Only allow e500 double in SPE_SIMD_REGNO_P registers.
[official-gcc.git] / gcc / jump.c
blobf1aaf8c9b3c2477b46f26bd0456fc9d4e5896109
1 /* Optimize jump instructions, for GNU compiler.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This is the pathetic reminder of old fame of the jump-optimization pass
21 of the compiler. Now it contains basically a set of utility functions to
22 operate with jumps.
24 Each CODE_LABEL has a count of the times it is used
25 stored in the LABEL_NUSES internal field, and each JUMP_INSN
26 has one label that it refers to stored in the
27 JUMP_LABEL internal field. With this we can detect labels that
28 become unused because of the deletion of all the jumps that
29 formerly used them. The JUMP_LABEL info is sometimes looked
30 at by later passes. For return insns, it contains either a
31 RETURN or a SIMPLE_RETURN rtx.
33 The subroutines redirect_jump and invert_jump are used
34 from other passes as well. */
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "rtl.h"
41 #include "tm_p.h"
42 #include "flags.h"
43 #include "hard-reg-set.h"
44 #include "regs.h"
45 #include "insn-config.h"
46 #include "insn-attr.h"
47 #include "recog.h"
48 #include "hashtab.h"
49 #include "hash-set.h"
50 #include "vec.h"
51 #include "machmode.h"
52 #include "input.h"
53 #include "function.h"
54 #include "basic-block.h"
55 #include "expr.h"
56 #include "except.h"
57 #include "diagnostic-core.h"
58 #include "reload.h"
59 #include "predict.h"
60 #include "tree-pass.h"
61 #include "target.h"
62 #include "rtl-iter.h"
64 /* Optimize jump y; x: ... y: jumpif... x?
65 Don't know if it is worth bothering with. */
66 /* Optimize two cases of conditional jump to conditional jump?
67 This can never delete any instruction or make anything dead,
68 or even change what is live at any point.
69 So perhaps let combiner do it. */
71 static void init_label_info (rtx_insn *);
72 static void mark_all_labels (rtx_insn *);
73 static void mark_jump_label_1 (rtx, rtx_insn *, bool, bool);
74 static void mark_jump_label_asm (rtx, rtx_insn *);
75 static void redirect_exp_1 (rtx *, rtx, rtx, rtx);
76 static int invert_exp_1 (rtx, rtx);
78 /* Worker for rebuild_jump_labels and rebuild_jump_labels_chain. */
79 static void
80 rebuild_jump_labels_1 (rtx_insn *f, bool count_forced)
82 rtx_insn_list *insn;
84 timevar_push (TV_REBUILD_JUMP);
85 init_label_info (f);
86 mark_all_labels (f);
88 /* Keep track of labels used from static data; we don't track them
89 closely enough to delete them here, so make sure their reference
90 count doesn't drop to zero. */
92 if (count_forced)
93 for (insn = forced_labels; insn; insn = insn->next ())
94 if (LABEL_P (insn->insn ()))
95 LABEL_NUSES (insn->insn ())++;
96 timevar_pop (TV_REBUILD_JUMP);
99 /* This function rebuilds the JUMP_LABEL field and REG_LABEL_TARGET
100 notes in jumping insns and REG_LABEL_OPERAND notes in non-jumping
101 instructions and jumping insns that have labels as operands
102 (e.g. cbranchsi4). */
103 void
104 rebuild_jump_labels (rtx_insn *f)
106 rebuild_jump_labels_1 (f, true);
109 /* This function is like rebuild_jump_labels, but doesn't run over
110 forced_labels. It can be used on insn chains that aren't the
111 main function chain. */
112 void
113 rebuild_jump_labels_chain (rtx_insn *chain)
115 rebuild_jump_labels_1 (chain, false);
118 /* Some old code expects exactly one BARRIER as the NEXT_INSN of a
119 non-fallthru insn. This is not generally true, as multiple barriers
120 may have crept in, or the BARRIER may be separated from the last
121 real insn by one or more NOTEs.
123 This simple pass moves barriers and removes duplicates so that the
124 old code is happy.
126 static unsigned int
127 cleanup_barriers (void)
129 rtx_insn *insn;
130 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
132 if (BARRIER_P (insn))
134 rtx_insn *prev = prev_nonnote_insn (insn);
135 if (!prev)
136 continue;
138 if (CALL_P (prev))
140 /* Make sure we do not split a call and its corresponding
141 CALL_ARG_LOCATION note. */
142 rtx_insn *next = NEXT_INSN (prev);
144 if (NOTE_P (next)
145 && NOTE_KIND (next) == NOTE_INSN_CALL_ARG_LOCATION)
146 prev = next;
149 if (BARRIER_P (prev))
150 delete_insn (insn);
151 else if (prev != PREV_INSN (insn))
152 reorder_insns_nobb (insn, insn, prev);
155 return 0;
158 namespace {
160 const pass_data pass_data_cleanup_barriers =
162 RTL_PASS, /* type */
163 "barriers", /* name */
164 OPTGROUP_NONE, /* optinfo_flags */
165 TV_NONE, /* tv_id */
166 0, /* properties_required */
167 0, /* properties_provided */
168 0, /* properties_destroyed */
169 0, /* todo_flags_start */
170 0, /* todo_flags_finish */
173 class pass_cleanup_barriers : public rtl_opt_pass
175 public:
176 pass_cleanup_barriers (gcc::context *ctxt)
177 : rtl_opt_pass (pass_data_cleanup_barriers, ctxt)
180 /* opt_pass methods: */
181 virtual unsigned int execute (function *) { return cleanup_barriers (); }
183 }; // class pass_cleanup_barriers
185 } // anon namespace
187 rtl_opt_pass *
188 make_pass_cleanup_barriers (gcc::context *ctxt)
190 return new pass_cleanup_barriers (ctxt);
194 /* Initialize LABEL_NUSES and JUMP_LABEL fields, add REG_LABEL_TARGET
195 for remaining targets for JUMP_P. Delete any REG_LABEL_OPERAND
196 notes whose labels don't occur in the insn any more. */
198 static void
199 init_label_info (rtx_insn *f)
201 rtx_insn *insn;
203 for (insn = f; insn; insn = NEXT_INSN (insn))
205 if (LABEL_P (insn))
206 LABEL_NUSES (insn) = (LABEL_PRESERVE_P (insn) != 0);
208 /* REG_LABEL_TARGET notes (including the JUMP_LABEL field) are
209 sticky and not reset here; that way we won't lose association
210 with a label when e.g. the source for a target register
211 disappears out of reach for targets that may use jump-target
212 registers. Jump transformations are supposed to transform
213 any REG_LABEL_TARGET notes. The target label reference in a
214 branch may disappear from the branch (and from the
215 instruction before it) for other reasons, like register
216 allocation. */
218 if (INSN_P (insn))
220 rtx note, next;
222 for (note = REG_NOTES (insn); note; note = next)
224 next = XEXP (note, 1);
225 if (REG_NOTE_KIND (note) == REG_LABEL_OPERAND
226 && ! reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
227 remove_note (insn, note);
233 /* A subroutine of mark_all_labels. Trivially propagate a simple label
234 load into a jump_insn that uses it. */
236 static void
237 maybe_propagate_label_ref (rtx_insn *jump_insn, rtx_insn *prev_nonjump_insn)
239 rtx label_note, pc, pc_src;
241 pc = pc_set (jump_insn);
242 pc_src = pc != NULL ? SET_SRC (pc) : NULL;
243 label_note = find_reg_note (prev_nonjump_insn, REG_LABEL_OPERAND, NULL);
245 /* If the previous non-jump insn sets something to a label,
246 something that this jump insn uses, make that label the primary
247 target of this insn if we don't yet have any. That previous
248 insn must be a single_set and not refer to more than one label.
