, then analyze the THEN statements and set
1500 -- no expansion for ELSE and ELSIF parts.
1502 if Is_True (Expr_Value (Cond)) then
1503 Analyze_Statements (Tstm);
1504 Del := True;
1505 Expander_Mode_Save_And_Set (False);
1506 In_Deleted_Code := True;
1508 -- If condition is False, analyze THEN with expansion off
1510 else -- Is_False (Expr_Value (Cond))
1511 Expander_Mode_Save_And_Set (False);
1512 In_Deleted_Code := True;
1513 Analyze_Statements (Tstm);
1514 Expander_Mode_Restore;
1515 In_Deleted_Code := Save_In_Deleted_Code;
1516 end if;
1518 -- Not known at compile time, not deleting, normal analysis
1520 else
1521 Analyze_Statements (Tstm);
1522 end if;
1523 end Analyze_Cond_Then;
1525 -- Start of Analyze_If_Statement
1527 begin
1528 -- Initialize exit count for else statements. If there is no else part,
1529 -- this count will stay non-zero reflecting the fact that the uncovered
1530 -- else case is an unblocked exit.
1532 Unblocked_Exit_Count := 1;
1533 Analyze_Cond_Then (N);
1535 -- Now to analyze the elsif parts if any are present
1537 if Present (Elsif_Parts (N)) then
1538 E := First (Elsif_Parts (N));
1539 while Present (E) loop
1540 Analyze_Cond_Then (E);
1541 Next (E);
1542 end loop;
1543 end if;
1545 if Present (Else_Statements (N)) then
1546 Analyze_Statements (Else_Statements (N));
1547 end if;
1549 -- If all our exits were blocked by unconditional transfers of control,
1550 -- then the entire IF statement acts as an unconditional transfer of
1551 -- control, so treat it like one, and check unreachable code.
1553 if Unblocked_Exit_Count = 0 then
1554 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1555 Check_Unreachable_Code (N);
1556 else
1557 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1558 end if;
1560 if Del then
1561 Expander_Mode_Restore;
1562 In_Deleted_Code := Save_In_Deleted_Code;
1563 end if;
1565 if not Expander_Active
1566 and then Compile_Time_Known_Value (Condition (N))
1567 and then Serious_Errors_Detected = 0
1568 then
1569 if Is_True (Expr_Value (Condition (N))) then
1570 Remove_Warning_Messages (Else_Statements (N));
1572 if Present (Elsif_Parts (N)) then
1573 E := First (Elsif_Parts (N));
1574 while Present (E) loop
1575 Remove_Warning_Messages (Then_Statements (E));
1576 Next (E);
1577 end loop;
1578 end if;
1580 else
1581 Remove_Warning_Messages (Then_Statements (N));
1582 end if;
1583 end if;
1584 end Analyze_If_Statement;
1586 ----------------------------------------
1587 -- Analyze_Implicit_Label_Declaration --
1588 ----------------------------------------
1590 -- An implicit label declaration is generated in the innermost enclosing
1591 -- declarative part. This is done for labels, and block and loop names.
1593 -- Note: any changes in this routine may need to be reflected in
1594 -- Analyze_Label_Entity.
1596 procedure Analyze_Implicit_Label_Declaration (N : Node_Id) is
1597 Id : constant Node_Id := Defining_Identifier (N);
1598 begin
1599 Enter_Name (Id);
1600 Set_Ekind (Id, E_Label);
1601 Set_Etype (Id, Standard_Void_Type);
1602 Set_Enclosing_Scope (Id, Current_Scope);
1603 end Analyze_Implicit_Label_Declaration;
1605 ------------------------------
1606 -- Analyze_Iteration_Scheme --
1607 ------------------------------
1609 procedure Analyze_Iteration_Scheme (N : Node_Id) is
1610 Cond : Node_Id;
1611 Iter_Spec : Node_Id;
1612 Loop_Spec : Node_Id;
1614 begin
1615 -- For an infinite loop, there is no iteration scheme
1617 if No (N) then
1618 return;
1619 end if;
1621 Cond := Condition (N);
1622 Iter_Spec := Iterator_Specification (N);
1623 Loop_Spec := Loop_Parameter_Specification (N);
1625 if Present (Cond) then
1626 Analyze_And_Resolve (Cond, Any_Boolean);
1627 Check_Unset_Reference (Cond);
1628 Set_Current_Value_Condition (N);
1630 elsif Present (Iter_Spec) then
1631 Analyze_Iterator_Specification (Iter_Spec);
1633 else
1634 Analyze_Loop_Parameter_Specification (Loop_Spec);
1635 end if;
1636 end Analyze_Iteration_Scheme;
1638 ------------------------------------
1639 -- Analyze_Iterator_Specification --
1640 ------------------------------------
1642 procedure Analyze_Iterator_Specification (N : Node_Id) is
1643 Loc : constant Source_Ptr := Sloc (N);
1644 Def_Id : constant Node_Id := Defining_Identifier (N);
1645 Subt : constant Node_Id := Subtype_Indication (N);
1646 Iter_Name : constant Node_Id := Name (N);
1648 Ent : Entity_Id;
1649 Typ : Entity_Id;
1651 begin
1652 Enter_Name (Def_Id);
1654 if Present (Subt) then
1655 Analyze (Subt);
1656 end if;
1658 Preanalyze_Range (Iter_Name);
1660 -- Set the kind of the loop variable, which is not visible within
1661 -- the iterator name.
1663 Set_Ekind (Def_Id, E_Variable);
1665 -- If the domain of iteration is an expression, create a declaration for
1666 -- it, so that finalization actions are introduced outside of the loop.
1667 -- The declaration must be a renaming because the body of the loop may
1668 -- assign to elements.
1670 if not Is_Entity_Name (Iter_Name)
1672 -- When the context is a quantified expression, the renaming
1673 -- declaration is delayed until the expansion phase if we are
1674 -- doing expansion.
1676 and then (Nkind (Parent (N)) /= N_Quantified_Expression
1677 or else Operating_Mode = Check_Semantics)
1679 -- Do not perform this expansion in Alfa mode, since the formal
1680 -- verification directly deals with the source form of the iterator.
