* class.c (check_bitfield_decl): New function, split out from
[official-gcc.git] / boehm-gc / os_dep.c
blob744b1e0898be254ccbdb8c0963195ff9ca44ec8a
1 /*
2 * Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers
3 * Copyright (c) 1991-1995 by Xerox Corporation. All rights reserved.
4 * Copyright (c) 1996-1999 by Silicon Graphics. All rights reserved.
5 * Copyright (c) 1999 by Hewlett-Packard Company. All rights reserved.
7 * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
8 * OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
10 * Permission is hereby granted to use or copy this program
11 * for any purpose, provided the above notices are retained on all copies.
12 * Permission to modify the code and to distribute modified code is granted,
13 * provided the above notices are retained, and a notice that the code was
14 * modified is included with the above copyright notice.
17 # include "gc_priv.h"
19 # if defined(LINUX) && !defined(POWERPC)
20 # include <linux/version.h>
21 # if (LINUX_VERSION_CODE <= 0x10400)
22 /* Ugly hack to get struct sigcontext_struct definition. Required */
23 /* for some early 1.3.X releases. Will hopefully go away soon. */
24 /* in some later Linux releases, asm/sigcontext.h may have to */
25 /* be included instead. */
26 # define __KERNEL__
27 # include <asm/signal.h>
28 # undef __KERNEL__
29 # else
30 /* Kernels prior to 2.1.1 defined struct sigcontext_struct instead of */
31 /* struct sigcontext. libc6 (glibc2) uses "struct sigcontext" in */
32 /* prototypes, so we have to include the top-level sigcontext.h to */
33 /* make sure the former gets defined to be the latter if appropriate. */
34 # include <features.h>
35 # if 2 <= __GLIBC__
36 # if 2 == __GLIBC__ && 0 == __GLIBC_MINOR__
37 /* glibc 2.1 no longer has sigcontext.h. But signal.h */
38 /* has the right declaration for glibc 2.1. */
39 # include <sigcontext.h>
40 # endif /* 0 == __GLIBC_MINOR__ */
41 # else /* not 2 <= __GLIBC__ */
42 /* libc5 doesn't have <sigcontext.h>: go directly with the kernel */
43 /* one. Check LINUX_VERSION_CODE to see which we should reference. */
44 # include <asm/sigcontext.h>
45 # endif /* 2 <= __GLIBC__ */
46 # endif
47 # endif
48 # if !defined(OS2) && !defined(PCR) && !defined(AMIGA) && !defined(MACOS)
49 # include <sys/types.h>
50 # if !defined(MSWIN32) && !defined(SUNOS4)
51 # include <unistd.h>
52 # endif
53 # endif
55 # include <stdio.h>
56 # include <signal.h>
58 /* Blatantly OS dependent routines, except for those that are related */
59 /* to dynamic loading. */
61 # if !defined(THREADS) && !defined(STACKBOTTOM) && defined(HEURISTIC2)
62 # define NEED_FIND_LIMIT
63 # endif
65 # if defined(IRIX_THREADS) || defined(HPUX_THREADS)
66 # define NEED_FIND_LIMIT
67 # endif
69 # if (defined(SUNOS4) & defined(DYNAMIC_LOADING)) && !defined(PCR)
70 # define NEED_FIND_LIMIT
71 # endif
73 # if (defined(SVR4) || defined(AUX) || defined(DGUX)) && !defined(PCR)
74 # define NEED_FIND_LIMIT
75 # endif
77 # if defined(LINUX) && \
78 (defined(POWERPC) || defined(SPARC) || defined(ALPHA) || defined(IA64))
79 # define NEED_FIND_LIMIT
80 # endif
82 #ifdef NEED_FIND_LIMIT
83 # include <setjmp.h>
84 #endif
86 #ifdef FREEBSD
87 # include <machine/trap.h>
88 #endif
90 #ifdef AMIGA
91 # include <proto/exec.h>
92 # include <proto/dos.h>
93 # include <dos/dosextens.h>
94 # include <workbench/startup.h>
95 #endif
97 #ifdef MSWIN32
98 # define WIN32_LEAN_AND_MEAN
99 # define NOSERVICE
100 # include <windows.h>
101 #endif
103 #ifdef MACOS
104 # include <Processes.h>
105 #endif
107 #ifdef IRIX5
108 # include <sys/uio.h>
109 # include <malloc.h> /* for locking */
110 #endif
111 #ifdef USE_MMAP
112 # include <sys/types.h>
113 # include <sys/mman.h>
114 # include <sys/stat.h>
115 # include <fcntl.h>
116 #endif
118 #ifdef SUNOS5SIGS
119 # include <sys/siginfo.h>
120 # undef setjmp
121 # undef longjmp
122 # define setjmp(env) sigsetjmp(env, 1)
123 # define longjmp(env, val) siglongjmp(env, val)
124 # define jmp_buf sigjmp_buf
125 #endif
127 #ifdef DJGPP
128 /* Apparently necessary for djgpp 2.01. May casuse problems with */
129 /* other versions. */
130 typedef long unsigned int caddr_t;
131 #endif
133 #ifdef PCR
134 # include "il/PCR_IL.h"
135 # include "th/PCR_ThCtl.h"
136 # include "mm/PCR_MM.h"
137 #endif
139 #if !defined(NO_EXECUTE_PERMISSION)
140 # define OPT_PROT_EXEC PROT_EXEC
141 #else
142 # define OPT_PROT_EXEC 0
143 #endif
145 #if defined(LINUX) && (defined(POWERPC) || defined(SPARC) || defined(ALPHA) \
146 || defined(IA64))
147 /* The I386 case can be handled without a search. The Alpha case */
148 /* used to be handled differently as well, but the rules changed */
149 /* for recent Linux versions. This seems to be the easiest way to */
150 /* cover all versions. */
151 ptr_t GC_data_start;
153 extern char * GC_copyright[]; /* Any data symbol would do. */
155 void GC_init_linux_data_start()
157 extern ptr_t GC_find_limit();
159 GC_data_start = GC_find_limit((ptr_t)GC_copyright, FALSE);
161 #endif
163 # ifdef ECOS
165 # ifndef ECOS_GC_MEMORY_SIZE
166 # define ECOS_GC_MEMORY_SIZE (448 * 1024)
167 # endif /* ECOS_GC_MEMORY_SIZE */
169 // setjmp() function, as described in ANSI para 7.6.1.1
170 #define setjmp( __env__ ) hal_setjmp( __env__ )
172 // FIXME: This is a simple way of allocating memory which is
173 // compatible with ECOS early releases. Later releases use a more
174 // sophisticated means of allocating memory than this simple static
175 // allocator, but this method is at least bound to work.
176 static char memory[ECOS_GC_MEMORY_SIZE];
177 static char *brk = memory;
179 static void *tiny_sbrk(ptrdiff_t increment)
181 void *p = brk;
183 brk += increment;
185 if (brk > memory + sizeof memory)
187 brk -= increment;
188 return NULL;
191 return p;
193 #define sbrk tiny_sbrk
194 # endif /* ECOS */
196 # ifdef OS2
198 # include <stddef.h>
200 # if !defined(__IBMC__) && !defined(__WATCOMC__) /* e.g. EMX */
202 struct exe_hdr {
203 unsigned short magic_number;
204 unsigned short padding[29];
205 long new_exe_offset;
208 #define E_MAGIC(x) (x).magic_number
209 #define EMAGIC 0x5A4D
210 #define E_LFANEW(x) (x).new_exe_offset
212 struct e32_exe {
213 unsigned char magic_number[2];
214 unsigned char byte_order;
215 unsigned char word_order;
216 unsigned long exe_format_level;
217 unsigned short cpu;
218 unsigned short os;
219 unsigned long padding1[13];
220 unsigned long object_table_offset;
221 unsigned long object_count;
222 unsigned long padding2[31];
225 #define E32_MAGIC1(x) (x).magic_number[0]
226 #define E32MAGIC1 'L'
227 #define E32_MAGIC2(x) (x).magic_number[1]
228 #define E32MAGIC2 'X'
229 #define E32_BORDER(x) (x).byte_order
230 #define E32LEBO 0
231 #define E32_WORDER(x) (x).word_order
232 #define E32LEWO 0
233 #define E32_CPU(x) (x).cpu
234 #define E32CPU286 1
235 #define E32_OBJTAB(x) (x).object_table_offset
236 #define E32_OBJCNT(x) (x).object_count
238 struct o32_obj {
239 unsigned long size;
240 unsigned long base;
241 unsigned long flags;
242 unsigned long pagemap;
243 unsigned long mapsize;
244 unsigned long reserved;
247 #define O32_FLAGS(x) (x).flags
248 #define OBJREAD 0x0001L
249 #define OBJWRITE 0x0002L
250 #define OBJINVALID 0x0080L
251 #define O32_SIZE(x) (x).size
252 #define O32_BASE(x) (x).base
254 # else /* IBM's compiler */
256 /* A kludge to get around what appears to be a header file bug */
257 # ifndef WORD
258 # define WORD unsigned short
259 # endif
260 # ifndef DWORD
261 # define DWORD unsigned long
262 # endif
264 # define EXE386 1
265 # include <newexe.h>
266 # include <exe386.h>
268 # endif /* __IBMC__ */
270 # define INCL_DOSEXCEPTIONS
271 # define INCL_DOSPROCESS
272 # define INCL_DOSERRORS
273 # define INCL_DOSMODULEMGR
274 # define INCL_DOSMEMMGR
275 # include <os2.h>
278 /* Disable and enable signals during nontrivial allocations */
280 void GC_disable_signals(void)
282 ULONG nest;
284 DosEnterMustComplete(&nest);
285 if (nest != 1) ABORT("nested GC_disable_signals");
288 void GC_enable_signals(void)
290 ULONG nest;
292 DosExitMustComplete(&nest);
293 if (nest != 0) ABORT("GC_enable_signals");
297 # else
299 # if !defined(PCR) && !defined(AMIGA) && !defined(MSWIN32) \
300 && !defined(MACOS) && !defined(DJGPP) && !defined(DOS4GW) \
301 && !defined(NO_SIGSET)
303 # if defined(sigmask) && !defined(UTS4)
304 /* Use the traditional BSD interface */
305 # define SIGSET_T int
306 # define SIG_DEL(set, signal) (set) &= ~(sigmask(signal))
307 # define SIG_FILL(set) (set) = 0x7fffffff
308 /* Setting the leading bit appears to provoke a bug in some */
309 /* longjmp implementations. Most systems appear not to have */
310 /* a signal 32. */
311 # define SIGSETMASK(old, new) (old) = sigsetmask(new)
312 # else
313 /* Use POSIX/SYSV interface */
314 # define SIGSET_T sigset_t
315 # define SIG_DEL(set, signal) sigdelset(&(set), (signal))
316 # define SIG_FILL(set) sigfillset(&set)
317 # define SIGSETMASK(old, new) sigprocmask(SIG_SETMASK, &(new), &(old))
318 # endif
320 static GC_bool mask_initialized = FALSE;
322 static SIGSET_T new_mask;
324 static SIGSET_T old_mask;
326 static SIGSET_T dummy;
328 #if defined(PRINTSTATS) && !defined(THREADS)
329 # define CHECK_SIGNALS
330 int GC_sig_disabled = 0;
331 #endif
333 void GC_disable_signals()
335 if (!mask_initialized) {
336 SIG_FILL(new_mask);
338 SIG_DEL(new_mask, SIGSEGV);
339 SIG_DEL(new_mask, SIGILL);
340 SIG_DEL(new_mask, SIGQUIT);
341 # ifdef SIGBUS
342 SIG_DEL(new_mask, SIGBUS);
343 # endif
344 # ifdef SIGIOT
345 SIG_DEL(new_mask, SIGIOT);
346 # endif
347 # ifdef SIGEMT
348 SIG_DEL(new_mask, SIGEMT);
349 # endif
350 # ifdef SIGTRAP
351 SIG_DEL(new_mask, SIGTRAP);
352 # endif
353 mask_initialized = TRUE;
355 # ifdef CHECK_SIGNALS
356 if (GC_sig_disabled != 0) ABORT("Nested disables");
357 GC_sig_disabled++;
358 # endif
359 SIGSETMASK(old_mask,new_mask);
362 void GC_enable_signals()
364 # ifdef CHECK_SIGNALS
365 if (GC_sig_disabled != 1) ABORT("Unmatched enable");
366 GC_sig_disabled--;
367 # endif
368 SIGSETMASK(dummy,old_mask);
371 # endif /* !PCR */
373 # endif /*!OS/2 */
375 /* Ivan Demakov: simplest way (to me) */
376 #if defined (DOS4GW) || defined (NO_SIGSET)
377 void GC_disable_signals() { }
378 void GC_enable_signals() { }
379 #endif
381 /* Find the page size */
382 word GC_page_size;
384 # ifdef MSWIN32
385 void GC_setpagesize()
387 SYSTEM_INFO sysinfo;
389 GetSystemInfo(&sysinfo);
390 GC_page_size = sysinfo.dwPageSize;
393 # else
394 # if defined(MPROTECT_VDB) || defined(PROC_VDB) || defined(USE_MMAP) \
395 || defined(USE_MUNMAP)
396 void GC_setpagesize()
398 GC_page_size = GETPAGESIZE();
400 # else
401 /* It's acceptable to fake it. */
402 void GC_setpagesize()
404 GC_page_size = HBLKSIZE;
406 # endif
407 # endif
410 * Find the base of the stack.
