[RS6000] Power10 vec-splati-runnable multiple test failures
[official-gcc.git] / gcc / rtlanal.c
blob01130a10783d63d7dc541eaf70743241fa15394f
1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987-2020 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "predict.h"
29 #include "df.h"
30 #include "memmodel.h"
31 #include "tm_p.h"
32 #include "insn-config.h"
33 #include "regs.h"
34 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
35 #include "recog.h"
36 #include "addresses.h"
37 #include "rtl-iter.h"
38 #include "hard-reg-set.h"
39 #include "function-abi.h"
41 /* Forward declarations */
42 static void set_of_1 (rtx, const_rtx, void *);
43 static bool covers_regno_p (const_rtx, unsigned int);
44 static bool covers_regno_no_parallel_p (const_rtx, unsigned int);
45 static int computed_jump_p_1 (const_rtx);
46 static void parms_set (rtx, const_rtx, void *);
48 static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx, scalar_int_mode,
49 const_rtx, machine_mode,
50 unsigned HOST_WIDE_INT);
51 static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx, scalar_int_mode,
52 const_rtx, machine_mode,
53 unsigned HOST_WIDE_INT);
54 static unsigned int cached_num_sign_bit_copies (const_rtx, scalar_int_mode,
55 const_rtx, machine_mode,
56 unsigned int);
57 static unsigned int num_sign_bit_copies1 (const_rtx, scalar_int_mode,
58 const_rtx, machine_mode,
59 unsigned int);
61 rtx_subrtx_bound_info rtx_all_subrtx_bounds[NUM_RTX_CODE];
62 rtx_subrtx_bound_info rtx_nonconst_subrtx_bounds[NUM_RTX_CODE];
64 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
65 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
66 SIGN_EXTEND then while narrowing we also have to enforce the
67 representation and sign-extend the value to mode DESTINATION_REP.
69 If the value is already sign-extended to DESTINATION_REP mode we
70 can just switch to DESTINATION mode on it. For each pair of
71 integral modes SOURCE and DESTINATION, when truncating from SOURCE
72 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
73 contains the number of high-order bits in SOURCE that have to be
74 copies of the sign-bit so that we can do this mode-switch to
75 DESTINATION. */
77 static unsigned int
78 num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
80 /* Store X into index I of ARRAY. ARRAY is known to have at least I
81 elements. Return the new base of ARRAY. */
83 template <typename T>
84 typename T::value_type *
85 generic_subrtx_iterator <T>::add_single_to_queue (array_type &array,
86 value_type *base,
87 size_t i, value_type x)
89 if (base == array.stack)
91 if (i < LOCAL_ELEMS)
93 base[i] = x;
94 return base;
96 gcc_checking_assert (i == LOCAL_ELEMS);
97 /* A previous iteration might also have moved from the stack to the
98 heap, in which case the heap array will already be big enough. */
99 if (vec_safe_length (array.heap) <= i)
100 vec_safe_grow (array.heap, i + 1, true);
101 base = array.heap->address ();
102 memcpy (base, array.stack, sizeof (array.stack));
103 base[LOCAL_ELEMS] = x;
104 return base;
106 unsigned int length = array.heap->length ();
107 if (length > i)
109 gcc_checking_assert (base == array.heap->address ());
110 base[i] = x;
111 return base;
113 else
115 gcc_checking_assert (i == length);
116 vec_safe_push (array.heap, x);
117 return array.heap->address ();
121 /* Add the subrtxes of X to worklist ARRAY, starting at END. Return the
122 number of elements added to the worklist. */
124 template <typename T>
125 size_t
126 generic_subrtx_iterator <T>::add_subrtxes_to_queue (array_type &array,
127 value_type *base,
128 size_t end, rtx_type x)
130 enum rtx_code code = GET_CODE (x);
131 const char *format = GET_RTX_FORMAT (code);
132 size_t orig_end = end;
133 if (__builtin_expect (INSN_P (x), false))
135 /* Put the pattern at the top of the queue, since that's what
136 we're likely to want most. It also allows for the SEQUENCE
137 code below. */
138 for (int i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; --i)
139 if (format[i] == 'e')
141 value_type subx = T::get_value (x->u.fld[i].rt_rtx);
142 if (__builtin_expect (end < LOCAL_ELEMS, true))
143 base[end++] = subx;
144 else
145 base = add_single_to_queue (array, base, end++, subx);
148 else
149 for (int i = 0; format[i]; ++i)
150 if (format[i] == 'e')
152 value_type subx = T::get_value (x->u.fld[i].rt_rtx);
153 if (__builtin_expect (end < LOCAL_ELEMS, true))
154 base[end++] = subx;
155 else
156 base = add_single_to_queue (array, base, end++, subx);
158 else if (format[i] == 'E')
160 unsigned int length = GET_NUM_ELEM (x->u.fld[i].rt_rtvec);
161 rtx *vec = x->u.fld[i].rt_rtvec->elem;
162 if (__builtin_expect (end + length <= LOCAL_ELEMS, true))
163 for (unsigned int j = 0; j < length; j++)
164 base[end++] = T::get_value (vec[j]);
165 else
166 for (unsigned int j = 0; j < length; j++)
167 base = add_single_to_queue (array, base, end++,
168 T::get_value (vec[j]));
169 if (code == SEQUENCE && end == length)
170 /* If the subrtxes of the sequence fill the entire array then
171 we know that no other parts of a containing insn are queued.
172 The caller is therefore iterating over the sequence as a
173 PATTERN (...), so we also want the patterns of the
174 subinstructions. */
175 for (unsigned int j = 0; j < length; j++)
177 typename T::rtx_type x = T::get_rtx (base[j]);
178 if (INSN_P (x))
179 base[j] = T::get_value (PATTERN (x));
182 return end - orig_end;
185 template <typename T>
186 void
187 generic_subrtx_iterator <T>::free_array (array_type &array)
189 vec_free (array.heap);
192 template <typename T>
193 const size_t generic_subrtx_iterator <T>::LOCAL_ELEMS;
195 template class generic_subrtx_iterator <const_rtx_accessor>;
196 template class generic_subrtx_iterator <rtx_var_accessor>;
197 template class generic_subrtx_iterator <rtx_ptr_accessor>;
199 /* Return 1 if the value of X is unstable
200 (would be different at a different point in the program).
201 The frame pointer, arg pointer, etc. are considered stable
202 (within one function) and so is anything marked `unchanging'. */
205 rtx_unstable_p (const_rtx x)
207 const RTX_CODE code = GET_CODE (x);
208 int i;
209 const char *fmt;
211 switch (code)
213 case MEM:
214 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
216 case CONST:
217 CASE_CONST_ANY:
218 case SYMBOL_REF:
219 case LABEL_REF:
220 return 0;
222 case REG:
223 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
224 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
225 /* The arg pointer varies if it is not a fixed register. */
226 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
227 return 0;
228 /* ??? When call-clobbered, the value is stable modulo the restore
229 that must happen after a call. This currently screws up local-alloc
230 into believing that the restore is not needed. */
231 if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED && x == pic_offset_table_rtx)
232 return 0;
233 return 1;
235 case ASM_OPERANDS:
236 if (MEM_VOLATILE_P (x))
237 return 1;
239 /* Fall through. */
241 default:
242 break;
245 fmt = GET_RTX_FORMAT (code);
246 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
247 if (fmt[i] == 'e')
249 if (rtx_unstable_p (XEXP (x, i)))
250 return 1;
252 else if (fmt[i] == 'E')
254 int j;
255 for (j = 0; j < XVECLEN (x, i); j++)
256 if (rtx_unstable_p (XVECEXP (x, i, j)))
257 return 1;
260 return 0;
263 /* Return 1 if X has a value that can vary even between two
264 executions of the program. 0 means X can be compared reliably
265 against certain constants or near-constants.
266 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
267 zero, we are slightly more conservative.
268 The frame pointer and the arg pointer are considered constant. */
270 bool
271 rtx_varies_p (const_rtx x, bool for_alias)
273 RTX_CODE code;
274 int i;
275 const char *fmt;
277 if (!x)
278 return 0;
280 code = GET_CODE (x);
281 switch (code)
283 case MEM:
284 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
286 case CONST:
287 CASE_CONST_ANY:
288 case SYMBOL_REF:
289 case LABEL_REF:
290 return 0;
292 case REG:
293 /* Note that we have to test for the actual rtx used for the frame
294 and arg pointers and not just the register number in case we have
295 eliminated the frame and/or arg pointer and are using it
296 for pseudos. */
297 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
298 /* The arg pointer varies if it is not a fixed register. */
299 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
300 return 0;
301 if (x == pic_offset_table_rtx
302 /* ??? When call-clobbered, the value is stable modulo the restore
303 that must happen after a call. This currently screws up
304 local-alloc into believing that the restore is not needed, so we
305 must return 0 only if we are called from alias analysis. */
306 && (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED || for_alias))
307 return 0;
308 return 1;
310 case LO_SUM:
311 /* The operand 0 of a LO_SUM is considered constant
312 (in fact it is related specifically to operand 1)
313 during alias analysis. */
314 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
315 || rtx_varies_p (XEXP (x, 1), for_alias);
317 case ASM_OPERANDS:
318 if (MEM_VOLATILE_P (x))
319 return 1;
321 /* Fall through. */
323 default:
324 break;
327 fmt = GET_RTX_FORMAT (code);
328 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
329 if (fmt[i] == 'e')
331 if (rtx_varies_p (XEXP (x, i), for_alias))
332 return 1;
334 else if (fmt[i] == 'E')
336 int j;
337 for (j = 0; j < XVECLEN (x, i); j++)
338 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
339 return 1;
342 return 0;
345 /* Compute an approximation for the offset between the register
346 FROM and TO for the current function, as it was at the start
347 of the routine. */
349 static poly_int64
350 get_initial_register_offset (int from, int to)
352 static const struct elim_table_t
354 const int from;
355 const int to;
356 } table[] = ELIMINABLE_REGS;
357 poly_int64 offset1, offset2;
358 unsigned int i, j;
360 if (to == from)
361 return 0;
363 /* It is not safe to call INITIAL_ELIMINATION_OFFSET before the epilogue
364 is completed, but we need to give at least an estimate for the stack
365 pointer based on the frame size. */
366 if (!epilogue_completed)
368 offset1 = crtl->outgoing_args_size + get_frame_size ();
369 #if !STACK_GROWS_DOWNWARD
370 offset1 = - offset1;
371 #endif
372 if (to == STACK_POINTER_REGNUM)
373 return offset1;
374 else if (from == STACK_POINTER_REGNUM)
375 return - offset1;
376 else
377 return 0;
380 for (i = 0; i < ARRAY_SIZE (table); i++)
381 if (table[i].from == from)
383 if (table[i].to == to)
385 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
386 offset1);
387 return offset1;
389 for (j = 0; j < ARRAY_SIZE (table); j++)
391 if (table[j].to == to
392 && table[j].from == table[i].to)
394 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
395 offset1);
396 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
397 offset2);
398 return offset1 + offset2;
400 if (table[j].from == to
401 && table[j].to == table[i].to)
403 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
404 offset1);
405 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
406 offset2);
407 return offset1 - offset2;
411 else if (table[i].to == from)
413 if (table[i].from == to)
415 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
416 offset1);
417 return - offset1;
419 for (j = 0; j < ARRAY_SIZE (table); j++)
421 if (table[j].to == to
422 && table[j].from == table[i].from)
424 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
425 offset1);
426 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
427 offset2);
428 return - offset1 + offset2;
430 if (table[j].from == to
431 && table[j].to == table[i].from)
433 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
434 offset1);
435 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
436 offset2);
437 return - offset1 - offset2;
442 /* If the requested register combination was not found,
443 try a different more simple combination. */
444 if (from == ARG_POINTER_REGNUM)
445 return get_initial_register_offset (HARD_FRAME_POINTER_REGNUM, to);
446 else if (to == ARG_POINTER_REGNUM)
447 return get_initial_register_offset (from, HARD_FRAME_POINTER_REGNUM);
448 else if (from == HARD_FRAME_POINTER_REGNUM)
449 return get_initial_register_offset (FRAME_POINTER_REGNUM, to);
450 else if (to == HARD_FRAME_POINTER_REGNUM)
451 return get_initial_register_offset (from, FRAME_POINTER_REGNUM);
452 else
453 return 0;
456 /* Return nonzero if the use of X+OFFSET as an address in a MEM with SIZE
457 bytes can cause a trap. MODE is the mode of the MEM (not that of X) and
458 UNALIGNED_MEMS controls whether nonzero is returned for unaligned memory
459 references on strict alignment machines. */
461 static int
462 rtx_addr_can_trap_p_1 (const_rtx x, poly_int64 offset, poly_int64 size,
463 machine_mode mode, bool unaligned_mems)
465 enum rtx_code code = GET_CODE (x);
466 gcc_checking_assert (mode == BLKmode || known_size_p (size));
467 poly_int64 const_x1;
469 /* The offset must be a multiple of the mode size if we are considering
470 unaligned memory references on strict alignment machines. */
471 if (STRICT_ALIGNMENT && unaligned_mems && mode != BLKmode)
473 poly_int64 actual_offset = offset;
475 #ifdef SPARC_STACK_BOUNDARY_HACK
476 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
477 the real alignment of %sp. However, when it does this, the
478 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
479 if (SPARC_STACK_BOUNDARY_HACK
480 && (x == stack_pointer_rtx || x == hard_frame_pointer_rtx))
481 actual_offset -= STACK_POINTER_OFFSET;
482 #endif
484 if (!multiple_p (actual_offset, GET_MODE_SIZE (mode)))
485 return 1;
488 switch (code)
490 case SYMBOL_REF:
491 if (SYMBOL_REF_WEAK (x))
492 return 1;
493 if (!CONSTANT_POOL_ADDRESS_P (x) && !SYMBOL_REF_FUNCTION_P (x))
495 tree decl;
496 poly_int64 decl_size;
498 if (maybe_lt (offset, 0))
499 return 1;
500 if (!known_size_p (size))
501 return maybe_ne (offset, 0);
503 /* If the size of the access or of the symbol is unknown,
504 assume the worst. */
505 decl = SYMBOL_REF_DECL (x);
507 /* Else check that the access is in bounds. TODO: restructure
508 expr_size/tree_expr_size/int_expr_size and just use the latter. */
509 if (!decl)
510 decl_size = -1;
511 else if (DECL_P (decl) && DECL_SIZE_UNIT (decl))
513 if (!poly_int_tree_p (DECL_SIZE_UNIT (decl), &decl_size))
514 decl_size = -1;
516 else if (TREE_CODE (decl) == STRING_CST)
517 decl_size = TREE_STRING_LENGTH (decl);
518 else if (TYPE_SIZE_UNIT (TREE_TYPE (decl)))
519 decl_size = int_size_in_bytes (TREE_TYPE (decl));
520 else
521 decl_size = -1;
523 return (!known_size_p (decl_size) || known_eq (decl_size, 0)
524 ? maybe_ne (offset, 0)
525 : !known_subrange_p (offset, size, 0, decl_size));
528 return 0;
530 case LABEL_REF:
531 return 0;
533 case REG:
534 /* Stack references are assumed not to trap, but we need to deal with
535 nonsensical offsets. */
536 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
537 || x == stack_pointer_rtx
538 /* The arg pointer varies if it is not a fixed register. */
539 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
541 #ifdef RED_ZONE_SIZE
542 poly_int64 red_zone_size = RED_ZONE_SIZE;
543 #else
544 poly_int64 red_zone_size = 0;
545 #endif
546 poly_int64 stack_boundary = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
547 poly_int64 low_bound, high_bound;
549 if (!known_size_p (size))
550 return 1;
552 if (x == frame_pointer_rtx)
554 if (FRAME_GROWS_DOWNWARD)
556 high_bound = targetm.starting_frame_offset ();
557 low_bound = high_bound - get_frame_size ();
559 else
561 low_bound = targetm.starting_frame_offset ();
562 high_bound = low_bound + get_frame_size ();
565 else if (x == hard_frame_pointer_rtx)
567 poly_int64 sp_offset
568 = get_initial_register_offset (STACK_POINTER_REGNUM,
569 HARD_FRAME_POINTER_REGNUM);
570 poly_int64 ap_offset
571 = get_initial_register_offset (ARG_POINTER_REGNUM,
572 HARD_FRAME_POINTER_REGNUM);
574 #if STACK_GROWS_DOWNWARD
575 low_bound = sp_offset - red_zone_size - stack_boundary;
576 high_bound = ap_offset
577 + FIRST_PARM_OFFSET (current_function_decl)
578 #if !ARGS_GROW_DOWNWARD
579 + crtl->args.size
580 #endif
581 + stack_boundary;
582 #else
583 high_bound = sp_offset + red_zone_size + stack_boundary;
584 low_bound = ap_offset
585 + FIRST_PARM_OFFSET (current_function_decl)
586 #if ARGS_GROW_DOWNWARD
587 - crtl->args.size
588 #endif
589 - stack_boundary;
590 #endif
592 else if (x == stack_pointer_rtx)
594 poly_int64 ap_offset
595 = get_initial_register_offset (ARG_POINTER_REGNUM,
596 STACK_POINTER_REGNUM);
598 #if STACK_GROWS_DOWNWARD
599 low_bound = - red_zone_size - stack_boundary;
600 high_bound = ap_offset
601 + FIRST_PARM_OFFSET (current_function_decl)
602 #if !ARGS_GROW_DOWNWARD
603 + crtl->args.size
604 #endif
605 + stack_boundary;
606 #else
607 high_bound = red_zone_size + stack_boundary;
608 low_bound = ap_offset
609 + FIRST_PARM_OFFSET (current_function_decl)
610 #if ARGS_GROW_DOWNWARD
611 - crtl->args.size
612 #endif
613 - stack_boundary;
614 #endif
616 else
618 /* We assume that accesses are safe to at least the
619 next stack boundary.
620 Examples are varargs and __builtin_return_address. */
621 #if ARGS_GROW_DOWNWARD
622 high_bound = FIRST_PARM_OFFSET (current_function_decl)
623 + stack_boundary;
624 low_bound = FIRST_PARM_OFFSET (current_function_decl)
625 - crtl->args.size - stack_boundary;
626 #else
627 low_bound = FIRST_PARM_OFFSET (current_function_decl)
628 - stack_boundary;
629 high_bound = FIRST_PARM_OFFSET (current_function_decl)
630 + crtl->args.size + stack_boundary;
631 #endif
634 if (known_ge (offset, low_bound)
635 && known_le (offset, high_bound - size))
636 return 0;
637 return 1;
639 /* All of the virtual frame registers are stack references. */
640 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
641 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
642 return 0;
643 return 1;
645 case CONST:
646 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
647 mode, unaligned_mems);
649 case PLUS:
650 /* An address is assumed not to trap if:
651 - it is the pic register plus a const unspec without offset. */
652 if (XEXP (x, 0) == pic_offset_table_rtx
653 && GET_CODE (XEXP (x, 1)) == CONST
654 && GET_CODE (XEXP (XEXP (x, 1), 0)) == UNSPEC
655 && known_eq (offset, 0))
656 return 0;
658 /* - or it is an address that can't trap plus a constant integer. */
659 if (poly_int_rtx_p (XEXP (x, 1), &const_x1)
660 && !rtx_addr_can_trap_p_1 (XEXP (x, 0), offset + const_x1,
661 size, mode, unaligned_mems))
662 return 0;
664 return 1;
666 case LO_SUM:
667 case PRE_MODIFY:
668 return rtx_addr_can_trap_p_1 (XEXP (x, 1), offset, size,
669 mode, unaligned_mems);
671 case PRE_DEC:
672 case PRE_INC:
673 case POST_DEC:
674 case POST_INC:
675 case POST_MODIFY:
676 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
677 mode, unaligned_mems);
679 default:
680 break;
683 /* If it isn't one of the case above, it can cause a trap. */
684 return 1;
687 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
690 rtx_addr_can_trap_p (const_rtx x)
692 return rtx_addr_can_trap_p_1 (x, 0, -1, BLKmode, false);
695 /* Return true if X contains a MEM subrtx. */
697 bool
698 contains_mem_rtx_p (rtx x)
700 subrtx_iterator::array_type array;
701 FOR_EACH_SUBRTX (iter, array, x, ALL)
702 if (MEM_P (*iter))
703 return true;
705 return false;
708 /* Return true if X is an address that is known to not be zero. */
710 bool
711 nonzero_address_p (const_rtx x)
713 const enum rtx_code code = GET_CODE (x);
715 switch (code)
717 case SYMBOL_REF:
718 return flag_delete_null_pointer_checks && !SYMBOL_REF_WEAK (x);
720 case LABEL_REF:
721 return true;
723 case REG:
724 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
725 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
726 || x == stack_pointer_rtx
727 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
728 return true;
729 /* All of the virtual frame registers are stack references. */
730 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
731 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
732 return true;
733 return false;
735 case CONST:
736 return nonzero_address_p (XEXP (x, 0));
738 case PLUS:
739 /* Handle PIC references. */
740 if (XEXP (x, 0) == pic_offset_table_rtx
741 && CONSTANT_P (XEXP (x, 1)))
742 return true;
743 return false;
745 case PRE_MODIFY:
746 /* Similar to the above; allow positive offsets. Further, since
747 auto-inc is only allowed in memories, the register must be a
748 pointer. */
749 if (CONST_INT_P (XEXP (x, 1))
750 && INTVAL (XEXP (x, 1)) > 0)
751 return true;
752 return nonzero_address_p (XEXP (x, 0));
754 case PRE_INC:
755 /* Similarly. Further, the offset is always positive. */
756 return true;
758 case PRE_DEC:
759 case POST_DEC:
760 case POST_INC:
761 case POST_MODIFY:
762 return nonzero_address_p (XEXP (x, 0));
764 case LO_SUM:
765 return nonzero_address_p (XEXP (x, 1));
767 default:
768 break;
771 /* If it isn't one of the case above, might be zero. */
772 return false;
775 /* Return 1 if X refers to a memory location whose address
776 cannot be compared reliably with constant addresses,
777 or if X refers to a BLKmode memory object.
778 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
779 zero, we are slightly more conservative. */
781 bool
782 rtx_addr_varies_p (const_rtx x, bool for_alias)
784 enum rtx_code code;
785 int i;
786 const char *fmt;
788 if (x == 0)
789 return 0;
791 code = GET_CODE (x);
792 if (code == MEM)
793 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
795 fmt = GET_RTX_FORMAT (code);
796 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
797 if (fmt[i] == 'e')
799 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
800 return 1;
802 else if (fmt[i] == 'E')
804 int j;
805 for (j = 0; j < XVECLEN (x, i); j++)
806 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
807 return 1;
809 return 0;
812 /* Return the CALL in X if there is one. */
815 get_call_rtx_from (const rtx_insn *insn)
817 rtx x = PATTERN (insn);
818 if (GET_CODE (x) == PARALLEL)
819 x = XVECEXP (x, 0, 0);
820 if (GET_CODE (x) == SET)
821 x = SET_SRC (x);
822 if (GET_CODE (x) == CALL && MEM_P (XEXP (x, 0)))
823 return x;
824 return NULL_RTX;
827 /* Get the declaration of the function called by INSN. */
829 tree
830 get_call_fndecl (const rtx_insn *insn)
832 rtx note, datum;
834 note = find_reg_note (insn, REG_CALL_DECL, NULL_RTX);
835 if (note == NULL_RTX)
836 return NULL_TREE;
838 datum = XEXP (note, 0);
839 if (datum != NULL_RTX)
840 return SYMBOL_REF_DECL (datum);
842 return NULL_TREE;
845 /* Return the value of the integer term in X, if one is apparent;
846 otherwise return 0.
847 Only obvious integer terms are detected.
848 This is used in cse.c with the `related_value' field. */
850 HOST_WIDE_INT
851 get_integer_term (const_rtx x)
853 if (GET_CODE (x) == CONST)
854 x = XEXP (x, 0);
856 if (GET_CODE (x) == MINUS
857 && CONST_INT_P (XEXP (x, 1)))
858 return - INTVAL (XEXP (x, 1));
859 if (GET_CODE (x) == PLUS
860 && CONST_INT_P (XEXP (x, 1)))
861 return INTVAL (XEXP (x, 1));
862 return 0;
865 /* If X is a constant, return the value sans apparent integer term;
866 otherwise return 0.
