1 /* Global, SSA-based optimizations using mathematical identities.
2 Copyright (C) 2005-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* Currently, the only mini-pass in this file tries to CSE reciprocal
21 operations. These are common in sequences such as this one:
23 modulus = sqrt(x*x + y*y + z*z);
28 that can be optimized to
30 modulus = sqrt(x*x + y*y + z*z);
31 rmodulus = 1.0 / modulus;
36 We do this for loop invariant divisors, and with this pass whenever
37 we notice that a division has the same divisor multiple times.
39 Of course, like in PRE, we don't insert a division if a dominator
40 already has one. However, this cannot be done as an extension of
41 PRE for several reasons.
43 First of all, with some experiments it was found out that the
44 transformation is not always useful if there are only two divisions
45 hy the same divisor. This is probably because modern processors
46 can pipeline the divisions; on older, in-order processors it should
47 still be effective to optimize two divisions by the same number.
48 We make this a param, and it shall be called N in the remainder of
51 Second, if trapping math is active, we have less freedom on where
52 to insert divisions: we can only do so in basic blocks that already
53 contain one. (If divisions don't trap, instead, we can insert
54 divisions elsewhere, which will be in blocks that are common dominators
55 of those that have the division).
57 We really don't want to compute the reciprocal unless a division will
58 be found. To do this, we won't insert the division in a basic block
59 that has less than N divisions *post-dominating* it.
61 The algorithm constructs a subset of the dominator tree, holding the
62 blocks containing the divisions and the common dominators to them,
63 and walk it twice. The first walk is in post-order, and it annotates
64 each block with the number of divisions that post-dominate it: this
65 gives information on where divisions can be inserted profitably.
66 The second walk is in pre-order, and it inserts divisions as explained
67 above, and replaces divisions by multiplications.
69 In the best case, the cost of the pass is O(n_statements). In the
70 worst-case, the cost is due to creating the dominator tree subset,
71 with a cost of O(n_basic_blocks ^ 2); however this can only happen
72 for n_statements / n_basic_blocks statements. So, the amortized cost
73 of creating the dominator tree subset is O(n_basic_blocks) and the
74 worst-case cost of the pass is O(n_statements * n_basic_blocks).
76 More practically, the cost will be small because there are few
77 divisions, and they tend to be in the same basic block, so insert_bb
78 is called very few times.
80 If we did this using domwalk.c, an efficient implementation would have
81 to work on all the variables in a single pass, because we could not
82 work on just a subset of the dominator tree, as we do now, and the
83 cost would also be something like O(n_statements * n_basic_blocks).
84 The data structures would be more complex in order to work on all the
85 variables in a single pass. */
89 #include "coretypes.h"
93 #include "basic-block.h"
94 #include "tree-ssa-alias.h"
95 #include "internal-fn.h"
96 #include "gimple-fold.h"
97 #include "gimple-expr.h"
100 #include "gimple-iterator.h"
101 #include "gimplify.h"
102 #include "gimplify-me.h"
103 #include "stor-layout.h"
104 #include "gimple-ssa.h"
105 #include "tree-cfg.h"
106 #include "tree-phinodes.h"
107 #include "ssa-iterators.h"
108 #include "stringpool.h"
109 #include "tree-ssanames.h"
111 #include "tree-dfa.h"
112 #include "tree-ssa.h"
113 #include "tree-pass.h"
114 #include "alloc-pool.h"
116 #include "gimple-pretty-print.h"
117 #include "builtins.h"
119 /* FIXME: RTL headers have to be included here for optabs. */
120 #include "rtl.h" /* Because optabs.h wants enum rtx_code. */
121 #include "expr.h" /* Because optabs.h wants sepops. */
124 /* This structure represents one basic block that either computes a
125 division, or is a common dominator for basic block that compute a
128 /* The basic block represented by this structure. */
131 /* If non-NULL, the SSA_NAME holding the definition for a reciprocal
135 /* If non-NULL, the GIMPLE_ASSIGN for a reciprocal computation that
136 was inserted in BB. */
137 gimple recip_def_stmt
;
139 /* Pointer to a list of "struct occurrence"s for blocks dominated
141 struct occurrence
*children
;
143 /* Pointer to the next "struct occurrence"s in the list of blocks
144 sharing a common dominator. */
145 struct occurrence
*next
;
147 /* The number of divisions that are in BB before compute_merit. The
148 number of divisions that are in BB or post-dominate it after
152 /* True if the basic block has a division, false if it is a common
153 dominator for basic blocks that do. If it is false and trapping
154 math is active, BB is not a candidate for inserting a reciprocal. */
155 bool bb_has_division
;
160 /* Number of 1.0/X ops inserted. */
163 /* Number of 1.0/FUNC ops inserted. */
169 /* Number of cexpi calls inserted. */
175 /* Number of hand-written 16-bit nop / bswaps found. */
178 /* Number of hand-written 32-bit nop / bswaps found. */
181 /* Number of hand-written 64-bit nop / bswaps found. */
183 } nop_stats
, bswap_stats
;
187 /* Number of widening multiplication ops inserted. */
188 int widen_mults_inserted
;
190 /* Number of integer multiply-and-accumulate ops inserted. */
193 /* Number of fp fused multiply-add ops inserted. */
197 /* The instance of "struct occurrence" representing the highest
198 interesting block in the dominator tree. */
199 static struct occurrence
*occ_head
;
201 /* Allocation pool for getting instances of "struct occurrence". */
202 static alloc_pool occ_pool
;
206 /* Allocate and return a new struct occurrence for basic block BB, and
207 whose children list is headed by CHILDREN. */
208 static struct occurrence
*
209 occ_new (basic_block bb
, struct occurrence
*children
)
211 struct occurrence
*occ
;
213 bb
->aux
= occ
= (struct occurrence
*) pool_alloc (occ_pool
);
214 memset (occ
, 0, sizeof (struct occurrence
));
217 occ
->children
= children
;
222 /* Insert NEW_OCC into our subset of the dominator tree. P_HEAD points to a
223 list of "struct occurrence"s, one per basic block, having IDOM as
224 their common dominator.
226 We try to insert NEW_OCC as deep as possible in the tree, and we also
227 insert any other block that is a common dominator for BB and one
228 block already in the tree. */
231 insert_bb (struct occurrence
*new_occ
, basic_block idom
,
232 struct occurrence
**p_head
)
234 struct occurrence
*occ
, **p_occ
;
236 for (p_occ
= p_head
; (occ
= *p_occ
) != NULL
; )
238 basic_block bb
= new_occ
->bb
, occ_bb
= occ
->bb
;
239 basic_block dom
= nearest_common_dominator (CDI_DOMINATORS
, occ_bb
, bb
);
242 /* BB dominates OCC_BB. OCC becomes NEW_OCC's child: remove OCC
245 occ
->next
= new_occ
->children
;
246 new_occ
->children
= occ
;
248 /* Try the next block (it may as well be dominated by BB). */
251 else if (dom
== occ_bb
)
253 /* OCC_BB dominates BB. Tail recurse to look deeper. */
254 insert_bb (new_occ
, dom
, &occ
->children
);
258 else if (dom
!= idom
)
260 gcc_assert (!dom
->aux
);
262 /* There is a dominator between IDOM and BB, add it and make
263 two children out of NEW_OCC and OCC. First, remove OCC from
269 /* None of the previous blocks has DOM as a dominator: if we tail
270 recursed, we would reexamine them uselessly. Just switch BB with
271 DOM, and go on looking for blocks dominated by DOM. */
272 new_occ
= occ_new (dom
, new_occ
);
277 /* Nothing special, go on with the next element. */
282 /* No place was found as a child of IDOM. Make BB a sibling of IDOM. */
283 new_occ
->next
= *p_head
;
287 /* Register that we found a division in BB. */
290 register_division_in (basic_block bb
)
292 struct occurrence
*occ
;
294 occ
= (struct occurrence
*) bb
->aux
;
297 occ
= occ_new (bb
, NULL
);
298 insert_bb (occ
, ENTRY_BLOCK_PTR_FOR_FN (cfun
), &occ_head
);
301 occ
->bb_has_division
= true;
302 occ
->num_divisions
++;
306 /* Compute the number of divisions that postdominate each block in OCC and
310 compute_merit (struct occurrence
*occ
)
312 struct occurrence
*occ_child
;
313 basic_block dom
= occ
->bb
;
315 for (occ_child
= occ
->children
; occ_child
; occ_child
= occ_child
->next
)
318 if (occ_child
->children
)
319 compute_merit (occ_child
);
322 bb
= single_noncomplex_succ (dom
);
326 if (dominated_by_p (CDI_POST_DOMINATORS
, bb
, occ_child
->bb
))
327 occ
->num_divisions
+= occ_child
->num_divisions
;
332 /* Return whether USE_STMT is a floating-point division by DEF. */
334 is_division_by (gimple use_stmt
, tree def
)
336 return is_gimple_assign (use_stmt
)
337 && gimple_assign_rhs_code (use_stmt
) == RDIV_EXPR
338 && gimple_assign_rhs2 (use_stmt
) == def
339 /* Do not recognize x / x as valid division, as we are getting
340 confused later by replacing all immediate uses x in such
342 && gimple_assign_rhs1 (use_stmt
) != def
;
345 /* Walk the subset of the dominator tree rooted at OCC, setting the
346 RECIP_DEF field to a definition of 1.0 / DEF that can be used in
347 the given basic block. The field may be left NULL, of course,
348 if it is not possible or profitable to do the optimization.
350 DEF_BSI is an iterator pointing at the statement defining DEF.
351 If RECIP_DEF is set, a dominator already has a computation that can
355 insert_reciprocals (gimple_stmt_iterator
*def_gsi
, struct occurrence
*occ
,
356 tree def
, tree recip_def
, int threshold
)
360 gimple_stmt_iterator gsi
;
361 struct occurrence
*occ_child
;
364 && (occ
->bb_has_division
|| !flag_trapping_math
)
365 && occ
->num_divisions
>= threshold
)
367 /* Make a variable with the replacement and substitute it. */
368 type
= TREE_TYPE (def
);
369 recip_def
= create_tmp_reg (type
, "reciptmp");
370 new_stmt
= gimple_build_assign_with_ops (RDIV_EXPR
, recip_def
,
371 build_one_cst (type
), def
);
373 if (occ
->bb_has_division
)
375 /* Case 1: insert before an existing division. */
376 gsi
= gsi_after_labels (occ
->bb
);
377 while (!gsi_end_p (gsi
) && !is_division_by (gsi_stmt (gsi
), def
))
380 gsi_insert_before (&gsi
, new_stmt
, GSI_SAME_STMT
);
382 else if (def_gsi
&& occ
->bb
== def_gsi
->bb
)
384 /* Case 2: insert right after the definition. Note that this will
385 never happen if the definition statement can throw, because in
386 that case the sole successor of the statement's basic block will
387 dominate all the uses as well. */
388 gsi_insert_after (def_gsi
, new_stmt
, GSI_NEW_STMT
);
392 /* Case 3: insert in a basic block not containing defs/uses. */
393 gsi
= gsi_after_labels (occ
->bb
);
394 gsi_insert_before (&gsi
, new_stmt
, GSI_SAME_STMT
);
397 reciprocal_stats
.rdivs_inserted
++;
399 occ
->recip_def_stmt
= new_stmt
;
402 occ
->recip_def
= recip_def
;
403 for (occ_child
= occ
->children
; occ_child
; occ_child
= occ_child
->next
)
404 insert_reciprocals (def_gsi
, occ_child
, def
, recip_def
, threshold
);
408 /* Replace the division at USE_P with a multiplication by the reciprocal, if
412 replace_reciprocal (use_operand_p use_p
)
414 gimple use_stmt
= USE_STMT (use_p
);
415 basic_block bb
= gimple_bb (use_stmt
);
416 struct occurrence
*occ
= (struct occurrence
*) bb
->aux
;
418 if (optimize_bb_for_speed_p (bb
)
419 && occ
->recip_def
&& use_stmt
!= occ
->recip_def_stmt
)
421 gimple_stmt_iterator gsi
= gsi_for_stmt (use_stmt
);
422 gimple_assign_set_rhs_code (use_stmt
, MULT_EXPR
);
423 SET_USE (use_p
, occ
->recip_def
);
424 fold_stmt_inplace (&gsi
);
425 update_stmt (use_stmt
);
430 /* Free OCC and return one more "struct occurrence" to be freed. */
432 static struct occurrence
*
433 free_bb (struct occurrence
*occ
)
435 struct occurrence
*child
, *next
;
437 /* First get the two pointers hanging off OCC. */
439 child
= occ
->children
;
441 pool_free (occ_pool
, occ
);
443 /* Now ensure that we don't recurse unless it is necessary. */
449 next
= free_bb (next
);
456 /* Look for floating-point divisions among DEF's uses, and try to
457 replace them by multiplications with the reciprocal. Add
458 as many statements computing the reciprocal as needed.
