* class.c (check_bitfield_decl): New function, split out from
[official-gcc.git] / gcc / final.c
blobe0092c0b02602e18ae4206e059566cecfa709d05
1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987, 88, 89, 92-98, 1999 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
22 /* This is the final pass of the compiler.
23 It looks at the rtl code for a function and outputs assembler code.
25 Call `final_start_function' to output the assembler code for function entry,
26 `final' to output assembler code for some RTL code,
27 `final_end_function' to output assembler code for function exit.
28 If a function is compiled in several pieces, each piece is
29 output separately with `final'.
31 Some optimizations are also done at this level.
32 Move instructions that were made unnecessary by good register allocation
33 are detected and omitted from the output. (Though most of these
34 are removed by the last jump pass.)
36 Instructions to set the condition codes are omitted when it can be
37 seen that the condition codes already had the desired values.
39 In some cases it is sufficient if the inherited condition codes
40 have related values, but this may require the following insn
41 (the one that tests the condition codes) to be modified.
43 The code for the function prologue and epilogue are generated
44 directly as assembler code by the macros FUNCTION_PROLOGUE and
45 FUNCTION_EPILOGUE. Those instructions never exist as rtl. */
47 #include "config.h"
48 #include "system.h"
50 #include "tree.h"
51 #include "rtl.h"
52 #include "tm_p.h"
53 #include "regs.h"
54 #include "insn-config.h"
55 #include "insn-flags.h"
56 #include "insn-attr.h"
57 #include "insn-codes.h"
58 #include "recog.h"
59 #include "conditions.h"
60 #include "flags.h"
61 #include "real.h"
62 #include "hard-reg-set.h"
63 #include "defaults.h"
64 #include "output.h"
65 #include "except.h"
66 #include "function.h"
67 #include "toplev.h"
68 #include "reload.h"
69 #include "intl.h"
71 /* Get N_SLINE and N_SOL from stab.h if we can expect the file to exist. */
72 #if defined (DBX_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
73 #include "dbxout.h"
74 #if defined (USG) || !defined (HAVE_STAB_H)
75 #include "gstab.h" /* If doing DBX on sysV, use our own stab.h. */
76 #else
77 #include <stab.h>
78 #endif
80 #endif /* DBX_DEBUGGING_INFO || XCOFF_DEBUGGING_INFO */
82 #ifdef XCOFF_DEBUGGING_INFO
83 #include "xcoffout.h"
84 #endif
86 #ifdef DWARF_DEBUGGING_INFO
87 #include "dwarfout.h"
88 #endif
90 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
91 #include "dwarf2out.h"
92 #endif
94 #ifdef SDB_DEBUGGING_INFO
95 #include "sdbout.h"
96 #endif
98 /* .stabd code for line number. */
99 #ifndef N_SLINE
100 #define N_SLINE 0x44
101 #endif
103 /* .stabs code for included file name. */
104 #ifndef N_SOL
105 #define N_SOL 0x84
106 #endif
108 #ifndef INT_TYPE_SIZE
109 #define INT_TYPE_SIZE BITS_PER_WORD
110 #endif
112 #ifndef LONG_TYPE_SIZE
113 #define LONG_TYPE_SIZE BITS_PER_WORD
114 #endif
116 /* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
117 null default for it to save conditionalization later. */
118 #ifndef CC_STATUS_INIT
119 #define CC_STATUS_INIT
120 #endif
122 /* How to start an assembler comment. */
123 #ifndef ASM_COMMENT_START
124 #define ASM_COMMENT_START ";#"
125 #endif
127 /* Is the given character a logical line separator for the assembler? */
128 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
129 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == ';')
130 #endif
132 #ifndef JUMP_TABLES_IN_TEXT_SECTION
133 #define JUMP_TABLES_IN_TEXT_SECTION 0
134 #endif
136 /* Last insn processed by final_scan_insn. */
137 static rtx debug_insn = 0;
139 /* Line number of last NOTE. */
140 static int last_linenum;
142 /* Highest line number in current block. */
143 static int high_block_linenum;
145 /* Likewise for function. */
146 static int high_function_linenum;
148 /* Filename of last NOTE. */
149 static char *last_filename;
151 /* Number of basic blocks seen so far;
152 used if profile_block_flag is set. */
153 static int count_basic_blocks;
155 /* Number of instrumented arcs when profile_arc_flag is set. */
156 extern int count_instrumented_arcs;
158 extern int length_unit_log; /* This is defined in insn-attrtab.c. */
160 /* Nonzero while outputting an `asm' with operands.
161 This means that inconsistencies are the user's fault, so don't abort.
162 The precise value is the insn being output, to pass to error_for_asm. */
163 static rtx this_is_asm_operands;
165 /* Number of operands of this insn, for an `asm' with operands. */
166 static unsigned int insn_noperands;
168 /* Compare optimization flag. */
170 static rtx last_ignored_compare = 0;
172 /* Flag indicating this insn is the start of a new basic block. */
174 static int new_block = 1;
176 /* All the symbol-blocks (levels of scoping) in the compilation
177 are assigned sequence numbers in order of appearance of the
178 beginnings of the symbol-blocks. Both final and dbxout do this,
179 and assume that they will both give the same number to each block.
180 Final uses these sequence numbers to generate assembler label names
181 LBBnnn and LBEnnn for the beginning and end of the symbol-block.
182 Dbxout uses the sequence numbers to generate references to the same labels
183 from the dbx debugging information.
185 Sdb records this level at the beginning of each function,
186 in order to find the current level when recursing down declarations.
187 It outputs the block beginning and endings
188 at the point in the asm file where the blocks would begin and end. */
190 int next_block_index;
192 /* Assign a unique number to each insn that is output.
193 This can be used to generate unique local labels. */
195 static int insn_counter = 0;
197 #ifdef HAVE_cc0
198 /* This variable contains machine-dependent flags (defined in tm.h)
199 set and examined by output routines
200 that describe how to interpret the condition codes properly. */
202 CC_STATUS cc_status;
204 /* During output of an insn, this contains a copy of cc_status
205 from before the insn. */
207 CC_STATUS cc_prev_status;
208 #endif
210 /* Indexed by hardware reg number, is 1 if that register is ever
211 used in the current function.
213 In life_analysis, or in stupid_life_analysis, this is set
214 up to record the hard regs used explicitly. Reload adds
215 in the hard regs used for holding pseudo regs. Final uses
216 it to generate the code in the function prologue and epilogue
217 to save and restore registers as needed. */
219 char regs_ever_live[FIRST_PSEUDO_REGISTER];
221 /* Nonzero means current function must be given a frame pointer.
222 Set in stmt.c if anything is allocated on the stack there.
223 Set in reload1.c if anything is allocated on the stack there. */
225 int frame_pointer_needed;
227 /* Assign unique numbers to labels generated for profiling. */
229 int profile_label_no;
231 /* Length so far allocated in PENDING_BLOCKS. */
233 static int max_block_depth;
235 /* Stack of sequence numbers of symbol-blocks of which we have seen the
236 beginning but not yet the end. Sequence numbers are assigned at
237 the beginning; this stack allows us to find the sequence number
238 of a block that is ending. */
240 static int *pending_blocks;
242 /* Number of elements currently in use in PENDING_BLOCKS. */
244 static int block_depth;
246 /* Nonzero if have enabled APP processing of our assembler output. */
248 static int app_on;
250 /* If we are outputting an insn sequence, this contains the sequence rtx.
251 Zero otherwise. */
253 rtx final_sequence;
255 #ifdef ASSEMBLER_DIALECT
257 /* Number of the assembler dialect to use, starting at 0. */
258 static int dialect_number;
259 #endif
261 /* Indexed by line number, nonzero if there is a note for that line. */
263 static char *line_note_exists;
265 /* Linked list to hold line numbers for each basic block. */
267 struct bb_list {
268 struct bb_list *next; /* pointer to next basic block */
269 int line_num; /* line number */
270 int file_label_num; /* LPBC<n> label # for stored filename */
271 int func_label_num; /* LPBC<n> label # for stored function name */
274 static struct bb_list *bb_head = 0; /* Head of basic block list */
275 static struct bb_list **bb_tail = &bb_head; /* Ptr to store next bb ptr */
276 static int bb_file_label_num = -1; /* Current label # for file */
277 static int bb_func_label_num = -1; /* Current label # for func */
279 /* Linked list to hold the strings for each file and function name output. */
281 struct bb_str {
282 struct bb_str *next; /* pointer to next string */
283 const char *string; /* string */
284 int label_num; /* label number */
285 int length; /* string length */
288 static struct bb_str *sbb_head = 0; /* Head of string list. */
289 static struct bb_str **sbb_tail = &sbb_head; /* Ptr to store next bb str */
290 static int sbb_label_num = 0; /* Last label used */
292 #ifdef HAVE_ATTR_length
293 static int asm_insn_count PROTO((rtx));
294 #endif
295 static void profile_function PROTO((FILE *));
296 static void profile_after_prologue PROTO((FILE *));
297 static void add_bb PROTO((FILE *));
298 static int add_bb_string PROTO((const char *, int));
299 static void output_source_line PROTO((FILE *, rtx));
300 static rtx walk_alter_subreg PROTO((rtx));
301 static void output_asm_name PROTO((void));
302 static void output_operand PROTO((rtx, int));
303 #ifdef LEAF_REGISTERS
304 static void leaf_renumber_regs PROTO((rtx));
305 #endif
306 #ifdef HAVE_cc0
307 static int alter_cond PROTO((rtx));
308 #endif
309 #ifndef ADDR_VEC_ALIGN
310 static int final_addr_vec_align PROTO ((rtx));
311 #endif
312 static int align_fuzz PROTO ((rtx, rtx, int, unsigned));
314 /* Initialize data in final at the beginning of a compilation. */
316 void
317 init_final (filename)
318 const char *filename ATTRIBUTE_UNUSED;
320 next_block_index = 2;
321 app_on = 0;
322 max_block_depth = 20;
323 pending_blocks = (int *) xmalloc (20 * sizeof *pending_blocks);
324 final_sequence = 0;
326 #ifdef ASSEMBLER_DIALECT
327 dialect_number = ASSEMBLER_DIALECT;
328 #endif
331 /* Called at end of source file,
332 to output the block-profiling table for this entire compilation. */
334 void
335 end_final (filename)
336 const char *filename;
338 int i;
340 if (profile_block_flag || profile_arc_flag)
342 char name[20];
343 int align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
344 int size, rounded;
345 struct bb_list *ptr;
346 struct bb_str *sptr;
347 int long_bytes = LONG_TYPE_SIZE / BITS_PER_UNIT;
348 int pointer_bytes = POINTER_SIZE / BITS_PER_UNIT;
350 if (profile_block_flag)
351 size = long_bytes * count_basic_blocks;
352 else
353 size = long_bytes * count_instrumented_arcs;
354 rounded = size;
356 rounded += (BIGGEST_ALIGNMENT / BITS_PER_UNIT) - 1;
357 rounded = (rounded / (BIGGEST_ALIGNMENT / BITS_PER_UNIT)
358 * (BIGGEST_ALIGNMENT / BITS_PER_UNIT));
360 data_section ();
362 /* Output the main header, of 11 words:
363 0: 1 if this file is initialized, else 0.
364 1: address of file name (LPBX1).
365 2: address of table of counts (LPBX2).
366 3: number of counts in the table.
367 4: always 0, for compatibility with Sun.
369 The following are GNU extensions:
371 5: address of table of start addrs of basic blocks (LPBX3).
372 6: Number of bytes in this header.
373 7: address of table of function names (LPBX4).
374 8: address of table of line numbers (LPBX5) or 0.
375 9: address of table of file names (LPBX6) or 0.
376 10: space reserved for basic block profiling. */
378 ASM_OUTPUT_ALIGN (asm_out_file, align);
380 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 0);
381 /* zero word */
382 assemble_integer (const0_rtx, long_bytes, 1);
384 /* address of filename */
385 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 1);
386 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name), pointer_bytes, 1);
388 /* address of count table */
389 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 2);
390 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name), pointer_bytes, 1);
392 /* count of the # of basic blocks or # of instrumented arcs */
393 if (profile_block_flag)
394 assemble_integer (GEN_INT (count_basic_blocks), long_bytes, 1);
395 else
396 assemble_integer (GEN_INT (count_instrumented_arcs), long_bytes,
399 /* zero word (link field) */
400 assemble_integer (const0_rtx, pointer_bytes, 1);
402 /* address of basic block start address table */
403 if (profile_block_flag)
405 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 3);
406 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name), pointer_bytes,
409 else
410 assemble_integer (const0_rtx, pointer_bytes, 1);
412 /* byte count for extended structure. */
413 assemble_integer (GEN_INT (11 * UNITS_PER_WORD), long_bytes, 1);
415 /* address of function name table */
416 if (profile_block_flag)
418 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 4);
419 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name), pointer_bytes,
422 else
423 assemble_integer (const0_rtx, pointer_bytes, 1);
425 /* address of line number and filename tables if debugging. */
426 if (write_symbols != NO_DEBUG && profile_block_flag)
428 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 5);
429 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name),
430 pointer_bytes, 1);
431 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 6);
432 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name),
433 pointer_bytes, 1);
435 else
437 assemble_integer (const0_rtx, pointer_bytes, 1);
438 assemble_integer (const0_rtx, pointer_bytes, 1);
441 /* space for extension ptr (link field) */
442 assemble_integer (const0_rtx, UNITS_PER_WORD, 1);
444 /* Output the file name changing the suffix to .d for Sun tcov
445 compatibility. */
446 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 1);
448 char *cwd = getpwd ();
449 int len = strlen (filename) + strlen (cwd) + 1;
450 char *data_file = (char *) alloca (len + 4);
452 strcpy (data_file, cwd);
453 strcat (data_file, "/");
454 strcat (data_file, filename);
455 strip_off_ending (data_file, len);
456 if (profile_block_flag)
457 strcat (data_file, ".d");
458 else
459 strcat (data_file, ".da");
460 assemble_string (data_file, strlen (data_file) + 1);
463 /* Make space for the table of counts. */
464 if (size == 0)
466 /* Realign data section. */
467 ASM_OUTPUT_ALIGN (asm_out_file, align);
468 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 2);
469 if (size != 0)
470 assemble_zeros (size);
472 else
474 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 2);
475 #ifdef ASM_OUTPUT_SHARED_LOCAL
476 if (flag_shared_data)
477 ASM_OUTPUT_SHARED_LOCAL (asm_out_file, name, size, rounded);
478 else
479 #endif
480 #ifdef ASM_OUTPUT_ALIGNED_DECL_LOCAL
481 ASM_OUTPUT_ALIGNED_DECL_LOCAL (asm_out_file, NULL_TREE, name, size,
482 BIGGEST_ALIGNMENT);
483 #else
484 #ifdef ASM_OUTPUT_ALIGNED_LOCAL
485 ASM_OUTPUT_ALIGNED_LOCAL (asm_out_file, name, size,
486 BIGGEST_ALIGNMENT);
487 #else
488 ASM_OUTPUT_LOCAL (asm_out_file, name, size, rounded);
489 #endif
490 #endif
493 /* Output any basic block strings */
494 if (profile_block_flag)
496 readonly_data_section ();
497 if (sbb_head)
499 ASM_OUTPUT_ALIGN (asm_out_file, align);
500 for (sptr = sbb_head; sptr != 0; sptr = sptr->next)
502 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBC",
503 sptr->label_num);
504 assemble_string (sptr->string, sptr->length);
509 /* Output the table of addresses. */
510 if (profile_block_flag)
512 /* Realign in new section */
513 ASM_OUTPUT_ALIGN (asm_out_file, align);
514 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 3);
515 for (i = 0; i < count_basic_blocks; i++)
517 ASM_GENERATE_INTERNAL_LABEL (name, "LPB", i);
518 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name),
519 pointer_bytes, 1);
523 /* Output the table of function names. */
524 if (profile_block_flag)
526 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 4);
527 for ((ptr = bb_head), (i = 0); ptr != 0; (ptr = ptr->next), i++)
529 if (ptr->func_label_num >= 0)
531 ASM_GENERATE_INTERNAL_LABEL (name, "LPBC",
532 ptr->func_label_num);
533 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name),
534 pointer_bytes, 1);
536 else
537 assemble_integer (const0_rtx, pointer_bytes, 1);
540 for ( ; i < count_basic_blocks; i++)
541 assemble_integer (const0_rtx, pointer_bytes, 1);
544 if (write_symbols != NO_DEBUG && profile_block_flag)
546 /* Output the table of line numbers. */
547 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 5);
548 for ((ptr = bb_head), (i = 0); ptr != 0; (ptr = ptr->next), i++)
549 assemble_integer (GEN_INT (ptr->line_num), long_bytes, 1);
551 for ( ; i < count_basic_blocks; i++)
552 assemble_integer (const0_rtx, long_bytes, 1);
554 /* Output the table of file names. */
555 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 6);
556 for ((ptr = bb_head), (i = 0); ptr != 0; (ptr = ptr->next), i++)
558 if (ptr->file_label_num >= 0)
560 ASM_GENERATE_INTERNAL_LABEL (name, "LPBC",
561 ptr->file_label_num);
562 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name),
563 pointer_bytes, 1);
565 else
566 assemble_integer (const0_rtx, pointer_bytes, 1);
569 for ( ; i < count_basic_blocks; i++)
570 assemble_integer (const0_rtx, pointer_bytes, 1);
573 /* End with the address of the table of addresses,
574 so we can find it easily, as the last word in the file's text. */
575 if (profile_block_flag)
577 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 3);
578 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name), pointer_bytes,
584 /* Enable APP processing of subsequent output.