867 Only obvious integer terms are detected. */
870 get_related_value (const_rtx x)
872 if (GET_CODE (x) != CONST)
873 return 0;
874 x = XEXP (x, 0);
875 if (GET_CODE (x) == PLUS
876 && CONST_INT_P (XEXP (x, 1)))
877 return XEXP (x, 0);
878 else if (GET_CODE (x) == MINUS
879 && CONST_INT_P (XEXP (x, 1)))
880 return XEXP (x, 0);
881 return 0;
884 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
885 to somewhere in the same object or object_block as SYMBOL. */
887 bool
888 offset_within_block_p (const_rtx symbol, HOST_WIDE_INT offset)
890 tree decl;
892 if (GET_CODE (symbol) != SYMBOL_REF)
893 return false;
895 if (offset == 0)
896 return true;
898 if (offset > 0)
900 if (CONSTANT_POOL_ADDRESS_P (symbol)
901 && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
902 return true;
904 decl = SYMBOL_REF_DECL (symbol);
905 if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
906 return true;
909 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
910 && SYMBOL_REF_BLOCK (symbol)
911 && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
912 && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
913 < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
914 return true;
916 return false;
919 /* Split X into a base and a constant offset, storing them in *BASE_OUT
920 and *OFFSET_OUT respectively. */
922 void
923 split_const (rtx x, rtx *base_out, rtx *offset_out)
925 if (GET_CODE (x) == CONST)
927 x = XEXP (x, 0);
928 if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1)))
930 *base_out = XEXP (x, 0);
931 *offset_out = XEXP (x, 1);
932 return;
935 *base_out = x;
936 *offset_out = const0_rtx;
939 /* Express integer value X as some value Y plus a polynomial offset,
940 where Y is either const0_rtx, X or something within X (as opposed
941 to a new rtx). Return the Y and store the offset in *OFFSET_OUT. */
944 strip_offset (rtx x, poly_int64_pod *offset_out)
946 rtx base = const0_rtx;
947 rtx test = x;
948 if (GET_CODE (test) == CONST)
949 test = XEXP (test, 0);
950 if (GET_CODE (test) == PLUS)
952 base = XEXP (test, 0);
953 test = XEXP (test, 1);
955 if (poly_int_rtx_p (test, offset_out))
956 return base;
957 *offset_out = 0;
958 return x;
961 /* Return the argument size in REG_ARGS_SIZE note X. */
963 poly_int64
964 get_args_size (const_rtx x)
966 gcc_checking_assert (REG_NOTE_KIND (x) == REG_ARGS_SIZE);
967 return rtx_to_poly_int64 (XEXP (x, 0));
970 /* Return the number of places FIND appears within X. If COUNT_DEST is
971 zero, we do not count occurrences inside the destination of a SET. */
974 count_occurrences (const_rtx x, const_rtx find, int count_dest)
976 int i, j;
977 enum rtx_code code;
978 const char *format_ptr;
979 int count;
981 if (x == find)
982 return 1;
984 code = GET_CODE (x);
986 switch (code)
988 case REG:
989 CASE_CONST_ANY:
990 case SYMBOL_REF:
991 case CODE_LABEL:
992 case PC:
993 case CC0:
994 return 0;
996 case EXPR_LIST:
997 count = count_occurrences (XEXP (x, 0), find, count_dest);
998 if (XEXP (x, 1))
999 count += count_occurrences (XEXP (x, 1), find, count_dest);
1000 return count;
1002 case MEM:
1003 if (MEM_P (find) && rtx_equal_p (x, find))
1004 return 1;
1005 break;
1007 case SET:
1008 if (SET_DEST (x) == find && ! count_dest)
1009 return count_occurrences (SET_SRC (x), find, count_dest);
1010 break;
1012 default:
1013 break;
1016 format_ptr = GET_RTX_FORMAT (code);
1017 count = 0;
1019 for (i = 0; i < GET_RTX_LENGTH (code); i++)
1021 switch (*format_ptr++)
1023 case 'e':
1024 count += count_occurrences (XEXP (x, i), find, count_dest);
1025 break;
1027 case 'E':
1028 for (j = 0; j < XVECLEN (x, i); j++)
1029 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
1030 break;
1033 return count;
1037 /* Return TRUE if OP is a register or subreg of a register that
1038 holds an unsigned quantity. Otherwise, return FALSE. */
1040 bool
1041 unsigned_reg_p (rtx op)
1043 if (REG_P (op)
1044 && REG_EXPR (op)
1045 && TYPE_UNSIGNED (TREE_TYPE (REG_EXPR (op))))
1046 return true;
1048 if (GET_CODE (op) == SUBREG
1049 && SUBREG_PROMOTED_SIGN (op))
1050 return true;
1052 return false;
1056 /* Nonzero if register REG appears somewhere within IN.
1057 Also works if REG is not a register; in this case it checks
1058 for a subexpression of IN that is Lisp "equal" to REG. */
1061 reg_mentioned_p (const_rtx reg, const_rtx in)
1063 const char *fmt;
1064 int i;
1065 enum rtx_code code;
1067 if (in == 0)
1068 return 0;
1070 if (reg == in)
1071 return 1;
1073 if (GET_CODE (in) == LABEL_REF)
1074 return reg == label_ref_label (in);
1076 code = GET_CODE (in);
1078 switch (code)
1080 /* Compare registers by number. */
1081 case REG:
1082 return REG_P (reg) && REGNO (in) == REGNO (reg);
1084 /* These codes have no constituent expressions
1085 and are unique. */
1086 case SCRATCH:
1087 case CC0:
1088 case PC:
1089 return 0;
1091 CASE_CONST_ANY:
1092 /* These are kept unique for a given value. */
1093 return 0;
1095 default:
1096 break;
1099 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
1100 return 1;
1102 fmt = GET_RTX_FORMAT (code);
1104 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1106 if (fmt[i] == 'E')
1108 int j;
1109 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
1110 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
1111 return 1;
1113 else if (fmt[i] == 'e'
1114 && reg_mentioned_p (reg, XEXP (in, i)))
1115 return 1;
1117 return 0;
1120 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
1121 no CODE_LABEL insn. */
1124 no_labels_between_p (const rtx_insn *beg, const rtx_insn *end)
1126 rtx_insn *p;
1127 if (beg == end)
1128 return 0;
1129 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
1130 if (LABEL_P (p))
1131 return 0;
1132 return 1;
1135 /* Nonzero if register REG is used in an insn between
1136 FROM_INSN and TO_INSN (exclusive of those two). */
1139 reg_used_between_p (const_rtx reg, const rtx_insn *from_insn,
1140 const rtx_insn *to_insn)
1142 rtx_insn *insn;
1144 if (from_insn == to_insn)
1145 return 0;
1147 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
1148 if (NONDEBUG_INSN_P (insn)
1149 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
1150 || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
1151 return 1;
1152 return 0;
1155 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
1156 is entirely replaced by a new value and the only use is as a SET_DEST,
1157 we do not consider it a reference. */
1160 reg_referenced_p (const_rtx x, const_rtx body)
1162 int i;
1164 switch (GET_CODE (body))
1166 case SET:
1167 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
1168 return 1;
1170 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
1171 of a REG that occupies all of the REG, the insn references X if
1172 it is mentioned in the destination. */
1173 if (GET_CODE (SET_DEST (body)) != CC0
1174 && GET_CODE (SET_DEST (body)) != PC
1175 && !REG_P (SET_DEST (body))
1176 && ! (GET_CODE (SET_DEST (body)) == SUBREG
1177 && REG_P (SUBREG_REG (SET_DEST (body)))
1178 && !read_modify_subreg_p (SET_DEST (body)))
1179 && reg_overlap_mentioned_p (x, SET_DEST (body)))
1180 return 1;
1181 return 0;
1183 case ASM_OPERANDS:
1184 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1185 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
1186 return 1;
1187 return 0;
1189 case CALL:
1190 case USE:
1191 case IF_THEN_ELSE:
1192 return reg_overlap_mentioned_p (x, body);
1194 case TRAP_IF:
1195 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
1197 case PREFETCH:
1198 return reg_overlap_mentioned_p (x, XEXP (body, 0));
1200 case UNSPEC:
1201 case UNSPEC_VOLATILE:
1202 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1203 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
1204 return 1;
1205 return 0;
1207 case PARALLEL:
1208 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1209 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
1210 return 1;
1211 return 0;
1213 case CLOBBER:
1214 if (MEM_P (XEXP (body, 0)))
1215 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
1216 return 1;
1217 return 0;
1219 case COND_EXEC:
1220 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
1221 return 1;
1222 return reg_referenced_p (x, COND_EXEC_CODE (body));
1224 default:
1225 return 0;
1229 /* Nonzero if register REG is set or clobbered in an insn between
1230 FROM_INSN and TO_INSN (exclusive of those two). */
1233 reg_set_between_p (const_rtx reg, const rtx_insn *from_insn,
1234 const rtx_insn *to_insn)
1236 const rtx_insn *insn;
1238 if (from_insn == to_insn)
1239 return 0;
1241 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
1242 if (INSN_P (insn) && reg_set_p (reg, insn))
1243 return 1;
1244 return 0;
1247 /* Return true if REG is set or clobbered inside INSN. */
1250 reg_set_p (const_rtx reg, const_rtx insn)
1252 /* After delay slot handling, call and branch insns might be in a
1253 sequence. Check all the elements there. */
1254 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1256 for (int i = 0; i < XVECLEN (PATTERN (insn), 0); ++i)
1257 if (reg_set_p (reg, XVECEXP (PATTERN (insn), 0, i)))
1258 return true;
1260 return false;
1263 /* We can be passed an insn or part of one. If we are passed an insn,
1264 check if a side-effect of the insn clobbers REG. */
1265 if (INSN_P (insn)
1266 && (FIND_REG_INC_NOTE (insn, reg)
1267 || (CALL_P (insn)
1268 && ((REG_P (reg)
1269 && REGNO (reg) < FIRST_PSEUDO_REGISTER
1270 && (insn_callee_abi (as_a<const rtx_insn *> (insn))
1271 .clobbers_reg_p (GET_MODE (reg), REGNO (reg))))
1272 || MEM_P (reg)
1273 || find_reg_fusage (insn, CLOBBER, reg)))))
1274 return true;
1276 /* There are no REG_INC notes for SP autoinc. */
1277 if (reg == stack_pointer_rtx && INSN_P (insn))
1279 subrtx_var_iterator::array_type array;
1280 FOR_EACH_SUBRTX_VAR (iter, array, PATTERN (insn), NONCONST)
1282 rtx mem = *iter;
1283 if (mem
1284 && MEM_P (mem)
1285 && GET_RTX_CLASS (GET_CODE (XEXP (mem, 0))) == RTX_AUTOINC)
1287 if (XEXP (XEXP (mem, 0), 0) == stack_pointer_rtx)
1288 return true;
1289 iter.skip_subrtxes ();
1294 return set_of (reg, insn) != NULL_RTX;
1297 /* Similar to reg_set_between_p, but check all registers in X. Return 0
1298 only if none of them are modified between START and END. Return 1 if
1299 X contains a MEM; this routine does use memory aliasing. */
1302 modified_between_p (const_rtx x, const rtx_insn *start, const rtx_insn *end)
1304 const enum rtx_code code = GET_CODE (x);
1305 const char *fmt;
1306 int i, j;
1307 rtx_insn *insn;
1309 if (start == end)
1310 return 0;
1312 switch (code)
1314 CASE_CONST_ANY:
1315 case CONST:
1316 case SYMBOL_REF:
1317 case LABEL_REF:
1318 return 0;
1320 case PC:
1321 case CC0:
1322 return 1;
1324 case MEM:
1325 if (modified_between_p (XEXP (x, 0), start, end))
1326 return 1;
1327 if (MEM_READONLY_P (x))
1328 return 0;
1329 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
1330 if (memory_modified_in_insn_p (x, insn))
1331 return 1;
1332 return 0;
1334 case REG:
1335 return reg_set_between_p (x, start, end);
1337 default:
1338 break;
1341 fmt = GET_RTX_FORMAT (code);
1342 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1344 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
1345 return 1;
1347 else if (fmt[i] == 'E')
1348 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1349 if (modified_between_p (XVECEXP (x, i, j), start, end))
1350 return 1;
1353 return 0;
1356 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
1357 of them are modified in INSN. Return 1 if X contains a MEM; this routine
1358 does use memory aliasing. */
1361 modified_in_p (const_rtx x, const_rtx insn)
1363 const enum rtx_code code = GET_CODE (x);
1364 const char *fmt;
1365 int i, j;
1367 switch (code)
1369 CASE_CONST_ANY:
1370 case CONST:
1371 case SYMBOL_REF:
1372 case LABEL_REF:
1373 return 0;
1375 case PC:
1376 case CC0:
1377 return 1;
1379 case MEM:
1380 if (modified_in_p (XEXP (x, 0), insn))
1381 return 1;
1382 if (MEM_READONLY_P (x))
1383 return 0;
1384 if (memory_modified_in_insn_p (x, insn))
1385 return 1;
1386 return 0;
1388 case REG:
1389 return reg_set_p (x, insn);
1391 default:
1392 break;
1395 fmt = GET_RTX_FORMAT (code);
1396 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1398 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
1399 return 1;
1401 else if (fmt[i] == 'E')
1402 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1403 if (modified_in_p (XVECEXP (x, i, j), insn))
1404 return 1;
1407 return 0;
1410 /* Return true if X is a SUBREG and if storing a value to X would
1411 preserve some of its SUBREG_REG. For example, on a normal 32-bit
1412 target, using a SUBREG to store to one half of a DImode REG would
1413 preserve the other half. */
1415 bool
1416 read_modify_subreg_p (const_rtx x)
1418 if (GET_CODE (x) != SUBREG)
1419 return false;
1420 poly_uint64 isize = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
1421 poly_uint64 osize = GET_MODE_SIZE (GET_MODE (x));
1422 poly_uint64 regsize = REGMODE_NATURAL_SIZE (GET_MODE (SUBREG_REG (x)));
1423 /* The inner and outer modes of a subreg must be ordered, so that we
1424 can tell whether they're paradoxical or partial. */
1425 gcc_checking_assert (ordered_p (isize, osize));
1426 return (maybe_gt (isize, osize) && maybe_gt (isize, regsize));
1429 /* Helper function for set_of. */
1430 struct set_of_data
1432 const_rtx found;
1433 const_rtx pat;
1436 static void
1437 set_of_1 (rtx x, const_rtx pat, void *data1)
1439 struct set_of_data *const data = (struct set_of_data *) (data1);
1440 if (rtx_equal_p (x, data->pat)
1441 || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
1442 data->found = pat;
1445 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
1446 (either directly or via STRICT_LOW_PART and similar modifiers). */
1447 const_rtx
1448 set_of (const_rtx pat, const_rtx insn)
1450 struct set_of_data data;
1451 data.found = NULL_RTX;
1452 data.pat = pat;
1453 note_pattern_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
1454 return data.found;
1457 /* Add all hard register in X to *PSET. */
1458 void
1459 find_all_hard_regs (const_rtx x, HARD_REG_SET *pset)
1461 subrtx_iterator::array_type array;
1462 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
1464 const_rtx x = *iter;
1465 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1466 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1470 /* This function, called through note_stores, collects sets and
1471 clobbers of hard registers in a HARD_REG_SET, which is pointed to
1472 by DATA. */
1473 void
1474 record_hard_reg_sets (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1476 HARD_REG_SET *pset = (HARD_REG_SET *)data;
1477 if (REG_P (x) && HARD_REGISTER_P (x))
1478 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1481 /* Examine INSN, and compute the set of hard registers written by it.
1482 Store it in *PSET. Should only be called after reload.
1484 IMPLICIT is true if we should include registers that are fully-clobbered
1485 by calls. This should be used with caution, since it doesn't include
1486 partially-clobbered registers. */
1487 void
1488 find_all_hard_reg_sets (const rtx_insn *insn, HARD_REG_SET *pset, bool implicit)
1490 rtx link;
1492 CLEAR_HARD_REG_SET (*pset);
1493 note_stores (insn, record_hard_reg_sets, pset);
1494 if (CALL_P (insn) && implicit)
1495 *pset |= insn_callee_abi (insn).full_reg_clobbers ();
1496 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1497 if (REG_NOTE_KIND (link) == REG_INC)
1498 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1501 /* Like record_hard_reg_sets, but called through note_uses. */
1502 void
1503 record_hard_reg_uses (rtx *px, void *data)
1505 find_all_hard_regs (*px, (HARD_REG_SET *) data);
1508 /* Given an INSN, return a SET expression if this insn has only a single SET.
1509 It may also have CLOBBERs, USEs, or SET whose output
1510 will not be used, which we ignore. */
1513 single_set_2 (const rtx_insn *insn, const_rtx pat)
1515 rtx set = NULL;
1516 int set_verified = 1;
1517 int i;
1519 if (GET_CODE (pat) == PARALLEL)
1521 for (i = 0; i < XVECLEN (pat, 0); i++)
1523 rtx sub = XVECEXP (pat, 0, i);
1524 switch (GET_CODE (sub))
1526 case USE:
1527 case CLOBBER:
1528 break;
1530 case SET:
1531 /* We can consider insns having multiple sets, where all
1532 but one are dead as single set insns. In common case
1533 only single set is present in the pattern so we want
1534 to avoid checking for REG_UNUSED notes unless necessary.
1536 When we reach set first time, we just expect this is
1537 the single set we are looking for and only when more
1538 sets are found in the insn, we check them. */
1539 if (!set_verified)
1541 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1542 && !side_effects_p (set))
1543 set = NULL;
1544 else
1545 set_verified = 1;
1547 if (!set)
1548 set = sub, set_verified = 0;
1549 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1550 || side_effects_p (sub))
1551 return NULL_RTX;
1552 break;
1554 default:
1555 return NULL_RTX;
1559 return set;
1562 /* Given an INSN, return nonzero if it has more than one SET, else return
1563 zero. */
1566 multiple_sets (const_rtx insn)
1568 int found;
1569 int i;
1571 /* INSN must be an insn. */
1572 if (! INSN_P (insn))
1573 return 0;
1575 /* Only a PARALLEL can have multiple SETs. */
1576 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1578 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1579 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1581 /* If we have already found a SET, then return now. */
1582 if (found)
1583 return 1;
1584 else
1585 found = 1;
1589 /* Either zero or one SET. */
1590 return 0;
1593 /* Return nonzero if the destination of SET equals the source
1594 and there are no side effects. */
1597 set_noop_p (const_rtx set)
1599 rtx src = SET_SRC (set);
1600 rtx dst = SET_DEST (set);
1602 if (dst == pc_rtx && src == pc_rtx)
1603 return 1;
1605 if (MEM_P (dst) && MEM_P (src))
1606 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1608 if (GET_CODE (dst) == ZERO_EXTRACT)
1609 return rtx_equal_p (XEXP (dst, 0), src)
1610 && !BITS_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1611 && !side_effects_p (src);
1613 if (GET_CODE (dst) == STRICT_LOW_PART)
1614 dst = XEXP (dst, 0);
1616 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1618 if (maybe_ne (SUBREG_BYTE (src), SUBREG_BYTE (dst)))
1619 return 0;
1620 src = SUBREG_REG (src);
1621 dst = SUBREG_REG (dst);
1622 if (GET_MODE (src) != GET_MODE (dst))
1623 /* It is hard to tell whether subregs refer to the same bits, so act
1624 conservatively and return 0. */
1625 return 0;
1628 /* It is a NOOP if destination overlaps with selected src vector
1629 elements. */
1630 if (GET_CODE (src) == VEC_SELECT
1631 && REG_P (XEXP (src, 0)) && REG_P (dst)
1632 && HARD_REGISTER_P (XEXP (src, 0))
1633 && HARD_REGISTER_P (dst))
1635 int i;
1636 rtx par = XEXP (src, 1);
1637 rtx src0 = XEXP (src, 0);
1638 poly_int64 c0;
1639 if (!poly_int_rtx_p (XVECEXP (par, 0, 0), &c0))
1640 return 0;
1641 poly_int64 offset = GET_MODE_UNIT_SIZE (GET_MODE (src0)) * c0;
1643 for (i = 1; i < XVECLEN (par, 0); i++)
1645 poly_int64 c0i;
1646 if (!poly_int_rtx_p (XVECEXP (par, 0, i), &c0i)
1647 || maybe_ne (c0i, c0 + i))
1648 return 0;
1650 return
1651 REG_CAN_CHANGE_MODE_P (REGNO (dst), GET_MODE (src0), GET_MODE (dst))
1652 && simplify_subreg_regno (REGNO (src0), GET_MODE (src0),
1653 offset, GET_MODE (dst)) == (int) REGNO (dst);
1656 return (REG_P (src) && REG_P (dst)
1657 && REGNO (src) == REGNO (dst));
1660 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1661 value to itself. */
1664 noop_move_p (const rtx_insn *insn)
1666 rtx pat = PATTERN (insn);
1668 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1669 return 1;
1671 /* Insns carrying these notes are useful later on. */
1672 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1673 return 0;
1675 /* Check the code to be executed for COND_EXEC. */
1676 if (GET_CODE (pat) == COND_EXEC)
1677 pat = COND_EXEC_CODE (pat);
1679 if (GET_CODE (pat) == SET && set_noop_p (pat))
1680 return 1;
1682 if (GET_CODE (pat) == PARALLEL)
1684 int i;
1685 /* If nothing but SETs of registers to themselves,
1686 this insn can also be deleted. */
1687 for (i = 0; i < XVECLEN (pat, 0); i++)
1689 rtx tem = XVECEXP (pat, 0, i);
1691 if (GET_CODE (tem) == USE || GET_CODE (tem) == CLOBBER)
1692 continue;
1694 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1695 return 0;
1698 return 1;
1700 return 0;
1704 /* Return nonzero if register in range [REGNO, ENDREGNO)
1705 appears either explicitly or implicitly in X
1706 other than being stored into.
1708 References contained within the substructure at LOC do not count.
1709 LOC may be zero, meaning don't ignore anything. */
1711 bool
1712 refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x,
1713 rtx *loc)
1715 int i;
1716 unsigned int x_regno;
1717 RTX_CODE code;
1718 const char *fmt;
1720 repeat:
1721 /* The contents of a REG_NONNEG note is always zero, so we must come here
1722 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1723 if (x == 0)
1724 return false;
1726 code = GET_CODE (x);
1728 switch (code)
1730 case REG:
1731 x_regno = REGNO (x);
1733 /* If we modifying the stack, frame, or argument pointer, it will
1734 clobber a virtual register. In fact, we could be more precise,
1735 but it isn't worth it. */
1736 if ((x_regno == STACK_POINTER_REGNUM
1737 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1738 && x_regno == ARG_POINTER_REGNUM)
1739 || x_regno == FRAME_POINTER_REGNUM)
1740 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1741 return true;
1743 return endregno > x_regno && regno < END_REGNO (x);
1745 case SUBREG:
1746 /* If this is a SUBREG of a hard reg, we can see exactly which
1747 registers are being modified. Otherwise, handle normally. */
1748 if (REG_P (SUBREG_REG (x))
1749 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1751 unsigned int inner_regno = subreg_regno (x);
1752 unsigned int inner_endregno
1753 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1754 ? subreg_nregs (x) : 1);
1756 return endregno > inner_regno && regno < inner_endregno;
1758 break;
1760 case CLOBBER:
1761 case SET:
1762 if (&SET_DEST (x) != loc
1763 /* Note setting a SUBREG counts as referring to the REG it is in for
1764 a pseudo but not for hard registers since we can
1765 treat each word individually. */
1766 && ((GET_CODE (SET_DEST (x)) == SUBREG
1767 && loc != &SUBREG_REG (SET_DEST (x))
1768 && REG_P (SUBREG_REG (SET_DEST (x)))
1769 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1770 && refers_to_regno_p (regno, endregno,
1771 SUBREG_REG (SET_DEST (x)), loc))
1772 || (!REG_P (SET_DEST (x))
1773 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1774 return true;
1776 if (code == CLOBBER || loc == &SET_SRC (x))
1777 return false;
1778 x = SET_SRC (x);
1779 goto repeat;
1781 default:
1782 break;
1785 /* X does not match, so try its subexpressions. */
1787 fmt = GET_RTX_FORMAT (code);
1788 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1790 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1792 if (i == 0)
1794 x = XEXP (x, 0);
1795 goto repeat;
1797 else
1798 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1799 return true;
1801 else if (fmt[i] == 'E')
1803 int j;
1804 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1805 if (loc != &XVECEXP (x, i, j)
1806 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1807 return true;
1810 return false;
1813 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1814 we check if any register number in X conflicts with the relevant register
1815 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1816 contains a MEM (we don't bother checking for memory addresses that can't
1817 conflict because we expect this to be a rare case. */
1820 reg_overlap_mentioned_p (const_rtx x, const_rtx in)
1822 unsigned int regno, endregno;
1824 /* If either argument is a constant, then modifying X cannot
1825 affect IN. Here we look at IN, we can profitably combine
1826 CONSTANT_P (x) with the switch statement below. */
1827 if (CONSTANT_P (in))
1828 return 0;
1830 recurse:
1831 switch (GET_CODE (x))
1833 case CLOBBER:
1834 case STRICT_LOW_PART:
1835 case ZERO_EXTRACT:
1836 case SIGN_EXTRACT:
1837 /* Overly conservative. */
1838 x = XEXP (x, 0);
1839 goto recurse;
1841 case SUBREG:
1842 regno = REGNO (SUBREG_REG (x));
1843 if (regno < FIRST_PSEUDO_REGISTER)
1844 regno = subreg_regno (x);
1845 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1846 ? subreg_nregs (x) : 1);
1847 goto do_reg;
1849 case REG:
1850 regno = REGNO (x);
1851 endregno = END_REGNO (x);
1852 do_reg:
1853 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1855 case MEM:
1857 const char *fmt;
1858 int i;
1860 if (MEM_P (in))
1861 return 1;
1863 fmt = GET_RTX_FORMAT (GET_CODE (in));
1864 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1865 if (fmt[i] == 'e')
1867 if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1868 return 1;
1870 else if (fmt[i] == 'E')
1872 int j;
1873 for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1874 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1875 return 1;
1878 return 0;
1881 case SCRATCH:
1882 case PC:
1883 case CC0:
1884 return reg_mentioned_p (x, in);
1886 case PARALLEL:
1888 int i;
1890 /* If any register in here refers to it we return true. */
1891 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1892 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1893 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1894 return 1;
1895 return 0;
1898 default:
1899 gcc_assert (CONSTANT_P (x));
1900 return 0;
1904 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1905 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1906 ignored by note_stores, but passed to FUN.