411 * Used only in single-threaded environment.
412 * With threads, GC_mark_roots needs to know how to do this.
413 * Called with allocator lock held.
415 # ifdef MSWIN32
416 # define is_writable(prot) ((prot) == PAGE_READWRITE \
417 || (prot) == PAGE_WRITECOPY \
418 || (prot) == PAGE_EXECUTE_READWRITE \
419 || (prot) == PAGE_EXECUTE_WRITECOPY)
420 /* Return the number of bytes that are writable starting at p. */
421 /* The pointer p is assumed to be page aligned. */
422 /* If base is not 0, *base becomes the beginning of the */
423 /* allocation region containing p. */
424 word GC_get_writable_length(ptr_t p, ptr_t *base)
426 MEMORY_BASIC_INFORMATION buf;
427 word result;
428 word protect;
430 result = VirtualQuery(p, &buf, sizeof(buf));
431 if (result != sizeof(buf)) ABORT("Weird VirtualQuery result");
432 if (base != 0) *base = (ptr_t)(buf.AllocationBase);
433 protect = (buf.Protect & ~(PAGE_GUARD | PAGE_NOCACHE));
434 if (!is_writable(protect)) {
435 return(0);
437 if (buf.State != MEM_COMMIT) return(0);
438 return(buf.RegionSize);
441 ptr_t GC_get_stack_base()
443 int dummy;
444 ptr_t sp = (ptr_t)(&dummy);
445 ptr_t trunc_sp = (ptr_t)((word)sp & ~(GC_page_size - 1));
446 word size = GC_get_writable_length(trunc_sp, 0);
448 return(trunc_sp + size);
452 # else
454 # ifdef OS2
456 ptr_t GC_get_stack_base()
458 PTIB ptib;
459 PPIB ppib;
461 if (DosGetInfoBlocks(&ptib, &ppib) != NO_ERROR) {
462 GC_err_printf0("DosGetInfoBlocks failed\n");
463 ABORT("DosGetInfoBlocks failed\n");
465 return((ptr_t)(ptib -> tib_pstacklimit));
468 # else
470 # ifdef AMIGA
472 ptr_t GC_get_stack_base()
474 struct Process *proc = (struct Process*)SysBase->ThisTask;
476 /* Reference: Amiga Guru Book Pages: 42,567,574 */
477 if (proc->pr_Task.tc_Node.ln_Type==NT_PROCESS
478 && proc->pr_CLI != NULL) {
479 /* first ULONG is StackSize */
480 /*longPtr = proc->pr_ReturnAddr;
481 size = longPtr[0];*/
483 return (char *)proc->pr_ReturnAddr + sizeof(ULONG);
484 } else {
485 return (char *)proc->pr_Task.tc_SPUpper;
489 #if 0 /* old version */
490 ptr_t GC_get_stack_base()
492 extern struct WBStartup *_WBenchMsg;
493 extern long __base;
494 extern long __stack;
495 struct Task *task;
496 struct Process *proc;
497 struct CommandLineInterface *cli;
498 long size;
500 if ((task = FindTask(0)) == 0) {
501 GC_err_puts("Cannot find own task structure\n");
502 ABORT("task missing");
504 proc = (struct Process *)task;
505 cli = BADDR(proc->pr_CLI);
507 if (_WBenchMsg != 0 || cli == 0) {
508 size = (char *)task->tc_SPUpper - (char *)task->tc_SPLower;
509 } else {
510 size = cli->cli_DefaultStack * 4;
512 return (ptr_t)(__base + GC_max(size, __stack));
514 #endif /* 0 */
516 # else /* !AMIGA, !OS2, ... */
518 # ifdef NEED_FIND_LIMIT
519 /* Some tools to implement HEURISTIC2 */
520 # define MIN_PAGE_SIZE 256 /* Smallest conceivable page size, bytes */
521 /* static */ jmp_buf GC_jmp_buf;
523 /*ARGSUSED*/
524 void GC_fault_handler(sig)
525 int sig;
527 longjmp(GC_jmp_buf, 1);
530 # ifdef __STDC__
531 typedef void (*handler)(int);
532 # else
533 typedef void (*handler)();
534 # endif
536 # if defined(SUNOS5SIGS) || defined(IRIX5) || defined(OSF1)
537 static struct sigaction old_segv_act;
538 # if defined(_sigargs) || defined(HPUX) /* !Irix6.x */
539 static struct sigaction old_bus_act;
540 # endif
541 # else
542 static handler old_segv_handler, old_bus_handler;
543 # endif
545 void GC_setup_temporary_fault_handler()
547 # ifndef ECOS
548 # if defined(SUNOS5SIGS) || defined(IRIX5) || defined(OSF1)
549 struct sigaction act;
551 act.sa_handler = GC_fault_handler;
552 act.sa_flags = SA_RESTART | SA_NODEFER;
553 /* The presence of SA_NODEFER represents yet another gross */
554 /* hack. Under Solaris 2.3, siglongjmp doesn't appear to */
555 /* interact correctly with -lthread. We hide the confusion */
556 /* by making sure that signal handling doesn't affect the */
557 /* signal mask. */
559 (void) sigemptyset(&act.sa_mask);
560 # ifdef IRIX_THREADS
561 /* Older versions have a bug related to retrieving and */
562 /* and setting a handler at the same time. */
563 (void) sigaction(SIGSEGV, 0, &old_segv_act);
564 (void) sigaction(SIGSEGV, &act, 0);
565 # else
566 (void) sigaction(SIGSEGV, &act, &old_segv_act);
567 # if defined(IRIX5) && defined(_sigargs) /* Irix 5.x, not 6.x */ \
568 || defined(HPUX)
569 /* Under Irix 5.x or HP/UX, we may get SIGBUS. */
570 /* Pthreads doesn't exist under Irix 5.x, so we */
571 /* don't have to worry in the threads case. */
572 (void) sigaction(SIGBUS, &act, &old_bus_act);
573 # endif
574 # endif /* IRIX_THREADS */
575 # else
576 old_segv_handler = signal(SIGSEGV, GC_fault_handler);
577 # ifdef SIGBUS
578 old_bus_handler = signal(SIGBUS, GC_fault_handler);
579 # endif
580 # endif
581 # endif /* ECOS */
584 void GC_reset_fault_handler()
586 # ifndef ECOS
587 # if defined(SUNOS5SIGS) || defined(IRIX5) || defined(OSF1)
588 (void) sigaction(SIGSEGV, &old_segv_act, 0);
589 # if defined(IRIX5) && defined(_sigargs) /* Irix 5.x, not 6.x */ \
590 || defined(HPUX)
591 (void) sigaction(SIGBUS, &old_bus_act, 0);
592 # endif
593 # else
594 (void) signal(SIGSEGV, old_segv_handler);
595 # ifdef SIGBUS
596 (void) signal(SIGBUS, old_bus_handler);
597 # endif
598 # endif
599 # endif /* ECOS */
602 /* Return the first nonaddressible location > p (up) or */
603 /* the smallest location q s.t. [q,p] is addressible (!up). */
604 ptr_t GC_find_limit(p, up)
605 ptr_t p;
606 GC_bool up;
608 # ifndef ECOS
609 static VOLATILE ptr_t result;
610 /* Needs to be static, since otherwise it may not be */
611 /* preserved across the longjmp. Can safely be */
612 /* static since it's only called once, with the */
613 /* allocation lock held. */
616 GC_setup_temporary_fault_handler();
617 if (setjmp(GC_jmp_buf) == 0) {
618 result = (ptr_t)(((word)(p))
619 & ~(MIN_PAGE_SIZE-1));
620 for (;;) {
621 if (up) {
622 result += MIN_PAGE_SIZE;
623 } else {
624 result -= MIN_PAGE_SIZE;
626 GC_noop1((word)(*result));
629 GC_reset_fault_handler();
630 if (!up) {
631 result += MIN_PAGE_SIZE;
633 return(result);
634 # else /* ECOS */
635 abort();
636 # endif /* ECOS */
638 # endif
640 # ifndef ECOS
642 #ifdef LINUX_STACKBOTTOM
644 # define STAT_SKIP 27 /* Number of fields preceding startstack */
645 /* field in /proc/<pid>/stat */
647 ptr_t GC_linux_stack_base(void)
649 char buf[50];
650 FILE *f;
651 char c;
652 word result = 0;
653 int i;
655 sprintf(buf, "/proc/%d/stat", getpid());
656 f = fopen(buf, "r");
657 if (NULL == f) ABORT("Couldn't open /proc/<pid>/stat");
658 c = getc(f);
659 /* Skip the required number of fields. This number is hopefully */
660 /* constant across all Linux implementations. */
661 for (i = 0; i < STAT_SKIP; ++i) {
662 while (isspace(c)) c = getc(f);
663 while (!isspace(c)) c = getc(f);
665 while (isspace(c)) c = getc(f);
666 while (isdigit(c)) {
667 result *= 10;
668 result += c - '0';
669 c = getc(f);
671 if (result < 0x10000000) ABORT("Absurd stack bottom value");
672 return (ptr_t)result;
675 #endif /* LINUX_STACKBOTTOM */
677 ptr_t GC_get_stack_base()
679 word dummy;
680 ptr_t result;
682 # define STACKBOTTOM_ALIGNMENT_M1 ((word)STACK_GRAN - 1)
684 # if defined(STACKBASE)
685 extern ptr_t STACKBASE;
686 return(STACKBASE);
687 # else
688 # ifdef STACKBOTTOM
689 return(STACKBOTTOM);
690 # else
691 # ifdef HEURISTIC1
692 # ifdef STACK_GROWS_DOWN
693 result = (ptr_t)((((word)(&dummy))
694 + STACKBOTTOM_ALIGNMENT_M1)
695 & ~STACKBOTTOM_ALIGNMENT_M1);
696 # else
697 result = (ptr_t)(((word)(&dummy))
698 & ~STACKBOTTOM_ALIGNMENT_M1);
699 # endif
700 # endif /* HEURISTIC1 */
701 # ifdef LINUX_STACKBOTTOM
702 result = GC_linux_stack_base();
703 # endif
704 # ifdef HEURISTIC2
705 # ifdef STACK_GROWS_DOWN
706 result = GC_find_limit((ptr_t)(&dummy), TRUE);
707 # ifdef HEURISTIC2_LIMIT
708 if (result > HEURISTIC2_LIMIT
709 && (ptr_t)(&dummy) < HEURISTIC2_LIMIT) {
710 result = HEURISTIC2_LIMIT;
712 # endif
713 # else
714 result = GC_find_limit((ptr_t)(&dummy), FALSE);
715 # ifdef HEURISTIC2_LIMIT
716 if (result < HEURISTIC2_LIMIT
717 && (ptr_t)(&dummy) > HEURISTIC2_LIMIT) {
718 result = HEURISTIC2_LIMIT;
720 # endif
721 # endif
723 # endif /* HEURISTIC2 */
724 # ifdef STACK_GROWS_DOWN
725 if (result == 0) result = (ptr_t)(signed_word)(-sizeof(ptr_t));
726 # endif
727 return(result);
728 # endif /* STACKBOTTOM */
729 # endif /* STACKBASE */
731 # endif /* ECOS */
733 # endif /* ! AMIGA */
734 # endif /* ! OS2 */
735 # endif /* ! MSWIN32 */
738 * Register static data segment(s) as roots.