585 Used before the output from an `asm' statement. */
587 void
588 app_enable ()
590 if (! app_on)
592 fputs (ASM_APP_ON, asm_out_file);
593 app_on = 1;
597 /* Disable APP processing of subsequent output.
598 Called from varasm.c before most kinds of output. */
600 void
601 app_disable ()
603 if (app_on)
605 fputs (ASM_APP_OFF, asm_out_file);
606 app_on = 0;
610 /* Return the number of slots filled in the current
611 delayed branch sequence (we don't count the insn needing the
612 delay slot). Zero if not in a delayed branch sequence. */
614 #ifdef DELAY_SLOTS
616 dbr_sequence_length ()
618 if (final_sequence != 0)
619 return XVECLEN (final_sequence, 0) - 1;
620 else
621 return 0;
623 #endif
625 /* The next two pages contain routines used to compute the length of an insn
626 and to shorten branches. */
628 /* Arrays for insn lengths, and addresses. The latter is referenced by
629 `insn_current_length'. */
631 static short *insn_lengths;
632 int *insn_addresses;
634 /* Max uid for which the above arrays are valid. */
635 static int insn_lengths_max_uid;
637 /* Address of insn being processed. Used by `insn_current_length'. */
638 int insn_current_address;
640 /* Address of insn being processed in previous iteration. */
641 int insn_last_address;
643 /* konwn invariant alignment of insn being processed. */
644 int insn_current_align;
646 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
647 gives the next following alignment insn that increases the known
648 alignment, or NULL_RTX if there is no such insn.
649 For any alignment obtained this way, we can again index uid_align with
650 its uid to obtain the next following align that in turn increases the
651 alignment, till we reach NULL_RTX; the sequence obtained this way
652 for each insn we'll call the alignment chain of this insn in the following
653 comments. */
655 struct label_alignment {
656 short alignment;
657 short max_skip;
660 static rtx *uid_align;
661 static int *uid_shuid;
662 static struct label_alignment *label_align;
664 /* Indicate that branch shortening hasn't yet been done. */
666 void
667 init_insn_lengths ()
669 if (label_align)
671 free (label_align);
672 label_align = 0;
674 if (uid_shuid)
676 free (uid_shuid);
677 uid_shuid = 0;
679 if (insn_lengths)
681 free (insn_lengths);
682 insn_lengths = 0;
683 insn_lengths_max_uid = 0;
685 if (insn_addresses)
687 free (insn_addresses);
688 insn_addresses = 0;
690 if (uid_align)
692 free (uid_align);
693 uid_align = 0;
697 /* Obtain the current length of an insn. If branch shortening has been done,
698 get its actual length. Otherwise, get its maximum length. */
701 get_attr_length (insn)
702 rtx insn;
704 #ifdef HAVE_ATTR_length
705 rtx body;
706 int i;
707 int length = 0;
709 if (insn_lengths_max_uid > INSN_UID (insn))
710 return insn_lengths[INSN_UID (insn)];
711 else
712 switch (GET_CODE (insn))
714 case NOTE:
715 case BARRIER:
716 case CODE_LABEL:
717 return 0;
719 case CALL_INSN:
720 length = insn_default_length (insn);
721 break;
723 case JUMP_INSN:
724 body = PATTERN (insn);
725 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
727 /* Alignment is machine-dependent and should be handled by
728 ADDR_VEC_ALIGN. */
730 else
731 length = insn_default_length (insn);
732 break;
734 case INSN:
735 body = PATTERN (insn);
736 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
737 return 0;
739 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
740 length = asm_insn_count (body) * insn_default_length (insn);
741 else if (GET_CODE (body) == SEQUENCE)
742 for (i = 0; i < XVECLEN (body, 0); i++)
743 length += get_attr_length (XVECEXP (body, 0, i));
744 else
745 length = insn_default_length (insn);
746 break;
748 default:
749 break;
752 #ifdef ADJUST_INSN_LENGTH
753 ADJUST_INSN_LENGTH (insn, length);
754 #endif
755 return length;
756 #else /* not HAVE_ATTR_length */
757 return 0;
758 #endif /* not HAVE_ATTR_length */
761 /* Code to handle alignment inside shorten_branches. */
763 /* Here is an explanation how the algorithm in align_fuzz can give
764 proper results:
766 Call a sequence of instructions beginning with alignment point X
767 and continuing until the next alignment point `block X'. When `X'
768 is used in an expression, it means the alignment value of the
769 alignment point.
771 Call the distance between the start of the first insn of block X, and
772 the end of the last insn of block X `IX', for the `inner size of X'.
773 This is clearly the sum of the instruction lengths.
775 Likewise with the next alignment-delimited block following X, which we
776 shall call block Y.
778 Call the distance between the start of the first insn of block X, and
779 the start of the first insn of block Y `OX', for the `outer size of X'.
781 The estimated padding is then OX - IX.
783 OX can be safely estimated as
785 if (X >= Y)
786 OX = round_up(IX, Y)
787 else
788 OX = round_up(IX, X) + Y - X
790 Clearly est(IX) >= real(IX), because that only depends on the
791 instruction lengths, and those being overestimated is a given.
793 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
794 we needn't worry about that when thinking about OX.
796 When X >= Y, the alignment provided by Y adds no uncertainty factor
797 for branch ranges starting before X, so we can just round what we have.
798 But when X < Y, we don't know anything about the, so to speak,
799 `middle bits', so we have to assume the worst when aligning up from an
800 address mod X to one mod Y, which is Y - X. */
802 #ifndef LABEL_ALIGN
803 #define LABEL_ALIGN(LABEL) align_labels_log
804 #endif
806 #ifndef LABEL_ALIGN_MAX_SKIP
807 #define LABEL_ALIGN_MAX_SKIP (align_labels-1)
808 #endif
810 #ifndef LOOP_ALIGN
811 #define LOOP_ALIGN(LABEL) align_loops_log
812 #endif
814 #ifndef LOOP_ALIGN_MAX_SKIP
815 #define LOOP_ALIGN_MAX_SKIP (align_loops-1)
816 #endif
818 #ifndef LABEL_ALIGN_AFTER_BARRIER
819 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) align_jumps_log
820 #endif
822 #ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
823 #define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP (align_jumps-1)
824 #endif
826 #ifndef ADDR_VEC_ALIGN
827 static int
828 final_addr_vec_align (addr_vec)
829 rtx addr_vec;
831 int align = exact_log2 (GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec))));
833 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
834 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
835 return align;
838 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
839 #endif
841 #ifndef INSN_LENGTH_ALIGNMENT
842 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
843 #endif
845 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
847 static int min_labelno, max_labelno;
849 #define LABEL_TO_ALIGNMENT(LABEL) \
850 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
852 #define LABEL_TO_MAX_SKIP(LABEL) \
853 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
855 /* For the benefit of port specific code do this also as a function. */
857 label_to_alignment (label)
858 rtx label;
860 return LABEL_TO_ALIGNMENT (label);
863 #ifdef HAVE_ATTR_length
864 /* The differences in addresses
865 between a branch and its target might grow or shrink depending on
866 the alignment the start insn of the range (the branch for a forward
867 branch or the label for a backward branch) starts out on; if these
868 differences are used naively, they can even oscillate infinitely.
869 We therefore want to compute a 'worst case' address difference that
870 is independent of the alignment the start insn of the range end
871 up on, and that is at least as large as the actual difference.
872 The function align_fuzz calculates the amount we have to add to the
873 naively computed difference, by traversing the part of the alignment
874 chain of the start insn of the range that is in front of the end insn
875 of the range, and considering for each alignment the maximum amount
876 that it might contribute to a size increase.
878 For casesi tables, we also want to know worst case minimum amounts of
879 address difference, in case a machine description wants to introduce
880 some common offset that is added to all offsets in a table.
881 For this purpose, align_fuzz with a growth argument of 0 comuptes the
882 appropriate adjustment. */
885 /* Compute the maximum delta by which the difference of the addresses of
886 START and END might grow / shrink due to a different address for start
887 which changes the size of alignment insns between START and END.
888 KNOWN_ALIGN_LOG is the alignment known for START.
889 GROWTH should be ~0 if the objective is to compute potential code size
890 increase, and 0 if the objective is to compute potential shrink.
891 The return value is undefined for any other value of GROWTH. */
892 static int
893 align_fuzz (start, end, known_align_log, growth)
894 rtx start, end;
895 int known_align_log;
896 unsigned growth;
898 int uid = INSN_UID (start);
899 rtx align_label;
900 int known_align = 1 << known_align_log;
901 int end_shuid = INSN_SHUID (end);
902 int fuzz = 0;
904 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
906 int align_addr, new_align;
908 uid = INSN_UID (align_label);
909 align_addr = insn_addresses[uid] - insn_lengths[uid];
910 if (uid_shuid[uid] > end_shuid)
911 break;
912 known_align_log = LABEL_TO_ALIGNMENT (align_label);
913 new_align = 1 << known_align_log;
914 if (new_align < known_align)
915 continue;
916 fuzz += (-align_addr ^ growth) & (new_align - known_align);
917 known_align = new_align;
919 return fuzz;
922 /* Compute a worst-case reference address of a branch so that it
923 can be safely used in the presence of aligned labels. Since the
924 size of the branch itself is unknown, the size of the branch is
925 not included in the range. I.e. for a forward branch, the reference
926 address is the end address of the branch as known from the previous
927 branch shortening pass, minus a value to account for possible size
928 increase due to alignment. For a backward branch, it is the start
929 address of the branch as known from the current pass, plus a value
930 to account for possible size increase due to alignment.
931 NB.: Therefore, the maximum offset allowed for backward branches needs
932 to exclude the branch size. */
934 insn_current_reference_address (branch)
935 rtx branch;
937 rtx dest;
938 rtx seq = NEXT_INSN (PREV_INSN (branch));
939 int seq_uid = INSN_UID (seq);
940 if (GET_CODE (branch) != JUMP_INSN)
941 /* This can happen for example on the PA; the objective is to know the
942 offset to address something in front of the start of the function.
943 Thus, we can treat it like a backward branch.
944 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
945 any alignment we'd encounter, so we skip the call to align_fuzz. */
946 return insn_current_address;
947 dest = JUMP_LABEL (branch);
948 /* BRANCH has no proper alignment chain set, so use SEQ. */
949 if (INSN_SHUID (branch) < INSN_SHUID (dest))
951 /* Forward branch. */
952 return (insn_last_address + insn_lengths[seq_uid]
953 - align_fuzz (seq, dest, length_unit_log, ~0));
955 else
957 /* Backward branch. */
958 return (insn_current_address
959 + align_fuzz (dest, seq, length_unit_log, ~0));
962 #endif /* HAVE_ATTR_length */
964 /* Make a pass over all insns and compute their actual lengths by shortening
965 any branches of variable length if possible. */
967 /* Give a default value for the lowest address in a function. */
969 #ifndef FIRST_INSN_ADDRESS
970 #define FIRST_INSN_ADDRESS 0
971 #endif
973 /* shorten_branches might be called multiple times: for example, the SH
974 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
975 In order to do this, it needs proper length information, which it obtains
976 by calling shorten_branches. This cannot be collapsed with
977 shorten_branches itself into a single pass unless we also want to intergate
978 reorg.c, since the branch splitting exposes new instructions with delay
979 slots. */
981 void
982 shorten_branches (first)
983 rtx first;
985 rtx insn;
986 int max_uid;
987 int i;
988 int max_log;
989 int max_skip;
990 #ifdef HAVE_ATTR_length
991 #define MAX_CODE_ALIGN 16
992 rtx seq;
993 int something_changed = 1;
994 char *varying_length;
995 rtx body;
996 int uid;
997 rtx align_tab[MAX_CODE_ALIGN];
999 /* In order to make sure that all instructions have valid length info,
1000 we must split them before we compute the address/length info. */
1002 for (insn = NEXT_INSN (first); insn; insn = NEXT_INSN (insn))
1003 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
1005 rtx old = insn;
1006 /* Don't split the insn if it has been deleted. */
1007 if (! INSN_DELETED_P (old))
1008 insn = try_split (PATTERN (old), old, 1);
1009 /* When not optimizing, the old insn will be still left around
1010 with only the 'deleted' bit set. Transform it into a note
1011 to avoid confusion of subsequent processing. */
1012 if (INSN_DELETED_P (old))
1014 PUT_CODE (old , NOTE);
1015 NOTE_LINE_NUMBER (old) = NOTE_INSN_DELETED;
1016 NOTE_SOURCE_FILE (old) = 0;
1019 #endif
1021 /* We must do some computations even when not actually shortening, in
1022 order to get the alignment information for the labels. */
1024 init_insn_lengths ();
1026 /* Compute maximum UID and allocate label_align / uid_shuid. */
1027 max_uid = get_max_uid ();
1029 max_labelno = max_label_num ();
1030 min_labelno = get_first_label_num ();
1031 label_align = (struct label_alignment *)
1032 xcalloc ((max_labelno - min_labelno + 1), sizeof (struct label_alignment));
1034 uid_shuid = (int *) xmalloc (max_uid * sizeof *uid_shuid);
1036 /* Initialize label_align and set up uid_shuid to be strictly
1037 monotonically rising with insn order. */
1038 /* We use max_log here to keep track of the maximum alignment we want to
1039 impose on the next CODE_LABEL (or the current one if we are processing
1040 the CODE_LABEL itself). */
1042 max_log = 0;
1043 max_skip = 0;
1045 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
1047 int log;
1049 INSN_SHUID (insn) = i++;
1050 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
1052 /* reorg might make the first insn of a loop being run once only,
1053 and delete the label in front of it. Then we want to apply
1054 the loop alignment to the new label created by reorg, which
1055 is separated by the former loop start insn from the
1056 NOTE_INSN_LOOP_BEG. */
1058 else if (GET_CODE (insn) == CODE_LABEL)
1060 rtx next;
1062 log = LABEL_ALIGN (insn);
1063 if (max_log < log)
1065 max_log = log;
1066 max_skip = LABEL_ALIGN_MAX_SKIP;
1068 next = NEXT_INSN (insn);
1069 /* ADDR_VECs only take room if read-only data goes into the text
1070 section. */
1071 if (JUMP_TABLES_IN_TEXT_SECTION
1072 #if !defined(READONLY_DATA_SECTION)
1073 || 1
1074 #endif
1076 if (next && GET_CODE (next) == JUMP_INSN)
1078 rtx nextbody = PATTERN (next);
1079 if (GET_CODE (nextbody) == ADDR_VEC
1080 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
1082 log = ADDR_VEC_ALIGN (next);
1083 if (max_log < log)
1085 max_log = log;
1086 max_skip = LABEL_ALIGN_MAX_SKIP;
1090 LABEL_TO_ALIGNMENT (insn) = max_log;
1091 LABEL_TO_MAX_SKIP (insn) = max_skip;
1092 max_log = 0;
1093 max_skip = 0;
1095 else if (GET_CODE (insn) == BARRIER)
1097 rtx label;
1099 for (label = insn; label && GET_RTX_CLASS (GET_CODE (label)) != 'i';
1100 label = NEXT_INSN (label))
1101 if (GET_CODE (label) == CODE_LABEL)
1103 log = LABEL_ALIGN_AFTER_BARRIER (insn);
1104 if (max_log < log)
1106 max_log = log;
1107 max_skip = LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP;
1109 break;
1112 /* Again, we allow NOTE_INSN_LOOP_BEG - INSN - CODE_LABEL
1113 sequences in order to handle reorg output efficiently. */
1114 else if (GET_CODE (insn) == NOTE
1115 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
1117 rtx label;
1118 int nest = 0;
1120 /* Search for the label that starts the loop.