1908 FUN receives three arguments:
1909 1. the REG, MEM, CC0 or PC being stored in or clobbered,
1910 2. the SET or CLOBBER rtx that does the store,
1911 3. the pointer DATA provided to note_stores.
1913 If the item being stored in or clobbered is a SUBREG of a hard register,
1914 the SUBREG will be passed. */
1916 void
1917 note_pattern_stores (const_rtx x,
1918 void (*fun) (rtx, const_rtx, void *), void *data)
1920 int i;
1922 if (GET_CODE (x) == COND_EXEC)
1923 x = COND_EXEC_CODE (x);
1925 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1927 rtx dest = SET_DEST (x);
1929 while ((GET_CODE (dest) == SUBREG
1930 && (!REG_P (SUBREG_REG (dest))
1931 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1932 || GET_CODE (dest) == ZERO_EXTRACT
1933 || GET_CODE (dest) == STRICT_LOW_PART)
1934 dest = XEXP (dest, 0);
1936 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1937 each of whose first operand is a register. */
1938 if (GET_CODE (dest) == PARALLEL)
1940 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1941 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1942 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1944 else
1945 (*fun) (dest, x, data);
1948 else if (GET_CODE (x) == PARALLEL)
1949 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1950 note_pattern_stores (XVECEXP (x, 0, i), fun, data);
1953 /* Same, but for an instruction. If the instruction is a call, include
1954 any CLOBBERs in its CALL_INSN_FUNCTION_USAGE. */
1956 void
1957 note_stores (const rtx_insn *insn,
1958 void (*fun) (rtx, const_rtx, void *), void *data)
1960 if (CALL_P (insn))
1961 for (rtx link = CALL_INSN_FUNCTION_USAGE (insn);
1962 link; link = XEXP (link, 1))
1963 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
1964 note_pattern_stores (XEXP (link, 0), fun, data);
1965 note_pattern_stores (PATTERN (insn), fun, data);
1968 /* Like notes_stores, but call FUN for each expression that is being
1969 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1970 FUN for each expression, not any interior subexpressions. FUN receives a
1971 pointer to the expression and the DATA passed to this function.
1973 Note that this is not quite the same test as that done in reg_referenced_p
1974 since that considers something as being referenced if it is being
1975 partially set, while we do not. */
1977 void
1978 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1980 rtx body = *pbody;
1981 int i;
1983 switch (GET_CODE (body))
1985 case COND_EXEC:
1986 (*fun) (&COND_EXEC_TEST (body), data);
1987 note_uses (&COND_EXEC_CODE (body), fun, data);
1988 return;
1990 case PARALLEL:
1991 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1992 note_uses (&XVECEXP (body, 0, i), fun, data);
1993 return;
1995 case SEQUENCE:
1996 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1997 note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
1998 return;
2000 case USE:
2001 (*fun) (&XEXP (body, 0), data);
2002 return;
2004 case ASM_OPERANDS:
2005 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
2006 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
2007 return;
2009 case TRAP_IF:
2010 (*fun) (&TRAP_CONDITION (body), data);
2011 return;
2013 case PREFETCH:
2014 (*fun) (&XEXP (body, 0), data);
2015 return;
2017 case UNSPEC:
2018 case UNSPEC_VOLATILE:
2019 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
2020 (*fun) (&XVECEXP (body, 0, i), data);
2021 return;
2023 case CLOBBER:
2024 if (MEM_P (XEXP (body, 0)))
2025 (*fun) (&XEXP (XEXP (body, 0), 0), data);
2026 return;
2028 case SET:
2030 rtx dest = SET_DEST (body);
2032 /* For sets we replace everything in source plus registers in memory
2033 expression in store and operands of a ZERO_EXTRACT. */
2034 (*fun) (&SET_SRC (body), data);
2036 if (GET_CODE (dest) == ZERO_EXTRACT)
2038 (*fun) (&XEXP (dest, 1), data);
2039 (*fun) (&XEXP (dest, 2), data);
2042 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
2043 dest = XEXP (dest, 0);
2045 if (MEM_P (dest))
2046 (*fun) (&XEXP (dest, 0), data);
2048 return;
2050 default:
2051 /* All the other possibilities never store. */
2052 (*fun) (pbody, data);
2053 return;
2057 /* Return nonzero if X's old contents don't survive after INSN.
2058 This will be true if X is (cc0) or if X is a register and
2059 X dies in INSN or because INSN entirely sets X.
2061 "Entirely set" means set directly and not through a SUBREG, or
2062 ZERO_EXTRACT, so no trace of the old contents remains.
2063 Likewise, REG_INC does not count.
2065 REG may be a hard or pseudo reg. Renumbering is not taken into account,
2066 but for this use that makes no difference, since regs don't overlap
2067 during their lifetimes. Therefore, this function may be used
2068 at any time after deaths have been computed.
2070 If REG is a hard reg that occupies multiple machine registers, this
2071 function will only return 1 if each of those registers will be replaced
2072 by INSN. */
2075 dead_or_set_p (const rtx_insn *insn, const_rtx x)
2077 unsigned int regno, end_regno;
2078 unsigned int i;
2080 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
2081 if (GET_CODE (x) == CC0)
2082 return 1;
2084 gcc_assert (REG_P (x));
2086 regno = REGNO (x);
2087 end_regno = END_REGNO (x);
2088 for (i = regno; i < end_regno; i++)
2089 if (! dead_or_set_regno_p (insn, i))
2090 return 0;
2092 return 1;
2095 /* Return TRUE iff DEST is a register or subreg of a register, is a
2096 complete rather than read-modify-write destination, and contains
2097 register TEST_REGNO. */
2099 static bool
2100 covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno)
2102 unsigned int regno, endregno;
2104 if (GET_CODE (dest) == SUBREG && !read_modify_subreg_p (dest))
2105 dest = SUBREG_REG (dest);
2107 if (!REG_P (dest))
2108 return false;
2110 regno = REGNO (dest);
2111 endregno = END_REGNO (dest);
2112 return (test_regno >= regno && test_regno < endregno);
2115 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
2116 any member matches the covers_regno_no_parallel_p criteria. */
2118 static bool
2119 covers_regno_p (const_rtx dest, unsigned int test_regno)
2121 if (GET_CODE (dest) == PARALLEL)
2123 /* Some targets place small structures in registers for return
2124 values of functions, and those registers are wrapped in
2125 PARALLELs that we may see as the destination of a SET. */
2126 int i;
2128 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
2130 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
2131 if (inner != NULL_RTX
2132 && covers_regno_no_parallel_p (inner, test_regno))
2133 return true;
2136 return false;
2138 else
2139 return covers_regno_no_parallel_p (dest, test_regno);
2142 /* Utility function for dead_or_set_p to check an individual register. */
2145 dead_or_set_regno_p (const rtx_insn *insn, unsigned int test_regno)
2147 const_rtx pattern;
2149 /* See if there is a death note for something that includes TEST_REGNO. */
2150 if (find_regno_note (insn, REG_DEAD, test_regno))
2151 return 1;
2153 if (CALL_P (insn)
2154 && find_regno_fusage (insn, CLOBBER, test_regno))
2155 return 1;
2157 pattern = PATTERN (insn);
2159 /* If a COND_EXEC is not executed, the value survives. */
2160 if (GET_CODE (pattern) == COND_EXEC)
2161 return 0;
2163 if (GET_CODE (pattern) == SET || GET_CODE (pattern) == CLOBBER)
2164 return covers_regno_p (SET_DEST (pattern), test_regno);
2165 else if (GET_CODE (pattern) == PARALLEL)
2167 int i;
2169 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
2171 rtx body = XVECEXP (pattern, 0, i);
2173 if (GET_CODE (body) == COND_EXEC)
2174 body = COND_EXEC_CODE (body);
2176 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
2177 && covers_regno_p (SET_DEST (body), test_regno))
2178 return 1;
2182 return 0;
2185 /* Return the reg-note of kind KIND in insn INSN, if there is one.
2186 If DATUM is nonzero, look for one whose datum is DATUM. */
2189 find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum)
2191 rtx link;
2193 gcc_checking_assert (insn);
2195 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
2196 if (! INSN_P (insn))
2197 return 0;
2198 if (datum == 0)
2200 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2201 if (REG_NOTE_KIND (link) == kind)
2202 return link;
2203 return 0;
2206 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2207 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
2208 return link;
2209 return 0;
2212 /* Return the reg-note of kind KIND in insn INSN which applies to register
2213 number REGNO, if any. Return 0 if there is no such reg-note. Note that
2214 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
2215 it might be the case that the note overlaps REGNO. */
2218 find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno)
2220 rtx link;
2222 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
2223 if (! INSN_P (insn))
2224 return 0;
2226 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2227 if (REG_NOTE_KIND (link) == kind
2228 /* Verify that it is a register, so that scratch and MEM won't cause a
2229 problem here. */
2230 && REG_P (XEXP (link, 0))
2231 && REGNO (XEXP (link, 0)) <= regno
2232 && END_REGNO (XEXP (link, 0)) > regno)
2233 return link;
2234 return 0;
2237 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
2238 has such a note. */
2241 find_reg_equal_equiv_note (const_rtx insn)
2243 rtx link;
2245 if (!INSN_P (insn))
2246 return 0;
2248 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2249 if (REG_NOTE_KIND (link) == REG_EQUAL
2250 || REG_NOTE_KIND (link) == REG_EQUIV)
2252 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
2253 insns that have multiple sets. Checking single_set to
2254 make sure of this is not the proper check, as explained
2255 in the comment in set_unique_reg_note.
2257 This should be changed into an assert. */
2258 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
2259 return 0;
2260 return link;
2262 return NULL;
2265 /* Check whether INSN is a single_set whose source is known to be
2266 equivalent to a constant. Return that constant if so, otherwise
2267 return null. */
2270 find_constant_src (const rtx_insn *insn)
2272 rtx note, set, x;
2274 set = single_set (insn);
2275 if (set)
2277 x = avoid_constant_pool_reference (SET_SRC (set));
2278 if (CONSTANT_P (x))
2279 return x;
2282 note = find_reg_equal_equiv_note (insn);
2283 if (note && CONSTANT_P (XEXP (note, 0)))
2284 return XEXP (note, 0);
2286 return NULL_RTX;
2289 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
2290 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
2293 find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum)
2295 /* If it's not a CALL_INSN, it can't possibly have a
2296 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
2297 if (!CALL_P (insn))
2298 return 0;
2300 gcc_assert (datum);
2302 if (!REG_P (datum))
2304 rtx link;
2306 for (link = CALL_INSN_FUNCTION_USAGE (insn);
2307 link;
2308 link = XEXP (link, 1))
2309 if (GET_CODE (XEXP (link, 0)) == code
2310 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
2311 return 1;
2313 else
2315 unsigned int regno = REGNO (datum);
2317 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2318 to pseudo registers, so don't bother checking. */
2320 if (regno < FIRST_PSEUDO_REGISTER)
2322 unsigned int end_regno = END_REGNO (datum);
2323 unsigned int i;
2325 for (i = regno; i < end_regno; i++)
2326 if (find_regno_fusage (insn, code, i))
2327 return 1;
2331 return 0;
2334 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
2335 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
2338 find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno)
2340 rtx link;
2342 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2343 to pseudo registers, so don't bother checking. */
2345 if (regno >= FIRST_PSEUDO_REGISTER
2346 || !CALL_P (insn) )
2347 return 0;
2349 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
2351 rtx op, reg;
2353 if (GET_CODE (op = XEXP (link, 0)) == code
2354 && REG_P (reg = XEXP (op, 0))
2355 && REGNO (reg) <= regno
2356 && END_REGNO (reg) > regno)
2357 return 1;
2360 return 0;
2364 /* Return true if KIND is an integer REG_NOTE. */
2366 static bool
2367 int_reg_note_p (enum reg_note kind)
2369 return kind == REG_BR_PROB;
2372 /* Allocate a register note with kind KIND and datum DATUM. LIST is
2373 stored as the pointer to the next register note. */
2376 alloc_reg_note (enum reg_note kind, rtx datum, rtx list)
2378 rtx note;
2380 gcc_checking_assert (!int_reg_note_p (kind));
2381 switch (kind)
2383 case REG_CC_SETTER:
2384 case REG_CC_USER:
2385 case REG_LABEL_TARGET:
2386 case REG_LABEL_OPERAND:
2387 case REG_TM:
2388 /* These types of register notes use an INSN_LIST rather than an
2389 EXPR_LIST, so that copying is done right and dumps look
2390 better. */
2391 note = alloc_INSN_LIST (datum, list);
2392 PUT_REG_NOTE_KIND (note, kind);
2393 break;
2395 default:
2396 note = alloc_EXPR_LIST (kind, datum, list);
2397 break;
2400 return note;
2403 /* Add register note with kind KIND and datum DATUM to INSN. */
2405 void
2406 add_reg_note (rtx insn, enum reg_note kind, rtx datum)
2408 REG_NOTES (insn) = alloc_reg_note (kind, datum, REG_NOTES (insn));
2411 /* Add an integer register note with kind KIND and datum DATUM to INSN. */
2413 void
2414 add_int_reg_note (rtx_insn *insn, enum reg_note kind, int datum)
2416 gcc_checking_assert (int_reg_note_p (kind));
2417 REG_NOTES (insn) = gen_rtx_INT_LIST ((machine_mode) kind,
2418 datum, REG_NOTES (insn));
2421 /* Add a REG_ARGS_SIZE note to INSN with value VALUE. */
2423 void
2424 add_args_size_note (rtx_insn *insn, poly_int64 value)
2426 gcc_checking_assert (!find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX));
2427 add_reg_note (insn, REG_ARGS_SIZE, gen_int_mode (value, Pmode));
2430 /* Add a register note like NOTE to INSN. */
2432 void
2433 add_shallow_copy_of_reg_note (rtx_insn *insn, rtx note)
2435 if (GET_CODE (note) == INT_LIST)
2436 add_int_reg_note (insn, REG_NOTE_KIND (note), XINT (note, 0));
2437 else
2438 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
2441 /* Duplicate NOTE and return the copy. */
2443 duplicate_reg_note (rtx note)
2445 reg_note kind = REG_NOTE_KIND (note);
2447 if (GET_CODE (note) == INT_LIST)
2448 return gen_rtx_INT_LIST ((machine_mode) kind, XINT (note, 0), NULL_RTX);
2449 else if (GET_CODE (note) == EXPR_LIST)
2450 return alloc_reg_note (kind, copy_insn_1 (XEXP (note, 0)), NULL_RTX);
2451 else
2452 return alloc_reg_note (kind, XEXP (note, 0), NULL_RTX);
2455 /* Remove register note NOTE from the REG_NOTES of INSN. */
2457 void
2458 remove_note (rtx_insn *insn, const_rtx note)
2460 rtx link;
2462 if (note == NULL_RTX)
2463 return;
2465 if (REG_NOTES (insn) == note)
2466 REG_NOTES (insn) = XEXP (note, 1);
2467 else
2468 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2469 if (XEXP (link, 1) == note)
2471 XEXP (link, 1) = XEXP (note, 1);
2472 break;
2475 switch (REG_NOTE_KIND (note))
2477 case REG_EQUAL:
2478 case REG_EQUIV:
2479 df_notes_rescan (insn);
2480 break;
2481 default:
2482 break;
2486 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes.
2487 If NO_RESCAN is false and any notes were removed, call
2488 df_notes_rescan. Return true if any note has been removed. */
2490 bool
2491 remove_reg_equal_equiv_notes (rtx_insn *insn, bool no_rescan)
2493 rtx *loc;
2494 bool ret = false;
2496 loc = &REG_NOTES (insn);
2497 while (*loc)
2499 enum reg_note kind = REG_NOTE_KIND (*loc);
2500 if (kind == REG_EQUAL || kind == REG_EQUIV)
2502 *loc = XEXP (*loc, 1);
2503 ret = true;
2505 else
2506 loc = &XEXP (*loc, 1);
2508 if (ret && !no_rescan)
2509 df_notes_rescan (insn);
2510 return ret;
2513 /* Remove all REG_EQUAL and REG_EQUIV notes referring to REGNO. */
2515 void
2516 remove_reg_equal_equiv_notes_for_regno (unsigned int regno)
2518 df_ref eq_use;
2520 if (!df)
2521 return;
2523 /* This loop is a little tricky. We cannot just go down the chain because
2524 it is being modified by some actions in the loop. So we just iterate
2525 over the head. We plan to drain the list anyway. */
2526 while ((eq_use = DF_REG_EQ_USE_CHAIN (regno)) != NULL)
2528 rtx_insn *insn = DF_REF_INSN (eq_use);
2529 rtx note = find_reg_equal_equiv_note (insn);
2531 /* This assert is generally triggered when someone deletes a REG_EQUAL
2532 or REG_EQUIV note by hacking the list manually rather than calling
2533 remove_note. */
2534 gcc_assert (note);
2536 remove_note (insn, note);
2540 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2541 return 1 if it is found. A simple equality test is used to determine if
2542 NODE matches. */
2544 bool
2545 in_insn_list_p (const rtx_insn_list *listp, const rtx_insn *node)
2547 const_rtx x;
2549 for (x = listp; x; x = XEXP (x, 1))
2550 if (node == XEXP (x, 0))
2551 return true;
2553 return false;
2556 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2557 remove that entry from the list if it is found.
2559 A simple equality test is used to determine if NODE matches. */
2561 void
2562 remove_node_from_expr_list (const_rtx node, rtx_expr_list **listp)
2564 rtx_expr_list *temp = *listp;
2565 rtx_expr_list *prev = NULL;
2567 while (temp)
2569 if (node == temp->element ())
2571 /* Splice the node out of the list. */
2572 if (prev)
2573 XEXP (prev, 1) = temp->next ();
2574 else
2575 *listp = temp->next ();
2577 return;
2580 prev = temp;
2581 temp = temp->next ();
2585 /* Search LISTP (an INSN_LIST) for an entry whose first operand is NODE and
2586 remove that entry from the list if it is found.
2588 A simple equality test is used to determine if NODE matches. */
2590 void
2591 remove_node_from_insn_list (const rtx_insn *node, rtx_insn_list **listp)
2593 rtx_insn_list *temp = *listp;
2594 rtx_insn_list *prev = NULL;
2596 while (temp)
2598 if (node == temp->insn ())
2600 /* Splice the node out of the list. */
2601 if (prev)
2602 XEXP (prev, 1) = temp->next ();
2603 else
2604 *listp = temp->next ();
2606 return;
2609 prev = temp;
2610 temp = temp->next ();
2614 /* Nonzero if X contains any volatile instructions. These are instructions
2615 which may cause unpredictable machine state instructions, and thus no
2616 instructions or register uses should be moved or combined across them.
2617 This includes only volatile asms and UNSPEC_VOLATILE instructions. */
2620 volatile_insn_p (const_rtx x)
2622 const RTX_CODE code = GET_CODE (x);
2623 switch (code)
2625 case LABEL_REF:
2626 case SYMBOL_REF:
2627 case CONST:
2628 CASE_CONST_ANY:
2629 case CC0:
2630 case PC:
2631 case REG:
2632 case SCRATCH:
2633 case CLOBBER:
2634 case ADDR_VEC:
2635 case ADDR_DIFF_VEC:
2636 case CALL:
2637 case MEM:
2638 return 0;
2640 case UNSPEC_VOLATILE:
2641 return 1;
2643 case ASM_INPUT:
2644 case ASM_OPERANDS:
2645 if (MEM_VOLATILE_P (x))
2646 return 1;
2648 default:
2649 break;
2652 /* Recursively scan the operands of this expression. */
2655 const char *const fmt = GET_RTX_FORMAT (code);
2656 int i;
2658 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2660 if (fmt[i] == 'e')
2662 if (volatile_insn_p (XEXP (x, i)))
2663 return 1;
2665 else if (fmt[i] == 'E')
2667 int j;
2668 for (j = 0; j < XVECLEN (x, i); j++)
2669 if (volatile_insn_p (XVECEXP (x, i, j)))
2670 return 1;
2674 return 0;
2677 /* Nonzero if X contains any volatile memory references
2678 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2681 volatile_refs_p (const_rtx x)
2683 const RTX_CODE code = GET_CODE (x);
2684 switch (code)
2686 case LABEL_REF:
2687 case SYMBOL_REF:
2688 case CONST:
2689 CASE_CONST_ANY:
2690 case CC0:
2691 case PC:
2692 case REG:
2693 case SCRATCH:
2694 case CLOBBER:
2695 case ADDR_VEC:
2696 case ADDR_DIFF_VEC:
2697 return 0;
2699 case UNSPEC_VOLATILE:
2700 return 1;
2702 case MEM:
2703 case ASM_INPUT:
2704 case ASM_OPERANDS:
2705 if (MEM_VOLATILE_P (x))
2706 return 1;
2708 default:
2709 break;
2712 /* Recursively scan the operands of this expression. */
2715 const char *const fmt = GET_RTX_FORMAT (code);
2716 int i;
2718 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2720 if (fmt[i] == 'e')
2722 if (volatile_refs_p (XEXP (x, i)))
2723 return 1;
2725 else if (fmt[i] == 'E')
2727 int j;
2728 for (j = 0; j < XVECLEN (x, i); j++)
2729 if (volatile_refs_p (XVECEXP (x, i, j)))
2730 return 1;
2734 return 0;
2737 /* Similar to above, except that it also rejects register pre- and post-
2738 incrementing. */
2741 side_effects_p (const_rtx x)
2743 const RTX_CODE code = GET_CODE (x);
2744 switch (code)
2746 case LABEL_REF:
2747 case SYMBOL_REF:
2748 case CONST:
2749 CASE_CONST_ANY:
2750 case CC0:
2751 case PC:
2752 case REG:
2753 case SCRATCH:
2754 case ADDR_VEC:
2755 case ADDR_DIFF_VEC:
2756 case VAR_LOCATION:
2757 return 0;
2759 case CLOBBER:
2760 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2761 when some combination can't be done. If we see one, don't think
2762 that we can simplify the expression. */
2763 return (GET_MODE (x) != VOIDmode);
2765 case PRE_INC:
2766 case PRE_DEC:
2767 case POST_INC:
2768 case POST_DEC:
2769 case PRE_MODIFY:
2770 case POST_MODIFY:
2771 case CALL:
2772 case UNSPEC_VOLATILE:
2773 return 1;
2775 case MEM:
2776 case ASM_INPUT:
2777 case ASM_OPERANDS:
2778 if (MEM_VOLATILE_P (x))
2779 return 1;
2781 default:
2782 break;
2785 /* Recursively scan the operands of this expression. */
2788 const char *fmt = GET_RTX_FORMAT (code);
2789 int i;
2791 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2793 if (fmt[i] == 'e')
2795 if (side_effects_p (XEXP (x, i)))
2796 return 1;
2798 else if (fmt[i] == 'E')
2800 int j;
2801 for (j = 0; j < XVECLEN (x, i); j++)
2802 if (side_effects_p (XVECEXP (x, i, j)))
2803 return 1;
2807 return 0;
2810 /* Return nonzero if evaluating rtx X might cause a trap.