249 The jump insn must not refer to other labels as jump targets
250 and must be a plain (set (pc) ...), maybe in a parallel, and
251 may refer to the item being set only directly or as one of the
252 arms in an IF_THEN_ELSE. */
254 if (label_note != NULL && pc_src != NULL)
256 rtx label_set = single_set (prev_nonjump_insn);
257 rtx label_dest = label_set != NULL ? SET_DEST (label_set) : NULL;
259 if (label_set != NULL
260 /* The source must be the direct LABEL_REF, not a
261 PLUS, UNSPEC, IF_THEN_ELSE etc. */
262 && GET_CODE (SET_SRC (label_set)) == LABEL_REF
263 && (rtx_equal_p (label_dest, pc_src)
264 || (GET_CODE (pc_src) == IF_THEN_ELSE
265 && (rtx_equal_p (label_dest, XEXP (pc_src, 1))
266 || rtx_equal_p (label_dest, XEXP (pc_src, 2))))))
268 /* The CODE_LABEL referred to in the note must be the
269 CODE_LABEL in the LABEL_REF of the "set". We can
270 conveniently use it for the marker function, which
271 requires a LABEL_REF wrapping. */
272 gcc_assert (XEXP (label_note, 0) == LABEL_REF_LABEL (SET_SRC (label_set)));
274 mark_jump_label_1 (label_set, jump_insn, false, true);
276 gcc_assert (JUMP_LABEL (jump_insn) == XEXP (label_note, 0));
281 /* Mark the label each jump jumps to.
282 Combine consecutive labels, and count uses of labels. */
284 static void
285 mark_all_labels (rtx_insn *f)
287 rtx_insn *insn;
289 if (current_ir_type () == IR_RTL_CFGLAYOUT)
291 basic_block bb;
292 FOR_EACH_BB_FN (bb, cfun)
294 /* In cfglayout mode, we don't bother with trivial next-insn
295 propagation of LABEL_REFs into JUMP_LABEL. This will be
296 handled by other optimizers using better algorithms. */
297 FOR_BB_INSNS (bb, insn)
299 gcc_assert (! insn->deleted ());
300 if (NONDEBUG_INSN_P (insn))
301 mark_jump_label (PATTERN (insn), insn, 0);
304 /* In cfglayout mode, there may be non-insns between the
305 basic blocks. If those non-insns represent tablejump data,
306 they contain label references that we must record. */
307 for (insn = BB_HEADER (bb); insn; insn = NEXT_INSN (insn))
308 if (JUMP_TABLE_DATA_P (insn))
309 mark_jump_label (PATTERN (insn), insn, 0);
310 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
311 if (JUMP_TABLE_DATA_P (insn))
312 mark_jump_label (PATTERN (insn), insn, 0);
315 else
317 rtx_insn *prev_nonjump_insn = NULL;
318 for (insn = f; insn; insn = NEXT_INSN (insn))
320 if (insn->deleted ())
322 else if (LABEL_P (insn))
323 prev_nonjump_insn = NULL;
324 else if (JUMP_TABLE_DATA_P (insn))
325 mark_jump_label (PATTERN (insn), insn, 0);
326 else if (NONDEBUG_INSN_P (insn))
328 mark_jump_label (PATTERN (insn), insn, 0);
329 if (JUMP_P (insn))
331 if (JUMP_LABEL (insn) == NULL && prev_nonjump_insn != NULL)
332 maybe_propagate_label_ref (insn, prev_nonjump_insn);
334 else
335 prev_nonjump_insn = insn;
341 /* Given a comparison (CODE ARG0 ARG1), inside an insn, INSN, return a code
342 of reversed comparison if it is possible to do so. Otherwise return UNKNOWN.
343 UNKNOWN may be returned in case we are having CC_MODE compare and we don't
344 know whether it's source is floating point or integer comparison. Machine
345 description should define REVERSIBLE_CC_MODE and REVERSE_CONDITION macros
346 to help this function avoid overhead in these cases. */
347 enum rtx_code
348 reversed_comparison_code_parts (enum rtx_code code, const_rtx arg0,
349 const_rtx arg1, const_rtx insn)
351 enum machine_mode mode;
353 /* If this is not actually a comparison, we can't reverse it. */
354 if (GET_RTX_CLASS (code) != RTX_COMPARE
355 && GET_RTX_CLASS (code) != RTX_COMM_COMPARE)
356 return UNKNOWN;
358 mode = GET_MODE (arg0);
359 if (mode == VOIDmode)
360 mode = GET_MODE (arg1);
362 /* First see if machine description supplies us way to reverse the
363 comparison. Give it priority over everything else to allow
364 machine description to do tricks. */
365 if (GET_MODE_CLASS (mode) == MODE_CC
366 && REVERSIBLE_CC_MODE (mode))
368 #ifdef REVERSE_CONDITION
369 return REVERSE_CONDITION (code, mode);
370 #else
371 return reverse_condition (code);
372 #endif
375 /* Try a few special cases based on the comparison code. */
376 switch (code)
378 case GEU:
379 case GTU:
380 case LEU:
381 case LTU:
382 case NE:
383 case EQ:
384 /* It is always safe to reverse EQ and NE, even for the floating
385 point. Similarly the unsigned comparisons are never used for
386 floating point so we can reverse them in the default way. */
387 return reverse_condition (code);
388 case ORDERED:
389 case UNORDERED:
390 case LTGT:
391 case UNEQ:
392 /* In case we already see unordered comparison, we can be sure to
393 be dealing with floating point so we don't need any more tests. */
394 return reverse_condition_maybe_unordered (code);
395 case UNLT:
396 case UNLE:
397 case UNGT:
398 case UNGE:
399 /* We don't have safe way to reverse these yet. */
400 return UNKNOWN;
401 default:
402 break;
405 if (GET_MODE_CLASS (mode) == MODE_CC || CC0_P (arg0))
407 const_rtx prev;
408 /* Try to search for the comparison to determine the real mode.
409 This code is expensive, but with sane machine description it
410 will be never used, since REVERSIBLE_CC_MODE will return true
411 in all cases. */
412 if (! insn)
413 return UNKNOWN;
415 /* These CONST_CAST's are okay because prev_nonnote_insn just
416 returns its argument and we assign it to a const_rtx
417 variable. */
418 for (prev = prev_nonnote_insn (CONST_CAST_RTX (insn));
419 prev != 0 && !LABEL_P (prev);
420 prev = prev_nonnote_insn (CONST_CAST_RTX (prev)))
422 const_rtx set = set_of (arg0, prev);
423 if (set && GET_CODE (set) == SET
424 && rtx_equal_p (SET_DEST (set), arg0))
426 rtx src = SET_SRC (set);
428 if (GET_CODE (src) == COMPARE)
430 rtx comparison = src;
431 arg0 = XEXP (src, 0);
432 mode = GET_MODE (arg0);
433 if (mode == VOIDmode)
434 mode = GET_MODE (XEXP (comparison, 1));
435 break;
437 /* We can get past reg-reg moves. This may be useful for model
438 of i387 comparisons that first move flag registers around. */
439 if (REG_P (src))
441 arg0 = src;
442 continue;
445 /* If register is clobbered in some ununderstandable way,
446 give up. */
447 if (set)
448 return UNKNOWN;
452 /* Test for an integer condition, or a floating-point comparison
453 in which NaNs can be ignored. */
454 if (CONST_INT_P (arg0)
455 || (GET_MODE (arg0) != VOIDmode
456 && GET_MODE_CLASS (mode) != MODE_CC
457 && !HONOR_NANS (mode)))
458 return reverse_condition (code);
460 return UNKNOWN;
463 /* A wrapper around the previous function to take COMPARISON as rtx
464 expression. This simplifies many callers. */
465 enum rtx_code
466 reversed_comparison_code (const_rtx comparison, const_rtx insn)
468 if (!COMPARISON_P (comparison))
469 return UNKNOWN;
470 return reversed_comparison_code_parts (GET_CODE (comparison),
471 XEXP (comparison, 0),
472 XEXP (comparison, 1), insn);
475 /* Return comparison with reversed code of EXP.