1121 Don't skip past the end of the loop, since that could
1122 lead to putting an alignment where it does not belong.
1123 However, a label after a nested (non-)loop would be OK. */
1124 for (label = insn; label; label = NEXT_INSN (label))
1126 if (GET_CODE (label) == NOTE
1127 && NOTE_LINE_NUMBER (label) == NOTE_INSN_LOOP_BEG)
1128 nest++;
1129 else if (GET_CODE (label) == NOTE
1130 && NOTE_LINE_NUMBER (label) == NOTE_INSN_LOOP_END
1131 && --nest == 0)
1132 break;
1133 else if (GET_CODE (label) == CODE_LABEL)
1135 log = LOOP_ALIGN (insn);
1136 if (max_log < log)
1138 max_log = log;
1139 max_skip = LOOP_ALIGN_MAX_SKIP;
1141 break;
1145 else
1146 continue;
1148 #ifdef HAVE_ATTR_length
1150 /* Allocate the rest of the arrays. */
1151 insn_lengths = (short *) xmalloc (max_uid * sizeof (short));
1152 insn_lengths_max_uid = max_uid;
1153 /* Syntax errors can lead to labels being outside of the main insn stream.
1154 Initialize insn_addresses, so that we get reproducible results. */
1155 insn_addresses = (int *) xcalloc (max_uid, sizeof (int));
1157 varying_length = (char *) xcalloc (max_uid, sizeof (char));
1159 /* Initialize uid_align. We scan instructions
1160 from end to start, and keep in align_tab[n] the last seen insn
1161 that does an alignment of at least n+1, i.e. the successor
1162 in the alignment chain for an insn that does / has a known
1163 alignment of n. */
1164 uid_align = (rtx *) xcalloc (max_uid, sizeof *uid_align);
1166 for (i = MAX_CODE_ALIGN; --i >= 0; )
1167 align_tab[i] = NULL_RTX;
1168 seq = get_last_insn ();
1169 for (; seq; seq = PREV_INSN (seq))
1171 int uid = INSN_UID (seq);
1172 int log;
1173 log = (GET_CODE (seq) == CODE_LABEL ? LABEL_TO_ALIGNMENT (seq) : 0);
1174 uid_align[uid] = align_tab[0];
1175 if (log)
1177 /* Found an alignment label. */
1178 uid_align[uid] = align_tab[log];
1179 for (i = log - 1; i >= 0; i--)
1180 align_tab[i] = seq;
1183 #ifdef CASE_VECTOR_SHORTEN_MODE
1184 if (optimize)
1186 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
1187 label fields. */
1189 int min_shuid = INSN_SHUID (get_insns ()) - 1;
1190 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
1191 int rel;
1193 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
1195 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
1196 int len, i, min, max, insn_shuid;
1197 int min_align;
1198 addr_diff_vec_flags flags;
1200 if (GET_CODE (insn) != JUMP_INSN
1201 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
1202 continue;
1203 pat = PATTERN (insn);
1204 len = XVECLEN (pat, 1);
1205 if (len <= 0)
1206 abort ();
1207 min_align = MAX_CODE_ALIGN;
1208 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
1210 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
1211 int shuid = INSN_SHUID (lab);
1212 if (shuid < min)
1214 min = shuid;
1215 min_lab = lab;
1217 if (shuid > max)
1219 max = shuid;
1220 max_lab = lab;
1222 if (min_align > LABEL_TO_ALIGNMENT (lab))
1223 min_align = LABEL_TO_ALIGNMENT (lab);
1225 XEXP (pat, 2) = gen_rtx_LABEL_REF (VOIDmode, min_lab);
1226 XEXP (pat, 3) = gen_rtx_LABEL_REF (VOIDmode, max_lab);
1227 insn_shuid = INSN_SHUID (insn);
1228 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
1229 flags.min_align = min_align;
1230 flags.base_after_vec = rel > insn_shuid;
1231 flags.min_after_vec = min > insn_shuid;
1232 flags.max_after_vec = max > insn_shuid;
1233 flags.min_after_base = min > rel;
1234 flags.max_after_base = max > rel;
1235 ADDR_DIFF_VEC_FLAGS (pat) = flags;
1238 #endif /* CASE_VECTOR_SHORTEN_MODE */
1241 /* Compute initial lengths, addresses, and varying flags for each insn. */
1242 for (insn_current_address = FIRST_INSN_ADDRESS, insn = first;
1243 insn != 0;
1244 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
1246 uid = INSN_UID (insn);
1248 insn_lengths[uid] = 0;
1250 if (GET_CODE (insn) == CODE_LABEL)
1252 int log = LABEL_TO_ALIGNMENT (insn);
1253 if (log)
1255 int align = 1 << log;
1256 int new_address = (insn_current_address + align - 1) & -align;
1257 insn_lengths[uid] = new_address - insn_current_address;
1258 insn_current_address = new_address;
1262 insn_addresses[uid] = insn_current_address;
1264 if (GET_CODE (insn) == NOTE || GET_CODE (insn) == BARRIER
1265 || GET_CODE (insn) == CODE_LABEL)
1266 continue;
1267 if (INSN_DELETED_P (insn))
1268 continue;
1270 body = PATTERN (insn);
1271 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
1273 /* This only takes room if read-only data goes into the text
1274 section. */
1275 if (JUMP_TABLES_IN_TEXT_SECTION
1276 #if !defined(READONLY_DATA_SECTION)
1277 || 1
1278 #endif
1280 insn_lengths[uid] = (XVECLEN (body,
1281 GET_CODE (body) == ADDR_DIFF_VEC)
1282 * GET_MODE_SIZE (GET_MODE (body)));
1283 /* Alignment is handled by ADDR_VEC_ALIGN. */
1285 else if (asm_noperands (body) >= 0)
1286 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1287 else if (GET_CODE (body) == SEQUENCE)
1289 int i;
1290 int const_delay_slots;
1291 #ifdef DELAY_SLOTS
1292 const_delay_slots = const_num_delay_slots (XVECEXP (body, 0, 0));
1293 #else
1294 const_delay_slots = 0;
1295 #endif
1296 /* Inside a delay slot sequence, we do not do any branch shortening
1297 if the shortening could change the number of delay slots
1298 of the branch. */
1299 for (i = 0; i < XVECLEN (body, 0); i++)
1301 rtx inner_insn = XVECEXP (body, 0, i);
1302 int inner_uid = INSN_UID (inner_insn);
1303 int inner_length;
1305 if (asm_noperands (PATTERN (XVECEXP (body, 0, i))) >= 0)
1306 inner_length = (asm_insn_count (PATTERN (inner_insn))
1307 * insn_default_length (inner_insn));
1308 else
1309 inner_length = insn_default_length (inner_insn);
1311 insn_lengths[inner_uid] = inner_length;
1312 if (const_delay_slots)
1314 if ((varying_length[inner_uid]
1315 = insn_variable_length_p (inner_insn)) != 0)
1316 varying_length[uid] = 1;
1317 insn_addresses[inner_uid] = (insn_current_address +
1318 insn_lengths[uid]);
1320 else
1321 varying_length[inner_uid] = 0;
1322 insn_lengths[uid] += inner_length;
1325 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1327 insn_lengths[uid] = insn_default_length (insn);
1328 varying_length[uid] = insn_variable_length_p (insn);
1331 /* If needed, do any adjustment. */
1332 #ifdef ADJUST_INSN_LENGTH
1333 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1334 if (insn_lengths[uid] < 0)
1335 fatal_insn ("Negative insn length", insn);
1336 #endif
1339 /* Now loop over all the insns finding varying length insns. For each,
1340 get the current insn length. If it has changed, reflect the change.
1341 When nothing changes for a full pass, we are done. */
1343 while (something_changed)
1345 something_changed = 0;
1346 insn_current_align = MAX_CODE_ALIGN - 1;
1347 for (insn_current_address = FIRST_INSN_ADDRESS, insn = first;
1348 insn != 0;
1349 insn = NEXT_INSN (insn))
1351 int new_length;
1352 #ifdef ADJUST_INSN_LENGTH
1353 int tmp_length;
1354 #endif
1355 int length_align;
1357 uid = INSN_UID (insn);
1359 if (GET_CODE (insn) == CODE_LABEL)
1361 int log = LABEL_TO_ALIGNMENT (insn);
1362 if (log > insn_current_align)
1364 int align = 1 << log;
1365 int new_address= (insn_current_address + align - 1) & -align;
1366 insn_lengths[uid] = new_address - insn_current_address;
1367 insn_current_align = log;
1368 insn_current_address = new_address;
1370 else
1371 insn_lengths[uid] = 0;
1372 insn_addresses[uid] = insn_current_address;
1373 continue;
1376 length_align = INSN_LENGTH_ALIGNMENT (insn);
1377 if (length_align < insn_current_align)
1378 insn_current_align = length_align;
1380 insn_last_address = insn_addresses[uid];
1381 insn_addresses[uid] = insn_current_address;
1383 #ifdef CASE_VECTOR_SHORTEN_MODE
1384 if (optimize && GET_CODE (insn) == JUMP_INSN
1385 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1387 rtx body = PATTERN (insn);
1388 int old_length = insn_lengths[uid];
1389 rtx rel_lab = XEXP (XEXP (body, 0), 0);
1390 rtx min_lab = XEXP (XEXP (body, 2), 0);
1391 rtx max_lab = XEXP (XEXP (body, 3), 0);
1392 addr_diff_vec_flags flags = ADDR_DIFF_VEC_FLAGS (body);
1393 int rel_addr = insn_addresses[INSN_UID (rel_lab)];
1394 int min_addr = insn_addresses[INSN_UID (min_lab)];
1395 int max_addr = insn_addresses[INSN_UID (max_lab)];
1396 rtx prev;
1397 int rel_align = 0;
1399 /* Try to find a known alignment for rel_lab. */
1400 for (prev = rel_lab;
1401 prev
1402 && ! insn_lengths[INSN_UID (prev)]
1403 && ! (varying_length[INSN_UID (prev)] & 1);
1404 prev = PREV_INSN (prev))
1405 if (varying_length[INSN_UID (prev)] & 2)
1407 rel_align = LABEL_TO_ALIGNMENT (prev);
1408 break;
1411 /* See the comment on addr_diff_vec_flags in rtl.h for the
1412 meaning of the flags values. base: REL_LAB vec: INSN */
1413 /* Anything after INSN has still addresses from the last
1414 pass; adjust these so that they reflect our current
1415 estimate for this pass. */
1416 if (flags.base_after_vec)
1417 rel_addr += insn_current_address - insn_last_address;
1418 if (flags.min_after_vec)
1419 min_addr += insn_current_address - insn_last_address;
1420 if (flags.max_after_vec)
1421 max_addr += insn_current_address - insn_last_address;
1422 /* We want to know the worst case, i.e. lowest possible value
1423 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1424 its offset is positive, and we have to be wary of code shrink;
1425 otherwise, it is negative, and we have to be vary of code
1426 size increase. */
1427 if (flags.min_after_base)
1429 /* If INSN is between REL_LAB and MIN_LAB, the size
1430 changes we are about to make can change the alignment
1431 within the observed offset, therefore we have to break
1432 it up into two parts that are independent. */
1433 if (! flags.base_after_vec && flags.min_after_vec)
1435 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1436 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1438 else
1439 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1441 else
1443 if (flags.base_after_vec && ! flags.min_after_vec)
1445 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1446 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1448 else
1449 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1451 /* Likewise, determine the highest lowest possible value
1452 for the offset of MAX_LAB. */
1453 if (flags.max_after_base)
1455 if (! flags.base_after_vec && flags.max_after_vec)
1457 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1458 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1460 else
1461 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1463 else
1465 if (flags.base_after_vec && ! flags.max_after_vec)
1467 max_addr += align_fuzz (max_lab, insn, 0, 0);
1468 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1470 else
1471 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1473 PUT_MODE (body, CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1474 max_addr - rel_addr,
1475 body));
1476 if (JUMP_TABLES_IN_TEXT_SECTION
1477 #if !defined(READONLY_DATA_SECTION)
1478 || 1
1479 #endif
1482 insn_lengths[uid]
1483 = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
1484 insn_current_address += insn_lengths[uid];
1485 if (insn_lengths[uid] != old_length)
1486 something_changed = 1;
1489 continue;
1491 #endif /* CASE_VECTOR_SHORTEN_MODE */
1493 if (! (varying_length[uid]))
1495 insn_current_address += insn_lengths[uid];
1496 continue;
1498 if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
1500 int i;
1502 body = PATTERN (insn);
1503 new_length = 0;
1504 for (i = 0; i < XVECLEN (body, 0); i++)
1506 rtx inner_insn = XVECEXP (body, 0, i);
1507 int inner_uid = INSN_UID (inner_insn);
1508 int inner_length;
1510 insn_addresses[inner_uid] = insn_current_address;
1512 /* insn_current_length returns 0 for insns with a
1513 non-varying length. */
1514 if (! varying_length[inner_uid])
1515 inner_length = insn_lengths[inner_uid];
1516 else
1517 inner_length = insn_current_length (inner_insn);
1519 if (inner_length != insn_lengths[inner_uid])
1521 insn_lengths[inner_uid] = inner_length;
1522 something_changed = 1;
1524 insn_current_address += insn_lengths[inner_uid];
1525 new_length += inner_length;
1528 else
1530 new_length = insn_current_length (insn);
1531 insn_current_address += new_length;
1534 #ifdef ADJUST_INSN_LENGTH
1535 /* If needed, do any adjustment. */
1536 tmp_length = new_length;
1537 ADJUST_INSN_LENGTH (insn, new_length);
1538 insn_current_address += (new_length - tmp_length);
1539 #endif
1541 if (new_length != insn_lengths[uid])
1543 insn_lengths[uid] = new_length;
1544 something_changed = 1;
1547 /* For a non-optimizing compile, do only a single pass. */
1548 if (!optimize)
1549 break;
1552 free (varying_length);
1554 #endif /* HAVE_ATTR_length */
1557 #ifdef HAVE_ATTR_length
1558 /* Given the body of an INSN known to be generated by an ASM statement, return
1559 the number of machine instructions likely to be generated for this insn.
