1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Aspects
; use Aspects
;
27 with Atree
; use Atree
;
28 with Checks
; use Checks
;
29 with Debug
; use Debug
;
30 with Einfo
; use Einfo
;
31 with Elists
; use Elists
;
32 with Errout
; use Errout
;
33 with Expander
; use Expander
;
34 with Exp_Ch6
; use Exp_Ch6
;
35 with Exp_Ch7
; use Exp_Ch7
;
36 with Exp_Ch9
; use Exp_Ch9
;
37 with Exp_Dbug
; use Exp_Dbug
;
38 with Exp_Disp
; use Exp_Disp
;
39 with Exp_Tss
; use Exp_Tss
;
40 with Exp_Util
; use Exp_Util
;
41 with Fname
; use Fname
;
42 with Freeze
; use Freeze
;
43 with Inline
; use Inline
;
44 with Itypes
; use Itypes
;
45 with Lib
.Xref
; use Lib
.Xref
;
46 with Layout
; use Layout
;
47 with Namet
; use Namet
;
49 with Nlists
; use Nlists
;
50 with Nmake
; use Nmake
;
52 with Output
; use Output
;
53 with Restrict
; use Restrict
;
54 with Rident
; use Rident
;
55 with Rtsfind
; use Rtsfind
;
57 with Sem_Aux
; use Sem_Aux
;
58 with Sem_Cat
; use Sem_Cat
;
59 with Sem_Ch3
; use Sem_Ch3
;
60 with Sem_Ch4
; use Sem_Ch4
;
61 with Sem_Ch5
; use Sem_Ch5
;
62 with Sem_Ch8
; use Sem_Ch8
;
63 with Sem_Ch10
; use Sem_Ch10
;
64 with Sem_Ch12
; use Sem_Ch12
;
65 with Sem_Ch13
; use Sem_Ch13
;
66 with Sem_Dim
; use Sem_Dim
;
67 with Sem_Disp
; use Sem_Disp
;
68 with Sem_Dist
; use Sem_Dist
;
69 with Sem_Elim
; use Sem_Elim
;
70 with Sem_Eval
; use Sem_Eval
;
71 with Sem_Mech
; use Sem_Mech
;
72 with Sem_Prag
; use Sem_Prag
;
73 with Sem_Res
; use Sem_Res
;
74 with Sem_Util
; use Sem_Util
;
75 with Sem_Type
; use Sem_Type
;
76 with Sem_Warn
; use Sem_Warn
;
77 with Sinput
; use Sinput
;
78 with Stand
; use Stand
;
79 with Sinfo
; use Sinfo
;
80 with Sinfo
.CN
; use Sinfo
.CN
;
81 with Snames
; use Snames
;
82 with Stringt
; use Stringt
;
84 with Stylesw
; use Stylesw
;
85 with Targparm
; use Targparm
;
86 with Tbuild
; use Tbuild
;
87 with Uintp
; use Uintp
;
88 with Urealp
; use Urealp
;
89 with Validsw
; use Validsw
;
91 package body Sem_Ch6
is
93 May_Hide_Profile
: Boolean := False;
94 -- This flag is used to indicate that two formals in two subprograms being
95 -- checked for conformance differ only in that one is an access parameter
96 -- while the other is of a general access type with the same designated
97 -- type. In this case, if the rest of the signatures match, a call to
98 -- either subprogram may be ambiguous, which is worth a warning. The flag
99 -- is set in Compatible_Types, and the warning emitted in
100 -- New_Overloaded_Entity.
102 -----------------------
103 -- Local Subprograms --
104 -----------------------
106 procedure Analyze_Null_Procedure
108 Is_Completion
: out Boolean);
109 -- A null procedure can be a declaration or (Ada 2012) a completion
111 procedure Analyze_Return_Statement
(N
: Node_Id
);
112 -- Common processing for simple and extended return statements
114 procedure Analyze_Function_Return
(N
: Node_Id
);
115 -- Subsidiary to Analyze_Return_Statement. Called when the return statement
116 -- applies to a [generic] function.
118 procedure Analyze_Return_Type
(N
: Node_Id
);
119 -- Subsidiary to Process_Formals: analyze subtype mark in function
120 -- specification in a context where the formals are visible and hide
123 procedure Analyze_Subprogram_Body_Helper
(N
: Node_Id
);
124 -- Does all the real work of Analyze_Subprogram_Body. This is split out so
125 -- that we can use RETURN but not skip the debug output at the end.
127 procedure Analyze_Generic_Subprogram_Body
(N
: Node_Id
; Gen_Id
: Entity_Id
);
128 -- Analyze a generic subprogram body. N is the body to be analyzed, and
129 -- Gen_Id is the defining entity Id for the corresponding spec.
131 function Can_Override_Operator
(Subp
: Entity_Id
) return Boolean;
132 -- Returns true if Subp can override a predefined operator.
134 procedure Check_Conformance
137 Ctype
: Conformance_Type
;
139 Conforms
: out Boolean;
140 Err_Loc
: Node_Id
:= Empty
;
141 Get_Inst
: Boolean := False;
142 Skip_Controlling_Formals
: Boolean := False);
143 -- Given two entities, this procedure checks that the profiles associated
144 -- with these entities meet the conformance criterion given by the third
145 -- parameter. If they conform, Conforms is set True and control returns
146 -- to the caller. If they do not conform, Conforms is set to False, and
147 -- in addition, if Errmsg is True on the call, proper messages are output
148 -- to complain about the conformance failure. If Err_Loc is non_Empty
149 -- the error messages are placed on Err_Loc, if Err_Loc is empty, then
150 -- error messages are placed on the appropriate part of the construct
151 -- denoted by New_Id. If Get_Inst is true, then this is a mode conformance
152 -- against a formal access-to-subprogram type so Get_Instance_Of must
155 procedure Check_Subprogram_Order
(N
: Node_Id
);
156 -- N is the N_Subprogram_Body node for a subprogram. This routine applies
157 -- the alpha ordering rule for N if this ordering requirement applicable.
159 procedure Check_Returns
163 Proc
: Entity_Id
:= Empty
);
164 -- Called to check for missing return statements in a function body, or for
165 -- returns present in a procedure body which has No_Return set. HSS is the
166 -- handled statement sequence for the subprogram body. This procedure
167 -- checks all flow paths to make sure they either have return (Mode = 'F',
168 -- used for functions) or do not have a return (Mode = 'P', used for
169 -- No_Return procedures). The flag Err is set if there are any control
170 -- paths not explicitly terminated by a return in the function case, and is
171 -- True otherwise. Proc is the entity for the procedure case and is used
172 -- in posting the warning message.
174 procedure Check_Untagged_Equality
(Eq_Op
: Entity_Id
);
175 -- In Ada 2012, a primitive equality operator on an untagged record type
176 -- must appear before the type is frozen, and have the same visibility as
177 -- that of the type. This procedure checks that this rule is met, and
178 -- otherwise emits an error on the subprogram declaration and a warning
179 -- on the earlier freeze point if it is easy to locate. In Ada 2012 mode,
180 -- this routine outputs errors (or warnings if -gnatd.E is set). In earlier
181 -- versions of Ada, warnings are output if Warn_On_Ada_2012_Incompatibility
182 -- is set, otherwise the call has no effect.
184 procedure Enter_Overloaded_Entity
(S
: Entity_Id
);
185 -- This procedure makes S, a new overloaded entity, into the first visible
186 -- entity with that name.
188 function Is_Non_Overriding_Operation
190 New_E
: Entity_Id
) return Boolean;
191 -- Enforce the rule given in 12.3(18): a private operation in an instance
192 -- overrides an inherited operation only if the corresponding operation
193 -- was overriding in the generic. This needs to be checked for primitive
194 -- operations of types derived (in the generic unit) from formal private
195 -- or formal derived types.
197 procedure Make_Inequality_Operator
(S
: Entity_Id
);
198 -- Create the declaration for an inequality operator that is implicitly
199 -- created by a user-defined equality operator that yields a boolean.
201 procedure Set_Formal_Validity
(Formal_Id
: Entity_Id
);
202 -- Formal_Id is an formal parameter entity. This procedure deals with
203 -- setting the proper validity status for this entity, which depends on
204 -- the kind of parameter and the validity checking mode.
206 ---------------------------------------------
207 -- Analyze_Abstract_Subprogram_Declaration --
208 ---------------------------------------------
210 procedure Analyze_Abstract_Subprogram_Declaration
(N
: Node_Id
) is
211 Designator
: constant Entity_Id
:=
212 Analyze_Subprogram_Specification
(Specification
(N
));
213 Scop
: constant Entity_Id
:= Current_Scope
;
216 Check_SPARK_05_Restriction
("abstract subprogram is not allowed", N
);
218 Generate_Definition
(Designator
);
219 Set_Contract
(Designator
, Make_Contract
(Sloc
(Designator
)));
220 Set_Is_Abstract_Subprogram
(Designator
);
221 New_Overloaded_Entity
(Designator
);
222 Check_Delayed_Subprogram
(Designator
);
224 Set_Categorization_From_Scope
(Designator
, Scop
);
226 if Ekind
(Scope
(Designator
)) = E_Protected_Type
then
228 ("abstract subprogram not allowed in protected type", N
);
230 -- Issue a warning if the abstract subprogram is neither a dispatching
231 -- operation nor an operation that overrides an inherited subprogram or
232 -- predefined operator, since this most likely indicates a mistake.
234 elsif Warn_On_Redundant_Constructs
235 and then not Is_Dispatching_Operation
(Designator
)
236 and then not Present
(Overridden_Operation
(Designator
))
237 and then (not Is_Operator_Symbol_Name
(Chars
(Designator
))
238 or else Scop
/= Scope
(Etype
(First_Formal
(Designator
))))
241 ("abstract subprogram is not dispatching or overriding?r?", N
);
244 Generate_Reference_To_Formals
(Designator
);
245 Check_Eliminated
(Designator
);
247 if Has_Aspects
(N
) then
248 Analyze_Aspect_Specifications
(N
, Designator
);
250 end Analyze_Abstract_Subprogram_Declaration
;
252 ---------------------------------
253 -- Analyze_Expression_Function --
254 ---------------------------------
256 procedure Analyze_Expression_Function
(N
: Node_Id
) is
257 Loc
: constant Source_Ptr
:= Sloc
(N
);
258 LocX
: constant Source_Ptr
:= Sloc
(Expression
(N
));
259 Expr
: constant Node_Id
:= Expression
(N
);
260 Spec
: constant Node_Id
:= Specification
(N
);
265 -- If the expression is a completion, Prev is the entity whose
266 -- declaration is completed. Def_Id is needed to analyze the spec.
273 -- This is one of the occasions on which we transform the tree during
274 -- semantic analysis. If this is a completion, transform the expression
275 -- function into an equivalent subprogram body, and analyze it.
277 -- Expression functions are inlined unconditionally. The back-end will
278 -- determine whether this is possible.
280 Inline_Processing_Required
:= True;
282 -- Create a specification for the generated body. Types and defauts in
283 -- the profile are copies of the spec, but new entities must be created
284 -- for the unit name and the formals.
286 New_Spec
:= New_Copy_Tree
(Spec
);
287 Set_Defining_Unit_Name
(New_Spec
,
288 Make_Defining_Identifier
(Sloc
(Defining_Unit_Name
(Spec
)),
289 Chars
(Defining_Unit_Name
(Spec
))));
291 if Present
(Parameter_Specifications
(New_Spec
)) then
293 Formal_Spec
: Node_Id
;
297 Formal_Spec
:= First
(Parameter_Specifications
(New_Spec
));
299 -- Create a new formal parameter at the same source position
301 while Present
(Formal_Spec
) loop
302 Def
:= Defining_Identifier
(Formal_Spec
);
303 Set_Defining_Identifier
(Formal_Spec
,
304 Make_Defining_Identifier
(Sloc
(Def
),
305 Chars
=> Chars
(Def
)));
311 Prev
:= Current_Entity_In_Scope
(Defining_Entity
(Spec
));
313 -- If there are previous overloadable entities with the same name,
314 -- check whether any of them is completed by the expression function.
316 if Present
(Prev
) and then Is_Overloadable
(Prev
) then
317 Def_Id
:= Analyze_Subprogram_Specification
(Spec
);
318 Prev
:= Find_Corresponding_Spec
(N
);
321 Ret
:= Make_Simple_Return_Statement
(LocX
, Expression
(N
));
324 Make_Subprogram_Body
(Loc
,
325 Specification
=> New_Spec
,
326 Declarations
=> Empty_List
,
327 Handled_Statement_Sequence
=>
328 Make_Handled_Sequence_Of_Statements
(LocX
,
329 Statements
=> New_List
(Ret
)));
331 -- If the expression completes a generic subprogram, we must create a
332 -- separate node for the body, because at instantiation the original
333 -- node of the generic copy must be a generic subprogram body, and
334 -- cannot be a expression function. Otherwise we just rewrite the
335 -- expression with the non-generic body.
337 if Present
(Prev
) and then Ekind
(Prev
) = E_Generic_Function
then
338 Insert_After
(N
, New_Body
);
340 -- Propagate any aspects or pragmas that apply to the expression
341 -- function to the proper body when the expression function acts
344 if Has_Aspects
(N
) then
345 Move_Aspects
(N
, To
=> New_Body
);
348 Relocate_Pragmas_To_Body
(New_Body
);
350 Rewrite
(N
, Make_Null_Statement
(Loc
));
351 Set_Has_Completion
(Prev
, False);
354 Set_Is_Inlined
(Prev
);
356 -- If the expression function is a completion, the previous declaration
357 -- must come from source. We know already that appears in the current
358 -- scope. The entity itself may be internally created if within a body
361 elsif Present
(Prev
) and then Comes_From_Source
(Parent
(Prev
)) then
362 Set_Has_Completion
(Prev
, False);
364 -- An expression function that is a completion freezes the
365 -- expression. This means freezing the return type, and if it is
366 -- an access type, freezing its designated type as well.
368 -- Note that we cannot defer this freezing to the analysis of the
369 -- expression itself, because a freeze node might appear in a nested
370 -- scope, leading to an elaboration order issue in gigi.
372 Freeze_Before
(N
, Etype
(Prev
));
374 if Is_Access_Type
(Etype
(Prev
)) then
375 Freeze_Before
(N
, Designated_Type
(Etype
(Prev
)));
378 -- For navigation purposes, indicate that the function is a body
380 Generate_Reference
(Prev
, Defining_Entity
(N
), 'b', Force
=> True);
381 Rewrite
(N
, New_Body
);
383 -- Correct the parent pointer of the aspect specification list to
384 -- reference the rewritten node.
386 if Has_Aspects
(N
) then
387 Set_Parent
(Aspect_Specifications
(N
), N
);
390 -- Propagate any pragmas that apply to the expression function to the
391 -- proper body when the expression function acts as a completion.
392 -- Aspects are automatically transfered because of node rewriting.
394 Relocate_Pragmas_To_Body
(N
);
397 -- Prev is the previous entity with the same name, but it is can
398 -- be an unrelated spec that is not completed by the expression
399 -- function. In that case the relevant entity is the one in the body.
400 -- Not clear that the backend can inline it in this case ???
402 if Has_Completion
(Prev
) then
403 Set_Is_Inlined
(Prev
);
405 -- The formals of the expression function are body formals,
406 -- and do not appear in the ali file, which will only contain
407 -- references to the formals of the original subprogram spec.
414 F1
:= First_Formal
(Def_Id
);
415 F2
:= First_Formal
(Prev
);
417 while Present
(F1
) loop
418 Set_Spec_Entity
(F1
, F2
);
425 Set_Is_Inlined
(Defining_Entity
(New_Body
));
428 -- If this is not a completion, create both a declaration and a body, so
429 -- that the expression can be inlined whenever possible.
432 -- An expression function that is not a completion is not a
433 -- subprogram declaration, and thus cannot appear in a protected
436 if Nkind
(Parent
(N
)) = N_Protected_Definition
then
438 ("an expression function is not a legal protected operation", N
);
441 Rewrite
(N
, Make_Subprogram_Declaration
(Loc
, Specification
=> Spec
));
443 -- Correct the parent pointer of the aspect specification list to
444 -- reference the rewritten node.
446 if Has_Aspects
(N
) then
447 Set_Parent
(Aspect_Specifications
(N
), N
);
451 Set_Is_Inlined
(Defining_Entity
(N
));
453 -- Establish the linkages between the spec and the body. These are
454 -- used when the expression function acts as the prefix of attribute
455 -- 'Access in order to freeze the original expression which has been
456 -- moved to the generated body.
458 Set_Corresponding_Body
(N
, Defining_Entity
(New_Body
));
459 Set_Corresponding_Spec
(New_Body
, Defining_Entity
(N
));
461 -- To prevent premature freeze action, insert the new body at the end
462 -- of the current declarations, or at the end of the package spec.