739 * If more data segments are added later then they need to be registered
740 * add that point (as we do with SunOS dynamic loading),
741 * or GC_mark_roots needs to check for them (as we do with PCR).
742 * Called with allocator lock held.
745 # ifdef OS2
747 void GC_register_data_segments()
749 PTIB ptib;
750 PPIB ppib;
751 HMODULE module_handle;
752 # define PBUFSIZ 512
753 UCHAR path[PBUFSIZ];
754 FILE * myexefile;
755 struct exe_hdr hdrdos; /* MSDOS header. */
756 struct e32_exe hdr386; /* Real header for my executable */
757 struct o32_obj seg; /* Currrent segment */
758 int nsegs;
761 if (DosGetInfoBlocks(&ptib, &ppib) != NO_ERROR) {
762 GC_err_printf0("DosGetInfoBlocks failed\n");
763 ABORT("DosGetInfoBlocks failed\n");
765 module_handle = ppib -> pib_hmte;
766 if (DosQueryModuleName(module_handle, PBUFSIZ, path) != NO_ERROR) {
767 GC_err_printf0("DosQueryModuleName failed\n");
768 ABORT("DosGetInfoBlocks failed\n");
770 myexefile = fopen(path, "rb");
771 if (myexefile == 0) {
772 GC_err_puts("Couldn't open executable ");
773 GC_err_puts(path); GC_err_puts("\n");
774 ABORT("Failed to open executable\n");
776 if (fread((char *)(&hdrdos), 1, sizeof hdrdos, myexefile) < sizeof hdrdos) {
777 GC_err_puts("Couldn't read MSDOS header from ");
778 GC_err_puts(path); GC_err_puts("\n");
779 ABORT("Couldn't read MSDOS header");
781 if (E_MAGIC(hdrdos) != EMAGIC) {
782 GC_err_puts("Executable has wrong DOS magic number: ");
783 GC_err_puts(path); GC_err_puts("\n");
784 ABORT("Bad DOS magic number");
786 if (fseek(myexefile, E_LFANEW(hdrdos), SEEK_SET) != 0) {
787 GC_err_puts("Seek to new header failed in ");
788 GC_err_puts(path); GC_err_puts("\n");
789 ABORT("Bad DOS magic number");
791 if (fread((char *)(&hdr386), 1, sizeof hdr386, myexefile) < sizeof hdr386) {
792 GC_err_puts("Couldn't read MSDOS header from ");
793 GC_err_puts(path); GC_err_puts("\n");
794 ABORT("Couldn't read OS/2 header");
796 if (E32_MAGIC1(hdr386) != E32MAGIC1 || E32_MAGIC2(hdr386) != E32MAGIC2) {
797 GC_err_puts("Executable has wrong OS/2 magic number:");
798 GC_err_puts(path); GC_err_puts("\n");
799 ABORT("Bad OS/2 magic number");
801 if ( E32_BORDER(hdr386) != E32LEBO || E32_WORDER(hdr386) != E32LEWO) {
802 GC_err_puts("Executable %s has wrong byte order: ");
803 GC_err_puts(path); GC_err_puts("\n");
804 ABORT("Bad byte order");
806 if ( E32_CPU(hdr386) == E32CPU286) {
807 GC_err_puts("GC can't handle 80286 executables: ");
808 GC_err_puts(path); GC_err_puts("\n");
809 EXIT();
811 if (fseek(myexefile, E_LFANEW(hdrdos) + E32_OBJTAB(hdr386),
812 SEEK_SET) != 0) {
813 GC_err_puts("Seek to object table failed: ");
814 GC_err_puts(path); GC_err_puts("\n");
815 ABORT("Seek to object table failed");
817 for (nsegs = E32_OBJCNT(hdr386); nsegs > 0; nsegs--) {
818 int flags;
819 if (fread((char *)(&seg), 1, sizeof seg, myexefile) < sizeof seg) {
820 GC_err_puts("Couldn't read obj table entry from ");
821 GC_err_puts(path); GC_err_puts("\n");
822 ABORT("Couldn't read obj table entry");
824 flags = O32_FLAGS(seg);
825 if (!(flags & OBJWRITE)) continue;
826 if (!(flags & OBJREAD)) continue;
827 if (flags & OBJINVALID) {
828 GC_err_printf0("Object with invalid pages?\n");
829 continue;
831 GC_add_roots_inner(O32_BASE(seg), O32_BASE(seg)+O32_SIZE(seg), FALSE);
835 # else
837 # ifdef MSWIN32
838 /* Unfortunately, we have to handle win32s very differently from NT, */
839 /* Since VirtualQuery has very different semantics. In particular, */
840 /* under win32s a VirtualQuery call on an unmapped page returns an */
841 /* invalid result. Under GC_register_data_segments is a noop and */
842 /* all real work is done by GC_register_dynamic_libraries. Under */
843 /* win32s, we cannot find the data segments associated with dll's. */
844 /* We rgister the main data segment here. */
845 GC_bool GC_win32s = FALSE; /* We're running under win32s. */
847 GC_bool GC_is_win32s()
849 DWORD v = GetVersion();
851 /* Check that this is not NT, and Windows major version <= 3 */
852 return ((v & 0x80000000) && (v & 0xff) <= 3);
855 void GC_init_win32()
857 GC_win32s = GC_is_win32s();
860 /* Return the smallest address a such that VirtualQuery */
861 /* returns correct results for all addresses between a and start. */
862 /* Assumes VirtualQuery returns correct information for start. */
863 ptr_t GC_least_described_address(ptr_t start)
865 MEMORY_BASIC_INFORMATION buf;
866 SYSTEM_INFO sysinfo;
867 DWORD result;
868 LPVOID limit;
869 ptr_t p;
870 LPVOID q;
872 GetSystemInfo(&sysinfo);
873 limit = sysinfo.lpMinimumApplicationAddress;
874 p = (ptr_t)((word)start & ~(GC_page_size - 1));
875 for (;;) {
876 q = (LPVOID)(p - GC_page_size);
877 if ((ptr_t)q > (ptr_t)p /* underflow */ || q < limit) break;
878 result = VirtualQuery(q, &buf, sizeof(buf));
879 if (result != sizeof(buf) || buf.AllocationBase == 0) break;
880 p = (ptr_t)(buf.AllocationBase);
882 return(p);
885 /* Is p the start of either the malloc heap, or of one of our */
886 /* heap sections? */
887 GC_bool GC_is_heap_base (ptr_t p)
890 register unsigned i;
892 # ifndef REDIRECT_MALLOC
893 static ptr_t malloc_heap_pointer = 0;
895 if (0 == malloc_heap_pointer) {
896 MEMORY_BASIC_INFORMATION buf;
897 register DWORD result = VirtualQuery(malloc(1), &buf, sizeof(buf));
899 if (result != sizeof(buf)) {
900 ABORT("Weird VirtualQuery result");
902 malloc_heap_pointer = (ptr_t)(buf.AllocationBase);
904 if (p == malloc_heap_pointer) return(TRUE);
905 # endif
906 for (i = 0; i < GC_n_heap_bases; i++) {
907 if (GC_heap_bases[i] == p) return(TRUE);
909 return(FALSE);
912 void GC_register_root_section(ptr_t static_root)
914 MEMORY_BASIC_INFORMATION buf;
915 SYSTEM_INFO sysinfo;
916 DWORD result;
917 DWORD protect;
918 LPVOID p;
919 char * base;
920 char * limit, * new_limit;
922 if (!GC_win32s) return;
923 p = base = limit = GC_least_described_address(static_root);
924 GetSystemInfo(&sysinfo);
925 while (p < sysinfo.lpMaximumApplicationAddress) {
926 result = VirtualQuery(p, &buf, sizeof(buf));
927 if (result != sizeof(buf) || buf.AllocationBase == 0
928 || GC_is_heap_base(buf.AllocationBase)) break;
929 new_limit = (char *)p + buf.RegionSize;
930 protect = buf.Protect;
931 if (buf.State == MEM_COMMIT
932 && is_writable(protect)) {
933 if ((char *)p == limit) {
934 limit = new_limit;
935 } else {
936 if (base != limit) GC_add_roots_inner(base, limit, FALSE);
937 base = p;
938 limit = new_limit;
941 if (p > (LPVOID)new_limit /* overflow */) break;
942 p = (LPVOID)new_limit;
944 if (base != limit) GC_add_roots_inner(base, limit, FALSE);
947 void GC_register_data_segments()
949 static char dummy;
951 GC_register_root_section((ptr_t)(&dummy));
953 # else
954 # ifdef AMIGA
956 void GC_register_data_segments()
958 struct Process *proc;
959 struct CommandLineInterface *cli;
960 BPTR myseglist;
961 ULONG *data;
963 int num;
966 # ifdef __GNUC__
967 ULONG dataSegSize;
968 GC_bool found_segment = FALSE;
969 extern char __data_size[];
971 dataSegSize=__data_size+8;
972 /* Can`t find the Location of __data_size, because
973 it`s possible that is it, inside the segment. */
975 # endif
977 proc= (struct Process*)SysBase->ThisTask;
979 /* Reference: Amiga Guru Book Pages: 538ff,565,573
980 and XOper.asm */
981 if (proc->pr_Task.tc_Node.ln_Type==NT_PROCESS) {
982 if (proc->pr_CLI == NULL) {
983 myseglist = proc->pr_SegList;
984 } else {
985 /* ProcLoaded 'Loaded as a command: '*/
986 cli = BADDR(proc->pr_CLI);
987 myseglist = cli->cli_Module;
989 } else {
990 ABORT("Not a Process.");
993 if (myseglist == NULL) {
994 ABORT("Arrrgh.. can't find segments, aborting");
997 /* xoper hunks Shell Process */
999 num=0;
1000 for (data = (ULONG *)BADDR(myseglist); data != NULL;
1001 data = (ULONG *)BADDR(data[0])) {
1002 if (((ULONG) GC_register_data_segments < (ULONG) &data[1]) ||
1003 ((ULONG) GC_register_data_segments > (ULONG) &data[1] + data[-1])) {
1004 # ifdef __GNUC__
1005 if (dataSegSize == data[-1]) {
1006 found_segment = TRUE;
1008 # endif
1009 GC_add_roots_inner((char *)&data[1],
1010 ((char *)&data[1]) + data[-1], FALSE);
1012 ++num;
1013 } /* for */
1014 # ifdef __GNUC__
1015 if (!found_segment) {
1016 ABORT("Can`t find correct Segments.\nSolution: Use an newer version of ixemul.library");
1018 # endif
1021 #if 0 /* old version */
1022 void GC_register_data_segments()
1024 extern struct WBStartup *_WBenchMsg;
1025 struct Process *proc;
1026 struct CommandLineInterface *cli;
1027 BPTR myseglist;
1028 ULONG *data;
1030 if ( _WBenchMsg != 0 ) {
1031 if ((myseglist = _WBenchMsg->sm_Segment) == 0) {
1032 GC_err_puts("No seglist from workbench\n");
1033 return;
1035 } else {
1036 if ((proc = (struct Process *)FindTask(0)) == 0) {
1037 GC_err_puts("Cannot find process structure\n");
1038 return;
1040 if ((cli = BADDR(proc->pr_CLI)) == 0) {
1041 GC_err_puts("No CLI\n");
1042 return;
1044 if ((myseglist = cli->cli_Module) == 0) {
1045 GC_err_puts("No seglist from CLI\n");
1046 return;
1050 for (data = (ULONG *)BADDR(myseglist); data != 0;
1051 data = (ULONG *)BADDR(data[0])) {