2811 FLAGS controls how to consider MEMs. A nonzero means the context
2812 of the access may have changed from the original, such that the
2813 address may have become invalid. */
2816 may_trap_p_1 (const_rtx x, unsigned flags)
2818 int i;
2819 enum rtx_code code;
2820 const char *fmt;
2822 /* We make no distinction currently, but this function is part of
2823 the internal target-hooks ABI so we keep the parameter as
2824 "unsigned flags". */
2825 bool code_changed = flags != 0;
2827 if (x == 0)
2828 return 0;
2829 code = GET_CODE (x);
2830 switch (code)
2832 /* Handle these cases quickly. */
2833 CASE_CONST_ANY:
2834 case SYMBOL_REF:
2835 case LABEL_REF:
2836 case CONST:
2837 case PC:
2838 case CC0:
2839 case REG:
2840 case SCRATCH:
2841 return 0;
2843 case UNSPEC:
2844 return targetm.unspec_may_trap_p (x, flags);
2846 case UNSPEC_VOLATILE:
2847 case ASM_INPUT:
2848 case TRAP_IF:
2849 return 1;
2851 case ASM_OPERANDS:
2852 return MEM_VOLATILE_P (x);
2854 /* Memory ref can trap unless it's a static var or a stack slot. */
2855 case MEM:
2856 /* Recognize specific pattern of stack checking probes. */
2857 if (flag_stack_check
2858 && MEM_VOLATILE_P (x)
2859 && XEXP (x, 0) == stack_pointer_rtx)
2860 return 1;
2861 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2862 reference; moving it out of context such as when moving code
2863 when optimizing, might cause its address to become invalid. */
2864 code_changed
2865 || !MEM_NOTRAP_P (x))
2867 poly_int64 size = MEM_SIZE_KNOWN_P (x) ? MEM_SIZE (x) : -1;
2868 return rtx_addr_can_trap_p_1 (XEXP (x, 0), 0, size,
2869 GET_MODE (x), code_changed);
2872 return 0;
2874 /* Division by a non-constant might trap. */
2875 case DIV:
2876 case MOD:
2877 case UDIV:
2878 case UMOD:
2879 if (HONOR_SNANS (x))
2880 return 1;
2881 if (FLOAT_MODE_P (GET_MODE (x)))
2882 return flag_trapping_math;
2883 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2884 return 1;
2885 if (GET_CODE (XEXP (x, 1)) == CONST_VECTOR)
2887 /* For CONST_VECTOR, return 1 if any element is or might be zero. */
2888 unsigned int n_elts;
2889 rtx op = XEXP (x, 1);
2890 if (!GET_MODE_NUNITS (GET_MODE (op)).is_constant (&n_elts))
2892 if (!CONST_VECTOR_DUPLICATE_P (op))
2893 return 1;
2894 for (unsigned i = 0; i < (unsigned int) XVECLEN (op, 0); i++)
2895 if (CONST_VECTOR_ENCODED_ELT (op, i) == const0_rtx)
2896 return 1;
2898 else
2899 for (unsigned i = 0; i < n_elts; i++)
2900 if (CONST_VECTOR_ELT (op, i) == const0_rtx)
2901 return 1;
2903 break;
2905 case EXPR_LIST:
2906 /* An EXPR_LIST is used to represent a function call. This
2907 certainly may trap. */
2908 return 1;
2910 case GE:
2911 case GT:
2912 case LE:
2913 case LT:
2914 case LTGT:
2915 case COMPARE:
2916 /* Some floating point comparisons may trap. */
2917 if (!flag_trapping_math)
2918 break;
2919 /* ??? There is no machine independent way to check for tests that trap
2920 when COMPARE is used, though many targets do make this distinction.
2921 For instance, sparc uses CCFPE for compares which generate exceptions
2922 and CCFP for compares which do not generate exceptions. */
2923 if (HONOR_NANS (x))
2924 return 1;
2925 /* But often the compare has some CC mode, so check operand
2926 modes as well. */
2927 if (HONOR_NANS (XEXP (x, 0))
2928 || HONOR_NANS (XEXP (x, 1)))
2929 return 1;
2930 break;
2932 case EQ:
2933 case NE:
2934 if (HONOR_SNANS (x))
2935 return 1;
2936 /* Often comparison is CC mode, so check operand modes. */
2937 if (HONOR_SNANS (XEXP (x, 0))
2938 || HONOR_SNANS (XEXP (x, 1)))
2939 return 1;
2940 break;
2942 case FIX:
2943 /* Conversion of floating point might trap. */
2944 if (flag_trapping_math && HONOR_NANS (XEXP (x, 0)))
2945 return 1;
2946 break;
2948 case NEG:
2949 case ABS:
2950 case SUBREG:
2951 case VEC_MERGE:
2952 case VEC_SELECT:
2953 case VEC_CONCAT:
2954 case VEC_DUPLICATE:
2955 /* These operations don't trap even with floating point. */
2956 break;
2958 default:
2959 /* Any floating arithmetic may trap. */
2960 if (FLOAT_MODE_P (GET_MODE (x)) && flag_trapping_math)
2961 return 1;
2964 fmt = GET_RTX_FORMAT (code);
2965 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2967 if (fmt[i] == 'e')
2969 if (may_trap_p_1 (XEXP (x, i), flags))
2970 return 1;
2972 else if (fmt[i] == 'E')
2974 int j;
2975 for (j = 0; j < XVECLEN (x, i); j++)
2976 if (may_trap_p_1 (XVECEXP (x, i, j), flags))
2977 return 1;
2980 return 0;
2983 /* Return nonzero if evaluating rtx X might cause a trap. */
2986 may_trap_p (const_rtx x)
2988 return may_trap_p_1 (x, 0);
2991 /* Same as above, but additionally return nonzero if evaluating rtx X might
2992 cause a fault. We define a fault for the purpose of this function as a
2993 erroneous execution condition that cannot be encountered during the normal
2994 execution of a valid program; the typical example is an unaligned memory
2995 access on a strict alignment machine. The compiler guarantees that it
2996 doesn't generate code that will fault from a valid program, but this
2997 guarantee doesn't mean anything for individual instructions. Consider
2998 the following example:
3000 struct S { int d; union { char *cp; int *ip; }; };
3002 int foo(struct S *s)
3004 if (s->d == 1)
3005 return *s->ip;
3006 else
3007 return *s->cp;
3010 on a strict alignment machine. In a valid program, foo will never be
3011 invoked on a structure for which d is equal to 1 and the underlying
3012 unique field of the union not aligned on a 4-byte boundary, but the
3013 expression *s->ip might cause a fault if considered individually.
3015 At the RTL level, potentially problematic expressions will almost always
3016 verify may_trap_p; for example, the above dereference can be emitted as
3017 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
3018 However, suppose that foo is inlined in a caller that causes s->cp to
3019 point to a local character variable and guarantees that s->d is not set
3020 to 1; foo may have been effectively translated into pseudo-RTL as:
3022 if ((reg:SI) == 1)
3023 (set (reg:SI) (mem:SI (%fp - 7)))
3024 else
3025 (set (reg:QI) (mem:QI (%fp - 7)))
3027 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
3028 memory reference to a stack slot, but it will certainly cause a fault
3029 on a strict alignment machine. */
3032 may_trap_or_fault_p (const_rtx x)
3034 return may_trap_p_1 (x, 1);
3037 /* Replace any occurrence of FROM in X with TO. The function does
3038 not enter into CONST_DOUBLE for the replace.
3040 Note that copying is not done so X must not be shared unless all copies
3041 are to be modified.
3043 ALL_REGS is true if we want to replace all REGs equal to FROM, not just
3044 those pointer-equal ones. */
3047 replace_rtx (rtx x, rtx from, rtx to, bool all_regs)
3049 int i, j;
3050 const char *fmt;
3052 if (x == from)
3053 return to;
3055 /* Allow this function to make replacements in EXPR_LISTs. */
3056 if (x == 0)
3057 return 0;
3059 if (all_regs
3060 && REG_P (x)
3061 && REG_P (from)
3062 && REGNO (x) == REGNO (from))
3064 gcc_assert (GET_MODE (x) == GET_MODE (from));
3065 return to;
3067 else if (GET_CODE (x) == SUBREG)
3069 rtx new_rtx = replace_rtx (SUBREG_REG (x), from, to, all_regs);
3071 if (CONST_INT_P (new_rtx))
3073 x = simplify_subreg (GET_MODE (x), new_rtx,
3074 GET_MODE (SUBREG_REG (x)),
3075 SUBREG_BYTE (x));
3076 gcc_assert (x);
3078 else
3079 SUBREG_REG (x) = new_rtx;
3081 return x;
3083 else if (GET_CODE (x) == ZERO_EXTEND)
3085 rtx new_rtx = replace_rtx (XEXP (x, 0), from, to, all_regs);
3087 if (CONST_INT_P (new_rtx))
3089 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
3090 new_rtx, GET_MODE (XEXP (x, 0)));
3091 gcc_assert (x);
3093 else
3094 XEXP (x, 0) = new_rtx;
3096 return x;
3099 fmt = GET_RTX_FORMAT (GET_CODE (x));
3100 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3102 if (fmt[i] == 'e')
3103 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to, all_regs);
3104 else if (fmt[i] == 'E')
3105 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3106 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j),
3107 from, to, all_regs);
3110 return x;
3113 /* Replace occurrences of the OLD_LABEL in *LOC with NEW_LABEL. Also track
3114 the change in LABEL_NUSES if UPDATE_LABEL_NUSES. */
3116 void
3117 replace_label (rtx *loc, rtx old_label, rtx new_label, bool update_label_nuses)
3119 /* Handle jump tables specially, since ADDR_{DIFF_,}VECs can be long. */
3120 rtx x = *loc;
3121 if (JUMP_TABLE_DATA_P (x))
3123 x = PATTERN (x);
3124 rtvec vec = XVEC (x, GET_CODE (x) == ADDR_DIFF_VEC);
3125 int len = GET_NUM_ELEM (vec);
3126 for (int i = 0; i < len; ++i)
3128 rtx ref = RTVEC_ELT (vec, i);
3129 if (XEXP (ref, 0) == old_label)
3131 XEXP (ref, 0) = new_label;
3132 if (update_label_nuses)
3134 ++LABEL_NUSES (new_label);
3135 --LABEL_NUSES (old_label);
3139 return;
3142 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
3143 field. This is not handled by the iterator because it doesn't
3144 handle unprinted ('0') fields. */
3145 if (JUMP_P (x) && JUMP_LABEL (x) == old_label)
3146 JUMP_LABEL (x) = new_label;
3148 subrtx_ptr_iterator::array_type array;
3149 FOR_EACH_SUBRTX_PTR (iter, array, loc, ALL)
3151 rtx *loc = *iter;
3152 if (rtx x = *loc)
3154 if (GET_CODE (x) == SYMBOL_REF
3155 && CONSTANT_POOL_ADDRESS_P (x))
3157 rtx c = get_pool_constant (x);
3158 if (rtx_referenced_p (old_label, c))
3160 /* Create a copy of constant C; replace the label inside
3161 but do not update LABEL_NUSES because uses in constant pool
3162 are not counted. */
3163 rtx new_c = copy_rtx (c);
3164 replace_label (&new_c, old_label, new_label, false);
3166 /* Add the new constant NEW_C to constant pool and replace
3167 the old reference to constant by new reference. */
3168 rtx new_mem = force_const_mem (get_pool_mode (x), new_c);
3169 *loc = replace_rtx (x, x, XEXP (new_mem, 0));
3173 if ((GET_CODE (x) == LABEL_REF
3174 || GET_CODE (x) == INSN_LIST)
3175 && XEXP (x, 0) == old_label)
3177 XEXP (x, 0) = new_label;
3178 if (update_label_nuses)
3180 ++LABEL_NUSES (new_label);
3181 --LABEL_NUSES (old_label);
3188 void
3189 replace_label_in_insn (rtx_insn *insn, rtx_insn *old_label,
3190 rtx_insn *new_label, bool update_label_nuses)
3192 rtx insn_as_rtx = insn;
3193 replace_label (&insn_as_rtx, old_label, new_label, update_label_nuses);
3194 gcc_checking_assert (insn_as_rtx == insn);
3197 /* Return true if X is referenced in BODY. */
3199 bool
3200 rtx_referenced_p (const_rtx x, const_rtx body)
3202 subrtx_iterator::array_type array;
3203 FOR_EACH_SUBRTX (iter, array, body, ALL)
3204 if (const_rtx y = *iter)
3206 /* Check if a label_ref Y refers to label X. */
3207 if (GET_CODE (y) == LABEL_REF
3208 && LABEL_P (x)
3209 && label_ref_label (y) == x)
3210 return true;
3212 if (rtx_equal_p (x, y))
3213 return true;
3215 /* If Y is a reference to pool constant traverse the constant. */
3216 if (GET_CODE (y) == SYMBOL_REF
3217 && CONSTANT_POOL_ADDRESS_P (y))
3218 iter.substitute (get_pool_constant (y));
3220 return false;
3223 /* If INSN is a tablejump return true and store the label (before jump table) to
3224 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
3226 bool
3227 tablejump_p (const rtx_insn *insn, rtx_insn **labelp,
3228 rtx_jump_table_data **tablep)
3230 if (!JUMP_P (insn))
3231 return false;
3233 rtx target = JUMP_LABEL (insn);
3234 if (target == NULL_RTX || ANY_RETURN_P (target))
3235 return false;
3237 rtx_insn *label = as_a<rtx_insn *> (target);
3238 rtx_insn *table = next_insn (label);
3239 if (table == NULL_RTX || !JUMP_TABLE_DATA_P (table))
3240 return false;
3242 if (labelp)
3243 *labelp = label;
3244 if (tablep)
3245 *tablep = as_a <rtx_jump_table_data *> (table);
3246 return true;
3249 /* For INSN known to satisfy tablejump_p, determine if it actually is a
3250 CASESI. Return the insn pattern if so, NULL_RTX otherwise. */
3253 tablejump_casesi_pattern (const rtx_insn *insn)
3255 rtx tmp;
3257 if ((tmp = single_set (insn)) != NULL
3258 && SET_DEST (tmp) == pc_rtx
3259 && GET_CODE (SET_SRC (tmp)) == IF_THEN_ELSE
3260 && GET_CODE (XEXP (SET_SRC (tmp), 2)) == LABEL_REF)
3261 return tmp;
3263 return NULL_RTX;
3266 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
3267 constant that is not in the constant pool and not in the condition
3268 of an IF_THEN_ELSE. */
3270 static int
3271 computed_jump_p_1 (const_rtx x)
3273 const enum rtx_code code = GET_CODE (x);
3274 int i, j;
3275 const char *fmt;
3277 switch (code)
3279 case LABEL_REF:
3280 case PC:
3281 return 0;
3283 case CONST:
3284 CASE_CONST_ANY:
3285 case SYMBOL_REF:
3286 case REG:
3287 return 1;
3289 case MEM:
3290 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
3291 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
3293 case IF_THEN_ELSE:
3294 return (computed_jump_p_1 (XEXP (x, 1))
3295 || computed_jump_p_1 (XEXP (x, 2)));
3297 default:
3298 break;
3301 fmt = GET_RTX_FORMAT (code);
3302 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3304 if (fmt[i] == 'e'
3305 && computed_jump_p_1 (XEXP (x, i)))
3306 return 1;
3308 else if (fmt[i] == 'E')
3309 for (j = 0; j < XVECLEN (x, i); j++)
3310 if (computed_jump_p_1 (XVECEXP (x, i, j)))
3311 return 1;
3314 return 0;
3317 /* Return nonzero if INSN is an indirect jump (aka computed jump).
3319 Tablejumps and casesi insns are not considered indirect jumps;
3320 we can recognize them by a (use (label_ref)). */
3323 computed_jump_p (const rtx_insn *insn)
3325 int i;
3326 if (JUMP_P (insn))
3328 rtx pat = PATTERN (insn);
3330 /* If we have a JUMP_LABEL set, we're not a computed jump. */
3331 if (JUMP_LABEL (insn) != NULL)
3332 return 0;
3334 if (GET_CODE (pat) == PARALLEL)
3336 int len = XVECLEN (pat, 0);
3337 int has_use_labelref = 0;
3339 for (i = len - 1; i >= 0; i--)
3340 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
3341 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
3342 == LABEL_REF))
3344 has_use_labelref = 1;
3345 break;
3348 if (! has_use_labelref)
3349 for (i = len - 1; i >= 0; i--)
3350 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
3351 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
3352 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
3353 return 1;
3355 else if (GET_CODE (pat) == SET
3356 && SET_DEST (pat) == pc_rtx
3357 && computed_jump_p_1 (SET_SRC (pat)))
3358 return 1;
3360 return 0;
3365 /* MEM has a PRE/POST-INC/DEC/MODIFY address X. Extract the operands of
3366 the equivalent add insn and pass the result to FN, using DATA as the
3367 final argument. */
3369 static int
3370 for_each_inc_dec_find_inc_dec (rtx mem, for_each_inc_dec_fn fn, void *data)
3372 rtx x = XEXP (mem, 0);
3373 switch (GET_CODE (x))
3375 case PRE_INC:
3376 case POST_INC:
3378 poly_int64 size = GET_MODE_SIZE (GET_MODE (mem));
3379 rtx r1 = XEXP (x, 0);
3380 rtx c = gen_int_mode (size, GET_MODE (r1));
3381 return fn (mem, x, r1, r1, c, data);
3384 case PRE_DEC:
3385 case POST_DEC:
3387 poly_int64 size = GET_MODE_SIZE (GET_MODE (mem));
3388 rtx r1 = XEXP (x, 0);
3389 rtx c = gen_int_mode (-size, GET_MODE (r1));
3390 return fn (mem, x, r1, r1, c, data);
3393 case PRE_MODIFY:
3394 case POST_MODIFY:
3396 rtx r1 = XEXP (x, 0);
3397 rtx add = XEXP (x, 1);
3398 return fn (mem, x, r1, add, NULL, data);
3401 default:
3402 gcc_unreachable ();
3406 /* Traverse *LOC looking for MEMs that have autoinc addresses.
3407 For each such autoinc operation found, call FN, passing it
3408 the innermost enclosing MEM, the operation itself, the RTX modified
3409 by the operation, two RTXs (the second may be NULL) that, once
3410 added, represent the value to be held by the modified RTX
3411 afterwards, and DATA. FN is to return 0 to continue the
3412 traversal or any other value to have it returned to the caller of
3413 for_each_inc_dec. */
3416 for_each_inc_dec (rtx x,
3417 for_each_inc_dec_fn fn,
3418 void *data)
3420 subrtx_var_iterator::array_type array;
3421 FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
3423 rtx mem = *iter;
3424 if (mem
3425 && MEM_P (mem)
3426 && GET_RTX_CLASS (GET_CODE (XEXP (mem, 0))) == RTX_AUTOINC)
3428 int res = for_each_inc_dec_find_inc_dec (mem, fn, data);
3429 if (res != 0)
3430 return res;
3431 iter.skip_subrtxes ();
3434 return 0;
3438 /* Searches X for any reference to REGNO, returning the rtx of the
3439 reference found if any. Otherwise, returns NULL_RTX. */
3442 regno_use_in (unsigned int regno, rtx x)
3444 const char *fmt;
3445 int i, j;
3446 rtx tem;
3448 if (REG_P (x) && REGNO (x) == regno)
3449 return x;
3451 fmt = GET_RTX_FORMAT (GET_CODE (x));
3452 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3454 if (fmt[i] == 'e')
3456 if ((tem = regno_use_in (regno, XEXP (x, i))))
3457 return tem;
3459 else if (fmt[i] == 'E')
3460 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3461 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
3462 return tem;
3465 return NULL_RTX;
3468 /* Return a value indicating whether OP, an operand of a commutative
3469 operation, is preferred as the first or second operand. The more
3470 positive the value, the stronger the preference for being the first
3471 operand. */
3474 commutative_operand_precedence (rtx op)
3476 enum rtx_code code = GET_CODE (op);
3478 /* Constants always become the second operand. Prefer "nice" constants. */
3479 if (code == CONST_INT)
3480 return -10;
3481 if (code == CONST_WIDE_INT)
3482 return -9;
3483 if (code == CONST_POLY_INT)
3484 return -8;
3485 if (code == CONST_DOUBLE)
3486 return -8;
3487 if (code == CONST_FIXED)
3488 return -8;
3489 op = avoid_constant_pool_reference (op);
3490 code = GET_CODE (op);
3492 switch (GET_RTX_CLASS (code))
3494 case RTX_CONST_OBJ:
3495 if (code == CONST_INT)
3496 return -7;
3497 if (code == CONST_WIDE_INT)
3498 return -6;
3499 if (code == CONST_POLY_INT)
3500 return -5;
3501 if (code == CONST_DOUBLE)
3502 return -5;
3503 if (code == CONST_FIXED)
3504 return -5;
3505 return -4;
3507 case RTX_EXTRA:
3508 /* SUBREGs of objects should come second. */
3509 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
3510 return -3;
3511 return 0;
3513 case RTX_OBJ:
3514 /* Complex expressions should be the first, so decrease priority
3515 of objects. Prefer pointer objects over non pointer objects. */
3516 if ((REG_P (op) && REG_POINTER (op))
3517 || (MEM_P (op) && MEM_POINTER (op)))
3518 return -1;
3519 return -2;
3521 case RTX_COMM_ARITH:
3522 /* Prefer operands that are themselves commutative to be first.
3523 This helps to make things linear. In particular,
3524 (and (and (reg) (reg)) (not (reg))) is canonical. */
3525 return 4;
3527 case RTX_BIN_ARITH:
3528 /* If only one operand is a binary expression, it will be the first
3529 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
3530 is canonical, although it will usually be further simplified. */
3531 return 2;
3533 case RTX_UNARY:
3534 /* Then prefer NEG and NOT. */
3535 if (code == NEG || code == NOT)
3536 return 1;
3537 /* FALLTHRU */
3539 default:
3540 return 0;
3544 /* Return 1 iff it is necessary to swap operands of commutative operation
3545 in order to canonicalize expression. */
3547 bool
3548 swap_commutative_operands_p (rtx x, rtx y)
3550 return (commutative_operand_precedence (x)
3551 < commutative_operand_precedence (y));
3554 /* Return 1 if X is an autoincrement side effect and the register is
3555 not the stack pointer. */
3557 auto_inc_p (const_rtx x)
3559 switch (GET_CODE (x))
3561 case PRE_INC:
3562 case POST_INC:
3563 case PRE_DEC:
3564 case POST_DEC:
3565 case PRE_MODIFY:
3566 case POST_MODIFY:
3567 /* There are no REG_INC notes for SP. */
3568 if (XEXP (x, 0) != stack_pointer_rtx)
3569 return 1;
3570 default:
3571 break;
3573 return 0;
3576 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
3578 loc_mentioned_in_p (rtx *loc, const_rtx in)
3580 enum rtx_code code;
3581 const char *fmt;
3582 int i, j;
3584 if (!in)
3585 return 0;
3587 code = GET_CODE (in);
3588 fmt = GET_RTX_FORMAT (code);
3589 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3591 if (fmt[i] == 'e')
3593 if (loc == &XEXP (in, i) || loc_mentioned_in_p (loc, XEXP (in, i)))
3594 return 1;
3596 else if (fmt[i] == 'E')
3597 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
3598 if (loc == &XVECEXP (in, i, j)
3599 || loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
3600 return 1;
3602 return 0;
3605 /* Reinterpret a subreg as a bit extraction from an integer and return
3606 the position of the least significant bit of the extracted value.
3607 In other words, if the extraction were performed as a shift right
3608 and mask, return the number of bits to shift right.