463 -- However, resolve usage names now, to prevent spurious visibility
464 -- on later entities. Note that the function can now be called in
465 -- the current declarative part, which will appear to be prior to
466 -- the presence of the body in the code. There are nevertheless no
467 -- order of elaboration issues because all name resolution has taken
468 -- place at the point of declaration.
471 Decls
: List_Id
:= List_Containing
(N
);
472 Par
: constant Node_Id
:= Parent
(Decls
);
473 Id
: constant Entity_Id
:= Defining_Entity
(N
);
476 -- If this is a wrapper created for in an instance for a formal
477 -- subprogram, insert body after declaration, to be analyzed when
478 -- the enclosing instance is analyzed.
481 and then Is_Generic_Actual_Subprogram
(Defining_Entity
(N
))
483 Insert_After
(N
, New_Body
);
486 if Nkind
(Par
) = N_Package_Specification
487 and then Decls
= Visible_Declarations
(Par
)
488 and then Present
(Private_Declarations
(Par
))
489 and then not Is_Empty_List
(Private_Declarations
(Par
))
491 Decls
:= Private_Declarations
(Par
);
494 Insert_After
(Last
(Decls
), New_Body
);
496 Install_Formals
(Id
);
498 -- Preanalyze the expression for name capture, except in an
499 -- instance, where this has been done during generic analysis,
500 -- and will be redone when analyzing the body.
503 Expr
: constant Node_Id
:= Expression
(Ret
);
506 Set_Parent
(Expr
, Ret
);
508 if not In_Instance
then
509 Preanalyze_Spec_Expression
(Expr
, Etype
(Id
));
518 -- If the return expression is a static constant, we suppress warning
519 -- messages on unused formals, which in most cases will be noise.
521 Set_Is_Trivial_Subprogram
(Defining_Entity
(New_Body
),
522 Is_OK_Static_Expression
(Expr
));
523 end Analyze_Expression_Function
;
525 ----------------------------------------
526 -- Analyze_Extended_Return_Statement --
527 ----------------------------------------
529 procedure Analyze_Extended_Return_Statement
(N
: Node_Id
) is
531 Check_Compiler_Unit
("extended return statement", N
);
532 Analyze_Return_Statement
(N
);
533 end Analyze_Extended_Return_Statement
;
535 ----------------------------
536 -- Analyze_Function_Call --
537 ----------------------------
539 procedure Analyze_Function_Call
(N
: Node_Id
) is
540 Actuals
: constant List_Id
:= Parameter_Associations
(N
);
541 Func_Nam
: constant Node_Id
:= Name
(N
);
547 -- A call of the form A.B (X) may be an Ada 2005 call, which is
548 -- rewritten as B (A, X). If the rewriting is successful, the call
549 -- has been analyzed and we just return.
551 if Nkind
(Func_Nam
) = N_Selected_Component
552 and then Name
(N
) /= Func_Nam
553 and then Is_Rewrite_Substitution
(N
)
554 and then Present
(Etype
(N
))
559 -- If error analyzing name, then set Any_Type as result type and return
561 if Etype
(Func_Nam
) = Any_Type
then
562 Set_Etype
(N
, Any_Type
);
566 -- Otherwise analyze the parameters
568 if Present
(Actuals
) then
569 Actual
:= First
(Actuals
);
570 while Present
(Actual
) loop
572 Check_Parameterless_Call
(Actual
);
578 end Analyze_Function_Call
;
580 -----------------------------
581 -- Analyze_Function_Return --
582 -----------------------------
584 procedure Analyze_Function_Return
(N
: Node_Id
) is
585 Loc
: constant Source_Ptr
:= Sloc
(N
);
586 Stm_Entity
: constant Entity_Id
:= Return_Statement_Entity
(N
);
587 Scope_Id
: constant Entity_Id
:= Return_Applies_To
(Stm_Entity
);
589 R_Type
: constant Entity_Id
:= Etype
(Scope_Id
);
590 -- Function result subtype
592 procedure Check_Limited_Return
(Expr
: Node_Id
);
593 -- Check the appropriate (Ada 95 or Ada 2005) rules for returning
594 -- limited types. Used only for simple return statements.
595 -- Expr is the expression returned.
597 procedure Check_Return_Subtype_Indication
(Obj_Decl
: Node_Id
);
598 -- Check that the return_subtype_indication properly matches the result
599 -- subtype of the function, as required by RM-6.5(5.1/2-5.3/2).
601 --------------------------
602 -- Check_Limited_Return --
603 --------------------------
605 procedure Check_Limited_Return
(Expr
: Node_Id
) is
607 -- Ada 2005 (AI-318-02): Return-by-reference types have been
608 -- removed and replaced by anonymous access results. This is an
609 -- incompatibility with Ada 95. Not clear whether this should be
610 -- enforced yet or perhaps controllable with special switch. ???
612 -- A limited interface that is not immutably limited is OK.
614 if Is_Limited_Interface
(R_Type
)
616 not (Is_Task_Interface
(R_Type
)
617 or else Is_Protected_Interface
(R_Type
)
618 or else Is_Synchronized_Interface
(R_Type
))
622 elsif Is_Limited_Type
(R_Type
)
623 and then not Is_Interface
(R_Type
)
624 and then Comes_From_Source
(N
)
625 and then not In_Instance_Body
626 and then not OK_For_Limited_Init_In_05
(R_Type
, Expr
)
630 if Ada_Version
>= Ada_2005
631 and then not Debug_Flag_Dot_L
632 and then not GNAT_Mode
635 ("(Ada 2005) cannot copy object of a limited type "
636 & "(RM-2005 6.5(5.5/2))", Expr
);
638 if Is_Limited_View
(R_Type
) then
640 ("\return by reference not permitted in Ada 2005", Expr
);
643 -- Warn in Ada 95 mode, to give folks a heads up about this
646 -- In GNAT mode, this is just a warning, to allow it to be
647 -- evilly turned off. Otherwise it is a real error.
649 -- In a generic context, simplify the warning because it makes
650 -- no sense to discuss pass-by-reference or copy.
652 elsif Warn_On_Ada_2005_Compatibility
or GNAT_Mode
then
653 if Inside_A_Generic
then
655 ("return of limited object not permitted in Ada 2005 "
656 & "(RM-2005 6.5(5.5/2))?y?", Expr
);
658 elsif Is_Limited_View
(R_Type
) then
660 ("return by reference not permitted in Ada 2005 "
661 & "(RM-2005 6.5(5.5/2))?y?", Expr
);
664 ("cannot copy object of a limited type in Ada 2005 "
665 & "(RM-2005 6.5(5.5/2))?y?", Expr
);
668 -- Ada 95 mode, compatibility warnings disabled
671 return; -- skip continuation messages below
674 if not Inside_A_Generic
then
676 ("\consider switching to return of access type", Expr
);
677 Explain_Limited_Type
(R_Type
, Expr
);
680 end Check_Limited_Return
;
682 -------------------------------------
683 -- Check_Return_Subtype_Indication --
684 -------------------------------------
686 procedure Check_Return_Subtype_Indication
(Obj_Decl
: Node_Id
) is
687 Return_Obj
: constant Node_Id
:= Defining_Identifier
(Obj_Decl
);
689 R_Stm_Type
: constant Entity_Id
:= Etype
(Return_Obj
);
690 -- Subtype given in the extended return statement (must match R_Type)
692 Subtype_Ind
: constant Node_Id
:=
693 Object_Definition
(Original_Node
(Obj_Decl
));
695 R_Type_Is_Anon_Access
: constant Boolean :=
697 E_Anonymous_Access_Subprogram_Type
,
698 E_Anonymous_Access_Protected_Subprogram_Type
,
699 E_Anonymous_Access_Type
);
700 -- True if return type of the function is an anonymous access type
701 -- Can't we make Is_Anonymous_Access_Type in einfo ???
703 R_Stm_Type_Is_Anon_Access
: constant Boolean :=
704 Ekind_In
(R_Stm_Type
,
705 E_Anonymous_Access_Subprogram_Type
,
706 E_Anonymous_Access_Protected_Subprogram_Type
,
707 E_Anonymous_Access_Type
);
708 -- True if type of the return object is an anonymous access type
710 procedure Error_No_Match
(N
: Node_Id
);
711 -- Output error messages for case where types do not statically
712 -- match. N is the location for the messages.
718 procedure Error_No_Match
(N
: Node_Id
) is
721 ("subtype must statically match function result subtype", N
);
723 if not Predicates_Match
(R_Stm_Type
, R_Type
) then
724 Error_Msg_Node_2
:= R_Type
;
726 ("\predicate of& does not match predicate of&",
731 -- Start of processing for Check_Return_Subtype_Indication
734 -- First, avoid cascaded errors
736 if Error_Posted
(Obj_Decl
) or else Error_Posted
(Subtype_Ind
) then
740 -- "return access T" case; check that the return statement also has
741 -- "access T", and that the subtypes statically match:
742 -- if this is an access to subprogram the signatures must match.
744 if R_Type_Is_Anon_Access
then
745 if R_Stm_Type_Is_Anon_Access
then
747 Ekind
(Designated_Type
(R_Stm_Type
)) /= E_Subprogram_Type
749 if Base_Type
(Designated_Type
(R_Stm_Type
)) /=
750 Base_Type
(Designated_Type
(R_Type
))
751 or else not Subtypes_Statically_Match
(R_Stm_Type
, R_Type
)
753 Error_No_Match
(Subtype_Mark
(Subtype_Ind
));
757 -- For two anonymous access to subprogram types, the
758 -- types themselves must be type conformant.
760 if not Conforming_Types
761 (R_Stm_Type
, R_Type
, Fully_Conformant
)
763 Error_No_Match
(Subtype_Ind
);
768 Error_Msg_N
("must use anonymous access type", Subtype_Ind
);
771 -- If the return object is of an anonymous access type, then report
772 -- an error if the function's result type is not also anonymous.
774 elsif R_Stm_Type_Is_Anon_Access
775 and then not R_Type_Is_Anon_Access
777 Error_Msg_N
("anonymous access not allowed for function with "
778 & "named access result", Subtype_Ind
);
780 -- Subtype indication case: check that the return object's type is
781 -- covered by the result type, and that the subtypes statically match
782 -- when the result subtype is constrained. Also handle record types
783 -- with unknown discriminants for which we have built the underlying
784 -- record view. Coverage is needed to allow specific-type return
785 -- objects when the result type is class-wide (see AI05-32).
787 elsif Covers
(Base_Type
(R_Type
), Base_Type
(R_Stm_Type
))
788 or else (Is_Underlying_Record_View
(Base_Type
(R_Stm_Type
))
792 Underlying_Record_View
(Base_Type
(R_Stm_Type
))))
794 -- A null exclusion may be present on the return type, on the
795 -- function specification, on the object declaration or on the
798 if Is_Access_Type
(R_Type
)
800 (Can_Never_Be_Null
(R_Type
)
801 or else Null_Exclusion_Present
(Parent
(Scope_Id
))) /=
802 Can_Never_Be_Null
(R_Stm_Type
)
804 Error_No_Match
(Subtype_Ind
);
807 -- AI05-103: for elementary types, subtypes must statically match
809 if Is_Constrained
(R_Type
)
810 or else Is_Access_Type
(R_Type
)
812 if not Subtypes_Statically_Match
(R_Stm_Type
, R_Type
) then
813 Error_No_Match
(Subtype_Ind
);
817 -- All remaining cases are illegal
819 -- Note: previous versions of this subprogram allowed the return
820 -- value to be the ancestor of the return type if the return type
821 -- was a null extension. This was plainly incorrect.
825 ("wrong type for return_subtype_indication", Subtype_Ind
);
827 end Check_Return_Subtype_Indication
;
829 ---------------------
830 -- Local Variables --
831 ---------------------
835 -- Start of processing for Analyze_Function_Return
838 Set_Return_Present
(Scope_Id
);
840 if Nkind
(N
) = N_Simple_Return_Statement
then
841 Expr
:= Expression
(N
);
843 -- Guard against a malformed expression. The parser may have tried to
844 -- recover but the node is not analyzable.
846 if Nkind
(Expr
) = N_Error
then
847 Set_Etype
(Expr
, Any_Type
);
848 Expander_Mode_Save_And_Set
(False);
852 -- The resolution of a controlled [extension] aggregate associated
853 -- with a return statement creates a temporary which needs to be
854 -- finalized on function exit. Wrap the return statement inside a
855 -- block so that the finalization machinery can detect this case.
856 -- This early expansion is done only when the return statement is
857 -- not part of a handled sequence of statements.
859 if Nkind_In
(Expr
, N_Aggregate
,
860 N_Extension_Aggregate
)
861 and then Needs_Finalization
(R_Type
)
862 and then Nkind
(Parent
(N
)) /= N_Handled_Sequence_Of_Statements
865 Make_Block_Statement
(Loc
,
866 Handled_Statement_Sequence
=>
867 Make_Handled_Sequence_Of_Statements
(Loc
,
868 Statements
=> New_List
(Relocate_Node
(N
)))));
874 Analyze_And_Resolve
(Expr
, R_Type
);
875 Check_Limited_Return
(Expr
);
878 -- RETURN only allowed in SPARK as the last statement in function
880 if Nkind
(Parent
(N
)) /= N_Handled_Sequence_Of_Statements
882 (Nkind
(Parent
(Parent
(N
))) /= N_Subprogram_Body
883 or else Present
(Next
(N
)))
885 Check_SPARK_05_Restriction
886 ("RETURN should be the last statement in function", N
);
890 Check_SPARK_05_Restriction
("extended RETURN is not allowed", N
);
892 -- Analyze parts specific to extended_return_statement:
895 Obj_Decl
: constant Node_Id
:=
896 Last
(Return_Object_Declarations
(N
));
897 Has_Aliased
: constant Boolean := Aliased_Present
(Obj_Decl
);
898 HSS
: constant Node_Id
:= Handled_Statement_Sequence
(N
);
901 Expr
:= Expression
(Obj_Decl
);
903 -- Note: The check for OK_For_Limited_Init will happen in
904 -- Analyze_Object_Declaration; we treat it as a normal
905 -- object declaration.
907 Set_Is_Return_Object
(Defining_Identifier
(Obj_Decl
));
910 Check_Return_Subtype_Indication
(Obj_Decl
);
912 if Present
(HSS
) then
915 if Present
(Exception_Handlers
(HSS
)) then
917 -- ???Has_Nested_Block_With_Handler needs to be set.
918 -- Probably by creating an actual N_Block_Statement.
919 -- Probably in Expand.
925 -- Mark the return object as referenced, since the return is an
926 -- implicit reference of the object.
928 Set_Referenced
(Defining_Identifier
(Obj_Decl
));
930 Check_References
(Stm_Entity
);
932 -- Check RM 6.5 (5.9/3)
935 if Ada_Version
< Ada_2012
then
937 -- Shouldn't this test Warn_On_Ada_2012_Compatibility ???
938 -- Can it really happen (extended return???)
941 ("aliased only allowed for limited return objects "
942 & "in Ada 2012??", N
);
944 elsif not Is_Limited_View
(R_Type
) then
946 ("aliased only allowed for limited return objects", N
);
952 -- Case of Expr present
956 -- Defend against previous errors
958 and then Nkind
(Expr
) /= N_Empty
959 and then Present
(Etype
(Expr
))
961 -- Apply constraint check. Note that this is done before the implicit
962 -- conversion of the expression done for anonymous access types to
963 -- ensure correct generation of the null-excluding check associated
964 -- with null-excluding expressions found in return statements.
966 Apply_Constraint_Check
(Expr
, R_Type
);
968 -- Ada 2005 (AI-318-02): When the result type is an anonymous access
969 -- type, apply an implicit conversion of the expression to that type
970 -- to force appropriate static and run-time accessibility checks.
972 if Ada_Version
>= Ada_2005
973 and then Ekind
(R_Type
) = E_Anonymous_Access_Type
975 Rewrite
(Expr
, Convert_To
(R_Type
, Relocate_Node
(Expr
)));
976 Analyze_And_Resolve
(Expr
, R_Type
);
978 -- If this is a local anonymous access to subprogram, the
979 -- accessibility check can be applied statically. The return is
980 -- illegal if the access type of the return expression is declared
981 -- inside of the subprogram (except if it is the subtype indication
982 -- of an extended return statement).