1560 This is used to compute its length. */
1562 static int
1563 asm_insn_count (body)
1564 rtx body;
1566 char *template;
1567 int count = 1;
1569 if (GET_CODE (body) == ASM_INPUT)
1570 template = XSTR (body, 0);
1571 else
1572 template = decode_asm_operands (body, NULL_PTR, NULL_PTR,
1573 NULL_PTR, NULL_PTR);
1575 for ( ; *template; template++)
1576 if (IS_ASM_LOGICAL_LINE_SEPARATOR(*template) || *template == '\n')
1577 count++;
1579 return count;
1581 #endif
1583 /* Output assembler code for the start of a function,
1584 and initialize some of the variables in this file
1585 for the new function. The label for the function and associated
1586 assembler pseudo-ops have already been output in `assemble_start_function'.
1588 FIRST is the first insn of the rtl for the function being compiled.
1589 FILE is the file to write assembler code to.
1590 OPTIMIZE is nonzero if we should eliminate redundant
1591 test and compare insns. */
1593 void
1594 final_start_function (first, file, optimize)
1595 rtx first;
1596 FILE *file;
1597 int optimize ATTRIBUTE_UNUSED;
1599 block_depth = 0;
1601 this_is_asm_operands = 0;
1603 #ifdef NON_SAVING_SETJMP
1604 /* A function that calls setjmp should save and restore all the
1605 call-saved registers on a system where longjmp clobbers them. */
1606 if (NON_SAVING_SETJMP && current_function_calls_setjmp)
1608 int i;
1610 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1611 if (!call_used_regs[i])
1612 regs_ever_live[i] = 1;
1614 #endif
1616 /* Initial line number is supposed to be output
1617 before the function's prologue and label
1618 so that the function's address will not appear to be
1619 in the last statement of the preceding function. */
1620 if (NOTE_LINE_NUMBER (first) != NOTE_INSN_DELETED)
1621 last_linenum = high_block_linenum = high_function_linenum
1622 = NOTE_LINE_NUMBER (first);
1624 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
1625 /* Output DWARF definition of the function. */
1626 if (dwarf2out_do_frame ())
1627 dwarf2out_begin_prologue ();
1628 #endif
1630 /* For SDB and XCOFF, the function beginning must be marked between
1631 the function label and the prologue. We always need this, even when
1632 -g1 was used. Defer on MIPS systems so that parameter descriptions
1633 follow function entry. */
1634 #if defined(SDB_DEBUGGING_INFO) && !defined(MIPS_DEBUGGING_INFO)
1635 if (write_symbols == SDB_DEBUG)
1636 sdbout_begin_function (last_linenum);
1637 else
1638 #endif
1639 #ifdef XCOFF_DEBUGGING_INFO
1640 if (write_symbols == XCOFF_DEBUG)
1641 xcoffout_begin_function (file, last_linenum);
1642 else
1643 #endif
1644 /* But only output line number for other debug info types if -g2
1645 or better. */
1646 if (NOTE_LINE_NUMBER (first) != NOTE_INSN_DELETED)
1647 output_source_line (file, first);
1649 #ifdef LEAF_REG_REMAP
1650 if (current_function_uses_only_leaf_regs)
1651 leaf_renumber_regs (first);
1652 #endif
1654 /* The Sun386i and perhaps other machines don't work right
1655 if the profiling code comes after the prologue. */
1656 #ifdef PROFILE_BEFORE_PROLOGUE
1657 if (profile_flag)
1658 profile_function (file);
1659 #endif /* PROFILE_BEFORE_PROLOGUE */
1661 #if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
1662 if (dwarf2out_do_frame ())
1663 dwarf2out_frame_debug (NULL_RTX);
1664 #endif
1666 #ifdef FUNCTION_PROLOGUE
1667 /* First output the function prologue: code to set up the stack frame. */
1668 FUNCTION_PROLOGUE (file, get_frame_size ());
1669 #endif
1671 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
1672 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
1673 next_block_index = 1;
1674 #endif
1676 /* If the machine represents the prologue as RTL, the profiling code must
1677 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1678 #ifdef HAVE_prologue
1679 if (! HAVE_prologue)
1680 #endif
1681 profile_after_prologue (file);
1683 profile_label_no++;
1685 /* If we are doing basic block profiling, remember a printable version
1686 of the function name. */
1687 if (profile_block_flag)
1689 bb_func_label_num
1690 = add_bb_string ((*decl_printable_name) (current_function_decl, 2), FALSE);
1694 static void
1695 profile_after_prologue (file)
1696 FILE *file;
1698 #ifdef FUNCTION_BLOCK_PROFILER
1699 if (profile_block_flag)
1701 FUNCTION_BLOCK_PROFILER (file, count_basic_blocks);
1703 #endif /* FUNCTION_BLOCK_PROFILER */
1705 #ifndef PROFILE_BEFORE_PROLOGUE
1706 if (profile_flag)
1707 profile_function (file);
1708 #endif /* not PROFILE_BEFORE_PROLOGUE */
1711 static void
1712 profile_function (file)
1713 FILE *file;
1715 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1716 #if defined(ASM_OUTPUT_REG_PUSH)
1717 #if defined(STRUCT_VALUE_INCOMING_REGNUM) || defined(STRUCT_VALUE_REGNUM)
1718 int sval = current_function_returns_struct;
1719 #endif
1720 #if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
1721 int cxt = current_function_needs_context;
1722 #endif
1723 #endif /* ASM_OUTPUT_REG_PUSH */
1725 data_section ();
1726 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1727 ASM_OUTPUT_INTERNAL_LABEL (file, "LP", profile_label_no);
1728 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, 1);
1730 function_section (current_function_decl);
1732 #if defined(STRUCT_VALUE_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1733 if (sval)
1734 ASM_OUTPUT_REG_PUSH (file, STRUCT_VALUE_INCOMING_REGNUM);
1735 #else
1736 #if defined(STRUCT_VALUE_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1737 if (sval)
1739 ASM_OUTPUT_REG_PUSH (file, STRUCT_VALUE_REGNUM);
1741 #endif
1742 #endif
1744 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1745 if (cxt)
1746 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_INCOMING_REGNUM);
1747 #else
1748 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1749 if (cxt)
1751 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_REGNUM);
1753 #endif
1754 #endif
1756 FUNCTION_PROFILER (file, profile_label_no);
1758 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1759 if (cxt)
1760 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_INCOMING_REGNUM);
1761 #else
1762 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1763 if (cxt)
1765 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_REGNUM);
1767 #endif
1768 #endif
1770 #if defined(STRUCT_VALUE_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1771 if (sval)
1772 ASM_OUTPUT_REG_POP (file, STRUCT_VALUE_INCOMING_REGNUM);
1773 #else
1774 #if defined(STRUCT_VALUE_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1775 if (sval)
1777 ASM_OUTPUT_REG_POP (file, STRUCT_VALUE_REGNUM);
1779 #endif
1780 #endif
1783 /* Output assembler code for the end of a function.
1784 For clarity, args are same as those of `final_start_function'
1785 even though not all of them are needed. */
1787 void
1788 final_end_function (first, file, optimize)
1789 rtx first ATTRIBUTE_UNUSED;
1790 FILE *file;
1791 int optimize ATTRIBUTE_UNUSED;
1793 if (app_on)
1795 fputs (ASM_APP_OFF, file);
1796 app_on = 0;
1799 #ifdef SDB_DEBUGGING_INFO
1800 if (write_symbols == SDB_DEBUG)
1801 sdbout_end_function (high_function_linenum);
1802 #endif
1804 #ifdef DWARF_DEBUGGING_INFO
1805 if (write_symbols == DWARF_DEBUG)
1806 dwarfout_end_function ();
1807 #endif
1809 #ifdef XCOFF_DEBUGGING_INFO
1810 if (write_symbols == XCOFF_DEBUG)
1811 xcoffout_end_function (file, high_function_linenum);
1812 #endif
1814 #ifdef FUNCTION_EPILOGUE
1815 /* Finally, output the function epilogue:
1816 code to restore the stack frame and return to the caller. */
1817 FUNCTION_EPILOGUE (file, get_frame_size ());
1818 #endif
1820 #ifdef SDB_DEBUGGING_INFO
1821 if (write_symbols == SDB_DEBUG)
1822 sdbout_end_epilogue ();
1823 #endif
1825 #ifdef DWARF_DEBUGGING_INFO
1826 if (write_symbols == DWARF_DEBUG)
1827 dwarfout_end_epilogue ();
1828 #endif
1830 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
1831 if (dwarf2out_do_frame ())
1832 dwarf2out_end_epilogue ();
1833 #endif
1835 #ifdef XCOFF_DEBUGGING_INFO
1836 if (write_symbols == XCOFF_DEBUG)
1837 xcoffout_end_epilogue (file);
1838 #endif
1840 bb_func_label_num = -1; /* not in function, nuke label # */
1842 /* If FUNCTION_EPILOGUE is not defined, then the function body
1843 itself contains return instructions wherever needed. */
1846 /* Add a block to the linked list that remembers the current line/file/function
1847 for basic block profiling. Emit the label in front of the basic block and
1848 the instructions that increment the count field. */
1850 static void
1851 add_bb (file)
1852 FILE *file;
1854 struct bb_list *ptr = (struct bb_list *) permalloc (sizeof (struct bb_list));
1856 /* Add basic block to linked list. */
1857 ptr->next = 0;
1858 ptr->line_num = last_linenum;
1859 ptr->file_label_num = bb_file_label_num;
1860 ptr->func_label_num = bb_func_label_num;
1861 *bb_tail = ptr;
1862 bb_tail = &ptr->next;
1864 /* Enable the table of basic-block use counts
1865 to point at the code it applies to. */
1866 ASM_OUTPUT_INTERNAL_LABEL (file, "LPB", count_basic_blocks);
1868 /* Before first insn of this basic block, increment the
1869 count of times it was entered. */
1870 #ifdef BLOCK_PROFILER
1871 BLOCK_PROFILER (file, count_basic_blocks);
1872 #endif
1873 #ifdef HAVE_cc0
1874 CC_STATUS_INIT;
1875 #endif
1877 new_block = 0;
1878 count_basic_blocks++;
1881 /* Add a string to be used for basic block profiling. */
1883 static int
1884 add_bb_string (string, perm_p)
1885 const char *string;
1886 int perm_p;
1888 int len;
1889 struct bb_str *ptr = 0;
1891 if (!string)
1893 string = "<unknown>";
1894 perm_p = TRUE;
1897 /* Allocate a new string if the current string isn't permanent. If
1898 the string is permanent search for the same string in other
1899 allocations. */
1901 len = strlen (string) + 1;
1902 if (!perm_p)
1904 char *p = (char *) permalloc (len);
1905 bcopy (string, p, len);
1906 string = p;
1908 else
1909 for (ptr = sbb_head; ptr != (struct bb_str *) 0; ptr = ptr->next)
1910 if (ptr->string == string)
1911 break;
1913 /* Allocate a new string block if we need to. */
1914 if (!ptr)
1916 ptr = (struct bb_str *) permalloc (sizeof (*ptr));
1917 ptr->next = 0;
1918 ptr->length = len;
1919 ptr->label_num = sbb_label_num++;
1920 ptr->string = string;
1921 *sbb_tail = ptr;
1922 sbb_tail = &ptr->next;
1925 return ptr->label_num;
1929 /* Output assembler code for some insns: all or part of a function.
1930 For description of args, see `final_start_function', above.
1932 PRESCAN is 1 if we are not really outputting,
1933 just scanning as if we were outputting.
1934 Prescanning deletes and rearranges insns just like ordinary output.
1935 PRESCAN is -2 if we are outputting after having prescanned.
1936 In this case, don't try to delete or rearrange insns
1937 because that has already been done.
1938 Prescanning is done only on certain machines. */
1940 void
1941 final (first, file, optimize, prescan)
1942 rtx first;
1943 FILE *file;
1944 int optimize;
1945 int prescan;
1947 register rtx insn;
1948 int max_line = 0;
1949 int max_uid = 0;
1951 last_ignored_compare = 0;
1952 new_block = 1;
1954 check_exception_handler_labels ();
1956 /* Make a map indicating which line numbers appear in this function.
1957 When producing SDB debugging info, delete troublesome line number
1958 notes from inlined functions in other files as well as duplicate
1959 line number notes. */
1960 #ifdef SDB_DEBUGGING_INFO
1961 if (write_symbols == SDB_DEBUG)
1963 rtx last = 0;
1964 for (insn = first; insn; insn = NEXT_INSN (insn))
1965 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
1967 if ((RTX_INTEGRATED_P (insn)
1968 && strcmp (NOTE_SOURCE_FILE (insn), main_input_filename) != 0)
1969 || (last != 0
1970 && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last)
1971 && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last)))
1973 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1974 NOTE_SOURCE_FILE (insn) = 0;
1975 continue;
1977 last = insn;
1978 if (NOTE_LINE_NUMBER (insn) > max_line)
1979 max_line = NOTE_LINE_NUMBER (insn);
1982 else
1983 #endif
1985 for (insn = first; insn; insn = NEXT_INSN (insn))
1986 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > max_line)
1987 max_line = NOTE_LINE_NUMBER (insn);
1990 line_note_exists = (char *) oballoc (max_line + 1);
1991 bzero (line_note_exists, max_line + 1);
1993 for (insn = first; insn; insn = NEXT_INSN (insn))
1995 if (INSN_UID (insn) > max_uid) /* find largest UID */
1996 max_uid = INSN_UID (insn);
1997 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
1998 line_note_exists[NOTE_LINE_NUMBER (insn)] = 1;
1999 #ifdef HAVE_cc0
2000 /* If CC tracking across branches is enabled, record the insn which
2001 jumps to each branch only reached from one place. */
2002 if (optimize && GET_CODE (insn) == JUMP_INSN)
2004 rtx lab = JUMP_LABEL (insn);
2005 if (lab && LABEL_NUSES (lab) == 1)
2007 LABEL_REFS (lab) = insn;
2010 #endif
2013 /* Initialize insn_eh_region table if eh is being used. */
2015 init_insn_eh_region (first, max_uid);
2017 init_recog ();
2019 CC_STATUS_INIT;
2021 /* Output the insns. */
2022 for (insn = NEXT_INSN (first); insn;)
2024 #ifdef HAVE_ATTR_length
2025 insn_current_address = insn_addresses[INSN_UID (insn)];
2026 #endif
2027 insn = final_scan_insn (insn, file, optimize, prescan, 0);
2030 /* Do basic-block profiling here
2031 if the last insn was a conditional branch. */
2032 if (profile_block_flag && new_block)
2033 add_bb (file);
2035 free_insn_eh_region ();
2038 const char *
2039 get_insn_template (code, insn)
2040 int code;
2041 rtx insn;
2043 const void *output = insn_data[code].output;
2044 switch (insn_data[code].output_format)
2046 case INSN_OUTPUT_FORMAT_SINGLE:
2047 return (const char *) output;
2048 case INSN_OUTPUT_FORMAT_MULTI:
2049 return ((const char * const *) output)[which_alternative];
2050 case INSN_OUTPUT_FORMAT_FUNCTION:
2051 if (insn == NULL)
2052 abort ();
2053 return (* (insn_output_fn) output) (recog_data.operand, insn);
2055 default:
2056 abort ();
2059 /* The final scan for one insn, INSN.
2060 Args are same as in `final', except that INSN
2061 is the insn being scanned.