1052 # ifdef AMIGA_SKIP_SEG
1053 if (((ULONG) GC_register_data_segments < (ULONG) &data[1]) ||
1054 ((ULONG) GC_register_data_segments > (ULONG) &data[1] + data[-1])) {
1055 # else
1057 # endif /* AMIGA_SKIP_SEG */
1058 GC_add_roots_inner((char *)&data[1],
1059 ((char *)&data[1]) + data[-1], FALSE);
1063 #endif /* old version */
1066 # else
1068 # if (defined(SVR4) || defined(AUX) || defined(DGUX)) && !defined(PCR)
1069 char * GC_SysVGetDataStart(max_page_size, etext_addr)
1070 int max_page_size;
1071 int * etext_addr;
1073 word text_end = ((word)(etext_addr) + sizeof(word) - 1)
1074 & ~(sizeof(word) - 1);
1075 /* etext rounded to word boundary */
1076 word next_page = ((text_end + (word)max_page_size - 1)
1077 & ~((word)max_page_size - 1));
1078 word page_offset = (text_end & ((word)max_page_size - 1));
1079 VOLATILE char * result = (char *)(next_page + page_offset);
1080 /* Note that this isnt equivalent to just adding */
1081 /* max_page_size to &etext if &etext is at a page boundary */
1083 GC_setup_temporary_fault_handler();
1084 if (setjmp(GC_jmp_buf) == 0) {
1085 /* Try writing to the address. */
1086 *result = *result;
1087 GC_reset_fault_handler();
1088 } else {
1089 GC_reset_fault_handler();
1090 /* We got here via a longjmp. The address is not readable. */
1091 /* This is known to happen under Solaris 2.4 + gcc, which place */
1092 /* string constants in the text segment, but after etext. */
1093 /* Use plan B. Note that we now know there is a gap between */
1094 /* text and data segments, so plan A bought us something. */
1095 result = (char *)GC_find_limit((ptr_t)(DATAEND) - MIN_PAGE_SIZE, FALSE);
1097 return((char *)result);
1099 # endif
1102 void GC_register_data_segments()
1104 # if !defined(PCR) && !defined(SRC_M3) && !defined(NEXT) && !defined(MACOS) \
1105 && !defined(MACOSX)
1106 # if defined(REDIRECT_MALLOC) && defined(SOLARIS_THREADS)
1107 /* As of Solaris 2.3, the Solaris threads implementation */
1108 /* allocates the data structure for the initial thread with */
1109 /* sbrk at process startup. It needs to be scanned, so that */
1110 /* we don't lose some malloc allocated data structures */
1111 /* hanging from it. We're on thin ice here ... */
1112 extern caddr_t sbrk();
1114 GC_add_roots_inner(DATASTART, (char *)sbrk(0), FALSE);
1115 # else
1116 GC_add_roots_inner(DATASTART, (char *)(DATAEND), FALSE);
1117 # endif
1118 # endif
1119 # if !defined(PCR) && (defined(NEXT) || defined(MACOSX))
1120 GC_add_roots_inner(DATASTART, (char *) get_end(), FALSE);
1121 # endif
1122 # if defined(MACOS)
1124 # if defined(THINK_C)
1125 extern void* GC_MacGetDataStart(void);
1126 /* globals begin above stack and end at a5. */
1127 GC_add_roots_inner((ptr_t)GC_MacGetDataStart(),
1128 (ptr_t)LMGetCurrentA5(), FALSE);
1129 # else
1130 # if defined(__MWERKS__)
1131 # if !__POWERPC__
1132 extern void* GC_MacGetDataStart(void);
1133 /* MATTHEW: Function to handle Far Globals (CW Pro 3) */
1134 # if __option(far_data)
1135 extern void* GC_MacGetDataEnd(void);
1136 # endif
1137 /* globals begin above stack and end at a5. */
1138 GC_add_roots_inner((ptr_t)GC_MacGetDataStart(),
1139 (ptr_t)LMGetCurrentA5(), FALSE);
1140 /* MATTHEW: Handle Far Globals */
1141 # if __option(far_data)
1142 /* Far globals follow he QD globals: */
1143 GC_add_roots_inner((ptr_t)LMGetCurrentA5(),
1144 (ptr_t)GC_MacGetDataEnd(), FALSE);
1145 # endif
1146 # else
1147 extern char __data_start__[], __data_end__[];
1148 GC_add_roots_inner((ptr_t)&__data_start__,
1149 (ptr_t)&__data_end__, FALSE);
1150 # endif /* __POWERPC__ */
1151 # endif /* __MWERKS__ */
1152 # endif /* !THINK_C */
1154 # endif /* MACOS */
1156 /* Dynamic libraries are added at every collection, since they may */
1157 /* change. */
1160 # endif /* ! AMIGA */
1161 # endif /* ! MSWIN32 */
1162 # endif /* ! OS2 */
1165 * Auxiliary routines for obtaining memory from OS.
1168 # if !defined(OS2) && !defined(PCR) && !defined(AMIGA) \
1169 && !defined(MSWIN32) && !defined(MACOS) && !defined(DOS4GW)
1171 # ifdef SUNOS4
1172 extern caddr_t sbrk();
1173 # endif
1174 # ifdef __STDC__
1175 # define SBRK_ARG_T ptrdiff_t
1176 # else
1177 # define SBRK_ARG_T int
1178 # endif
1180 # ifdef RS6000
1181 /* The compiler seems to generate speculative reads one past the end of */
1182 /* an allocated object. Hence we need to make sure that the page */
1183 /* following the last heap page is also mapped. */
1184 ptr_t GC_unix_get_mem(bytes)
1185 word bytes;
1187 caddr_t cur_brk = (caddr_t)sbrk(0);
1188 caddr_t result;
1189 SBRK_ARG_T lsbs = (word)cur_brk & (GC_page_size-1);
1190 static caddr_t my_brk_val = 0;
1192 if ((SBRK_ARG_T)bytes < 0) return(0); /* too big */
1193 if (lsbs != 0) {
1194 if((caddr_t)(sbrk(GC_page_size - lsbs)) == (caddr_t)(-1)) return(0);
1196 if (cur_brk == my_brk_val) {
1197 /* Use the extra block we allocated last time. */
1198 result = (ptr_t)sbrk((SBRK_ARG_T)bytes);
1199 if (result == (caddr_t)(-1)) return(0);
1200 result -= GC_page_size;
1201 } else {
1202 result = (ptr_t)sbrk(GC_page_size + (SBRK_ARG_T)bytes);
1203 if (result == (caddr_t)(-1)) return(0);
1205 my_brk_val = result + bytes + GC_page_size; /* Always page aligned */
1206 return((ptr_t)result);
1209 #else /* Not RS6000 */
1211 #if defined(USE_MMAP)
1212 /* Tested only under IRIX5 and Solaris 2 */
1214 #ifdef USE_MMAP_FIXED
1215 # define GC_MMAP_FLAGS MAP_FIXED | MAP_PRIVATE
1216 /* Seems to yield better performance on Solaris 2, but can */
1217 /* be unreliable if something is already mapped at the address. */
1218 #else
1219 # define GC_MMAP_FLAGS MAP_PRIVATE
1220 #endif
1222 ptr_t GC_unix_get_mem(bytes)
1223 word bytes;
1225 static GC_bool initialized = FALSE;
1226 static int fd;
1227 void *result;
1228 static ptr_t last_addr = HEAP_START;
1230 if (!initialized) {
1231 fd = open("/dev/zero", O_RDONLY);
1232 initialized = TRUE;
1234 if (bytes & (GC_page_size -1)) ABORT("Bad GET_MEM arg");
1235 result = mmap(last_addr, bytes, PROT_READ | PROT_WRITE | OPT_PROT_EXEC,
1236 GC_MMAP_FLAGS, fd, 0/* offset */);
1237 if (result == MAP_FAILED) return(0);
1238 last_addr = (ptr_t)result + bytes + GC_page_size - 1;
1239 last_addr = (ptr_t)((word)last_addr & ~(GC_page_size - 1));
1240 return((ptr_t)result);
1243 #else /* Not RS6000, not USE_MMAP */
1244 ptr_t GC_unix_get_mem(bytes)
1245 word bytes;
1247 ptr_t result;
1248 # ifdef IRIX5
1249 /* Bare sbrk isn't thread safe. Play by malloc rules. */
1250 /* The equivalent may be needed on other systems as well. */
1251 __LOCK_MALLOC();
1252 # endif
1254 ptr_t cur_brk = (ptr_t)sbrk(0);
1255 SBRK_ARG_T lsbs = (word)cur_brk & (GC_page_size-1);
1257 if ((SBRK_ARG_T)bytes < 0) return(0); /* too big */
1258 if (lsbs != 0) {
1259 if((ptr_t)sbrk(GC_page_size - lsbs) == (ptr_t)(-1)) return(0);
1261 result = (ptr_t)sbrk((SBRK_ARG_T)bytes);
1262 if (result == (ptr_t)(-1)) result = 0;
1264 # ifdef IRIX5
1265 __UNLOCK_MALLOC();
1266 # endif
1267 return(result);
1270 #endif /* Not USE_MMAP */
1271 #endif /* Not RS6000 */
1273 # endif /* UN*X */
1275 # ifdef OS2
1277 void * os2_alloc(size_t bytes)
1279 void * result;
1281 if (DosAllocMem(&result, bytes, PAG_EXECUTE | PAG_READ |
1282 PAG_WRITE | PAG_COMMIT)
1283 != NO_ERROR) {
1284 return(0);
1286 if (result == 0) return(os2_alloc(bytes));
1287 return(result);
1290 # endif /* OS2 */
1293 # ifdef MSWIN32
1294 word GC_n_heap_bases = 0;
1296 ptr_t GC_win32_get_mem(bytes)
1297 word bytes;
1299 ptr_t result;
1301 if (GC_win32s) {
1302 /* VirtualAlloc doesn't like PAGE_EXECUTE_READWRITE. */
1303 /* There are also unconfirmed rumors of other */
1304 /* problems, so we dodge the issue. */
1305 result = (ptr_t) GlobalAlloc(0, bytes + HBLKSIZE);
1306 result = (ptr_t)(((word)result + HBLKSIZE) & ~(HBLKSIZE-1));
1307 } else {
1308 result = (ptr_t) VirtualAlloc(NULL, bytes,
1309 MEM_COMMIT | MEM_RESERVE,
1310 PAGE_EXECUTE_READWRITE);
1312 if (HBLKDISPL(result) != 0) ABORT("Bad VirtualAlloc result");
1313 /* If I read the documentation correctly, this can */
1314 /* only happen if HBLKSIZE > 64k or not a power of 2. */
1315 if (GC_n_heap_bases >= MAX_HEAP_SECTS) ABORT("Too many heap sections");
1316 GC_heap_bases[GC_n_heap_bases++] = result;
1317 return(result);
1320 void GC_win32_free_heap ()
1322 if (GC_win32s) {
1323 while (GC_n_heap_bases > 0) {
1324 GlobalFree (GC_heap_bases[--GC_n_heap_bases]);
1325 GC_heap_bases[GC_n_heap_bases] = 0;
1331 # endif
1333 #ifdef USE_MUNMAP
1335 /* For now, this only works on some Unix-like systems. If you */
1336 /* have something else, don't define USE_MUNMAP. */
1337 /* We assume ANSI C to support this feature. */
1338 #include <unistd.h>
1339 #include <sys/mman.h>
1340 #include <sys/stat.h>
1341 #include <sys/types.h>
1342 #include <fcntl.h>
1344 /* Compute a page aligned starting address for the unmap */
1345 /* operation on a block of size bytes starting at start. */
1346 /* Return 0 if the block is too small to make this feasible. */
1347 ptr_t GC_unmap_start(ptr_t start, word bytes)
1349 ptr_t result = start;