984 elsif Ekind
(R_Type
) = E_Anonymous_Access_Subprogram_Type
then
985 if not Comes_From_Source
(Current_Scope
)
986 or else Ekind
(Current_Scope
) = E_Return_Statement
991 Scope_Depth
(Scope
(Etype
(Expr
))) >= Scope_Depth
(Scope_Id
)
993 Error_Msg_N
("cannot return local access to subprogram", N
);
996 -- The expression cannot be of a formal incomplete type
998 elsif Ekind
(Etype
(Expr
)) = E_Incomplete_Type
999 and then Is_Generic_Type
(Etype
(Expr
))
1002 ("cannot return expression of a formal incomplete type", N
);
1005 -- If the result type is class-wide, then check that the return
1006 -- expression's type is not declared at a deeper level than the
1007 -- function (RM05-6.5(5.6/2)).
1009 if Ada_Version
>= Ada_2005
1010 and then Is_Class_Wide_Type
(R_Type
)
1012 if Type_Access_Level
(Etype
(Expr
)) >
1013 Subprogram_Access_Level
(Scope_Id
)
1016 ("level of return expression type is deeper than "
1017 & "class-wide function!", Expr
);
1021 -- Check incorrect use of dynamically tagged expression
1023 if Is_Tagged_Type
(R_Type
) then
1024 Check_Dynamically_Tagged_Expression
1030 -- ??? A real run-time accessibility check is needed in cases
1031 -- involving dereferences of access parameters. For now we just
1032 -- check the static cases.
1034 if (Ada_Version
< Ada_2005
or else Debug_Flag_Dot_L
)
1035 and then Is_Limited_View
(Etype
(Scope_Id
))
1036 and then Object_Access_Level
(Expr
) >
1037 Subprogram_Access_Level
(Scope_Id
)
1039 -- Suppress the message in a generic, where the rewriting
1042 if Inside_A_Generic
then
1047 Make_Raise_Program_Error
(Loc
,
1048 Reason
=> PE_Accessibility_Check_Failed
));
1051 Error_Msg_Warn
:= SPARK_Mode
/= On
;
1052 Error_Msg_N
("cannot return a local value by reference<<", N
);
1053 Error_Msg_NE
("\& [<<", N
, Standard_Program_Error
);
1057 if Known_Null
(Expr
)
1058 and then Nkind
(Parent
(Scope_Id
)) = N_Function_Specification
1059 and then Null_Exclusion_Present
(Parent
(Scope_Id
))
1061 Apply_Compile_Time_Constraint_Error
1063 Msg
=> "(Ada 2005) null not allowed for "
1064 & "null-excluding return??",
1065 Reason
=> CE_Null_Not_Allowed
);
1068 end Analyze_Function_Return
;
1070 -------------------------------------
1071 -- Analyze_Generic_Subprogram_Body --
1072 -------------------------------------
1074 procedure Analyze_Generic_Subprogram_Body
1078 Gen_Decl
: constant Node_Id
:= Unit_Declaration_Node
(Gen_Id
);
1079 Kind
: constant Entity_Kind
:= Ekind
(Gen_Id
);
1080 Body_Id
: Entity_Id
;
1085 -- Copy body and disable expansion while analyzing the generic For a
1086 -- stub, do not copy the stub (which would load the proper body), this
1087 -- will be done when the proper body is analyzed.
1089 if Nkind
(N
) /= N_Subprogram_Body_Stub
then
1090 New_N
:= Copy_Generic_Node
(N
, Empty
, Instantiating
=> False);
1095 Spec
:= Specification
(N
);
1097 -- Within the body of the generic, the subprogram is callable, and
1098 -- behaves like the corresponding non-generic unit.
1100 Body_Id
:= Defining_Entity
(Spec
);
1102 if Kind
= E_Generic_Procedure
1103 and then Nkind
(Spec
) /= N_Procedure_Specification
1105 Error_Msg_N
("invalid body for generic procedure ", Body_Id
);
1108 elsif Kind
= E_Generic_Function
1109 and then Nkind
(Spec
) /= N_Function_Specification
1111 Error_Msg_N
("invalid body for generic function ", Body_Id
);
1115 Set_Corresponding_Body
(Gen_Decl
, Body_Id
);
1117 if Has_Completion
(Gen_Id
)
1118 and then Nkind
(Parent
(N
)) /= N_Subunit
1120 Error_Msg_N
("duplicate generic body", N
);
1123 Set_Has_Completion
(Gen_Id
);
1126 if Nkind
(N
) = N_Subprogram_Body_Stub
then
1127 Set_Ekind
(Defining_Entity
(Specification
(N
)), Kind
);
1129 Set_Corresponding_Spec
(N
, Gen_Id
);
1132 if Nkind
(Parent
(N
)) = N_Compilation_Unit
then
1133 Set_Cunit_Entity
(Current_Sem_Unit
, Defining_Entity
(N
));
1136 -- Make generic parameters immediately visible in the body. They are
1137 -- needed to process the formals declarations. Then make the formals
1138 -- visible in a separate step.
1140 Push_Scope
(Gen_Id
);
1144 First_Ent
: Entity_Id
;
1147 First_Ent
:= First_Entity
(Gen_Id
);
1150 while Present
(E
) and then not Is_Formal
(E
) loop
1155 Set_Use
(Generic_Formal_Declarations
(Gen_Decl
));
1157 -- Now generic formals are visible, and the specification can be
1158 -- analyzed, for subsequent conformance check.
1160 Body_Id
:= Analyze_Subprogram_Specification
(Spec
);
1162 -- Make formal parameters visible
1166 -- E is the first formal parameter, we loop through the formals
1167 -- installing them so that they will be visible.
1169 Set_First_Entity
(Gen_Id
, E
);
1170 while Present
(E
) loop
1176 -- Visible generic entity is callable within its own body
1178 Set_Ekind
(Gen_Id
, Ekind
(Body_Id
));
1179 Set_Contract
(Body_Id
, Make_Contract
(Sloc
(Body_Id
)));
1180 Set_Ekind
(Body_Id
, E_Subprogram_Body
);
1181 Set_Convention
(Body_Id
, Convention
(Gen_Id
));
1182 Set_Is_Obsolescent
(Body_Id
, Is_Obsolescent
(Gen_Id
));
1183 Set_Scope
(Body_Id
, Scope
(Gen_Id
));
1184 Check_Fully_Conformant
(Body_Id
, Gen_Id
, Body_Id
);
1186 if Nkind
(N
) = N_Subprogram_Body_Stub
then
1188 -- No body to analyze, so restore state of generic unit
1190 Set_Ekind
(Gen_Id
, Kind
);
1191 Set_Ekind
(Body_Id
, Kind
);
1193 if Present
(First_Ent
) then
1194 Set_First_Entity
(Gen_Id
, First_Ent
);
1201 -- If this is a compilation unit, it must be made visible explicitly,
1202 -- because the compilation of the declaration, unlike other library
1203 -- unit declarations, does not. If it is not a unit, the following
1204 -- is redundant but harmless.
1206 Set_Is_Immediately_Visible
(Gen_Id
);
1207 Reference_Body_Formals
(Gen_Id
, Body_Id
);
1209 if Is_Child_Unit
(Gen_Id
) then
1210 Generate_Reference
(Gen_Id
, Scope
(Gen_Id
), 'k', False);
1213 Set_Actual_Subtypes
(N
, Current_Scope
);
1215 -- Deal with [refined] preconditions, postconditions, Contract_Cases,
1216 -- invariants and predicates associated with the body and its spec.
1217 -- Note that this is not pure expansion as Expand_Subprogram_Contract
1218 -- prepares the contract assertions for generic subprograms or for
1219 -- ASIS. Do not generate contract checks in SPARK mode.
1221 if not GNATprove_Mode
then
1222 Expand_Subprogram_Contract
(N
, Gen_Id
, Body_Id
);
1225 -- If the generic unit carries pre- or post-conditions, copy them
1226 -- to the original generic tree, so that they are properly added
1227 -- to any instantiation.
1230 Orig
: constant Node_Id
:= Original_Node
(N
);
1234 Cond
:= First
(Declarations
(N
));
1235 while Present
(Cond
) loop
1236 if Nkind
(Cond
) = N_Pragma
1237 and then Pragma_Name
(Cond
) = Name_Check
1239 Prepend
(New_Copy_Tree
(Cond
), Declarations
(Orig
));
1241 elsif Nkind
(Cond
) = N_Pragma
1242 and then Pragma_Name
(Cond
) = Name_Postcondition
1244 Set_Ekind
(Defining_Entity
(Orig
), Ekind
(Gen_Id
));
1245 Prepend
(New_Copy_Tree
(Cond
), Declarations
(Orig
));
1254 Set_SPARK_Pragma
(Body_Id
, SPARK_Mode_Pragma
);
1255 Set_SPARK_Pragma_Inherited
(Body_Id
, True);
1257 Analyze_Declarations
(Declarations
(N
));
1259 Analyze
(Handled_Statement_Sequence
(N
));
1261 Save_Global_References
(Original_Node
(N
));
1263 -- Prior to exiting the scope, include generic formals again (if any
1264 -- are present) in the set of local entities.
1266 if Present
(First_Ent
) then
1267 Set_First_Entity
(Gen_Id
, First_Ent
);
1270 Check_References
(Gen_Id
);
1273 Process_End_Label
(Handled_Statement_Sequence
(N
), 't', Current_Scope
);
1275 Check_Subprogram_Order
(N
);
1277 -- Outside of its body, unit is generic again
1279 Set_Ekind
(Gen_Id
, Kind
);
1280 Generate_Reference
(Gen_Id
, Body_Id
, 'b', Set_Ref
=> False);
1283 Style
.Check_Identifier
(Body_Id
, Gen_Id
);
1287 end Analyze_Generic_Subprogram_Body
;
1289 ----------------------------
1290 -- Analyze_Null_Procedure --
1291 ----------------------------
1293 procedure Analyze_Null_Procedure
1295 Is_Completion
: out Boolean)
1297 Loc
: constant Source_Ptr
:= Sloc
(N
);
1298 Spec
: constant Node_Id
:= Specification
(N
);
1299 Designator
: Entity_Id
;
1301 Null_Body
: Node_Id
:= Empty
;
1305 -- Capture the profile of the null procedure before analysis, for
1306 -- expansion at the freeze point and at each point of call. The body is
1307 -- used if the procedure has preconditions, or if it is a completion. In
1308 -- the first case the body is analyzed at the freeze point, in the other
1309 -- it replaces the null procedure declaration.
1312 Make_Subprogram_Body
(Loc
,
1313 Specification
=> New_Copy_Tree
(Spec
),
1314 Declarations
=> New_List
,
1315 Handled_Statement_Sequence
=>
1316 Make_Handled_Sequence_Of_Statements
(Loc
,
1317 Statements
=> New_List
(Make_Null_Statement
(Loc
))));
1319 -- Create new entities for body and formals
1321 Set_Defining_Unit_Name
(Specification
(Null_Body
),
1322 Make_Defining_Identifier
1323 (Sloc
(Defining_Entity
(N
)),
1324 Chars
(Defining_Entity
(N
))));
1326 Form
:= First
(Parameter_Specifications
(Specification
(Null_Body
)));
1327 while Present
(Form
) loop
1328 Set_Defining_Identifier
(Form
,
1329 Make_Defining_Identifier
1330 (Sloc
(Defining_Identifier
(Form
)),
1331 Chars
(Defining_Identifier
(Form
))));
1335 -- Determine whether the null procedure may be a completion of a generic
1336 -- suprogram, in which case we use the new null body as the completion
1337 -- and set minimal semantic information on the original declaration,
1338 -- which is rewritten as a null statement.
1340 Prev
:= Current_Entity_In_Scope
(Defining_Entity
(Spec
));
1342 if Present
(Prev
) and then Is_Generic_Subprogram
(Prev
) then
1343 Insert_Before
(N
, Null_Body
);
1344 Set_Ekind
(Defining_Entity
(N
), Ekind
(Prev
));
1345 Set_Contract
(Defining_Entity
(N
), Make_Contract
(Loc
));
1347 Rewrite
(N
, Make_Null_Statement
(Loc
));
1348 Analyze_Generic_Subprogram_Body
(Null_Body
, Prev
);
1349 Is_Completion
:= True;
1353 -- Resolve the types of the formals now, because the freeze point
1354 -- may appear in a different context, e.g. an instantiation.
1356 Form
:= First
(Parameter_Specifications
(Specification
(Null_Body
)));
1357 while Present
(Form
) loop
1358 if Nkind
(Parameter_Type
(Form
)) /= N_Access_Definition
then
1359 Find_Type
(Parameter_Type
(Form
));
1362 No
(Access_To_Subprogram_Definition
(Parameter_Type
(Form
)))
1364 Find_Type
(Subtype_Mark
(Parameter_Type
(Form
)));
1367 -- The case of a null procedure with a formal that is an
1368 -- access_to_subprogram type, and that is used as an actual
1369 -- in an instantiation is left to the enthusiastic reader.
1378 -- If there are previous overloadable entities with the same name,
1379 -- check whether any of them is completed by the null procedure.
1381 if Present
(Prev
) and then Is_Overloadable
(Prev
) then
1382 Designator
:= Analyze_Subprogram_Specification
(Spec
);
1383 Prev
:= Find_Corresponding_Spec
(N
);
1386 if No
(Prev
) or else not Comes_From_Source
(Prev
) then
1387 Designator
:= Analyze_Subprogram_Specification
(Spec
);
1388 Set_Has_Completion
(Designator
);
1390 -- Signal to caller that this is a procedure declaration
1392 Is_Completion
:= False;
1394 -- Null procedures are always inlined, but generic formal subprograms
1395 -- which appear as such in the internal instance of formal packages,
1396 -- need no completion and are not marked Inline.
1399 and then Nkind
(N
) /= N_Formal_Concrete_Subprogram_Declaration
1401 Set_Corresponding_Body
(N
, Defining_Entity
(Null_Body
));
1402 Set_Body_To_Inline
(N
, Null_Body
);
1403 Set_Is_Inlined
(Designator
);
1407 -- The null procedure is a completion. We unconditionally rewrite
1408 -- this as a null body (even if expansion is not active), because
1409 -- there are various error checks that are applied on this body
1410 -- when it is analyzed (e.g. correct aspect placement).
1412 Is_Completion
:= True;
1413 Rewrite
(N
, Null_Body
);
1416 end Analyze_Null_Procedure
;
1418 -----------------------------
1419 -- Analyze_Operator_Symbol --
1420 -----------------------------
1422 -- An operator symbol such as "+" or "and" may appear in context where the
1423 -- literal denotes an entity name, such as "+"(x, y) or in context when it
1424 -- is just a string, as in (conjunction = "or"). In these cases the parser
1425 -- generates this node, and the semantics does the disambiguation. Other
1426 -- such case are actuals in an instantiation, the generic unit in an
1427 -- instantiation, and pragma arguments.
1429 procedure Analyze_Operator_Symbol
(N
: Node_Id
) is
1430 Par
: constant Node_Id
:= Parent
(N
);
1433 if (Nkind
(Par
) = N_Function_Call
and then N
= Name
(Par
))
1434 or else Nkind
(Par
) = N_Function_Instantiation
1435 or else (Nkind
(Par
) = N_Indexed_Component
and then N
= Prefix
(Par
))
1436 or else (Nkind
(Par
) = N_Pragma_Argument_Association
1437 and then not Is_Pragma_String_Literal
(Par
))
1438 or else Nkind
(Par
) = N_Subprogram_Renaming_Declaration
1439 or else (Nkind
(Par
) = N_Attribute_Reference
1440 and then Attribute_Name
(Par
) /= Name_Value
)
1442 Find_Direct_Name
(N
);
1445 Change_Operator_Symbol_To_String_Literal
(N
);
1448 end Analyze_Operator_Symbol
;
1450 -----------------------------------
1451 -- Analyze_Parameter_Association --
1452 -----------------------------------
1454 procedure Analyze_Parameter_Association
(N
: Node_Id
) is
1456 Analyze
(Explicit_Actual_Parameter
(N
));
1457 end Analyze_Parameter_Association
;
1459 ----------------------------
1460 -- Analyze_Procedure_Call --
1461 ----------------------------
1463 procedure Analyze_Procedure_Call
(N
: Node_Id
) is
1464 Loc
: constant Source_Ptr
:= Sloc
(N
);
1465 P
: constant Node_Id
:= Name
(N
);
1466 Actuals
: constant List_Id
:= Parameter_Associations
(N
);
1470 procedure Analyze_Call_And_Resolve
;
1471 -- Do Analyze and Resolve calls for procedure call
1472 -- At end, check illegal order dependence.
1474 ------------------------------
1475 -- Analyze_Call_And_Resolve --
1476 ------------------------------
1478 procedure Analyze_Call_And_Resolve
is
1480 if Nkind
(N
) = N_Procedure_Call_Statement
then
1482 Resolve
(N
, Standard_Void_Type
);
1486 end Analyze_Call_And_Resolve
;
1488 -- Start of processing for Analyze_Procedure_Call
1491 -- The syntactic construct: PREFIX ACTUAL_PARAMETER_PART can denote
1492 -- a procedure call or an entry call. The prefix may denote an access
1493 -- to subprogram type, in which case an implicit dereference applies.