460 DEF must be a GIMPLE register of a floating-point type. */
463 execute_cse_reciprocals_1 (gimple_stmt_iterator
*def_gsi
, tree def
)
466 imm_use_iterator use_iter
;
467 struct occurrence
*occ
;
468 int count
= 0, threshold
;
470 gcc_assert (FLOAT_TYPE_P (TREE_TYPE (def
)) && is_gimple_reg (def
));
472 FOR_EACH_IMM_USE_FAST (use_p
, use_iter
, def
)
474 gimple use_stmt
= USE_STMT (use_p
);
475 if (is_division_by (use_stmt
, def
))
477 register_division_in (gimple_bb (use_stmt
));
482 /* Do the expensive part only if we can hope to optimize something. */
483 threshold
= targetm
.min_divisions_for_recip_mul (TYPE_MODE (TREE_TYPE (def
)));
484 if (count
>= threshold
)
487 for (occ
= occ_head
; occ
; occ
= occ
->next
)
490 insert_reciprocals (def_gsi
, occ
, def
, NULL
, threshold
);
493 FOR_EACH_IMM_USE_STMT (use_stmt
, use_iter
, def
)
495 if (is_division_by (use_stmt
, def
))
497 FOR_EACH_IMM_USE_ON_STMT (use_p
, use_iter
)
498 replace_reciprocal (use_p
);
503 for (occ
= occ_head
; occ
; )
509 /* Go through all the floating-point SSA_NAMEs, and call
510 execute_cse_reciprocals_1 on each of them. */
513 const pass_data pass_data_cse_reciprocals
=
515 GIMPLE_PASS
, /* type */
517 OPTGROUP_NONE
, /* optinfo_flags */
519 PROP_ssa
, /* properties_required */
520 0, /* properties_provided */
521 0, /* properties_destroyed */
522 0, /* todo_flags_start */
523 TODO_update_ssa
, /* todo_flags_finish */
526 class pass_cse_reciprocals
: public gimple_opt_pass
529 pass_cse_reciprocals (gcc::context
*ctxt
)
530 : gimple_opt_pass (pass_data_cse_reciprocals
, ctxt
)
533 /* opt_pass methods: */
534 virtual bool gate (function
*) { return optimize
&& flag_reciprocal_math
; }
535 virtual unsigned int execute (function
*);
537 }; // class pass_cse_reciprocals
540 pass_cse_reciprocals::execute (function
*fun
)
545 occ_pool
= create_alloc_pool ("dominators for recip",
546 sizeof (struct occurrence
),
547 n_basic_blocks_for_fn (fun
) / 3 + 1);
549 memset (&reciprocal_stats
, 0, sizeof (reciprocal_stats
));
550 calculate_dominance_info (CDI_DOMINATORS
);
551 calculate_dominance_info (CDI_POST_DOMINATORS
);
553 #ifdef ENABLE_CHECKING
554 FOR_EACH_BB_FN (bb
, fun
)
555 gcc_assert (!bb
->aux
);
558 for (arg
= DECL_ARGUMENTS (fun
->decl
); arg
; arg
= DECL_CHAIN (arg
))
559 if (FLOAT_TYPE_P (TREE_TYPE (arg
))
560 && is_gimple_reg (arg
))
562 tree name
= ssa_default_def (fun
, arg
);
564 execute_cse_reciprocals_1 (NULL
, name
);
567 FOR_EACH_BB_FN (bb
, fun
)
569 gimple_stmt_iterator gsi
;
573 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
575 phi
= gsi_stmt (gsi
);
576 def
= PHI_RESULT (phi
);
577 if (! virtual_operand_p (def
)
578 && FLOAT_TYPE_P (TREE_TYPE (def
)))
579 execute_cse_reciprocals_1 (NULL
, def
);
582 for (gsi
= gsi_after_labels (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
584 gimple stmt
= gsi_stmt (gsi
);
586 if (gimple_has_lhs (stmt
)
587 && (def
= SINGLE_SSA_TREE_OPERAND (stmt
, SSA_OP_DEF
)) != NULL
588 && FLOAT_TYPE_P (TREE_TYPE (def
))
589 && TREE_CODE (def
) == SSA_NAME
)
590 execute_cse_reciprocals_1 (&gsi
, def
);
593 if (optimize_bb_for_size_p (bb
))
596 /* Scan for a/func(b) and convert it to reciprocal a*rfunc(b). */
597 for (gsi
= gsi_after_labels (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
599 gimple stmt
= gsi_stmt (gsi
);
602 if (is_gimple_assign (stmt
)
603 && gimple_assign_rhs_code (stmt
) == RDIV_EXPR
)
605 tree arg1
= gimple_assign_rhs2 (stmt
);
608 if (TREE_CODE (arg1
) != SSA_NAME
)
611 stmt1
= SSA_NAME_DEF_STMT (arg1
);
613 if (is_gimple_call (stmt1
)
614 && gimple_call_lhs (stmt1
)
615 && (fndecl
= gimple_call_fndecl (stmt1
))
616 && (DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
617 || DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_MD
))
619 enum built_in_function code
;
624 code
= DECL_FUNCTION_CODE (fndecl
);
625 md_code
= DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_MD
;
627 fndecl
= targetm
.builtin_reciprocal (code
, md_code
, false);
631 /* Check that all uses of the SSA name are divisions,
632 otherwise replacing the defining statement will do
635 FOR_EACH_IMM_USE_FAST (use_p
, ui
, arg1
)
637 gimple stmt2
= USE_STMT (use_p
);
638 if (is_gimple_debug (stmt2
))
640 if (!is_gimple_assign (stmt2
)
641 || gimple_assign_rhs_code (stmt2
) != RDIV_EXPR
642 || gimple_assign_rhs1 (stmt2
) == arg1
643 || gimple_assign_rhs2 (stmt2
) != arg1
)
652 gimple_replace_ssa_lhs (stmt1
, arg1
);
653 gimple_call_set_fndecl (stmt1
, fndecl
);
655 reciprocal_stats
.rfuncs_inserted
++;
657 FOR_EACH_IMM_USE_STMT (stmt
, ui
, arg1
)
659 gimple_stmt_iterator gsi
= gsi_for_stmt (stmt
);
660 gimple_assign_set_rhs_code (stmt
, MULT_EXPR
);
661 fold_stmt_inplace (&gsi
);
669 statistics_counter_event (fun
, "reciprocal divs inserted",
670 reciprocal_stats
.rdivs_inserted
);
671 statistics_counter_event (fun
, "reciprocal functions inserted",
672 reciprocal_stats
.rfuncs_inserted
);
674 free_dominance_info (CDI_DOMINATORS
);
675 free_dominance_info (CDI_POST_DOMINATORS
);
676 free_alloc_pool (occ_pool
);
683 make_pass_cse_reciprocals (gcc::context
*ctxt
)
685 return new pass_cse_reciprocals (ctxt
);
688 /* Records an occurrence at statement USE_STMT in the vector of trees
689 STMTS if it is dominated by *TOP_BB or dominates it or this basic block
690 is not yet initialized. Returns true if the occurrence was pushed on
691 the vector. Adjusts *TOP_BB to be the basic block dominating all
692 statements in the vector. */
695 maybe_record_sincos (vec
<gimple
> *stmts
,
696 basic_block
*top_bb
, gimple use_stmt
)
698 basic_block use_bb
= gimple_bb (use_stmt
);
700 && (*top_bb
== use_bb
701 || dominated_by_p (CDI_DOMINATORS
, use_bb
, *top_bb
)))
702 stmts
->safe_push (use_stmt
);
704 || dominated_by_p (CDI_DOMINATORS
, *top_bb
, use_bb
))
706 stmts
->safe_push (use_stmt
);
715 /* Look for sin, cos and cexpi calls with the same argument NAME and
716 create a single call to cexpi CSEing the result in this case.
717 We first walk over all immediate uses of the argument collecting
718 statements that we can CSE in a vector and in a second pass replace
719 the statement rhs with a REALPART or IMAGPART expression on the
720 result of the cexpi call we insert before the use statement that
721 dominates all other candidates. */
724 execute_cse_sincos_1 (tree name
)
726 gimple_stmt_iterator gsi
;
727 imm_use_iterator use_iter
;
728 tree fndecl
, res
, type
;
729 gimple def_stmt
, use_stmt
, stmt
;
730 int seen_cos
= 0, seen_sin
= 0, seen_cexpi
= 0;
731 vec
<gimple
> stmts
= vNULL
;
732 basic_block top_bb
= NULL
;
734 bool cfg_changed
= false;
736 type
= TREE_TYPE (name
);
737 FOR_EACH_IMM_USE_STMT (use_stmt
, use_iter
, name
)
739 if (gimple_code (use_stmt
) != GIMPLE_CALL
740 || !gimple_call_lhs (use_stmt
)
741 || !(fndecl
= gimple_call_fndecl (use_stmt
))
742 || DECL_BUILT_IN_CLASS (fndecl
) != BUILT_IN_NORMAL
)
745 switch (DECL_FUNCTION_CODE (fndecl
))
747 CASE_FLT_FN (BUILT_IN_COS
):
748 seen_cos
|= maybe_record_sincos (&stmts
, &top_bb
, use_stmt
) ? 1 : 0;
751 CASE_FLT_FN (BUILT_IN_SIN
):
752 seen_sin
|= maybe_record_sincos (&stmts
, &top_bb
, use_stmt
) ? 1 : 0;
755 CASE_FLT_FN (BUILT_IN_CEXPI
):
756 seen_cexpi
|= maybe_record_sincos (&stmts
, &top_bb
, use_stmt
) ? 1 : 0;
763 if (seen_cos
+ seen_sin
+ seen_cexpi
<= 1)
769 /* Simply insert cexpi at the beginning of top_bb but not earlier than
770 the name def statement. */
771 fndecl
= mathfn_built_in (type
, BUILT_IN_CEXPI
);
774 stmt
= gimple_build_call (fndecl
, 1, name
);
775 res
= make_temp_ssa_name (TREE_TYPE (TREE_TYPE (fndecl
)), stmt
, "sincostmp");
776 gimple_call_set_lhs (stmt
, res
);
778 def_stmt
= SSA_NAME_DEF_STMT (name
);
779 if (!SSA_NAME_IS_DEFAULT_DEF (name
)
780 && gimple_code (def_stmt
) != GIMPLE_PHI
781 && gimple_bb (def_stmt
) == top_bb
)
783 gsi
= gsi_for_stmt (def_stmt
);
784 gsi_insert_after (&gsi
, stmt
, GSI_SAME_STMT
);
788 gsi
= gsi_after_labels (top_bb
);
789 gsi_insert_before (&gsi
, stmt
, GSI_SAME_STMT
);
791 sincos_stats
.inserted
++;
793 /* And adjust the recorded old call sites. */
794 for (i
= 0; stmts
.iterate (i
, &use_stmt
); ++i
)
797 fndecl
= gimple_call_fndecl (use_stmt
);
799 switch (DECL_FUNCTION_CODE (fndecl
))
801 CASE_FLT_FN (BUILT_IN_COS
):
802 rhs
= fold_build1 (REALPART_EXPR
, type
, res
);
805 CASE_FLT_FN (BUILT_IN_SIN
):
806 rhs
= fold_build1 (IMAGPART_EXPR
, type
, res
);
809 CASE_FLT_FN (BUILT_IN_CEXPI
):
817 /* Replace call with a copy. */
818 stmt
= gimple_build_assign (gimple_call_lhs (use_stmt
), rhs
);
820 gsi
= gsi_for_stmt (use_stmt
);
821 gsi_replace (&gsi
, stmt
, true);
822 if (gimple_purge_dead_eh_edges (gimple_bb (stmt
)))
831 /* To evaluate powi(x,n), the floating point value x raised to the
832 constant integer exponent n, we use a hybrid algorithm that
833 combines the "window method" with look-up tables. For an
834 introduction to exponentiation algorithms and "addition chains",
835 see section 4.6.3, "Evaluation of Powers" of Donald E. Knuth,
836 "Seminumerical Algorithms", Vol. 2, "The Art of Computer Programming",
837 3rd Edition, 1998, and Daniel M. Gordon, "A Survey of Fast Exponentiation
838 Methods", Journal of Algorithms, Vol. 27, pp. 129-146, 1998. */
840 /* Provide a default value for POWI_MAX_MULTS, the maximum number of
841 multiplications to inline before calling the system library's pow
842 function. powi(x,n) requires at worst 2*bits(n)-2 multiplications,
843 so this default never requires calling pow, powf or powl. */
845 #ifndef POWI_MAX_MULTS
846 #define POWI_MAX_MULTS (2*HOST_BITS_PER_WIDE_INT-2)
849 /* The size of the "optimal power tree" lookup table. All
850 exponents less than this value are simply looked up in the
851 powi_table below. This threshold is also used to size the
852 cache of pseudo registers that hold intermediate results. */
853 #define POWI_TABLE_SIZE 256
855 /* The size, in bits of the window, used in the "window method"
856 exponentiation algorithm. This is equivalent to a radix of
857 (1<<POWI_WINDOW_SIZE) in the corresponding "m-ary method". */
858 #define POWI_WINDOW_SIZE 3
860 /* The following table is an efficient representation of an
861 "optimal power tree". For each value, i, the corresponding
862 value, j, in the table states than an optimal evaluation
863 sequence for calculating pow(x,i) can be found by evaluating
864 pow(x,j)*pow(x,i-j). An optimal power tree for the first
865 100 integers is given in Knuth's "Seminumerical algorithms". */
867 static const unsigned char powi_table
[POWI_TABLE_SIZE
] =
869 0, 1, 1, 2, 2, 3, 3, 4, /* 0 - 7 */
870 4, 6, 5, 6, 6, 10, 7, 9, /* 8 - 15 */
871 8, 16, 9, 16, 10, 12, 11, 13, /* 16 - 23 */
872 12, 17, 13, 18, 14, 24, 15, 26, /* 24 - 31 */
873 16, 17, 17, 19, 18, 33, 19, 26, /* 32 - 39 */
874 20, 25, 21, 40, 22, 27, 23, 44, /* 40 - 47 */
875 24, 32, 25, 34, 26, 29, 27, 44, /* 48 - 55 */
876 28, 31, 29, 34, 30, 60, 31, 36, /* 56 - 63 */
877 32, 64, 33, 34, 34, 46, 35, 37, /* 64 - 71 */
878 36, 65, 37, 50, 38, 48, 39, 69, /* 72 - 79 */
879 40, 49, 41, 43, 42, 51, 43, 58, /* 80 - 87 */
880 44, 64, 45, 47, 46, 59, 47, 76, /* 88 - 95 */
881 48, 65, 49, 66, 50, 67, 51, 66, /* 96 - 103 */
882 52, 70, 53, 74, 54, 104, 55, 74, /* 104 - 111 */
883 56, 64, 57, 69, 58, 78, 59, 68, /* 112 - 119 */
884 60, 61, 61, 80, 62, 75, 63, 68, /* 120 - 127 */
885 64, 65, 65, 128, 66, 129, 67, 90, /* 128 - 135 */
886 68, 73, 69, 131, 70, 94, 71, 88, /* 136 - 143 */
887 72, 128, 73, 98, 74, 132, 75, 121, /* 144 - 151 */
888 76, 102, 77, 124, 78, 132, 79, 106, /* 152 - 159 */
889 80, 97, 81, 160, 82, 99, 83, 134, /* 160 - 167 */
890 84, 86, 85, 95, 86, 160, 87, 100, /* 168 - 175 */
891 88, 113, 89, 98, 90, 107, 91, 122, /* 176 - 183 */
892 92, 111, 93, 102, 94, 126, 95, 150, /* 184 - 191 */
893 96, 128, 97, 130, 98, 133, 99, 195, /* 192 - 199 */
894 100, 128, 101, 123, 102, 164, 103, 138, /* 200 - 207 */
895 104, 145, 105, 146, 106, 109, 107, 149, /* 208 - 215 */
896 108, 200, 109, 146, 110, 170, 111, 157, /* 216 - 223 */
897 112, 128, 113, 130, 114, 182, 115, 132, /* 224 - 231 */
898 116, 200, 117, 132, 118, 158, 119, 206, /* 232 - 239 */
899 120, 240, 121, 162, 122, 147, 123, 152, /* 240 - 247 */
900 124, 166, 125, 214, 126, 138, 127, 153, /* 248 - 255 */
904 /* Return the number of multiplications required to calculate
905 powi(x,n) where n is less than POWI_TABLE_SIZE. This is a
906 subroutine of powi_cost. CACHE is an array indicating
907 which exponents have already been calculated. */
910 powi_lookup_cost (unsigned HOST_WIDE_INT n
, bool *cache
)
912 /* If we've already calculated this exponent, then this evaluation
913 doesn't require any additional multiplications. */
918 return powi_lookup_cost (n
- powi_table
[n
], cache
)
919 + powi_lookup_cost (powi_table
[n
], cache
) + 1;
922 /* Return the number of multiplications required to calculate
923 powi(x,n) for an arbitrary x, given the exponent N. This
924 function needs to be kept in sync with powi_as_mults below. */
927 powi_cost (HOST_WIDE_INT n
)
929 bool cache
[POWI_TABLE_SIZE
];
930 unsigned HOST_WIDE_INT digit
;
931 unsigned HOST_WIDE_INT val
;
937 /* Ignore the reciprocal when calculating the cost. */
938 val
= (n
< 0) ? -n
: n
;
940 /* Initialize the exponent cache. */
941 memset (cache
, 0, POWI_TABLE_SIZE
* sizeof (bool));
946 while (val
>= POWI_TABLE_SIZE
)
950 digit
= val
& ((1 << POWI_WINDOW_SIZE
) - 1);
951 result
+= powi_lookup_cost (digit
, cache
)
952 + POWI_WINDOW_SIZE
+ 1;
953 val
>>= POWI_WINDOW_SIZE
;
962 return result
+ powi_lookup_cost (val
, cache
);
965 /* Recursive subroutine of powi_as_mults. This function takes the
966 array, CACHE, of already calculated exponents and an exponent N and
967 returns a tree that corresponds to CACHE[1]**N, with type TYPE. */
970 powi_as_mults_1 (gimple_stmt_iterator
*gsi
, location_t loc
, tree type
,
971 HOST_WIDE_INT n
, tree
*cache
)
973 tree op0
, op1
, ssa_target
;
974 unsigned HOST_WIDE_INT digit
;
977 if (n
< POWI_TABLE_SIZE
&& cache
[n
])
980 ssa_target
= make_temp_ssa_name (type
, NULL
, "powmult");
982 if (n
< POWI_TABLE_SIZE
)
984 cache
[n
] = ssa_target
;
985 op0
= powi_as_mults_1 (gsi
, loc
, type
, n
- powi_table
[n
], cache
);
986 op1
= powi_as_mults_1 (gsi
, loc
, type
, powi_table
[n
], cache
);
990 digit
= n
& ((1 << POWI_WINDOW_SIZE
) - 1);
991 op0
= powi_as_mults_1 (gsi
, loc
, type
, n
- digit
, cache
);
992 op1
= powi_as_mults_1 (gsi
, loc
, type
, digit
, cache
);
996 op0
= powi_as_mults_1 (gsi
, loc
, type
, n
>> 1, cache
);
1000 mult_stmt
= gimple_build_assign_with_ops (MULT_EXPR
, ssa_target
, op0
, op1
);
1001 gimple_set_location (mult_stmt
, loc
);
1002 gsi_insert_before (gsi
, mult_stmt
, GSI_SAME_STMT
);
1007 /* Convert ARG0**N to a tree of multiplications of ARG0 with itself.