2062 Value returned is the next insn to be scanned.
2064 NOPEEPHOLES is the flag to disallow peephole processing (currently
2065 used for within delayed branch sequence output). */
2068 final_scan_insn (insn, file, optimize, prescan, nopeepholes)
2069 rtx insn;
2070 FILE *file;
2071 int optimize;
2072 int prescan;
2073 int nopeepholes;
2075 #ifdef HAVE_cc0
2076 rtx set;
2077 #endif
2079 insn_counter++;
2081 /* Ignore deleted insns. These can occur when we split insns (due to a
2082 template of "#") while not optimizing. */
2083 if (INSN_DELETED_P (insn))
2084 return NEXT_INSN (insn);
2086 switch (GET_CODE (insn))
2088 case NOTE:
2089 if (prescan > 0)
2090 break;
2092 /* Align the beginning of a loop, for higher speed
2093 on certain machines. */
2095 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
2096 break; /* This used to depend on optimize, but that was bogus. */
2097 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
2098 break;
2100 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG
2101 && ! exceptions_via_longjmp)
2103 ASM_OUTPUT_INTERNAL_LABEL (file, "LEHB", NOTE_EH_HANDLER (insn));
2104 if (! flag_new_exceptions)
2105 add_eh_table_entry (NOTE_EH_HANDLER (insn));
2106 #ifdef ASM_OUTPUT_EH_REGION_BEG
2107 ASM_OUTPUT_EH_REGION_BEG (file, NOTE_EH_HANDLER (insn));
2108 #endif
2109 break;
2112 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END
2113 && ! exceptions_via_longjmp)
2115 ASM_OUTPUT_INTERNAL_LABEL (file, "LEHE", NOTE_EH_HANDLER (insn));
2116 if (flag_new_exceptions)
2117 add_eh_table_entry (NOTE_EH_HANDLER (insn));
2118 #ifdef ASM_OUTPUT_EH_REGION_END
2119 ASM_OUTPUT_EH_REGION_END (file, NOTE_EH_HANDLER (insn));
2120 #endif
2121 break;
2124 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
2126 #ifdef FUNCTION_END_PROLOGUE
2127 FUNCTION_END_PROLOGUE (file);
2128 #endif
2129 profile_after_prologue (file);
2130 break;
2133 #ifdef FUNCTION_BEGIN_EPILOGUE
2134 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
2136 FUNCTION_BEGIN_EPILOGUE (file);
2137 break;
2139 #endif
2141 if (write_symbols == NO_DEBUG)
2142 break;
2143 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG)
2145 #if defined(SDB_DEBUGGING_INFO) && defined(MIPS_DEBUGGING_INFO)
2146 /* MIPS stabs require the parameter descriptions to be after the
2147 function entry point rather than before. */
2148 if (write_symbols == SDB_DEBUG)
2149 sdbout_begin_function (last_linenum);
2150 else
2151 #endif
2152 #ifdef DWARF_DEBUGGING_INFO
2153 /* This outputs a marker where the function body starts, so it
2154 must be after the prologue. */
2155 if (write_symbols == DWARF_DEBUG)
2156 dwarfout_begin_function ();
2157 #endif
2158 break;
2160 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED)
2161 break; /* An insn that was "deleted" */
2162 if (app_on)
2164 fputs (ASM_APP_OFF, file);
2165 app_on = 0;
2167 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG
2168 && (debug_info_level == DINFO_LEVEL_NORMAL
2169 || debug_info_level == DINFO_LEVEL_VERBOSE
2170 || write_symbols == DWARF_DEBUG
2171 || write_symbols == DWARF2_DEBUG))
2173 /* Beginning of a symbol-block. Assign it a sequence number
2174 and push the number onto the stack PENDING_BLOCKS. */
2176 if (block_depth == max_block_depth)
2178 /* PENDING_BLOCKS is full; make it longer. */
2179 max_block_depth *= 2;
2180 pending_blocks
2181 = (int *) xrealloc (pending_blocks,
2182 max_block_depth * sizeof (int));
2184 pending_blocks[block_depth++] = next_block_index;
2186 high_block_linenum = last_linenum;
2188 /* Output debugging info about the symbol-block beginning. */
2190 #ifdef SDB_DEBUGGING_INFO
2191 if (write_symbols == SDB_DEBUG)
2192 sdbout_begin_block (file, last_linenum, next_block_index);
2193 #endif
2194 #ifdef XCOFF_DEBUGGING_INFO
2195 if (write_symbols == XCOFF_DEBUG)
2196 xcoffout_begin_block (file, last_linenum, next_block_index);
2197 #endif
2198 #ifdef DBX_DEBUGGING_INFO
2199 if (write_symbols == DBX_DEBUG)
2200 ASM_OUTPUT_INTERNAL_LABEL (file, "LBB", next_block_index);
2201 #endif
2202 #ifdef DWARF_DEBUGGING_INFO
2203 if (write_symbols == DWARF_DEBUG)
2204 dwarfout_begin_block (next_block_index);
2205 #endif
2206 #ifdef DWARF2_DEBUGGING_INFO
2207 if (write_symbols == DWARF2_DEBUG)
2208 dwarf2out_begin_block (next_block_index);
2209 #endif
2211 next_block_index++;
2213 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END
2214 && (debug_info_level == DINFO_LEVEL_NORMAL
2215 || debug_info_level == DINFO_LEVEL_VERBOSE
2216 || write_symbols == DWARF_DEBUG
2217 || write_symbols == DWARF2_DEBUG))
2219 /* End of a symbol-block. Pop its sequence number off
2220 PENDING_BLOCKS and output debugging info based on that. */
2222 --block_depth;
2223 if (block_depth < 0)
2224 abort ();
2226 #ifdef XCOFF_DEBUGGING_INFO
2227 if (write_symbols == XCOFF_DEBUG)
2228 xcoffout_end_block (file, high_block_linenum,
2229 pending_blocks[block_depth]);
2230 #endif
2231 #ifdef DBX_DEBUGGING_INFO
2232 if (write_symbols == DBX_DEBUG)
2233 ASM_OUTPUT_INTERNAL_LABEL (file, "LBE",
2234 pending_blocks[block_depth]);
2235 #endif
2236 #ifdef SDB_DEBUGGING_INFO
2237 if (write_symbols == SDB_DEBUG)
2238 sdbout_end_block (file, high_block_linenum,
2239 pending_blocks[block_depth]);
2240 #endif
2241 #ifdef DWARF_DEBUGGING_INFO
2242 if (write_symbols == DWARF_DEBUG)
2243 dwarfout_end_block (pending_blocks[block_depth]);
2244 #endif
2245 #ifdef DWARF2_DEBUGGING_INFO
2246 if (write_symbols == DWARF2_DEBUG)
2247 dwarf2out_end_block (pending_blocks[block_depth]);
2248 #endif
2250 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL
2251 && (debug_info_level == DINFO_LEVEL_NORMAL
2252 || debug_info_level == DINFO_LEVEL_VERBOSE))
2254 #ifdef DWARF_DEBUGGING_INFO
2255 if (write_symbols == DWARF_DEBUG)
2256 dwarfout_label (insn);
2257 #endif
2258 #ifdef DWARF2_DEBUGGING_INFO
2259 if (write_symbols == DWARF2_DEBUG)
2260 dwarf2out_label (insn);
2261 #endif
2263 else if (NOTE_LINE_NUMBER (insn) > 0)
2264 /* This note is a line-number. */
2266 register rtx note;
2268 #if 0 /* This is what we used to do. */
2269 output_source_line (file, insn);
2270 #endif
2271 int note_after = 0;
2273 /* If there is anything real after this note,
2274 output it. If another line note follows, omit this one. */
2275 for (note = NEXT_INSN (insn); note; note = NEXT_INSN (note))
2277 if (GET_CODE (note) != NOTE && GET_CODE (note) != CODE_LABEL)
2278 break;
2279 /* These types of notes can be significant
2280 so make sure the preceding line number stays. */
2281 else if (GET_CODE (note) == NOTE
2282 && (NOTE_LINE_NUMBER (note) == NOTE_INSN_BLOCK_BEG
2283 || NOTE_LINE_NUMBER (note) == NOTE_INSN_BLOCK_END
2284 || NOTE_LINE_NUMBER (note) == NOTE_INSN_FUNCTION_BEG))
2285 break;
2286 else if (GET_CODE (note) == NOTE && NOTE_LINE_NUMBER (note) > 0)
2288 /* Another line note follows; we can delete this note
2289 if no intervening line numbers have notes elsewhere. */
2290 int num;
2291 for (num = NOTE_LINE_NUMBER (insn) + 1;
2292 num < NOTE_LINE_NUMBER (note);
2293 num++)
2294 if (line_note_exists[num])
2295 break;
2297 if (num >= NOTE_LINE_NUMBER (note))
2298 note_after = 1;
2299 break;
2303 /* Output this line note
2304 if it is the first or the last line note in a row. */
2305 if (!note_after)
2306 output_source_line (file, insn);
2308 break;
2310 case BARRIER:
2311 #if defined (DWARF2_UNWIND_INFO) && !defined (ACCUMULATE_OUTGOING_ARGS)
2312 /* If we push arguments, we need to check all insns for stack
2313 adjustments. */
2314 if (dwarf2out_do_frame ())
2315 dwarf2out_frame_debug (insn);
2316 #endif
2317 break;
2319 case CODE_LABEL:
2320 /* The target port might emit labels in the output function for
2321 some insn, e.g. sh.c output_branchy_insn. */
2322 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
2324 int align = LABEL_TO_ALIGNMENT (insn);
2325 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2326 int max_skip = LABEL_TO_MAX_SKIP (insn);
2327 #endif
2329 if (align && NEXT_INSN (insn))
2330 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2331 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
2332 #else
2333 ASM_OUTPUT_ALIGN (file, align);
2334 #endif
2336 #ifdef HAVE_cc0
2337 CC_STATUS_INIT;
2338 /* If this label is reached from only one place, set the condition
2339 codes from the instruction just before the branch. */
2341 /* Disabled because some insns set cc_status in the C output code
2342 and NOTICE_UPDATE_CC alone can set incorrect status. */
2343 if (0 /* optimize && LABEL_NUSES (insn) == 1*/)
2345 rtx jump = LABEL_REFS (insn);
2346 rtx barrier = prev_nonnote_insn (insn);
2347 rtx prev;
2348 /* If the LABEL_REFS field of this label has been set to point
2349 at a branch, the predecessor of the branch is a regular
2350 insn, and that branch is the only way to reach this label,
2351 set the condition codes based on the branch and its
2352 predecessor. */
2353 if (barrier && GET_CODE (barrier) == BARRIER
2354 && jump && GET_CODE (jump) == JUMP_INSN
2355 && (prev = prev_nonnote_insn (jump))
2356 && GET_CODE (prev) == INSN)
2358 NOTICE_UPDATE_CC (PATTERN (prev), prev);
2359 NOTICE_UPDATE_CC (PATTERN (jump), jump);
2362 #endif
2363 if (prescan > 0)
2364 break;
2365 new_block = 1;
2367 #ifdef FINAL_PRESCAN_LABEL
2368 FINAL_PRESCAN_INSN (insn, NULL_PTR, 0);
2369 #endif
2371 #ifdef SDB_DEBUGGING_INFO
2372 if (write_symbols == SDB_DEBUG && LABEL_NAME (insn))
2373 sdbout_label (insn);
2374 #endif
2375 #ifdef DWARF_DEBUGGING_INFO
2376 if (write_symbols == DWARF_DEBUG && LABEL_NAME (insn))
2377 dwarfout_label (insn);
2378 #endif
2379 #ifdef DWARF2_DEBUGGING_INFO
2380 if (write_symbols == DWARF2_DEBUG && LABEL_NAME (insn))
2381 dwarf2out_label (insn);
2382 #endif
2383 if (app_on)
2385 fputs (ASM_APP_OFF, file);
2386 app_on = 0;
2388 if (NEXT_INSN (insn) != 0
2389 && GET_CODE (NEXT_INSN (insn)) == JUMP_INSN)
2391 rtx nextbody = PATTERN (NEXT_INSN (insn));
2393 /* If this label is followed by a jump-table,
2394 make sure we put the label in the read-only section. Also
2395 possibly write the label and jump table together. */
2397 if (GET_CODE (nextbody) == ADDR_VEC
2398 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
2400 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2401 /* In this case, the case vector is being moved by the
2402 target, so don't output the label at all. Leave that
2403 to the back end macros. */
2404 #else
2405 if (! JUMP_TABLES_IN_TEXT_SECTION)
2407 readonly_data_section ();
2408 #ifdef READONLY_DATA_SECTION
2409 ASM_OUTPUT_ALIGN (file,
2410 exact_log2 (BIGGEST_ALIGNMENT
2411 / BITS_PER_UNIT));
2412 #endif /* READONLY_DATA_SECTION */
2414 else
2415 function_section (current_function_decl);
2417 #ifdef ASM_OUTPUT_CASE_LABEL
2418 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
2419 NEXT_INSN (insn));
2420 #else
2421 ASM_OUTPUT_INTERNAL_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
2422 #endif
2423 #endif
2424 break;
2428 ASM_OUTPUT_INTERNAL_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
2429 break;
2431 default:
2433 register rtx body = PATTERN (insn);
2434 int insn_code_number;
2435 const char *template;
2436 #ifdef HAVE_cc0
2437 rtx note;
2438 #endif
2440 /* An INSN, JUMP_INSN or CALL_INSN.
2441 First check for special kinds that recog doesn't recognize. */
2443 if (GET_CODE (body) == USE /* These are just declarations */
2444 || GET_CODE (body) == CLOBBER)
2445 break;
2447 #ifdef HAVE_cc0
2448 /* If there is a REG_CC_SETTER note on this insn, it means that
2449 the setting of the condition code was done in the delay slot
2450 of the insn that branched here. So recover the cc status
2451 from the insn that set it. */
2453 note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2454 if (note)
2456 NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0));
2457 cc_prev_status = cc_status;
2459 #endif
2461 /* Detect insns that are really jump-tables
2462 and output them as such. */
2464 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
2466 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2467 register int vlen, idx;
2468 #endif
2470 if (prescan > 0)
2471 break;
2473 if (app_on)
2475 fputs (ASM_APP_OFF, file);
2476 app_on = 0;
2479 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2480 if (GET_CODE (body) == ADDR_VEC)
2482 #ifdef ASM_OUTPUT_ADDR_VEC
2483 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2484 #else
2485 abort();
2486 #endif
2488 else
2490 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2491 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2492 #else
2493 abort();
2494 #endif
2496 #else
2497 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2498 for (idx = 0; idx < vlen; idx++)
2500 if (GET_CODE (body) == ADDR_VEC)
2502 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2503 ASM_OUTPUT_ADDR_VEC_ELT
2504 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2505 #else
2506 abort ();
2507 #endif
2509 else
2511 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2512 ASM_OUTPUT_ADDR_DIFF_ELT
2513 (file,
2514 body,
2515 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2516 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2517 #else
2518 abort ();
2519 #endif
2522 #ifdef ASM_OUTPUT_CASE_END
2523 ASM_OUTPUT_CASE_END (file,
2524 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2525 insn);
2526 #endif
2527 #endif
2529 function_section (current_function_decl);
2531 break;
2534 /* Do basic-block profiling when we reach a new block.