1494 -- If the prefix is an indexed component (without implicit dereference)
1495 -- then the construct denotes a call to a member of an entire family.
1496 -- If the prefix is a simple name, it may still denote a call to a
1497 -- parameterless member of an entry family. Resolution of these various
1498 -- interpretations is delicate.
1502 -- If this is a call of the form Obj.Op, the call may have been
1503 -- analyzed and possibly rewritten into a block, in which case
1506 if Analyzed
(N
) then
1510 -- If there is an error analyzing the name (which may have been
1511 -- rewritten if the original call was in prefix notation) then error
1512 -- has been emitted already, mark node and return.
1514 if Error_Posted
(N
) or else Etype
(Name
(N
)) = Any_Type
then
1515 Set_Etype
(N
, Any_Type
);
1519 -- Otherwise analyze the parameters
1521 if Present
(Actuals
) then
1522 Actual
:= First
(Actuals
);
1524 while Present
(Actual
) loop
1526 Check_Parameterless_Call
(Actual
);
1531 -- Special processing for Elab_Spec, Elab_Body and Elab_Subp_Body calls
1533 if Nkind
(P
) = N_Attribute_Reference
1534 and then Nam_In
(Attribute_Name
(P
), Name_Elab_Spec
,
1536 Name_Elab_Subp_Body
)
1538 if Present
(Actuals
) then
1540 ("no parameters allowed for this call", First
(Actuals
));
1544 Set_Etype
(N
, Standard_Void_Type
);
1547 elsif Is_Entity_Name
(P
)
1548 and then Is_Record_Type
(Etype
(Entity
(P
)))
1549 and then Remote_AST_I_Dereference
(P
)
1553 elsif Is_Entity_Name
(P
)
1554 and then Ekind
(Entity
(P
)) /= E_Entry_Family
1556 if Is_Access_Type
(Etype
(P
))
1557 and then Ekind
(Designated_Type
(Etype
(P
))) = E_Subprogram_Type
1558 and then No
(Actuals
)
1559 and then Comes_From_Source
(N
)
1561 Error_Msg_N
("missing explicit dereference in call", N
);
1564 Analyze_Call_And_Resolve
;
1566 -- If the prefix is the simple name of an entry family, this is
1567 -- a parameterless call from within the task body itself.
1569 elsif Is_Entity_Name
(P
)
1570 and then Nkind
(P
) = N_Identifier
1571 and then Ekind
(Entity
(P
)) = E_Entry_Family
1572 and then Present
(Actuals
)
1573 and then No
(Next
(First
(Actuals
)))
1575 -- Can be call to parameterless entry family. What appears to be the
1576 -- sole argument is in fact the entry index. Rewrite prefix of node
1577 -- accordingly. Source representation is unchanged by this
1581 Make_Indexed_Component
(Loc
,
1583 Make_Selected_Component
(Loc
,
1584 Prefix
=> New_Occurrence_Of
(Scope
(Entity
(P
)), Loc
),
1585 Selector_Name
=> New_Occurrence_Of
(Entity
(P
), Loc
)),
1586 Expressions
=> Actuals
);
1587 Set_Name
(N
, New_N
);
1588 Set_Etype
(New_N
, Standard_Void_Type
);
1589 Set_Parameter_Associations
(N
, No_List
);
1590 Analyze_Call_And_Resolve
;
1592 elsif Nkind
(P
) = N_Explicit_Dereference
then
1593 if Ekind
(Etype
(P
)) = E_Subprogram_Type
then
1594 Analyze_Call_And_Resolve
;
1596 Error_Msg_N
("expect access to procedure in call", P
);
1599 -- The name can be a selected component or an indexed component that
1600 -- yields an access to subprogram. Such a prefix is legal if the call
1601 -- has parameter associations.
1603 elsif Is_Access_Type
(Etype
(P
))
1604 and then Ekind
(Designated_Type
(Etype
(P
))) = E_Subprogram_Type
1606 if Present
(Actuals
) then
1607 Analyze_Call_And_Resolve
;
1609 Error_Msg_N
("missing explicit dereference in call ", N
);
1612 -- If not an access to subprogram, then the prefix must resolve to the
1613 -- name of an entry, entry family, or protected operation.
1615 -- For the case of a simple entry call, P is a selected component where
1616 -- the prefix is the task and the selector name is the entry. A call to
1617 -- a protected procedure will have the same syntax. If the protected
1618 -- object contains overloaded operations, the entity may appear as a
1619 -- function, the context will select the operation whose type is Void.
1621 elsif Nkind
(P
) = N_Selected_Component
1622 and then Ekind_In
(Entity
(Selector_Name
(P
)), E_Entry
,
1626 Analyze_Call_And_Resolve
;
1628 elsif Nkind
(P
) = N_Selected_Component
1629 and then Ekind
(Entity
(Selector_Name
(P
))) = E_Entry_Family
1630 and then Present
(Actuals
)
1631 and then No
(Next
(First
(Actuals
)))
1633 -- Can be call to parameterless entry family. What appears to be the
1634 -- sole argument is in fact the entry index. Rewrite prefix of node
1635 -- accordingly. Source representation is unchanged by this
1639 Make_Indexed_Component
(Loc
,
1640 Prefix
=> New_Copy
(P
),
1641 Expressions
=> Actuals
);
1642 Set_Name
(N
, New_N
);
1643 Set_Etype
(New_N
, Standard_Void_Type
);
1644 Set_Parameter_Associations
(N
, No_List
);
1645 Analyze_Call_And_Resolve
;
1647 -- For the case of a reference to an element of an entry family, P is
1648 -- an indexed component whose prefix is a selected component (task and
1649 -- entry family), and whose index is the entry family index.
1651 elsif Nkind
(P
) = N_Indexed_Component
1652 and then Nkind
(Prefix
(P
)) = N_Selected_Component
1653 and then Ekind
(Entity
(Selector_Name
(Prefix
(P
)))) = E_Entry_Family
1655 Analyze_Call_And_Resolve
;
1657 -- If the prefix is the name of an entry family, it is a call from
1658 -- within the task body itself.
1660 elsif Nkind
(P
) = N_Indexed_Component
1661 and then Nkind
(Prefix
(P
)) = N_Identifier
1662 and then Ekind
(Entity
(Prefix
(P
))) = E_Entry_Family
1665 Make_Selected_Component
(Loc
,
1666 Prefix
=> New_Occurrence_Of
(Scope
(Entity
(Prefix
(P
))), Loc
),
1667 Selector_Name
=> New_Occurrence_Of
(Entity
(Prefix
(P
)), Loc
));
1668 Rewrite
(Prefix
(P
), New_N
);
1670 Analyze_Call_And_Resolve
;
1672 -- In Ada 2012. a qualified expression is a name, but it cannot be a
1673 -- procedure name, so the construct can only be a qualified expression.
1675 elsif Nkind
(P
) = N_Qualified_Expression
1676 and then Ada_Version
>= Ada_2012
1678 Rewrite
(N
, Make_Code_Statement
(Loc
, Expression
=> P
));
1681 -- Anything else is an error
1684 Error_Msg_N
("invalid procedure or entry call", N
);
1686 end Analyze_Procedure_Call
;
1688 ------------------------------
1689 -- Analyze_Return_Statement --
1690 ------------------------------
1692 procedure Analyze_Return_Statement
(N
: Node_Id
) is
1694 pragma Assert
(Nkind_In
(N
, N_Simple_Return_Statement
,
1695 N_Extended_Return_Statement
));
1697 Returns_Object
: constant Boolean :=
1698 Nkind
(N
) = N_Extended_Return_Statement
1700 (Nkind
(N
) = N_Simple_Return_Statement
1701 and then Present
(Expression
(N
)));
1702 -- True if we're returning something; that is, "return <expression>;"
1703 -- or "return Result : T [:= ...]". False for "return;". Used for error
1704 -- checking: If Returns_Object is True, N should apply to a function
1705 -- body; otherwise N should apply to a procedure body, entry body,
1706 -- accept statement, or extended return statement.
1708 function Find_What_It_Applies_To
return Entity_Id
;
1709 -- Find the entity representing the innermost enclosing body, accept
1710 -- statement, or extended return statement. If the result is a callable
1711 -- construct or extended return statement, then this will be the value
1712 -- of the Return_Applies_To attribute. Otherwise, the program is
1713 -- illegal. See RM-6.5(4/2).
1715 -----------------------------
1716 -- Find_What_It_Applies_To --
1717 -----------------------------
1719 function Find_What_It_Applies_To
return Entity_Id
is
1720 Result
: Entity_Id
:= Empty
;
1723 -- Loop outward through the Scope_Stack, skipping blocks, loops,
1724 -- and postconditions.
1726 for J
in reverse 0 .. Scope_Stack
.Last
loop
1727 Result
:= Scope_Stack
.Table
(J
).Entity
;
1728 exit when not Ekind_In
(Result
, E_Block
, E_Loop
)
1729 and then Chars
(Result
) /= Name_uPostconditions
;
1732 pragma Assert
(Present
(Result
));
1734 end Find_What_It_Applies_To
;
1736 -- Local declarations
1738 Scope_Id
: constant Entity_Id
:= Find_What_It_Applies_To
;
1739 Kind
: constant Entity_Kind
:= Ekind
(Scope_Id
);
1740 Loc
: constant Source_Ptr
:= Sloc
(N
);
1741 Stm_Entity
: constant Entity_Id
:=
1743 (E_Return_Statement
, Current_Scope
, Loc
, 'R');
1745 -- Start of processing for Analyze_Return_Statement
1748 Set_Return_Statement_Entity
(N
, Stm_Entity
);
1750 Set_Etype
(Stm_Entity
, Standard_Void_Type
);
1751 Set_Return_Applies_To
(Stm_Entity
, Scope_Id
);
1753 -- Place Return entity on scope stack, to simplify enforcement of 6.5
1754 -- (4/2): an inner return statement will apply to this extended return.
1756 if Nkind
(N
) = N_Extended_Return_Statement
then
1757 Push_Scope
(Stm_Entity
);
1760 -- Check that pragma No_Return is obeyed. Don't complain about the
1761 -- implicitly-generated return that is placed at the end.
1763 if No_Return
(Scope_Id
) and then Comes_From_Source
(N
) then
1764 Error_Msg_N
("RETURN statement not allowed (No_Return)", N
);
1767 -- Warn on any unassigned OUT parameters if in procedure
1769 if Ekind
(Scope_Id
) = E_Procedure
then
1770 Warn_On_Unassigned_Out_Parameter
(N
, Scope_Id
);
1773 -- Check that functions return objects, and other things do not
1775 if Kind
= E_Function
or else Kind
= E_Generic_Function
then
1776 if not Returns_Object
then
1777 Error_Msg_N
("missing expression in return from function", N
);
1780 elsif Kind
= E_Procedure
or else Kind
= E_Generic_Procedure
then
1781 if Returns_Object
then
1782 Error_Msg_N
("procedure cannot return value (use function)", N
);
1785 elsif Kind
= E_Entry
or else Kind
= E_Entry_Family
then
1786 if Returns_Object
then
1787 if Is_Protected_Type
(Scope
(Scope_Id
)) then
1788 Error_Msg_N
("entry body cannot return value", N
);
1790 Error_Msg_N
("accept statement cannot return value", N
);
1794 elsif Kind
= E_Return_Statement
then
1796 -- We are nested within another return statement, which must be an
1797 -- extended_return_statement.
1799 if Returns_Object
then
1800 if Nkind
(N
) = N_Extended_Return_Statement
then
1802 ("extended return statement cannot be nested (use `RETURN;`)",
1805 -- Case of a simple return statement with a value inside extended
1806 -- return statement.
1810 ("return nested in extended return statement cannot return "
1811 & "value (use `RETURN;`)", N
);
1816 Error_Msg_N
("illegal context for return statement", N
);
1819 if Ekind_In
(Kind
, E_Function
, E_Generic_Function
) then
1820 Analyze_Function_Return
(N
);
1822 elsif Ekind_In
(Kind
, E_Procedure
, E_Generic_Procedure
) then
1823 Set_Return_Present
(Scope_Id
);
1826 if Nkind
(N
) = N_Extended_Return_Statement
then
1830 Kill_Current_Values
(Last_Assignment_Only
=> True);
1831 Check_Unreachable_Code
(N
);
1833 Analyze_Dimension
(N
);
1834 end Analyze_Return_Statement
;
1836 -------------------------------------
1837 -- Analyze_Simple_Return_Statement --
1838 -------------------------------------
1840 procedure Analyze_Simple_Return_Statement
(N
: Node_Id
) is
1842 if Present
(Expression
(N
)) then
1843 Mark_Coextensions
(N
, Expression
(N
));
1846 Analyze_Return_Statement
(N
);
1847 end Analyze_Simple_Return_Statement
;
1849 -------------------------
1850 -- Analyze_Return_Type --
1851 -------------------------
1853 procedure Analyze_Return_Type
(N
: Node_Id
) is
1854 Designator
: constant Entity_Id
:= Defining_Entity
(N
);
1855 Typ
: Entity_Id
:= Empty
;
1858 -- Normal case where result definition does not indicate an error
1860 if Result_Definition
(N
) /= Error
then
1861 if Nkind
(Result_Definition
(N
)) = N_Access_Definition
then
1862 Check_SPARK_05_Restriction
1863 ("access result is not allowed", Result_Definition
(N
));
1865 -- Ada 2005 (AI-254): Handle anonymous access to subprograms
1868 AD
: constant Node_Id
:=
1869 Access_To_Subprogram_Definition
(Result_Definition
(N
));
1871 if Present
(AD
) and then Protected_Present
(AD
) then
1872 Typ
:= Replace_Anonymous_Access_To_Protected_Subprogram
(N
);
1874 Typ
:= Access_Definition
(N
, Result_Definition
(N
));
1878 Set_Parent
(Typ
, Result_Definition
(N
));
1879 Set_Is_Local_Anonymous_Access
(Typ
);
1880 Set_Etype
(Designator
, Typ
);
1882 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
1884 Null_Exclusion_Static_Checks
(N
);
1886 -- Subtype_Mark case
1889 Find_Type
(Result_Definition
(N
));
1890 Typ
:= Entity
(Result_Definition
(N
));
1891 Set_Etype
(Designator
, Typ
);
1893 -- Unconstrained array as result is not allowed in SPARK
1895 if Is_Array_Type
(Typ
) and then not Is_Constrained
(Typ
) then
1896 Check_SPARK_05_Restriction
1897 ("returning an unconstrained array is not allowed",
1898 Result_Definition
(N
));
1901 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
1903 Null_Exclusion_Static_Checks
(N
);
1905 -- If a null exclusion is imposed on the result type, then create
1906 -- a null-excluding itype (an access subtype) and use it as the
1907 -- function's Etype. Note that the null exclusion checks are done
1908 -- right before this, because they don't get applied to types that
1909 -- do not come from source.
1911 if Is_Access_Type
(Typ
) and then Null_Exclusion_Present
(N
) then
1912 Set_Etype
(Designator
,
1913 Create_Null_Excluding_Itype
1916 Scope_Id
=> Scope
(Current_Scope
)));
1918 -- The new subtype must be elaborated before use because
1919 -- it is visible outside of the function. However its base
1920 -- type may not be frozen yet, so the reference that will
1921 -- force elaboration must be attached to the freezing of
1924 -- If the return specification appears on a proper body,
1925 -- the subtype will have been created already on the spec.
1927 if Is_Frozen
(Typ
) then
1928 if Nkind
(Parent
(N
)) = N_Subprogram_Body
1929 and then Nkind
(Parent
(Parent
(N
))) = N_Subunit
1933 Build_Itype_Reference
(Etype
(Designator
), Parent
(N
));
1937 Ensure_Freeze_Node
(Typ
);
1940 IR
: constant Node_Id
:= Make_Itype_Reference
(Sloc
(N
));
1942 Set_Itype
(IR
, Etype
(Designator
));
1943 Append_Freeze_Actions
(Typ
, New_List
(IR
));
1948 Set_Etype
(Designator
, Typ
);
1951 if Ekind
(Typ
) = E_Incomplete_Type
1952 and then Is_Value_Type
(Typ
)
1956 elsif Ekind
(Typ
) = E_Incomplete_Type
1957 or else (Is_Class_Wide_Type
(Typ
)
1958 and then Ekind
(Root_Type
(Typ
)) = E_Incomplete_Type
)
1960 -- AI05-0151: Tagged incomplete types are allowed in all formal
1961 -- parts. Untagged incomplete types are not allowed in bodies.