1682 and then not Alfa_Mode
1683 then
1684 declare
1685 Id : constant Entity_Id := Make_Temporary (Loc, 'R', Iter_Name);
1686 Decl : Node_Id;
1688 begin
1689 Typ := Etype (Iter_Name);
1691 -- Protect against malformed iterator
1693 if Typ = Any_Type then
1694 Error_Msg_N ("invalid expression in loop iterator", Iter_Name);
1695 return;
1696 end if;
1698 -- The name in the renaming declaration may be a function call.
1699 -- Indicate that it does not come from source, to suppress
1700 -- spurious warnings on renamings of parameterless functions,
1701 -- a common enough idiom in user-defined iterators.
1703 Decl :=
1704 Make_Object_Renaming_Declaration (Loc,
1705 Defining_Identifier => Id,
1706 Subtype_Mark => New_Occurrence_Of (Typ, Loc),
1707 Name =>
1708 New_Copy_Tree (Iter_Name, New_Sloc => Loc));
1710 Insert_Actions (Parent (Parent (N)), New_List (Decl));
1711 Rewrite (Name (N), New_Occurrence_Of (Id, Loc));
1712 Set_Etype (Id, Typ);
1713 Set_Etype (Name (N), Typ);
1714 end;
1716 -- Container is an entity or an array with uncontrolled components, or
1717 -- else it is a container iterator given by a function call, typically
1718 -- called Iterate in the case of predefined containers, even though
1719 -- Iterate is not a reserved name. What matters is that the return type
1720 -- of the function is an iterator type.
1722 elsif Is_Entity_Name (Iter_Name) then
1723 Analyze (Iter_Name);
1725 if Nkind (Iter_Name) = N_Function_Call then
1726 declare
1727 C : constant Node_Id := Name (Iter_Name);
1728 I : Interp_Index;
1729 It : Interp;
1731 begin
1732 if not Is_Overloaded (Iter_Name) then
1733 Resolve (Iter_Name, Etype (C));
1735 else
1736 Get_First_Interp (C, I, It);
1737 while It.Typ /= Empty loop
1738 if Reverse_Present (N) then
1739 if Is_Reversible_Iterator (It.Typ) then
1740 Resolve (Iter_Name, It.Typ);
1741 exit;
1742 end if;
1744 elsif Is_Iterator (It.Typ) then
1745 Resolve (Iter_Name, It.Typ);
1746 exit;
1747 end if;
1749 Get_Next_Interp (I, It);
1750 end loop;
1751 end if;
1752 end;
1754 -- Domain of iteration is not overloaded
1756 else
1757 Resolve (Iter_Name, Etype (Iter_Name));
1758 end if;
1759 end if;
1761 Typ := Etype (Iter_Name);
1763 if Is_Array_Type (Typ) then
1764 if Of_Present (N) then
1765 Set_Etype (Def_Id, Component_Type (Typ));
1767 -- Here we have a missing Range attribute
1769 else
1770 Error_Msg_N
1771 ("missing Range attribute in iteration over an array", N);
1773 -- In Ada 2012 mode, this may be an attempt at an iterator
1775 if Ada_Version >= Ada_2012 then
1776 Error_Msg_NE
1777 ("\if& is meant to designate an element of the array, use OF",
1778 N, Def_Id);
1779 end if;
1781 -- Prevent cascaded errors
1783 Set_Ekind (Def_Id, E_Loop_Parameter);
1784 Set_Etype (Def_Id, Etype (First_Index (Typ)));
1785 end if;
1787 -- Check for type error in iterator
1789 elsif Typ = Any_Type then
1790 return;
1792 -- Iteration over a container
1794 else
1795 Set_Ekind (Def_Id, E_Loop_Parameter);
1797 if Of_Present (N) then
1799 -- The type of the loop variable is the Iterator_Element aspect of
1800 -- the container type.
1802 declare
1803 Element : constant Entity_Id :=
1804 Find_Aspect (Typ, Aspect_Iterator_Element);
1805 begin
1806 if No (Element) then
1807 Error_Msg_NE ("cannot iterate over&", N, Typ);
1808 return;
1809 else
1810 Set_Etype (Def_Id, Entity (Element));
1811 end if;
1812 end;
1814 else
1815 -- For an iteration of the form IN, the name must denote an
1816 -- iterator, typically the result of a call to Iterate. Give a
1817 -- useful error message when the name is a container by itself.
1819 if Is_Entity_Name (Original_Node (Name (N)))
1820 and then not Is_Iterator (Typ)
1821 then
1822 if No (Find_Aspect (Typ, Aspect_Iterator_Element)) then
1823 Error_Msg_NE
1824 ("cannot iterate over&", Name (N), Typ);
1825 else
1826 Error_Msg_N
1827 ("name must be an iterator, not a container", Name (N));
1828 end if;
1830 Error_Msg_NE
1831 ("\to iterate directly over the elements of a container, " &
1832 "write `of &`", Name (N), Original_Node (Name (N)));
1833 end if;
1835 -- The result type of Iterate function is the classwide type of
1836 -- the interface parent. We need the specific Cursor type defined
1837 -- in the container package.
1839 Ent := First_Entity (Scope (Typ));
1840 while Present (Ent) loop
1841 if Chars (Ent) = Name_Cursor then
1842 Set_Etype (Def_Id, Etype (Ent));
1843 exit;
1844 end if;
1846 Next_Entity (Ent);
1847 end loop;
1848 end if;
1849 end if;
1850 end Analyze_Iterator_Specification;
1852 -------------------
1853 -- Analyze_Label --
1854 -------------------
1856 -- Note: the semantic work required for analyzing labels (setting them as
1857 -- reachable) was done in a prepass through the statements in the block,
1858 -- so that forward gotos would be properly handled. See Analyze_Statements
1859 -- for further details. The only processing required here is to deal with
1860 -- optimizations that depend on an assumption of sequential control flow,
1861 -- since of course the occurrence of a label breaks this assumption.
1863 procedure Analyze_Label (N : Node_Id) is
1864 pragma Warnings (Off, N);
1865 begin
1866 Kill_Current_Values;
1867 end Analyze_Label;
1869 --------------------------
1870 -- Analyze_Label_Entity --
1871 --------------------------
1873 procedure Analyze_Label_Entity (E : Entity_Id) is
1874 begin
1875 Set_Ekind (E, E_Label);
1876 Set_Etype (E, Standard_Void_Type);
1877 Set_Enclosing_Scope (E, Current_Scope);
1878 Set_Reachable (E, True);
1879 end Analyze_Label_Entity;
1881 ------------------------------------------
1882 -- Analyze_Loop_Parameter_Specification --
1883 ------------------------------------------
1885 procedure Analyze_Loop_Parameter_Specification (N : Node_Id) is
1886 Loop_Nod : constant Node_Id := Parent (Parent (N));
1888 procedure Check_Controlled_Array_Attribute (DS : Node_Id);
1889 -- If the bounds are given by a 'Range reference on a function call
1890 -- that returns a controlled array, introduce an explicit declaration
1891 -- to capture the bounds, so that the function result can be finalized
1892 -- in timely fashion.