3610 The outer value of the subreg has OUTER_BYTES bytes and starts at
3611 byte offset SUBREG_BYTE within an inner value of INNER_BYTES bytes. */
3613 poly_uint64
3614 subreg_size_lsb (poly_uint64 outer_bytes,
3615 poly_uint64 inner_bytes,
3616 poly_uint64 subreg_byte)
3618 poly_uint64 subreg_end, trailing_bytes, byte_pos;
3620 /* A paradoxical subreg begins at bit position 0. */
3621 gcc_checking_assert (ordered_p (outer_bytes, inner_bytes));
3622 if (maybe_gt (outer_bytes, inner_bytes))
3624 gcc_checking_assert (known_eq (subreg_byte, 0U));
3625 return 0;
3628 subreg_end = subreg_byte + outer_bytes;
3629 trailing_bytes = inner_bytes - subreg_end;
3630 if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
3631 byte_pos = trailing_bytes;
3632 else if (!WORDS_BIG_ENDIAN && !BYTES_BIG_ENDIAN)
3633 byte_pos = subreg_byte;
3634 else
3636 /* When bytes and words have opposite endianness, we must be able
3637 to split offsets into words and bytes at compile time. */
3638 poly_uint64 leading_word_part
3639 = force_align_down (subreg_byte, UNITS_PER_WORD);
3640 poly_uint64 trailing_word_part
3641 = force_align_down (trailing_bytes, UNITS_PER_WORD);
3642 /* If the subreg crosses a word boundary ensure that
3643 it also begins and ends on a word boundary. */
3644 gcc_assert (known_le (subreg_end - leading_word_part,
3645 (unsigned int) UNITS_PER_WORD)
3646 || (known_eq (leading_word_part, subreg_byte)
3647 && known_eq (trailing_word_part, trailing_bytes)));
3648 if (WORDS_BIG_ENDIAN)
3649 byte_pos = trailing_word_part + (subreg_byte - leading_word_part);
3650 else
3651 byte_pos = leading_word_part + (trailing_bytes - trailing_word_part);
3654 return byte_pos * BITS_PER_UNIT;
3657 /* Given a subreg X, return the bit offset where the subreg begins
3658 (counting from the least significant bit of the reg). */
3660 poly_uint64
3661 subreg_lsb (const_rtx x)
3663 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3664 SUBREG_BYTE (x));
3667 /* Return the subreg byte offset for a subreg whose outer value has
3668 OUTER_BYTES bytes, whose inner value has INNER_BYTES bytes, and where
3669 there are LSB_SHIFT *bits* between the lsb of the outer value and the
3670 lsb of the inner value. This is the inverse of the calculation
3671 performed by subreg_lsb_1 (which converts byte offsets to bit shifts). */
3673 poly_uint64
3674 subreg_size_offset_from_lsb (poly_uint64 outer_bytes, poly_uint64 inner_bytes,
3675 poly_uint64 lsb_shift)
3677 /* A paradoxical subreg begins at bit position 0. */
3678 gcc_checking_assert (ordered_p (outer_bytes, inner_bytes));
3679 if (maybe_gt (outer_bytes, inner_bytes))
3681 gcc_checking_assert (known_eq (lsb_shift, 0U));
3682 return 0;
3685 poly_uint64 lower_bytes = exact_div (lsb_shift, BITS_PER_UNIT);
3686 poly_uint64 upper_bytes = inner_bytes - (lower_bytes + outer_bytes);
3687 if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
3688 return upper_bytes;
3689 else if (!WORDS_BIG_ENDIAN && !BYTES_BIG_ENDIAN)
3690 return lower_bytes;
3691 else
3693 /* When bytes and words have opposite endianness, we must be able
3694 to split offsets into words and bytes at compile time. */
3695 poly_uint64 lower_word_part = force_align_down (lower_bytes,
3696 UNITS_PER_WORD);
3697 poly_uint64 upper_word_part = force_align_down (upper_bytes,
3698 UNITS_PER_WORD);
3699 if (WORDS_BIG_ENDIAN)
3700 return upper_word_part + (lower_bytes - lower_word_part);
3701 else
3702 return lower_word_part + (upper_bytes - upper_word_part);
3706 /* Fill in information about a subreg of a hard register.
3707 xregno - A regno of an inner hard subreg_reg (or what will become one).
3708 xmode - The mode of xregno.
3709 offset - The byte offset.
3710 ymode - The mode of a top level SUBREG (or what may become one).
3711 info - Pointer to structure to fill in.
3713 Rather than considering one particular inner register (and thus one
3714 particular "outer" register) in isolation, this function really uses
3715 XREGNO as a model for a sequence of isomorphic hard registers. Thus the
3716 function does not check whether adding INFO->offset to XREGNO gives
3717 a valid hard register; even if INFO->offset + XREGNO is out of range,
3718 there might be another register of the same type that is in range.
3719 Likewise it doesn't check whether targetm.hard_regno_mode_ok accepts
3720 the new register, since that can depend on things like whether the final
3721 register number is even or odd. Callers that want to check whether
3722 this particular subreg can be replaced by a simple (reg ...) should
3723 use simplify_subreg_regno. */
3725 void
3726 subreg_get_info (unsigned int xregno, machine_mode xmode,
3727 poly_uint64 offset, machine_mode ymode,
3728 struct subreg_info *info)
3730 unsigned int nregs_xmode, nregs_ymode;
3732 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3734 poly_uint64 xsize = GET_MODE_SIZE (xmode);
3735 poly_uint64 ysize = GET_MODE_SIZE (ymode);
3737 bool rknown = false;
3739 /* If the register representation of a non-scalar mode has holes in it,
3740 we expect the scalar units to be concatenated together, with the holes
3741 distributed evenly among the scalar units. Each scalar unit must occupy
3742 at least one register. */
3743 if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
3745 /* As a consequence, we must be dealing with a constant number of
3746 scalars, and thus a constant offset and number of units. */
3747 HOST_WIDE_INT coffset = offset.to_constant ();
3748 HOST_WIDE_INT cysize = ysize.to_constant ();
3749 nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
3750 unsigned int nunits = GET_MODE_NUNITS (xmode).to_constant ();
3751 scalar_mode xmode_unit = GET_MODE_INNER (xmode);
3752 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
3753 gcc_assert (nregs_xmode
3754 == (nunits
3755 * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
3756 gcc_assert (hard_regno_nregs (xregno, xmode)
3757 == hard_regno_nregs (xregno, xmode_unit) * nunits);
3759 /* You can only ask for a SUBREG of a value with holes in the middle
3760 if you don't cross the holes. (Such a SUBREG should be done by
3761 picking a different register class, or doing it in memory if
3762 necessary.) An example of a value with holes is XCmode on 32-bit
3763 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3764 3 for each part, but in memory it's two 128-bit parts.
3765 Padding is assumed to be at the end (not necessarily the 'high part')
3766 of each unit. */
3767 if ((coffset / GET_MODE_SIZE (xmode_unit) + 1 < nunits)
3768 && (coffset / GET_MODE_SIZE (xmode_unit)
3769 != ((coffset + cysize - 1) / GET_MODE_SIZE (xmode_unit))))
3771 info->representable_p = false;
3772 rknown = true;
3775 else
3776 nregs_xmode = hard_regno_nregs (xregno, xmode);
3778 nregs_ymode = hard_regno_nregs (xregno, ymode);
3780 /* Subreg sizes must be ordered, so that we can tell whether they are
3781 partial, paradoxical or complete. */
3782 gcc_checking_assert (ordered_p (xsize, ysize));
3784 /* Paradoxical subregs are otherwise valid. */
3785 if (!rknown && known_eq (offset, 0U) && maybe_gt (ysize, xsize))
3787 info->representable_p = true;
3788 /* If this is a big endian paradoxical subreg, which uses more
3789 actual hard registers than the original register, we must
3790 return a negative offset so that we find the proper highpart
3791 of the register.
3793 We assume that the ordering of registers within a multi-register
3794 value has a consistent endianness: if bytes and register words
3795 have different endianness, the hard registers that make up a
3796 multi-register value must be at least word-sized. */
3797 if (REG_WORDS_BIG_ENDIAN)
3798 info->offset = (int) nregs_xmode - (int) nregs_ymode;
3799 else
3800 info->offset = 0;
3801 info->nregs = nregs_ymode;
3802 return;
3805 /* If registers store different numbers of bits in the different
3806 modes, we cannot generally form this subreg. */
3807 poly_uint64 regsize_xmode, regsize_ymode;
3808 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
3809 && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
3810 && multiple_p (xsize, nregs_xmode, &regsize_xmode)
3811 && multiple_p (ysize, nregs_ymode, &regsize_ymode))
3813 if (!rknown
3814 && ((nregs_ymode > 1 && maybe_gt (regsize_xmode, regsize_ymode))
3815 || (nregs_xmode > 1 && maybe_gt (regsize_ymode, regsize_xmode))))
3817 info->representable_p = false;
3818 if (!can_div_away_from_zero_p (ysize, regsize_xmode, &info->nregs)
3819 || !can_div_trunc_p (offset, regsize_xmode, &info->offset))
3820 /* Checked by validate_subreg. We must know at compile time
3821 which inner registers are being accessed. */
3822 gcc_unreachable ();
3823 return;
3825 /* It's not valid to extract a subreg of mode YMODE at OFFSET that
3826 would go outside of XMODE. */
3827 if (!rknown && maybe_gt (ysize + offset, xsize))
3829 info->representable_p = false;
3830 info->nregs = nregs_ymode;
3831 if (!can_div_trunc_p (offset, regsize_xmode, &info->offset))
3832 /* Checked by validate_subreg. We must know at compile time
3833 which inner registers are being accessed. */
3834 gcc_unreachable ();
3835 return;
3837 /* Quick exit for the simple and common case of extracting whole
3838 subregisters from a multiregister value. */
3839 /* ??? It would be better to integrate this into the code below,
3840 if we can generalize the concept enough and figure out how
3841 odd-sized modes can coexist with the other weird cases we support. */
3842 HOST_WIDE_INT count;
3843 if (!rknown
3844 && WORDS_BIG_ENDIAN == REG_WORDS_BIG_ENDIAN
3845 && known_eq (regsize_xmode, regsize_ymode)
3846 && constant_multiple_p (offset, regsize_ymode, &count))
3848 info->representable_p = true;
3849 info->nregs = nregs_ymode;
3850 info->offset = count;
3851 gcc_assert (info->offset + info->nregs <= (int) nregs_xmode);
3852 return;
3856 /* Lowpart subregs are otherwise valid. */
3857 if (!rknown && known_eq (offset, subreg_lowpart_offset (ymode, xmode)))
3859 info->representable_p = true;
3860 rknown = true;
3862 if (known_eq (offset, 0U) || nregs_xmode == nregs_ymode)
3864 info->offset = 0;
3865 info->nregs = nregs_ymode;
3866 return;
3870 /* Set NUM_BLOCKS to the number of independently-representable YMODE
3871 values there are in (reg:XMODE XREGNO). We can view the register
3872 as consisting of this number of independent "blocks", where each
3873 block occupies NREGS_YMODE registers and contains exactly one
3874 representable YMODE value. */
3875 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3876 unsigned int num_blocks = nregs_xmode / nregs_ymode;
3878 /* Calculate the number of bytes in each block. This must always
3879 be exact, otherwise we don't know how to verify the constraint.
3880 These conditions may be relaxed but subreg_regno_offset would
3881 need to be redesigned. */
3882 poly_uint64 bytes_per_block = exact_div (xsize, num_blocks);
3884 /* Get the number of the first block that contains the subreg and the byte
3885 offset of the subreg from the start of that block. */
3886 unsigned int block_number;
3887 poly_uint64 subblock_offset;
3888 if (!can_div_trunc_p (offset, bytes_per_block, &block_number,
3889 &subblock_offset))
3890 /* Checked by validate_subreg. We must know at compile time which
3891 inner registers are being accessed. */
3892 gcc_unreachable ();
3894 if (!rknown)
3896 /* Only the lowpart of each block is representable. */
3897 info->representable_p
3898 = known_eq (subblock_offset,
3899 subreg_size_lowpart_offset (ysize, bytes_per_block));
3900 rknown = true;
3903 /* We assume that the ordering of registers within a multi-register
3904 value has a consistent endianness: if bytes and register words
3905 have different endianness, the hard registers that make up a
3906 multi-register value must be at least word-sized. */
3907 if (WORDS_BIG_ENDIAN != REG_WORDS_BIG_ENDIAN)
3908 /* The block number we calculated above followed memory endianness.
3909 Convert it to register endianness by counting back from the end.
3910 (Note that, because of the assumption above, each block must be
3911 at least word-sized.) */
3912 info->offset = (num_blocks - block_number - 1) * nregs_ymode;
3913 else
3914 info->offset = block_number * nregs_ymode;
3915 info->nregs = nregs_ymode;
3918 /* This function returns the regno offset of a subreg expression.
3919 xregno - A regno of an inner hard subreg_reg (or what will become one).
3920 xmode - The mode of xregno.
3921 offset - The byte offset.
3922 ymode - The mode of a top level SUBREG (or what may become one).
3923 RETURN - The regno offset which would be used. */
3924 unsigned int
3925 subreg_regno_offset (unsigned int xregno, machine_mode xmode,
3926 poly_uint64 offset, machine_mode ymode)
3928 struct subreg_info info;
3929 subreg_get_info (xregno, xmode, offset, ymode, &info);
3930 return info.offset;
3933 /* This function returns true when the offset is representable via
3934 subreg_offset in the given regno.
3935 xregno - A regno of an inner hard subreg_reg (or what will become one).
3936 xmode - The mode of xregno.
3937 offset - The byte offset.
3938 ymode - The mode of a top level SUBREG (or what may become one).
3939 RETURN - Whether the offset is representable. */
3940 bool
3941 subreg_offset_representable_p (unsigned int xregno, machine_mode xmode,
3942 poly_uint64 offset, machine_mode ymode)
3944 struct subreg_info info;
3945 subreg_get_info (xregno, xmode, offset, ymode, &info);
3946 return info.representable_p;
3949 /* Return the number of a YMODE register to which
3951 (subreg:YMODE (reg:XMODE XREGNO) OFFSET)
3953 can be simplified. Return -1 if the subreg can't be simplified.
3955 XREGNO is a hard register number. */
3958 simplify_subreg_regno (unsigned int xregno, machine_mode xmode,
3959 poly_uint64 offset, machine_mode ymode)
3961 struct subreg_info info;
3962 unsigned int yregno;
3964 /* Give the backend a chance to disallow the mode change. */
3965 if (GET_MODE_CLASS (xmode) != MODE_COMPLEX_INT
3966 && GET_MODE_CLASS (xmode) != MODE_COMPLEX_FLOAT
3967 && !REG_CAN_CHANGE_MODE_P (xregno, xmode, ymode))
3968 return -1;
3970 /* We shouldn't simplify stack-related registers. */
3971 if ((!reload_completed || frame_pointer_needed)
3972 && xregno == FRAME_POINTER_REGNUM)
3973 return -1;
3975 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3976 && xregno == ARG_POINTER_REGNUM)
3977 return -1;
3979 if (xregno == STACK_POINTER_REGNUM
3980 /* We should convert hard stack register in LRA if it is
3981 possible. */
3982 && ! lra_in_progress)
3983 return -1;
3985 /* Try to get the register offset. */
3986 subreg_get_info (xregno, xmode, offset, ymode, &info);
3987 if (!info.representable_p)
3988 return -1;
3990 /* Make sure that the offsetted register value is in range. */
3991 yregno = xregno + info.offset;
3992 if (!HARD_REGISTER_NUM_P (yregno))
3993 return -1;
3995 /* See whether (reg:YMODE YREGNO) is valid.
3997 ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
3998 This is a kludge to work around how complex FP arguments are passed
3999 on IA-64 and should be fixed. See PR target/49226. */
4000 if (!targetm.hard_regno_mode_ok (yregno, ymode)
4001 && targetm.hard_regno_mode_ok (xregno, xmode))
4002 return -1;
4004 return (int) yregno;
4007 /* Return the final regno that a subreg expression refers to. */
4008 unsigned int
4009 subreg_regno (const_rtx x)
4011 unsigned int ret;
4012 rtx subreg = SUBREG_REG (x);
4013 int regno = REGNO (subreg);
4015 ret = regno + subreg_regno_offset (regno,
4016 GET_MODE (subreg),
4017 SUBREG_BYTE (x),
4018 GET_MODE (x));
4019 return ret;
4023 /* Return the number of registers that a subreg expression refers
4024 to. */
4025 unsigned int
4026 subreg_nregs (const_rtx x)
4028 return subreg_nregs_with_regno (REGNO (SUBREG_REG (x)), x);
4031 /* Return the number of registers that a subreg REG with REGNO
4032 expression refers to. This is a copy of the rtlanal.c:subreg_nregs
4033 changed so that the regno can be passed in. */
4035 unsigned int
4036 subreg_nregs_with_regno (unsigned int regno, const_rtx x)
4038 struct subreg_info info;
4039 rtx subreg = SUBREG_REG (x);
4041 subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
4042 &info);
4043 return info.nregs;
4046 struct parms_set_data
4048 int nregs;
4049 HARD_REG_SET regs;
4052 /* Helper function for noticing stores to parameter registers. */
4053 static void
4054 parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
4056 struct parms_set_data *const d = (struct parms_set_data *) data;
4057 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
4058 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
4060 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
4061 d->nregs--;
4065 /* Look backward for first parameter to be loaded.
4066 Note that loads of all parameters will not necessarily be
4067 found if CSE has eliminated some of them (e.g., an argument
4068 to the outer function is passed down as a parameter).
4069 Do not skip BOUNDARY. */
4070 rtx_insn *
4071 find_first_parameter_load (rtx_insn *call_insn, rtx_insn *boundary)
4073 struct parms_set_data parm;
4074 rtx p;
4075 rtx_insn *before, *first_set;
4077 /* Since different machines initialize their parameter registers
4078 in different orders, assume nothing. Collect the set of all
4079 parameter registers. */
4080 CLEAR_HARD_REG_SET (parm.regs);
4081 parm.nregs = 0;
4082 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
4083 if (GET_CODE (XEXP (p, 0)) == USE
4084 && REG_P (XEXP (XEXP (p, 0), 0))
4085 && !STATIC_CHAIN_REG_P (XEXP (XEXP (p, 0), 0)))
4087 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
4089 /* We only care about registers which can hold function
4090 arguments. */
4091 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
4092 continue;
4094 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
4095 parm.nregs++;
4097 before = call_insn;
4098 first_set = call_insn;
4100 /* Search backward for the first set of a register in this set. */
4101 while (parm.nregs && before != boundary)
4103 before = PREV_INSN (before);
4105 /* It is possible that some loads got CSEed from one call to
4106 another. Stop in that case. */
4107 if (CALL_P (before))
4108 break;
4110 /* Our caller needs either ensure that we will find all sets
4111 (in case code has not been optimized yet), or take care
4112 for possible labels in a way by setting boundary to preceding
4113 CODE_LABEL. */
4114 if (LABEL_P (before))
4116 gcc_assert (before == boundary);
4117 break;
4120 if (INSN_P (before))
4122 int nregs_old = parm.nregs;
4123 note_stores (before, parms_set, &parm);
4124 /* If we found something that did not set a parameter reg,
4125 we're done. Do not keep going, as that might result
4126 in hoisting an insn before the setting of a pseudo
4127 that is used by the hoisted insn. */
4128 if (nregs_old != parm.nregs)
4129 first_set = before;
4130 else
4131 break;
4134 return first_set;
4137 /* Return true if we should avoid inserting code between INSN and preceding
4138 call instruction. */
4140 bool
4141 keep_with_call_p (const rtx_insn *insn)
4143 rtx set;
4145 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
4147 if (REG_P (SET_DEST (set))
4148 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
4149 && fixed_regs[REGNO (SET_DEST (set))]
4150 && general_operand (SET_SRC (set), VOIDmode))
4151 return true;
4152 if (REG_P (SET_SRC (set))
4153 && targetm.calls.function_value_regno_p (REGNO (SET_SRC (set)))
4154 && REG_P (SET_DEST (set))
4155 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
4156 return true;
4157 /* There may be a stack pop just after the call and before the store
4158 of the return register. Search for the actual store when deciding
4159 if we can break or not. */
4160 if (SET_DEST (set) == stack_pointer_rtx)
4162 /* This CONST_CAST is okay because next_nonnote_insn just
4163 returns its argument and we assign it to a const_rtx
4164 variable. */
4165 const rtx_insn *i2
4166 = next_nonnote_insn (const_cast<rtx_insn *> (insn));
4167 if (i2 && keep_with_call_p (i2))
4168 return true;
4171 return false;
4174 /* Return true if LABEL is a target of JUMP_INSN. This applies only
4175 to non-complex jumps. That is, direct unconditional, conditional,
4176 and tablejumps, but not computed jumps or returns. It also does
4177 not apply to the fallthru case of a conditional jump. */
4179 bool
4180 label_is_jump_target_p (const_rtx label, const rtx_insn *jump_insn)
4182 rtx tmp = JUMP_LABEL (jump_insn);
4183 rtx_jump_table_data *table;
4185 if (label == tmp)
4186 return true;
4188 if (tablejump_p (jump_insn, NULL, &table))
4190 rtvec vec = table->get_labels ();
4191 int i, veclen = GET_NUM_ELEM (vec);
4193 for (i = 0; i < veclen; ++i)
4194 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
4195 return true;
4198 if (find_reg_note (jump_insn, REG_LABEL_TARGET, label))
4199 return true;
4201 return false;
4205 /* Return an estimate of the cost of computing rtx X.
4206 One use is in cse, to decide which expression to keep in the hash table.
4207 Another is in rtl generation, to pick the cheapest way to multiply.
4208 Other uses like the latter are expected in the future.
4210 X appears as operand OPNO in an expression with code OUTER_CODE.
4211 SPEED specifies whether costs optimized for speed or size should
4212 be returned. */
4215 rtx_cost (rtx x, machine_mode mode, enum rtx_code outer_code,
4216 int opno, bool speed)
4218 int i, j;
4219 enum rtx_code code;
4220 const char *fmt;
4221 int total;
4222 int factor;
4223 unsigned mode_size;
4225 if (x == 0)
4226 return 0;
4228 if (GET_CODE (x) == SET)
4229 /* A SET doesn't have a mode, so let's look at the SET_DEST to get
4230 the mode for the factor. */
4231 mode = GET_MODE (SET_DEST (x));
4232 else if (GET_MODE (x) != VOIDmode)
4233 mode = GET_MODE (x);
4235 mode_size = estimated_poly_value (GET_MODE_SIZE (mode));
4237 /* A size N times larger than UNITS_PER_WORD likely needs N times as
4238 many insns, taking N times as long. */
4239 factor = mode_size > UNITS_PER_WORD ? mode_size / UNITS_PER_WORD : 1;
4241 /* Compute the default costs of certain things.
4242 Note that targetm.rtx_costs can override the defaults. */
4244 code = GET_CODE (x);
4245 switch (code)
4247 case MULT:
4248 /* Multiplication has time-complexity O(N*N), where N is the
4249 number of units (translated from digits) when using
4250 schoolbook long multiplication. */
4251 total = factor * factor * COSTS_N_INSNS (5);
4252 break;
4253 case DIV:
4254 case UDIV:
4255 case MOD:
4256 case UMOD:
4257 /* Similarly, complexity for schoolbook long division. */
4258 total = factor * factor * COSTS_N_INSNS (7);
4259 break;
4260 case USE:
4261 /* Used in combine.c as a marker. */
4262 total = 0;
4263 break;
4264 default:
4265 total = factor * COSTS_N_INSNS (1);
4268 switch (code)
4270 case REG:
4271 return 0;
4273 case SUBREG:
4274 total = 0;
4275 /* If we can't tie these modes, make this expensive. The larger
4276 the mode, the more expensive it is. */
4277 if (!targetm.modes_tieable_p (mode, GET_MODE (SUBREG_REG (x))))
4278 return COSTS_N_INSNS (2 + factor);
4279 break;
4281 case TRUNCATE:
4282 if (targetm.modes_tieable_p (mode, GET_MODE (XEXP (x, 0))))
4284 total = 0;
4285 break;
4287 /* FALLTHRU */
4288 default:
4289 if (targetm.rtx_costs (x, mode, outer_code, opno, &total, speed))
4290 return total;
4291 break;
4294 /* Sum the costs of the sub-rtx's, plus cost of this operation,
4295 which is already in total. */
4297 fmt = GET_RTX_FORMAT (code);
4298 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4299 if (fmt[i] == 'e')
4300 total += rtx_cost (XEXP (x, i), mode, code, i, speed);
4301 else if (fmt[i] == 'E')
4302 for (j = 0; j < XVECLEN (x, i); j++)
4303 total += rtx_cost (XVECEXP (x, i, j), mode, code, i, speed);
4305 return total;
4308 /* Fill in the structure C with information about both speed and size rtx
4309 costs for X, which is operand OPNO in an expression with code OUTER. */
4311 void
4312 get_full_rtx_cost (rtx x, machine_mode mode, enum rtx_code outer, int opno,
4313 struct full_rtx_costs *c)
4315 c->speed = rtx_cost (x, mode, outer, opno, true);
4316 c->size = rtx_cost (x, mode, outer, opno, false);
4320 /* Return cost of address expression X.