1962 -- As a consequence, limited views cannot appear in a basic
1963 -- declaration that is itself within a body, because there is
1964 -- no point at which the non-limited view will become visible.
1966 if Ada_Version
>= Ada_2012
then
1967 if From_Limited_With
(Typ
) and then In_Package_Body
then
1969 ("invalid use of incomplete type&",
1970 Result_Definition
(N
), Typ
);
1972 -- The return type of a subprogram body cannot be of a
1973 -- formal incomplete type.
1975 elsif Is_Generic_Type
(Typ
)
1976 and then Nkind
(Parent
(N
)) = N_Subprogram_Body
1979 ("return type cannot be a formal incomplete type",
1980 Result_Definition
(N
));
1982 elsif Is_Class_Wide_Type
(Typ
)
1983 and then Is_Generic_Type
(Root_Type
(Typ
))
1984 and then Nkind
(Parent
(N
)) = N_Subprogram_Body
1987 ("return type cannot be a formal incomplete type",
1988 Result_Definition
(N
));
1990 elsif Is_Tagged_Type
(Typ
) then
1993 elsif Nkind
(Parent
(N
)) = N_Subprogram_Body
1994 or else Nkind_In
(Parent
(Parent
(N
)), N_Accept_Statement
,
1998 ("invalid use of untagged incomplete type&",
2002 -- The type must be completed in the current package. This
2003 -- is checked at the end of the package declaration when
2004 -- Taft-amendment types are identified. If the return type
2005 -- is class-wide, there is no required check, the type can
2006 -- be a bona fide TAT.
2008 if Ekind
(Scope
(Current_Scope
)) = E_Package
2009 and then In_Private_Part
(Scope
(Current_Scope
))
2010 and then not Is_Class_Wide_Type
(Typ
)
2012 Append_Elmt
(Designator
, Private_Dependents
(Typ
));
2017 ("invalid use of incomplete type&", Designator
, Typ
);
2022 -- Case where result definition does indicate an error
2025 Set_Etype
(Designator
, Any_Type
);
2027 end Analyze_Return_Type
;
2029 -----------------------------
2030 -- Analyze_Subprogram_Body --
2031 -----------------------------
2033 procedure Analyze_Subprogram_Body
(N
: Node_Id
) is
2034 Loc
: constant Source_Ptr
:= Sloc
(N
);
2035 Body_Spec
: constant Node_Id
:= Specification
(N
);
2036 Body_Id
: constant Entity_Id
:= Defining_Entity
(Body_Spec
);
2039 if Debug_Flag_C
then
2040 Write_Str
("==> subprogram body ");
2041 Write_Name
(Chars
(Body_Id
));
2042 Write_Str
(" from ");
2043 Write_Location
(Loc
);
2048 Trace_Scope
(N
, Body_Id
, " Analyze subprogram: ");
2050 -- The real work is split out into the helper, so it can do "return;"
2051 -- without skipping the debug output:
2053 Analyze_Subprogram_Body_Helper
(N
);
2055 if Debug_Flag_C
then
2057 Write_Str
("<== subprogram body ");
2058 Write_Name
(Chars
(Body_Id
));
2059 Write_Str
(" from ");
2060 Write_Location
(Loc
);
2063 end Analyze_Subprogram_Body
;
2065 --------------------------------------
2066 -- Analyze_Subprogram_Body_Contract --
2067 --------------------------------------
2069 procedure Analyze_Subprogram_Body_Contract
(Body_Id
: Entity_Id
) is
2070 Body_Decl
: constant Node_Id
:= Parent
(Parent
(Body_Id
));
2071 Mode
: SPARK_Mode_Type
;
2073 Ref_Depends
: Node_Id
:= Empty
;
2074 Ref_Global
: Node_Id
:= Empty
;
2075 Spec_Id
: Entity_Id
;
2078 -- Due to the timing of contract analysis, delayed pragmas may be
2079 -- subject to the wrong SPARK_Mode, usually that of the enclosing
2080 -- context. To remedy this, restore the original SPARK_Mode of the
2081 -- related subprogram body.
2083 Save_SPARK_Mode_And_Set
(Body_Id
, Mode
);
2085 -- When a subprogram body declaration is illegal, its defining entity is
2086 -- left unanalyzed. There is nothing left to do in this case because the
2087 -- body lacks a contract, or even a proper Ekind.
2089 if Ekind
(Body_Id
) = E_Void
then
2093 if Nkind
(Body_Decl
) = N_Subprogram_Body_Stub
then
2094 Spec_Id
:= Corresponding_Spec_Of_Stub
(Body_Decl
);
2096 Spec_Id
:= Corresponding_Spec
(Body_Decl
);
2099 -- Locate and store pragmas Refined_Depends and Refined_Global since
2100 -- their order of analysis matters.
2102 Prag
:= Classifications
(Contract
(Body_Id
));
2103 while Present
(Prag
) loop
2104 if Pragma_Name
(Prag
) = Name_Refined_Depends
then
2105 Ref_Depends
:= Prag
;
2106 elsif Pragma_Name
(Prag
) = Name_Refined_Global
then
2110 Prag
:= Next_Pragma
(Prag
);
2113 -- Analyze Refined_Global first as Refined_Depends may mention items
2114 -- classified in the global refinement.
2116 if Present
(Ref_Global
) then
2117 Analyze_Refined_Global_In_Decl_Part
(Ref_Global
);
2119 -- When the corresponding Global aspect/pragma references a state with
2120 -- visible refinement, the body requires Refined_Global. Refinement is
2121 -- not required when SPARK checks are suppressed.
2123 elsif Present
(Spec_Id
) then
2124 Prag
:= Get_Pragma
(Spec_Id
, Pragma_Global
);
2126 if SPARK_Mode
/= Off
2127 and then Present
(Prag
)
2128 and then Contains_Refined_State
(Prag
)
2131 ("body of subprogram& requires global refinement",
2132 Body_Decl
, Spec_Id
);
2136 -- Refined_Depends must be analyzed after Refined_Global in order to see
2137 -- the modes of all global refinements.
2139 if Present
(Ref_Depends
) then
2140 Analyze_Refined_Depends_In_Decl_Part
(Ref_Depends
);
2142 -- When the corresponding Depends aspect/pragma references a state with
2143 -- visible refinement, the body requires Refined_Depends. Refinement is
2144 -- not required when SPARK checks are suppressed.
2146 elsif Present
(Spec_Id
) then
2147 Prag
:= Get_Pragma
(Spec_Id
, Pragma_Depends
);
2149 if SPARK_Mode
/= Off
2150 and then Present
(Prag
)
2151 and then Contains_Refined_State
(Prag
)
2154 ("body of subprogram& requires dependance refinement",
2155 Body_Decl
, Spec_Id
);
2159 -- Restore the SPARK_Mode of the enclosing context after all delayed
2160 -- pragmas have been analyzed.
2162 Restore_SPARK_Mode
(Mode
);
2163 end Analyze_Subprogram_Body_Contract
;
2165 ------------------------------------
2166 -- Analyze_Subprogram_Body_Helper --
2167 ------------------------------------
2169 -- This procedure is called for regular subprogram bodies, generic bodies,
2170 -- and for subprogram stubs of both kinds. In the case of stubs, only the
2171 -- specification matters, and is used to create a proper declaration for
2172 -- the subprogram, or to perform conformance checks.
2174 procedure Analyze_Subprogram_Body_Helper
(N
: Node_Id
) is
2175 Loc
: constant Source_Ptr
:= Sloc
(N
);
2176 Body_Spec
: constant Node_Id
:= Specification
(N
);
2177 Body_Id
: Entity_Id
:= Defining_Entity
(Body_Spec
);
2178 Prev_Id
: constant Entity_Id
:= Current_Entity_In_Scope
(Body_Id
);
2179 Conformant
: Boolean;
2181 Prot_Typ
: Entity_Id
:= Empty
;
2182 Spec_Id
: Entity_Id
;
2183 Spec_Decl
: Node_Id
:= Empty
;
2185 Last_Real_Spec_Entity
: Entity_Id
:= Empty
;
2186 -- When we analyze a separate spec, the entity chain ends up containing
2187 -- the formals, as well as any itypes generated during analysis of the
2188 -- default expressions for parameters, or the arguments of associated
2189 -- precondition/postcondition pragmas (which are analyzed in the context
2190 -- of the spec since they have visibility on formals).
2192 -- These entities belong with the spec and not the body. However we do
2193 -- the analysis of the body in the context of the spec (again to obtain
2194 -- visibility to the formals), and all the entities generated during
2195 -- this analysis end up also chained to the entity chain of the spec.
2196 -- But they really belong to the body, and there is circuitry to move
2197 -- them from the spec to the body.
2199 -- However, when we do this move, we don't want to move the real spec
2200 -- entities (first para above) to the body. The Last_Real_Spec_Entity
2201 -- variable points to the last real spec entity, so we only move those
2202 -- chained beyond that point. It is initialized to Empty to deal with
2203 -- the case where there is no separate spec.
2205 procedure Analyze_Aspects_On_Body_Or_Stub
;
2206 -- Analyze the aspect specifications of a subprogram body [stub]. It is
2207 -- assumed that N has aspects.
2209 function Body_Has_Contract
return Boolean;
2210 -- Check whether unanalyzed body has an aspect or pragma that may
2211 -- generate a SPARK contract.
2213 procedure Check_Anonymous_Return
;
2214 -- Ada 2005: if a function returns an access type that denotes a task,
2215 -- or a type that contains tasks, we must create a master entity for
2216 -- the anonymous type, which typically will be used in an allocator
2217 -- in the body of the function.
2219 procedure Check_Inline_Pragma
(Spec
: in out Node_Id
);
2220 -- Look ahead to recognize a pragma that may appear after the body.
2221 -- If there is a previous spec, check that it appears in the same
2222 -- declarative part. If the pragma is Inline_Always, perform inlining
2223 -- unconditionally, otherwise only if Front_End_Inlining is requested.
2224 -- If the body acts as a spec, and inlining is required, we create a
2225 -- subprogram declaration for it, in order to attach the body to inline.
2226 -- If pragma does not appear after the body, check whether there is
2227 -- an inline pragma before any local declarations.
2229 procedure Check_Missing_Return
;
2230 -- Checks for a function with a no return statements, and also performs
2231 -- the warning checks implemented by Check_Returns. In formal mode, also
2232 -- verify that a function ends with a RETURN and that a procedure does
2233 -- not contain any RETURN.
2235 function Disambiguate_Spec
return Entity_Id
;
2236 -- When a primitive is declared between the private view and the full
2237 -- view of a concurrent type which implements an interface, a special
2238 -- mechanism is used to find the corresponding spec of the primitive
2241 procedure Exchange_Limited_Views
(Subp_Id
: Entity_Id
);
2242 -- Ada 2012 (AI05-0151): Detect whether the profile of Subp_Id contains
2243 -- incomplete types coming from a limited context and swap their limited
2244 -- views with the non-limited ones.
2246 function Is_Private_Concurrent_Primitive
2247 (Subp_Id
: Entity_Id
) return Boolean;
2248 -- Determine whether subprogram Subp_Id is a primitive of a concurrent
2249 -- type that implements an interface and has a private view.
2251 procedure Set_Trivial_Subprogram
(N
: Node_Id
);
2252 -- Sets the Is_Trivial_Subprogram flag in both spec and body of the
2253 -- subprogram whose body is being analyzed. N is the statement node
2254 -- causing the flag to be set, if the following statement is a return
2255 -- of an entity, we mark the entity as set in source to suppress any
2256 -- warning on the stylized use of function stubs with a dummy return.
2258 procedure Verify_Overriding_Indicator
;
2259 -- If there was a previous spec, the entity has been entered in the
2260 -- current scope previously. If the body itself carries an overriding
2261 -- indicator, check that it is consistent with the known status of the
2264 -------------------------------------
2265 -- Analyze_Aspects_On_Body_Or_Stub --
2266 -------------------------------------
2268 procedure Analyze_Aspects_On_Body_Or_Stub
is
2269 procedure Diagnose_Misplaced_Aspects
;
2270 -- Subprogram body [stub] N has aspects, but they are not properly
2271 -- placed. Provide precise diagnostics depending on the aspects
2274 --------------------------------
2275 -- Diagnose_Misplaced_Aspects --
2276 --------------------------------
2278 procedure Diagnose_Misplaced_Aspects
is
2282 -- The current aspect along with its name and id
2284 procedure SPARK_Aspect_Error
(Ref_Nam
: Name_Id
);
2285 -- Emit an error message concerning SPARK aspect Asp. Ref_Nam is
2286 -- the name of the refined version of the aspect.
2288 ------------------------
2289 -- SPARK_Aspect_Error --
2290 ------------------------
2292 procedure SPARK_Aspect_Error
(Ref_Nam
: Name_Id
) is
2294 -- The corresponding spec already contains the aspect in
2295 -- question and the one appearing on the body must be the
2298 -- procedure P with Global ...;
2299 -- procedure P with Global ... is ... end P;
2303 if Has_Aspect
(Spec_Id
, Asp_Id
) then
2304 Error_Msg_Name_1
:= Asp_Nam
;
2306 -- Subunits cannot carry aspects that apply to a subprogram
2309 if Nkind
(Parent
(N
)) = N_Subunit
then
2310 Error_Msg_N
("aspect % cannot apply to a subunit", Asp
);
2313 Error_Msg_Name_2
:= Ref_Nam
;
2314 Error_Msg_N
("aspect % should be %", Asp
);
2317 -- Otherwise the aspect must appear in the spec, not in the
2321 -- procedure P with Global ... is ... end P;
2325 ("aspect specification must appear in subprogram "
2326 & "declaration", Asp
);
2328 end SPARK_Aspect_Error
;
2330 -- Start of processing for Diagnose_Misplaced_Aspects
2333 -- Iterate over the aspect specifications and emit specific errors
2334 -- where applicable.
2336 Asp
:= First
(Aspect_Specifications
(N
));
2337 while Present
(Asp
) loop
2338 Asp_Nam
:= Chars
(Identifier
(Asp
));
2339 Asp_Id
:= Get_Aspect_Id
(Asp_Nam
);
2341 -- Do not emit errors on aspects that can appear on a
2342 -- subprogram body. This scenario occurs when the aspect
2343 -- specification list contains both misplaced and properly
2346 if Aspect_On_Body_Or_Stub_OK
(Asp_Id
) then
2349 -- Special diagnostics for SPARK aspects
2351 elsif Asp_Nam
= Name_Depends
then
2352 SPARK_Aspect_Error
(Name_Refined_Depends
);
2354 elsif Asp_Nam
= Name_Global
then
2355 SPARK_Aspect_Error
(Name_Refined_Global
);
2357 elsif Asp_Nam
= Name_Post
then
2358 SPARK_Aspect_Error
(Name_Refined_Post
);
2362 ("aspect specification must appear in subprogram "
2363 & "declaration", Asp
);
2368 end Diagnose_Misplaced_Aspects
;
2370 -- Start of processing for Analyze_Aspects_On_Body_Or_Stub
2373 -- Language-defined aspects cannot be associated with a subprogram
2374 -- body [stub] if the subprogram has a spec. Certain implementation
2375 -- defined aspects are allowed to break this rule (for list, see
2376 -- table Aspect_On_Body_Or_Stub_OK).
2378 if Present
(Spec_Id
) and then not Aspects_On_Body_Or_Stub_OK
(N
) then
2379 Diagnose_Misplaced_Aspects
;
2381 Analyze_Aspect_Specifications
(N
, Body_Id
);
2383 end Analyze_Aspects_On_Body_Or_Stub
;
2385 -----------------------
2386 -- Body_Has_Contract --
2387 -----------------------
2389 function Body_Has_Contract
return Boolean is
2390 Decls
: constant List_Id
:= Declarations
(N
);
2397 -- Check for unanalyzed aspects in the body that will
2398 -- generate a contract.