1008 This function needs to be kept in sync with powi_cost above. */
1011 powi_as_mults (gimple_stmt_iterator
*gsi
, location_t loc
,
1012 tree arg0
, HOST_WIDE_INT n
)
1014 tree cache
[POWI_TABLE_SIZE
], result
, type
= TREE_TYPE (arg0
);
1019 return build_real (type
, dconst1
);
1021 memset (cache
, 0, sizeof (cache
));
1024 result
= powi_as_mults_1 (gsi
, loc
, type
, (n
< 0) ? -n
: n
, cache
);
1028 /* If the original exponent was negative, reciprocate the result. */
1029 target
= make_temp_ssa_name (type
, NULL
, "powmult");
1030 div_stmt
= gimple_build_assign_with_ops (RDIV_EXPR
, target
,
1031 build_real (type
, dconst1
),
1033 gimple_set_location (div_stmt
, loc
);
1034 gsi_insert_before (gsi
, div_stmt
, GSI_SAME_STMT
);
1039 /* ARG0 and N are the two arguments to a powi builtin in GSI with
1040 location info LOC. If the arguments are appropriate, create an
1041 equivalent sequence of statements prior to GSI using an optimal
1042 number of multiplications, and return an expession holding the
1046 gimple_expand_builtin_powi (gimple_stmt_iterator
*gsi
, location_t loc
,
1047 tree arg0
, HOST_WIDE_INT n
)
1049 /* Avoid largest negative number. */
1051 && ((n
>= -1 && n
<= 2)
1052 || (optimize_function_for_speed_p (cfun
)
1053 && powi_cost (n
) <= POWI_MAX_MULTS
)))
1054 return powi_as_mults (gsi
, loc
, arg0
, n
);
1059 /* Build a gimple call statement that calls FN with argument ARG.
1060 Set the lhs of the call statement to a fresh SSA name. Insert the
1061 statement prior to GSI's current position, and return the fresh
1065 build_and_insert_call (gimple_stmt_iterator
*gsi
, location_t loc
,
1071 call_stmt
= gimple_build_call (fn
, 1, arg
);
1072 ssa_target
= make_temp_ssa_name (TREE_TYPE (arg
), NULL
, "powroot");
1073 gimple_set_lhs (call_stmt
, ssa_target
);
1074 gimple_set_location (call_stmt
, loc
);
1075 gsi_insert_before (gsi
, call_stmt
, GSI_SAME_STMT
);
1080 /* Build a gimple binary operation with the given CODE and arguments
1081 ARG0, ARG1, assigning the result to a new SSA name for variable
1082 TARGET. Insert the statement prior to GSI's current position, and
1083 return the fresh SSA name.*/
1086 build_and_insert_binop (gimple_stmt_iterator
*gsi
, location_t loc
,
1087 const char *name
, enum tree_code code
,
1088 tree arg0
, tree arg1
)
1090 tree result
= make_temp_ssa_name (TREE_TYPE (arg0
), NULL
, name
);
1091 gimple stmt
= gimple_build_assign_with_ops (code
, result
, arg0
, arg1
);
1092 gimple_set_location (stmt
, loc
);
1093 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
1097 /* Build a gimple reference operation with the given CODE and argument
1098 ARG, assigning the result to a new SSA name of TYPE with NAME.
1099 Insert the statement prior to GSI's current position, and return
1100 the fresh SSA name. */
1103 build_and_insert_ref (gimple_stmt_iterator
*gsi
, location_t loc
, tree type
,
1104 const char *name
, enum tree_code code
, tree arg0
)
1106 tree result
= make_temp_ssa_name (type
, NULL
, name
);
1107 gimple stmt
= gimple_build_assign (result
, build1 (code
, type
, arg0
));
1108 gimple_set_location (stmt
, loc
);
1109 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
1113 /* Build a gimple assignment to cast VAL to TYPE. Insert the statement
1114 prior to GSI's current position, and return the fresh SSA name. */
1117 build_and_insert_cast (gimple_stmt_iterator
*gsi
, location_t loc
,
1118 tree type
, tree val
)
1120 tree result
= make_ssa_name (type
, NULL
);
1121 gimple stmt
= gimple_build_assign_with_ops (NOP_EXPR
, result
, val
, NULL_TREE
);
1122 gimple_set_location (stmt
, loc
);
1123 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
1127 /* ARG0 and ARG1 are the two arguments to a pow builtin call in GSI
1128 with location info LOC. If possible, create an equivalent and
1129 less expensive sequence of statements prior to GSI, and return an
1130 expession holding the result. */
1133 gimple_expand_builtin_pow (gimple_stmt_iterator
*gsi
, location_t loc
,
1134 tree arg0
, tree arg1
)
1136 REAL_VALUE_TYPE c
, cint
, dconst1_4
, dconst3_4
, dconst1_3
, dconst1_6
;
1137 REAL_VALUE_TYPE c2
, dconst3
;
1139 tree type
, sqrtfn
, cbrtfn
, sqrt_arg0
, sqrt_sqrt
, result
, cbrt_x
, powi_cbrt_x
;
1140 enum machine_mode mode
;
1141 bool hw_sqrt_exists
, c_is_int
, c2_is_int
;
1143 /* If the exponent isn't a constant, there's nothing of interest
1145 if (TREE_CODE (arg1
) != REAL_CST
)
1148 /* If the exponent is equivalent to an integer, expand to an optimal
1149 multiplication sequence when profitable. */
1150 c
= TREE_REAL_CST (arg1
);
1151 n
= real_to_integer (&c
);
1152 real_from_integer (&cint
, VOIDmode
, n
, SIGNED
);
1153 c_is_int
= real_identical (&c
, &cint
);
1156 && ((n
>= -1 && n
<= 2)
1157 || (flag_unsafe_math_optimizations
1158 && optimize_bb_for_speed_p (gsi_bb (*gsi
))
1159 && powi_cost (n
) <= POWI_MAX_MULTS
)))
1160 return gimple_expand_builtin_powi (gsi
, loc
, arg0
, n
);
1162 /* Attempt various optimizations using sqrt and cbrt. */
1163 type
= TREE_TYPE (arg0
);
1164 mode
= TYPE_MODE (type
);
1165 sqrtfn
= mathfn_built_in (type
, BUILT_IN_SQRT
);
1167 /* Optimize pow(x,0.5) = sqrt(x). This replacement is always safe
1168 unless signed zeros must be maintained. pow(-0,0.5) = +0, while
1171 && REAL_VALUES_EQUAL (c
, dconsthalf
)
1172 && !HONOR_SIGNED_ZEROS (mode
))
1173 return build_and_insert_call (gsi
, loc
, sqrtfn
, arg0
);
1175 /* Optimize pow(x,0.25) = sqrt(sqrt(x)). Assume on most machines that
1176 a builtin sqrt instruction is smaller than a call to pow with 0.25,
1177 so do this optimization even if -Os. Don't do this optimization
1178 if we don't have a hardware sqrt insn. */
1179 dconst1_4
= dconst1
;
1180 SET_REAL_EXP (&dconst1_4
, REAL_EXP (&dconst1_4
) - 2);
1181 hw_sqrt_exists
= optab_handler (sqrt_optab
, mode
) != CODE_FOR_nothing
;
1183 if (flag_unsafe_math_optimizations
1185 && REAL_VALUES_EQUAL (c
, dconst1_4
)
1189 sqrt_arg0
= build_and_insert_call (gsi
, loc
, sqrtfn
, arg0
);
1192 return build_and_insert_call (gsi
, loc
, sqrtfn
, sqrt_arg0
);
1195 /* Optimize pow(x,0.75) = sqrt(x) * sqrt(sqrt(x)) unless we are
1196 optimizing for space. Don't do this optimization if we don't have
1197 a hardware sqrt insn. */
1198 real_from_integer (&dconst3_4
, VOIDmode
, 3, SIGNED
);
1199 SET_REAL_EXP (&dconst3_4
, REAL_EXP (&dconst3_4
) - 2);
1201 if (flag_unsafe_math_optimizations
1203 && optimize_function_for_speed_p (cfun
)
1204 && REAL_VALUES_EQUAL (c
, dconst3_4
)
1208 sqrt_arg0
= build_and_insert_call (gsi
, loc
, sqrtfn
, arg0
);
1211 sqrt_sqrt
= build_and_insert_call (gsi
, loc
, sqrtfn
, sqrt_arg0
);
1213 /* sqrt(x) * sqrt(sqrt(x)) */
1214 return build_and_insert_binop (gsi
, loc
, "powroot", MULT_EXPR
,
1215 sqrt_arg0
, sqrt_sqrt
);
1218 /* Optimize pow(x,1./3.) = cbrt(x). This requires unsafe math
1219 optimizations since 1./3. is not exactly representable. If x
1220 is negative and finite, the correct value of pow(x,1./3.) is
1221 a NaN with the "invalid" exception raised, because the value
1222 of 1./3. actually has an even denominator. The correct value
1223 of cbrt(x) is a negative real value. */
1224 cbrtfn
= mathfn_built_in (type
, BUILT_IN_CBRT
);
1225 dconst1_3
= real_value_truncate (mode
, dconst_third ());
1227 if (flag_unsafe_math_optimizations
1229 && (gimple_val_nonnegative_real_p (arg0
) || !HONOR_NANS (mode
))
1230 && REAL_VALUES_EQUAL (c
, dconst1_3
))
1231 return build_and_insert_call (gsi
, loc
, cbrtfn
, arg0
);
1233 /* Optimize pow(x,1./6.) = cbrt(sqrt(x)). Don't do this optimization
1234 if we don't have a hardware sqrt insn. */
1235 dconst1_6
= dconst1_3
;
1236 SET_REAL_EXP (&dconst1_6
, REAL_EXP (&dconst1_6
) - 1);
1238 if (flag_unsafe_math_optimizations
1241 && (gimple_val_nonnegative_real_p (arg0
) || !HONOR_NANS (mode
))
1242 && optimize_function_for_speed_p (cfun
)
1244 && REAL_VALUES_EQUAL (c
, dconst1_6
))
1247 sqrt_arg0
= build_and_insert_call (gsi
, loc
, sqrtfn
, arg0
);
1250 return build_and_insert_call (gsi
, loc
, cbrtfn
, sqrt_arg0
);
1253 /* Optimize pow(x,c), where n = 2c for some nonzero integer n
1254 and c not an integer, into
1256 sqrt(x) * powi(x, n/2), n > 0;
1257 1.0 / (sqrt(x) * powi(x, abs(n/2))), n < 0.