1350 /* Round start to next page boundary. */
1351 result += GC_page_size - 1;
1352 result = (ptr_t)((word)result & ~(GC_page_size - 1));
1353 if (result + GC_page_size > start + bytes) return 0;
1354 return result;
1357 /* Compute end address for an unmap operation on the indicated */
1358 /* block. */
1359 ptr_t GC_unmap_end(ptr_t start, word bytes)
1361 ptr_t end_addr = start + bytes;
1362 end_addr = (ptr_t)((word)end_addr & ~(GC_page_size - 1));
1363 return end_addr;
1366 /* We assume that GC_remap is called on exactly the same range */
1367 /* as a previous call to GC_unmap. It is safe to consistently */
1368 /* round the endpoints in both places. */
1369 void GC_unmap(ptr_t start, word bytes)
1371 ptr_t start_addr = GC_unmap_start(start, bytes);
1372 ptr_t end_addr = GC_unmap_end(start, bytes);
1373 word len = end_addr - start_addr;
1374 if (0 == start_addr) return;
1375 if (munmap(start_addr, len) != 0) ABORT("munmap failed");
1376 GC_unmapped_bytes += len;
1380 void GC_remap(ptr_t start, word bytes)
1382 static int zero_descr = -1;
1383 ptr_t start_addr = GC_unmap_start(start, bytes);
1384 ptr_t end_addr = GC_unmap_end(start, bytes);
1385 word len = end_addr - start_addr;
1386 ptr_t result;
1388 if (-1 == zero_descr) zero_descr = open("/dev/zero", O_RDWR);
1389 if (0 == start_addr) return;
1390 result = mmap(start_addr, len, PROT_READ | PROT_WRITE | OPT_PROT_EXEC,
1391 MAP_FIXED | MAP_PRIVATE, zero_descr, 0);
1392 if (result != start_addr) {
1393 ABORT("mmap remapping failed");
1395 GC_unmapped_bytes -= len;
1398 /* Two adjacent blocks have already been unmapped and are about to */
1399 /* be merged. Unmap the whole block. This typically requires */
1400 /* that we unmap a small section in the middle that was not previously */
1401 /* unmapped due to alignment constraints. */
1402 void GC_unmap_gap(ptr_t start1, word bytes1, ptr_t start2, word bytes2)
1404 ptr_t start1_addr = GC_unmap_start(start1, bytes1);
1405 ptr_t end1_addr = GC_unmap_end(start1, bytes1);
1406 ptr_t start2_addr = GC_unmap_start(start2, bytes2);
1407 ptr_t end2_addr = GC_unmap_end(start2, bytes2);
1408 ptr_t start_addr = end1_addr;
1409 ptr_t end_addr = start2_addr;
1410 word len;
1411 GC_ASSERT(start1 + bytes1 == start2);
1412 if (0 == start1_addr) start_addr = GC_unmap_start(start1, bytes1 + bytes2);
1413 if (0 == start2_addr) end_addr = GC_unmap_end(start1, bytes1 + bytes2);
1414 if (0 == start_addr) return;
1415 len = end_addr - start_addr;
1416 if (len != 0 && munmap(start_addr, len) != 0) ABORT("munmap failed");
1417 GC_unmapped_bytes += len;
1420 #endif /* USE_MUNMAP */
1422 /* Routine for pushing any additional roots. In THREADS */
1423 /* environment, this is also responsible for marking from */
1424 /* thread stacks. In the SRC_M3 case, it also handles */
1425 /* global variables. */
1426 #ifndef THREADS
1427 void (*GC_push_other_roots)() = 0;
1428 #else /* THREADS */
1430 # ifdef PCR
1431 PCR_ERes GC_push_thread_stack(PCR_Th_T *t, PCR_Any dummy)
1433 struct PCR_ThCtl_TInfoRep info;
1434 PCR_ERes result;
1436 info.ti_stkLow = info.ti_stkHi = 0;
1437 result = PCR_ThCtl_GetInfo(t, &info);
1438 GC_push_all_stack((ptr_t)(info.ti_stkLow), (ptr_t)(info.ti_stkHi));
1439 return(result);
1442 /* Push the contents of an old object. We treat this as stack */
1443 /* data only becasue that makes it robust against mark stack */
1444 /* overflow. */
1445 PCR_ERes GC_push_old_obj(void *p, size_t size, PCR_Any data)
1447 GC_push_all_stack((ptr_t)p, (ptr_t)p + size);
1448 return(PCR_ERes_okay);
1452 void GC_default_push_other_roots()
1454 /* Traverse data allocated by previous memory managers. */
1456 extern struct PCR_MM_ProcsRep * GC_old_allocator;
1458 if ((*(GC_old_allocator->mmp_enumerate))(PCR_Bool_false,
1459 GC_push_old_obj, 0)
1460 != PCR_ERes_okay) {
1461 ABORT("Old object enumeration failed");
1464 /* Traverse all thread stacks. */
1465 if (PCR_ERes_IsErr(
1466 PCR_ThCtl_ApplyToAllOtherThreads(GC_push_thread_stack,0))
1467 || PCR_ERes_IsErr(GC_push_thread_stack(PCR_Th_CurrThread(), 0))) {
1468 ABORT("Thread stack marking failed\n");
1472 # endif /* PCR */
1474 # ifdef SRC_M3
1476 # ifdef ALL_INTERIOR_POINTERS
1477 --> misconfigured
1478 # endif
1481 extern void ThreadF__ProcessStacks();
1483 void GC_push_thread_stack(start, stop)
1484 word start, stop;
1486 GC_push_all_stack((ptr_t)start, (ptr_t)stop + sizeof(word));
1489 /* Push routine with M3 specific calling convention. */
1490 GC_m3_push_root(dummy1, p, dummy2, dummy3)
1491 word *p;
1492 ptr_t dummy1, dummy2;
1493 int dummy3;
1495 word q = *p;
1497 if ((ptr_t)(q) >= GC_least_plausible_heap_addr
1498 && (ptr_t)(q) < GC_greatest_plausible_heap_addr) {
1499 GC_push_one_checked(q,FALSE);
1503 /* M3 set equivalent to RTHeap.TracedRefTypes */
1504 typedef struct { int elts[1]; } RefTypeSet;
1505 RefTypeSet GC_TracedRefTypes = {{0x1}};
1507 /* From finalize.c */
1508 extern void GC_push_finalizer_structures();
1510 /* From stubborn.c: */
1511 # ifdef STUBBORN_ALLOC
1512 extern GC_PTR * GC_changing_list_start;
1513 # endif
1516 void GC_default_push_other_roots()
1518 /* Use the M3 provided routine for finding static roots. */
1519 /* This is a bit dubious, since it presumes no C roots. */
1520 /* We handle the collector roots explicitly. */
1522 # ifdef STUBBORN_ALLOC
1523 GC_push_one(GC_changing_list_start);
1524 # endif
1525 GC_push_finalizer_structures();
1526 RTMain__GlobalMapProc(GC_m3_push_root, 0, GC_TracedRefTypes);
1528 if (GC_words_allocd > 0) {
1529 ThreadF__ProcessStacks(GC_push_thread_stack);
1531 /* Otherwise this isn't absolutely necessary, and we have */
1532 /* startup ordering problems. */
1535 # endif /* SRC_M3 */
1537 # if defined(SOLARIS_THREADS) || defined(WIN32_THREADS) \
1538 || defined(IRIX_THREADS) || defined(LINUX_THREADS) \
1539 || defined(IRIX_JDK_THREADS) || defined(HPUX_THREADS) \
1540 || defined(QUICK_THREADS)
1542 extern void GC_push_all_stacks();
1544 void GC_default_push_other_roots()
1546 GC_push_all_stacks();
1549 # endif /* SOLARIS_THREADS || ... */
1551 void (*GC_push_other_roots)() = GC_default_push_other_roots;
1553 #endif
1556 * Routines for accessing dirty bits on virtual pages.
1557 * We plan to eventaually implement four strategies for doing so:
1558 * DEFAULT_VDB: A simple dummy implementation that treats every page
1559 * as possibly dirty. This makes incremental collection
1560 * useless, but the implementation is still correct.
1561 * PCR_VDB: Use PPCRs virtual dirty bit facility.
1562 * PROC_VDB: Use the /proc facility for reading dirty bits. Only
1563 * works under some SVR4 variants. Even then, it may be
1564 * too slow to be entirely satisfactory. Requires reading
1565 * dirty bits for entire address space. Implementations tend
1566 * to assume that the client is a (slow) debugger.
1567 * MPROTECT_VDB:Protect pages and then catch the faults to keep track of
1568 * dirtied pages. The implementation (and implementability)
1569 * is highly system dependent. This usually fails when system
1570 * calls write to a protected page. We prevent the read system
1571 * call from doing so. It is the clients responsibility to
1572 * make sure that other system calls are similarly protected
1573 * or write only to the stack.
1576 GC_bool GC_dirty_maintained = FALSE;
1578 # ifdef DEFAULT_VDB
1580 /* All of the following assume the allocation lock is held, and */
1581 /* signals are disabled. */
1583 /* The client asserts that unallocated pages in the heap are never */
1584 /* written. */
1586 /* Initialize virtual dirty bit implementation. */
1587 void GC_dirty_init()
1589 GC_dirty_maintained = TRUE;
1592 /* Retrieve system dirty bits for heap to a local buffer. */
1593 /* Restore the systems notion of which pages are dirty. */
1594 void GC_read_dirty()
1597 /* Is the HBLKSIZE sized page at h marked dirty in the local buffer? */
1598 /* If the actual page size is different, this returns TRUE if any */
1599 /* of the pages overlapping h are dirty. This routine may err on the */
1600 /* side of labelling pages as dirty (and this implementation does). */
1601 /*ARGSUSED*/
1602 GC_bool GC_page_was_dirty(h)
1603 struct hblk *h;
1605 return(TRUE);
1609 * The following two routines are typically less crucial. They matter
1610 * most with large dynamic libraries, or if we can't accurately identify
1611 * stacks, e.g. under Solaris 2.X. Otherwise the following default
1612 * versions are adequate.
1615 /* Could any valid GC heap pointer ever have been written to this page? */
1616 /*ARGSUSED*/
1617 GC_bool GC_page_was_ever_dirty(h)
1618 struct hblk *h;
1620 return(TRUE);
1623 /* Reset the n pages starting at h to "was never dirty" status. */
1624 void GC_is_fresh(h, n)
1625 struct hblk *h;
1626 word n;
1630 /* A call hints that h is about to be written. */
1631 /* May speed up some dirty bit implementations. */
1632 /*ARGSUSED*/
1633 void GC_write_hint(h)
1634 struct hblk *h;
1638 # endif /* DEFAULT_VDB */
1641 # ifdef MPROTECT_VDB
1644 * See DEFAULT_VDB for interface descriptions.