2535 Done here to avoid jump tables. */
2536 if (profile_block_flag && new_block)
2537 add_bb (file);
2539 if (GET_CODE (body) == ASM_INPUT)
2541 /* There's no telling what that did to the condition codes. */
2542 CC_STATUS_INIT;
2543 if (prescan > 0)
2544 break;
2545 if (! app_on)
2547 fputs (ASM_APP_ON, file);
2548 app_on = 1;
2550 fprintf (asm_out_file, "\t%s\n", XSTR (body, 0));
2551 break;
2554 /* Detect `asm' construct with operands. */
2555 if (asm_noperands (body) >= 0)
2557 unsigned int noperands = asm_noperands (body);
2558 rtx *ops = (rtx *) alloca (noperands * sizeof (rtx));
2559 char *string;
2561 /* There's no telling what that did to the condition codes. */
2562 CC_STATUS_INIT;
2563 if (prescan > 0)
2564 break;
2566 if (! app_on)
2568 fputs (ASM_APP_ON, file);
2569 app_on = 1;
2572 /* Get out the operand values. */
2573 string = decode_asm_operands (body, ops, NULL_PTR,
2574 NULL_PTR, NULL_PTR);
2575 /* Inhibit aborts on what would otherwise be compiler bugs. */
2576 insn_noperands = noperands;
2577 this_is_asm_operands = insn;
2579 /* Output the insn using them. */
2580 output_asm_insn (string, ops);
2581 this_is_asm_operands = 0;
2582 break;
2585 if (prescan <= 0 && app_on)
2587 fputs (ASM_APP_OFF, file);
2588 app_on = 0;
2591 if (GET_CODE (body) == SEQUENCE)
2593 /* A delayed-branch sequence */
2594 register int i;
2595 rtx next;
2597 if (prescan > 0)
2598 break;
2599 final_sequence = body;
2601 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2602 force the restoration of a comparison that was previously
2603 thought unnecessary. If that happens, cancel this sequence
2604 and cause that insn to be restored. */
2606 next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, prescan, 1);
2607 if (next != XVECEXP (body, 0, 1))
2609 final_sequence = 0;
2610 return next;
2613 for (i = 1; i < XVECLEN (body, 0); i++)
2615 rtx insn = XVECEXP (body, 0, i);
2616 rtx next = NEXT_INSN (insn);
2617 /* We loop in case any instruction in a delay slot gets
2618 split. */
2620 insn = final_scan_insn (insn, file, 0, prescan, 1);
2621 while (insn != next);
2623 #ifdef DBR_OUTPUT_SEQEND
2624 DBR_OUTPUT_SEQEND (file);
2625 #endif
2626 final_sequence = 0;
2628 /* If the insn requiring the delay slot was a CALL_INSN, the
2629 insns in the delay slot are actually executed before the
2630 called function. Hence we don't preserve any CC-setting
2631 actions in these insns and the CC must be marked as being
2632 clobbered by the function. */
2633 if (GET_CODE (XVECEXP (body, 0, 0)) == CALL_INSN)
2635 CC_STATUS_INIT;
2638 /* Following a conditional branch sequence, we have a new basic
2639 block. */
2640 if (profile_block_flag)
2642 rtx insn = XVECEXP (body, 0, 0);
2643 rtx body = PATTERN (insn);
2645 if ((GET_CODE (insn) == JUMP_INSN && GET_CODE (body) == SET
2646 && GET_CODE (SET_SRC (body)) != LABEL_REF)
2647 || (GET_CODE (insn) == JUMP_INSN
2648 && GET_CODE (body) == PARALLEL
2649 && GET_CODE (XVECEXP (body, 0, 0)) == SET
2650 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) != LABEL_REF))
2651 new_block = 1;
2653 break;
2656 /* We have a real machine instruction as rtl. */
2658 body = PATTERN (insn);
2660 #ifdef HAVE_cc0
2661 set = single_set(insn);
2663 /* Check for redundant test and compare instructions
2664 (when the condition codes are already set up as desired).
2665 This is done only when optimizing; if not optimizing,
2666 it should be possible for the user to alter a variable
2667 with the debugger in between statements
2668 and the next statement should reexamine the variable
2669 to compute the condition codes. */
2671 if (optimize)
2673 #if 0
2674 rtx set = single_set(insn);
2675 #endif
2677 if (set
2678 && GET_CODE (SET_DEST (set)) == CC0
2679 && insn != last_ignored_compare)
2681 if (GET_CODE (SET_SRC (set)) == SUBREG)
2682 SET_SRC (set) = alter_subreg (SET_SRC (set));
2683 else if (GET_CODE (SET_SRC (set)) == COMPARE)
2685 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2686 XEXP (SET_SRC (set), 0)
2687 = alter_subreg (XEXP (SET_SRC (set), 0));
2688 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2689 XEXP (SET_SRC (set), 1)
2690 = alter_subreg (XEXP (SET_SRC (set), 1));
2692 if ((cc_status.value1 != 0
2693 && rtx_equal_p (SET_SRC (set), cc_status.value1))
2694 || (cc_status.value2 != 0
2695 && rtx_equal_p (SET_SRC (set), cc_status.value2)))
2697 /* Don't delete insn if it has an addressing side-effect. */
2698 if (! FIND_REG_INC_NOTE (insn, 0)
2699 /* or if anything in it is volatile. */
2700 && ! volatile_refs_p (PATTERN (insn)))
2702 /* We don't really delete the insn; just ignore it. */
2703 last_ignored_compare = insn;
2704 break;
2709 #endif
2711 /* Following a conditional branch, we have a new basic block.
2712 But if we are inside a sequence, the new block starts after the
2713 last insn of the sequence. */
2714 if (profile_block_flag && final_sequence == 0
2715 && ((GET_CODE (insn) == JUMP_INSN && GET_CODE (body) == SET
2716 && GET_CODE (SET_SRC (body)) != LABEL_REF)
2717 || (GET_CODE (insn) == JUMP_INSN && GET_CODE (body) == PARALLEL
2718 && GET_CODE (XVECEXP (body, 0, 0)) == SET
2719 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) != LABEL_REF)))
2720 new_block = 1;
2722 #ifndef STACK_REGS
2723 /* Don't bother outputting obvious no-ops, even without -O.
2724 This optimization is fast and doesn't interfere with debugging.
2725 Don't do this if the insn is in a delay slot, since this
2726 will cause an improper number of delay insns to be written. */
2727 if (final_sequence == 0
2728 && prescan >= 0
2729 && GET_CODE (insn) == INSN && GET_CODE (body) == SET
2730 && GET_CODE (SET_SRC (body)) == REG
2731 && GET_CODE (SET_DEST (body)) == REG
2732 && REGNO (SET_SRC (body)) == REGNO (SET_DEST (body)))
2733 break;
2734 #endif
2736 #ifdef HAVE_cc0
2737 /* If this is a conditional branch, maybe modify it
2738 if the cc's are in a nonstandard state
2739 so that it accomplishes the same thing that it would
2740 do straightforwardly if the cc's were set up normally. */
2742 if (cc_status.flags != 0
2743 && GET_CODE (insn) == JUMP_INSN
2744 && GET_CODE (body) == SET
2745 && SET_DEST (body) == pc_rtx
2746 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2747 && GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (body), 0))) == '<'
2748 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx
2749 /* This is done during prescan; it is not done again
2750 in final scan when prescan has been done. */
2751 && prescan >= 0)
2753 /* This function may alter the contents of its argument
2754 and clear some of the cc_status.flags bits.
2755 It may also return 1 meaning condition now always true
2756 or -1 meaning condition now always false
2757 or 2 meaning condition nontrivial but altered. */
2758 register int result = alter_cond (XEXP (SET_SRC (body), 0));
2759 /* If condition now has fixed value, replace the IF_THEN_ELSE
2760 with its then-operand or its else-operand. */
2761 if (result == 1)
2762 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2763 if (result == -1)
2764 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2766 /* The jump is now either unconditional or a no-op.
2767 If it has become a no-op, don't try to output it.
2768 (It would not be recognized.) */
2769 if (SET_SRC (body) == pc_rtx)
2771 PUT_CODE (insn, NOTE);
2772 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
2773 NOTE_SOURCE_FILE (insn) = 0;
2774 break;
2776 else if (GET_CODE (SET_SRC (body)) == RETURN)
2777 /* Replace (set (pc) (return)) with (return). */
2778 PATTERN (insn) = body = SET_SRC (body);
2780 /* Rerecognize the instruction if it has changed. */
2781 if (result != 0)
2782 INSN_CODE (insn) = -1;
2785 /* Make same adjustments to instructions that examine the
2786 condition codes without jumping and instructions that
2787 handle conditional moves (if this machine has either one). */
2789 if (cc_status.flags != 0
2790 && set != 0)
2792 rtx cond_rtx, then_rtx, else_rtx;
2794 if (GET_CODE (insn) != JUMP_INSN
2795 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2797 cond_rtx = XEXP (SET_SRC (set), 0);
2798 then_rtx = XEXP (SET_SRC (set), 1);
2799 else_rtx = XEXP (SET_SRC (set), 2);
2801 else
2803 cond_rtx = SET_SRC (set);
2804 then_rtx = const_true_rtx;
2805 else_rtx = const0_rtx;
2808 switch (GET_CODE (cond_rtx))
2810 case GTU:
2811 case GT:
2812 case LTU:
2813 case LT:
2814 case GEU:
2815 case GE:
2816 case LEU:
2817 case LE:
2818 case EQ:
2819 case NE:
2821 register int result;
2822 if (XEXP (cond_rtx, 0) != cc0_rtx)
2823 break;
2824 result = alter_cond (cond_rtx);
2825 if (result == 1)
2826 validate_change (insn, &SET_SRC (set), then_rtx, 0);
2827 else if (result == -1)
2828 validate_change (insn, &SET_SRC (set), else_rtx, 0);
2829 else if (result == 2)
2830 INSN_CODE (insn) = -1;
2831 if (SET_DEST (set) == SET_SRC (set))
2833 PUT_CODE (insn, NOTE);
2834 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
2835 NOTE_SOURCE_FILE (insn) = 0;
2838 break;
2840 default:
2841 break;
2845 #endif
2847 #ifdef HAVE_peephole
2848 /* Do machine-specific peephole optimizations if desired. */
2850 if (optimize && !flag_no_peephole && !nopeepholes)
2852 rtx next = peephole (insn);
2853 /* When peepholing, if there were notes within the peephole,
2854 emit them before the peephole. */
2855 if (next != 0 && next != NEXT_INSN (insn))
2857 rtx prev = PREV_INSN (insn);
2858 rtx note;
2860 for (note = NEXT_INSN (insn); note != next;
2861 note = NEXT_INSN (note))
2862 final_scan_insn (note, file, optimize, prescan, nopeepholes);
2864 /* In case this is prescan, put the notes
2865 in proper position for later rescan. */
2866 note = NEXT_INSN (insn);
2867 PREV_INSN (note) = prev;
2868 NEXT_INSN (prev) = note;
2869 NEXT_INSN (PREV_INSN (next)) = insn;
2870 PREV_INSN (insn) = PREV_INSN (next);
2871 NEXT_INSN (insn) = next;
2872 PREV_INSN (next) = insn;
2875 /* PEEPHOLE might have changed this. */
2876 body = PATTERN (insn);
2878 #endif
2880 /* Try to recognize the instruction.
2881 If successful, verify that the operands satisfy the
2882 constraints for the instruction. Crash if they don't,
2883 since `reload' should have changed them so that they do. */
2885 insn_code_number = recog_memoized (insn);
2886 extract_insn (insn);
2887 cleanup_subreg_operands (insn);
2889 if (! constrain_operands (1))
2890 fatal_insn_not_found (insn);
2892 /* Some target machines need to prescan each insn before
2893 it is output. */
2895 #ifdef FINAL_PRESCAN_INSN
2896 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
2897 #endif
2899 #ifdef HAVE_cc0
2900 cc_prev_status = cc_status;
2902 /* Update `cc_status' for this instruction.
2903 The instruction's output routine may change it further.
2904 If the output routine for a jump insn needs to depend
2905 on the cc status, it should look at cc_prev_status. */
2907 NOTICE_UPDATE_CC (body, insn);
2908 #endif
2910 debug_insn = insn;
2912 #if defined (DWARF2_UNWIND_INFO) && !defined (ACCUMULATE_OUTGOING_ARGS)
2913 /* If we push arguments, we want to know where the calls are. */
2914 if (GET_CODE (insn) == CALL_INSN && dwarf2out_do_frame ())
2915 dwarf2out_frame_debug (insn);
2916 #endif
2918 /* Find the proper template for this insn. */
2919 template = get_insn_template (insn_code_number, insn);
2921 /* If the C code returns 0, it means that it is a jump insn
2922 which follows a deleted test insn, and that test insn
2923 needs to be reinserted. */
2924 if (template == 0)
2926 if (prev_nonnote_insn (insn) != last_ignored_compare)
2927 abort ();
2928 new_block = 0;
2929 return prev_nonnote_insn (insn);
2932 /* If the template is the string "#", it means that this insn must
2933 be split. */
2934 if (template[0] == '#' && template[1] == '\0')
2936 rtx new = try_split (body, insn, 0);
2938 /* If we didn't split the insn, go away. */
2939 if (new == insn && PATTERN (new) == body)
2940 fatal_insn ("Could not split insn", insn);
2942 #ifdef HAVE_ATTR_length
2943 /* This instruction should have been split in shorten_branches,
2944 to ensure that we would have valid length info for the
2945 splitees. */
2946 abort ();
2947 #endif
2949 new_block = 0;
2950 return new;
2953 if (prescan > 0)
2954 break;
2956 /* Output assembler code from the template. */
2958 output_asm_insn (template, recog_data.operand);
2960 #if defined (DWARF2_UNWIND_INFO)
2961 #if !defined (ACCUMULATE_OUTGOING_ARGS)
2962 /* If we push arguments, we need to check all insns for stack
2963 adjustments. */
2964 if (GET_CODE (insn) == INSN && dwarf2out_do_frame ())
2965 dwarf2out_frame_debug (insn);
2966 #else
2967 #if defined (HAVE_prologue)
2968 /* If this insn is part of the prologue, emit DWARF v2
2969 call frame info. */
2970 if (RTX_FRAME_RELATED_P (insn) && dwarf2out_do_frame ())
2971 dwarf2out_frame_debug (insn);
2972 #endif
2973 #endif
2974 #endif
2976 #if 0
2977 /* It's not at all clear why we did this and doing so interferes
2978 with tests we'd like to do to use REG_WAS_0 notes, so let's try
2979 with this out. */
2981 /* Mark this insn as having been output. */
2982 INSN_DELETED_P (insn) = 1;
2983 #endif
2985 debug_insn = 0;
2988 return NEXT_INSN (insn);
2991 /* Output debugging info to the assembler file FILE
2992 based on the NOTE-insn INSN, assumed to be a line number. */
2994 static void
2995 output_source_line (file, insn)
2996 FILE *file ATTRIBUTE_UNUSED;
2997 rtx insn;
2999 register char *filename = NOTE_SOURCE_FILE (insn);
3001 /* Remember filename for basic block profiling.
3002 Filenames are allocated on the permanent obstack
3003 or are passed in ARGV, so we don't have to save
3004 the string. */
3006 if (profile_block_flag && last_filename != filename)
3007 bb_file_label_num = add_bb_string (filename, TRUE);
3009 last_filename = filename;
3010 last_linenum = NOTE_LINE_NUMBER (insn);
3011 high_block_linenum = MAX (last_linenum, high_block_linenum);
3012 high_function_linenum = MAX (last_linenum, high_function_linenum);
3014 if (write_symbols != NO_DEBUG)
3016 #ifdef SDB_DEBUGGING_INFO
3017 if (write_symbols == SDB_DEBUG
3018 #if 0 /* People like having line numbers even in wrong file! */
3019 /* COFF can't handle multiple source files--lose, lose. */
3020 && !strcmp (filename, main_input_filename)
3021 #endif
3022 /* COFF relative line numbers must be positive. */
3023 && last_linenum > sdb_begin_function_line)
3025 #ifdef ASM_OUTPUT_SOURCE_LINE
3026 ASM_OUTPUT_SOURCE_LINE (file, last_linenum);
3027 #else
3028 fprintf (file, "\t.ln\t%d\n",
3029 ((sdb_begin_function_line > -1)
3030 ? last_linenum - sdb_begin_function_line : 1));
3031 #endif
3033 #endif
3035 #if defined (DBX_DEBUGGING_INFO)
3036 if (write_symbols == DBX_DEBUG)
3037 dbxout_source_line (file, filename, NOTE_LINE_NUMBER (insn));
3038 #endif
3040 #if defined (XCOFF_DEBUGGING_INFO)
3041 if (write_symbols == XCOFF_DEBUG)
3042 xcoffout_source_line (file, filename, insn);
3043 #endif
3045 #ifdef DWARF_DEBUGGING_INFO
3046 if (write_symbols == DWARF_DEBUG)
3047 dwarfout_line (filename, NOTE_LINE_NUMBER (insn));
3048 #endif
3050 #ifdef DWARF2_DEBUGGING_INFO
3051 if (write_symbols == DWARF2_DEBUG)
3052 dwarf2out_line (filename, NOTE_LINE_NUMBER (insn));
3053 #endif
3058 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
3059 directly to the desired hard register. */
3060 void
3061 cleanup_subreg_operands (insn)
3062 rtx insn;
3064 int i;
3066 extract_insn (insn);
3067 for (i = 0; i < recog_data.n_operands; i++)
3069 if (GET_CODE (recog_data.operand[i]) == SUBREG)
3070 recog_data.operand[i] = alter_subreg (recog_data.operand[i]);
3071 else if (GET_CODE (recog_data.operand[i]) == PLUS
3072 || GET_CODE (recog_data.operand[i]) == MULT)
3073 recog_data.operand[i] = walk_alter_subreg (recog_data.operand[i]);
3076 for (i = 0; i < recog_data.n_dups; i++)
3078 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
3079 *recog_data.dup_loc[i] = alter_subreg (*recog_data.dup_loc[i]);
3080 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
3081 || GET_CODE (*recog_data.dup_loc[i]) == MULT)
3082 *recog_data.dup_loc[i] = walk_alter_subreg (*recog_data.dup_loc[i]);
3086 /* If X is a SUBREG, replace it with a REG or a MEM,
3087 based on the thing it is a subreg of. */
3090 alter_subreg (x)
3091 register rtx x;
3093 register rtx y = SUBREG_REG (x);
3095 if (GET_CODE (y) == SUBREG)
3096 y = alter_subreg (y);
3098 /* If reload is operating, we may be replacing inside this SUBREG.