476 Return NULL_RTX in case we fail to do the reversal. */
478 reversed_comparison (const_rtx exp, enum machine_mode mode)
480 enum rtx_code reversed_code = reversed_comparison_code (exp, NULL_RTX);
481 if (reversed_code == UNKNOWN)
482 return NULL_RTX;
483 else
484 return simplify_gen_relational (reversed_code, mode, VOIDmode,
485 XEXP (exp, 0), XEXP (exp, 1));
489 /* Given an rtx-code for a comparison, return the code for the negated
490 comparison. If no such code exists, return UNKNOWN.
492 WATCH OUT! reverse_condition is not safe to use on a jump that might
493 be acting on the results of an IEEE floating point comparison, because
494 of the special treatment of non-signaling nans in comparisons.
495 Use reversed_comparison_code instead. */
497 enum rtx_code
498 reverse_condition (enum rtx_code code)
500 switch (code)
502 case EQ:
503 return NE;
504 case NE:
505 return EQ;
506 case GT:
507 return LE;
508 case GE:
509 return LT;
510 case LT:
511 return GE;
512 case LE:
513 return GT;
514 case GTU:
515 return LEU;
516 case GEU:
517 return LTU;
518 case LTU:
519 return GEU;
520 case LEU:
521 return GTU;
522 case UNORDERED:
523 return ORDERED;
524 case ORDERED:
525 return UNORDERED;
527 case UNLT:
528 case UNLE:
529 case UNGT:
530 case UNGE:
531 case UNEQ:
532 case LTGT:
533 return UNKNOWN;
535 default:
536 gcc_unreachable ();
540 /* Similar, but we're allowed to generate unordered comparisons, which
541 makes it safe for IEEE floating-point. Of course, we have to recognize
542 that the target will support them too... */
544 enum rtx_code
545 reverse_condition_maybe_unordered (enum rtx_code code)
547 switch (code)
549 case EQ:
550 return NE;
551 case NE:
552 return EQ;
553 case GT:
554 return UNLE;
555 case GE:
556 return UNLT;
557 case LT:
558 return UNGE;
559 case LE:
560 return UNGT;
561 case LTGT:
562 return UNEQ;
563 case UNORDERED:
564 return ORDERED;
565 case ORDERED:
566 return UNORDERED;
567 case UNLT:
568 return GE;
569 case UNLE:
570 return GT;
571 case UNGT:
572 return LE;
573 case UNGE:
574 return LT;
575 case UNEQ:
576 return LTGT;
578 default:
579 gcc_unreachable ();
583 /* Similar, but return the code when two operands of a comparison are swapped.
584 This IS safe for IEEE floating-point. */
586 enum rtx_code
587 swap_condition (enum rtx_code code)
589 switch (code)
591 case EQ:
592 case NE:
593 case UNORDERED:
594 case ORDERED:
595 case UNEQ:
596 case LTGT:
597 return code;
599 case GT:
600 return LT;
601 case GE:
602 return LE;
603 case LT:
604 return GT;
605 case LE:
606 return GE;
607 case GTU:
608 return LTU;
609 case GEU:
610 return LEU;
611 case LTU:
612 return GTU;
613 case LEU:
614 return GEU;
615 case UNLT:
616 return UNGT;
617 case UNLE:
618 return UNGE;
619 case UNGT:
620 return UNLT;
621 case UNGE:
622 return UNLE;
624 default:
625 gcc_unreachable ();
629 /* Given a comparison CODE, return the corresponding unsigned comparison.
630 If CODE is an equality comparison or already an unsigned comparison,
631 CODE is returned. */
633 enum rtx_code
634 unsigned_condition (enum rtx_code code)
636 switch (code)
638 case EQ:
639 case NE:
640 case GTU:
641 case GEU:
642 case LTU:
643 case LEU:
644 return code;
646 case GT:
647 return GTU;
648 case GE:
649 return GEU;
650 case LT:
651 return LTU;
652 case LE:
653 return LEU;
655 default:
656 gcc_unreachable ();
660 /* Similarly, return the signed version of a comparison. */
662 enum rtx_code
663 signed_condition (enum rtx_code code)
665 switch (code)
667 case EQ:
668 case NE:
669 case GT:
670 case GE:
671 case LT:
672 case LE:
673 return code;
675 case GTU:
676 return GT;
677 case GEU:
678 return GE;
679 case LTU:
680 return LT;
681 case LEU:
682 return LE;
684 default:
685 gcc_unreachable ();
689 /* Return nonzero if CODE1 is more strict than CODE2, i.e., if the
690 truth of CODE1 implies the truth of CODE2. */
693 comparison_dominates_p (enum rtx_code code1, enum rtx_code code2)
695 /* UNKNOWN comparison codes can happen as a result of trying to revert
696 comparison codes.
697 They can't match anything, so we have to reject them here. */
698 if (code1 == UNKNOWN || code2 == UNKNOWN)
699 return 0;
701 if (code1 == code2)
702 return 1;
704 switch (code1)
706 case UNEQ:
707 if (code2 == UNLE || code2 == UNGE)
708 return 1;
709 break;
711 case EQ:
712 if (code2 == LE || code2 == LEU || code2 == GE || code2 == GEU
713 || code2 == ORDERED)
714 return 1;
715 break;
717 case UNLT:
718 if (code2 == UNLE || code2 == NE)
719 return 1;
720 break;
722 case LT:
723 if (code2 == LE || code2 == NE || code2 == ORDERED || code2 == LTGT)
724 return 1;
725 break;
727 case UNGT:
728 if (code2 == UNGE || code2 == NE)
729 return 1;
730 break;
732 case GT:
733 if (code2 == GE || code2 == NE || code2 == ORDERED || code2 == LTGT)
734 return 1;
735 break;
737 case GE:
738 case LE:
739 if (code2 == ORDERED)
740 return 1;
741 break;
743 case LTGT:
744 if (code2 == NE || code2 == ORDERED)
745 return 1;
746 break;
748 case LTU:
749 if (code2 == LEU || code2 == NE)
750 return 1;
751 break;
753 case GTU:
754 if (code2 == GEU || code2 == NE)
755 return 1;
756 break;
758 case UNORDERED:
759 if (code2 == NE || code2 == UNEQ || code2 == UNLE || code2 == UNLT
760 || code2 == UNGE || code2 == UNGT)
761 return 1;
762 break;
764 default:
765 break;
768 return 0;
771 /* Return 1 if INSN is an unconditional jump and nothing else. */
774 simplejump_p (const rtx_insn *insn)
776 return (JUMP_P (insn)
777 && GET_CODE (PATTERN (insn)) == SET
778 && GET_CODE (SET_DEST (PATTERN (insn))) == PC
779 && GET_CODE (SET_SRC (PATTERN (insn))) == LABEL_REF);
782 /* Return nonzero if INSN is a (possibly) conditional jump
783 and nothing more.