1894 function Has_Call_Using_Secondary_Stack (N : Node_Id) return Boolean;
1895 -- N is the node for an arbitrary construct. This function searches the
1896 -- construct N to see if any expressions within it contain function
1897 -- calls that use the secondary stack, returning True if any such call
1898 -- is found, and False otherwise.
1900 procedure Process_Bounds (R : Node_Id);
1901 -- If the iteration is given by a range, create temporaries and
1902 -- assignment statements block to capture the bounds and perform
1903 -- required finalization actions in case a bound includes a function
1904 -- call that uses the temporary stack. We first pre-analyze a copy of
1905 -- the range in order to determine the expected type, and analyze and
1906 -- resolve the original bounds.
1908 --------------------------------------
1909 -- Check_Controlled_Array_Attribute --
1910 --------------------------------------
1912 procedure Check_Controlled_Array_Attribute (DS : Node_Id) is
1913 begin
1914 if Nkind (DS) = N_Attribute_Reference
1915 and then Is_Entity_Name (Prefix (DS))
1916 and then Ekind (Entity (Prefix (DS))) = E_Function
1917 and then Is_Array_Type (Etype (Entity (Prefix (DS))))
1918 and then
1919 Is_Controlled (Component_Type (Etype (Entity (Prefix (DS)))))
1920 and then Expander_Active
1921 then
1922 declare
1923 Loc : constant Source_Ptr := Sloc (N);
1924 Arr : constant Entity_Id := Etype (Entity (Prefix (DS)));
1925 Indx : constant Entity_Id :=
1926 Base_Type (Etype (First_Index (Arr)));
1927 Subt : constant Entity_Id := Make_Temporary (Loc, 'S');
1928 Decl : Node_Id;
1930 begin
1931 Decl :=
1932 Make_Subtype_Declaration (Loc,
1933 Defining_Identifier => Subt,
1934 Subtype_Indication =>
1935 Make_Subtype_Indication (Loc,
1936 Subtype_Mark => New_Reference_To (Indx, Loc),
1937 Constraint =>
1938 Make_Range_Constraint (Loc, Relocate_Node (DS))));
1939 Insert_Before (Loop_Nod, Decl);
1940 Analyze (Decl);
1942 Rewrite (DS,
1943 Make_Attribute_Reference (Loc,
1944 Prefix => New_Reference_To (Subt, Loc),
1945 Attribute_Name => Attribute_Name (DS)));
1947 Analyze (DS);
1948 end;
1949 end if;
1950 end Check_Controlled_Array_Attribute;
1952 ------------------------------------
1953 -- Has_Call_Using_Secondary_Stack --
1954 ------------------------------------
1956 function Has_Call_Using_Secondary_Stack (N : Node_Id) return Boolean is
1958 function Check_Call (N : Node_Id) return Traverse_Result;
1959 -- Check if N is a function call which uses the secondary stack
1961 ----------------
1962 -- Check_Call --
1963 ----------------
1965 function Check_Call (N : Node_Id) return Traverse_Result is
1966 Nam : Node_Id;
1967 Subp : Entity_Id;
1968 Return_Typ : Entity_Id;
1970 begin
1971 if Nkind (N) = N_Function_Call then
1972 Nam := Name (N);
1974 -- Call using access to subprogram with explicit dereference
1976 if Nkind (Nam) = N_Explicit_Dereference then
1977 Subp := Etype (Nam);
1979 -- Call using a selected component notation or Ada 2005 object
1980 -- operation notation
1982 elsif Nkind (Nam) = N_Selected_Component then
1983 Subp := Entity (Selector_Name (Nam));
1985 -- Common case
1987 else
1988 Subp := Entity (Nam);
1989 end if;
1991 Return_Typ := Etype (Subp);
1993 if Is_Composite_Type (Return_Typ)
1994 and then not Is_Constrained (Return_Typ)
1995 then
1996 return Abandon;
1998 elsif Sec_Stack_Needed_For_Return (Subp) then
1999 return Abandon;
2000 end if;
2001 end if;
2003 -- Continue traversing the tree
2005 return OK;
2006 end Check_Call;
2008 function Check_Calls is new Traverse_Func (Check_Call);
2010 -- Start of processing for Has_Call_Using_Secondary_Stack
2012 begin
2013 return Check_Calls (N) = Abandon;
2014 end Has_Call_Using_Secondary_Stack;
2016 --------------------
2017 -- Process_Bounds --
2018 --------------------
2020 procedure Process_Bounds (R : Node_Id) is
2021 Loc : constant Source_Ptr := Sloc (N);
2023 function One_Bound
2024 (Original_Bound : Node_Id;
2025 Analyzed_Bound : Node_Id;
2026 Typ : Entity_Id) return Node_Id;
2027 -- Capture value of bound and return captured value
2029 ---------------
2030 -- One_Bound --
2031 ---------------
2033 function One_Bound
2034 (Original_Bound : Node_Id;
2035 Analyzed_Bound : Node_Id;
2036 Typ : Entity_Id) return Node_Id
2038 Assign : Node_Id;
2039 Decl : Node_Id;
2040 Id : Entity_Id;
2042 begin
2043 -- If the bound is a constant or an object, no need for a separate
2044 -- declaration. If the bound is the result of previous expansion
2045 -- it is already analyzed and should not be modified. Note that
2046 -- the Bound will be resolved later, if needed, as part of the
2047 -- call to Make_Index (literal bounds may need to be resolved to
2048 -- type Integer).
2050 if Analyzed (Original_Bound) then
2051 return Original_Bound;
2053 elsif Nkind_In (Analyzed_Bound, N_Integer_Literal,
2054 N_Character_Literal)
2055 or else Is_Entity_Name (Analyzed_Bound)
2056 then
2057 Analyze_And_Resolve (Original_Bound, Typ);
2058 return Original_Bound;
2059 end if;
2061 -- Normally, the best approach is simply to generate a constant
2062 -- declaration that captures the bound. However, there is a nasty
2063 -- case where this is wrong. If the bound is complex, and has a
2064 -- possible use of the secondary stack, we need to generate a
2065 -- separate assignment statement to ensure the creation of a block
2066 -- which will release the secondary stack.