1259 Do not calculate the powi factor when n/2 = 0. */
1260 real_arithmetic (&c2
, MULT_EXPR
, &c
, &dconst2
);
1261 n
= real_to_integer (&c2
);
1262 real_from_integer (&cint
, VOIDmode
, n
, SIGNED
);
1263 c2_is_int
= real_identical (&c2
, &cint
);
1265 if (flag_unsafe_math_optimizations
1269 && optimize_function_for_speed_p (cfun
))
1271 tree powi_x_ndiv2
= NULL_TREE
;
1273 /* Attempt to fold powi(arg0, abs(n/2)) into multiplies. If not
1274 possible or profitable, give up. Skip the degenerate case when
1275 n is 1 or -1, where the result is always 1. */
1276 if (absu_hwi (n
) != 1)
1278 powi_x_ndiv2
= gimple_expand_builtin_powi (gsi
, loc
, arg0
,
1284 /* Calculate sqrt(x). When n is not 1 or -1, multiply it by the
1285 result of the optimal multiply sequence just calculated. */
1286 sqrt_arg0
= build_and_insert_call (gsi
, loc
, sqrtfn
, arg0
);
1288 if (absu_hwi (n
) == 1)
1291 result
= build_and_insert_binop (gsi
, loc
, "powroot", MULT_EXPR
,
1292 sqrt_arg0
, powi_x_ndiv2
);
1294 /* If n is negative, reciprocate the result. */
1296 result
= build_and_insert_binop (gsi
, loc
, "powroot", RDIV_EXPR
,
1297 build_real (type
, dconst1
), result
);
1301 /* Optimize pow(x,c), where 3c = n for some nonzero integer n, into
1303 powi(x, n/3) * powi(cbrt(x), n%3), n > 0;
1304 1.0 / (powi(x, abs(n)/3) * powi(cbrt(x), abs(n)%3)), n < 0.
1306 Do not calculate the first factor when n/3 = 0. As cbrt(x) is
1307 different from pow(x, 1./3.) due to rounding and behavior with
1308 negative x, we need to constrain this transformation to unsafe
1309 math and positive x or finite math. */
1310 real_from_integer (&dconst3
, VOIDmode
, 3, SIGNED
);
1311 real_arithmetic (&c2
, MULT_EXPR
, &c
, &dconst3
);
1312 real_round (&c2
, mode
, &c2
);
1313 n
= real_to_integer (&c2
);
1314 real_from_integer (&cint
, VOIDmode
, n
, SIGNED
);
1315 real_arithmetic (&c2
, RDIV_EXPR
, &cint
, &dconst3
);
1316 real_convert (&c2
, mode
, &c2
);
1318 if (flag_unsafe_math_optimizations
1320 && (gimple_val_nonnegative_real_p (arg0
) || !HONOR_NANS (mode
))
1321 && real_identical (&c2
, &c
)
1323 && optimize_function_for_speed_p (cfun
)
1324 && powi_cost (n
/ 3) <= POWI_MAX_MULTS
)
1326 tree powi_x_ndiv3
= NULL_TREE
;
1328 /* Attempt to fold powi(arg0, abs(n/3)) into multiplies. If not
1329 possible or profitable, give up. Skip the degenerate case when
1330 abs(n) < 3, where the result is always 1. */
1331 if (absu_hwi (n
) >= 3)
1333 powi_x_ndiv3
= gimple_expand_builtin_powi (gsi
, loc
, arg0
,
1339 /* Calculate powi(cbrt(x), n%3). Don't use gimple_expand_builtin_powi
1340 as that creates an unnecessary variable. Instead, just produce
1341 either cbrt(x) or cbrt(x) * cbrt(x). */
1342 cbrt_x
= build_and_insert_call (gsi
, loc
, cbrtfn
, arg0
);
1344 if (absu_hwi (n
) % 3 == 1)
1345 powi_cbrt_x
= cbrt_x
;
1347 powi_cbrt_x
= build_and_insert_binop (gsi
, loc
, "powroot", MULT_EXPR
,
1350 /* Multiply the two subexpressions, unless powi(x,abs(n)/3) = 1. */
1351 if (absu_hwi (n
) < 3)
1352 result
= powi_cbrt_x
;
1354 result
= build_and_insert_binop (gsi
, loc
, "powroot", MULT_EXPR
,
1355 powi_x_ndiv3
, powi_cbrt_x
);
1357 /* If n is negative, reciprocate the result. */
1359 result
= build_and_insert_binop (gsi
, loc
, "powroot", RDIV_EXPR
,
1360 build_real (type
, dconst1
), result
);
1365 /* No optimizations succeeded. */
1369 /* ARG is the argument to a cabs builtin call in GSI with location info
1370 LOC. Create a sequence of statements prior to GSI that calculates
1371 sqrt(R*R + I*I), where R and I are the real and imaginary components
1372 of ARG, respectively. Return an expression holding the result. */
1375 gimple_expand_builtin_cabs (gimple_stmt_iterator
*gsi
, location_t loc
, tree arg
)
1377 tree real_part
, imag_part
, addend1
, addend2
, sum
, result
;
1378 tree type
= TREE_TYPE (TREE_TYPE (arg
));
1379 tree sqrtfn
= mathfn_built_in (type
, BUILT_IN_SQRT
);
1380 enum machine_mode mode
= TYPE_MODE (type
);
1382 if (!flag_unsafe_math_optimizations
1383 || !optimize_bb_for_speed_p (gimple_bb (gsi_stmt (*gsi
)))
1385 || optab_handler (sqrt_optab
, mode
) == CODE_FOR_nothing
)
1388 real_part
= build_and_insert_ref (gsi
, loc
, type
, "cabs",
1389 REALPART_EXPR
, arg
);
1390 addend1
= build_and_insert_binop (gsi
, loc
, "cabs", MULT_EXPR
,
1391 real_part
, real_part
);
1392 imag_part
= build_and_insert_ref (gsi
, loc
, type
, "cabs",
1393 IMAGPART_EXPR
, arg
);
1394 addend2
= build_and_insert_binop (gsi
, loc
, "cabs", MULT_EXPR
,
1395 imag_part
, imag_part
);
1396 sum
= build_and_insert_binop (gsi
, loc
, "cabs", PLUS_EXPR
, addend1
, addend2
);
1397 result
= build_and_insert_call (gsi
, loc
, sqrtfn
, sum
);
1402 /* Go through all calls to sin, cos and cexpi and call execute_cse_sincos_1
1403 on the SSA_NAME argument of each of them. Also expand powi(x,n) into
1404 an optimal number of multiplies, when n is a constant. */
1408 const pass_data pass_data_cse_sincos
=
1410 GIMPLE_PASS
, /* type */
1411 "sincos", /* name */
1412 OPTGROUP_NONE
, /* optinfo_flags */
1413 TV_NONE
, /* tv_id */
1414 PROP_ssa
, /* properties_required */
1415 0, /* properties_provided */
1416 0, /* properties_destroyed */
1417 0, /* todo_flags_start */
1418 TODO_update_ssa
, /* todo_flags_finish */
1421 class pass_cse_sincos
: public gimple_opt_pass
1424 pass_cse_sincos (gcc::context
*ctxt
)
1425 : gimple_opt_pass (pass_data_cse_sincos
, ctxt
)
1428 /* opt_pass methods: */
1429 virtual bool gate (function
*)
1431 /* We no longer require either sincos or cexp, since powi expansion
1432 piggybacks on this pass. */
1436 virtual unsigned int execute (function
*);
1438 }; // class pass_cse_sincos
1441 pass_cse_sincos::execute (function
*fun
)
1444 bool cfg_changed
= false;
1446 calculate_dominance_info (CDI_DOMINATORS
);
1447 memset (&sincos_stats
, 0, sizeof (sincos_stats
));
1449 FOR_EACH_BB_FN (bb
, fun
)
1451 gimple_stmt_iterator gsi
;
1452 bool cleanup_eh
= false;
1454 for (gsi
= gsi_after_labels (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1456 gimple stmt
= gsi_stmt (gsi
);
1459 /* Only the last stmt in a bb could throw, no need to call
1460 gimple_purge_dead_eh_edges if we change something in the middle
1461 of a basic block. */
1464 if (is_gimple_call (stmt
)
1465 && gimple_call_lhs (stmt
)
1466 && (fndecl
= gimple_call_fndecl (stmt
))
1467 && DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
)
1469 tree arg
, arg0
, arg1
, result
;
1473 switch (DECL_FUNCTION_CODE (fndecl
))
1475 CASE_FLT_FN (BUILT_IN_COS
):
1476 CASE_FLT_FN (BUILT_IN_SIN
):
1477 CASE_FLT_FN (BUILT_IN_CEXPI
):
1478 /* Make sure we have either sincos or cexp. */
1479 if (!targetm
.libc_has_function (function_c99_math_complex
)
1480 && !targetm
.libc_has_function (function_sincos
))
1483 arg
= gimple_call_arg (stmt
, 0);
1484 if (TREE_CODE (arg
) == SSA_NAME
)
1485 cfg_changed
|= execute_cse_sincos_1 (arg
);
1488 CASE_FLT_FN (BUILT_IN_POW
):
1489 arg0
= gimple_call_arg (stmt
, 0);
1490 arg1
= gimple_call_arg (stmt
, 1);
1492 loc
= gimple_location (stmt
);
1493 result
= gimple_expand_builtin_pow (&gsi
, loc
, arg0
, arg1
);
1497 tree lhs
= gimple_get_lhs (stmt
);
1498 gimple new_stmt
= gimple_build_assign (lhs
, result
);
1499 gimple_set_location (new_stmt
, loc
);
1500 unlink_stmt_vdef (stmt
);
1501 gsi_replace (&gsi
, new_stmt
, true);
1503 if (gimple_vdef (stmt
))
1504 release_ssa_name (gimple_vdef (stmt
));
1508 CASE_FLT_FN (BUILT_IN_POWI
):
1509 arg0
= gimple_call_arg (stmt
, 0);
1510 arg1
= gimple_call_arg (stmt
, 1);
1511 loc
= gimple_location (stmt
);
1513 if (real_minus_onep (arg0
))
1515 tree t0
, t1
, cond
, one
, minus_one
;
1518 t0
= TREE_TYPE (arg0
);
1519 t1
= TREE_TYPE (arg1
);
1520 one
= build_real (t0
, dconst1
);
1521 minus_one
= build_real (t0
, dconstm1
);
1523 cond
= make_temp_ssa_name (t1
, NULL
, "powi_cond");
1524 stmt
= gimple_build_assign_with_ops (BIT_AND_EXPR
, cond
,
1528 gimple_set_location (stmt
, loc
);
1529 gsi_insert_before (&gsi
, stmt
, GSI_SAME_STMT
);
1531 result
= make_temp_ssa_name (t0
, NULL
, "powi");
1532 stmt
= gimple_build_assign_with_ops (COND_EXPR
, result
,
1535 gimple_set_location (stmt
, loc
);
1536 gsi_insert_before (&gsi
, stmt
, GSI_SAME_STMT
);
1540 if (!tree_fits_shwi_p (arg1
))
1543 n
= tree_to_shwi (arg1
);
1544 result
= gimple_expand_builtin_powi (&gsi
, loc
, arg0
, n
);
1549 tree lhs
= gimple_get_lhs (stmt
);
1550 gimple new_stmt
= gimple_build_assign (lhs
, result
);
1551 gimple_set_location (new_stmt
, loc
);
1552 unlink_stmt_vdef (stmt
);
1553 gsi_replace (&gsi
, new_stmt
, true);
1555 if (gimple_vdef (stmt
))
1556 release_ssa_name (gimple_vdef (stmt
));
1560 CASE_FLT_FN (BUILT_IN_CABS
):
1561 arg0
= gimple_call_arg (stmt
, 0);
1562 loc
= gimple_location (stmt
);
1563 result
= gimple_expand_builtin_cabs (&gsi
, loc
, arg0
);
1567 tree lhs
= gimple_get_lhs (stmt
);
1568 gimple new_stmt
= gimple_build_assign (lhs
, result
);
1569 gimple_set_location (new_stmt
, loc
);
1570 unlink_stmt_vdef (stmt
);
1571 gsi_replace (&gsi
, new_stmt
, true);
1573 if (gimple_vdef (stmt
))
1574 release_ssa_name (gimple_vdef (stmt
));
1583 cfg_changed
|= gimple_purge_dead_eh_edges (bb
);
1586 statistics_counter_event (fun
, "sincos statements inserted",
1587 sincos_stats
.inserted
);
1589 free_dominance_info (CDI_DOMINATORS
);
1590 return cfg_changed
? TODO_cleanup_cfg
: 0;
1596 make_pass_cse_sincos (gcc::context
*ctxt
)
1598 return new pass_cse_sincos (ctxt
);
1601 /* A symbolic number is used to detect byte permutation and selection
1602 patterns. Therefore the field N contains an artificial number
1603 consisting of octet sized markers:
1605 0 - target byte has the value 0
1606 FF - target byte has an unknown value (eg. due to sign extension)
1607 1..size - marker value is the target byte index minus one.
1609 To detect permutations on memory sources (arrays and structures), a symbolic
1610 number is also associated a base address (the array or structure the load is
1611 made from), an offset from the base address and a range which gives the
1612 difference between the highest and lowest accessed memory location to make
1613 such a symbolic number. The range is thus different from size which reflects
1614 the size of the type of current expression. Note that for non memory source,
1615 range holds the same value as size.