3099 Check for that and make a new one if so. */
3100 if (reload_in_progress && find_replacement (&SUBREG_REG (x)) != 0)
3101 x = copy_rtx (x);
3103 if (GET_CODE (y) == REG)
3105 int regno;
3106 /* If the word size is larger than the size of this register,
3107 adjust the register number to compensate. */
3108 /* ??? Note that this just catches stragglers created by/for
3109 integrate. It would be better if we either caught these
3110 earlier, or kept _all_ subregs until now and eliminate
3111 gen_lowpart and friends. */
3113 #ifdef ALTER_HARD_SUBREG
3114 regno = ALTER_HARD_SUBREG(GET_MODE (x), SUBREG_WORD (x),
3115 GET_MODE (y), REGNO (y));
3116 #else
3117 regno = REGNO (y) + SUBREG_WORD (x);
3118 #endif
3119 PUT_CODE (x, REG);
3120 REGNO (x) = regno;
3121 /* This field has a different meaning for REGs and SUBREGs. Make sure
3122 to clear it! */
3123 x->used = 0;
3125 else if (GET_CODE (y) == MEM)
3127 register int offset = SUBREG_WORD (x) * UNITS_PER_WORD;
3128 if (BYTES_BIG_ENDIAN)
3129 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x)))
3130 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (y))));
3131 PUT_CODE (x, MEM);
3132 MEM_COPY_ATTRIBUTES (x, y);
3133 MEM_ALIAS_SET (x) = MEM_ALIAS_SET (y);
3134 XEXP (x, 0) = plus_constant (XEXP (y, 0), offset);
3137 return x;
3140 /* Do alter_subreg on all the SUBREGs contained in X. */
3142 static rtx
3143 walk_alter_subreg (x)
3144 rtx x;
3146 switch (GET_CODE (x))
3148 case PLUS:
3149 case MULT:
3150 XEXP (x, 0) = walk_alter_subreg (XEXP (x, 0));
3151 XEXP (x, 1) = walk_alter_subreg (XEXP (x, 1));
3152 break;
3154 case MEM:
3155 XEXP (x, 0) = walk_alter_subreg (XEXP (x, 0));
3156 break;
3158 case SUBREG:
3159 return alter_subreg (x);
3161 default:
3162 break;
3165 return x;
3168 #ifdef HAVE_cc0
3170 /* Given BODY, the body of a jump instruction, alter the jump condition
3171 as required by the bits that are set in cc_status.flags.
3172 Not all of the bits there can be handled at this level in all cases.
3174 The value is normally 0.
3175 1 means that the condition has become always true.
3176 -1 means that the condition has become always false.
3177 2 means that COND has been altered. */
3179 static int
3180 alter_cond (cond)
3181 register rtx cond;
3183 int value = 0;
3185 if (cc_status.flags & CC_REVERSED)
3187 value = 2;
3188 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
3191 if (cc_status.flags & CC_INVERTED)
3193 value = 2;
3194 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
3197 if (cc_status.flags & CC_NOT_POSITIVE)
3198 switch (GET_CODE (cond))
3200 case LE:
3201 case LEU:
3202 case GEU:
3203 /* Jump becomes unconditional. */
3204 return 1;
3206 case GT:
3207 case GTU:
3208 case LTU:
3209 /* Jump becomes no-op. */
3210 return -1;
3212 case GE:
3213 PUT_CODE (cond, EQ);
3214 value = 2;
3215 break;
3217 case LT:
3218 PUT_CODE (cond, NE);
3219 value = 2;
3220 break;
3222 default:
3223 break;
3226 if (cc_status.flags & CC_NOT_NEGATIVE)
3227 switch (GET_CODE (cond))
3229 case GE:
3230 case GEU:
3231 /* Jump becomes unconditional. */
3232 return 1;
3234 case LT:
3235 case LTU:
3236 /* Jump becomes no-op. */
3237 return -1;
3239 case LE:
3240 case LEU:
3241 PUT_CODE (cond, EQ);
3242 value = 2;
3243 break;
3245 case GT:
3246 case GTU:
3247 PUT_CODE (cond, NE);
3248 value = 2;
3249 break;
3251 default:
3252 break;
3255 if (cc_status.flags & CC_NO_OVERFLOW)
3256 switch (GET_CODE (cond))
3258 case GEU:
3259 /* Jump becomes unconditional. */
3260 return 1;
3262 case LEU:
3263 PUT_CODE (cond, EQ);
3264 value = 2;
3265 break;
3267 case GTU:
3268 PUT_CODE (cond, NE);
3269 value = 2;
3270 break;
3272 case LTU:
3273 /* Jump becomes no-op. */
3274 return -1;
3276 default:
3277 break;
3280 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
3281 switch (GET_CODE (cond))
3283 default:
3284 abort ();
3286 case NE:
3287 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
3288 value = 2;
3289 break;
3291 case EQ:
3292 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
3293 value = 2;
3294 break;
3297 if (cc_status.flags & CC_NOT_SIGNED)
3298 /* The flags are valid if signed condition operators are converted
3299 to unsigned. */
3300 switch (GET_CODE (cond))
3302 case LE:
3303 PUT_CODE (cond, LEU);
3304 value = 2;
3305 break;
3307 case LT:
3308 PUT_CODE (cond, LTU);
3309 value = 2;
3310 break;
3312 case GT:
3313 PUT_CODE (cond, GTU);
3314 value = 2;
3315 break;
3317 case GE:
3318 PUT_CODE (cond, GEU);
3319 value = 2;
3320 break;
3322 default:
3323 break;
3326 return value;
3328 #endif
3330 /* Report inconsistency between the assembler template and the operands.
3331 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
3333 void
3334 output_operand_lossage (msgid)
3335 const char *msgid;
3337 if (this_is_asm_operands)
3338 error_for_asm (this_is_asm_operands, "invalid `asm': %s", _(msgid));
3339 else
3341 error ("output_operand: %s", _(msgid));
3342 abort ();
3346 /* Output of assembler code from a template, and its subroutines. */
3348 /* Output text from TEMPLATE to the assembler output file,
3349 obeying %-directions to substitute operands taken from
3350 the vector OPERANDS.
3352 %N (for N a digit) means print operand N in usual manner.
3353 %lN means require operand N to be a CODE_LABEL or LABEL_REF
3354 and print the label name with no punctuation.
3355 %cN means require operand N to be a constant
3356 and print the constant expression with no punctuation.
3357 %aN means expect operand N to be a memory address
3358 (not a memory reference!) and print a reference
3359 to that address.
3360 %nN means expect operand N to be a constant
3361 and print a constant expression for minus the value
3362 of the operand, with no other punctuation. */
3364 static void
3365 output_asm_name ()
3367 if (flag_print_asm_name)
3369 /* Annotate the assembly with a comment describing the pattern and
3370 alternative used. */
3371 if (debug_insn)
3373 register int num = INSN_CODE (debug_insn);
3374 fprintf (asm_out_file, "\t%s %d\t%s",
3375 ASM_COMMENT_START, INSN_UID (debug_insn),
3376 insn_data[num].name);
3377 if (insn_data[num].n_alternatives > 1)
3378 fprintf (asm_out_file, "/%d", which_alternative + 1);
3379 #ifdef HAVE_ATTR_length
3380 fprintf (asm_out_file, "\t[length = %d]",
3381 get_attr_length (debug_insn));
3382 #endif
3383 /* Clear this so only the first assembler insn
3384 of any rtl insn will get the special comment for -dp. */
3385 debug_insn = 0;
3390 void
3391 output_asm_insn (template, operands)
3392 const char *template;
3393 rtx *operands;
3395 register const char *p;
3396 register int c;
3398 /* An insn may return a null string template
3399 in a case where no assembler code is needed. */
3400 if (*template == 0)
3401 return;
3403 p = template;
3404 putc ('\t', asm_out_file);
3406 #ifdef ASM_OUTPUT_OPCODE
3407 ASM_OUTPUT_OPCODE (asm_out_file, p);
3408 #endif
3410 while ((c = *p++))
3411 switch (c)
3413 case '\n':
3414 output_asm_name ();
3415 putc (c, asm_out_file);
3416 #ifdef ASM_OUTPUT_OPCODE
3417 while ((c = *p) == '\t')
3419 putc (c, asm_out_file);
3420 p++;
3422 ASM_OUTPUT_OPCODE (asm_out_file, p);
3423 #endif
3424 break;
3426 #ifdef ASSEMBLER_DIALECT
3427 case '{':
3429 register int i;
3431 /* If we want the first dialect, do nothing. Otherwise, skip
3432 DIALECT_NUMBER of strings ending with '|'. */
3433 for (i = 0; i < dialect_number; i++)
3435 while (*p && *p != '}' && *p++ != '|')
3437 if (*p == '}')
3438 break;
3439 if (*p == '|')
3440 p++;
3443 break;
3445 case '|':
3446 /* Skip to close brace. */
3447 while (*p && *p++ != '}')
3449 break;
3451 case '}':
3452 break;
3453 #endif
3455 case '%':
3456 /* %% outputs a single %. */
3457 if (*p == '%')
3459 p++;
3460 putc (c, asm_out_file);
3462 /* %= outputs a number which is unique to each insn in the entire
3463 compilation. This is useful for making local labels that are
3464 referred to more than once in a given insn. */
3465 else if (*p == '=')
3467 p++;
3468 fprintf (asm_out_file, "%d", insn_counter);
3470 /* % followed by a letter and some digits
3471 outputs an operand in a special way depending on the letter.
3472 Letters `acln' are implemented directly.
3473 Other letters are passed to `output_operand' so that
3474 the PRINT_OPERAND macro can define them. */
3475 else if ((*p >= 'a' && *p <= 'z')
3476 || (*p >= 'A' && *p <= 'Z'))
3478 int letter = *p++;
3479 c = atoi (p);
3481 if (! (*p >= '0' && *p <= '9'))
3482 output_operand_lossage ("operand number missing after %-letter");
3483 else if (this_is_asm_operands && (c < 0 || (unsigned int) c >= insn_noperands))
3484 output_operand_lossage ("operand number out of range");
3485 else if (letter == 'l')
3486 output_asm_label (operands[c]);
3487 else if (letter == 'a')
3488 output_address (operands[c]);
3489 else if (letter == 'c')
3491 if (CONSTANT_ADDRESS_P (operands[c]))
3492 output_addr_const (asm_out_file, operands[c]);
3493 else
3494 output_operand (operands[c], 'c');
3496 else if (letter == 'n')
3498 if (GET_CODE (operands[c]) == CONST_INT)
3499 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3500 - INTVAL (operands[c]));
3501 else
3503 putc ('-', asm_out_file);
3504 output_addr_const (asm_out_file, operands[c]);
3507 else
3508 output_operand (operands[c], letter);
3510 while ((c = *p) >= '0' && c <= '9') p++;
3512 /* % followed by a digit outputs an operand the default way. */
3513 else if (*p >= '0' && *p <= '9')
3515 c = atoi (p);
3516 if (this_is_asm_operands && (c < 0 || (unsigned int) c >= insn_noperands))
3517 output_operand_lossage ("operand number out of range");
3518 else
3519 output_operand (operands[c], 0);
3520 while ((c = *p) >= '0' && c <= '9') p++;
3522 /* % followed by punctuation: output something for that
3523 punctuation character alone, with no operand.
3524 The PRINT_OPERAND macro decides what is actually done. */
3525 #ifdef PRINT_OPERAND_PUNCT_VALID_P
3526 else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char)*p))
3527 output_operand (NULL_RTX, *p++);
3528 #endif
3529 else
3530 output_operand_lossage ("invalid %%-code");
3531 break;
3533 default:
3534 putc (c, asm_out_file);
3537 output_asm_name ();
3539 putc ('\n', asm_out_file);
3542 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3544 void
3545 output_asm_label (x)
3546 rtx x;
3548 char buf[256];
3550 if (GET_CODE (x) == LABEL_REF)
3551 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (XEXP (x, 0)));
3552 else if (GET_CODE (x) == CODE_LABEL)
3553 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3554 else
3555 output_operand_lossage ("`%l' operand isn't a label");
3557 assemble_name (asm_out_file, buf);
3560 /* Print operand X using machine-dependent assembler syntax.
3561 The macro PRINT_OPERAND is defined just to control this function.
3562 CODE is a non-digit that preceded the operand-number in the % spec,
3563 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3564 between the % and the digits.
3565 When CODE is a non-letter, X is 0.
3567 The meanings of the letters are machine-dependent and controlled
3568 by PRINT_OPERAND. */
3570 static void
3571 output_operand (x, code)
3572 rtx x;
3573 int code;
3575 if (x && GET_CODE (x) == SUBREG)
3576 x = alter_subreg (x);
3578 /* If X is a pseudo-register, abort now rather than writing trash to the
3579 assembler file. */
3581 if (x && GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER)
3582 abort ();
3584 PRINT_OPERAND (asm_out_file, x, code);
3587 /* Print a memory reference operand for address X
3588 using machine-dependent assembler syntax.
3589 The macro PRINT_OPERAND_ADDRESS exists just to control this function. */
3591 void
3592 output_address (x)
3593 rtx x;
3595 walk_alter_subreg (x);
3596 PRINT_OPERAND_ADDRESS (asm_out_file, x);
3599 /* Print an integer constant expression in assembler syntax.