2400 if Present
(Aspect_Specifications
(N
)) then
2401 A_Spec
:= First
(Aspect_Specifications
(N
));
2402 while Present
(A_Spec
) loop
2403 A
:= Get_Aspect_Id
(Chars
(Identifier
(A_Spec
)));
2405 if A
= Aspect_Contract_Cases
or else
2406 A
= Aspect_Depends
or else
2407 A
= Aspect_Global
or else
2408 A
= Aspect_Pre
or else
2409 A
= Aspect_Precondition
or else
2410 A
= Aspect_Post
or else
2411 A
= Aspect_Postcondition
2420 -- Check for pragmas that may generate a contract
2422 if Present
(Decls
) then
2423 Decl
:= First
(Decls
);
2424 while Present
(Decl
) loop
2425 if Nkind
(Decl
) = N_Pragma
then
2426 P_Id
:= Get_Pragma_Id
(Pragma_Name
(Decl
));
2428 if P_Id
= Pragma_Contract_Cases
or else
2429 P_Id
= Pragma_Depends
or else
2430 P_Id
= Pragma_Global
or else
2431 P_Id
= Pragma_Pre
or else
2432 P_Id
= Pragma_Precondition
or else
2433 P_Id
= Pragma_Post
or else
2434 P_Id
= Pragma_Postcondition
2445 end Body_Has_Contract
;
2447 ----------------------------
2448 -- Check_Anonymous_Return --
2449 ----------------------------
2451 procedure Check_Anonymous_Return
is
2457 if Present
(Spec_Id
) then
2463 if Ekind
(Scop
) = E_Function
2464 and then Ekind
(Etype
(Scop
)) = E_Anonymous_Access_Type
2465 and then not Is_Thunk
(Scop
)
2466 and then (Has_Task
(Designated_Type
(Etype
(Scop
)))
2468 (Is_Class_Wide_Type
(Designated_Type
(Etype
(Scop
)))
2470 Is_Limited_Record
(Designated_Type
(Etype
(Scop
)))))
2471 and then Expander_Active
2473 -- Avoid cases with no tasking support
2475 and then RTE_Available
(RE_Current_Master
)
2476 and then not Restriction_Active
(No_Task_Hierarchy
)
2479 Make_Object_Declaration
(Loc
,
2480 Defining_Identifier
=>
2481 Make_Defining_Identifier
(Loc
, Name_uMaster
),
2482 Constant_Present
=> True,
2483 Object_Definition
=>
2484 New_Occurrence_Of
(RTE
(RE_Master_Id
), Loc
),
2486 Make_Explicit_Dereference
(Loc
,
2487 New_Occurrence_Of
(RTE
(RE_Current_Master
), Loc
)));
2489 if Present
(Declarations
(N
)) then
2490 Prepend
(Decl
, Declarations
(N
));
2492 Set_Declarations
(N
, New_List
(Decl
));
2495 Set_Master_Id
(Etype
(Scop
), Defining_Identifier
(Decl
));
2496 Set_Has_Master_Entity
(Scop
);
2498 -- Now mark the containing scope as a task master
2501 while Nkind
(Par
) /= N_Compilation_Unit
loop
2502 Par
:= Parent
(Par
);
2503 pragma Assert
(Present
(Par
));
2505 -- If we fall off the top, we are at the outer level, and
2506 -- the environment task is our effective master, so nothing
2510 (Par
, N_Task_Body
, N_Block_Statement
, N_Subprogram_Body
)
2512 Set_Is_Task_Master
(Par
, True);
2517 end Check_Anonymous_Return
;
2519 -------------------------
2520 -- Check_Inline_Pragma --
2521 -------------------------
2523 procedure Check_Inline_Pragma
(Spec
: in out Node_Id
) is
2527 function Is_Inline_Pragma
(N
: Node_Id
) return Boolean;
2528 -- True when N is a pragma Inline or Inline_Always that applies
2529 -- to this subprogram.
2531 -----------------------
2532 -- Is_Inline_Pragma --
2533 -----------------------
2535 function Is_Inline_Pragma
(N
: Node_Id
) return Boolean is
2538 Nkind
(N
) = N_Pragma
2540 (Pragma_Name
(N
) = Name_Inline_Always
2543 and then Pragma_Name
(N
) = Name_Inline
))
2546 (Expression
(First
(Pragma_Argument_Associations
(N
)))) =
2548 end Is_Inline_Pragma
;
2550 -- Start of processing for Check_Inline_Pragma
2553 if not Expander_Active
then
2557 if Is_List_Member
(N
)
2558 and then Present
(Next
(N
))
2559 and then Is_Inline_Pragma
(Next
(N
))
2563 elsif Nkind
(N
) /= N_Subprogram_Body_Stub
2564 and then Present
(Declarations
(N
))
2565 and then Is_Inline_Pragma
(First
(Declarations
(N
)))
2567 Prag
:= First
(Declarations
(N
));
2573 if Present
(Prag
) then
2574 if Present
(Spec_Id
) then
2575 if In_Same_List
(N
, Unit_Declaration_Node
(Spec_Id
)) then
2580 -- Create a subprogram declaration, to make treatment uniform
2583 Subp
: constant Entity_Id
:=
2584 Make_Defining_Identifier
(Loc
, Chars
(Body_Id
));
2585 Decl
: constant Node_Id
:=
2586 Make_Subprogram_Declaration
(Loc
,
2588 New_Copy_Tree
(Specification
(N
)));
2591 Set_Defining_Unit_Name
(Specification
(Decl
), Subp
);
2593 if Present
(First_Formal
(Body_Id
)) then
2594 Plist
:= Copy_Parameter_List
(Body_Id
);
2595 Set_Parameter_Specifications
2596 (Specification
(Decl
), Plist
);
2599 Insert_Before
(N
, Decl
);
2602 Set_Has_Pragma_Inline
(Subp
);
2604 if Pragma_Name
(Prag
) = Name_Inline_Always
then
2605 Set_Is_Inlined
(Subp
);
2606 Set_Has_Pragma_Inline_Always
(Subp
);
2609 -- Prior to copying the subprogram body to create a template
2610 -- for it for subsequent inlining, remove the pragma from
2611 -- the current body so that the copy that will produce the
2612 -- new body will start from a completely unanalyzed tree.
2614 if Nkind
(Parent
(Prag
)) = N_Subprogram_Body
then
2615 Rewrite
(Prag
, Make_Null_Statement
(Sloc
(Prag
)));
2622 end Check_Inline_Pragma
;
2624 --------------------------
2625 -- Check_Missing_Return --
2626 --------------------------
2628 procedure Check_Missing_Return
is
2630 Missing_Ret
: Boolean;
2633 if Nkind
(Body_Spec
) = N_Function_Specification
then
2634 if Present
(Spec_Id
) then
2640 if Return_Present
(Id
) then
2641 Check_Returns
(HSS
, 'F', Missing_Ret
);
2644 Set_Has_Missing_Return
(Id
);
2647 elsif Is_Generic_Subprogram
(Id
)
2648 or else not Is_Machine_Code_Subprogram
(Id
)
2650 Error_Msg_N
("missing RETURN statement in function body", N
);
2653 -- If procedure with No_Return, check returns
2655 elsif Nkind
(Body_Spec
) = N_Procedure_Specification
2656 and then Present
(Spec_Id
)
2657 and then No_Return
(Spec_Id
)
2659 Check_Returns
(HSS
, 'P', Missing_Ret
, Spec_Id
);
2662 -- Special checks in SPARK mode
2664 if Nkind
(Body_Spec
) = N_Function_Specification
then
2666 -- In SPARK mode, last statement of a function should be a return
2669 Stat
: constant Node_Id
:= Last_Source_Statement
(HSS
);
2672 and then not Nkind_In
(Stat
, N_Simple_Return_Statement
,
2673 N_Extended_Return_Statement
)
2675 Check_SPARK_05_Restriction
2676 ("last statement in function should be RETURN", Stat
);
2680 -- In SPARK mode, verify that a procedure has no return
2682 elsif Nkind
(Body_Spec
) = N_Procedure_Specification
then
2683 if Present
(Spec_Id
) then
2689 -- Would be nice to point to return statement here, can we
2690 -- borrow the Check_Returns procedure here ???
2692 if Return_Present
(Id
) then
2693 Check_SPARK_05_Restriction
2694 ("procedure should not have RETURN", N
);
2697 end Check_Missing_Return
;
2699 -----------------------
2700 -- Disambiguate_Spec --
2701 -----------------------
2703 function Disambiguate_Spec
return Entity_Id
is
2704 Priv_Spec
: Entity_Id
;
2707 procedure Replace_Types
(To_Corresponding
: Boolean);
2708 -- Depending on the flag, replace the type of formal parameters of
2709 -- Body_Id if it is a concurrent type implementing interfaces with
2710 -- the corresponding record type or the other way around.
2712 procedure Replace_Types
(To_Corresponding
: Boolean) is
2714 Formal_Typ
: Entity_Id
;
2717 Formal
:= First_Formal
(Body_Id
);
2718 while Present
(Formal
) loop
2719 Formal_Typ
:= Etype
(Formal
);
2721 if Is_Class_Wide_Type
(Formal_Typ
) then
2722 Formal_Typ
:= Root_Type
(Formal_Typ
);
2725 -- From concurrent type to corresponding record
2727 if To_Corresponding
then
2728 if Is_Concurrent_Type
(Formal_Typ
)
2729 and then Present
(Corresponding_Record_Type
(Formal_Typ
))
2730 and then Present
(Interfaces
(
2731 Corresponding_Record_Type
(Formal_Typ
)))
2734 Corresponding_Record_Type
(Formal_Typ
));
2737 -- From corresponding record to concurrent type
2740 if Is_Concurrent_Record_Type
(Formal_Typ
)
2741 and then Present
(Interfaces
(Formal_Typ
))
2744 Corresponding_Concurrent_Type
(Formal_Typ
));
2748 Next_Formal
(Formal
);
2752 -- Start of processing for Disambiguate_Spec
2755 -- Try to retrieve the specification of the body as is. All error
2756 -- messages are suppressed because the body may not have a spec in
2757 -- its current state.
2759 Spec_N
:= Find_Corresponding_Spec
(N
, False);
2761 -- It is possible that this is the body of a primitive declared
2762 -- between a private and a full view of a concurrent type. The
2763 -- controlling parameter of the spec carries the concurrent type,
2764 -- not the corresponding record type as transformed by Analyze_
2765 -- Subprogram_Specification. In such cases, we undo the change
2766 -- made by the analysis of the specification and try to find the
2769 -- Note that wrappers already have their corresponding specs and
2770 -- bodies set during their creation, so if the candidate spec is
2771 -- a wrapper, then we definitely need to swap all types to their
2772 -- original concurrent status.
2775 or else Is_Primitive_Wrapper
(Spec_N
)
2777 -- Restore all references of corresponding record types to the
2778 -- original concurrent types.
2780 Replace_Types
(To_Corresponding
=> False);
2781 Priv_Spec
:= Find_Corresponding_Spec
(N
, False);
2783 -- The current body truly belongs to a primitive declared between
2784 -- a private and a full view. We leave the modified body as is,
2785 -- and return the true spec.
2787 if Present
(Priv_Spec
)
2788 and then Is_Private_Primitive
(Priv_Spec
)
2793 -- In case that this is some sort of error, restore the original
2794 -- state of the body.
2796 Replace_Types
(To_Corresponding
=> True);
2800 end Disambiguate_Spec
;
2802 ----------------------------
2803 -- Exchange_Limited_Views --
2804 ----------------------------
2806 procedure Exchange_Limited_Views
(Subp_Id
: Entity_Id
) is
2807 procedure Detect_And_Exchange
(Id
: Entity_Id
);
2808 -- Determine whether Id's type denotes an incomplete type associated
2809 -- with a limited with clause and exchange the limited view with the
2812 -------------------------
2813 -- Detect_And_Exchange --
2814 -------------------------
2816 procedure Detect_And_Exchange
(Id
: Entity_Id
) is
2817 Typ
: constant Entity_Id
:= Etype
(Id
);
2820 if Ekind
(Typ
) = E_Incomplete_Type
2821 and then From_Limited_With
(Typ
)
2822 and then Present
(Non_Limited_View
(Typ
))
2824 Set_Etype
(Id
, Non_Limited_View
(Typ
));
2826 end Detect_And_Exchange
;
2832 -- Start of processing for Exchange_Limited_Views
2835 if No
(Subp_Id
) then
2838 -- Do not process subprogram bodies as they already use the non-
2839 -- limited view of types.
2841 elsif not Ekind_In
(Subp_Id
, E_Function
, E_Procedure
) then
2845 -- Examine all formals and swap views when applicable
2847 Formal
:= First_Formal
(Subp_Id
);
2848 while Present
(Formal
) loop
2849 Detect_And_Exchange
(Formal
);
2851 Next_Formal
(Formal
);
2854 -- Process the return type of a function
2856 if Ekind
(Subp_Id
) = E_Function
then
2857 Detect_And_Exchange
(Subp_Id
);
2859 end Exchange_Limited_Views
;
2861 -------------------------------------
2862 -- Is_Private_Concurrent_Primitive --
2863 -------------------------------------
2865 function Is_Private_Concurrent_Primitive
2866 (Subp_Id
: Entity_Id
) return Boolean
2868 Formal_Typ
: Entity_Id
;
2871 if Present
(First_Formal
(Subp_Id
)) then
2872 Formal_Typ
:= Etype
(First_Formal
(Subp_Id
));
2874 if Is_Concurrent_Record_Type
(Formal_Typ
) then
2875 if Is_Class_Wide_Type
(Formal_Typ
) then
2876 Formal_Typ
:= Root_Type
(Formal_Typ
);
2879 Formal_Typ
:= Corresponding_Concurrent_Type
(Formal_Typ
);
2882 -- The type of the first formal is a concurrent tagged type with
2886 Is_Concurrent_Type
(Formal_Typ
)
2887 and then Is_Tagged_Type
(Formal_Typ
)
2888 and then Has_Private_Declaration
(Formal_Typ
);
2892 end Is_Private_Concurrent_Primitive
;
2894 ----------------------------
2895 -- Set_Trivial_Subprogram --
2896 ----------------------------
2898 procedure Set_Trivial_Subprogram
(N
: Node_Id
) is
2899 Nxt
: constant Node_Id
:= Next
(N
);
2902 Set_Is_Trivial_Subprogram
(Body_Id
);
2904 if Present
(Spec_Id
) then
2905 Set_Is_Trivial_Subprogram
(Spec_Id
);
2909 and then Nkind
(Nxt
) = N_Simple_Return_Statement
2910 and then No
(Next
(Nxt
))
2911 and then Present
(Expression
(Nxt
))
2912 and then Is_Entity_Name
(Expression
(Nxt
))
2914 Set_Never_Set_In_Source
(Entity
(Expression
(Nxt
)), False);
2916 end Set_Trivial_Subprogram
;
2918 ---------------------------------
2919 -- Verify_Overriding_Indicator --
2920 ---------------------------------
2922 procedure Verify_Overriding_Indicator
is
2924 if Must_Override
(Body_Spec
) then
2925 if Nkind
(Spec_Id
) = N_Defining_Operator_Symbol
2926 and then Operator_Matches_Spec
(Spec_Id
, Spec_Id
)
2930 elsif not Present
(Overridden_Operation
(Spec_Id
)) then
2932 ("subprogram& is not overriding", Body_Spec
, Spec_Id
);
2934 -- Overriding indicators aren't allowed for protected subprogram
2935 -- bodies (see the Confirmation in Ada Comment AC95-00213). Change
2936 -- this to a warning if -gnatd.E is enabled.
2938 elsif Ekind
(Scope
(Spec_Id
)) = E_Protected_Type
then
2939 Error_Msg_Warn
:= Error_To_Warning
;
2941 ("<<overriding indicator not allowed for protected "
2942 & "subprogram body", Body_Spec
);
2945 elsif Must_Not_Override
(Body_Spec
) then
2946 if Present
(Overridden_Operation
(Spec_Id
)) then
2948 ("subprogram& overrides inherited operation",
2949 Body_Spec
, Spec_Id
);
2951 elsif Nkind
(Spec_Id
) = N_Defining_Operator_Symbol
2952 and then Operator_Matches_Spec
(Spec_Id
, Spec_Id
)
2955 ("subprogram& overrides predefined operator ",
2956 Body_Spec
, Spec_Id
);
2958 -- Overriding indicators aren't allowed for protected subprogram
2959 -- bodies (see the Confirmation in Ada Comment AC95-00213). Change
2960 -- this to a warning if -gnatd.E is enabled.
2962 elsif Ekind
(Scope
(Spec_Id
)) = E_Protected_Type
then
2963 Error_Msg_Warn
:= Error_To_Warning
;
2966 ("<<overriding indicator not allowed "
2967 & "for protected subprogram body", Body_Spec
);
2969 -- If this is not a primitive operation, then the overriding
2970 -- indicator is altogether illegal.
2972 elsif not Is_Primitive
(Spec_Id
) then
2974 ("overriding indicator only allowed "
2975 & "if subprogram is primitive", Body_Spec
);
2978 -- If checking the style rule and the operation overrides, then
2979 -- issue a warning about a missing overriding_indicator. Protected
2980 -- subprogram bodies are excluded from this style checking, since
2981 -- they aren't primitives (even though their declarations can
2982 -- override) and aren't allowed to have an overriding_indicator.