1617 For instance, for an array char a[], (short) a[0] | (short) a[3] would have
1618 a size of 2 but a range of 4 while (short) a[0] | ((short) a[0] << 1) would
1619 still have a size of 2 but this time a range of 1. */
1621 struct symbolic_number
{
1626 HOST_WIDE_INT bytepos
;
1629 unsigned HOST_WIDE_INT range
;
1632 #define BITS_PER_MARKER 8
1633 #define MARKER_MASK ((1 << BITS_PER_MARKER) - 1)
1634 #define MARKER_BYTE_UNKNOWN MARKER_MASK
1635 #define HEAD_MARKER(n, size) \
1636 ((n) & ((uint64_t) MARKER_MASK << (((size) - 1) * BITS_PER_MARKER)))
1638 /* The number which the find_bswap_or_nop_1 result should match in
1639 order to have a nop. The number is masked according to the size of
1640 the symbolic number before using it. */
1641 #define CMPNOP (sizeof (int64_t) < 8 ? 0 : \
1642 (uint64_t)0x08070605 << 32 | 0x04030201)
1644 /* The number which the find_bswap_or_nop_1 result should match in
1645 order to have a byte swap. The number is masked according to the
1646 size of the symbolic number before using it. */
1647 #define CMPXCHG (sizeof (int64_t) < 8 ? 0 : \
1648 (uint64_t)0x01020304 << 32 | 0x05060708)
1650 /* Perform a SHIFT or ROTATE operation by COUNT bits on symbolic
1651 number N. Return false if the requested operation is not permitted
1652 on a symbolic number. */
1655 do_shift_rotate (enum tree_code code
,
1656 struct symbolic_number
*n
,
1659 int i
, size
= TYPE_PRECISION (n
->type
) / BITS_PER_UNIT
;
1660 unsigned head_marker
;
1662 if (count
% BITS_PER_UNIT
!= 0)
1664 count
= (count
/ BITS_PER_UNIT
) * BITS_PER_MARKER
;
1666 /* Zero out the extra bits of N in order to avoid them being shifted
1667 into the significant bits. */
1668 if (size
< 64 / BITS_PER_MARKER
)
1669 n
->n
&= ((uint64_t) 1 << (size
* BITS_PER_MARKER
)) - 1;
1677 head_marker
= HEAD_MARKER (n
->n
, size
);
1679 /* Arithmetic shift of signed type: result is dependent on the value. */
1680 if (!TYPE_UNSIGNED (n
->type
) && head_marker
)
1681 for (i
= 0; i
< count
/ BITS_PER_MARKER
; i
++)
1682 n
->n
|= (uint64_t) MARKER_BYTE_UNKNOWN
1683 << ((size
- 1 - i
) * BITS_PER_MARKER
);
1686 n
->n
= (n
->n
<< count
) | (n
->n
>> ((size
* BITS_PER_MARKER
) - count
));
1689 n
->n
= (n
->n
>> count
) | (n
->n
<< ((size
* BITS_PER_MARKER
) - count
));
1694 /* Zero unused bits for size. */
1695 if (size
< 64 / BITS_PER_MARKER
)
1696 n
->n
&= ((uint64_t) 1 << (size
* BITS_PER_MARKER
)) - 1;
1700 /* Perform sanity checking for the symbolic number N and the gimple
1704 verify_symbolic_number_p (struct symbolic_number
*n
, gimple stmt
)
1708 lhs_type
= gimple_expr_type (stmt
);
1710 if (TREE_CODE (lhs_type
) != INTEGER_TYPE
)
1713 if (TYPE_PRECISION (lhs_type
) != TYPE_PRECISION (n
->type
))
1719 /* Initialize the symbolic number N for the bswap pass from the base element
1720 SRC manipulated by the bitwise OR expression. */
1723 init_symbolic_number (struct symbolic_number
*n
, tree src
)
1727 n
->base_addr
= n
->offset
= n
->alias_set
= n
->vuse
= NULL_TREE
;
1729 /* Set up the symbolic number N by setting each byte to a value between 1 and
1730 the byte size of rhs1. The highest order byte is set to n->size and the
1731 lowest order byte to 1. */
1732 n
->type
= TREE_TYPE (src
);
1733 size
= TYPE_PRECISION (n
->type
);
1734 if (size
% BITS_PER_UNIT
!= 0)
1736 size
/= BITS_PER_UNIT
;
1737 if (size
> 64 / BITS_PER_MARKER
)
1742 if (size
< 64 / BITS_PER_MARKER
)
1743 n
->n
&= ((uint64_t) 1 << (size
* BITS_PER_MARKER
)) - 1;
1748 /* Check if STMT might be a byte swap or a nop from a memory source and returns
1749 the answer. If so, REF is that memory source and the base of the memory area
1750 accessed and the offset of the access from that base are recorded in N. */
1753 find_bswap_or_nop_load (gimple stmt
, tree ref
, struct symbolic_number
*n
)
1755 /* Leaf node is an array or component ref. Memorize its base and
1756 offset from base to compare to other such leaf node. */
1757 HOST_WIDE_INT bitsize
, bitpos
;
1758 enum machine_mode mode
;
1759 int unsignedp
, volatilep
;
1760 tree offset
, base_addr
;
1762 if (!gimple_assign_load_p (stmt
) || gimple_has_volatile_ops (stmt
))
1765 base_addr
= get_inner_reference (ref
, &bitsize
, &bitpos
, &offset
, &mode
,
1766 &unsignedp
, &volatilep
, false);
1768 if (TREE_CODE (base_addr
) == MEM_REF
)
1770 offset_int bit_offset
= 0;
1771 tree off
= TREE_OPERAND (base_addr
, 1);
1773 if (!integer_zerop (off
))
1775 offset_int boff
, coff
= mem_ref_offset (base_addr
);
1776 boff
= wi::lshift (coff
, LOG2_BITS_PER_UNIT
);
1780 base_addr
= TREE_OPERAND (base_addr
, 0);
1782 /* Avoid returning a negative bitpos as this may wreak havoc later. */
1783 if (wi::neg_p (bit_offset
))
1785 offset_int mask
= wi::mask
<offset_int
> (LOG2_BITS_PER_UNIT
, false);
1786 offset_int tem
= bit_offset
.and_not (mask
);
1787 /* TEM is the bitpos rounded to BITS_PER_UNIT towards -Inf.
1788 Subtract it to BIT_OFFSET and add it (scaled) to OFFSET. */
1790 tem
= wi::arshift (tem
, LOG2_BITS_PER_UNIT
);
1792 offset
= size_binop (PLUS_EXPR
, offset
,
1793 wide_int_to_tree (sizetype
, tem
));
1795 offset
= wide_int_to_tree (sizetype
, tem
);
1798 bitpos
+= bit_offset
.to_shwi ();
1801 if (bitpos
% BITS_PER_UNIT
)
1803 if (bitsize
% BITS_PER_UNIT
)
1806 if (!init_symbolic_number (n
, ref
))
1808 n
->base_addr
= base_addr
;
1810 n
->bytepos
= bitpos
/ BITS_PER_UNIT
;
1811 n
->alias_set
= reference_alias_ptr_type (ref
);
1812 n
->vuse
= gimple_vuse (stmt
);
1816 /* find_bswap_or_nop_1 invokes itself recursively with N and tries to perform
1817 the operation given by the rhs of STMT on the result. If the operation
1818 could successfully be executed the function returns a gimple stmt whose
1819 rhs's first tree is the expression of the source operand and NULL
1823 find_bswap_or_nop_1 (gimple stmt
, struct symbolic_number
*n
, int limit
)
1825 enum tree_code code
;
1826 tree rhs1
, rhs2
= NULL
;
1827 gimple rhs1_stmt
, rhs2_stmt
, source_stmt1
;
1828 enum gimple_rhs_class rhs_class
;
1830 if (!limit
|| !is_gimple_assign (stmt
))
1833 rhs1
= gimple_assign_rhs1 (stmt
);
1835 if (find_bswap_or_nop_load (stmt
, rhs1
, n
))
1838 if (TREE_CODE (rhs1
) != SSA_NAME
)
1841 code
= gimple_assign_rhs_code (stmt
);
1842 rhs_class
= gimple_assign_rhs_class (stmt
);
1843 rhs1_stmt
= SSA_NAME_DEF_STMT (rhs1
);
1845 if (rhs_class
== GIMPLE_BINARY_RHS
)
1846 rhs2
= gimple_assign_rhs2 (stmt
);
1848 /* Handle unary rhs and binary rhs with integer constants as second
1851 if (rhs_class
== GIMPLE_UNARY_RHS
1852 || (rhs_class
== GIMPLE_BINARY_RHS
1853 && TREE_CODE (rhs2
) == INTEGER_CST
))
1855 if (code
!= BIT_AND_EXPR
1856 && code
!= LSHIFT_EXPR
1857 && code
!= RSHIFT_EXPR
1858 && code
!= LROTATE_EXPR
1859 && code
!= RROTATE_EXPR
1861 && code
!= CONVERT_EXPR
)
1864 source_stmt1
= find_bswap_or_nop_1 (rhs1_stmt
, n
, limit
- 1);
1866 /* If find_bswap_or_nop_1 returned NULL, STMT is a leaf node and
1867 we have to initialize the symbolic number. */
1870 if (gimple_assign_load_p (stmt
)
1871 || !init_symbolic_number (n
, rhs1
))
1873 source_stmt1
= stmt
;
1880 int i
, size
= TYPE_PRECISION (n
->type
) / BITS_PER_UNIT
;
1881 uint64_t val
= int_cst_value (rhs2
), mask
= 0;
1882 uint64_t tmp
= (1 << BITS_PER_UNIT
) - 1;
1884 /* Only constants masking full bytes are allowed. */
1885 for (i
= 0; i
< size
; i
++, tmp
<<= BITS_PER_UNIT
)
1886 if ((val
& tmp
) != 0 && (val
& tmp
) != tmp
)
1889 mask
|= (uint64_t) MARKER_MASK
<< (i
* BITS_PER_MARKER
);
1898 if (!do_shift_rotate (code
, n
, (int)TREE_INT_CST_LOW (rhs2
)))
1903 int i
, type_size
, old_type_size
;
1906 type
= gimple_expr_type (stmt
);
1907 type_size
= TYPE_PRECISION (type
);
1908 if (type_size
% BITS_PER_UNIT
!= 0)
1910 type_size
/= BITS_PER_UNIT
;
1911 if (type_size
> 64 / BITS_PER_MARKER
)
1914 /* Sign extension: result is dependent on the value. */
1915 old_type_size
= TYPE_PRECISION (n
->type
) / BITS_PER_UNIT
;
1916 if (!TYPE_UNSIGNED (n
->type
) && type_size
> old_type_size
1917 && HEAD_MARKER (n
->n
, old_type_size
))
1918 for (i
= 0; i
< type_size
- old_type_size
; i
++)
1919 n
->n
|= MARKER_BYTE_UNKNOWN
1920 << ((type_size
- 1 - i
) * BITS_PER_MARKER
);
1922 if (type_size
< 64 / BITS_PER_MARKER
)
1924 /* If STMT casts to a smaller type mask out the bits not
1925 belonging to the target type. */
1926 n
->n
&= ((uint64_t) 1 << (type_size
* BITS_PER_MARKER
)) - 1;
1930 n
->range
= type_size
;
1936 return verify_symbolic_number_p (n
, stmt
) ? source_stmt1
: NULL
;
1939 /* Handle binary rhs. */
1941 if (rhs_class
== GIMPLE_BINARY_RHS
)
1944 struct symbolic_number n1
, n2
;
1946 gimple source_stmt2
;
1948 if (code
!= BIT_IOR_EXPR
)
1951 if (TREE_CODE (rhs2
) != SSA_NAME
)
1954 rhs2_stmt
= SSA_NAME_DEF_STMT (rhs2
);
1959 source_stmt1
= find_bswap_or_nop_1 (rhs1_stmt
, &n1
, limit
- 1);
1964 source_stmt2
= find_bswap_or_nop_1 (rhs2_stmt
, &n2
, limit
- 1);
1969 if (TYPE_PRECISION (n1
.type
) != TYPE_PRECISION (n2
.type
))
1972 if (!n1
.vuse
!= !n2
.vuse
||
1973 (n1
.vuse
&& !operand_equal_p (n1
.vuse
, n2
.vuse
, 0)))
1976 if (gimple_assign_rhs1 (source_stmt1
)
1977 != gimple_assign_rhs1 (source_stmt2
))
1980 HOST_WIDE_INT off_sub
;
1981 struct symbolic_number
*n_ptr
;
1983 if (!n1
.base_addr
|| !n2
.base_addr
1984 || !operand_equal_p (n1
.base_addr
, n2
.base_addr
, 0))
1986 if (!n1
.offset
!= !n2
.offset
||
1987 (n1
.offset
&& !operand_equal_p (n1
.offset
, n2
.offset
, 0)))
1990 /* We swap n1 with n2 to have n1 < n2. */
1991 if (n2
.bytepos
< n1
.bytepos
)
1993 struct symbolic_number tmpn
;
1998 source_stmt1
= source_stmt2
;
2001 off_sub
= n2
.bytepos
- n1
.bytepos
;
2003 /* Check that the range of memory covered can be represented by
2004 a symbolic number. */
2005 if (off_sub
+ n2
.range
> 64 / BITS_PER_MARKER
)
2007 n
->range
= n2
.range
+ off_sub
;
2009 /* Reinterpret byte marks in symbolic number holding the value of
2010 bigger weight according to target endianness. */
2011 inc
= BYTES_BIG_ENDIAN
? off_sub
+ n2
.range
- n1
.range
: off_sub
;
2012 size
= TYPE_PRECISION (n1
.type
) / BITS_PER_UNIT
;
2013 if (BYTES_BIG_ENDIAN
)
2017 for (i
= 0; i
< size
; i
++, inc
<<= BITS_PER_MARKER
)
2020 (n_ptr
->n
>> (i
* BITS_PER_MARKER
)) & MARKER_MASK
;
2021 if (marker
&& marker
!= MARKER_BYTE_UNKNOWN
)
2026 n
->range
= n1
.range
;
2029 || alias_ptr_types_compatible_p (n1
.alias_set
, n2
.alias_set
))
2030 n
->alias_set
= n1
.alias_set
;
2032 n
->alias_set
= ptr_type_node
;
2034 n
->base_addr
= n1
.base_addr
;
2035 n
->offset
= n1
.offset
;
2036 n
->bytepos
= n1
.bytepos
;
2038 size
= TYPE_PRECISION (n
->type
) / BITS_PER_UNIT
;
2039 for (i
= 0, mask
= MARKER_MASK
; i
< size
;
2040 i
++, mask
<<= BITS_PER_MARKER
)
2042 uint64_t masked1
, masked2
;
2044 masked1
= n1
.n
& mask
;
2045 masked2
= n2
.n
& mask
;
2046 if (masked1
&& masked2
&& masked1
!= masked2
)
2051 if (!verify_symbolic_number_p (n
, stmt
))
2058 return source_stmt1
;
2063 /* Check if STMT completes a bswap implementation or a read in a given
2064 endianness consisting of ORs, SHIFTs and ANDs and sets *BSWAP
2065 accordingly. It also sets N to represent the kind of operations
2066 performed: size of the resulting expression and whether it works on
2067 a memory source, and if so alias-set and vuse. At last, the
2068 function returns a stmt whose rhs's first tree is the source
2072 find_bswap_or_nop (gimple stmt
, struct symbolic_number
*n
, bool *bswap
)
2074 /* The number which the find_bswap_or_nop_1 result should match in order