1648 * This implementation maintains dirty bits itself by catching write
1649 * faults and keeping track of them. We assume nobody else catches
1650 * SIGBUS or SIGSEGV. We assume no write faults occur in system calls
1651 * except as a result of a read system call. This means clients must
1652 * either ensure that system calls do not touch the heap, or must
1653 * provide their own wrappers analogous to the one for read.
1654 * We assume the page size is a multiple of HBLKSIZE.
1655 * This implementation is currently SunOS 4.X and IRIX 5.X specific, though we
1656 * tried to use portable code where easily possible. It is known
1657 * not to work under a number of other systems.
1660 # ifndef MSWIN32
1662 # include <sys/mman.h>
1663 # include <signal.h>
1664 # include <sys/syscall.h>
1666 # define PROTECT(addr, len) \
1667 if (mprotect((caddr_t)(addr), (size_t)(len), \
1668 PROT_READ | OPT_PROT_EXEC) < 0) { \
1669 ABORT("mprotect failed"); \
1671 # define UNPROTECT(addr, len) \
1672 if (mprotect((caddr_t)(addr), (size_t)(len), \
1673 PROT_WRITE | PROT_READ | OPT_PROT_EXEC ) < 0) { \
1674 ABORT("un-mprotect failed"); \
1677 # else
1679 # include <signal.h>
1681 static DWORD protect_junk;
1682 # define PROTECT(addr, len) \
1683 if (!VirtualProtect((addr), (len), PAGE_EXECUTE_READ, \
1684 &protect_junk)) { \
1685 DWORD last_error = GetLastError(); \
1686 GC_printf1("Last error code: %lx\n", last_error); \
1687 ABORT("VirtualProtect failed"); \
1689 # define UNPROTECT(addr, len) \
1690 if (!VirtualProtect((addr), (len), PAGE_EXECUTE_READWRITE, \
1691 &protect_junk)) { \
1692 ABORT("un-VirtualProtect failed"); \
1695 # endif
1697 #if defined(SUNOS4) || defined(FREEBSD)
1698 typedef void (* SIG_PF)();
1699 #endif
1700 #if defined(SUNOS5SIGS) || defined(OSF1) || defined(LINUX)
1701 # ifdef __STDC__
1702 typedef void (* SIG_PF)(int);
1703 # else
1704 typedef void (* SIG_PF)();
1705 # endif
1706 #endif
1707 #if defined(MSWIN32)
1708 typedef LPTOP_LEVEL_EXCEPTION_FILTER SIG_PF;
1709 # undef SIG_DFL
1710 # define SIG_DFL (LPTOP_LEVEL_EXCEPTION_FILTER) (-1)
1711 #endif
1713 #if defined(IRIX5) || defined(OSF1)
1714 typedef void (* REAL_SIG_PF)(int, int, struct sigcontext *);
1715 #endif
1716 #if defined(SUNOS5SIGS)
1717 # ifdef HPUX
1718 # define SIGINFO __siginfo
1719 # else
1720 # define SIGINFO siginfo
1721 # endif
1722 # ifdef __STDC__
1723 typedef void (* REAL_SIG_PF)(int, struct SIGINFO *, void *);
1724 # else
1725 typedef void (* REAL_SIG_PF)();
1726 # endif
1727 #endif
1728 #if defined(LINUX)
1729 # include <linux/version.h>
1730 # if (LINUX_VERSION_CODE >= 0x20100) && !defined(M68K) || defined(ALPHA) || defined(IA64)
1731 typedef struct sigcontext s_c;
1732 # else
1733 typedef struct sigcontext_struct s_c;
1734 # endif
1735 # if defined(ALPHA) || defined(M68K)
1736 typedef void (* REAL_SIG_PF)(int, int, s_c *);
1737 # else
1738 # if defined(IA64)
1739 typedef void (* REAL_SIG_PF)(int, siginfo_t *, s_c *);
1740 # else
1741 typedef void (* REAL_SIG_PF)(int, s_c);
1742 # endif
1743 # endif
1744 # ifdef ALPHA
1745 /* Retrieve fault address from sigcontext structure by decoding */
1746 /* instruction. */
1747 char * get_fault_addr(s_c *sc) {
1748 unsigned instr;
1749 word faultaddr;
1751 instr = *((unsigned *)(sc->sc_pc));
1752 faultaddr = sc->sc_regs[(instr >> 16) & 0x1f];
1753 faultaddr += (word) (((int)instr << 16) >> 16);
1754 return (char *)faultaddr;
1756 # endif /* !ALPHA */
1757 # endif
1759 SIG_PF GC_old_bus_handler;
1760 SIG_PF GC_old_segv_handler; /* Also old MSWIN32 ACCESS_VIOLATION filter */
1762 /*ARGSUSED*/
1763 # if defined (SUNOS4) || defined(FREEBSD)
1764 void GC_write_fault_handler(sig, code, scp, addr)
1765 int sig, code;
1766 struct sigcontext *scp;
1767 char * addr;
1768 # ifdef SUNOS4
1769 # define SIG_OK (sig == SIGSEGV || sig == SIGBUS)
1770 # define CODE_OK (FC_CODE(code) == FC_PROT \
1771 || (FC_CODE(code) == FC_OBJERR \
1772 && FC_ERRNO(code) == FC_PROT))
1773 # endif
1774 # ifdef FREEBSD
1775 # define SIG_OK (sig == SIGBUS)
1776 # define CODE_OK (code == BUS_PAGE_FAULT)
1777 # endif
1778 # endif
1779 # if defined(IRIX5) || defined(OSF1)
1780 # include <errno.h>
1781 void GC_write_fault_handler(int sig, int code, struct sigcontext *scp)
1782 # define SIG_OK (sig == SIGSEGV)
1783 # ifdef OSF1
1784 # define CODE_OK (code == 2 /* experimentally determined */)
1785 # endif
1786 # ifdef IRIX5
1787 # define CODE_OK (code == EACCES)
1788 # endif
1789 # endif
1790 # if defined(LINUX)
1791 # if defined(ALPHA) || defined(M68K)
1792 void GC_write_fault_handler(int sig, int code, s_c * sc)
1793 # else
1794 # if defined(IA64)
1795 void GC_write_fault_handler(int sig, siginfo_t * si, s_c * scp)
1796 # else
1797 void GC_write_fault_handler(int sig, s_c sc)
1798 # endif
1799 # endif
1800 # define SIG_OK (sig == SIGSEGV)
1801 # define CODE_OK TRUE
1802 /* Empirically c.trapno == 14, on IA32, but is that useful? */
1803 /* Should probably consider alignment issues on other */
1804 /* architectures. */
1805 # endif
1806 # if defined(SUNOS5SIGS)
1807 # ifdef __STDC__
1808 void GC_write_fault_handler(int sig, struct SIGINFO *scp, void * context)
1809 # else
1810 void GC_write_fault_handler(sig, scp, context)
1811 int sig;
1812 struct SIGINFO *scp;
1813 void * context;
1814 # endif
1815 # ifdef HPUX
1816 # define SIG_OK (sig == SIGSEGV || sig == SIGBUS)
1817 # define CODE_OK (scp -> si_code == SEGV_ACCERR) \
1818 || (scp -> si_code == BUS_ADRERR) \
1819 || (scp -> si_code == BUS_UNKNOWN) \
1820 || (scp -> si_code == SEGV_UNKNOWN) \
1821 || (scp -> si_code == BUS_OBJERR)
1822 # else
1823 # define SIG_OK (sig == SIGSEGV)
1824 # define CODE_OK (scp -> si_code == SEGV_ACCERR)
1825 # endif
1826 # endif
1827 # if defined(MSWIN32)
1828 LONG WINAPI GC_write_fault_handler(struct _EXCEPTION_POINTERS *exc_info)
1829 # define SIG_OK (exc_info -> ExceptionRecord -> ExceptionCode == \
1830 EXCEPTION_ACCESS_VIOLATION)
1831 # define CODE_OK (exc_info -> ExceptionRecord -> ExceptionInformation[0] == 1)
1832 /* Write fault */
1833 # endif
1835 register unsigned i;
1836 # ifdef IRIX5
1837 char * addr = (char *) (size_t) (scp -> sc_badvaddr);
1838 # endif
1839 # if defined(OSF1) && defined(ALPHA)
1840 char * addr = (char *) (scp -> sc_traparg_a0);
1841 # endif
1842 # ifdef SUNOS5SIGS
1843 char * addr = (char *) (scp -> si_addr);
1844 # endif
1845 # ifdef LINUX
1846 # ifdef I386
1847 char * addr = (char *) (sc.cr2);
1848 # else
1849 # if defined(M68K)
1850 char * addr = NULL;
1852 struct sigcontext *scp = (struct sigcontext *)(&sc);
1854 int format = (scp->sc_formatvec >> 12) & 0xf;
1855 unsigned long *framedata = (unsigned long *)(scp + 1);
1856 unsigned long ea;
1858 if (format == 0xa || format == 0xb) {
1859 /* 68020/030 */
1860 ea = framedata[2];
1861 } else if (format == 7) {
1862 /* 68040 */
1863 ea = framedata[3];
1864 } else if (format == 4) {
1865 /* 68060 */
1866 ea = framedata[0];
1867 if (framedata[1] & 0x08000000) {
1868 /* correct addr on misaligned access */
1869 ea = (ea+4095)&(~4095);
1872 addr = (char *)ea;
1873 # else
1874 # ifdef ALPHA
1875 char * addr = get_fault_addr(sc);
1876 # else
1877 # ifdef IA64
1878 char * addr = si -> si_addr;
1879 # else
1880 # if defined(POWERPC)
1881 char * addr = (char *) (sc.regs->dar);
1882 # else
1883 --> architecture not supported
1884 # endif
1885 # endif
1886 # endif
1887 # endif
1888 # endif
1889 # endif
1890 # if defined(MSWIN32)
1891 char * addr = (char *) (exc_info -> ExceptionRecord
1892 -> ExceptionInformation[1]);
1893 # define sig SIGSEGV
1894 # endif
1896 if (SIG_OK && CODE_OK) {
1897 register struct hblk * h =
1898 (struct hblk *)((word)addr & ~(GC_page_size-1));
1899 GC_bool in_allocd_block;
1901 # ifdef SUNOS5SIGS
1902 /* Address is only within the correct physical page. */
1903 in_allocd_block = FALSE;
1904 for (i = 0; i < divHBLKSZ(GC_page_size); i++) {
1905 if (HDR(h+i) != 0) {
1906 in_allocd_block = TRUE;
1909 # else
1910 in_allocd_block = (HDR(addr) != 0);
1911 # endif
1912 if (!in_allocd_block) {
1913 /* Heap blocks now begin and end on page boundaries */
1914 SIG_PF old_handler;
1916 if (sig == SIGSEGV) {
1917 old_handler = GC_old_segv_handler;
1918 } else {
1919 old_handler = GC_old_bus_handler;
1921 if (old_handler == SIG_DFL) {
1922 # ifndef MSWIN32
1923 GC_err_printf1("Segfault at 0x%lx\n", addr);
1924 ABORT("Unexpected bus error or segmentation fault");
1925 # else
1926 return(EXCEPTION_CONTINUE_SEARCH);
1927 # endif
1928 } else {
1929 # if defined (SUNOS4) || defined(FREEBSD)
1930 (*old_handler) (sig, code, scp, addr);
1931 return;
1932 # endif
1933 # if defined (SUNOS5SIGS)
1934 (*(REAL_SIG_PF)old_handler) (sig, scp, context);
1935 return;
1936 # endif
1937 # if defined (LINUX)
1938 # if defined(ALPHA) || defined(M68K)
1939 (*(REAL_SIG_PF)old_handler) (sig, code, sc);
1940 # else
1941 # if defined(IA64)
1942 (*(REAL_SIG_PF)old_handler) (sig, si, scp);
1943 # else
1944 (*(REAL_SIG_PF)old_handler) (sig, sc);
1945 # endif
1946 # endif
1947 return;
1948 # endif
1949 # if defined (IRIX5) || defined(OSF1)
1950 (*(REAL_SIG_PF)old_handler) (sig, code, scp);
1951 return;
1952 # endif
1953 # ifdef MSWIN32
1954 return((*old_handler)(exc_info));
1955 # endif
1958 for (i = 0; i < divHBLKSZ(GC_page_size); i++) {
1959 register int index = PHT_HASH(h+i);
1961 set_pht_entry_from_index(GC_dirty_pages, index);
1963 UNPROTECT(h, GC_page_size);
1964 # if defined(OSF1) || defined(LINUX)
1965 /* These reset the signal handler each time by default. */
1966 signal(SIGSEGV, (SIG_PF) GC_write_fault_handler);
1967 # endif
1968 /* The write may not take place before dirty bits are read. */
1969 /* But then we'll fault again ... */
1970 # ifdef MSWIN32
1971 return(EXCEPTION_CONTINUE_EXECUTION);
1972 # else
1973 return;
1974 # endif
1976 #ifdef MSWIN32
1977 return EXCEPTION_CONTINUE_SEARCH;
1978 #else
1979 GC_err_printf1("Segfault at 0x%lx\n", addr);
1980 ABORT("Unexpected bus error or segmentation fault");
1981 #endif
1985 * We hold the allocation lock. We expect block h to be written
1986 * shortly.