2068 -- We prefer the constant declaration, since it leaves us with a
2069 -- proper trace of the value, useful in optimizations that get rid
2070 -- of junk range checks.
2072 if not Has_Call_Using_Secondary_Stack (Analyzed_Bound) then
2073 Analyze_And_Resolve (Original_Bound, Typ);
2074 Force_Evaluation (Original_Bound);
2075 return Original_Bound;
2076 end if;
2078 Id := Make_Temporary (Loc, 'R', Original_Bound);
2080 -- Here we make a declaration with a separate assignment
2081 -- statement, and insert before loop header.
2083 Decl :=
2084 Make_Object_Declaration (Loc,
2085 Defining_Identifier => Id,
2086 Object_Definition => New_Occurrence_Of (Typ, Loc));
2088 Assign :=
2089 Make_Assignment_Statement (Loc,
2090 Name => New_Occurrence_Of (Id, Loc),
2091 Expression => Relocate_Node (Original_Bound));
2093 Insert_Actions (Loop_Nod, New_List (Decl, Assign));
2095 -- Now that this temporary variable is initialized we decorate it
2096 -- as safe-to-reevaluate to inform to the backend that no further
2097 -- asignment will be issued and hence it can be handled as side
2098 -- effect free. Note that this decoration must be done when the
2099 -- assignment has been analyzed because otherwise it will be
2100 -- rejected (see Analyze_Assignment).
2102 Set_Is_Safe_To_Reevaluate (Id);
2104 Rewrite (Original_Bound, New_Occurrence_Of (Id, Loc));
2106 if Nkind (Assign) = N_Assignment_Statement then
2107 return Expression (Assign);
2108 else
2109 return Original_Bound;
2110 end if;
2111 end One_Bound;
2113 Hi : constant Node_Id := High_Bound (R);
2114 Lo : constant Node_Id := Low_Bound (R);
2115 R_Copy : constant Node_Id := New_Copy_Tree (R);
2116 New_Hi : Node_Id;
2117 New_Lo : Node_Id;
2118 Typ : Entity_Id;
2120 -- Start of processing for Process_Bounds
2122 begin
2123 Set_Parent (R_Copy, Parent (R));
2124 Preanalyze_Range (R_Copy);
2125 Typ := Etype (R_Copy);
2127 -- If the type of the discrete range is Universal_Integer, then the
2128 -- bound's type must be resolved to Integer, and any object used to
2129 -- hold the bound must also have type Integer, unless the literal
2130 -- bounds are constant-folded expressions with a user-defined type.
2132 if Typ = Universal_Integer then
2133 if Nkind (Lo) = N_Integer_Literal
2134 and then Present (Etype (Lo))
2135 and then Scope (Etype (Lo)) /= Standard_Standard
2136 then
2137 Typ := Etype (Lo);
2139 elsif Nkind (Hi) = N_Integer_Literal
2140 and then Present (Etype (Hi))
2141 and then Scope (Etype (Hi)) /= Standard_Standard
2142 then
2143 Typ := Etype (Hi);
2145 else
2146 Typ := Standard_Integer;
2147 end if;
2148 end if;
2150 Set_Etype (R, Typ);
2152 New_Lo := One_Bound (Lo, Low_Bound (R_Copy), Typ);
2153 New_Hi := One_Bound (Hi, High_Bound (R_Copy), Typ);
2155 -- Propagate staticness to loop range itself, in case the
2156 -- corresponding subtype is static.
2158 if New_Lo /= Lo
2159 and then Is_Static_Expression (New_Lo)
2160 then
2161 Rewrite (Low_Bound (R), New_Copy (New_Lo));
2162 end if;
2164 if New_Hi /= Hi
2165 and then Is_Static_Expression (New_Hi)
2166 then
2167 Rewrite (High_Bound (R), New_Copy (New_Hi));
2168 end if;
2169 end Process_Bounds;
2171 -- Local variables
2173 DS : constant Node_Id := Discrete_Subtype_Definition (N);
2174 Id : constant Entity_Id := Defining_Identifier (N);
2176 DS_Copy : Node_Id;
2178 -- Start of processing for Analyze_Loop_Parameter_Specification
2180 begin
2181 Enter_Name (Id);
2183 -- We always consider the loop variable to be referenced, since the loop
2184 -- may be used just for counting purposes.
2186 Generate_Reference (Id, N, ' ');
2188 -- Check for the case of loop variable hiding a local variable (used
2189 -- later on to give a nice warning if the hidden variable is never
2190 -- assigned).
2192 declare
2193 H : constant Entity_Id := Homonym (Id);
2194 begin
2195 if Present (H)
2196 and then Ekind (H) = E_Variable
2197 and then Is_Discrete_Type (Etype (H))
2198 and then Enclosing_Dynamic_Scope (H) = Enclosing_Dynamic_Scope (Id)
2199 then
2200 Set_Hiding_Loop_Variable (H, Id);
2201 end if;
2202 end;
2204 -- Loop parameter specification must include subtype mark in SPARK
2206 if Nkind (DS) = N_Range then
2207 Check_SPARK_Restriction
2208 ("loop parameter specification must include subtype mark", N);
2209 end if;
2211 -- Analyze the subtype definition and create temporaries for the bounds.
2212 -- Do not evaluate the range when preanalyzing a quantified expression
2213 -- because bounds expressed as function calls with side effects will be
2214 -- erroneously replicated.
2216 if Nkind (DS) = N_Range
2217 and then Expander_Active
2218 and then Nkind (Parent (N)) /= N_Quantified_Expression
2219 then
2220 Process_Bounds (DS);
2222 -- Either the expander not active or the range of iteration is a subtype
2223 -- indication, an entity, or a function call that yields an aggregate or
2224 -- a container.
2226 else
2227 DS_Copy := New_Copy_Tree (DS);
2228 Set_Parent (DS_Copy, Parent (DS));
2229 Preanalyze_Range (DS_Copy);
2231 -- Ada 2012: If the domain of iteration is a function call, it is the
2232 -- new iterator form.