3600 Addition and subtraction are the only arithmetic
3601 that may appear in these expressions. */
3603 void
3604 output_addr_const (file, x)
3605 FILE *file;
3606 rtx x;
3608 char buf[256];
3610 restart:
3611 switch (GET_CODE (x))
3613 case PC:
3614 if (flag_pic)
3615 putc ('.', file);
3616 else
3617 abort ();
3618 break;
3620 case SYMBOL_REF:
3621 assemble_name (file, XSTR (x, 0));
3622 break;
3624 case LABEL_REF:
3625 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (XEXP (x, 0)));
3626 assemble_name (file, buf);
3627 break;
3629 case CODE_LABEL:
3630 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3631 assemble_name (file, buf);
3632 break;
3634 case CONST_INT:
3635 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3636 break;
3638 case CONST:
3639 /* This used to output parentheses around the expression,
3640 but that does not work on the 386 (either ATT or BSD assembler). */
3641 output_addr_const (file, XEXP (x, 0));
3642 break;
3644 case CONST_DOUBLE:
3645 if (GET_MODE (x) == VOIDmode)
3647 /* We can use %d if the number is one word and positive. */
3648 if (CONST_DOUBLE_HIGH (x))
3649 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3650 CONST_DOUBLE_HIGH (x), CONST_DOUBLE_LOW (x));
3651 else if (CONST_DOUBLE_LOW (x) < 0)
3652 fprintf (file, HOST_WIDE_INT_PRINT_HEX, CONST_DOUBLE_LOW (x));
3653 else
3654 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3656 else
3657 /* We can't handle floating point constants;
3658 PRINT_OPERAND must handle them. */
3659 output_operand_lossage ("floating constant misused");
3660 break;
3662 case PLUS:
3663 /* Some assemblers need integer constants to appear last (eg masm). */
3664 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
3666 output_addr_const (file, XEXP (x, 1));
3667 if (INTVAL (XEXP (x, 0)) >= 0)
3668 fprintf (file, "+");
3669 output_addr_const (file, XEXP (x, 0));
3671 else
3673 output_addr_const (file, XEXP (x, 0));
3674 if (INTVAL (XEXP (x, 1)) >= 0)
3675 fprintf (file, "+");
3676 output_addr_const (file, XEXP (x, 1));
3678 break;
3680 case MINUS:
3681 /* Avoid outputting things like x-x or x+5-x,
3682 since some assemblers can't handle that. */
3683 x = simplify_subtraction (x);
3684 if (GET_CODE (x) != MINUS)
3685 goto restart;
3687 output_addr_const (file, XEXP (x, 0));
3688 fprintf (file, "-");
3689 if (GET_CODE (XEXP (x, 1)) == CONST_INT
3690 && INTVAL (XEXP (x, 1)) < 0)
3692 fprintf (file, "%s", ASM_OPEN_PAREN);
3693 output_addr_const (file, XEXP (x, 1));
3694 fprintf (file, "%s", ASM_CLOSE_PAREN);
3696 else
3697 output_addr_const (file, XEXP (x, 1));
3698 break;
3700 case ZERO_EXTEND:
3701 case SIGN_EXTEND:
3702 output_addr_const (file, XEXP (x, 0));
3703 break;
3705 default:
3706 output_operand_lossage ("invalid expression as operand");
3710 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3711 %R prints the value of REGISTER_PREFIX.
3712 %L prints the value of LOCAL_LABEL_PREFIX.
3713 %U prints the value of USER_LABEL_PREFIX.
3714 %I prints the value of IMMEDIATE_PREFIX.
3715 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
3716 Also supported are %d, %x, %s, %e, %f, %g and %%.
3718 We handle alternate assembler dialects here, just like output_asm_insn. */
3720 void
3721 asm_fprintf VPROTO((FILE *file, const char *p, ...))
3723 #ifndef ANSI_PROTOTYPES
3724 FILE *file;
3725 const char *p;
3726 #endif
3727 va_list argptr;
3728 char buf[10];
3729 char *q, c;
3731 VA_START (argptr, p);
3733 #ifndef ANSI_PROTOTYPES
3734 file = va_arg (argptr, FILE *);
3735 p = va_arg (argptr, const char *);
3736 #endif
3738 buf[0] = '%';
3740 while ((c = *p++))
3741 switch (c)
3743 #ifdef ASSEMBLER_DIALECT
3744 case '{':
3746 int i;
3748 /* If we want the first dialect, do nothing. Otherwise, skip
3749 DIALECT_NUMBER of strings ending with '|'. */
3750 for (i = 0; i < dialect_number; i++)
3752 while (*p && *p++ != '|')
3755 if (*p == '|')
3756 p++;
3759 break;
3761 case '|':
3762 /* Skip to close brace. */
3763 while (*p && *p++ != '}')
3765 break;
3767 case '}':
3768 break;
3769 #endif
3771 case '%':
3772 c = *p++;
3773 q = &buf[1];
3774 while ((c >= '0' && c <= '9') || c == '.')
3776 *q++ = c;
3777 c = *p++;
3779 switch (c)
3781 case '%':
3782 fprintf (file, "%%");
3783 break;
3785 case 'd': case 'i': case 'u':
3786 case 'x': case 'p': case 'X':
3787 case 'o':
3788 *q++ = c;
3789 *q = 0;
3790 fprintf (file, buf, va_arg (argptr, int));
3791 break;
3793 case 'w':
3794 /* This is a prefix to the 'd', 'i', 'u', 'x', 'p', and 'X' cases,
3795 but we do not check for those cases. It means that the value
3796 is a HOST_WIDE_INT, which may be either `int' or `long'. */
3798 #if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_INT
3799 #else
3800 #if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_LONG
3801 *q++ = 'l';
3802 #else
3803 *q++ = 'l';
3804 *q++ = 'l';
3805 #endif
3806 #endif
3808 *q++ = *p++;
3809 *q = 0;
3810 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
3811 break;
3813 case 'l':
3814 *q++ = c;
3815 *q++ = *p++;
3816 *q = 0;
3817 fprintf (file, buf, va_arg (argptr, long));
3818 break;
3820 case 'e':
3821 case 'f':
3822 case 'g':
3823 *q++ = c;
3824 *q = 0;
3825 fprintf (file, buf, va_arg (argptr, double));
3826 break;
3828 case 's':
3829 *q++ = c;
3830 *q = 0;
3831 fprintf (file, buf, va_arg (argptr, char *));
3832 break;
3834 case 'O':
3835 #ifdef ASM_OUTPUT_OPCODE
3836 ASM_OUTPUT_OPCODE (asm_out_file, p);
3837 #endif
3838 break;
3840 case 'R':
3841 #ifdef REGISTER_PREFIX
3842 fprintf (file, "%s", REGISTER_PREFIX);
3843 #endif
3844 break;
3846 case 'I':
3847 #ifdef IMMEDIATE_PREFIX
3848 fprintf (file, "%s", IMMEDIATE_PREFIX);
3849 #endif
3850 break;
3852 case 'L':
3853 #ifdef LOCAL_LABEL_PREFIX
3854 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
3855 #endif
3856 break;
3858 case 'U':
3859 fputs (user_label_prefix, file);
3860 break;
3862 #ifdef ASM_FPRINTF_EXTENSIONS
3863 /* Upper case letters are reserved for general use by asm_fprintf
3864 and so are not available to target specific code. In order to
3865 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
3866 they are defined here. As they get turned into real extensions
3867 to asm_fprintf they should be removed from this list. */
3868 case 'A': case 'B': case 'C': case 'D': case 'E':
3869 case 'F': case 'G': case 'H': case 'J': case 'K':
3870 case 'M': case 'N': case 'P': case 'Q': case 'S':
3871 case 'T': case 'V': case 'W': case 'Y': case 'Z':
3872 break;
3874 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
3875 #endif
3876 default:
3877 abort ();
3879 break;
3881 default:
3882 fputc (c, file);
3884 va_end (argptr);
3887 /* Split up a CONST_DOUBLE or integer constant rtx
3888 into two rtx's for single words,
3889 storing in *FIRST the word that comes first in memory in the target
3890 and in *SECOND the other. */
3892 void
3893 split_double (value, first, second)
3894 rtx value;
3895 rtx *first, *second;
3897 if (GET_CODE (value) == CONST_INT)
3899 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
3901 /* In this case the CONST_INT holds both target words.
3902 Extract the bits from it into two word-sized pieces.
3903 Sign extend each half to HOST_WIDE_INT. */
3904 rtx low, high;
3905 /* On machines where HOST_BITS_PER_WIDE_INT == BITS_PER_WORD
3906 the shift below will cause a compiler warning, even though
3907 this code won't be executed. So put the shift amounts in
3908 variables to avoid the warning. */
3909 int rshift = HOST_BITS_PER_WIDE_INT - BITS_PER_WORD;
3910 int lshift = HOST_BITS_PER_WIDE_INT - 2 * BITS_PER_WORD;
3912 low = GEN_INT ((INTVAL (value) << rshift) >> rshift);
3913 high = GEN_INT ((INTVAL (value) << lshift) >> rshift);
3914 if (WORDS_BIG_ENDIAN)
3916 *first = high;
3917 *second = low;
3919 else
3921 *first = low;
3922 *second = high;
3925 else
3927 /* The rule for using CONST_INT for a wider mode
3928 is that we regard the value as signed.
3929 So sign-extend it. */
3930 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
3931 if (WORDS_BIG_ENDIAN)
3933 *first = high;
3934 *second = value;
3936 else
3938 *first = value;
3939 *second = high;
3943 else if (GET_CODE (value) != CONST_DOUBLE)
3945 if (WORDS_BIG_ENDIAN)
3947 *first = const0_rtx;
3948 *second = value;
3950 else
3952 *first = value;
3953 *second = const0_rtx;
3956 else if (GET_MODE (value) == VOIDmode
3957 /* This is the old way we did CONST_DOUBLE integers. */
3958 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
3960 /* In an integer, the words are defined as most and least significant.
3961 So order them by the target's convention. */
3962 if (WORDS_BIG_ENDIAN)
3964 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
3965 *second = GEN_INT (CONST_DOUBLE_LOW (value));
3967 else
3969 *first = GEN_INT (CONST_DOUBLE_LOW (value));
3970 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
3973 else
3975 #ifdef REAL_ARITHMETIC
3976 REAL_VALUE_TYPE r; long l[2];
3977 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
3979 /* Note, this converts the REAL_VALUE_TYPE to the target's
3980 format, splits up the floating point double and outputs
3981 exactly 32 bits of it into each of l[0] and l[1] --
3982 not necessarily BITS_PER_WORD bits. */
3983 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
3985 /* If 32 bits is an entire word for the target, but not for the host,
3986 then sign-extend on the host so that the number will look the same
3987 way on the host that it would on the target. See for instance
3988 simplify_unary_operation. The #if is needed to avoid compiler
3989 warnings. */
3991 #if HOST_BITS_PER_LONG > 32
3992 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
3994 if (l[0] & ((long) 1 << 31))
3995 l[0] |= ((long) (-1) << 32);
3996 if (l[1] & ((long) 1 << 31))
3997 l[1] |= ((long) (-1) << 32);
3999 #endif
4001 *first = GEN_INT ((HOST_WIDE_INT) l[0]);
4002 *second = GEN_INT ((HOST_WIDE_INT) l[1]);
4003 #else
4004 if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
4005 || HOST_BITS_PER_WIDE_INT != BITS_PER_WORD)
4006 && ! flag_pretend_float)
4007 abort ();
4009 if (
4010 #ifdef HOST_WORDS_BIG_ENDIAN
4011 WORDS_BIG_ENDIAN
4012 #else
4013 ! WORDS_BIG_ENDIAN
4014 #endif
4017 /* Host and target agree => no need to swap. */
4018 *first = GEN_INT (CONST_DOUBLE_LOW (value));
4019 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
4021 else
4023 *second = GEN_INT (CONST_DOUBLE_LOW (value));
4024 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
4026 #endif /* no REAL_ARITHMETIC */
4030 /* Return nonzero if this function has no function calls. */
4033 leaf_function_p ()
4035 rtx insn;
4037 if (profile_flag || profile_block_flag || profile_arc_flag)
4038 return 0;
4040 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4042 if (GET_CODE (insn) == CALL_INSN)
4043 return 0;
4044 if (GET_CODE (insn) == INSN
4045 && GET_CODE (PATTERN (insn)) == SEQUENCE
4046 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == CALL_INSN)
4047 return 0;
4049 for (insn = current_function_epilogue_delay_list; insn; insn = XEXP (insn, 1))
4051 if (GET_CODE (XEXP (insn, 0)) == CALL_INSN)
4052 return 0;
4053 if (GET_CODE (XEXP (insn, 0)) == INSN
4054 && GET_CODE (PATTERN (XEXP (insn, 0))) == SEQUENCE
4055 && GET_CODE (XVECEXP (PATTERN (XEXP (insn, 0)), 0, 0)) == CALL_INSN)
4056 return 0;
4059 return 1;
4062 /* On some machines, a function with no call insns
4063 can run faster if it doesn't create its own register window.
4064 When output, the leaf function should use only the "output"
4065 registers. Ordinarily, the function would be compiled to use
4066 the "input" registers to find its arguments; it is a candidate
4067 for leaf treatment if it uses only the "input" registers.
4068 Leaf function treatment means renumbering so the function
4069 uses the "output" registers instead. */
4071 #ifdef LEAF_REGISTERS
4073 static char permitted_reg_in_leaf_functions[] = LEAF_REGISTERS;
4075 /* Return 1 if this function uses only the registers that can be
4076 safely renumbered. */
4079 only_leaf_regs_used ()
4081 int i;
4083 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4084 if ((regs_ever_live[i] || global_regs[i])
4085 && ! permitted_reg_in_leaf_functions[i])
4086 return 0;
4088 if (current_function_uses_pic_offset_table
4089 && pic_offset_table_rtx != 0
4090 && GET_CODE (pic_offset_table_rtx) == REG
4091 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
4092 return 0;
4094 return 1;
4097 /* Scan all instructions and renumber all registers into those
4098 available in leaf functions. */
4100 static void
4101 leaf_renumber_regs (first)
4102 rtx first;
4104 rtx insn;
4106 /* Renumber only the actual patterns.
4107 The reg-notes can contain frame pointer refs,
4108 and renumbering them could crash, and should not be needed. */
4109 for (insn = first; insn; insn = NEXT_INSN (insn))
4110 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
4111 leaf_renumber_regs_insn (PATTERN (insn));
4112 for (insn = current_function_epilogue_delay_list; insn; insn = XEXP (insn, 1))
4113 if (GET_RTX_CLASS (GET_CODE (XEXP (insn, 0))) == 'i')
4114 leaf_renumber_regs_insn (PATTERN (XEXP (insn, 0)));
4117 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
4118 available in leaf functions. */
4120 void
4121 leaf_renumber_regs_insn (in_rtx)
4122 register rtx in_rtx;
4124 register int i, j;
4125 register const char *format_ptr;
4127 if (in_rtx == 0)
4128 return;
4130 /* Renumber all input-registers into output-registers.
4131 renumbered_regs would be 1 for an output-register;
4132 they */
4134 if (GET_CODE (in_rtx) == REG)
4136 int newreg;
4138 /* Don't renumber the same reg twice. */
4139 if (in_rtx->used)
4140 return;
4142 newreg = REGNO (in_rtx);
4143 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
4144 to reach here as part of a REG_NOTE. */
4145 if (newreg >= FIRST_PSEUDO_REGISTER)
4147 in_rtx->used = 1;
4148 return;
4150 newreg = LEAF_REG_REMAP (newreg);
4151 if (newreg < 0)
4152 abort ();
4153 regs_ever_live[REGNO (in_rtx)] = 0;
4154 regs_ever_live[newreg] = 1;
4155 REGNO (in_rtx) = newreg;
4156 in_rtx->used = 1;
4159 if (GET_RTX_CLASS (GET_CODE (in_rtx)) == 'i')
4161 /* Inside a SEQUENCE, we find insns.
4162 Renumber just the patterns of these insns,
4163 just as we do for the top-level insns. */
4164 leaf_renumber_regs_insn (PATTERN (in_rtx));
4165 return;
4168 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
4170 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
4171 switch (*format_ptr++)
4173 case 'e':
4174 leaf_renumber_regs_insn (XEXP (in_rtx, i));
4175 break;
4177 case 'E':
4178 if (NULL != XVEC (in_rtx, i))
4180 for (j = 0; j < XVECLEN (in_rtx, i); j++)
4181 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
4183 break;
4185 case 'S':
4186 case 's':
4187 case '0':
4188 case 'i':
4189 case 'w':
4190 case 'n':
4191 case 'u':
4192 break;
4194 default:
4195 abort ();
4198 #endif