1988 void GC_write_hint(h)
1989 struct hblk *h;
1991 register struct hblk * h_trunc;
1992 register unsigned i;
1993 register GC_bool found_clean;
1995 if (!GC_dirty_maintained) return;
1996 h_trunc = (struct hblk *)((word)h & ~(GC_page_size-1));
1997 found_clean = FALSE;
1998 for (i = 0; i < divHBLKSZ(GC_page_size); i++) {
1999 register int index = PHT_HASH(h_trunc+i);
2001 if (!get_pht_entry_from_index(GC_dirty_pages, index)) {
2002 found_clean = TRUE;
2003 set_pht_entry_from_index(GC_dirty_pages, index);
2006 if (found_clean) {
2007 UNPROTECT(h_trunc, GC_page_size);
2011 void GC_dirty_init()
2013 #if defined(SUNOS5SIGS) || defined(IRIX5) /* || defined(OSF1) */
2014 struct sigaction act, oldact;
2015 # ifdef IRIX5
2016 act.sa_flags = SA_RESTART;
2017 act.sa_handler = GC_write_fault_handler;
2018 # else
2019 act.sa_flags = SA_RESTART | SA_SIGINFO;
2020 act.sa_sigaction = GC_write_fault_handler;
2021 # endif
2022 (void)sigemptyset(&act.sa_mask);
2023 #endif
2024 # ifdef PRINTSTATS
2025 GC_printf0("Inititalizing mprotect virtual dirty bit implementation\n");
2026 # endif
2027 GC_dirty_maintained = TRUE;
2028 if (GC_page_size % HBLKSIZE != 0) {
2029 GC_err_printf0("Page size not multiple of HBLKSIZE\n");
2030 ABORT("Page size not multiple of HBLKSIZE");
2032 # if defined(SUNOS4) || defined(FREEBSD)
2033 GC_old_bus_handler = signal(SIGBUS, GC_write_fault_handler);
2034 if (GC_old_bus_handler == SIG_IGN) {
2035 GC_err_printf0("Previously ignored bus error!?");
2036 GC_old_bus_handler = SIG_DFL;
2038 if (GC_old_bus_handler != SIG_DFL) {
2039 # ifdef PRINTSTATS
2040 GC_err_printf0("Replaced other SIGBUS handler\n");
2041 # endif
2043 # endif
2044 # if defined(OSF1) || defined(SUNOS4) || defined(LINUX)
2045 GC_old_segv_handler = signal(SIGSEGV, (SIG_PF)GC_write_fault_handler);
2046 if (GC_old_segv_handler == SIG_IGN) {
2047 GC_err_printf0("Previously ignored segmentation violation!?");
2048 GC_old_segv_handler = SIG_DFL;
2050 if (GC_old_segv_handler != SIG_DFL) {
2051 # ifdef PRINTSTATS
2052 GC_err_printf0("Replaced other SIGSEGV handler\n");
2053 # endif
2055 # endif
2056 # if defined(SUNOS5SIGS) || defined(IRIX5)
2057 # if defined(IRIX_THREADS) || defined(IRIX_JDK_THREADS)
2058 sigaction(SIGSEGV, 0, &oldact);
2059 sigaction(SIGSEGV, &act, 0);
2060 # else
2061 sigaction(SIGSEGV, &act, &oldact);
2062 # endif
2063 # if defined(_sigargs)
2064 /* This is Irix 5.x, not 6.x. Irix 5.x does not have */
2065 /* sa_sigaction. */
2066 GC_old_segv_handler = oldact.sa_handler;
2067 # else /* Irix 6.x or SUNOS5SIGS */
2068 if (oldact.sa_flags & SA_SIGINFO) {
2069 GC_old_segv_handler = (SIG_PF)(oldact.sa_sigaction);
2070 } else {
2071 GC_old_segv_handler = oldact.sa_handler;
2073 # endif
2074 if (GC_old_segv_handler == SIG_IGN) {
2075 GC_err_printf0("Previously ignored segmentation violation!?");
2076 GC_old_segv_handler = SIG_DFL;
2078 if (GC_old_segv_handler != SIG_DFL) {
2079 # ifdef PRINTSTATS
2080 GC_err_printf0("Replaced other SIGSEGV handler\n");
2081 # endif
2083 # ifdef HPUX
2084 sigaction(SIGBUS, &act, &oldact);
2085 GC_old_bus_handler = oldact.sa_handler;
2086 if (GC_old_segv_handler != SIG_DFL) {
2087 # ifdef PRINTSTATS
2088 GC_err_printf0("Replaced other SIGBUS handler\n");
2089 # endif
2091 # endif
2092 # endif
2093 # if defined(MSWIN32)
2094 GC_old_segv_handler = SetUnhandledExceptionFilter(GC_write_fault_handler);
2095 if (GC_old_segv_handler != NULL) {
2096 # ifdef PRINTSTATS
2097 GC_err_printf0("Replaced other UnhandledExceptionFilter\n");
2098 # endif
2099 } else {
2100 GC_old_segv_handler = SIG_DFL;
2102 # endif
2107 void GC_protect_heap()
2109 ptr_t start;
2110 word len;
2111 unsigned i;
2113 for (i = 0; i < GC_n_heap_sects; i++) {
2114 start = GC_heap_sects[i].hs_start;
2115 len = GC_heap_sects[i].hs_bytes;
2116 PROTECT(start, len);
2120 /* We assume that either the world is stopped or its OK to lose dirty */
2121 /* bits while this is happenning (as in GC_enable_incremental). */
2122 void GC_read_dirty()
2124 BCOPY((word *)GC_dirty_pages, GC_grungy_pages,
2125 (sizeof GC_dirty_pages));
2126 BZERO((word *)GC_dirty_pages, (sizeof GC_dirty_pages));
2127 GC_protect_heap();
2130 GC_bool GC_page_was_dirty(h)
2131 struct hblk * h;
2133 register word index = PHT_HASH(h);
2135 return(HDR(h) == 0 || get_pht_entry_from_index(GC_grungy_pages, index));
2139 * Acquiring the allocation lock here is dangerous, since this
2140 * can be called from within GC_call_with_alloc_lock, and the cord
2141 * package does so. On systems that allow nested lock acquisition, this
2142 * happens to work.
2143 * On other systems, SET_LOCK_HOLDER and friends must be suitably defined.
2146 void GC_begin_syscall()
2148 if (!I_HOLD_LOCK()) LOCK();
2151 void GC_end_syscall()
2153 if (!I_HOLD_LOCK()) UNLOCK();
2156 void GC_unprotect_range(addr, len)
2157 ptr_t addr;
2158 word len;
2160 struct hblk * start_block;
2161 struct hblk * end_block;
2162 register struct hblk *h;
2163 ptr_t obj_start;
2165 if (!GC_incremental) return;
2166 obj_start = GC_base(addr);
2167 if (obj_start == 0) return;
2168 if (GC_base(addr + len - 1) != obj_start) {
2169 ABORT("GC_unprotect_range(range bigger than object)");
2171 start_block = (struct hblk *)((word)addr & ~(GC_page_size - 1));
2172 end_block = (struct hblk *)((word)(addr + len - 1) & ~(GC_page_size - 1));
2173 end_block += GC_page_size/HBLKSIZE - 1;
2174 for (h = start_block; h <= end_block; h++) {
2175 register word index = PHT_HASH(h);
2177 set_pht_entry_from_index(GC_dirty_pages, index);
2179 UNPROTECT(start_block,
2180 ((ptr_t)end_block - (ptr_t)start_block) + HBLKSIZE);
2183 #ifndef MSWIN32
2184 /* Replacement for UNIX system call. */
2185 /* Other calls that write to the heap */
2186 /* should be handled similarly. */
2187 # if defined(__STDC__) && !defined(SUNOS4)
2188 # include <unistd.h>
2189 ssize_t read(int fd, void *buf, size_t nbyte)
2190 # else
2191 # ifndef LINT
2192 int read(fd, buf, nbyte)
2193 # else
2194 int GC_read(fd, buf, nbyte)
2195 # endif
2196 int fd;
2197 char *buf;
2198 int nbyte;
2199 # endif
2201 int result;
2203 GC_begin_syscall();
2204 GC_unprotect_range(buf, (word)nbyte);
2205 # ifdef IRIX5
2206 /* Indirect system call may not always be easily available. */
2207 /* We could call _read, but that would interfere with the */
2208 /* libpthread interception of read. */
2210 struct iovec iov;
2212 iov.iov_base = buf;
2213 iov.iov_len = nbyte;
2214 result = readv(fd, &iov, 1);
2216 # else
2217 result = syscall(SYS_read, fd, buf, nbyte);
2218 # endif
2219 GC_end_syscall();
2220 return(result);
2222 #endif /* !MSWIN32 */
2224 /*ARGSUSED*/
2225 GC_bool GC_page_was_ever_dirty(h)
2226 struct hblk *h;
2228 return(TRUE);
2231 /* Reset the n pages starting at h to "was never dirty" status. */
2232 /*ARGSUSED*/
2233 void GC_is_fresh(h, n)
2234 struct hblk *h;
2235 word n;
2239 # endif /* MPROTECT_VDB */
2241 # ifdef PROC_VDB
2244 * See DEFAULT_VDB for interface descriptions.
2248 * This implementaion assumes a Solaris 2.X like /proc pseudo-file-system
2249 * from which we can read page modified bits. This facility is far from
2250 * optimal (e.g. we would like to get the info for only some of the
2251 * address space), but it avoids intercepting system calls.