2234 if Nkind (DS_Copy) = N_Function_Call
2235 or else
2236 (Is_Entity_Name (DS_Copy)
2237 and then not Is_Type (Entity (DS_Copy)))
2238 then
2239 -- This is an iterator specification. Rewrite it as such and
2240 -- analyze it to capture function calls that may require
2241 -- finalization actions.
2243 declare
2244 I_Spec : constant Node_Id :=
2245 Make_Iterator_Specification (Sloc (N),
2246 Defining_Identifier => Relocate_Node (Id),
2247 Name => DS_Copy,
2248 Subtype_Indication => Empty,
2249 Reverse_Present => Reverse_Present (N));
2250 Scheme : constant Node_Id := Parent (N);
2252 begin
2253 Set_Iterator_Specification (Scheme, I_Spec);
2254 Set_Loop_Parameter_Specification (Scheme, Empty);
2255 Analyze_Iterator_Specification (I_Spec);
2257 -- In a generic context, analyze the original domain of
2258 -- iteration, for name capture.
2260 if not Expander_Active then
2261 Analyze (DS);
2262 end if;
2264 -- Set kind of loop parameter, which may be used in the
2265 -- subsequent analysis of the condition in a quantified
2266 -- expression.
2268 Set_Ekind (Id, E_Loop_Parameter);
2269 return;
2270 end;
2272 -- Domain of iteration is not a function call, and is side-effect
2273 -- free.
2275 else
2276 -- A quantified expression that appears in a pre/post condition
2277 -- is pre-analyzed several times. If the range is given by an
2278 -- attribute reference it is rewritten as a range, and this is
2279 -- done even with expansion disabled. If the type is already set
2280 -- do not reanalyze, because a range with static bounds may be
2281 -- typed Integer by default.
2283 if Nkind (Parent (N)) = N_Quantified_Expression
2284 and then Present (Etype (DS))
2285 then
2286 null;
2287 else
2288 Analyze (DS);
2289 end if;
2290 end if;
2291 end if;
2293 if DS = Error then
2294 return;
2295 end if;
2297 -- Some additional checks if we are iterating through a type
2299 if Is_Entity_Name (DS)
2300 and then Present (Entity (DS))
2301 and then Is_Type (Entity (DS))
2302 then
2303 -- The subtype indication may denote the completion of an incomplete
2304 -- type declaration.
2306 if Ekind (Entity (DS)) = E_Incomplete_Type then
2307 Set_Entity (DS, Get_Full_View (Entity (DS)));
2308 Set_Etype (DS, Entity (DS));
2309 end if;
2311 -- Attempt to iterate through non-static predicate
2313 if Is_Discrete_Type (Entity (DS))
2314 and then Present (Predicate_Function (Entity (DS)))
2315 and then No (Static_Predicate (Entity (DS)))
2316 then
2317 Bad_Predicated_Subtype_Use
2318 ("cannot use subtype& with non-static predicate for loop " &
2319 "iteration", DS, Entity (DS));
2320 end if;
2321 end if;
2323 -- Error if not discrete type
2325 if not Is_Discrete_Type (Etype (DS)) then
2326 Wrong_Type (DS, Any_Discrete);
2327 Set_Etype (DS, Any_Type);
2328 end if;
2330 Check_Controlled_Array_Attribute (DS);
2332 Make_Index (DS, N, In_Iter_Schm => True);
2333 Set_Ekind (Id, E_Loop_Parameter);
2335 -- A quantified expression which appears in a pre- or post-condition may
2336 -- be analyzed multiple times. The analysis of the range creates several
2337 -- itypes which reside in different scopes depending on whether the pre-
2338 -- or post-condition has been expanded. Update the type of the loop
2339 -- variable to reflect the proper itype at each stage of analysis.
2341 if No (Etype (Id))
2342 or else Etype (Id) = Any_Type
2343 or else
2344 (Present (Etype (Id))
2345 and then Is_Itype (Etype (Id))
2346 and then Nkind (Parent (Loop_Nod)) = N_Expression_With_Actions
2347 and then Nkind (Original_Node (Parent (Loop_Nod))) =
2348 N_Quantified_Expression)
2349 then
2350 Set_Etype (Id, Etype (DS));
2351 end if;
2353 -- Treat a range as an implicit reference to the type, to inhibit
2354 -- spurious warnings.
2356 Generate_Reference (Base_Type (Etype (DS)), N, ' ');
2357 Set_Is_Known_Valid (Id, True);
2359 -- The loop is not a declarative part, so the loop variable must be
2360 -- frozen explicitly. Do not freeze while preanalyzing a quantified
2361 -- expression because the freeze node will not be inserted into the
2362 -- tree due to flag Is_Spec_Expression being set.
2364 if Nkind (Parent (N)) /= N_Quantified_Expression then
2365 declare
2366 Flist : constant List_Id := Freeze_Entity (Id, N);
2367 begin
2368 if Is_Non_Empty_List (Flist) then
2369 Insert_Actions (N, Flist);
2370 end if;
2371 end;
2372 end if;
2374 -- Check for null or possibly null range and issue warning. We suppress
2375 -- such messages in generic templates and instances, because in practice
2376 -- they tend to be dubious in these cases.
2378 if Nkind (DS) = N_Range and then Comes_From_Source (N) then
2379 declare
2380 L : constant Node_Id := Low_Bound (DS);
2381 H : constant Node_Id := High_Bound (DS);
2383 begin
2384 -- If range of loop is null, issue warning
2386 if Compile_Time_Compare (L, H, Assume_Valid => True) = GT then
2388 -- Suppress the warning if inside a generic template or
2389 -- instance, since in practice they tend to be dubious in these
2390 -- cases since they can result from intended parametrization.
2392 if not Inside_A_Generic
2393 and then not In_Instance
2394 then
2395 -- Specialize msg if invalid values could make the loop
2396 -- non-null after all.
2398 if Compile_Time_Compare
2399 (L, H, Assume_Valid => False) = GT
2400 then
2401 Error_Msg_N
2402 ("?loop range is null, loop will not execute", DS);
2404 -- Since we know the range of the loop is null, set the
2405 -- appropriate flag to remove the loop entirely during
2406 -- expansion.
2408 Set_Is_Null_Loop (Loop_Nod);
2410 -- Here is where the loop could execute because of invalid
2411 -- values, so issue appropriate message and in this case we
2412 -- do not set the Is_Null_Loop flag since the loop may
2413 -- execute.