2075 to have a full byte swap. The number is shifted to the right
2076 according to the size of the symbolic number before using it. */
2077 uint64_t cmpxchg
= CMPXCHG
;
2078 uint64_t cmpnop
= CMPNOP
;
2083 /* The last parameter determines the depth search limit. It usually
2084 correlates directly to the number n of bytes to be touched. We
2085 increase that number by log2(n) + 1 here in order to also
2086 cover signed -> unsigned conversions of the src operand as can be seen
2087 in libgcc, and for initial shift/and operation of the src operand. */
2088 limit
= TREE_INT_CST_LOW (TYPE_SIZE_UNIT (gimple_expr_type (stmt
)));
2089 limit
+= 1 + (int) ceil_log2 ((unsigned HOST_WIDE_INT
) limit
);
2090 source_stmt
= find_bswap_or_nop_1 (stmt
, n
, limit
);
2095 /* Find real size of result (highest non zero byte). */
2101 for (tmpn
= n
->n
, rsize
= 0; tmpn
; tmpn
>>= BITS_PER_MARKER
, rsize
++);
2105 /* Zero out the extra bits of N and CMP*. */
2106 if (n
->range
< (int) sizeof (int64_t))
2110 mask
= ((uint64_t) 1 << (n
->range
* BITS_PER_MARKER
)) - 1;
2111 cmpxchg
>>= (64 / BITS_PER_MARKER
- n
->range
) * BITS_PER_MARKER
;
2115 /* A complete byte swap should make the symbolic number to start with
2116 the largest digit in the highest order byte. Unchanged symbolic
2117 number indicates a read with same endianness as target architecture. */
2120 else if (n
->n
== cmpxchg
)
2125 /* Useless bit manipulation performed by code. */
2126 if (!n
->base_addr
&& n
->n
== cmpnop
)
2129 n
->range
*= BITS_PER_UNIT
;
2135 const pass_data pass_data_optimize_bswap
=
2137 GIMPLE_PASS
, /* type */
2139 OPTGROUP_NONE
, /* optinfo_flags */
2140 TV_NONE
, /* tv_id */
2141 PROP_ssa
, /* properties_required */
2142 0, /* properties_provided */
2143 0, /* properties_destroyed */
2144 0, /* todo_flags_start */
2145 0, /* todo_flags_finish */
2148 class pass_optimize_bswap
: public gimple_opt_pass
2151 pass_optimize_bswap (gcc::context
*ctxt
)
2152 : gimple_opt_pass (pass_data_optimize_bswap
, ctxt
)
2155 /* opt_pass methods: */
2156 virtual bool gate (function
*)
2158 return flag_expensive_optimizations
&& optimize
;
2161 virtual unsigned int execute (function
*);
2163 }; // class pass_optimize_bswap
2165 /* Perform the bswap optimization: replace the statement CUR_STMT at
2166 GSI with a load of type, VUSE and set-alias as described by N if a
2167 memory source is involved (N->base_addr is non null), followed by
2168 the builtin bswap invocation in FNDECL if BSWAP is true. SRC_STMT
2169 gives where should the replacement be made. It also gives the
2170 source on which CUR_STMT is operating via its rhs's first tree nad
2171 N->range gives the size of the expression involved for maintaining
2175 bswap_replace (gimple cur_stmt
, gimple_stmt_iterator gsi
, gimple src_stmt
,
2176 tree fndecl
, tree bswap_type
, tree load_type
,
2177 struct symbolic_number
*n
, bool bswap
)
2182 src
= gimple_assign_rhs1 (src_stmt
);
2183 tgt
= gimple_assign_lhs (cur_stmt
);
2185 /* Need to load the value from memory first. */
2188 gimple_stmt_iterator gsi_ins
= gsi_for_stmt (src_stmt
);
2189 tree addr_expr
, addr_tmp
, val_expr
, val_tmp
;
2190 tree load_offset_ptr
, aligned_load_type
;
2191 gimple addr_stmt
, load_stmt
;
2194 align
= get_object_alignment (src
);
2196 && align
< GET_MODE_ALIGNMENT (TYPE_MODE (load_type
))
2197 && SLOW_UNALIGNED_ACCESS (TYPE_MODE (load_type
), align
))
2200 gsi_move_before (&gsi
, &gsi_ins
);
2201 gsi
= gsi_for_stmt (cur_stmt
);
2203 /* Compute address to load from and cast according to the size
2205 addr_expr
= build_fold_addr_expr (unshare_expr (src
));
2206 if (is_gimple_min_invariant (addr_expr
))
2207 addr_tmp
= addr_expr
;
2210 addr_tmp
= make_temp_ssa_name (TREE_TYPE (addr_expr
), NULL
,
2212 addr_stmt
= gimple_build_assign (addr_tmp
, addr_expr
);
2213 gsi_insert_before (&gsi
, addr_stmt
, GSI_SAME_STMT
);
2216 /* Perform the load. */
2217 aligned_load_type
= load_type
;
2218 if (align
< TYPE_ALIGN (load_type
))
2219 aligned_load_type
= build_aligned_type (load_type
, align
);
2220 load_offset_ptr
= build_int_cst (n
->alias_set
, 0);
2221 val_expr
= fold_build2 (MEM_REF
, aligned_load_type
, addr_tmp
,
2227 nop_stats
.found_16bit
++;
2228 else if (n
->range
== 32)
2229 nop_stats
.found_32bit
++;
2232 gcc_assert (n
->range
== 64);
2233 nop_stats
.found_64bit
++;
2236 /* Convert the result of load if necessary. */
2237 if (!useless_type_conversion_p (TREE_TYPE (tgt
), load_type
))
2239 val_tmp
= make_temp_ssa_name (aligned_load_type
, NULL
,
2241 load_stmt
= gimple_build_assign (val_tmp
, val_expr
);
2242 gimple_set_vuse (load_stmt
, n
->vuse
);
2243 gsi_insert_before (&gsi
, load_stmt
, GSI_SAME_STMT
);
2244 gimple_assign_set_rhs_with_ops_1 (&gsi
, NOP_EXPR
, val_tmp
,
2245 NULL_TREE
, NULL_TREE
);
2249 gimple_assign_set_rhs_with_ops_1 (&gsi
, MEM_REF
, val_expr
,
2250 NULL_TREE
, NULL_TREE
);
2251 gimple_set_vuse (cur_stmt
, n
->vuse
);
2253 update_stmt (cur_stmt
);
2258 "%d bit load in target endianness found at: ",
2260 print_gimple_stmt (dump_file
, cur_stmt
, 0, 0);
2266 val_tmp
= make_temp_ssa_name (aligned_load_type
, NULL
, "load_dst");
2267 load_stmt
= gimple_build_assign (val_tmp
, val_expr
);
2268 gimple_set_vuse (load_stmt
, n
->vuse
);
2269 gsi_insert_before (&gsi
, load_stmt
, GSI_SAME_STMT
);
2275 bswap_stats
.found_16bit
++;
2276 else if (n
->range
== 32)
2277 bswap_stats
.found_32bit
++;
2280 gcc_assert (n
->range
== 64);
2281 bswap_stats
.found_64bit
++;
2286 /* Convert the src expression if necessary. */
2287 if (!useless_type_conversion_p (TREE_TYPE (tmp
), bswap_type
))
2289 gimple convert_stmt
;
2290 tmp
= make_temp_ssa_name (bswap_type
, NULL
, "bswapsrc");
2291 convert_stmt
= gimple_build_assign_with_ops (NOP_EXPR
, tmp
, src
, NULL
);
2292 gsi_insert_before (&gsi
, convert_stmt
, GSI_SAME_STMT
);
2295 call
= gimple_build_call (fndecl
, 1, tmp
);
2299 /* Convert the result if necessary. */
2300 if (!useless_type_conversion_p (TREE_TYPE (tgt
), bswap_type
))
2302 gimple convert_stmt
;
2303 tmp
= make_temp_ssa_name (bswap_type
, NULL
, "bswapdst");
2304 convert_stmt
= gimple_build_assign_with_ops (NOP_EXPR
, tgt
, tmp
, NULL
);
2305 gsi_insert_after (&gsi
, convert_stmt
, GSI_SAME_STMT
);
2308 gimple_call_set_lhs (call
, tmp
);
2312 fprintf (dump_file
, "%d bit bswap implementation found at: ",
2314 print_gimple_stmt (dump_file
, cur_stmt
, 0, 0);
2317 gsi_insert_after (&gsi
, call
, GSI_SAME_STMT
);
2318 gsi_remove (&gsi
, true);
2322 /* Find manual byte swap implementations as well as load in a given
2323 endianness. Byte swaps are turned into a bswap builtin invokation
2324 while endian loads are converted to bswap builtin invokation or
2325 simple load according to the target endianness. */
2328 pass_optimize_bswap::execute (function
*fun
)
2331 bool bswap16_p
, bswap32_p
, bswap64_p
;
2332 bool changed
= false;
2333 tree bswap16_type
= NULL_TREE
, bswap32_type
= NULL_TREE
, bswap64_type
= NULL_TREE
;
2335 if (BITS_PER_UNIT
!= 8)
2338 bswap16_p
= (builtin_decl_explicit_p (BUILT_IN_BSWAP16
)
2339 && optab_handler (bswap_optab
, HImode
) != CODE_FOR_nothing
);
2340 bswap32_p
= (builtin_decl_explicit_p (BUILT_IN_BSWAP32
)
2341 && optab_handler (bswap_optab
, SImode
) != CODE_FOR_nothing
);
2342 bswap64_p
= (builtin_decl_explicit_p (BUILT_IN_BSWAP64
)
2343 && (optab_handler (bswap_optab
, DImode
) != CODE_FOR_nothing
2344 || (bswap32_p
&& word_mode
== SImode
)));
2346 /* Determine the argument type of the builtins. The code later on
2347 assumes that the return and argument type are the same. */
2350 tree fndecl
= builtin_decl_explicit (BUILT_IN_BSWAP16
);
2351 bswap16_type
= TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl
)));
2356 tree fndecl
= builtin_decl_explicit (BUILT_IN_BSWAP32
);
2357 bswap32_type
= TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl
)));
2362 tree fndecl
= builtin_decl_explicit (BUILT_IN_BSWAP64
);
2363 bswap64_type
= TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl
)));
2366 memset (&nop_stats
, 0, sizeof (nop_stats
));
2367 memset (&bswap_stats
, 0, sizeof (bswap_stats
));
2369 FOR_EACH_BB_FN (bb
, fun
)
2371 gimple_stmt_iterator gsi
;
2373 /* We do a reverse scan for bswap patterns to make sure we get the
2374 widest match. As bswap pattern matching doesn't handle
2375 previously inserted smaller bswap replacements as sub-
2376 patterns, the wider variant wouldn't be detected. */
2377 for (gsi
= gsi_last_bb (bb
); !gsi_end_p (gsi
); gsi_prev (&gsi
))
2379 gimple src_stmt
, cur_stmt
= gsi_stmt (gsi
);
2380 tree fndecl
= NULL_TREE
, bswap_type
= NULL_TREE
, load_type
;
2381 struct symbolic_number n
;
2384 if (!is_gimple_assign (cur_stmt
)
2385 || gimple_assign_rhs_code (cur_stmt
) != BIT_IOR_EXPR
)
2388 src_stmt
= find_bswap_or_nop (cur_stmt
, &n
, &bswap
);
2396 load_type
= uint16_type_node
;
2399 fndecl
= builtin_decl_explicit (BUILT_IN_BSWAP16
);
2400 bswap_type
= bswap16_type
;
2404 load_type
= uint32_type_node
;
2407 fndecl
= builtin_decl_explicit (BUILT_IN_BSWAP32
);
2408 bswap_type
= bswap32_type
;
2412 load_type
= uint64_type_node
;
2415 fndecl
= builtin_decl_explicit (BUILT_IN_BSWAP64
);
2416 bswap_type
= bswap64_type
;
2423 if (bswap
&& !fndecl
)
2426 if (bswap_replace (cur_stmt
, gsi
, src_stmt
, fndecl
, bswap_type
,
2427 load_type
, &n
, bswap
))
2432 statistics_counter_event (fun
, "16-bit nop implementations found",
2433 nop_stats
.found_16bit
);
2434 statistics_counter_event (fun
, "32-bit nop implementations found",
2435 nop_stats
.found_32bit
);
2436 statistics_counter_event (fun
, "64-bit nop implementations found",
2437 nop_stats
.found_64bit
);
2438 statistics_counter_event (fun
, "16-bit bswap implementations found",
2439 bswap_stats
.found_16bit
);
2440 statistics_counter_event (fun
, "32-bit bswap implementations found",
2441 bswap_stats
.found_32bit
);
2442 statistics_counter_event (fun
, "64-bit bswap implementations found",
2443 bswap_stats
.found_64bit
);
2445 return (changed
? TODO_update_ssa
: 0);
2451 make_pass_optimize_bswap (gcc::context
*ctxt
)
2453 return new pass_optimize_bswap (ctxt
);
2456 /* Return true if stmt is a type conversion operation that can be stripped
2457 when used in a widening multiply operation. */
2459 widening_mult_conversion_strippable_p (tree result_type
, gimple stmt
)
2461 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
2463 if (TREE_CODE (result_type
) == INTEGER_TYPE
)
2468 if (!CONVERT_EXPR_CODE_P (rhs_code
))
2471 op_type
= TREE_TYPE (gimple_assign_lhs (stmt
));
2473 /* If the type of OP has the same precision as the result, then
2474 we can strip this conversion. The multiply operation will be
2475 selected to create the correct extension as a by-product. */
2476 if (TYPE_PRECISION (result_type
) == TYPE_PRECISION (op_type
))
2479 /* We can also strip a conversion if it preserves the signed-ness of
2480 the operation and doesn't narrow the range. */
2481 inner_op_type
= TREE_TYPE (gimple_assign_rhs1 (stmt
));
2483 /* If the inner-most type is unsigned, then we can strip any
2484 intermediate widening operation. If it's signed, then the
2485 intermediate widening operation must also be signed. */
2486 if ((TYPE_UNSIGNED (inner_op_type
)
2487 || TYPE_UNSIGNED (op_type
) == TYPE_UNSIGNED (inner_op_type
))
2488 && TYPE_PRECISION (op_type
) > TYPE_PRECISION (inner_op_type
))
2494 return rhs_code
== FIXED_CONVERT_EXPR
;
2497 /* Return true if RHS is a suitable operand for a widening multiplication,
2498 assuming a target type of TYPE.