2254 #include <errno.h>
2255 #include <sys/types.h>
2256 #include <sys/signal.h>
2257 #include <sys/fault.h>
2258 #include <sys/syscall.h>
2259 #include <sys/procfs.h>
2260 #include <sys/stat.h>
2261 #include <fcntl.h>
2263 #define INITIAL_BUF_SZ 4096
2264 word GC_proc_buf_size = INITIAL_BUF_SZ;
2265 char *GC_proc_buf;
2267 #ifdef SOLARIS_THREADS
2268 /* We don't have exact sp values for threads. So we count on */
2269 /* occasionally declaring stack pages to be fresh. Thus we */
2270 /* need a real implementation of GC_is_fresh. We can't clear */
2271 /* entries in GC_written_pages, since that would declare all */
2272 /* pages with the given hash address to be fresh. */
2273 # define MAX_FRESH_PAGES 8*1024 /* Must be power of 2 */
2274 struct hblk ** GC_fresh_pages; /* A direct mapped cache. */
2275 /* Collisions are dropped. */
2277 # define FRESH_PAGE_SLOT(h) (divHBLKSZ((word)(h)) & (MAX_FRESH_PAGES-1))
2278 # define ADD_FRESH_PAGE(h) \
2279 GC_fresh_pages[FRESH_PAGE_SLOT(h)] = (h)
2280 # define PAGE_IS_FRESH(h) \
2281 (GC_fresh_pages[FRESH_PAGE_SLOT(h)] == (h) && (h) != 0)
2282 #endif
2284 /* Add all pages in pht2 to pht1 */
2285 void GC_or_pages(pht1, pht2)
2286 page_hash_table pht1, pht2;
2288 register int i;
2290 for (i = 0; i < PHT_SIZE; i++) pht1[i] |= pht2[i];
2293 int GC_proc_fd;
2295 void GC_dirty_init()
2297 int fd;
2298 char buf[30];
2300 GC_dirty_maintained = TRUE;
2301 if (GC_words_allocd != 0 || GC_words_allocd_before_gc != 0) {
2302 register int i;
2304 for (i = 0; i < PHT_SIZE; i++) GC_written_pages[i] = (word)(-1);
2305 # ifdef PRINTSTATS
2306 GC_printf1("Allocated words:%lu:all pages may have been written\n",
2307 (unsigned long)
2308 (GC_words_allocd + GC_words_allocd_before_gc));
2309 # endif
2311 sprintf(buf, "/proc/%d", getpid());
2312 fd = open(buf, O_RDONLY);
2313 if (fd < 0) {
2314 ABORT("/proc open failed");
2316 GC_proc_fd = syscall(SYS_ioctl, fd, PIOCOPENPD, 0);
2317 close(fd);
2318 if (GC_proc_fd < 0) {
2319 ABORT("/proc ioctl failed");
2321 GC_proc_buf = GC_scratch_alloc(GC_proc_buf_size);
2322 # ifdef SOLARIS_THREADS
2323 GC_fresh_pages = (struct hblk **)
2324 GC_scratch_alloc(MAX_FRESH_PAGES * sizeof (struct hblk *));
2325 if (GC_fresh_pages == 0) {
2326 GC_err_printf0("No space for fresh pages\n");
2327 EXIT();
2329 BZERO(GC_fresh_pages, MAX_FRESH_PAGES * sizeof (struct hblk *));
2330 # endif
2333 /* Ignore write hints. They don't help us here. */
2334 /*ARGSUSED*/
2335 void GC_write_hint(h)
2336 struct hblk *h;
2340 #ifdef SOLARIS_THREADS
2341 # define READ(fd,buf,nbytes) syscall(SYS_read, fd, buf, nbytes)
2342 #else
2343 # define READ(fd,buf,nbytes) read(fd, buf, nbytes)
2344 #endif
2346 void GC_read_dirty()
2348 unsigned long ps, np;
2349 int nmaps;
2350 ptr_t vaddr;
2351 struct prasmap * map;
2352 char * bufp;
2353 ptr_t current_addr, limit;
2354 int i;
2355 int dummy;
2357 BZERO(GC_grungy_pages, (sizeof GC_grungy_pages));
2359 bufp = GC_proc_buf;
2360 if (READ(GC_proc_fd, bufp, GC_proc_buf_size) <= 0) {
2361 # ifdef PRINTSTATS
2362 GC_printf1("/proc read failed: GC_proc_buf_size = %lu\n",
2363 GC_proc_buf_size);
2364 # endif
2366 /* Retry with larger buffer. */
2367 word new_size = 2 * GC_proc_buf_size;
2368 char * new_buf = GC_scratch_alloc(new_size);
2370 if (new_buf != 0) {
2371 GC_proc_buf = bufp = new_buf;
2372 GC_proc_buf_size = new_size;
2374 if (syscall(SYS_read, GC_proc_fd, bufp, GC_proc_buf_size) <= 0) {
2375 WARN("Insufficient space for /proc read\n", 0);
2376 /* Punt: */
2377 memset(GC_grungy_pages, 0xff, sizeof (page_hash_table));
2378 memset(GC_written_pages, 0xff, sizeof(page_hash_table));
2379 # ifdef SOLARIS_THREADS
2380 BZERO(GC_fresh_pages,
2381 MAX_FRESH_PAGES * sizeof (struct hblk *));
2382 # endif
2383 return;
2387 /* Copy dirty bits into GC_grungy_pages */
2388 nmaps = ((struct prpageheader *)bufp) -> pr_nmap;
2389 /* printf( "nmaps = %d, PG_REFERENCED = %d, PG_MODIFIED = %d\n",
2390 nmaps, PG_REFERENCED, PG_MODIFIED); */
2391 bufp = bufp + sizeof(struct prpageheader);
2392 for (i = 0; i < nmaps; i++) {
2393 map = (struct prasmap *)bufp;
2394 vaddr = (ptr_t)(map -> pr_vaddr);
2395 ps = map -> pr_pagesize;
2396 np = map -> pr_npage;
2397 /* printf("vaddr = 0x%X, ps = 0x%X, np = 0x%X\n", vaddr, ps, np); */
2398 limit = vaddr + ps * np;
2399 bufp += sizeof (struct prasmap);
2400 for (current_addr = vaddr;
2401 current_addr < limit; current_addr += ps){
2402 if ((*bufp++) & PG_MODIFIED) {
2403 register struct hblk * h = (struct hblk *) current_addr;
2405 while ((ptr_t)h < current_addr + ps) {
2406 register word index = PHT_HASH(h);
2408 set_pht_entry_from_index(GC_grungy_pages, index);
2409 # ifdef SOLARIS_THREADS
2411 register int slot = FRESH_PAGE_SLOT(h);
2413 if (GC_fresh_pages[slot] == h) {
2414 GC_fresh_pages[slot] = 0;
2417 # endif
2418 h++;
2422 bufp += sizeof(long) - 1;
2423 bufp = (char *)((unsigned long)bufp & ~(sizeof(long)-1));
2425 /* Update GC_written_pages. */
2426 GC_or_pages(GC_written_pages, GC_grungy_pages);
2427 # ifdef SOLARIS_THREADS
2428 /* Make sure that old stacks are considered completely clean */
2429 /* unless written again. */
2430 GC_old_stacks_are_fresh();
2431 # endif
2434 #undef READ
2436 GC_bool GC_page_was_dirty(h)
2437 struct hblk *h;
2439 register word index = PHT_HASH(h);
2440 register GC_bool result;
2442 result = get_pht_entry_from_index(GC_grungy_pages, index);
2443 # ifdef SOLARIS_THREADS
2444 if (result && PAGE_IS_FRESH(h)) result = FALSE;
2445 /* This happens only if page was declared fresh since */
2446 /* the read_dirty call, e.g. because it's in an unused */
2447 /* thread stack. It's OK to treat it as clean, in */
2448 /* that case. And it's consistent with */
2449 /* GC_page_was_ever_dirty. */
2450 # endif
2451 return(result);
2454 GC_bool GC_page_was_ever_dirty(h)
2455 struct hblk *h;
2457 register word index = PHT_HASH(h);
2458 register GC_bool result;
2460 result = get_pht_entry_from_index(GC_written_pages, index);
2461 # ifdef SOLARIS_THREADS
2462 if (result && PAGE_IS_FRESH(h)) result = FALSE;
2463 # endif
2464 return(result);
2467 /* Caller holds allocation lock. */
2468 void GC_is_fresh(h, n)
2469 struct hblk *h;
2470 word n;
2473 register word index;
2475 # ifdef SOLARIS_THREADS
2476 register word i;
2478 if (GC_fresh_pages != 0) {
2479 for (i = 0; i < n; i++) {
2480 ADD_FRESH_PAGE(h + i);
2483 # endif
2486 # endif /* PROC_VDB */
2489 # ifdef PCR_VDB
2491 # include "vd/PCR_VD.h"
2493 # define NPAGES (32*1024) /* 128 MB */
2495 PCR_VD_DB GC_grungy_bits[NPAGES];
2497 ptr_t GC_vd_base; /* Address corresponding to GC_grungy_bits[0] */
2498 /* HBLKSIZE aligned. */
2500 void GC_dirty_init()
2502 GC_dirty_maintained = TRUE;
2503 /* For the time being, we assume the heap generally grows up */
2504 GC_vd_base = GC_heap_sects[0].hs_start;
2505 if (GC_vd_base == 0) {
2506 ABORT("Bad initial heap segment");
2508 if (PCR_VD_Start(HBLKSIZE, GC_vd_base, NPAGES*HBLKSIZE)
2509 != PCR_ERes_okay) {
2510 ABORT("dirty bit initialization failed");
2514 void GC_read_dirty()
2516 /* lazily enable dirty bits on newly added heap sects */
2518 static int onhs = 0;
2519 int nhs = GC_n_heap_sects;
2520 for( ; onhs < nhs; onhs++ ) {
2521 PCR_VD_WriteProtectEnable(
2522 GC_heap_sects[onhs].hs_start,
2523 GC_heap_sects[onhs].hs_bytes );
2528 if (PCR_VD_Clear(GC_vd_base, NPAGES*HBLKSIZE, GC_grungy_bits)
2529 != PCR_ERes_okay) {
2530 ABORT("dirty bit read failed");
2534 GC_bool GC_page_was_dirty(h)
2535 struct hblk *h;
2537 if((ptr_t)h < GC_vd_base || (ptr_t)h >= GC_vd_base + NPAGES*HBLKSIZE) {
2538 return(TRUE);
2540 return(GC_grungy_bits[h - (struct hblk *)GC_vd_base] & PCR_VD_DB_dirtyBit);
2543 /*ARGSUSED*/
2544 void GC_write_hint(h)
2545 struct hblk *h;
2547 PCR_VD_WriteProtectDisable(h, HBLKSIZE);
2548 PCR_VD_WriteProtectEnable(h, HBLKSIZE);
2551 # endif /* PCR_VDB */
2554 * Call stack save code for debugging.
2555 * Should probably be in mach_dep.c, but that requires reorganization.
2557 #if defined(SPARC) && !defined(LINUX)
2558 # if defined(SUNOS4)
2559 # include <machine/frame.h>
2560 # else
2561 # if defined (DRSNX)
2562 # include <sys/sparc/frame.h>
2563 # else
2564 # if defined(OPENBSD)
2565 # include <frame.h>
2566 # else
2567 # include <sys/frame.h>
2568 # endif
2569 # endif
2570 # endif
2571 # if NARGS > 6
2572 --> We only know how to to get the first 6 arguments
2573 # endif
2575 #ifdef SAVE_CALL_CHAIN
2576 /* Fill in the pc and argument information for up to NFRAMES of my */
2577 /* callers. Ignore my frame and my callers frame. */
2579 #ifdef OPENBSD
2580 # define FR_SAVFP fr_fp
2581 # define FR_SAVPC fr_pc
2582 #else
2583 # define FR_SAVFP fr_savfp
2584 # define FR_SAVPC fr_savpc
2585 #endif
2587 void GC_save_callers (info)
2588 struct callinfo info[NFRAMES];
2590 struct frame *frame;
2591 struct frame *fp;
2592 int nframes = 0;
2593 word GC_save_regs_in_stack();
2595 frame = (struct frame *) GC_save_regs_in_stack ();
2597 for (fp = frame -> FR_SAVFP; fp != 0 && nframes < NFRAMES;
2598 fp = fp -> FR_SAVFP, nframes++) {
2599 register int i;
2601 info[nframes].ci_pc = fp->FR_SAVPC;
2602 for (i = 0; i < NARGS; i++) {
2603 info[nframes].ci_arg[i] = ~(fp->fr_arg[i]);
2606 if (nframes < NFRAMES) info[nframes].ci_pc = 0;
2609 #endif /* SAVE_CALL_CHAIN */
2610 #endif /* SPARC */