785 Use of this function is deprecated, since we need to support combined
786 branch and compare insns. Use any_condjump_p instead whenever possible. */
789 condjump_p (const rtx_insn *insn)
791 const_rtx x = PATTERN (insn);
793 if (GET_CODE (x) != SET
794 || GET_CODE (SET_DEST (x)) != PC)
795 return 0;
797 x = SET_SRC (x);
798 if (GET_CODE (x) == LABEL_REF)
799 return 1;
800 else
801 return (GET_CODE (x) == IF_THEN_ELSE
802 && ((GET_CODE (XEXP (x, 2)) == PC
803 && (GET_CODE (XEXP (x, 1)) == LABEL_REF
804 || ANY_RETURN_P (XEXP (x, 1))))
805 || (GET_CODE (XEXP (x, 1)) == PC
806 && (GET_CODE (XEXP (x, 2)) == LABEL_REF
807 || ANY_RETURN_P (XEXP (x, 2))))));
810 /* Return nonzero if INSN is a (possibly) conditional jump inside a
811 PARALLEL.
813 Use this function is deprecated, since we need to support combined
814 branch and compare insns. Use any_condjump_p instead whenever possible. */
817 condjump_in_parallel_p (const rtx_insn *insn)
819 const_rtx x = PATTERN (insn);
821 if (GET_CODE (x) != PARALLEL)
822 return 0;
823 else
824 x = XVECEXP (x, 0, 0);
826 if (GET_CODE (x) != SET)
827 return 0;
828 if (GET_CODE (SET_DEST (x)) != PC)
829 return 0;
830 if (GET_CODE (SET_SRC (x)) == LABEL_REF)
831 return 1;
832 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
833 return 0;
834 if (XEXP (SET_SRC (x), 2) == pc_rtx
835 && (GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF
836 || ANY_RETURN_P (XEXP (SET_SRC (x), 1))))
837 return 1;
838 if (XEXP (SET_SRC (x), 1) == pc_rtx
839 && (GET_CODE (XEXP (SET_SRC (x), 2)) == LABEL_REF
840 || ANY_RETURN_P (XEXP (SET_SRC (x), 2))))
841 return 1;
842 return 0;
845 /* Return set of PC, otherwise NULL. */
848 pc_set (const rtx_insn *insn)
850 rtx pat;
851 if (!JUMP_P (insn))
852 return NULL_RTX;
853 pat = PATTERN (insn);
855 /* The set is allowed to appear either as the insn pattern or
856 the first set in a PARALLEL. */
857 if (GET_CODE (pat) == PARALLEL)
858 pat = XVECEXP (pat, 0, 0);
859 if (GET_CODE (pat) == SET && GET_CODE (SET_DEST (pat)) == PC)
860 return pat;
862 return NULL_RTX;
865 /* Return true when insn is an unconditional direct jump,
866 possibly bundled inside a PARALLEL. */
869 any_uncondjump_p (const rtx_insn *insn)
871 const_rtx x = pc_set (insn);
872 if (!x)
873 return 0;
874 if (GET_CODE (SET_SRC (x)) != LABEL_REF)
875 return 0;
876 if (find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
877 return 0;
878 return 1;
881 /* Return true when insn is a conditional jump. This function works for
882 instructions containing PC sets in PARALLELs. The instruction may have
883 various other effects so before removing the jump you must verify
884 onlyjump_p.
886 Note that unlike condjump_p it returns false for unconditional jumps. */
889 any_condjump_p (const rtx_insn *insn)
891 const_rtx x = pc_set (insn);
892 enum rtx_code a, b;
894 if (!x)
895 return 0;
896 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
897 return 0;
899 a = GET_CODE (XEXP (SET_SRC (x), 1));
900 b = GET_CODE (XEXP (SET_SRC (x), 2));
902 return ((b == PC && (a == LABEL_REF || a == RETURN || a == SIMPLE_RETURN))
903 || (a == PC
904 && (b == LABEL_REF || b == RETURN || b == SIMPLE_RETURN)));
907 /* Return the label of a conditional jump. */
910 condjump_label (const rtx_insn *insn)
912 rtx x = pc_set (insn);
914 if (!x)
915 return NULL_RTX;
916 x = SET_SRC (x);
917 if (GET_CODE (x) == LABEL_REF)
918 return x;
919 if (GET_CODE (x) != IF_THEN_ELSE)
920 return NULL_RTX;
921 if (XEXP (x, 2) == pc_rtx && GET_CODE (XEXP (x, 1)) == LABEL_REF)
922 return XEXP (x, 1);
923 if (XEXP (x, 1) == pc_rtx && GET_CODE (XEXP (x, 2)) == LABEL_REF)
924 return XEXP (x, 2);
925 return NULL_RTX;
928 /* Return TRUE if INSN is a return jump. */
931 returnjump_p (const rtx_insn *insn)
933 if (JUMP_P (insn))
935 subrtx_iterator::array_type array;
936 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
938 const_rtx x = *iter;
939 switch (GET_CODE (x))
941 case RETURN:
942 case SIMPLE_RETURN:
943 case EH_RETURN:
944 return true;
946 case SET:
947 if (SET_IS_RETURN_P (x))
948 return true;
949 break;
951 default:
952 break;
956 return false;
959 /* Return true if INSN is a (possibly conditional) return insn. */
962 eh_returnjump_p (rtx_insn *insn)
964 if (JUMP_P (insn))
966 subrtx_iterator::array_type array;
967 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
968 if (GET_CODE (*iter) == EH_RETURN)
969 return true;
971 return false;
974 /* Return true if INSN is a jump that only transfers control and
975 nothing more. */
978 onlyjump_p (const rtx_insn *insn)
980 rtx set;
982 if (!JUMP_P (insn))
983 return 0;
985 set = single_set (insn);
986 if (set == NULL)
987 return 0;
988 if (GET_CODE (SET_DEST (set)) != PC)
989 return 0;
990 if (side_effects_p (SET_SRC (set)))
991 return 0;
993 return 1;
996 /* Return true iff INSN is a jump and its JUMP_LABEL is a label, not
997 NULL or a return. */
998 bool
999 jump_to_label_p (const rtx_insn *insn)
1001 return (JUMP_P (insn)
1002 && JUMP_LABEL (insn) != NULL && !ANY_RETURN_P (JUMP_LABEL (insn)));
1005 #ifdef HAVE_cc0
1007 /* Return nonzero if X is an RTX that only sets the condition codes
1008 and has no side effects. */
1011 only_sets_cc0_p (const_rtx x)
1013 if (! x)
1014 return 0;
1016 if (INSN_P (x))
1017 x = PATTERN (x);
1019 return sets_cc0_p (x) == 1 && ! side_effects_p (x);
1022 /* Return 1 if X is an RTX that does nothing but set the condition codes
1023 and CLOBBER or USE registers.