2499 There are two cases:
2501 - RHS makes some value at least twice as wide. Store that value
2502 in *NEW_RHS_OUT if so, and store its type in *TYPE_OUT.
2504 - RHS is an integer constant. Store that value in *NEW_RHS_OUT if so,
2505 but leave *TYPE_OUT untouched. */
2508 is_widening_mult_rhs_p (tree type
, tree rhs
, tree
*type_out
,
2514 if (TREE_CODE (rhs
) == SSA_NAME
)
2516 stmt
= SSA_NAME_DEF_STMT (rhs
);
2517 if (is_gimple_assign (stmt
))
2519 if (! widening_mult_conversion_strippable_p (type
, stmt
))
2523 rhs1
= gimple_assign_rhs1 (stmt
);
2525 if (TREE_CODE (rhs1
) == INTEGER_CST
)
2527 *new_rhs_out
= rhs1
;
2536 type1
= TREE_TYPE (rhs1
);
2538 if (TREE_CODE (type1
) != TREE_CODE (type
)
2539 || TYPE_PRECISION (type1
) * 2 > TYPE_PRECISION (type
))
2542 *new_rhs_out
= rhs1
;
2547 if (TREE_CODE (rhs
) == INTEGER_CST
)
2557 /* Return true if STMT performs a widening multiplication, assuming the
2558 output type is TYPE. If so, store the unwidened types of the operands
2559 in *TYPE1_OUT and *TYPE2_OUT respectively. Also fill *RHS1_OUT and
2560 *RHS2_OUT such that converting those operands to types *TYPE1_OUT
2561 and *TYPE2_OUT would give the operands of the multiplication. */
2564 is_widening_mult_p (gimple stmt
,
2565 tree
*type1_out
, tree
*rhs1_out
,
2566 tree
*type2_out
, tree
*rhs2_out
)
2568 tree type
= TREE_TYPE (gimple_assign_lhs (stmt
));
2570 if (TREE_CODE (type
) != INTEGER_TYPE
2571 && TREE_CODE (type
) != FIXED_POINT_TYPE
)
2574 if (!is_widening_mult_rhs_p (type
, gimple_assign_rhs1 (stmt
), type1_out
,
2578 if (!is_widening_mult_rhs_p (type
, gimple_assign_rhs2 (stmt
), type2_out
,
2582 if (*type1_out
== NULL
)
2584 if (*type2_out
== NULL
|| !int_fits_type_p (*rhs1_out
, *type2_out
))
2586 *type1_out
= *type2_out
;
2589 if (*type2_out
== NULL
)
2591 if (!int_fits_type_p (*rhs2_out
, *type1_out
))
2593 *type2_out
= *type1_out
;
2596 /* Ensure that the larger of the two operands comes first. */
2597 if (TYPE_PRECISION (*type1_out
) < TYPE_PRECISION (*type2_out
))
2601 *type1_out
= *type2_out
;
2604 *rhs1_out
= *rhs2_out
;
2611 /* Process a single gimple statement STMT, which has a MULT_EXPR as
2612 its rhs, and try to convert it into a WIDEN_MULT_EXPR. The return
2613 value is true iff we converted the statement. */
2616 convert_mult_to_widen (gimple stmt
, gimple_stmt_iterator
*gsi
)
2618 tree lhs
, rhs1
, rhs2
, type
, type1
, type2
;
2619 enum insn_code handler
;
2620 enum machine_mode to_mode
, from_mode
, actual_mode
;
2622 int actual_precision
;
2623 location_t loc
= gimple_location (stmt
);
2624 bool from_unsigned1
, from_unsigned2
;
2626 lhs
= gimple_assign_lhs (stmt
);
2627 type
= TREE_TYPE (lhs
);
2628 if (TREE_CODE (type
) != INTEGER_TYPE
)
2631 if (!is_widening_mult_p (stmt
, &type1
, &rhs1
, &type2
, &rhs2
))
2634 to_mode
= TYPE_MODE (type
);
2635 from_mode
= TYPE_MODE (type1
);
2636 from_unsigned1
= TYPE_UNSIGNED (type1
);
2637 from_unsigned2
= TYPE_UNSIGNED (type2
);
2639 if (from_unsigned1
&& from_unsigned2
)
2640 op
= umul_widen_optab
;
2641 else if (!from_unsigned1
&& !from_unsigned2
)
2642 op
= smul_widen_optab
;
2644 op
= usmul_widen_optab
;
2646 handler
= find_widening_optab_handler_and_mode (op
, to_mode
, from_mode
,
2649 if (handler
== CODE_FOR_nothing
)
2651 if (op
!= smul_widen_optab
)
2653 /* We can use a signed multiply with unsigned types as long as
2654 there is a wider mode to use, or it is the smaller of the two
2655 types that is unsigned. Note that type1 >= type2, always. */
2656 if ((TYPE_UNSIGNED (type1
)
2657 && TYPE_PRECISION (type1
) == GET_MODE_PRECISION (from_mode
))
2658 || (TYPE_UNSIGNED (type2
)
2659 && TYPE_PRECISION (type2
) == GET_MODE_PRECISION (from_mode
)))
2661 from_mode
= GET_MODE_WIDER_MODE (from_mode
);
2662 if (GET_MODE_SIZE (to_mode
) <= GET_MODE_SIZE (from_mode
))
2666 op
= smul_widen_optab
;
2667 handler
= find_widening_optab_handler_and_mode (op
, to_mode
,
2671 if (handler
== CODE_FOR_nothing
)
2674 from_unsigned1
= from_unsigned2
= false;
2680 /* Ensure that the inputs to the handler are in the correct precison
2681 for the opcode. This will be the full mode size. */
2682 actual_precision
= GET_MODE_PRECISION (actual_mode
);
2683 if (2 * actual_precision
> TYPE_PRECISION (type
))
2685 if (actual_precision
!= TYPE_PRECISION (type1
)
2686 || from_unsigned1
!= TYPE_UNSIGNED (type1
))
2687 rhs1
= build_and_insert_cast (gsi
, loc
,
2688 build_nonstandard_integer_type
2689 (actual_precision
, from_unsigned1
), rhs1
);
2690 if (actual_precision
!= TYPE_PRECISION (type2
)
2691 || from_unsigned2
!= TYPE_UNSIGNED (type2
))
2692 rhs2
= build_and_insert_cast (gsi
, loc
,
2693 build_nonstandard_integer_type
2694 (actual_precision
, from_unsigned2
), rhs2
);
2696 /* Handle constants. */
2697 if (TREE_CODE (rhs1
) == INTEGER_CST
)
2698 rhs1
= fold_convert (type1
, rhs1
);
2699 if (TREE_CODE (rhs2
) == INTEGER_CST
)
2700 rhs2
= fold_convert (type2
, rhs2
);
2702 gimple_assign_set_rhs1 (stmt
, rhs1
);
2703 gimple_assign_set_rhs2 (stmt
, rhs2
);
2704 gimple_assign_set_rhs_code (stmt
, WIDEN_MULT_EXPR
);
2706 widen_mul_stats
.widen_mults_inserted
++;
2710 /* Process a single gimple statement STMT, which is found at the
2711 iterator GSI and has a either a PLUS_EXPR or a MINUS_EXPR as its
2712 rhs (given by CODE), and try to convert it into a
2713 WIDEN_MULT_PLUS_EXPR or a WIDEN_MULT_MINUS_EXPR. The return value
2714 is true iff we converted the statement. */
2717 convert_plusminus_to_widen (gimple_stmt_iterator
*gsi
, gimple stmt
,
2718 enum tree_code code
)
2720 gimple rhs1_stmt
= NULL
, rhs2_stmt
= NULL
;
2721 gimple conv1_stmt
= NULL
, conv2_stmt
= NULL
, conv_stmt
;
2722 tree type
, type1
, type2
, optype
;
2723 tree lhs
, rhs1
, rhs2
, mult_rhs1
, mult_rhs2
, add_rhs
;
2724 enum tree_code rhs1_code
= ERROR_MARK
, rhs2_code
= ERROR_MARK
;
2726 enum tree_code wmult_code
;
2727 enum insn_code handler
;
2728 enum machine_mode to_mode
, from_mode
, actual_mode
;
2729 location_t loc
= gimple_location (stmt
);
2730 int actual_precision
;
2731 bool from_unsigned1
, from_unsigned2
;
2733 lhs
= gimple_assign_lhs (stmt
);
2734 type
= TREE_TYPE (lhs
);
2735 if (TREE_CODE (type
) != INTEGER_TYPE
2736 && TREE_CODE (type
) != FIXED_POINT_TYPE
)
2739 if (code
== MINUS_EXPR
)
2740 wmult_code
= WIDEN_MULT_MINUS_EXPR
;
2742 wmult_code
= WIDEN_MULT_PLUS_EXPR
;
2744 rhs1
= gimple_assign_rhs1 (stmt
);
2745 rhs2
= gimple_assign_rhs2 (stmt
);
2747 if (TREE_CODE (rhs1
) == SSA_NAME
)
2749 rhs1_stmt
= SSA_NAME_DEF_STMT (rhs1
);
2750 if (is_gimple_assign (rhs1_stmt
))
2751 rhs1_code
= gimple_assign_rhs_code (rhs1_stmt
);
2754 if (TREE_CODE (rhs2
) == SSA_NAME
)
2756 rhs2_stmt
= SSA_NAME_DEF_STMT (rhs2
);
2757 if (is_gimple_assign (rhs2_stmt
))
2758 rhs2_code
= gimple_assign_rhs_code (rhs2_stmt
);
2761 /* Allow for one conversion statement between the multiply
2762 and addition/subtraction statement. If there are more than
2763 one conversions then we assume they would invalidate this
2764 transformation. If that's not the case then they should have
2765 been folded before now. */
2766 if (CONVERT_EXPR_CODE_P (rhs1_code
))
2768 conv1_stmt
= rhs1_stmt
;
2769 rhs1
= gimple_assign_rhs1 (rhs1_stmt
);
2770 if (TREE_CODE (rhs1
) == SSA_NAME
)
2772 rhs1_stmt
= SSA_NAME_DEF_STMT (rhs1
);
2773 if (is_gimple_assign (rhs1_stmt
))
2774 rhs1_code
= gimple_assign_rhs_code (rhs1_stmt
);
2779 if (CONVERT_EXPR_CODE_P (rhs2_code
))
2781 conv2_stmt
= rhs2_stmt
;
2782 rhs2
= gimple_assign_rhs1 (rhs2_stmt
);
2783 if (TREE_CODE (rhs2
) == SSA_NAME
)
2785 rhs2_stmt
= SSA_NAME_DEF_STMT (rhs2
);
2786 if (is_gimple_assign (rhs2_stmt
))
2787 rhs2_code
= gimple_assign_rhs_code (rhs2_stmt
);
2793 /* If code is WIDEN_MULT_EXPR then it would seem unnecessary to call
2794 is_widening_mult_p, but we still need the rhs returns.
2796 It might also appear that it would be sufficient to use the existing
2797 operands of the widening multiply, but that would limit the choice of
2798 multiply-and-accumulate instructions.
2800 If the widened-multiplication result has more than one uses, it is
2801 probably wiser not to do the conversion. */
2802 if (code
== PLUS_EXPR
2803 && (rhs1_code
== MULT_EXPR
|| rhs1_code
== WIDEN_MULT_EXPR
))
2805 if (!has_single_use (rhs1
)
2806 || !is_widening_mult_p (rhs1_stmt
, &type1
, &mult_rhs1
,
2807 &type2
, &mult_rhs2
))
2810 conv_stmt
= conv1_stmt
;
2812 else if (rhs2_code
== MULT_EXPR
|| rhs2_code
== WIDEN_MULT_EXPR
)
2814 if (!has_single_use (rhs2
)
2815 || !is_widening_mult_p (rhs2_stmt
, &type1
, &mult_rhs1
,
2816 &type2
, &mult_rhs2
))
2819 conv_stmt
= conv2_stmt
;
2824 to_mode
= TYPE_MODE (type
);
2825 from_mode
= TYPE_MODE (type1
);
2826 from_unsigned1
= TYPE_UNSIGNED (type1
);
2827 from_unsigned2
= TYPE_UNSIGNED (type2
);
2830 /* There's no such thing as a mixed sign madd yet, so use a wider mode. */
2831 if (from_unsigned1
!= from_unsigned2
)
2833 if (!INTEGRAL_TYPE_P (type
))
2835 /* We can use a signed multiply with unsigned types as long as
2836 there is a wider mode to use, or it is the smaller of the two
2837 types that is unsigned. Note that type1 >= type2, always. */
2839 && TYPE_PRECISION (type1
) == GET_MODE_PRECISION (from_mode
))
2841 && TYPE_PRECISION (type2
) == GET_MODE_PRECISION (from_mode
)))
2843 from_mode
= GET_MODE_WIDER_MODE (from_mode
);
2844 if (GET_MODE_SIZE (from_mode
) >= GET_MODE_SIZE (to_mode
))
2848 from_unsigned1
= from_unsigned2
= false;
2849 optype
= build_nonstandard_integer_type (GET_MODE_PRECISION (from_mode
),
2853 /* If there was a conversion between the multiply and addition
2854 then we need to make sure it fits a multiply-and-accumulate.