2415 else
2416 Error_Msg_N
2417 ("?loop range may be null, loop may not execute", DS);
2418 Error_Msg_N
2419 ("?can only execute if invalid values are present", DS);
2420 end if;
2421 end if;
2423 -- In either case, suppress warnings in the body of the loop,
2424 -- since it is likely that these warnings will be inappropriate
2425 -- if the loop never actually executes, which is likely.
2427 Set_Suppress_Loop_Warnings (Loop_Nod);
2429 -- The other case for a warning is a reverse loop where the
2430 -- upper bound is the integer literal zero or one, and the
2431 -- lower bound can be positive.
2433 -- For example, we have
2435 -- for J in reverse N .. 1 loop
2437 -- In practice, this is very likely to be a case of reversing
2438 -- the bounds incorrectly in the range.
2440 elsif Reverse_Present (N)
2441 and then Nkind (Original_Node (H)) = N_Integer_Literal
2442 and then
2443 (Intval (Original_Node (H)) = Uint_0
2444 or else Intval (Original_Node (H)) = Uint_1)
2445 then
2446 Error_Msg_N ("?loop range may be null", DS);
2447 Error_Msg_N ("\?bounds may be wrong way round", DS);
2448 end if;
2449 end;
2450 end if;
2451 end Analyze_Loop_Parameter_Specification;
2453 ----------------------------
2454 -- Analyze_Loop_Statement --
2455 ----------------------------
2457 procedure Analyze_Loop_Statement (N : Node_Id) is
2459 function Is_Container_Iterator (Iter : Node_Id) return Boolean;
2460 -- Given a loop iteration scheme, determine whether it is an Ada 2012
2461 -- container iteration.
2463 function Is_Wrapped_In_Block (N : Node_Id) return Boolean;
2464 -- Determine whether node N is the sole statement of a block
2466 ---------------------------
2467 -- Is_Container_Iterator --
2468 ---------------------------
2470 function Is_Container_Iterator (Iter : Node_Id) return Boolean is
2471 begin
2472 -- Infinite loop
2474 if No (Iter) then
2475 return False;
2477 -- While loop
2479 elsif Present (Condition (Iter)) then
2480 return False;
2482 -- for Def_Id in [reverse] Name loop
2483 -- for Def_Id [: Subtype_Indication] of [reverse] Name loop
2485 elsif Present (Iterator_Specification (Iter)) then
2486 declare
2487 Nam : constant Node_Id := Name (Iterator_Specification (Iter));
2488 Nam_Copy : Node_Id;
2490 begin
2491 Nam_Copy := New_Copy_Tree (Nam);
2492 Set_Parent (Nam_Copy, Parent (Nam));
2493 Preanalyze_Range (Nam_Copy);
2495 -- The only two options here are iteration over a container or
2496 -- an array.
2498 return not Is_Array_Type (Etype (Nam_Copy));
2499 end;
2501 -- for Def_Id in [reverse] Discrete_Subtype_Definition loop
2503 else
2504 declare
2505 LP : constant Node_Id := Loop_Parameter_Specification (Iter);
2506 DS : constant Node_Id := Discrete_Subtype_Definition (LP);
2507 DS_Copy : Node_Id;
2509 begin
2510 DS_Copy := New_Copy_Tree (DS);
2511 Set_Parent (DS_Copy, Parent (DS));
2512 Preanalyze_Range (DS_Copy);
2514 -- Check for a call to Iterate ()
2516 return
2517 Nkind (DS_Copy) = N_Function_Call
2518 and then Needs_Finalization (Etype (DS_Copy));
2519 end;
2520 end if;
2521 end Is_Container_Iterator;
2523 -------------------------
2524 -- Is_Wrapped_In_Block --
2525 -------------------------
2527 function Is_Wrapped_In_Block (N : Node_Id) return Boolean is
2528 HSS : constant Node_Id := Parent (N);
2530 begin
2531 return
2532 Nkind (HSS) = N_Handled_Sequence_Of_Statements
2533 and then Nkind (Parent (HSS)) = N_Block_Statement
2534 and then First (Statements (HSS)) = N
2535 and then No (Next (First (Statements (HSS))));
2536 end Is_Wrapped_In_Block;
2538 -- Local declarations
2540 Id : constant Node_Id := Identifier (N);
2541 Iter : constant Node_Id := Iteration_Scheme (N);
2542 Loc : constant Source_Ptr := Sloc (N);
2543 Ent : Entity_Id;
2545 -- Start of processing for Analyze_Loop_Statement
2547 begin
2548 if Present (Id) then
2550 -- Make name visible, e.g. for use in exit statements. Loop labels
2551 -- are always considered to be referenced.
2553 Analyze (Id);
2554 Ent := Entity (Id);
2556 -- Guard against serious error (typically, a scope mismatch when
2557 -- semantic analysis is requested) by creating loop entity to
2558 -- continue analysis.
2560 if No (Ent) then
2561 if Total_Errors_Detected /= 0 then
2562 Ent := New_Internal_Entity (E_Loop, Current_Scope, Loc, 'L');
2563 else
2564 raise Program_Error;
2565 end if;
2567 else
2568 Generate_Reference (Ent, N, ' ');
2569 Generate_Definition (Ent);
2571 -- If we found a label, mark its type. If not, ignore it, since it
2572 -- means we have a conflicting declaration, which would already
2573 -- have been diagnosed at declaration time. Set Label_Construct
2574 -- of the implicit label declaration, which is not created by the
2575 -- parser for generic units.
2577 if Ekind (Ent) = E_Label then
2578 Set_Ekind (Ent, E_Loop);
2580 if Nkind (Parent (Ent)) = N_Implicit_Label_Declaration then
2581 Set_Label_Construct (Parent (Ent), N);
2582 end if;
2583 end if;
2584 end if;
2586 -- Case of no identifier present
2588 else
2589 Ent := New_Internal_Entity (E_Loop, Current_Scope, Loc, 'L');
2590 Set_Etype (Ent, Standard_Void_Type);
2591 Set_Parent (Ent, N);
2592 end if;
2594 -- Iteration over a container in Ada 2012 involves the creation of a
2595 -- controlled iterator object. Wrap the loop in a block to ensure the
2596 -- timely finalization of the iterator and release of container locks.