1024 Return -1 if X does explicitly set the condition codes,
1025 but also does other things. */
1028 sets_cc0_p (const_rtx x)
1030 if (! x)
1031 return 0;
1033 if (INSN_P (x))
1034 x = PATTERN (x);
1036 if (GET_CODE (x) == SET && SET_DEST (x) == cc0_rtx)
1037 return 1;
1038 if (GET_CODE (x) == PARALLEL)
1040 int i;
1041 int sets_cc0 = 0;
1042 int other_things = 0;
1043 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1045 if (GET_CODE (XVECEXP (x, 0, i)) == SET
1046 && SET_DEST (XVECEXP (x, 0, i)) == cc0_rtx)
1047 sets_cc0 = 1;
1048 else if (GET_CODE (XVECEXP (x, 0, i)) == SET)
1049 other_things = 1;
1051 return ! sets_cc0 ? 0 : other_things ? -1 : 1;
1053 return 0;
1055 #endif
1057 /* Find all CODE_LABELs referred to in X, and increment their use
1058 counts. If INSN is a JUMP_INSN and there is at least one
1059 CODE_LABEL referenced in INSN as a jump target, then store the last
1060 one in JUMP_LABEL (INSN). For a tablejump, this must be the label
1061 for the ADDR_VEC. Store any other jump targets as REG_LABEL_TARGET
1062 notes. If INSN is an INSN or a CALL_INSN or non-target operands of
1063 a JUMP_INSN, and there is at least one CODE_LABEL referenced in
1064 INSN, add a REG_LABEL_OPERAND note containing that label to INSN.
1065 For returnjumps, the JUMP_LABEL will also be set as appropriate.
1067 Note that two labels separated by a loop-beginning note
1068 must be kept distinct if we have not yet done loop-optimization,
1069 because the gap between them is where loop-optimize
1070 will want to move invariant code to. CROSS_JUMP tells us
1071 that loop-optimization is done with. */
1073 void
1074 mark_jump_label (rtx x, rtx_insn *insn, int in_mem)
1076 rtx asmop = extract_asm_operands (x);
1077 if (asmop)
1078 mark_jump_label_asm (asmop, insn);
1079 else
1080 mark_jump_label_1 (x, insn, in_mem != 0,
1081 (insn != NULL && x == PATTERN (insn) && JUMP_P (insn)));
1084 /* Worker function for mark_jump_label. IN_MEM is TRUE when X occurs
1085 within a (MEM ...). IS_TARGET is TRUE when X is to be treated as a
1086 jump-target; when the JUMP_LABEL field of INSN should be set or a
1087 REG_LABEL_TARGET note should be added, not a REG_LABEL_OPERAND
1088 note. */
1090 static void
1091 mark_jump_label_1 (rtx x, rtx_insn *insn, bool in_mem, bool is_target)
1093 RTX_CODE code = GET_CODE (x);
1094 int i;
1095 const char *fmt;
1097 switch (code)
1099 case PC:
1100 case CC0:
1101 case REG:
1102 case CLOBBER:
1103 case CALL:
1104 return;
1106 case RETURN:
1107 case SIMPLE_RETURN:
1108 if (is_target)
1110 gcc_assert (JUMP_LABEL (insn) == NULL || JUMP_LABEL (insn) == x);
1111 JUMP_LABEL (insn) = x;
1113 return;
1115 case MEM:
1116 in_mem = true;
1117 break;
1119 case SEQUENCE:
1121 rtx_sequence *seq = as_a <rtx_sequence *> (x);
1122 for (i = 0; i < seq->len (); i++)
1123 mark_jump_label (PATTERN (seq->insn (i)),
1124 seq->insn (i), 0);
1126 return;
1128 case SYMBOL_REF:
1129 if (!in_mem)
1130 return;
1132 /* If this is a constant-pool reference, see if it is a label. */
1133 if (CONSTANT_POOL_ADDRESS_P (x))
1134 mark_jump_label_1 (get_pool_constant (x), insn, in_mem, is_target);
1135 break;
1137 /* Handle operands in the condition of an if-then-else as for a
1138 non-jump insn. */
1139 case IF_THEN_ELSE:
1140 if (!is_target)
1141 break;
1142 mark_jump_label_1 (XEXP (x, 0), insn, in_mem, false);
1143 mark_jump_label_1 (XEXP (x, 1), insn, in_mem, true);
1144 mark_jump_label_1 (XEXP (x, 2), insn, in_mem, true);
1145 return;
1147 case LABEL_REF:
1149 rtx label = LABEL_REF_LABEL (x);
1151 /* Ignore remaining references to unreachable labels that
1152 have been deleted. */
1153 if (NOTE_P (label)
1154 && NOTE_KIND (label) == NOTE_INSN_DELETED_LABEL)
1155 break;
1157 gcc_assert (LABEL_P (label));
1159 /* Ignore references to labels of containing functions. */
1160 if (LABEL_REF_NONLOCAL_P (x))
1161 break;
1163 LABEL_REF_LABEL (x) = label;
1164 if (! insn || ! insn->deleted ())
1165 ++LABEL_NUSES (label);
1167 if (insn)
1169 if (is_target
1170 /* Do not change a previous setting of JUMP_LABEL. If the
1171 JUMP_LABEL slot is occupied by a different label,
1172 create a note for this label. */
1173 && (JUMP_LABEL (insn) == NULL || JUMP_LABEL (insn) == label))
1174 JUMP_LABEL (insn) = label;
1175 else
1177 enum reg_note kind
1178 = is_target ? REG_LABEL_TARGET : REG_LABEL_OPERAND;
1180 /* Add a REG_LABEL_OPERAND or REG_LABEL_TARGET note
1181 for LABEL unless there already is one. All uses of
1182 a label, except for the primary target of a jump,
1183 must have such a note. */
1184 if (! find_reg_note (insn, kind, label))
1185 add_reg_note (insn, kind, label);
1188 return;
1191 /* Do walk the labels in a vector, but not the first operand of an
1192 ADDR_DIFF_VEC. Don't set the JUMP_LABEL of a vector. */
1193 case ADDR_VEC:
1194 case ADDR_DIFF_VEC:
1195 if (! insn->deleted ())
1197 int eltnum = code == ADDR_DIFF_VEC ? 1 : 0;
1199 for (i = 0; i < XVECLEN (x, eltnum); i++)
1200 mark_jump_label_1 (XVECEXP (x, eltnum, i), NULL, in_mem,
1201 is_target);
1203 return;
1205 default:
1206 break;
1209 fmt = GET_RTX_FORMAT (code);
1211 /* The primary target of a tablejump is the label of the ADDR_VEC,
1212 which is canonically mentioned *last* in the insn. To get it
1213 marked as JUMP_LABEL, we iterate over items in reverse order. */
1214 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1216 if (fmt[i] == 'e')
1217 mark_jump_label_1 (XEXP (x, i), insn, in_mem, is_target);
1218 else if (fmt[i] == 'E')
1220 int j;
1222 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1223 mark_jump_label_1 (XVECEXP (x, i, j), insn, in_mem,
1224 is_target);
1229 /* Worker function for mark_jump_label. Handle asm insns specially.
1230 In particular, output operands need not be considered so we can
1231 avoid re-scanning the replicated asm_operand. Also, the asm_labels
1232 need to be considered targets. */
1234 static void
1235 mark_jump_label_asm (rtx asmop, rtx_insn *insn)
1237 int i;
1239 for (i = ASM_OPERANDS_INPUT_LENGTH (asmop) - 1; i >= 0; --i)
1240 mark_jump_label_1 (ASM_OPERANDS_INPUT (asmop, i), insn, false, false);
1242 for (i = ASM_OPERANDS_LABEL_LENGTH (asmop) - 1; i >= 0; --i)
1243 mark_jump_label_1 (ASM_OPERANDS_LABEL (asmop, i), insn, false, true);
1246 /* Delete insn INSN from the chain of insns and update label ref counts
1247 and delete insns now unreachable.