2985 and then Present
(Overridden_Operation
(Spec_Id
))
2986 and then Ekind
(Scope
(Spec_Id
)) /= E_Protected_Type
2988 pragma Assert
(Unit_Declaration_Node
(Body_Id
) = N
);
2989 Style
.Missing_Overriding
(N
, Body_Id
);
2992 and then Can_Override_Operator
(Spec_Id
)
2993 and then not Is_Predefined_File_Name
2994 (Unit_File_Name
(Get_Source_Unit
(Spec_Id
)))
2996 pragma Assert
(Unit_Declaration_Node
(Body_Id
) = N
);
2997 Style
.Missing_Overriding
(N
, Body_Id
);
2999 end Verify_Overriding_Indicator
;
3001 -- Start of processing for Analyze_Subprogram_Body_Helper
3004 -- Generic subprograms are handled separately. They always have a
3005 -- generic specification. Determine whether current scope has a
3006 -- previous declaration.
3008 -- If the subprogram body is defined within an instance of the same
3009 -- name, the instance appears as a package renaming, and will be hidden
3010 -- within the subprogram.
3012 if Present
(Prev_Id
)
3013 and then not Is_Overloadable
(Prev_Id
)
3014 and then (Nkind
(Parent
(Prev_Id
)) /= N_Package_Renaming_Declaration
3015 or else Comes_From_Source
(Prev_Id
))
3017 if Is_Generic_Subprogram
(Prev_Id
) then
3019 Set_Is_Compilation_Unit
(Body_Id
, Is_Compilation_Unit
(Spec_Id
));
3020 Set_Is_Child_Unit
(Body_Id
, Is_Child_Unit
(Spec_Id
));
3022 Analyze_Generic_Subprogram_Body
(N
, Spec_Id
);
3024 if Nkind
(N
) = N_Subprogram_Body
then
3025 HSS
:= Handled_Statement_Sequence
(N
);
3026 Check_Missing_Return
;
3032 -- Previous entity conflicts with subprogram name. Attempting to
3033 -- enter name will post error.
3035 Enter_Name
(Body_Id
);
3039 -- Non-generic case, find the subprogram declaration, if one was seen,
3040 -- or enter new overloaded entity in the current scope. If the
3041 -- Current_Entity is the Body_Id itself, the unit is being analyzed as
3042 -- part of the context of one of its subunits. No need to redo the
3045 elsif Prev_Id
= Body_Id
and then Has_Completion
(Body_Id
) then
3049 Body_Id
:= Analyze_Subprogram_Specification
(Body_Spec
);
3051 if Nkind
(N
) = N_Subprogram_Body_Stub
3052 or else No
(Corresponding_Spec
(N
))
3054 if Is_Private_Concurrent_Primitive
(Body_Id
) then
3055 Spec_Id
:= Disambiguate_Spec
;
3057 Spec_Id
:= Find_Corresponding_Spec
(N
);
3059 -- In GNATprove mode, if the body has no previous spec, create
3060 -- one so that the inlining machinery can operate properly.
3061 -- Transfer aspects, if any, to the new spec, so that they
3062 -- are legal and can be processed ahead of the body.
3063 -- We make two copies of the given spec, one for the new
3064 -- declaration, and one for the body.
3067 and then GNATprove_Mode
3069 -- Inlining does not apply during pre-analysis of code
3071 and then Full_Analysis
3073 -- Inlining only applies to full bodies, not stubs
3075 and then Nkind
(N
) /= N_Subprogram_Body_Stub
3077 -- Inlining only applies to bodies in the source code, not to
3078 -- those generated by the compiler. In particular, expression
3079 -- functions, whose body is generated by the compiler, are
3080 -- treated specially by GNATprove.
3082 and then Comes_From_Source
(Body_Id
)
3084 -- This cannot be done for a compilation unit, which is not
3085 -- in a context where we can insert a new spec.
3087 and then Is_List_Member
(N
)
3089 -- Inlining only applies to subprograms without contracts,
3090 -- as a contract is a sign that GNATprove should perform a
3091 -- modular analysis of the subprogram instead of a contextual
3092 -- analysis at each call site. The same test is performed in
3093 -- Inline.Can_Be_Inlined_In_GNATprove_Mode. It is repeated
3094 -- here in another form (because the contract has not
3095 -- been attached to the body) to avoid frontend errors in
3096 -- case pragmas are used instead of aspects, because the
3097 -- corresponding pragmas in the body would not be transferred
3098 -- to the spec, leading to legality errors.
3100 and then not Body_Has_Contract
3103 Body_Spec
: constant Node_Id
:=
3104 Copy_Separate_Tree
(Specification
(N
));
3105 New_Decl
: constant Node_Id
:=
3106 Make_Subprogram_Declaration
(Loc
,
3107 Copy_Separate_Tree
(Specification
(N
)));
3109 SPARK_Mode_Aspect
: Node_Id
;
3111 Prag
, Aspect
: Node_Id
;
3114 Insert_Before
(N
, New_Decl
);
3115 Move_Aspects
(From
=> N
, To
=> New_Decl
);
3117 -- Mark the newly moved aspects as not analyzed, so that
3118 -- their effect on New_Decl is properly analyzed.
3120 Aspect
:= First
(Aspect_Specifications
(New_Decl
));
3121 while Present
(Aspect
) loop
3122 Set_Analyzed
(Aspect
, False);
3128 -- The analysis of the generated subprogram declaration
3129 -- may have introduced pragmas that need to be analyzed.
3131 Prag
:= Next
(New_Decl
);
3132 while Prag
/= N
loop
3137 Spec_Id
:= Defining_Entity
(New_Decl
);
3139 -- As Body_Id originally comes from source, mark the new
3140 -- Spec_Id as such, which is required so that calls to
3141 -- this subprogram are registered in the local effects
3142 -- stored in ALI files for GNATprove.
3144 Set_Comes_From_Source
(Spec_Id
, True);
3146 -- If aspect SPARK_Mode was specified on the body, it
3147 -- needs to be repeated on the generated decl and the
3148 -- body. Since the original aspect was moved to the
3149 -- generated decl, copy it for the body.
3151 if Has_Aspect
(Spec_Id
, Aspect_SPARK_Mode
) then
3152 SPARK_Mode_Aspect
:=
3153 New_Copy
(Find_Aspect
(Spec_Id
, Aspect_SPARK_Mode
));
3154 Set_Analyzed
(SPARK_Mode_Aspect
, False);
3155 Aspects
:= New_List
(SPARK_Mode_Aspect
);
3156 Set_Aspect_Specifications
(N
, Aspects
);
3159 Set_Specification
(N
, Body_Spec
);
3160 Body_Id
:= Analyze_Subprogram_Specification
(Body_Spec
);
3161 Set_Corresponding_Spec
(N
, Spec_Id
);
3166 -- If this is a duplicate body, no point in analyzing it
3168 if Error_Posted
(N
) then
3172 -- A subprogram body should cause freezing of its own declaration,
3173 -- but if there was no previous explicit declaration, then the
3174 -- subprogram will get frozen too late (there may be code within
3175 -- the body that depends on the subprogram having been frozen,
3176 -- such as uses of extra formals), so we force it to be frozen
3177 -- here. Same holds if the body and spec are compilation units.
3178 -- Finally, if the return type is an anonymous access to protected
3179 -- subprogram, it must be frozen before the body because its
3180 -- expansion has generated an equivalent type that is used when
3181 -- elaborating the body.
3183 -- An exception in the case of Ada 2012, AI05-177: The bodies
3184 -- created for expression functions do not freeze.
3187 and then Nkind
(Original_Node
(N
)) /= N_Expression_Function
3189 Freeze_Before
(N
, Body_Id
);
3191 elsif Nkind
(Parent
(N
)) = N_Compilation_Unit
then
3192 Freeze_Before
(N
, Spec_Id
);
3194 elsif Is_Access_Subprogram_Type
(Etype
(Body_Id
)) then
3195 Freeze_Before
(N
, Etype
(Body_Id
));
3199 Spec_Id
:= Corresponding_Spec
(N
);
3203 -- Previously we scanned the body to look for nested subprograms, and
3204 -- rejected an inline directive if nested subprograms were present,
3205 -- because the back-end would generate conflicting symbols for the
3206 -- nested bodies. This is now unnecessary.
3208 -- Look ahead to recognize a pragma Inline that appears after the body
3210 Check_Inline_Pragma
(Spec_Id
);
3212 -- Deal with special case of a fully private operation in the body of
3213 -- the protected type. We must create a declaration for the subprogram,
3214 -- in order to attach the protected subprogram that will be used in
3215 -- internal calls. We exclude compiler generated bodies from the
3216 -- expander since the issue does not arise for those cases.
3219 and then Comes_From_Source
(N
)
3220 and then Is_Protected_Type
(Current_Scope
)
3222 Spec_Id
:= Build_Private_Protected_Declaration
(N
);
3225 -- If a separate spec is present, then deal with freezing issues
3227 if Present
(Spec_Id
) then
3228 Spec_Decl
:= Unit_Declaration_Node
(Spec_Id
);
3229 Verify_Overriding_Indicator
;
3231 -- In general, the spec will be frozen when we start analyzing the
3232 -- body. However, for internally generated operations, such as
3233 -- wrapper functions for inherited operations with controlling
3234 -- results, the spec may not have been frozen by the time we expand
3235 -- the freeze actions that include the bodies. In particular, extra
3236 -- formals for accessibility or for return-in-place may need to be
3237 -- generated. Freeze nodes, if any, are inserted before the current
3238 -- body. These freeze actions are also needed in ASIS mode to enable
3239 -- the proper back-annotations.
3241 if not Is_Frozen
(Spec_Id
)
3242 and then (Expander_Active
or ASIS_Mode
)
3244 -- Force the generation of its freezing node to ensure proper
3245 -- management of access types in the backend.
3247 -- This is definitely needed for some cases, but it is not clear
3248 -- why, to be investigated further???
3250 Set_Has_Delayed_Freeze
(Spec_Id
);
3251 Freeze_Before
(N
, Spec_Id
);
3255 -- Mark presence of postcondition procedure in current scope and mark
3256 -- the procedure itself as needing debug info. The latter is important
3257 -- when analyzing decision coverage (for example, for MC/DC coverage).
3259 if Chars
(Body_Id
) = Name_uPostconditions
then
3260 Set_Has_Postconditions
(Current_Scope
);
3261 Set_Debug_Info_Needed
(Body_Id
);
3264 -- Place subprogram on scope stack, and make formals visible. If there
3265 -- is a spec, the visible entity remains that of the spec.
3267 if Present
(Spec_Id
) then
3268 Generate_Reference
(Spec_Id
, Body_Id
, 'b', Set_Ref
=> False);
3270 if Is_Child_Unit
(Spec_Id
) then
3271 Generate_Reference
(Spec_Id
, Scope
(Spec_Id
), 'k', False);
3275 Style
.Check_Identifier
(Body_Id
, Spec_Id
);
3278 Set_Is_Compilation_Unit
(Body_Id
, Is_Compilation_Unit
(Spec_Id
));
3279 Set_Is_Child_Unit
(Body_Id
, Is_Child_Unit
(Spec_Id
));
3281 if Is_Abstract_Subprogram
(Spec_Id
) then
3282 Error_Msg_N
("an abstract subprogram cannot have a body", N
);
3286 Set_Convention
(Body_Id
, Convention
(Spec_Id
));
3287 Set_Has_Completion
(Spec_Id
);
3289 if Is_Protected_Type
(Scope
(Spec_Id
)) then
3290 Prot_Typ
:= Scope
(Spec_Id
);
3293 -- If this is a body generated for a renaming, do not check for
3294 -- full conformance. The check is redundant, because the spec of
3295 -- the body is a copy of the spec in the renaming declaration,
3296 -- and the test can lead to spurious errors on nested defaults.
3298 if Present
(Spec_Decl
)
3299 and then not Comes_From_Source
(N
)
3301 (Nkind
(Original_Node
(Spec_Decl
)) =
3302 N_Subprogram_Renaming_Declaration
3303 or else (Present
(Corresponding_Body
(Spec_Decl
))
3305 Nkind
(Unit_Declaration_Node
3306 (Corresponding_Body
(Spec_Decl
))) =
3307 N_Subprogram_Renaming_Declaration
))
3311 -- Conversely, the spec may have been generated for specless body
3312 -- with an inline pragma.
3314 elsif Comes_From_Source
(N
)
3315 and then not Comes_From_Source
(Spec_Id
)
3316 and then Has_Pragma_Inline
(Spec_Id
)
3323 Fully_Conformant
, True, Conformant
, Body_Id
);
3326 -- If the body is not fully conformant, we have to decide if we
3327 -- should analyze it or not. If it has a really messed up profile
3328 -- then we probably should not analyze it, since we will get too
3329 -- many bogus messages.
3331 -- Our decision is to go ahead in the non-fully conformant case
3332 -- only if it is at least mode conformant with the spec. Note
3333 -- that the call to Check_Fully_Conformant has issued the proper
3334 -- error messages to complain about the lack of conformance.
3337 and then not Mode_Conformant
(Body_Id
, Spec_Id
)
3343 if Spec_Id
/= Body_Id
then
3344 Reference_Body_Formals
(Spec_Id
, Body_Id
);
3347 Set_Ekind
(Body_Id
, E_Subprogram_Body
);
3349 if Nkind
(N
) = N_Subprogram_Body_Stub
then
3350 Set_Corresponding_Spec_Of_Stub
(N
, Spec_Id
);
3355 Set_Corresponding_Spec
(N
, Spec_Id
);
3357 -- Ada 2005 (AI-345): If the operation is a primitive operation
3358 -- of a concurrent type, the type of the first parameter has been
3359 -- replaced with the corresponding record, which is the proper
3360 -- run-time structure to use. However, within the body there may
3361 -- be uses of the formals that depend on primitive operations
3362 -- of the type (in particular calls in prefixed form) for which
3363 -- we need the original concurrent type. The operation may have
3364 -- several controlling formals, so the replacement must be done
3367 if Comes_From_Source
(Spec_Id
)
3368 and then Present
(First_Entity
(Spec_Id
))
3369 and then Ekind
(Etype
(First_Entity
(Spec_Id
))) = E_Record_Type
3370 and then Is_Tagged_Type
(Etype
(First_Entity
(Spec_Id
)))
3371 and then Present
(Interfaces
(Etype
(First_Entity
(Spec_Id
))))
3372 and then Present
(Corresponding_Concurrent_Type
3373 (Etype
(First_Entity
(Spec_Id
))))
3376 Typ
: constant Entity_Id
:= Etype
(First_Entity
(Spec_Id
));
3380 Form
:= First_Formal
(Spec_Id
);
3381 while Present
(Form
) loop
3382 if Etype
(Form
) = Typ
then
3383 Set_Etype
(Form
, Corresponding_Concurrent_Type
(Typ
));
3391 -- Make the formals visible, and place subprogram on scope stack.
3392 -- This is also the point at which we set Last_Real_Spec_Entity
3393 -- to mark the entities which will not be moved to the body.
3395 Install_Formals
(Spec_Id
);
3396 Last_Real_Spec_Entity
:= Last_Entity
(Spec_Id
);
3398 -- Within an instance, add local renaming declarations so that
3399 -- gdb can retrieve the values of actuals more easily. This is
3400 -- only relevant if generating code (and indeed we definitely
3401 -- do not want these definitions -gnatc mode, because that would
3404 if Is_Generic_Instance
(Spec_Id
)
3405 and then Is_Wrapper_Package
(Current_Scope
)
3406 and then Expander_Active
3408 Build_Subprogram_Instance_Renamings
(N
, Current_Scope
);
3411 Push_Scope
(Spec_Id
);
3413 -- Make sure that the subprogram is immediately visible. For
3414 -- child units that have no separate spec this is indispensable.
3415 -- Otherwise it is safe albeit redundant.
3417 Set_Is_Immediately_Visible
(Spec_Id
);
3420 Set_Corresponding_Body
(Unit_Declaration_Node
(Spec_Id
), Body_Id
);
3421 Set_Contract
(Body_Id
, Make_Contract
(Sloc
(Body_Id
)));
3422 Set_Scope
(Body_Id
, Scope
(Spec_Id
));
3423 Set_Is_Obsolescent
(Body_Id
, Is_Obsolescent
(Spec_Id
));
3425 -- Case of subprogram body with no previous spec
3428 -- Check for style warning required
3432 -- Only apply check for source level subprograms for which checks
3433 -- have not been suppressed.