2855 The should be a single mode change which does not change the
2859 /* We use the original, unmodified data types for this. */
2860 tree from_type
= TREE_TYPE (gimple_assign_rhs1 (conv_stmt
));
2861 tree to_type
= TREE_TYPE (gimple_assign_lhs (conv_stmt
));
2862 int data_size
= TYPE_PRECISION (type1
) + TYPE_PRECISION (type2
);
2863 bool is_unsigned
= TYPE_UNSIGNED (type1
) && TYPE_UNSIGNED (type2
);
2865 if (TYPE_PRECISION (from_type
) > TYPE_PRECISION (to_type
))
2867 /* Conversion is a truncate. */
2868 if (TYPE_PRECISION (to_type
) < data_size
)
2871 else if (TYPE_PRECISION (from_type
) < TYPE_PRECISION (to_type
))
2873 /* Conversion is an extend. Check it's the right sort. */
2874 if (TYPE_UNSIGNED (from_type
) != is_unsigned
2875 && !(is_unsigned
&& TYPE_PRECISION (from_type
) > data_size
))
2878 /* else convert is a no-op for our purposes. */
2881 /* Verify that the machine can perform a widening multiply
2882 accumulate in this mode/signedness combination, otherwise
2883 this transformation is likely to pessimize code. */
2884 this_optab
= optab_for_tree_code (wmult_code
, optype
, optab_default
);
2885 handler
= find_widening_optab_handler_and_mode (this_optab
, to_mode
,
2886 from_mode
, 0, &actual_mode
);
2888 if (handler
== CODE_FOR_nothing
)
2891 /* Ensure that the inputs to the handler are in the correct precison
2892 for the opcode. This will be the full mode size. */
2893 actual_precision
= GET_MODE_PRECISION (actual_mode
);
2894 if (actual_precision
!= TYPE_PRECISION (type1
)
2895 || from_unsigned1
!= TYPE_UNSIGNED (type1
))
2896 mult_rhs1
= build_and_insert_cast (gsi
, loc
,
2897 build_nonstandard_integer_type
2898 (actual_precision
, from_unsigned1
),
2900 if (actual_precision
!= TYPE_PRECISION (type2
)
2901 || from_unsigned2
!= TYPE_UNSIGNED (type2
))
2902 mult_rhs2
= build_and_insert_cast (gsi
, loc
,
2903 build_nonstandard_integer_type
2904 (actual_precision
, from_unsigned2
),
2907 if (!useless_type_conversion_p (type
, TREE_TYPE (add_rhs
)))
2908 add_rhs
= build_and_insert_cast (gsi
, loc
, type
, add_rhs
);
2910 /* Handle constants. */
2911 if (TREE_CODE (mult_rhs1
) == INTEGER_CST
)
2912 mult_rhs1
= fold_convert (type1
, mult_rhs1
);
2913 if (TREE_CODE (mult_rhs2
) == INTEGER_CST
)
2914 mult_rhs2
= fold_convert (type2
, mult_rhs2
);
2916 gimple_assign_set_rhs_with_ops_1 (gsi
, wmult_code
, mult_rhs1
, mult_rhs2
,
2918 update_stmt (gsi_stmt (*gsi
));
2919 widen_mul_stats
.maccs_inserted
++;
2923 /* Combine the multiplication at MUL_STMT with operands MULOP1 and MULOP2
2924 with uses in additions and subtractions to form fused multiply-add
2925 operations. Returns true if successful and MUL_STMT should be removed. */
2928 convert_mult_to_fma (gimple mul_stmt
, tree op1
, tree op2
)
2930 tree mul_result
= gimple_get_lhs (mul_stmt
);
2931 tree type
= TREE_TYPE (mul_result
);
2932 gimple use_stmt
, neguse_stmt
, fma_stmt
;
2933 use_operand_p use_p
;
2934 imm_use_iterator imm_iter
;
2936 if (FLOAT_TYPE_P (type
)
2937 && flag_fp_contract_mode
== FP_CONTRACT_OFF
)
2940 /* We don't want to do bitfield reduction ops. */
2941 if (INTEGRAL_TYPE_P (type
)
2942 && (TYPE_PRECISION (type
)
2943 != GET_MODE_PRECISION (TYPE_MODE (type
))))
2946 /* If the target doesn't support it, don't generate it. We assume that
2947 if fma isn't available then fms, fnma or fnms are not either. */
2948 if (optab_handler (fma_optab
, TYPE_MODE (type
)) == CODE_FOR_nothing
)
2951 /* If the multiplication has zero uses, it is kept around probably because
2952 of -fnon-call-exceptions. Don't optimize it away in that case,
2954 if (has_zero_uses (mul_result
))
2957 /* Make sure that the multiplication statement becomes dead after
2958 the transformation, thus that all uses are transformed to FMAs.
2959 This means we assume that an FMA operation has the same cost
2961 FOR_EACH_IMM_USE_FAST (use_p
, imm_iter
, mul_result
)
2963 enum tree_code use_code
;
2964 tree result
= mul_result
;
2965 bool negate_p
= false;
2967 use_stmt
= USE_STMT (use_p
);
2969 if (is_gimple_debug (use_stmt
))
2972 /* For now restrict this operations to single basic blocks. In theory
2973 we would want to support sinking the multiplication in
2979 to form a fma in the then block and sink the multiplication to the
2981 if (gimple_bb (use_stmt
) != gimple_bb (mul_stmt
))
2984 if (!is_gimple_assign (use_stmt
))
2987 use_code
= gimple_assign_rhs_code (use_stmt
);
2989 /* A negate on the multiplication leads to FNMA. */
2990 if (use_code
== NEGATE_EXPR
)
2995 result
= gimple_assign_lhs (use_stmt
);
2997 /* Make sure the negate statement becomes dead with this
2998 single transformation. */
2999 if (!single_imm_use (gimple_assign_lhs (use_stmt
),
3000 &use_p
, &neguse_stmt
))
3003 /* Make sure the multiplication isn't also used on that stmt. */
3004 FOR_EACH_PHI_OR_STMT_USE (usep
, neguse_stmt
, iter
, SSA_OP_USE
)
3005 if (USE_FROM_PTR (usep
) == mul_result
)
3009 use_stmt
= neguse_stmt
;
3010 if (gimple_bb (use_stmt
) != gimple_bb (mul_stmt
))
3012 if (!is_gimple_assign (use_stmt
))
3015 use_code
= gimple_assign_rhs_code (use_stmt
);
3022 if (gimple_assign_rhs2 (use_stmt
) == result
)
3023 negate_p
= !negate_p
;
3028 /* FMA can only be formed from PLUS and MINUS. */
3032 /* If the subtrahend (gimple_assign_rhs2 (use_stmt)) is computed
3033 by a MULT_EXPR that we'll visit later, we might be able to
3034 get a more profitable match with fnma.
3035 OTOH, if we don't, a negate / fma pair has likely lower latency
3036 that a mult / subtract pair. */
3037 if (use_code
== MINUS_EXPR
&& !negate_p
3038 && gimple_assign_rhs1 (use_stmt
) == result
3039 && optab_handler (fms_optab
, TYPE_MODE (type
)) == CODE_FOR_nothing
3040 && optab_handler (fnma_optab
, TYPE_MODE (type
)) != CODE_FOR_nothing
)
3042 tree rhs2
= gimple_assign_rhs2 (use_stmt
);
3044 if (TREE_CODE (rhs2
) == SSA_NAME
)
3046 gimple stmt2
= SSA_NAME_DEF_STMT (rhs2
);
3047 if (has_single_use (rhs2
)
3048 && is_gimple_assign (stmt2
)
3049 && gimple_assign_rhs_code (stmt2
) == MULT_EXPR
)
3054 /* We can't handle a * b + a * b. */
3055 if (gimple_assign_rhs1 (use_stmt
) == gimple_assign_rhs2 (use_stmt
))
3058 /* While it is possible to validate whether or not the exact form
3059 that we've recognized is available in the backend, the assumption
3060 is that the transformation is never a loss. For instance, suppose
3061 the target only has the plain FMA pattern available. Consider
3062 a*b-c -> fma(a,b,-c): we've exchanged MUL+SUB for FMA+NEG, which
3063 is still two operations. Consider -(a*b)-c -> fma(-a,b,-c): we
3064 still have 3 operations, but in the FMA form the two NEGs are
3065 independent and could be run in parallel. */
3068 FOR_EACH_IMM_USE_STMT (use_stmt
, imm_iter
, mul_result
)
3070 gimple_stmt_iterator gsi
= gsi_for_stmt (use_stmt
);
3071 enum tree_code use_code
;
3072 tree addop
, mulop1
= op1
, result
= mul_result
;
3073 bool negate_p
= false;
3075 if (is_gimple_debug (use_stmt
))
3078 use_code
= gimple_assign_rhs_code (use_stmt
);
3079 if (use_code
== NEGATE_EXPR
)
3081 result
= gimple_assign_lhs (use_stmt
);
3082 single_imm_use (gimple_assign_lhs (use_stmt
), &use_p
, &neguse_stmt
);
3083 gsi_remove (&gsi
, true);
3084 release_defs (use_stmt
);
3086 use_stmt
= neguse_stmt
;
3087 gsi
= gsi_for_stmt (use_stmt
);
3088 use_code
= gimple_assign_rhs_code (use_stmt
);
3092 if (gimple_assign_rhs1 (use_stmt
) == result
)
3094 addop
= gimple_assign_rhs2 (use_stmt
);
3095 /* a * b - c -> a * b + (-c) */
3096 if (gimple_assign_rhs_code (use_stmt
) == MINUS_EXPR
)
3097 addop
= force_gimple_operand_gsi (&gsi
,
3098 build1 (NEGATE_EXPR
,
3100 true, NULL_TREE
, true,
3105 addop
= gimple_assign_rhs1 (use_stmt
);
3106 /* a - b * c -> (-b) * c + a */
3107 if (gimple_assign_rhs_code (use_stmt
) == MINUS_EXPR
)
3108 negate_p
= !negate_p
;
3112 mulop1
= force_gimple_operand_gsi (&gsi
,
3113 build1 (NEGATE_EXPR
,
3115 true, NULL_TREE
, true,
3118 fma_stmt
= gimple_build_assign_with_ops (FMA_EXPR
,
3119 gimple_assign_lhs (use_stmt
),
3122 gsi_replace (&gsi
, fma_stmt
, true);
3123 widen_mul_stats
.fmas_inserted
++;
3129 /* Find integer multiplications where the operands are extended from
3130 smaller types, and replace the MULT_EXPR with a WIDEN_MULT_EXPR
3131 where appropriate. */
3135 const pass_data pass_data_optimize_widening_mul
=
3137 GIMPLE_PASS
, /* type */
3138 "widening_mul", /* name */
3139 OPTGROUP_NONE
, /* optinfo_flags */
3140 TV_NONE
, /* tv_id */
3141 PROP_ssa
, /* properties_required */
3142 0, /* properties_provided */
3143 0, /* properties_destroyed */
3144 0, /* todo_flags_start */
3145 TODO_update_ssa
, /* todo_flags_finish */
3148 class pass_optimize_widening_mul
: public gimple_opt_pass
3151 pass_optimize_widening_mul (gcc::context
*ctxt
)
3152 : gimple_opt_pass (pass_data_optimize_widening_mul
, ctxt
)
3155 /* opt_pass methods: */
3156 virtual bool gate (function
*)
3158 return flag_expensive_optimizations
&& optimize
;
3161 virtual unsigned int execute (function
*);
3163 }; // class pass_optimize_widening_mul
3166 pass_optimize_widening_mul::execute (function
*fun
)
3169 bool cfg_changed
= false;
3171 memset (&widen_mul_stats
, 0, sizeof (widen_mul_stats
));
3173 FOR_EACH_BB_FN (bb
, fun
)
3175 gimple_stmt_iterator gsi
;
3177 for (gsi
= gsi_after_labels (bb
); !gsi_end_p (gsi
);)
3179 gimple stmt
= gsi_stmt (gsi
);
3180 enum tree_code code
;
3182 if (is_gimple_assign (stmt
))
3184 code
= gimple_assign_rhs_code (stmt
);
3188 if (!convert_mult_to_widen (stmt
, &gsi
)
3189 && convert_mult_to_fma (stmt
,
3190 gimple_assign_rhs1 (stmt
),
3191 gimple_assign_rhs2 (stmt
)))
3193 gsi_remove (&gsi
, true);
3194 release_defs (stmt
);
3201 convert_plusminus_to_widen (&gsi
, stmt
, code
);
3207 else if (is_gimple_call (stmt
)
3208 && gimple_call_lhs (stmt
))
3210 tree fndecl
= gimple_call_fndecl (stmt
);
3212 && DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
)
3214 switch (DECL_FUNCTION_CODE (fndecl
))
3219 if (TREE_CODE (gimple_call_arg (stmt
, 1)) == REAL_CST
3220 && REAL_VALUES_EQUAL
3221 (TREE_REAL_CST (gimple_call_arg (stmt
, 1)),
3223 && convert_mult_to_fma (stmt
,
3224 gimple_call_arg (stmt
, 0),
3225 gimple_call_arg (stmt
, 0)))
3227 unlink_stmt_vdef (stmt
);
3228 if (gsi_remove (&gsi
, true)
3229 && gimple_purge_dead_eh_edges (bb
))
3231 release_defs (stmt
);
3244 statistics_counter_event (fun
, "widening multiplications inserted",
3245 widen_mul_stats
.widen_mults_inserted
);
3246 statistics_counter_event (fun
, "widening maccs inserted",
3247 widen_mul_stats
.maccs_inserted
);
3248 statistics_counter_event (fun
, "fused multiply-adds inserted",
3249 widen_mul_stats
.fmas_inserted
);
3251 return cfg_changed
? TODO_cleanup_cfg
: 0;
3257 make_pass_optimize_widening_mul (gcc::context
*ctxt
)
3259 return new pass_optimize_widening_mul (ctxt
);