1249 Returns the first insn after INSN that was not deleted.
1251 Usage of this instruction is deprecated. Use delete_insn instead and
1252 subsequent cfg_cleanup pass to delete unreachable code if needed. */
1254 rtx_insn *
1255 delete_related_insns (rtx uncast_insn)
1257 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
1258 int was_code_label = (LABEL_P (insn));
1259 rtx note;
1260 rtx_insn *next = NEXT_INSN (insn), *prev = PREV_INSN (insn);
1262 while (next && next->deleted ())
1263 next = NEXT_INSN (next);
1265 /* This insn is already deleted => return first following nondeleted. */
1266 if (insn->deleted ())
1267 return next;
1269 delete_insn (insn);
1271 /* If instruction is followed by a barrier,
1272 delete the barrier too. */
1274 if (next != 0 && BARRIER_P (next))
1275 delete_insn (next);
1277 /* If this is a call, then we have to remove the var tracking note
1278 for the call arguments. */
1280 if (CALL_P (insn)
1281 || (NONJUMP_INSN_P (insn)
1282 && GET_CODE (PATTERN (insn)) == SEQUENCE
1283 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))))
1285 rtx_insn *p;
1287 for (p = next && next->deleted () ? NEXT_INSN (next) : next;
1288 p && NOTE_P (p);
1289 p = NEXT_INSN (p))
1290 if (NOTE_KIND (p) == NOTE_INSN_CALL_ARG_LOCATION)
1292 remove_insn (p);
1293 break;
1297 /* If deleting a jump, decrement the count of the label,
1298 and delete the label if it is now unused. */
1300 if (jump_to_label_p (insn))
1302 rtx lab = JUMP_LABEL (insn);
1303 rtx_jump_table_data *lab_next;
1305 if (LABEL_NUSES (lab) == 0)
1306 /* This can delete NEXT or PREV,
1307 either directly if NEXT is JUMP_LABEL (INSN),
1308 or indirectly through more levels of jumps. */
1309 delete_related_insns (lab);
1310 else if (tablejump_p (insn, NULL, &lab_next))
1312 /* If we're deleting the tablejump, delete the dispatch table.
1313 We may not be able to kill the label immediately preceding
1314 just yet, as it might be referenced in code leading up to
1315 the tablejump. */
1316 delete_related_insns (lab_next);
1320 /* Likewise if we're deleting a dispatch table. */
1322 if (rtx_jump_table_data *table = dyn_cast <rtx_jump_table_data *> (insn))
1324 rtvec labels = table->get_labels ();
1325 int i;
1326 int len = GET_NUM_ELEM (labels);
1328 for (i = 0; i < len; i++)
1329 if (LABEL_NUSES (XEXP (RTVEC_ELT (labels, i), 0)) == 0)
1330 delete_related_insns (XEXP (RTVEC_ELT (labels, i), 0));
1331 while (next && next->deleted ())
1332 next = NEXT_INSN (next);
1333 return next;
1336 /* Likewise for any JUMP_P / INSN / CALL_INSN with a
1337 REG_LABEL_OPERAND or REG_LABEL_TARGET note. */
1338 if (INSN_P (insn))
1339 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1340 if ((REG_NOTE_KIND (note) == REG_LABEL_OPERAND
1341 || REG_NOTE_KIND (note) == REG_LABEL_TARGET)
1342 /* This could also be a NOTE_INSN_DELETED_LABEL note. */
1343 && LABEL_P (XEXP (note, 0)))
1344 if (LABEL_NUSES (XEXP (note, 0)) == 0)
1345 delete_related_insns (XEXP (note, 0));
1347 while (prev && (prev->deleted () || NOTE_P (prev)))
1348 prev = PREV_INSN (prev);
1350 /* If INSN was a label and a dispatch table follows it,
1351 delete the dispatch table. The tablejump must have gone already.
1352 It isn't useful to fall through into a table. */
1354 if (was_code_label
1355 && NEXT_INSN (insn) != 0
1356 && JUMP_TABLE_DATA_P (NEXT_INSN (insn)))
1357 next = delete_related_insns (NEXT_INSN (insn));
1359 /* If INSN was a label, delete insns following it if now unreachable. */
1361 if (was_code_label && prev && BARRIER_P (prev))
1363 enum rtx_code code;
1364 while (next)
1366 code = GET_CODE (next);
1367 if (code == NOTE)
1368 next = NEXT_INSN (next);
1369 /* Keep going past other deleted labels to delete what follows. */
1370 else if (code == CODE_LABEL && next->deleted ())
1371 next = NEXT_INSN (next);
1372 /* Keep the (use (insn))s created by dbr_schedule, which needs
1373 them in order to track liveness relative to a previous
1374 barrier. */
1375 else if (INSN_P (next)
1376 && GET_CODE (PATTERN (next)) == USE
1377 && INSN_P (XEXP (PATTERN (next), 0)))
1378 next = NEXT_INSN (next);
1379 else if (code == BARRIER || INSN_P (next))
1380 /* Note: if this deletes a jump, it can cause more
1381 deletion of unreachable code, after a different label.
1382 As long as the value from this recursive call is correct,
1383 this invocation functions correctly. */
1384 next = delete_related_insns (next);
1385 else
1386 break;
1390 /* I feel a little doubtful about this loop,
1391 but I see no clean and sure alternative way
1392 to find the first insn after INSN that is not now deleted.
1393 I hope this works. */
1394 while (next && next->deleted ())
1395 next = NEXT_INSN (next);
1396 return next;
1399 /* Delete a range of insns from FROM to TO, inclusive.
1400 This is for the sake of peephole optimization, so assume
1401 that whatever these insns do will still be done by a new
1402 peephole insn that will replace them. */
1404 void
1405 delete_for_peephole (rtx_insn *from, rtx_insn *to)
1407 rtx_insn *insn = from;
1409 while (1)
1411 rtx_insn *next = NEXT_INSN (insn);
1412 rtx_insn *prev = PREV_INSN (insn);
1414 if (!NOTE_P (insn))
1416 insn->set_deleted();
1418 /* Patch this insn out of the chain. */
1419 /* We don't do this all at once, because we
1420 must preserve all NOTEs. */
1421 if (prev)
1422 SET_NEXT_INSN (prev) = next;
1424 if (next)
1425 SET_PREV_INSN (next) = prev;
1428 if (insn == to)
1429 break;
1430 insn = next;
1433 /* Note that if TO is an unconditional jump
1434 we *do not* delete the BARRIER that follows,
1435 since the peephole that replaces this sequence
1436 is also an unconditional jump in that case. */
1439 /* A helper function for redirect_exp_1; examines its input X and returns
1440 either a LABEL_REF around a label, or a RETURN if X was NULL. */
1441 static rtx
1442 redirect_target (rtx x)
1444 if (x == NULL_RTX)
1445 return ret_rtx;
1446 if (!ANY_RETURN_P (x))
1447 return gen_rtx_LABEL_REF (Pmode, x);
1448 return x;
1451 /* Throughout LOC, redirect OLABEL to NLABEL. Treat null OLABEL or
1452 NLABEL as a return. Accrue modifications into the change group. */
1454 static void
1455 redirect_exp_1 (rtx *loc, rtx olabel, rtx nlabel, rtx insn)
1457 rtx x = *loc;
1458 RTX_CODE code = GET_CODE (x);
1459 int i;
1460 const char *fmt;
1462 if ((code == LABEL_REF && LABEL_REF_LABEL (x) == olabel)
1463 || x == olabel)