2598 if Ada_Version >= Ada_2012
2599 and then Is_Container_Iterator (Iter)
2600 and then not Is_Wrapped_In_Block (N)
2601 then
2602 Rewrite (N,
2603 Make_Block_Statement (Loc,
2604 Declarations => New_List,
2605 Handled_Statement_Sequence =>
2606 Make_Handled_Sequence_Of_Statements (Loc,
2607 Statements => New_List (Relocate_Node (N)))));
2609 Analyze (N);
2610 return;
2611 end if;
2613 -- Kill current values on entry to loop, since statements in the body of
2614 -- the loop may have been executed before the loop is entered. Similarly
2615 -- we kill values after the loop, since we do not know that the body of
2616 -- the loop was executed.
2618 Kill_Current_Values;
2619 Push_Scope (Ent);
2620 Analyze_Iteration_Scheme (Iter);
2622 -- Analyze the statements of the body except in the case of an Ada 2012
2623 -- iterator with the expander active. In this case the expander will do
2624 -- a rewrite of the loop into a while loop. We will then analyze the
2625 -- loop body when we analyze this while loop.
2627 -- We need to do this delay because if the container is for indefinite
2628 -- types the actual subtype of the components will only be determined
2629 -- when the cursor declaration is analyzed.
2631 -- If the expander is not active, or in Alfa mode, then we want to
2632 -- analyze the loop body now even in the Ada 2012 iterator case, since
2633 -- the rewriting will not be done. Insert the loop variable in the
2634 -- current scope, if not done when analysing the iteration scheme.
2636 if No (Iter)
2637 or else No (Iterator_Specification (Iter))
2638 or else not Full_Expander_Active
2639 then
2640 if Present (Iter)
2641 and then Present (Iterator_Specification (Iter))
2642 then
2643 declare
2644 Id : constant Entity_Id :=
2645 Defining_Identifier (Iterator_Specification (Iter));
2646 begin
2647 if Scope (Id) /= Current_Scope then
2648 Enter_Name (Id);
2649 end if;
2650 end;
2651 end if;
2653 Analyze_Statements (Statements (N));
2654 end if;
2656 -- Finish up processing for the loop. We kill all current values, since
2657 -- in general we don't know if the statements in the loop have been
2658 -- executed. We could do a bit better than this with a loop that we
2659 -- know will execute at least once, but it's not worth the trouble and
2660 -- the front end is not in the business of flow tracing.
2662 Process_End_Label (N, 'e', Ent);
2663 End_Scope;
2664 Kill_Current_Values;
2666 -- Check for infinite loop. Skip check for generated code, since it
2667 -- justs waste time and makes debugging the routine called harder.
2669 -- Note that we have to wait till the body of the loop is fully analyzed
2670 -- before making this call, since Check_Infinite_Loop_Warning relies on
2671 -- being able to use semantic visibility information to find references.
2673 if Comes_From_Source (N) then
2674 Check_Infinite_Loop_Warning (N);
2675 end if;
2677 -- Code after loop is unreachable if the loop has no WHILE or FOR and
2678 -- contains no EXIT statements within the body of the loop.
2680 if No (Iter) and then not Has_Exit (Ent) then
2681 Check_Unreachable_Code (N);
2682 end if;
2683 end Analyze_Loop_Statement;
2685 ----------------------------
2686 -- Analyze_Null_Statement --
2687 ----------------------------
2689 -- Note: the semantics of the null statement is implemented by a single
2690 -- null statement, too bad everything isn't as simple as this!
2692 procedure Analyze_Null_Statement (N : Node_Id) is
2693 pragma Warnings (Off, N);
2694 begin
2695 null;
2696 end Analyze_Null_Statement;
2698 ------------------------
2699 -- Analyze_Statements --
2700 ------------------------
2702 procedure Analyze_Statements (L : List_Id) is
2703 S : Node_Id;
2704 Lab : Entity_Id;
2706 begin
2707 -- The labels declared in the statement list are reachable from
2708 -- statements in the list. We do this as a prepass so that any goto
2709 -- statement will be properly flagged if its target is not reachable.
2710 -- This is not required, but is nice behavior!
2712 S := First (L);
2713 while Present (S) loop
2714 if Nkind (S) = N_Label then
2715 Analyze (Identifier (S));
2716 Lab := Entity (Identifier (S));
2718 -- If we found a label mark it as reachable
2720 if Ekind (Lab) = E_Label then
2721 Generate_Definition (Lab);
2722 Set_Reachable (Lab);
2724 if Nkind (Parent (Lab)) = N_Implicit_Label_Declaration then
2725 Set_Label_Construct (Parent (Lab), S);
2726 end if;
2728 -- If we failed to find a label, it means the implicit declaration
2729 -- of the label was hidden. A for-loop parameter can do this to
2730 -- a label with the same name inside the loop, since the implicit
2731 -- label declaration is in the innermost enclosing body or block
2732 -- statement.
2734 else
2735 Error_Msg_Sloc := Sloc (Lab);
2736 Error_Msg_N
2737 ("implicit label declaration for & is hidden#",
2738 Identifier (S));
2739 end if;
2740 end if;
2742 Next (S);
2743 end loop;
2745 -- Perform semantic analysis on all statements
2747 Conditional_Statements_Begin;
2749 S := First (L);
2750 while Present (S) loop
2751 Analyze (S);
2753 -- Remove dimension in all statements
2755 Remove_Dimension_In_Statement (S);
2756 Next (S);
2757 end loop;
2759 Conditional_Statements_End;
2761 -- Make labels unreachable. Visibility is not sufficient, because labels
2762 -- in one if-branch for example are not reachable from the other branch,
2763 -- even though their declarations are in the enclosing declarative part.
2765 S := First (L);
2766 while Present (S) loop
2767 if Nkind (S) = N_Label then
2768 Set_Reachable (Entity (Identifier (S)), False);
2769 end if;
2771 Next (S);
2772 end loop;
2773 end Analyze_Statements;
2775 ----------------------------
2776 -- Check_Unreachable_Code --
2777 ----------------------------
2779 procedure Check_Unreachable_Code (N : Node_Id) is
2780 Error_Node : Node_Id;
2781 P : Node_Id;
2783 begin
2784 if Is_List_Member (N)
2785 and then Comes_From_Source (N)
2786 then
2787 declare
2788 Nxt : Node_Id;
2790 begin
2791 Nxt := Original_Node (Next (N));
2793 -- Skip past pragmas
2795 while Nkind (Nxt) = N_Pragma loop
2796 Nxt := Original_Node (Next (Nxt));
2797 end loop;
2799 -- If a label follows us, then we never have dead code, since
2800 -- someone could branch to the label, so we just ignore it, unless
2801 -- we are in formal mode where goto statements are not allowed.