4321 Expect that X is properly formed address reference.
4323 SPEED parameter specify whether costs optimized for speed or size should
4324 be returned. */
4327 address_cost (rtx x, machine_mode mode, addr_space_t as, bool speed)
4329 /* We may be asked for cost of various unusual addresses, such as operands
4330 of push instruction. It is not worthwhile to complicate writing
4331 of the target hook by such cases. */
4333 if (!memory_address_addr_space_p (mode, x, as))
4334 return 1000;
4336 return targetm.address_cost (x, mode, as, speed);
4339 /* If the target doesn't override, compute the cost as with arithmetic. */
4342 default_address_cost (rtx x, machine_mode, addr_space_t, bool speed)
4344 return rtx_cost (x, Pmode, MEM, 0, speed);
4348 unsigned HOST_WIDE_INT
4349 nonzero_bits (const_rtx x, machine_mode mode)
4351 if (mode == VOIDmode)
4352 mode = GET_MODE (x);
4353 scalar_int_mode int_mode;
4354 if (!is_a <scalar_int_mode> (mode, &int_mode))
4355 return GET_MODE_MASK (mode);
4356 return cached_nonzero_bits (x, int_mode, NULL_RTX, VOIDmode, 0);
4359 unsigned int
4360 num_sign_bit_copies (const_rtx x, machine_mode mode)
4362 if (mode == VOIDmode)
4363 mode = GET_MODE (x);
4364 scalar_int_mode int_mode;
4365 if (!is_a <scalar_int_mode> (mode, &int_mode))
4366 return 1;
4367 return cached_num_sign_bit_copies (x, int_mode, NULL_RTX, VOIDmode, 0);
4370 /* Return true if nonzero_bits1 might recurse into both operands
4371 of X. */
4373 static inline bool
4374 nonzero_bits_binary_arith_p (const_rtx x)
4376 if (!ARITHMETIC_P (x))
4377 return false;
4378 switch (GET_CODE (x))
4380 case AND:
4381 case XOR:
4382 case IOR:
4383 case UMIN:
4384 case UMAX:
4385 case SMIN:
4386 case SMAX:
4387 case PLUS:
4388 case MINUS:
4389 case MULT:
4390 case DIV:
4391 case UDIV:
4392 case MOD:
4393 case UMOD:
4394 return true;
4395 default:
4396 return false;
4400 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
4401 It avoids exponential behavior in nonzero_bits1 when X has
4402 identical subexpressions on the first or the second level. */
4404 static unsigned HOST_WIDE_INT
4405 cached_nonzero_bits (const_rtx x, scalar_int_mode mode, const_rtx known_x,
4406 machine_mode known_mode,
4407 unsigned HOST_WIDE_INT known_ret)
4409 if (x == known_x && mode == known_mode)
4410 return known_ret;
4412 /* Try to find identical subexpressions. If found call
4413 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
4414 precomputed value for the subexpression as KNOWN_RET. */
4416 if (nonzero_bits_binary_arith_p (x))
4418 rtx x0 = XEXP (x, 0);
4419 rtx x1 = XEXP (x, 1);
4421 /* Check the first level. */
4422 if (x0 == x1)
4423 return nonzero_bits1 (x, mode, x0, mode,
4424 cached_nonzero_bits (x0, mode, known_x,
4425 known_mode, known_ret));
4427 /* Check the second level. */
4428 if (nonzero_bits_binary_arith_p (x0)
4429 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4430 return nonzero_bits1 (x, mode, x1, mode,
4431 cached_nonzero_bits (x1, mode, known_x,
4432 known_mode, known_ret));
4434 if (nonzero_bits_binary_arith_p (x1)
4435 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4436 return nonzero_bits1 (x, mode, x0, mode,
4437 cached_nonzero_bits (x0, mode, known_x,
4438 known_mode, known_ret));
4441 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
4444 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
4445 We don't let nonzero_bits recur into num_sign_bit_copies, because that
4446 is less useful. We can't allow both, because that results in exponential
4447 run time recursion. There is a nullstone testcase that triggered
4448 this. This macro avoids accidental uses of num_sign_bit_copies. */
4449 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
4451 /* Given an expression, X, compute which bits in X can be nonzero.
4452 We don't care about bits outside of those defined in MODE.
4454 For most X this is simply GET_MODE_MASK (GET_MODE (X)), but if X is
4455 an arithmetic operation, we can do better. */
4457 static unsigned HOST_WIDE_INT
4458 nonzero_bits1 (const_rtx x, scalar_int_mode mode, const_rtx known_x,
4459 machine_mode known_mode,
4460 unsigned HOST_WIDE_INT known_ret)
4462 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
4463 unsigned HOST_WIDE_INT inner_nz;
4464 enum rtx_code code = GET_CODE (x);
4465 machine_mode inner_mode;
4466 unsigned int inner_width;
4467 scalar_int_mode xmode;
4469 unsigned int mode_width = GET_MODE_PRECISION (mode);
4471 if (CONST_INT_P (x))
4473 if (SHORT_IMMEDIATES_SIGN_EXTEND
4474 && INTVAL (x) > 0
4475 && mode_width < BITS_PER_WORD
4476 && (UINTVAL (x) & (HOST_WIDE_INT_1U << (mode_width - 1))) != 0)
4477 return UINTVAL (x) | (HOST_WIDE_INT_M1U << mode_width);
4479 return UINTVAL (x);
4482 if (!is_a <scalar_int_mode> (GET_MODE (x), &xmode))
4483 return nonzero;
4484 unsigned int xmode_width = GET_MODE_PRECISION (xmode);
4486 /* If X is wider than MODE, use its mode instead. */
4487 if (xmode_width > mode_width)
4489 mode = xmode;
4490 nonzero = GET_MODE_MASK (mode);
4491 mode_width = xmode_width;
4494 if (mode_width > HOST_BITS_PER_WIDE_INT)
4495 /* Our only callers in this case look for single bit values. So
4496 just return the mode mask. Those tests will then be false. */
4497 return nonzero;
4499 /* If MODE is wider than X, but both are a single word for both the host
4500 and target machines, we can compute this from which bits of the object
4501 might be nonzero in its own mode, taking into account the fact that, on
4502 CISC machines, accessing an object in a wider mode generally causes the
4503 high-order bits to become undefined, so they are not known to be zero.
4504 We extend this reasoning to RISC machines for operations that might not
4505 operate on the full registers. */
4506 if (mode_width > xmode_width
4507 && xmode_width <= BITS_PER_WORD
4508 && xmode_width <= HOST_BITS_PER_WIDE_INT
4509 && !(WORD_REGISTER_OPERATIONS && word_register_operation_p (x)))
4511 nonzero &= cached_nonzero_bits (x, xmode,
4512 known_x, known_mode, known_ret);
4513 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (xmode);
4514 return nonzero;
4517 /* Please keep nonzero_bits_binary_arith_p above in sync with
4518 the code in the switch below. */
4519 switch (code)
4521 case REG:
4522 #if defined(POINTERS_EXTEND_UNSIGNED)
4523 /* If pointers extend unsigned and this is a pointer in Pmode, say that
4524 all the bits above ptr_mode are known to be zero. */
4525 /* As we do not know which address space the pointer is referring to,
4526 we can do this only if the target does not support different pointer
4527 or address modes depending on the address space. */
4528 if (target_default_pointer_address_modes_p ()
4529 && POINTERS_EXTEND_UNSIGNED
4530 && xmode == Pmode
4531 && REG_POINTER (x)
4532 && !targetm.have_ptr_extend ())
4533 nonzero &= GET_MODE_MASK (ptr_mode);
4534 #endif
4536 /* Include declared information about alignment of pointers. */
4537 /* ??? We don't properly preserve REG_POINTER changes across
4538 pointer-to-integer casts, so we can't trust it except for
4539 things that we know must be pointers. See execute/960116-1.c. */
4540 if ((x == stack_pointer_rtx
4541 || x == frame_pointer_rtx
4542 || x == arg_pointer_rtx)
4543 && REGNO_POINTER_ALIGN (REGNO (x)))
4545 unsigned HOST_WIDE_INT alignment
4546 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
4548 #ifdef PUSH_ROUNDING
4549 /* If PUSH_ROUNDING is defined, it is possible for the
4550 stack to be momentarily aligned only to that amount,
4551 so we pick the least alignment. */
4552 if (x == stack_pointer_rtx && PUSH_ARGS)
4554 poly_uint64 rounded_1 = PUSH_ROUNDING (poly_int64 (1));
4555 alignment = MIN (known_alignment (rounded_1), alignment);
4557 #endif
4559 nonzero &= ~(alignment - 1);
4563 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
4564 rtx new_rtx = rtl_hooks.reg_nonzero_bits (x, xmode, mode,
4565 &nonzero_for_hook);
4567 if (new_rtx)
4568 nonzero_for_hook &= cached_nonzero_bits (new_rtx, mode, known_x,
4569 known_mode, known_ret);
4571 return nonzero_for_hook;
4574 case MEM:
4575 /* In many, if not most, RISC machines, reading a byte from memory
4576 zeros the rest of the register. Noticing that fact saves a lot
4577 of extra zero-extends. */
4578 if (load_extend_op (xmode) == ZERO_EXTEND)
4579 nonzero &= GET_MODE_MASK (xmode);
4580 break;
4582 case EQ: case NE:
4583 case UNEQ: case LTGT:
4584 case GT: case GTU: case UNGT:
4585 case LT: case LTU: case UNLT:
4586 case GE: case GEU: case UNGE:
4587 case LE: case LEU: case UNLE:
4588 case UNORDERED: case ORDERED:
4589 /* If this produces an integer result, we know which bits are set.
4590 Code here used to clear bits outside the mode of X, but that is
4591 now done above. */
4592 /* Mind that MODE is the mode the caller wants to look at this
4593 operation in, and not the actual operation mode. We can wind
4594 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
4595 that describes the results of a vector compare. */
4596 if (GET_MODE_CLASS (xmode) == MODE_INT
4597 && mode_width <= HOST_BITS_PER_WIDE_INT)
4598 nonzero = STORE_FLAG_VALUE;
4599 break;
4601 case NEG:
4602 #if 0
4603 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4604 and num_sign_bit_copies. */
4605 if (num_sign_bit_copies (XEXP (x, 0), xmode) == xmode_width)
4606 nonzero = 1;
4607 #endif
4609 if (xmode_width < mode_width)
4610 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (xmode));
4611 break;
4613 case ABS:
4614 #if 0
4615 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4616 and num_sign_bit_copies. */
4617 if (num_sign_bit_copies (XEXP (x, 0), xmode) == xmode_width)
4618 nonzero = 1;
4619 #endif
4620 break;
4622 case TRUNCATE:
4623 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
4624 known_x, known_mode, known_ret)
4625 & GET_MODE_MASK (mode));
4626 break;
4628 case ZERO_EXTEND:
4629 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4630 known_x, known_mode, known_ret);
4631 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4632 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4633 break;
4635 case SIGN_EXTEND:
4636 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
4637 Otherwise, show all the bits in the outer mode but not the inner
4638 may be nonzero. */
4639 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
4640 known_x, known_mode, known_ret);
4641 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4643 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4644 if (val_signbit_known_set_p (GET_MODE (XEXP (x, 0)), inner_nz))
4645 inner_nz |= (GET_MODE_MASK (mode)
4646 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
4649 nonzero &= inner_nz;
4650 break;
4652 case AND:
4653 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4654 known_x, known_mode, known_ret)
4655 & cached_nonzero_bits (XEXP (x, 1), mode,
4656 known_x, known_mode, known_ret);
4657 break;
4659 case XOR: case IOR:
4660 case UMIN: case UMAX: case SMIN: case SMAX:
4662 unsigned HOST_WIDE_INT nonzero0
4663 = cached_nonzero_bits (XEXP (x, 0), mode,
4664 known_x, known_mode, known_ret);
4666 /* Don't call nonzero_bits for the second time if it cannot change
4667 anything. */
4668 if ((nonzero & nonzero0) != nonzero)
4669 nonzero &= nonzero0
4670 | cached_nonzero_bits (XEXP (x, 1), mode,
4671 known_x, known_mode, known_ret);
4673 break;
4675 case PLUS: case MINUS:
4676 case MULT:
4677 case DIV: case UDIV:
4678 case MOD: case UMOD:
4679 /* We can apply the rules of arithmetic to compute the number of
4680 high- and low-order zero bits of these operations. We start by
4681 computing the width (position of the highest-order nonzero bit)
4682 and the number of low-order zero bits for each value. */
4684 unsigned HOST_WIDE_INT nz0
4685 = cached_nonzero_bits (XEXP (x, 0), mode,
4686 known_x, known_mode, known_ret);
4687 unsigned HOST_WIDE_INT nz1
4688 = cached_nonzero_bits (XEXP (x, 1), mode,
4689 known_x, known_mode, known_ret);
4690 int sign_index = xmode_width - 1;
4691 int width0 = floor_log2 (nz0) + 1;
4692 int width1 = floor_log2 (nz1) + 1;
4693 int low0 = ctz_or_zero (nz0);
4694 int low1 = ctz_or_zero (nz1);
4695 unsigned HOST_WIDE_INT op0_maybe_minusp
4696 = nz0 & (HOST_WIDE_INT_1U << sign_index);
4697 unsigned HOST_WIDE_INT op1_maybe_minusp
4698 = nz1 & (HOST_WIDE_INT_1U << sign_index);
4699 unsigned int result_width = mode_width;
4700 int result_low = 0;
4702 switch (code)
4704 case PLUS:
4705 result_width = MAX (width0, width1) + 1;
4706 result_low = MIN (low0, low1);
4707 break;
4708 case MINUS:
4709 result_low = MIN (low0, low1);
4710 break;
4711 case MULT:
4712 result_width = width0 + width1;
4713 result_low = low0 + low1;
4714 break;
4715 case DIV:
4716 if (width1 == 0)
4717 break;
4718 if (!op0_maybe_minusp && !op1_maybe_minusp)
4719 result_width = width0;
4720 break;
4721 case UDIV:
4722 if (width1 == 0)
4723 break;
4724 result_width = width0;
4725 break;
4726 case MOD:
4727 if (width1 == 0)
4728 break;
4729 if (!op0_maybe_minusp && !op1_maybe_minusp)
4730 result_width = MIN (width0, width1);
4731 result_low = MIN (low0, low1);
4732 break;
4733 case UMOD:
4734 if (width1 == 0)
4735 break;
4736 result_width = MIN (width0, width1);
4737 result_low = MIN (low0, low1);
4738 break;
4739 default:
4740 gcc_unreachable ();
4743 if (result_width < mode_width)
4744 nonzero &= (HOST_WIDE_INT_1U << result_width) - 1;
4746 if (result_low > 0)
4747 nonzero &= ~((HOST_WIDE_INT_1U << result_low) - 1);
4749 break;
4751 case ZERO_EXTRACT:
4752 if (CONST_INT_P (XEXP (x, 1))
4753 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
4754 nonzero &= (HOST_WIDE_INT_1U << INTVAL (XEXP (x, 1))) - 1;
4755 break;
4757 case SUBREG:
4758 /* If this is a SUBREG formed for a promoted variable that has
4759 been zero-extended, we know that at least the high-order bits
4760 are zero, though others might be too. */
4761 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x))
4762 nonzero = GET_MODE_MASK (xmode)
4763 & cached_nonzero_bits (SUBREG_REG (x), xmode,
4764 known_x, known_mode, known_ret);
4766 /* If the inner mode is a single word for both the host and target
4767 machines, we can compute this from which bits of the inner
4768 object might be nonzero. */
4769 inner_mode = GET_MODE (SUBREG_REG (x));
4770 if (GET_MODE_PRECISION (inner_mode).is_constant (&inner_width)
4771 && inner_width <= BITS_PER_WORD
4772 && inner_width <= HOST_BITS_PER_WIDE_INT)
4774 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
4775 known_x, known_mode, known_ret);
4777 /* On a typical CISC machine, accessing an object in a wider mode
4778 causes the high-order bits to become undefined. So they are
4779 not known to be zero.
4781 On a typical RISC machine, we only have to worry about the way
4782 loads are extended. Otherwise, if we get a reload for the inner
4783 part, it may be loaded from the stack, and then we may lose all
4784 the zero bits that existed before the store to the stack. */
4785 rtx_code extend_op;
4786 if ((!WORD_REGISTER_OPERATIONS
4787 || ((extend_op = load_extend_op (inner_mode)) == SIGN_EXTEND
4788 ? val_signbit_known_set_p (inner_mode, nonzero)
4789 : extend_op != ZERO_EXTEND)
4790 || !MEM_P (SUBREG_REG (x)))
4791 && xmode_width > inner_width)
4792 nonzero
4793 |= (GET_MODE_MASK (GET_MODE (x)) & ~GET_MODE_MASK (inner_mode));
4795 break;
4797 case ASHIFT:
4798 case ASHIFTRT:
4799 case LSHIFTRT:
4800 case ROTATE:
4801 case ROTATERT:
4802 /* The nonzero bits are in two classes: any bits within MODE
4803 that aren't in xmode are always significant. The rest of the
4804 nonzero bits are those that are significant in the operand of
4805 the shift when shifted the appropriate number of bits. This
4806 shows that high-order bits are cleared by the right shift and
4807 low-order bits by left shifts. */
4808 if (CONST_INT_P (XEXP (x, 1))
4809 && INTVAL (XEXP (x, 1)) >= 0
4810 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
4811 && INTVAL (XEXP (x, 1)) < xmode_width)
4813 int count = INTVAL (XEXP (x, 1));
4814 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (xmode);
4815 unsigned HOST_WIDE_INT op_nonzero
4816 = cached_nonzero_bits (XEXP (x, 0), mode,
4817 known_x, known_mode, known_ret);
4818 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
4819 unsigned HOST_WIDE_INT outer = 0;
4821 if (mode_width > xmode_width)
4822 outer = (op_nonzero & nonzero & ~mode_mask);
4824 switch (code)
4826 case ASHIFT:
4827 inner <<= count;
4828 break;
4830 case LSHIFTRT:
4831 inner >>= count;
4832 break;
4834 case ASHIFTRT:
4835 inner >>= count;
4837 /* If the sign bit may have been nonzero before the shift, we
4838 need to mark all the places it could have been copied to
4839 by the shift as possibly nonzero. */
4840 if (inner & (HOST_WIDE_INT_1U << (xmode_width - 1 - count)))
4841 inner |= (((HOST_WIDE_INT_1U << count) - 1)
4842 << (xmode_width - count));
4843 break;
4845 case ROTATE:
4846 inner = (inner << (count % xmode_width)
4847 | (inner >> (xmode_width - (count % xmode_width))))
4848 & mode_mask;
4849 break;
4851 case ROTATERT:
4852 inner = (inner >> (count % xmode_width)
4853 | (inner << (xmode_width - (count % xmode_width))))
4854 & mode_mask;
4855 break;
4857 default:
4858 gcc_unreachable ();
4861 nonzero &= (outer | inner);
4863 break;
4865 case FFS:
4866 case POPCOUNT:
4867 /* This is at most the number of bits in the mode. */
4868 nonzero = ((unsigned HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
4869 break;
4871 case CLZ:
4872 /* If CLZ has a known value at zero, then the nonzero bits are
4873 that value, plus the number of bits in the mode minus one. */
4874 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4875 nonzero
4876 |= (HOST_WIDE_INT_1U << (floor_log2 (mode_width))) - 1;
4877 else
4878 nonzero = -1;
4879 break;
4881 case CTZ:
4882 /* If CTZ has a known value at zero, then the nonzero bits are
4883 that value, plus the number of bits in the mode minus one. */
4884 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4885 nonzero
4886 |= (HOST_WIDE_INT_1U << (floor_log2 (mode_width))) - 1;
4887 else
4888 nonzero = -1;
4889 break;
4891 case CLRSB:
4892 /* This is at most the number of bits in the mode minus 1. */
4893 nonzero = (HOST_WIDE_INT_1U << (floor_log2 (mode_width))) - 1;
4894 break;
4896 case PARITY:
4897 nonzero = 1;
4898 break;
4900 case IF_THEN_ELSE:
4902 unsigned HOST_WIDE_INT nonzero_true
4903 = cached_nonzero_bits (XEXP (x, 1), mode,
4904 known_x, known_mode, known_ret);
4906 /* Don't call nonzero_bits for the second time if it cannot change
4907 anything. */
4908 if ((nonzero & nonzero_true) != nonzero)
4909 nonzero &= nonzero_true
4910 | cached_nonzero_bits (XEXP (x, 2), mode,
4911 known_x, known_mode, known_ret);
4913 break;
4915 default:
4916 break;
4919 return nonzero;
4922 /* See the macro definition above. */
4923 #undef cached_num_sign_bit_copies
4926 /* Return true if num_sign_bit_copies1 might recurse into both operands
4927 of X. */
4929 static inline bool
4930 num_sign_bit_copies_binary_arith_p (const_rtx x)
4932 if (!ARITHMETIC_P (x))
4933 return false;
4934 switch (GET_CODE (x))
4936 case IOR:
4937 case AND:
4938 case XOR:
4939 case SMIN:
4940 case SMAX:
4941 case UMIN:
4942 case UMAX:
4943 case PLUS:
4944 case MINUS:
4945 case MULT:
4946 return true;
4947 default:
4948 return false;
4952 /* The function cached_num_sign_bit_copies is a wrapper around
4953 num_sign_bit_copies1. It avoids exponential behavior in
4954 num_sign_bit_copies1 when X has identical subexpressions on the
4955 first or the second level. */
4957 static unsigned int
4958 cached_num_sign_bit_copies (const_rtx x, scalar_int_mode mode,
4959 const_rtx known_x, machine_mode known_mode,
4960 unsigned int known_ret)
4962 if (x == known_x && mode == known_mode)
4963 return known_ret;
4965 /* Try to find identical subexpressions. If found call
4966 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4967 the precomputed value for the subexpression as KNOWN_RET. */
4969 if (num_sign_bit_copies_binary_arith_p (x))
4971 rtx x0 = XEXP (x, 0);
4972 rtx x1 = XEXP (x, 1);
4974 /* Check the first level. */
4975 if (x0 == x1)
4976 return
4977 num_sign_bit_copies1 (x, mode, x0, mode,
4978 cached_num_sign_bit_copies (x0, mode, known_x,
4979 known_mode,
4980 known_ret));
4982 /* Check the second level. */
4983 if (num_sign_bit_copies_binary_arith_p (x0)
4984 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4985 return
4986 num_sign_bit_copies1 (x, mode, x1, mode,
4987 cached_num_sign_bit_copies (x1, mode, known_x,
4988 known_mode,
4989 known_ret));
4991 if (num_sign_bit_copies_binary_arith_p (x1)
4992 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4993 return
4994 num_sign_bit_copies1 (x, mode, x0, mode,
4995 cached_num_sign_bit_copies (x0, mode, known_x,
4996 known_mode,
4997 known_ret));
5000 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
5003 /* Return the number of bits at the high-order end of X that are known to
5004 be equal to the sign bit. X will be used in mode MODE. The returned
5005 value will always be between 1 and the number of bits in MODE. */
5007 static unsigned int
5008 num_sign_bit_copies1 (const_rtx x, scalar_int_mode mode, const_rtx known_x,
5009 machine_mode known_mode,
5010 unsigned int known_ret)
5012 enum rtx_code code = GET_CODE (x);
5013 unsigned int bitwidth = GET_MODE_PRECISION (mode);
5014 int num0, num1, result;
5015 unsigned HOST_WIDE_INT nonzero;
5017 if (CONST_INT_P (x))
5019 /* If the constant is negative, take its 1's complement and remask.