1465 x = redirect_target (nlabel);
1466 if (GET_CODE (x) == LABEL_REF && loc == &PATTERN (insn))
1467 x = gen_rtx_SET (VOIDmode, pc_rtx, x);
1468 validate_change (insn, loc, x, 1);
1469 return;
1472 if (code == SET && SET_DEST (x) == pc_rtx
1473 && ANY_RETURN_P (nlabel)
1474 && GET_CODE (SET_SRC (x)) == LABEL_REF
1475 && LABEL_REF_LABEL (SET_SRC (x)) == olabel)
1477 validate_change (insn, loc, nlabel, 1);
1478 return;
1481 if (code == IF_THEN_ELSE)
1483 /* Skip the condition of an IF_THEN_ELSE. We only want to
1484 change jump destinations, not eventual label comparisons. */
1485 redirect_exp_1 (&XEXP (x, 1), olabel, nlabel, insn);
1486 redirect_exp_1 (&XEXP (x, 2), olabel, nlabel, insn);
1487 return;
1490 fmt = GET_RTX_FORMAT (code);
1491 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1493 if (fmt[i] == 'e')
1494 redirect_exp_1 (&XEXP (x, i), olabel, nlabel, insn);
1495 else if (fmt[i] == 'E')
1497 int j;
1498 for (j = 0; j < XVECLEN (x, i); j++)
1499 redirect_exp_1 (&XVECEXP (x, i, j), olabel, nlabel, insn);
1504 /* Make JUMP go to NLABEL instead of where it jumps now. Accrue
1505 the modifications into the change group. Return false if we did
1506 not see how to do that. */
1509 redirect_jump_1 (rtx jump, rtx nlabel)
1511 int ochanges = num_validated_changes ();
1512 rtx *loc, asmop;
1514 gcc_assert (nlabel != NULL_RTX);
1515 asmop = extract_asm_operands (PATTERN (jump));
1516 if (asmop)
1518 if (nlabel == NULL)
1519 return 0;
1520 gcc_assert (ASM_OPERANDS_LABEL_LENGTH (asmop) == 1);
1521 loc = &ASM_OPERANDS_LABEL (asmop, 0);
1523 else if (GET_CODE (PATTERN (jump)) == PARALLEL)
1524 loc = &XVECEXP (PATTERN (jump), 0, 0);
1525 else
1526 loc = &PATTERN (jump);
1528 redirect_exp_1 (loc, JUMP_LABEL (jump), nlabel, jump);
1529 return num_validated_changes () > ochanges;
1532 /* Make JUMP go to NLABEL instead of where it jumps now. If the old
1533 jump target label is unused as a result, it and the code following
1534 it may be deleted.
1536 Normally, NLABEL will be a label, but it may also be a RETURN rtx;
1537 in that case we are to turn the jump into a (possibly conditional)
1538 return insn.
1540 The return value will be 1 if the change was made, 0 if it wasn't
1541 (this can only occur when trying to produce return insns). */
1544 redirect_jump (rtx jump, rtx nlabel, int delete_unused)
1546 rtx olabel = JUMP_LABEL (jump);
1548 if (!nlabel)
1550 /* If there is no label, we are asked to redirect to the EXIT block.
1551 When before the epilogue is emitted, return/simple_return cannot be
1552 created so we return 0 immediately. After the epilogue is emitted,
1553 we always expect a label, either a non-null label, or a
1554 return/simple_return RTX. */
1556 if (!epilogue_completed)
1557 return 0;
1558 gcc_unreachable ();
1561 if (nlabel == olabel)
1562 return 1;
1564 if (! redirect_jump_1 (jump, nlabel) || ! apply_change_group ())
1565 return 0;
1567 redirect_jump_2 (jump, olabel, nlabel, delete_unused, 0);
1568 return 1;
1571 /* Fix up JUMP_LABEL and label ref counts after OLABEL has been replaced with
1572 NLABEL in JUMP.
1573 If DELETE_UNUSED is positive, delete related insn to OLABEL if its ref
1574 count has dropped to zero. */
1575 void
1576 redirect_jump_2 (rtx jump, rtx olabel, rtx nlabel, int delete_unused,
1577 int invert)
1579 rtx note;
1581 gcc_assert (JUMP_LABEL (jump) == olabel);
1583 /* Negative DELETE_UNUSED used to be used to signalize behavior on
1584 moving FUNCTION_END note. Just sanity check that no user still worry
1585 about this. */
1586 gcc_assert (delete_unused >= 0);
1587 JUMP_LABEL (jump) = nlabel;
1588 if (!ANY_RETURN_P (nlabel))
1589 ++LABEL_NUSES (nlabel);
1591 /* Update labels in any REG_EQUAL note. */
1592 if ((note = find_reg_note (jump, REG_EQUAL, NULL_RTX)) != NULL_RTX)
1594 if (ANY_RETURN_P (nlabel)
1595 || (invert && !invert_exp_1 (XEXP (note, 0), jump)))
1596 remove_note (jump, note);
1597 else
1599 redirect_exp_1 (&XEXP (note, 0), olabel, nlabel, jump);
1600 confirm_change_group ();
1604 /* Handle the case where we had a conditional crossing jump to a return
1605 label and are now changing it into a direct conditional return.
1606 The jump is no longer crossing in that case. */
1607 if (ANY_RETURN_P (nlabel))
1608 CROSSING_JUMP_P (jump) = 0;
1610 if (!ANY_RETURN_P (olabel)
1611 && --LABEL_NUSES (olabel) == 0 && delete_unused > 0
1612 /* Undefined labels will remain outside the insn stream. */
1613 && INSN_UID (olabel))
1614 delete_related_insns (olabel);
1615 if (invert)
1616 invert_br_probabilities (jump);
1619 /* Invert the jump condition X contained in jump insn INSN. Accrue the
1620 modifications into the change group. Return nonzero for success. */
1621 static int
1622 invert_exp_1 (rtx x, rtx insn)
1624 RTX_CODE code = GET_CODE (x);
1626 if (code == IF_THEN_ELSE)
1628 rtx comp = XEXP (x, 0);
1629 rtx tem;
1630 enum rtx_code reversed_code;
1632 /* We can do this in two ways: The preferable way, which can only
1633 be done if this is not an integer comparison, is to reverse
1634 the comparison code. Otherwise, swap the THEN-part and ELSE-part
1635 of the IF_THEN_ELSE. If we can't do either, fail. */
1637 reversed_code = reversed_comparison_code (comp, insn);
1639 if (reversed_code != UNKNOWN)
1641 validate_change (insn, &XEXP (x, 0),
1642 gen_rtx_fmt_ee (reversed_code,
1643 GET_MODE (comp), XEXP (comp, 0),
1644 XEXP (comp, 1)),
1646 return 1;
1649 tem = XEXP (x, 1);
1650 validate_change (insn, &XEXP (x, 1), XEXP (x, 2), 1);
1651 validate_change (insn, &XEXP (x, 2), tem, 1);
1652 return 1;
1654 else
1655 return 0;
1658 /* Invert the condition of the jump JUMP, and make it jump to label
1659 NLABEL instead of where it jumps now. Accrue changes into the
1660 change group. Return false if we didn't see how to perform the
1661 inversion and redirection. */
1664 invert_jump_1 (rtx_insn *jump, rtx nlabel)
1666 rtx x = pc_set (jump);
1667 int ochanges;
1668 int ok;
1670 ochanges = num_validated_changes ();
1671 if (x == NULL)
1672 return 0;
1673 ok = invert_exp_1 (SET_SRC (x), jump);
1674 gcc_assert (ok);
1676 if (num_validated_changes () == ochanges)
1677 return 0;
1679 /* redirect_jump_1 will fail of nlabel == olabel, and the current use is
1680 in Pmode, so checking this is not merely an optimization. */
1681 return nlabel == JUMP_LABEL (jump) || redirect_jump_1 (jump, nlabel);