2803 if Nkind (Nxt) = N_Label
2804 and then not Restriction_Check_Required (SPARK)
2805 then
2806 return;
2808 -- Otherwise see if we have a real statement following us
2810 elsif Present (Nxt)
2811 and then Comes_From_Source (Nxt)
2812 and then Is_Statement (Nxt)
2813 then
2814 -- Special very annoying exception. If we have a return that
2815 -- follows a raise, then we allow it without a warning, since
2816 -- the Ada RM annoyingly requires a useless return here!
2818 if Nkind (Original_Node (N)) /= N_Raise_Statement
2819 or else Nkind (Nxt) /= N_Simple_Return_Statement
2820 then
2821 -- The rather strange shenanigans with the warning message
2822 -- here reflects the fact that Kill_Dead_Code is very good
2823 -- at removing warnings in deleted code, and this is one
2824 -- warning we would prefer NOT to have removed.
2826 Error_Node := Nxt;
2828 -- If we have unreachable code, analyze and remove the
2829 -- unreachable code, since it is useless and we don't
2830 -- want to generate junk warnings.
2832 -- We skip this step if we are not in code generation mode.
2833 -- This is the one case where we remove dead code in the
2834 -- semantics as opposed to the expander, and we do not want
2835 -- to remove code if we are not in code generation mode,
2836 -- since this messes up the ASIS trees.
2838 -- Note that one might react by moving the whole circuit to
2839 -- exp_ch5, but then we lose the warning in -gnatc mode.
2841 if Operating_Mode = Generate_Code then
2842 loop
2843 Nxt := Next (N);
2845 -- Quit deleting when we have nothing more to delete
2846 -- or if we hit a label (since someone could transfer
2847 -- control to a label, so we should not delete it).
2849 exit when No (Nxt) or else Nkind (Nxt) = N_Label;
2851 -- Statement/declaration is to be deleted
2853 Analyze (Nxt);
2854 Remove (Nxt);
2855 Kill_Dead_Code (Nxt);
2856 end loop;
2857 end if;
2859 -- Now issue the warning (or error in formal mode)
2861 if Restriction_Check_Required (SPARK) then
2862 Check_SPARK_Restriction
2863 ("unreachable code is not allowed", Error_Node);
2864 else
2865 Error_Msg ("?unreachable code!", Sloc (Error_Node));
2866 end if;
2867 end if;
2869 -- If the unconditional transfer of control instruction is the
2870 -- last statement of a sequence, then see if our parent is one of
2871 -- the constructs for which we count unblocked exits, and if so,
2872 -- adjust the count.
2874 else
2875 P := Parent (N);
2877 -- Statements in THEN part or ELSE part of IF statement
2879 if Nkind (P) = N_If_Statement then
2880 null;
2882 -- Statements in ELSIF part of an IF statement
2884 elsif Nkind (P) = N_Elsif_Part then
2885 P := Parent (P);
2886 pragma Assert (Nkind (P) = N_If_Statement);
2888 -- Statements in CASE statement alternative
2890 elsif Nkind (P) = N_Case_Statement_Alternative then
2891 P := Parent (P);
2892 pragma Assert (Nkind (P) = N_Case_Statement);
2894 -- Statements in body of block
2896 elsif Nkind (P) = N_Handled_Sequence_Of_Statements
2897 and then Nkind (Parent (P)) = N_Block_Statement
2898 then
2899 null;
2901 -- Statements in exception handler in a block
2903 elsif Nkind (P) = N_Exception_Handler
2904 and then Nkind (Parent (P)) = N_Handled_Sequence_Of_Statements
2905 and then Nkind (Parent (Parent (P))) = N_Block_Statement
2906 then
2907 null;
2909 -- None of these cases, so return
2911 else
2912 return;
2913 end if;
2915 -- This was one of the cases we are looking for (i.e. the
2916 -- parent construct was IF, CASE or block) so decrement count.
2918 Unblocked_Exit_Count := Unblocked_Exit_Count - 1;
2919 end if;
2920 end;
2921 end if;
2922 end Check_Unreachable_Code;
2924 ----------------------
2925 -- Preanalyze_Range --
2926 ----------------------
2928 procedure Preanalyze_Range (R_Copy : Node_Id) is
2929 Save_Analysis : constant Boolean := Full_Analysis;
2931 begin
2932 Full_Analysis := False;
2933 Expander_Mode_Save_And_Set (False);
2935 Analyze (R_Copy);
2937 if Nkind (R_Copy) in N_Subexpr
2938 and then Is_Overloaded (R_Copy)
2939 then
2940 -- Apply preference rules for range of predefined integer types, or
2941 -- diagnose true ambiguity.
2943 declare
2944 I : Interp_Index;
2945 It : Interp;
2946 Found : Entity_Id := Empty;
2948 begin
2949 Get_First_Interp (R_Copy, I, It);
2950 while Present (It.Typ) loop
2951 if Is_Discrete_Type (It.Typ) then
2952 if No (Found) then
2953 Found := It.Typ;
2954 else
2955 if Scope (Found) = Standard_Standard then
2956 null;
2958 elsif Scope (It.Typ) = Standard_Standard then
2959 Found := It.Typ;
2961 else
2962 -- Both of them are user-defined
2964 Error_Msg_N
2965 ("ambiguous bounds in range of iteration", R_Copy);
2966 Error_Msg_N ("\possible interpretations:", R_Copy);
2967 Error_Msg_NE ("\\} ", R_Copy, Found);
2968 Error_Msg_NE ("\\} ", R_Copy, It.Typ);
2969 exit;
2970 end if;
2971 end if;
2972 end if;
2974 Get_Next_Interp (I, It);
2975 end loop;
2976 end;
2977 end if;
2979 -- Subtype mark in iteration scheme
2981 if Is_Entity_Name (R_Copy)
2982 and then Is_Type (Entity (R_Copy))
2983 then
2984 null;
2986 -- Expression in range, or Ada 2012 iterator
2988 elsif Nkind (R_Copy) in N_Subexpr then
2989 Resolve (R_Copy);
2990 end if;
2992 Expander_Mode_Restore;
2993 Full_Analysis := Save_Analysis;
2994 end Preanalyze_Range;
2996 end Sem_Ch5;