5020 Then see how many zero bits we have. */
5021 nonzero = UINTVAL (x) & GET_MODE_MASK (mode);
5022 if (bitwidth <= HOST_BITS_PER_WIDE_INT
5023 && (nonzero & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5024 nonzero = (~nonzero) & GET_MODE_MASK (mode);
5026 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
5029 scalar_int_mode xmode, inner_mode;
5030 if (!is_a <scalar_int_mode> (GET_MODE (x), &xmode))
5031 return 1;
5033 unsigned int xmode_width = GET_MODE_PRECISION (xmode);
5035 /* For a smaller mode, just ignore the high bits. */
5036 if (bitwidth < xmode_width)
5038 num0 = cached_num_sign_bit_copies (x, xmode,
5039 known_x, known_mode, known_ret);
5040 return MAX (1, num0 - (int) (xmode_width - bitwidth));
5043 if (bitwidth > xmode_width)
5045 /* If this machine does not do all register operations on the entire
5046 register and MODE is wider than the mode of X, we can say nothing
5047 at all about the high-order bits. We extend this reasoning to RISC
5048 machines for operations that might not operate on full registers. */
5049 if (!(WORD_REGISTER_OPERATIONS && word_register_operation_p (x)))
5050 return 1;
5052 /* Likewise on machines that do, if the mode of the object is smaller
5053 than a word and loads of that size don't sign extend, we can say
5054 nothing about the high order bits. */
5055 if (xmode_width < BITS_PER_WORD
5056 && load_extend_op (xmode) != SIGN_EXTEND)
5057 return 1;
5060 /* Please keep num_sign_bit_copies_binary_arith_p above in sync with
5061 the code in the switch below. */
5062 switch (code)
5064 case REG:
5066 #if defined(POINTERS_EXTEND_UNSIGNED)
5067 /* If pointers extend signed and this is a pointer in Pmode, say that
5068 all the bits above ptr_mode are known to be sign bit copies. */
5069 /* As we do not know which address space the pointer is referring to,
5070 we can do this only if the target does not support different pointer
5071 or address modes depending on the address space. */
5072 if (target_default_pointer_address_modes_p ()
5073 && ! POINTERS_EXTEND_UNSIGNED && xmode == Pmode
5074 && mode == Pmode && REG_POINTER (x)
5075 && !targetm.have_ptr_extend ())
5076 return GET_MODE_PRECISION (Pmode) - GET_MODE_PRECISION (ptr_mode) + 1;
5077 #endif
5080 unsigned int copies_for_hook = 1, copies = 1;
5081 rtx new_rtx = rtl_hooks.reg_num_sign_bit_copies (x, xmode, mode,
5082 &copies_for_hook);
5084 if (new_rtx)
5085 copies = cached_num_sign_bit_copies (new_rtx, mode, known_x,
5086 known_mode, known_ret);
5088 if (copies > 1 || copies_for_hook > 1)
5089 return MAX (copies, copies_for_hook);
5091 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
5093 break;
5095 case MEM:
5096 /* Some RISC machines sign-extend all loads of smaller than a word. */
5097 if (load_extend_op (xmode) == SIGN_EXTEND)
5098 return MAX (1, ((int) bitwidth - (int) xmode_width + 1));
5099 break;
5101 case SUBREG:
5102 /* If this is a SUBREG for a promoted object that is sign-extended
5103 and we are looking at it in a wider mode, we know that at least the
5104 high-order bits are known to be sign bit copies. */
5106 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_SIGNED_P (x))
5108 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
5109 known_x, known_mode, known_ret);
5110 return MAX ((int) bitwidth - (int) xmode_width + 1, num0);
5113 if (is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (x)), &inner_mode))
5115 /* For a smaller object, just ignore the high bits. */
5116 if (bitwidth <= GET_MODE_PRECISION (inner_mode))
5118 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), inner_mode,
5119 known_x, known_mode,
5120 known_ret);
5121 return MAX (1, num0 - (int) (GET_MODE_PRECISION (inner_mode)
5122 - bitwidth));
5125 /* For paradoxical SUBREGs on machines where all register operations
5126 affect the entire register, just look inside. Note that we are
5127 passing MODE to the recursive call, so the number of sign bit
5128 copies will remain relative to that mode, not the inner mode.
5130 This works only if loads sign extend. Otherwise, if we get a
5131 reload for the inner part, it may be loaded from the stack, and
5132 then we lose all sign bit copies that existed before the store
5133 to the stack. */
5134 if (WORD_REGISTER_OPERATIONS
5135 && load_extend_op (inner_mode) == SIGN_EXTEND
5136 && paradoxical_subreg_p (x)
5137 && MEM_P (SUBREG_REG (x)))
5138 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
5139 known_x, known_mode, known_ret);
5141 break;
5143 case SIGN_EXTRACT:
5144 if (CONST_INT_P (XEXP (x, 1)))
5145 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
5146 break;
5148 case SIGN_EXTEND:
5149 if (is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode))
5150 return (bitwidth - GET_MODE_PRECISION (inner_mode)
5151 + cached_num_sign_bit_copies (XEXP (x, 0), inner_mode,
5152 known_x, known_mode, known_ret));
5153 break;
5155 case TRUNCATE:
5156 /* For a smaller object, just ignore the high bits. */
5157 inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)));
5158 num0 = cached_num_sign_bit_copies (XEXP (x, 0), inner_mode,
5159 known_x, known_mode, known_ret);
5160 return MAX (1, (num0 - (int) (GET_MODE_PRECISION (inner_mode)
5161 - bitwidth)));
5163 case NOT:
5164 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
5165 known_x, known_mode, known_ret);
5167 case ROTATE: case ROTATERT:
5168 /* If we are rotating left by a number of bits less than the number
5169 of sign bit copies, we can just subtract that amount from the
5170 number. */
5171 if (CONST_INT_P (XEXP (x, 1))
5172 && INTVAL (XEXP (x, 1)) >= 0
5173 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
5175 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5176 known_x, known_mode, known_ret);
5177 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
5178 : (int) bitwidth - INTVAL (XEXP (x, 1))));
5180 break;
5182 case NEG:
5183 /* In general, this subtracts one sign bit copy. But if the value
5184 is known to be positive, the number of sign bit copies is the
5185 same as that of the input. Finally, if the input has just one bit
5186 that might be nonzero, all the bits are copies of the sign bit. */
5187 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5188 known_x, known_mode, known_ret);
5189 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5190 return num0 > 1 ? num0 - 1 : 1;
5192 nonzero = nonzero_bits (XEXP (x, 0), mode);
5193 if (nonzero == 1)
5194 return bitwidth;
5196 if (num0 > 1
5197 && ((HOST_WIDE_INT_1U << (bitwidth - 1)) & nonzero))
5198 num0--;
5200 return num0;
5202 case IOR: case AND: case XOR:
5203 case SMIN: case SMAX: case UMIN: case UMAX:
5204 /* Logical operations will preserve the number of sign-bit copies.
5205 MIN and MAX operations always return one of the operands. */
5206 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5207 known_x, known_mode, known_ret);
5208 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5209 known_x, known_mode, known_ret);
5211 /* If num1 is clearing some of the top bits then regardless of
5212 the other term, we are guaranteed to have at least that many
5213 high-order zero bits. */
5214 if (code == AND
5215 && num1 > 1
5216 && bitwidth <= HOST_BITS_PER_WIDE_INT
5217 && CONST_INT_P (XEXP (x, 1))
5218 && (UINTVAL (XEXP (x, 1))
5219 & (HOST_WIDE_INT_1U << (bitwidth - 1))) == 0)
5220 return num1;
5222 /* Similarly for IOR when setting high-order bits. */
5223 if (code == IOR
5224 && num1 > 1
5225 && bitwidth <= HOST_BITS_PER_WIDE_INT
5226 && CONST_INT_P (XEXP (x, 1))
5227 && (UINTVAL (XEXP (x, 1))
5228 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5229 return num1;
5231 return MIN (num0, num1);
5233 case PLUS: case MINUS:
5234 /* For addition and subtraction, we can have a 1-bit carry. However,
5235 if we are subtracting 1 from a positive number, there will not
5236 be such a carry. Furthermore, if the positive number is known to
5237 be 0 or 1, we know the result is either -1 or 0. */
5239 if (code == PLUS && XEXP (x, 1) == constm1_rtx
5240 && bitwidth <= HOST_BITS_PER_WIDE_INT)
5242 nonzero = nonzero_bits (XEXP (x, 0), mode);
5243 if (((HOST_WIDE_INT_1U << (bitwidth - 1)) & nonzero) == 0)
5244 return (nonzero == 1 || nonzero == 0 ? bitwidth
5245 : bitwidth - floor_log2 (nonzero) - 1);
5248 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5249 known_x, known_mode, known_ret);
5250 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5251 known_x, known_mode, known_ret);
5252 result = MAX (1, MIN (num0, num1) - 1);
5254 return result;
5256 case MULT:
5257 /* The number of bits of the product is the sum of the number of
5258 bits of both terms. However, unless one of the terms if known
5259 to be positive, we must allow for an additional bit since negating
5260 a negative number can remove one sign bit copy. */
5262 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5263 known_x, known_mode, known_ret);
5264 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5265 known_x, known_mode, known_ret);
5267 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
5268 if (result > 0
5269 && (bitwidth > HOST_BITS_PER_WIDE_INT
5270 || (((nonzero_bits (XEXP (x, 0), mode)
5271 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5272 && ((nonzero_bits (XEXP (x, 1), mode)
5273 & (HOST_WIDE_INT_1U << (bitwidth - 1)))
5274 != 0))))
5275 result--;
5277 return MAX (1, result);
5279 case UDIV:
5280 /* The result must be <= the first operand. If the first operand
5281 has the high bit set, we know nothing about the number of sign
5282 bit copies. */
5283 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5284 return 1;
5285 else if ((nonzero_bits (XEXP (x, 0), mode)
5286 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5287 return 1;
5288 else
5289 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
5290 known_x, known_mode, known_ret);
5292 case UMOD:
5293 /* The result must be <= the second operand. If the second operand
5294 has (or just might have) the high bit set, we know nothing about
5295 the number of sign bit copies. */
5296 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5297 return 1;
5298 else if ((nonzero_bits (XEXP (x, 1), mode)
5299 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5300 return 1;
5301 else
5302 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
5303 known_x, known_mode, known_ret);
5305 case DIV:
5306 /* Similar to unsigned division, except that we have to worry about
5307 the case where the divisor is negative, in which case we have
5308 to add 1. */
5309 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5310 known_x, known_mode, known_ret);
5311 if (result > 1
5312 && (bitwidth > HOST_BITS_PER_WIDE_INT
5313 || (nonzero_bits (XEXP (x, 1), mode)
5314 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0))
5315 result--;
5317 return result;
5319 case MOD:
5320 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5321 known_x, known_mode, known_ret);
5322 if (result > 1
5323 && (bitwidth > HOST_BITS_PER_WIDE_INT
5324 || (nonzero_bits (XEXP (x, 1), mode)
5325 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0))
5326 result--;
5328 return result;
5330 case ASHIFTRT:
5331 /* Shifts by a constant add to the number of bits equal to the
5332 sign bit. */
5333 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5334 known_x, known_mode, known_ret);
5335 if (CONST_INT_P (XEXP (x, 1))
5336 && INTVAL (XEXP (x, 1)) > 0
5337 && INTVAL (XEXP (x, 1)) < xmode_width)
5338 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
5340 return num0;
5342 case ASHIFT:
5343 /* Left shifts destroy copies. */
5344 if (!CONST_INT_P (XEXP (x, 1))
5345 || INTVAL (XEXP (x, 1)) < 0
5346 || INTVAL (XEXP (x, 1)) >= (int) bitwidth
5347 || INTVAL (XEXP (x, 1)) >= xmode_width)
5348 return 1;
5350 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5351 known_x, known_mode, known_ret);
5352 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
5354 case IF_THEN_ELSE:
5355 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5356 known_x, known_mode, known_ret);
5357 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
5358 known_x, known_mode, known_ret);
5359 return MIN (num0, num1);
5361 case EQ: case NE: case GE: case GT: case LE: case LT:
5362 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
5363 case GEU: case GTU: case LEU: case LTU:
5364 case UNORDERED: case ORDERED:
5365 /* If the constant is negative, take its 1's complement and remask.
5366 Then see how many zero bits we have. */
5367 nonzero = STORE_FLAG_VALUE;
5368 if (bitwidth <= HOST_BITS_PER_WIDE_INT
5369 && (nonzero & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5370 nonzero = (~nonzero) & GET_MODE_MASK (mode);
5372 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
5374 default:
5375 break;
5378 /* If we haven't been able to figure it out by one of the above rules,
5379 see if some of the high-order bits are known to be zero. If so,
5380 count those bits and return one less than that amount. If we can't
5381 safely compute the mask for this mode, always return BITWIDTH. */
5383 bitwidth = GET_MODE_PRECISION (mode);
5384 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5385 return 1;
5387 nonzero = nonzero_bits (x, mode);
5388 return nonzero & (HOST_WIDE_INT_1U << (bitwidth - 1))
5389 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
5392 /* Calculate the rtx_cost of a single instruction pattern. A return value of
5393 zero indicates an instruction pattern without a known cost. */
5396 pattern_cost (rtx pat, bool speed)
5398 int i, cost;
5399 rtx set;
5401 /* Extract the single set rtx from the instruction pattern. We
5402 can't use single_set since we only have the pattern. We also
5403 consider PARALLELs of a normal set and a single comparison. In
5404 that case we use the cost of the non-comparison SET operation,
5405 which is most-likely to be the real cost of this operation. */
5406 if (GET_CODE (pat) == SET)
5407 set = pat;
5408 else if (GET_CODE (pat) == PARALLEL)
5410 set = NULL_RTX;
5411 rtx comparison = NULL_RTX;
5413 for (i = 0; i < XVECLEN (pat, 0); i++)
5415 rtx x = XVECEXP (pat, 0, i);
5416 if (GET_CODE (x) == SET)
5418 if (GET_CODE (SET_SRC (x)) == COMPARE)
5420 if (comparison)
5421 return 0;
5422 comparison = x;
5424 else
5426 if (set)
5427 return 0;
5428 set = x;
5433 if (!set && comparison)
5434 set = comparison;
5436 if (!set)
5437 return 0;
5439 else
5440 return 0;
5442 cost = set_src_cost (SET_SRC (set), GET_MODE (SET_DEST (set)), speed);
5443 return cost > 0 ? cost : COSTS_N_INSNS (1);
5446 /* Calculate the cost of a single instruction. A return value of zero
5447 indicates an instruction pattern without a known cost. */
5450 insn_cost (rtx_insn *insn, bool speed)
5452 if (targetm.insn_cost)
5453 return targetm.insn_cost (insn, speed);
5455 return pattern_cost (PATTERN (insn), speed);
5458 /* Returns estimate on cost of computing SEQ. */
5460 unsigned
5461 seq_cost (const rtx_insn *seq, bool speed)
5463 unsigned cost = 0;
5464 rtx set;
5466 for (; seq; seq = NEXT_INSN (seq))
5468 set = single_set (seq);
5469 if (set)
5470 cost += set_rtx_cost (set, speed);
5471 else if (NONDEBUG_INSN_P (seq))
5473 int this_cost = insn_cost (CONST_CAST_RTX_INSN (seq), speed);
5474 if (this_cost > 0)
5475 cost += this_cost;
5476 else
5477 cost++;
5481 return cost;
5484 /* Given an insn INSN and condition COND, return the condition in a
5485 canonical form to simplify testing by callers. Specifically:
5487 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
5488 (2) Both operands will be machine operands; (cc0) will have been replaced.
5489 (3) If an operand is a constant, it will be the second operand.
5490 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
5491 for GE, GEU, and LEU.
5493 If the condition cannot be understood, or is an inequality floating-point
5494 comparison which needs to be reversed, 0 will be returned.
5496 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
5498 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5499 insn used in locating the condition was found. If a replacement test
5500 of the condition is desired, it should be placed in front of that
5501 insn and we will be sure that the inputs are still valid.
5503 If WANT_REG is nonzero, we wish the condition to be relative to that
5504 register, if possible. Therefore, do not canonicalize the condition
5505 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
5506 to be a compare to a CC mode register.
5508 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
5509 and at INSN. */
5512 canonicalize_condition (rtx_insn *insn, rtx cond, int reverse,
5513 rtx_insn **earliest,
5514 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
5516 enum rtx_code code;
5517 rtx_insn *prev = insn;
5518 const_rtx set;
5519 rtx tem;
5520 rtx op0, op1;
5521 int reverse_code = 0;
5522 machine_mode mode;
5523 basic_block bb = BLOCK_FOR_INSN (insn);
5525 code = GET_CODE (cond);
5526 mode = GET_MODE (cond);
5527 op0 = XEXP (cond, 0);
5528 op1 = XEXP (cond, 1);
5530 if (reverse)
5531 code = reversed_comparison_code (cond, insn);
5532 if (code == UNKNOWN)
5533 return 0;
5535 if (earliest)
5536 *earliest = insn;
5538 /* If we are comparing a register with zero, see if the register is set
5539 in the previous insn to a COMPARE or a comparison operation. Perform
5540 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
5541 in cse.c */
5543 while ((GET_RTX_CLASS (code) == RTX_COMPARE
5544 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
5545 && op1 == CONST0_RTX (GET_MODE (op0))
5546 && op0 != want_reg)
5548 /* Set nonzero when we find something of interest. */
5549 rtx x = 0;
5551 /* If comparison with cc0, import actual comparison from compare
5552 insn. */
5553 if (op0 == cc0_rtx)
5555 if ((prev = prev_nonnote_insn (prev)) == 0
5556 || !NONJUMP_INSN_P (prev)
5557 || (set = single_set (prev)) == 0
5558 || SET_DEST (set) != cc0_rtx)
5559 return 0;
5561 op0 = SET_SRC (set);
5562 op1 = CONST0_RTX (GET_MODE (op0));
5563 if (earliest)
5564 *earliest = prev;
5567 /* If this is a COMPARE, pick up the two things being compared. */
5568 if (GET_CODE (op0) == COMPARE)
5570 op1 = XEXP (op0, 1);
5571 op0 = XEXP (op0, 0);
5572 continue;
5574 else if (!REG_P (op0))
5575 break;
5577 /* Go back to the previous insn. Stop if it is not an INSN. We also
5578 stop if it isn't a single set or if it has a REG_INC note because
5579 we don't want to bother dealing with it. */
5581 prev = prev_nonnote_nondebug_insn (prev);
5583 if (prev == 0
5584 || !NONJUMP_INSN_P (prev)
5585 || FIND_REG_INC_NOTE (prev, NULL_RTX)
5586 /* In cfglayout mode, there do not have to be labels at the
5587 beginning of a block, or jumps at the end, so the previous
5588 conditions would not stop us when we reach bb boundary. */
5589 || BLOCK_FOR_INSN (prev) != bb)
5590 break;
5592 set = set_of (op0, prev);
5594 if (set
5595 && (GET_CODE (set) != SET
5596 || !rtx_equal_p (SET_DEST (set), op0)))
5597 break;
5599 /* If this is setting OP0, get what it sets it to if it looks
5600 relevant. */
5601 if (set)
5603 machine_mode inner_mode = GET_MODE (SET_DEST (set));
5604 #ifdef FLOAT_STORE_FLAG_VALUE
5605 REAL_VALUE_TYPE fsfv;
5606 #endif
5608 /* ??? We may not combine comparisons done in a CCmode with
5609 comparisons not done in a CCmode. This is to aid targets
5610 like Alpha that have an IEEE compliant EQ instruction, and
5611 a non-IEEE compliant BEQ instruction. The use of CCmode is
5612 actually artificial, simply to prevent the combination, but
5613 should not affect other platforms.
5615 However, we must allow VOIDmode comparisons to match either
5616 CCmode or non-CCmode comparison, because some ports have
5617 modeless comparisons inside branch patterns.
5619 ??? This mode check should perhaps look more like the mode check
5620 in simplify_comparison in combine. */
5621 if (((GET_MODE_CLASS (mode) == MODE_CC)
5622 != (GET_MODE_CLASS (inner_mode) == MODE_CC))
5623 && mode != VOIDmode
5624 && inner_mode != VOIDmode)
5625 break;
5626 if (GET_CODE (SET_SRC (set)) == COMPARE
5627 || (((code == NE
5628 || (code == LT
5629 && val_signbit_known_set_p (inner_mode,
5630 STORE_FLAG_VALUE))
5631 #ifdef FLOAT_STORE_FLAG_VALUE
5632 || (code == LT
5633 && SCALAR_FLOAT_MODE_P (inner_mode)
5634 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5635 REAL_VALUE_NEGATIVE (fsfv)))
5636 #endif
5638 && COMPARISON_P (SET_SRC (set))))
5639 x = SET_SRC (set);
5640 else if (((code == EQ
5641 || (code == GE
5642 && val_signbit_known_set_p (inner_mode,
5643 STORE_FLAG_VALUE))
5644 #ifdef FLOAT_STORE_FLAG_VALUE
5645 || (code == GE
5646 && SCALAR_FLOAT_MODE_P (inner_mode)
5647 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5648 REAL_VALUE_NEGATIVE (fsfv)))
5649 #endif
5651 && COMPARISON_P (SET_SRC (set)))
5653 reverse_code = 1;
5654 x = SET_SRC (set);
5656 else if ((code == EQ || code == NE)
5657 && GET_CODE (SET_SRC (set)) == XOR)
5658 /* Handle sequences like:
5660 (set op0 (xor X Y))
5661 ...(eq|ne op0 (const_int 0))...
5663 in which case:
5665 (eq op0 (const_int 0)) reduces to (eq X Y)
5666 (ne op0 (const_int 0)) reduces to (ne X Y)
5668 This is the form used by MIPS16, for example. */
5669 x = SET_SRC (set);
5670 else
5671 break;
5674 else if (reg_set_p (op0, prev))
5675 /* If this sets OP0, but not directly, we have to give up. */
5676 break;
5678 if (x)
5680 /* If the caller is expecting the condition to be valid at INSN,
5681 make sure X doesn't change before INSN. */
5682 if (valid_at_insn_p)
5683 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
5684 break;
5685 if (COMPARISON_P (x))
5686 code = GET_CODE (x);
5687 if (reverse_code)
5689 code = reversed_comparison_code (x, prev);
5690 if (code == UNKNOWN)
5691 return 0;
5692 reverse_code = 0;
5695 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
5696 if (earliest)
5697 *earliest = prev;
5701 /* If constant is first, put it last. */
5702 if (CONSTANT_P (op0))
5703 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
5705 /* If OP0 is the result of a comparison, we weren't able to find what
5706 was really being compared, so fail. */
5707 if (!allow_cc_mode
5708 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5709 return 0;
5711 /* Canonicalize any ordered comparison with integers involving equality
5712 if we can do computations in the relevant mode and we do not
5713 overflow. */
5715 scalar_int_mode op0_mode;
5716 if (CONST_INT_P (op1)
5717 && is_a <scalar_int_mode> (GET_MODE (op0), &op0_mode)
5718 && GET_MODE_PRECISION (op0_mode) <= HOST_BITS_PER_WIDE_INT)
5720 HOST_WIDE_INT const_val = INTVAL (op1);
5721 unsigned HOST_WIDE_INT uconst_val = const_val;
5722 unsigned HOST_WIDE_INT max_val
5723 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (op0_mode);
5725 switch (code)
5727 case LE:
5728 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
5729 code = LT, op1 = gen_int_mode (const_val + 1, op0_mode);
5730 break;
5732 /* When cross-compiling, const_val might be sign-extended from
5733 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
5734 case GE:
5735 if ((const_val & max_val)
5736 != (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (op0_mode) - 1)))
5737 code = GT, op1 = gen_int_mode (const_val - 1, op0_mode);
5738 break;
5740 case LEU:
5741 if (uconst_val < max_val)
5742 code = LTU, op1 = gen_int_mode (uconst_val + 1, op0_mode);
5743 break;
5745 case GEU:
5746 if (uconst_val != 0)
5747 code = GTU, op1 = gen_int_mode (uconst_val - 1, op0_mode);
5748 break;
5750 default:
5751 break;
5755 /* Never return CC0; return zero instead. */
5756 if (CC0_P (op0))
5757 return 0;
5759 /* We promised to return a comparison. */
5760 rtx ret = gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
5761 if (COMPARISON_P (ret))
5762 return ret;
5763 return 0;
5766 /* Given a jump insn JUMP, return the condition that will cause it to branch
5767 to its JUMP_LABEL. If the condition cannot be understood, or is an
5768 inequality floating-point comparison which needs to be reversed, 0 will
5769 be returned.
5771 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5772 insn used in locating the condition was found. If a replacement test
5773 of the condition is desired, it should be placed in front of that
5774 insn and we will be sure that the inputs are still valid. If EARLIEST
5775 is null, the returned condition will be valid at INSN.
5777 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
5778 compare CC mode register.