1684 /* Invert the condition of the jump JUMP, and make it jump to label
1685 NLABEL instead of where it jumps now. Return true if successful. */
1688 invert_jump (rtx_insn *jump, rtx nlabel, int delete_unused)
1690 rtx olabel = JUMP_LABEL (jump);
1692 if (invert_jump_1 (jump, nlabel) && apply_change_group ())
1694 redirect_jump_2 (jump, olabel, nlabel, delete_unused, 1);
1695 return 1;
1697 cancel_changes (0);
1698 return 0;
1702 /* Like rtx_equal_p except that it considers two REGs as equal
1703 if they renumber to the same value and considers two commutative
1704 operations to be the same if the order of the operands has been
1705 reversed. */
1708 rtx_renumbered_equal_p (const_rtx x, const_rtx y)
1710 int i;
1711 const enum rtx_code code = GET_CODE (x);
1712 const char *fmt;
1714 if (x == y)
1715 return 1;
1717 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
1718 && (REG_P (y) || (GET_CODE (y) == SUBREG
1719 && REG_P (SUBREG_REG (y)))))
1721 int reg_x = -1, reg_y = -1;
1722 int byte_x = 0, byte_y = 0;
1723 struct subreg_info info;
1725 if (GET_MODE (x) != GET_MODE (y))
1726 return 0;
1728 /* If we haven't done any renumbering, don't
1729 make any assumptions. */
1730 if (reg_renumber == 0)
1731 return rtx_equal_p (x, y);
1733 if (code == SUBREG)
1735 reg_x = REGNO (SUBREG_REG (x));
1736 byte_x = SUBREG_BYTE (x);
1738 if (reg_renumber[reg_x] >= 0)
1740 subreg_get_info (reg_renumber[reg_x],
1741 GET_MODE (SUBREG_REG (x)), byte_x,
1742 GET_MODE (x), &info);
1743 if (!info.representable_p)
1744 return 0;
1745 reg_x = info.offset;
1746 byte_x = 0;
1749 else
1751 reg_x = REGNO (x);
1752 if (reg_renumber[reg_x] >= 0)
1753 reg_x = reg_renumber[reg_x];
1756 if (GET_CODE (y) == SUBREG)
1758 reg_y = REGNO (SUBREG_REG (y));
1759 byte_y = SUBREG_BYTE (y);
1761 if (reg_renumber[reg_y] >= 0)
1763 subreg_get_info (reg_renumber[reg_y],
1764 GET_MODE (SUBREG_REG (y)), byte_y,
1765 GET_MODE (y), &info);
1766 if (!info.representable_p)
1767 return 0;
1768 reg_y = info.offset;
1769 byte_y = 0;
1772 else
1774 reg_y = REGNO (y);
1775 if (reg_renumber[reg_y] >= 0)
1776 reg_y = reg_renumber[reg_y];
1779 return reg_x >= 0 && reg_x == reg_y && byte_x == byte_y;
1782 /* Now we have disposed of all the cases
1783 in which different rtx codes can match. */
1784 if (code != GET_CODE (y))
1785 return 0;
1787 switch (code)
1789 case PC:
1790 case CC0:
1791 case ADDR_VEC:
1792 case ADDR_DIFF_VEC:
1793 CASE_CONST_UNIQUE:
1794 return 0;
1796 case LABEL_REF:
1797 /* We can't assume nonlocal labels have their following insns yet. */
1798 if (LABEL_REF_NONLOCAL_P (x) || LABEL_REF_NONLOCAL_P (y))
1799 return LABEL_REF_LABEL (x) == LABEL_REF_LABEL (y);
1801 /* Two label-refs are equivalent if they point at labels
1802 in the same position in the instruction stream. */
1803 return (next_real_insn (LABEL_REF_LABEL (x))
1804 == next_real_insn (LABEL_REF_LABEL (y)));
1806 case SYMBOL_REF:
1807 return XSTR (x, 0) == XSTR (y, 0);
1809 case CODE_LABEL:
1810 /* If we didn't match EQ equality above, they aren't the same. */
1811 return 0;
1813 default:
1814 break;
1817 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
1819 if (GET_MODE (x) != GET_MODE (y))
1820 return 0;
1822 /* MEMs referring to different address space are not equivalent. */
1823 if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
1824 return 0;
1826 /* For commutative operations, the RTX match if the operand match in any
1827 order. Also handle the simple binary and unary cases without a loop. */
1828 if (targetm.commutative_p (x, UNKNOWN))
1829 return ((rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1830 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)))
1831 || (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 1))
1832 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 0))));
1833 else if (NON_COMMUTATIVE_P (x))
1834 return (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1835 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)));
1836 else if (UNARY_P (x))
1837 return rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0));
1839 /* Compare the elements. If any pair of corresponding elements
1840 fail to match, return 0 for the whole things. */
1842 fmt = GET_RTX_FORMAT (code);
1843 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1845 int j;
1846 switch (fmt[i])
1848 case 'w':
1849 if (XWINT (x, i) != XWINT (y, i))
1850 return 0;
1851 break;
1853 case 'i':
1854 if (XINT (x, i) != XINT (y, i))
1856 if (((code == ASM_OPERANDS && i == 6)
1857 || (code == ASM_INPUT && i == 1)))
1858 break;
1859 return 0;
1861 break;
1863 case 't':
1864 if (XTREE (x, i) != XTREE (y, i))
1865 return 0;
1866 break;
1868 case 's':
1869 if (strcmp (XSTR (x, i), XSTR (y, i)))
1870 return 0;
1871 break;
1873 case 'e':
1874 if (! rtx_renumbered_equal_p (XEXP (x, i), XEXP (y, i)))
1875 return 0;
1876 break;
1878 case 'u':
1879 if (XEXP (x, i) != XEXP (y, i))
1880 return 0;
1881 /* Fall through. */
1882 case '0':
1883 break;
1885 case 'E':
1886 if (XVECLEN (x, i) != XVECLEN (y, i))
1887 return 0;
1888 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1889 if (!rtx_renumbered_equal_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
1890 return 0;
1891 break;
1893 default:
1894 gcc_unreachable ();
1897 return 1;
1900 /* If X is a hard register or equivalent to one or a subregister of one,
1901 return the hard register number. If X is a pseudo register that was not
1902 assigned a hard register, return the pseudo register number. Otherwise,
1903 return -1. Any rtx is valid for X. */
1906 true_regnum (const_rtx x)
1908 if (REG_P (x))
1910 if (REGNO (x) >= FIRST_PSEUDO_REGISTER
1911 && (lra_in_progress || reg_renumber[REGNO (x)] >= 0))
1912 return reg_renumber[REGNO (x)];
1913 return REGNO (x);
1915 if (GET_CODE (x) == SUBREG)
1917 int base = true_regnum (SUBREG_REG (x));
1918 if (base >= 0
1919 && base < FIRST_PSEUDO_REGISTER)
1921 struct subreg_info info;
1923 subreg_get_info (lra_in_progress
1924 ? (unsigned) base : REGNO (SUBREG_REG (x)),
1925 GET_MODE (SUBREG_REG (x)),
1926 SUBREG_BYTE (x), GET_MODE (x), &info);
1928 if (info.representable_p)
1929 return base + info.offset;
1932 return -1;
1935 /* Return regno of the register REG and handle subregs too. */
1936 unsigned int
1937 reg_or_subregno (const_rtx reg)
1939 if (GET_CODE (reg) == SUBREG)
1940 reg = SUBREG_REG (reg);
1941 gcc_assert (REG_P (reg));
1942 return REGNO (reg);