5780 VALID_AT_INSN_P is the same as for canonicalize_condition. */
5783 get_condition (rtx_insn *jump, rtx_insn **earliest, int allow_cc_mode,
5784 int valid_at_insn_p)
5786 rtx cond;
5787 int reverse;
5788 rtx set;
5790 /* If this is not a standard conditional jump, we can't parse it. */
5791 if (!JUMP_P (jump)
5792 || ! any_condjump_p (jump))
5793 return 0;
5794 set = pc_set (jump);
5796 cond = XEXP (SET_SRC (set), 0);
5798 /* If this branches to JUMP_LABEL when the condition is false, reverse
5799 the condition. */
5800 reverse
5801 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
5802 && label_ref_label (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (jump);
5804 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
5805 allow_cc_mode, valid_at_insn_p);
5808 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
5809 TARGET_MODE_REP_EXTENDED.
5811 Note that we assume that the property of
5812 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
5813 narrower than mode B. I.e., if A is a mode narrower than B then in
5814 order to be able to operate on it in mode B, mode A needs to
5815 satisfy the requirements set by the representation of mode B. */
5817 static void
5818 init_num_sign_bit_copies_in_rep (void)
5820 opt_scalar_int_mode in_mode_iter;
5821 scalar_int_mode mode;
5823 FOR_EACH_MODE_IN_CLASS (in_mode_iter, MODE_INT)
5824 FOR_EACH_MODE_UNTIL (mode, in_mode_iter.require ())
5826 scalar_int_mode in_mode = in_mode_iter.require ();
5827 scalar_int_mode i;
5829 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
5830 extends to the next widest mode. */
5831 gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
5832 || GET_MODE_WIDER_MODE (mode).require () == in_mode);
5834 /* We are in in_mode. Count how many bits outside of mode
5835 have to be copies of the sign-bit. */
5836 FOR_EACH_MODE (i, mode, in_mode)
5838 /* This must always exist (for the last iteration it will be
5839 IN_MODE). */
5840 scalar_int_mode wider = GET_MODE_WIDER_MODE (i).require ();
5842 if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
5843 /* We can only check sign-bit copies starting from the
5844 top-bit. In order to be able to check the bits we
5845 have already seen we pretend that subsequent bits
5846 have to be sign-bit copies too. */
5847 || num_sign_bit_copies_in_rep [in_mode][mode])
5848 num_sign_bit_copies_in_rep [in_mode][mode]
5849 += GET_MODE_PRECISION (wider) - GET_MODE_PRECISION (i);
5854 /* Suppose that truncation from the machine mode of X to MODE is not a
5855 no-op. See if there is anything special about X so that we can
5856 assume it already contains a truncated value of MODE. */
5858 bool
5859 truncated_to_mode (machine_mode mode, const_rtx x)
5861 /* This register has already been used in MODE without explicit
5862 truncation. */
5863 if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
5864 return true;
5866 /* See if we already satisfy the requirements of MODE. If yes we
5867 can just switch to MODE. */
5868 if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
5869 && (num_sign_bit_copies (x, GET_MODE (x))
5870 >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
5871 return true;
5873 return false;
5876 /* Return true if RTX code CODE has a single sequence of zero or more
5877 "e" operands and no rtvec operands. Initialize its rtx_all_subrtx_bounds
5878 entry in that case. */
5880 static bool
5881 setup_reg_subrtx_bounds (unsigned int code)
5883 const char *format = GET_RTX_FORMAT ((enum rtx_code) code);
5884 unsigned int i = 0;
5885 for (; format[i] != 'e'; ++i)
5887 if (!format[i])
5888 /* No subrtxes. Leave start and count as 0. */
5889 return true;
5890 if (format[i] == 'E' || format[i] == 'V')
5891 return false;
5894 /* Record the sequence of 'e's. */
5895 rtx_all_subrtx_bounds[code].start = i;
5897 ++i;
5898 while (format[i] == 'e');
5899 rtx_all_subrtx_bounds[code].count = i - rtx_all_subrtx_bounds[code].start;
5900 /* rtl-iter.h relies on this. */
5901 gcc_checking_assert (rtx_all_subrtx_bounds[code].count <= 3);
5903 for (; format[i]; ++i)
5904 if (format[i] == 'E' || format[i] == 'V' || format[i] == 'e')
5905 return false;
5907 return true;
5910 /* Initialize rtx_all_subrtx_bounds. */
5911 void
5912 init_rtlanal (void)
5914 int i;
5915 for (i = 0; i < NUM_RTX_CODE; i++)
5917 if (!setup_reg_subrtx_bounds (i))
5918 rtx_all_subrtx_bounds[i].count = UCHAR_MAX;
5919 if (GET_RTX_CLASS (i) != RTX_CONST_OBJ)
5920 rtx_nonconst_subrtx_bounds[i] = rtx_all_subrtx_bounds[i];
5923 init_num_sign_bit_copies_in_rep ();
5926 /* Check whether this is a constant pool constant. */
5927 bool
5928 constant_pool_constant_p (rtx x)
5930 x = avoid_constant_pool_reference (x);
5931 return CONST_DOUBLE_P (x);
5934 /* If M is a bitmask that selects a field of low-order bits within an item but
5935 not the entire word, return the length of the field. Return -1 otherwise.
5936 M is used in machine mode MODE. */
5939 low_bitmask_len (machine_mode mode, unsigned HOST_WIDE_INT m)
5941 if (mode != VOIDmode)
5943 if (!HWI_COMPUTABLE_MODE_P (mode))
5944 return -1;
5945 m &= GET_MODE_MASK (mode);
5948 return exact_log2 (m + 1);
5951 /* Return the mode of MEM's address. */
5953 scalar_int_mode
5954 get_address_mode (rtx mem)
5956 machine_mode mode;
5958 gcc_assert (MEM_P (mem));
5959 mode = GET_MODE (XEXP (mem, 0));
5960 if (mode != VOIDmode)
5961 return as_a <scalar_int_mode> (mode);
5962 return targetm.addr_space.address_mode (MEM_ADDR_SPACE (mem));
5965 /* Split up a CONST_DOUBLE or integer constant rtx
5966 into two rtx's for single words,
5967 storing in *FIRST the word that comes first in memory in the target
5968 and in *SECOND the other.
5970 TODO: This function needs to be rewritten to work on any size
5971 integer. */
5973 void
5974 split_double (rtx value, rtx *first, rtx *second)
5976 if (CONST_INT_P (value))
5978 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
5980 /* In this case the CONST_INT holds both target words.
5981 Extract the bits from it into two word-sized pieces.
5982 Sign extend each half to HOST_WIDE_INT. */
5983 unsigned HOST_WIDE_INT low, high;
5984 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
5985 unsigned bits_per_word = BITS_PER_WORD;
5987 /* Set sign_bit to the most significant bit of a word. */
5988 sign_bit = 1;
5989 sign_bit <<= bits_per_word - 1;
5991 /* Set mask so that all bits of the word are set. We could
5992 have used 1 << BITS_PER_WORD instead of basing the
5993 calculation on sign_bit. However, on machines where
5994 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
5995 compiler warning, even though the code would never be
5996 executed. */
5997 mask = sign_bit << 1;
5998 mask--;
6000 /* Set sign_extend as any remaining bits. */
6001 sign_extend = ~mask;
6003 /* Pick the lower word and sign-extend it. */
6004 low = INTVAL (value);
6005 low &= mask;
6006 if (low & sign_bit)
6007 low |= sign_extend;
6009 /* Pick the higher word, shifted to the least significant
6010 bits, and sign-extend it. */
6011 high = INTVAL (value);
6012 high >>= bits_per_word - 1;
6013 high >>= 1;
6014 high &= mask;
6015 if (high & sign_bit)
6016 high |= sign_extend;
6018 /* Store the words in the target machine order. */
6019 if (WORDS_BIG_ENDIAN)
6021 *first = GEN_INT (high);
6022 *second = GEN_INT (low);
6024 else
6026 *first = GEN_INT (low);
6027 *second = GEN_INT (high);
6030 else
6032 /* The rule for using CONST_INT for a wider mode
6033 is that we regard the value as signed.
6034 So sign-extend it. */
6035 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
6036 if (WORDS_BIG_ENDIAN)
6038 *first = high;
6039 *second = value;
6041 else
6043 *first = value;
6044 *second = high;
6048 else if (GET_CODE (value) == CONST_WIDE_INT)
6050 /* All of this is scary code and needs to be converted to
6051 properly work with any size integer. */
6052 gcc_assert (CONST_WIDE_INT_NUNITS (value) == 2);
6053 if (WORDS_BIG_ENDIAN)
6055 *first = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
6056 *second = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
6058 else
6060 *first = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
6061 *second = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
6064 else if (!CONST_DOUBLE_P (value))
6066 if (WORDS_BIG_ENDIAN)
6068 *first = const0_rtx;
6069 *second = value;
6071 else
6073 *first = value;
6074 *second = const0_rtx;
6077 else if (GET_MODE (value) == VOIDmode
6078 /* This is the old way we did CONST_DOUBLE integers. */
6079 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
6081 /* In an integer, the words are defined as most and least significant.
6082 So order them by the target's convention. */
6083 if (WORDS_BIG_ENDIAN)
6085 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
6086 *second = GEN_INT (CONST_DOUBLE_LOW (value));
6088 else
6090 *first = GEN_INT (CONST_DOUBLE_LOW (value));
6091 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
6094 else
6096 long l[2];
6098 /* Note, this converts the REAL_VALUE_TYPE to the target's
6099 format, splits up the floating point double and outputs
6100 exactly 32 bits of it into each of l[0] and l[1] --
6101 not necessarily BITS_PER_WORD bits. */
6102 REAL_VALUE_TO_TARGET_DOUBLE (*CONST_DOUBLE_REAL_VALUE (value), l);
6104 /* If 32 bits is an entire word for the target, but not for the host,
6105 then sign-extend on the host so that the number will look the same
6106 way on the host that it would on the target. See for instance
6107 simplify_unary_operation. The #if is needed to avoid compiler
6108 warnings. */
6110 #if HOST_BITS_PER_LONG > 32
6111 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
6113 if (l[0] & ((long) 1 << 31))
6114 l[0] |= ((unsigned long) (-1) << 32);
6115 if (l[1] & ((long) 1 << 31))
6116 l[1] |= ((unsigned long) (-1) << 32);
6118 #endif
6120 *first = GEN_INT (l[0]);
6121 *second = GEN_INT (l[1]);
6125 /* Return true if X is a sign_extract or zero_extract from the least
6126 significant bit. */
6128 static bool
6129 lsb_bitfield_op_p (rtx x)
6131 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_BITFIELD_OPS)
6133 machine_mode mode = GET_MODE (XEXP (x, 0));
6134 HOST_WIDE_INT len = INTVAL (XEXP (x, 1));
6135 HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
6136 poly_int64 remaining_bits = GET_MODE_PRECISION (mode) - len;
6138 return known_eq (pos, BITS_BIG_ENDIAN ? remaining_bits : 0);
6140 return false;
6143 /* Strip outer address "mutations" from LOC and return a pointer to the
6144 inner value. If OUTER_CODE is nonnull, store the code of the innermost
6145 stripped expression there.
6147 "Mutations" either convert between modes or apply some kind of
6148 extension, truncation or alignment. */
6150 rtx *
6151 strip_address_mutations (rtx *loc, enum rtx_code *outer_code)
6153 for (;;)
6155 enum rtx_code code = GET_CODE (*loc);
6156 if (GET_RTX_CLASS (code) == RTX_UNARY)
6157 /* Things like SIGN_EXTEND, ZERO_EXTEND and TRUNCATE can be
6158 used to convert between pointer sizes. */
6159 loc = &XEXP (*loc, 0);
6160 else if (lsb_bitfield_op_p (*loc))
6161 /* A [SIGN|ZERO]_EXTRACT from the least significant bit effectively
6162 acts as a combined truncation and extension. */
6163 loc = &XEXP (*loc, 0);
6164 else if (code == AND && CONST_INT_P (XEXP (*loc, 1)))
6165 /* (and ... (const_int -X)) is used to align to X bytes. */
6166 loc = &XEXP (*loc, 0);
6167 else if (code == SUBREG
6168 && !OBJECT_P (SUBREG_REG (*loc))
6169 && subreg_lowpart_p (*loc))
6170 /* (subreg (operator ...) ...) inside and is used for mode
6171 conversion too. */
6172 loc = &SUBREG_REG (*loc);
6173 else
6174 return loc;
6175 if (outer_code)
6176 *outer_code = code;
6180 /* Return true if CODE applies some kind of scale. The scaled value is
6181 is the first operand and the scale is the second. */
6183 static bool
6184 binary_scale_code_p (enum rtx_code code)
6186 return (code == MULT
6187 || code == ASHIFT
6188 /* Needed by ARM targets. */
6189 || code == ASHIFTRT
6190 || code == LSHIFTRT
6191 || code == ROTATE
6192 || code == ROTATERT);
6195 /* If *INNER can be interpreted as a base, return a pointer to the inner term
6196 (see address_info). Return null otherwise. */
6198 static rtx *
6199 get_base_term (rtx *inner)
6201 if (GET_CODE (*inner) == LO_SUM)
6202 inner = strip_address_mutations (&XEXP (*inner, 0));
6203 if (REG_P (*inner)
6204 || MEM_P (*inner)
6205 || GET_CODE (*inner) == SUBREG
6206 || GET_CODE (*inner) == SCRATCH)
6207 return inner;
6208 return 0;
6211 /* If *INNER can be interpreted as an index, return a pointer to the inner term
6212 (see address_info). Return null otherwise. */
6214 static rtx *
6215 get_index_term (rtx *inner)
6217 /* At present, only constant scales are allowed. */
6218 if (binary_scale_code_p (GET_CODE (*inner)) && CONSTANT_P (XEXP (*inner, 1)))
6219 inner = strip_address_mutations (&XEXP (*inner, 0));
6220 if (REG_P (*inner)
6221 || MEM_P (*inner)
6222 || GET_CODE (*inner) == SUBREG
6223 || GET_CODE (*inner) == SCRATCH)
6224 return inner;
6225 return 0;
6228 /* Set the segment part of address INFO to LOC, given that INNER is the
6229 unmutated value. */
6231 static void
6232 set_address_segment (struct address_info *info, rtx *loc, rtx *inner)
6234 gcc_assert (!info->segment);
6235 info->segment = loc;
6236 info->segment_term = inner;
6239 /* Set the base part of address INFO to LOC, given that INNER is the
6240 unmutated value. */
6242 static void
6243 set_address_base (struct address_info *info, rtx *loc, rtx *inner)
6245 gcc_assert (!info->base);
6246 info->base = loc;
6247 info->base_term = inner;
6250 /* Set the index part of address INFO to LOC, given that INNER is the
6251 unmutated value. */
6253 static void
6254 set_address_index (struct address_info *info, rtx *loc, rtx *inner)
6256 gcc_assert (!info->index);
6257 info->index = loc;
6258 info->index_term = inner;
6261 /* Set the displacement part of address INFO to LOC, given that INNER
6262 is the constant term. */
6264 static void
6265 set_address_disp (struct address_info *info, rtx *loc, rtx *inner)
6267 gcc_assert (!info->disp);
6268 info->disp = loc;
6269 info->disp_term = inner;
6272 /* INFO->INNER describes a {PRE,POST}_{INC,DEC} address. Set up the
6273 rest of INFO accordingly. */
6275 static void
6276 decompose_incdec_address (struct address_info *info)
6278 info->autoinc_p = true;
6280 rtx *base = &XEXP (*info->inner, 0);
6281 set_address_base (info, base, base);
6282 gcc_checking_assert (info->base == info->base_term);
6284 /* These addresses are only valid when the size of the addressed
6285 value is known. */
6286 gcc_checking_assert (info->mode != VOIDmode);
6289 /* INFO->INNER describes a {PRE,POST}_MODIFY address. Set up the rest
6290 of INFO accordingly. */
6292 static void
6293 decompose_automod_address (struct address_info *info)
6295 info->autoinc_p = true;
6297 rtx *base = &XEXP (*info->inner, 0);
6298 set_address_base (info, base, base);
6299 gcc_checking_assert (info->base == info->base_term);
6301 rtx plus = XEXP (*info->inner, 1);
6302 gcc_assert (GET_CODE (plus) == PLUS);
6304 info->base_term2 = &XEXP (plus, 0);
6305 gcc_checking_assert (rtx_equal_p (*info->base_term, *info->base_term2));
6307 rtx *step = &XEXP (plus, 1);
6308 rtx *inner_step = strip_address_mutations (step);
6309 if (CONSTANT_P (*inner_step))
6310 set_address_disp (info, step, inner_step);
6311 else
6312 set_address_index (info, step, inner_step);
6315 /* Treat *LOC as a tree of PLUS operands and store pointers to the summed
6316 values in [PTR, END). Return a pointer to the end of the used array. */
6318 static rtx **
6319 extract_plus_operands (rtx *loc, rtx **ptr, rtx **end)
6321 rtx x = *loc;
6322 if (GET_CODE (x) == PLUS)
6324 ptr = extract_plus_operands (&XEXP (x, 0), ptr, end);
6325 ptr = extract_plus_operands (&XEXP (x, 1), ptr, end);
6327 else
6329 gcc_assert (ptr != end);
6330 *ptr++ = loc;
6332 return ptr;
6335 /* Evaluate the likelihood of X being a base or index value, returning
6336 positive if it is likely to be a base, negative if it is likely to be
6337 an index, and 0 if we can't tell. Make the magnitude of the return
6338 value reflect the amount of confidence we have in the answer.
6340 MODE, AS, OUTER_CODE and INDEX_CODE are as for ok_for_base_p_1. */
6342 static int
6343 baseness (rtx x, machine_mode mode, addr_space_t as,
6344 enum rtx_code outer_code, enum rtx_code index_code)
6346 /* Believe *_POINTER unless the address shape requires otherwise. */
6347 if (REG_P (x) && REG_POINTER (x))
6348 return 2;
6349 if (MEM_P (x) && MEM_POINTER (x))
6350 return 2;
6352 if (REG_P (x) && HARD_REGISTER_P (x))
6354 /* X is a hard register. If it only fits one of the base
6355 or index classes, choose that interpretation. */
6356 int regno = REGNO (x);
6357 bool base_p = ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
6358 bool index_p = REGNO_OK_FOR_INDEX_P (regno);
6359 if (base_p != index_p)
6360 return base_p ? 1 : -1;
6362 return 0;
6365 /* INFO->INNER describes a normal, non-automodified address.
6366 Fill in the rest of INFO accordingly. */
6368 static void
6369 decompose_normal_address (struct address_info *info)
6371 /* Treat the address as the sum of up to four values. */
6372 rtx *ops[4];
6373 size_t n_ops = extract_plus_operands (info->inner, ops,
6374 ops + ARRAY_SIZE (ops)) - ops;
6376 /* If there is more than one component, any base component is in a PLUS. */
6377 if (n_ops > 1)
6378 info->base_outer_code = PLUS;
6380 /* Try to classify each sum operand now. Leave those that could be
6381 either a base or an index in OPS. */
6382 rtx *inner_ops[4];
6383 size_t out = 0;
6384 for (size_t in = 0; in < n_ops; ++in)
6386 rtx *loc = ops[in];
6387 rtx *inner = strip_address_mutations (loc);
6388 if (CONSTANT_P (*inner))
6389 set_address_disp (info, loc, inner);
6390 else if (GET_CODE (*inner) == UNSPEC)
6391 set_address_segment (info, loc, inner);
6392 else
6394 /* The only other possibilities are a base or an index. */
6395 rtx *base_term = get_base_term (inner);
6396 rtx *index_term = get_index_term (inner);
6397 gcc_assert (base_term || index_term);
6398 if (!base_term)
6399 set_address_index (info, loc, index_term);
6400 else if (!index_term)
6401 set_address_base (info, loc, base_term);
6402 else
6404 gcc_assert (base_term == index_term);
6405 ops[out] = loc;
6406 inner_ops[out] = base_term;
6407 ++out;
6412 /* Classify the remaining OPS members as bases and indexes. */
6413 if (out == 1)
6415 /* If we haven't seen a base or an index yet, assume that this is
6416 the base. If we were confident that another term was the base
6417 or index, treat the remaining operand as the other kind. */
6418 if (!info->base)
6419 set_address_base (info, ops[0], inner_ops[0]);
6420 else
6421 set_address_index (info, ops[0], inner_ops[0]);
6423 else if (out == 2)
6425 /* In the event of a tie, assume the base comes first. */
6426 if (baseness (*inner_ops[0], info->mode, info->as, PLUS,
6427 GET_CODE (*ops[1]))
6428 >= baseness (*inner_ops[1], info->mode, info->as, PLUS,
6429 GET_CODE (*ops[0])))
6431 set_address_base (info, ops[0], inner_ops[0]);
6432 set_address_index (info, ops[1], inner_ops[1]);
6434 else
6436 set_address_base (info, ops[1], inner_ops[1]);
6437 set_address_index (info, ops[0], inner_ops[0]);
6440 else
6441 gcc_assert (out == 0);
6444 /* Describe address *LOC in *INFO. MODE is the mode of the addressed value,
6445 or VOIDmode if not known. AS is the address space associated with LOC.
6446 OUTER_CODE is MEM if *LOC is a MEM address and ADDRESS otherwise. */
6448 void
6449 decompose_address (struct address_info *info, rtx *loc, machine_mode mode,
6450 addr_space_t as, enum rtx_code outer_code)
6452 memset (info, 0, sizeof (*info));
6453 info->mode = mode;
6454 info->as = as;
6455 info->addr_outer_code = outer_code;
6456 info->outer = loc;
6457 info->inner = strip_address_mutations (loc, &outer_code);
6458 info->base_outer_code = outer_code;
6459 switch (GET_CODE (*info->inner))
6461 case PRE_DEC:
6462 case PRE_INC:
6463 case POST_DEC:
6464 case POST_INC:
6465 decompose_incdec_address (info);
6466 break;
6468 case PRE_MODIFY:
6469 case POST_MODIFY:
6470 decompose_automod_address (info);
6471 break;
6473 default:
6474 decompose_normal_address (info);
6475 break;
6479 /* Describe address operand LOC in INFO. */
6481 void
6482 decompose_lea_address (struct address_info *info, rtx *loc)
6484 decompose_address (info, loc, VOIDmode, ADDR_SPACE_GENERIC, ADDRESS);
6487 /* Describe the address of MEM X in INFO. */
6489 void
6490 decompose_mem_address (struct address_info *info, rtx x)
6492 gcc_assert (MEM_P (x));
6493 decompose_address (info, &XEXP (x, 0), GET_MODE (x),
6494 MEM_ADDR_SPACE (x), MEM);
6497 /* Update INFO after a change to the address it describes. */
6499 void
6500 update_address (struct address_info *info)
6502 decompose_address (info, info->outer, info->mode, info->as,
6503 info->addr_outer_code);
6506 /* Return the scale applied to *INFO->INDEX_TERM, or 0 if the index is
6507 more complicated than that. */
6509 HOST_WIDE_INT
6510 get_index_scale (const struct address_info *info)
6512 rtx index = *info->index;
6513 if (GET_CODE (index) == MULT
6514 && CONST_INT_P (XEXP (index, 1))
6515 && info->index_term == &XEXP (index, 0))
6516 return INTVAL (XEXP (index, 1));
6518 if (GET_CODE (index) == ASHIFT
6519 && CONST_INT_P (XEXP (index, 1))
6520 && info->index_term == &XEXP (index, 0))
6521 return HOST_WIDE_INT_1 << INTVAL (XEXP (index, 1));
6523 if (info->index == info->index_term)
6524 return 1;
6526 return 0;
6529 /* Return the "index code" of INFO, in the form required by
6530 ok_for_base_p_1. */
6532 enum rtx_code
6533 get_index_code (const struct address_info *info)
6535 if (info->index)
6536 return GET_CODE (*info->index);
6538 if (info->disp)
6539 return GET_CODE (*info->disp);
6541 return SCRATCH;
6544 /* Return true if RTL X contains a SYMBOL_REF. */
6546 bool
6547 contains_symbol_ref_p (const_rtx x)
6549 subrtx_iterator::array_type array;
6550 FOR_EACH_SUBRTX (iter, array, x, ALL)
6551 if (SYMBOL_REF_P (*iter))
6552 return true;
6554 return false;
6557 /* Return true if RTL X contains a SYMBOL_REF or LABEL_REF. */
6559 bool
6560 contains_symbolic_reference_p (const_rtx x)
6562 subrtx_iterator::array_type array;
6563 FOR_EACH_SUBRTX (iter, array, x, ALL)
6564 if (SYMBOL_REF_P (*iter) || GET_CODE (*iter) == LABEL_REF)
6565 return true;
6567 return false;
6570 /* Return true if RTL X contains a constant pool address. */
6572 bool
6573 contains_constant_pool_address_p (const_rtx x)
6575 subrtx_iterator::array_type array;
6576 FOR_EACH_SUBRTX (iter, array, x, ALL)
6577 if (SYMBOL_REF_P (*iter) && CONSTANT_POOL_ADDRESS_P (*iter))
6578 return true;
6580 return false;
6584 /* Return true if X contains a thread-local symbol. */
6586 bool
6587 tls_referenced_p (const_rtx x)
6589 if (!targetm.have_tls)
6590 return false;
6592 subrtx_iterator::array_type array;
6593 FOR_EACH_SUBRTX (iter, array, x, ALL)
6594 if (GET_CODE (*iter) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (*iter) != 0)
6595 return true;
6596 return false;
6599 /* Process recursively X of INSN and add REG_INC notes if necessary. */
6600 void
6601 add_auto_inc_notes (rtx_insn *insn, rtx x)
6603 enum rtx_code code = GET_CODE (x);
6604 const char *fmt;
6605 int i, j;
6607 if (code == MEM && auto_inc_p (XEXP (x, 0)))
6609 add_reg_note (insn, REG_INC, XEXP (XEXP (x, 0), 0));
6610 return;
6613 /* Scan all X sub-expressions. */
6614 fmt = GET_RTX_FORMAT (code);
6615 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6617 if (fmt[i] == 'e')
6618 add_auto_inc_notes (insn, XEXP (x, i));
6619 else if (fmt[i] == 'E')
6620 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6621 add_auto_inc_notes (insn, XVECEXP (x, i, j));