3435 and then Comes_From_Source
(Body_Id
)
3436 and then not Suppress_Style_Checks
(Body_Id
)
3438 -- No warnings within an instance
3440 and then not In_Instance
3442 -- No warnings for expression functions
3444 and then Nkind
(Original_Node
(N
)) /= N_Expression_Function
3446 Style
.Body_With_No_Spec
(N
);
3449 New_Overloaded_Entity
(Body_Id
);
3451 if Nkind
(N
) /= N_Subprogram_Body_Stub
then
3452 Set_Acts_As_Spec
(N
);
3453 Generate_Definition
(Body_Id
);
3454 Set_Contract
(Body_Id
, Make_Contract
(Sloc
(Body_Id
)));
3456 (Body_Id
, Body_Id
, 'b', Set_Ref
=> False, Force
=> True);
3457 Install_Formals
(Body_Id
);
3459 Push_Scope
(Body_Id
);
3462 -- For stubs and bodies with no previous spec, generate references to
3465 Generate_Reference_To_Formals
(Body_Id
);
3468 -- Set SPARK_Mode from context
3470 Set_SPARK_Pragma
(Body_Id
, SPARK_Mode_Pragma
);
3471 Set_SPARK_Pragma_Inherited
(Body_Id
, True);
3473 -- If the return type is an anonymous access type whose designated type
3474 -- is the limited view of a class-wide type and the non-limited view is
3475 -- available, update the return type accordingly.
3477 if Ada_Version
>= Ada_2005
and then Comes_From_Source
(N
) then
3483 Rtyp
:= Etype
(Current_Scope
);
3485 if Ekind
(Rtyp
) = E_Anonymous_Access_Type
then
3486 Etyp
:= Directly_Designated_Type
(Rtyp
);
3488 if Is_Class_Wide_Type
(Etyp
)
3489 and then From_Limited_With
(Etyp
)
3491 Set_Directly_Designated_Type
3492 (Etype
(Current_Scope
), Available_View
(Etyp
));
3498 -- If this is the proper body of a stub, we must verify that the stub
3499 -- conforms to the body, and to the previous spec if one was present.
3500 -- We know already that the body conforms to that spec. This test is
3501 -- only required for subprograms that come from source.
3503 if Nkind
(Parent
(N
)) = N_Subunit
3504 and then Comes_From_Source
(N
)
3505 and then not Error_Posted
(Body_Id
)
3506 and then Nkind
(Corresponding_Stub
(Parent
(N
))) =
3507 N_Subprogram_Body_Stub
3510 Old_Id
: constant Entity_Id
:=
3512 (Specification
(Corresponding_Stub
(Parent
(N
))));
3514 Conformant
: Boolean := False;
3517 if No
(Spec_Id
) then
3518 Check_Fully_Conformant
(Body_Id
, Old_Id
);
3522 (Body_Id
, Old_Id
, Fully_Conformant
, False, Conformant
);
3524 if not Conformant
then
3526 -- The stub was taken to be a new declaration. Indicate that
3529 Set_Has_Completion
(Old_Id
, False);
3535 Set_Has_Completion
(Body_Id
);
3536 Check_Eliminated
(Body_Id
);
3538 if Nkind
(N
) = N_Subprogram_Body_Stub
then
3540 -- Analyze any aspect specifications that appear on the subprogram
3543 if Has_Aspects
(N
) then
3544 Analyze_Aspects_On_Body_Or_Stub
;
3547 -- Stop the analysis now as the stub cannot be inlined, plus it does
3548 -- not have declarative or statement lists.
3553 -- Handle frontend inlining
3555 -- Note: Normally we don't do any inlining if expansion is off, since
3556 -- we won't generate code in any case. An exception arises in GNATprove
3557 -- mode where we want to expand some calls in place, even with expansion
3558 -- disabled, since the inlining eases formal verification.
3560 if not GNATprove_Mode
3561 and then Expander_Active
3562 and then Serious_Errors_Detected
= 0
3563 and then Present
(Spec_Id
)
3564 and then Has_Pragma_Inline
(Spec_Id
)
3566 -- Legacy implementation (relying on frontend inlining)
3568 if not Back_End_Inlining
then
3569 if Has_Pragma_Inline_Always
(Spec_Id
)
3570 or else (Has_Pragma_Inline
(Spec_Id
) and Front_End_Inlining
)
3572 Build_Body_To_Inline
(N
, Spec_Id
);
3575 -- New implementation (relying on backend inlining). Enabled by
3576 -- debug flag gnatd.z for testing
3579 if Has_Pragma_Inline_Always
(Spec_Id
)
3580 or else Optimization_Level
> 0
3582 -- Handle function returning an unconstrained type
3584 if Comes_From_Source
(Body_Id
)
3585 and then Ekind
(Spec_Id
) = E_Function
3586 and then Returns_Unconstrained_Type
(Spec_Id
)
3588 Check_And_Split_Unconstrained_Function
(N
, Spec_Id
, Body_Id
);
3592 Subp_Body
: constant Node_Id
:=
3593 Unit_Declaration_Node
(Body_Id
);
3594 Subp_Decl
: constant List_Id
:= Declarations
(Subp_Body
);
3597 -- Do not pass inlining to the backend if the subprogram
3598 -- has declarations or statements which cannot be inlined
3599 -- by the backend. This check is done here to emit an
3600 -- error instead of the generic warning message reported
3601 -- by the GCC backend (ie. "function might not be
3604 if Present
(Subp_Decl
)
3605 and then Has_Excluded_Declaration
(Spec_Id
, Subp_Decl
)
3609 elsif Has_Excluded_Statement
3612 (Handled_Statement_Sequence
(Subp_Body
)))
3616 -- If the backend inlining is available then at this
3617 -- stage we only have to mark the subprogram as inlined.
3618 -- The expander will take care of registering it in the
3619 -- table of subprograms inlined by the backend a part of
3620 -- processing calls to it (cf. Expand_Call)
3623 Set_Is_Inlined
(Spec_Id
);
3630 -- In GNATprove mode, inline only when there is a separate subprogram
3631 -- declaration for now, as inlining of subprogram bodies acting as
3632 -- declarations, or subprogram stubs, are not supported by frontend
3633 -- inlining. This inlining should occur after analysis of the body, so
3634 -- that it is known whether the value of SPARK_Mode applicable to the
3635 -- body, which can be defined by a pragma inside the body.
3637 elsif GNATprove_Mode
3638 and then Full_Analysis
3639 and then not Inside_A_Generic
3640 and then Present
(Spec_Id
)
3641 and then Nkind
(Parent
(Parent
(Spec_Id
))) = N_Subprogram_Declaration
3642 and then Can_Be_Inlined_In_GNATprove_Mode
(Spec_Id
, Body_Id
)
3643 and then not Body_Has_Contract
3645 Build_Body_To_Inline
(N
, Spec_Id
);
3648 -- Ada 2005 (AI-262): In library subprogram bodies, after the analysis
3649 -- of the specification we have to install the private withed units.
3650 -- This holds for child units as well.
3652 if Is_Compilation_Unit
(Body_Id
)
3653 or else Nkind
(Parent
(N
)) = N_Compilation_Unit
3655 Install_Private_With_Clauses
(Body_Id
);
3658 Check_Anonymous_Return
;
3660 -- Set the Protected_Formal field of each extra formal of the protected
3661 -- subprogram to reference the corresponding extra formal of the
3662 -- subprogram that implements it. For regular formals this occurs when
3663 -- the protected subprogram's declaration is expanded, but the extra
3664 -- formals don't get created until the subprogram is frozen. We need to
3665 -- do this before analyzing the protected subprogram's body so that any
3666 -- references to the original subprogram's extra formals will be changed
3667 -- refer to the implementing subprogram's formals (see Expand_Formal).
3669 if Present
(Spec_Id
)
3670 and then Is_Protected_Type
(Scope
(Spec_Id
))
3671 and then Present
(Protected_Body_Subprogram
(Spec_Id
))
3674 Impl_Subp
: constant Entity_Id
:=
3675 Protected_Body_Subprogram
(Spec_Id
);
3676 Prot_Ext_Formal
: Entity_Id
:= Extra_Formals
(Spec_Id
);
3677 Impl_Ext_Formal
: Entity_Id
:= Extra_Formals
(Impl_Subp
);
3679 while Present
(Prot_Ext_Formal
) loop
3680 pragma Assert
(Present
(Impl_Ext_Formal
));
3681 Set_Protected_Formal
(Prot_Ext_Formal
, Impl_Ext_Formal
);
3682 Next_Formal_With_Extras
(Prot_Ext_Formal
);
3683 Next_Formal_With_Extras
(Impl_Ext_Formal
);
3688 -- Now we can go on to analyze the body
3690 HSS
:= Handled_Statement_Sequence
(N
);
3691 Set_Actual_Subtypes
(N
, Current_Scope
);
3693 -- Add a declaration for the Protection object, renaming declarations
3694 -- for discriminals and privals and finally a declaration for the entry
3695 -- family index (if applicable). This form of early expansion is done
3696 -- when the Expander is active because Install_Private_Data_Declarations
3697 -- references entities which were created during regular expansion. The
3698 -- subprogram entity must come from source, and not be an internally
3699 -- generated subprogram.
3702 and then Present
(Prot_Typ
)
3703 and then Present
(Spec_Id
)
3704 and then Comes_From_Source
(Spec_Id
)
3705 and then not Is_Eliminated
(Spec_Id
)
3707 Install_Private_Data_Declarations
3708 (Sloc
(N
), Spec_Id
, Prot_Typ
, N
, Declarations
(N
));
3711 -- Ada 2012 (AI05-0151): Incomplete types coming from a limited context
3712 -- may now appear in parameter and result profiles. Since the analysis
3713 -- of a subprogram body may use the parameter and result profile of the
3714 -- spec, swap any limited views with their non-limited counterpart.
3716 if Ada_Version
>= Ada_2012
then
3717 Exchange_Limited_Views
(Spec_Id
);
3720 -- Analyze any aspect specifications that appear on the subprogram body
3722 if Has_Aspects
(N
) then
3723 Analyze_Aspects_On_Body_Or_Stub
;
3726 -- Deal with [refined] preconditions, postconditions, Contract_Cases,
3727 -- invariants and predicates associated with the body and its spec.
3728 -- Note that this is not pure expansion as Expand_Subprogram_Contract
3729 -- prepares the contract assertions for generic subprograms or for ASIS.
3730 -- Do not generate contract checks in SPARK mode.
3732 if not GNATprove_Mode
then
3733 Expand_Subprogram_Contract
(N
, Spec_Id
, Body_Id
);
3736 -- Analyze the declarations (this call will analyze the precondition
3737 -- Check pragmas we prepended to the list, as well as the declaration
3738 -- of the _Postconditions procedure).
3740 Analyze_Declarations
(Declarations
(N
));
3742 -- Verify that the SPARK_Mode of the body agrees with that of its spec
3744 if Present
(Spec_Id
) and then Present
(SPARK_Pragma
(Body_Id
)) then
3745 if Present
(SPARK_Pragma
(Spec_Id
)) then
3746 if Get_SPARK_Mode_From_Pragma
(SPARK_Pragma
(Spec_Id
)) = Off
3748 Get_SPARK_Mode_From_Pragma
(SPARK_Pragma
(Body_Id
)) = On
3750 Error_Msg_Sloc
:= Sloc
(SPARK_Pragma
(Body_Id
));
3751 Error_Msg_N
("incorrect application of SPARK_Mode#", N
);
3752 Error_Msg_Sloc
:= Sloc
(SPARK_Pragma
(Spec_Id
));
3754 ("\value Off was set for SPARK_Mode on & #", N
, Spec_Id
);
3757 elsif Nkind
(Parent
(Parent
(Spec_Id
))) = N_Subprogram_Body_Stub
then
3761 Error_Msg_Sloc
:= Sloc
(SPARK_Pragma
(Body_Id
));
3762 Error_Msg_N
("incorrect application of SPARK_Mode #", N
);
3763 Error_Msg_Sloc
:= Sloc
(Spec_Id
);
3765 ("\no value was set for SPARK_Mode on & #", N
, Spec_Id
);
3769 -- If SPARK_Mode for body is not On, disable frontend inlining for this
3770 -- subprogram in GNATprove mode, as its body should not be analyzed.
3773 and then GNATprove_Mode
3774 and then Present
(Spec_Id
)
3775 and then Nkind
(Parent
(Parent
(Spec_Id
))) = N_Subprogram_Declaration
3777 Set_Body_To_Inline
(Parent
(Parent
(Spec_Id
)), Empty
);
3778 Set_Is_Inlined_Always
(Spec_Id
, False);
3781 -- Check completion, and analyze the statements
3784 Inspect_Deferred_Constant_Completion
(Declarations
(N
));
3787 -- Deal with end of scope processing for the body
3789 Process_End_Label
(HSS
, 't', Current_Scope
);
3791 Check_Subprogram_Order
(N
);
3792 Set_Analyzed
(Body_Id
);
3794 -- If we have a separate spec, then the analysis of the declarations
3795 -- caused the entities in the body to be chained to the spec id, but
3796 -- we want them chained to the body id. Only the formal parameters
3797 -- end up chained to the spec id in this case.
3799 if Present
(Spec_Id
) then
3801 -- We must conform to the categorization of our spec
3803 Validate_Categorization_Dependency
(N
, Spec_Id
);
3805 -- And if this is a child unit, the parent units must conform
3807 if Is_Child_Unit
(Spec_Id
) then
3808 Validate_Categorization_Dependency
3809 (Unit_Declaration_Node
(Spec_Id
), Spec_Id
);
3812 -- Here is where we move entities from the spec to the body
3814 -- Case where there are entities that stay with the spec
3816 if Present
(Last_Real_Spec_Entity
) then
3818 -- No body entities (happens when the only real spec entities come
3819 -- from precondition and postcondition pragmas).
3821 if No
(Last_Entity
(Body_Id
)) then
3823 (Body_Id
, Next_Entity
(Last_Real_Spec_Entity
));
3825 -- Body entities present (formals), so chain stuff past them
3829 (Last_Entity
(Body_Id
), Next_Entity
(Last_Real_Spec_Entity
));
3832 Set_Next_Entity
(Last_Real_Spec_Entity
, Empty
);
3833 Set_Last_Entity
(Body_Id
, Last_Entity
(Spec_Id
));
3834 Set_Last_Entity
(Spec_Id
, Last_Real_Spec_Entity
);
3836 -- Case where there are no spec entities, in this case there can be
3837 -- no body entities either, so just move everything.
3840 pragma Assert
(No
(Last_Entity
(Body_Id
)));
3841 Set_First_Entity
(Body_Id
, First_Entity
(Spec_Id
));
3842 Set_Last_Entity
(Body_Id
, Last_Entity
(Spec_Id
));
3843 Set_First_Entity
(Spec_Id
, Empty
);
3844 Set_Last_Entity
(Spec_Id
, Empty
);
3848 Check_Missing_Return
;
3850 -- Now we are going to check for variables that are never modified in
3851 -- the body of the procedure. But first we deal with a special case
3852 -- where we want to modify this check. If the body of the subprogram
3853 -- starts with a raise statement or its equivalent, or if the body
3854 -- consists entirely of a null statement, then it is pretty obvious that
3855 -- it is OK to not reference the parameters. For example, this might be
3856 -- the following common idiom for a stubbed function: statement of the
3857 -- procedure raises an exception. In particular this deals with the
3858 -- common idiom of a stubbed function, which appears something like:
3860 -- function F (A : Integer) return Some_Type;
3863 -- raise Program_Error;
3867 -- Here the purpose of X is simply to satisfy the annoying requirement
3868 -- in Ada that there be at least one return, and we certainly do not
3869 -- want to go posting warnings on X that it is not initialized. On
3870 -- the other hand, if X is entirely unreferenced that should still
3873 -- What we do is to detect these cases, and if we find them, flag the
3874 -- subprogram as being Is_Trivial_Subprogram and then use that flag to
3875 -- suppress unwanted warnings. For the case of the function stub above
3876 -- we have a special test to set X as apparently assigned to suppress
3883 -- Skip initial labels (for one thing this occurs when we are in
3884 -- front end ZCX mode, but in any case it is irrelevant), and also
3885 -- initial Push_xxx_Error_Label nodes, which are also irrelevant.
3887 Stm
:= First
(Statements
(HSS
));
3888 while Nkind
(Stm
) = N_Label
3889 or else Nkind
(Stm
) in N_Push_xxx_Label
3894 -- Do the test on the original statement before expansion
3897 Ostm
: constant Node_Id
:= Original_Node
(Stm
);
3900 -- If explicit raise statement, turn on flag
3902 if Nkind
(Ostm
) = N_Raise_Statement
then
3903 Set_Trivial_Subprogram
(Stm
);
3905 -- If null statement, and no following statements, turn on flag
3907 elsif Nkind
(Stm
) = N_Null_Statement
3908 and then Comes_From_Source
(Stm
)
3909 and then No
(Next
(Stm
))
3911 Set_Trivial_Subprogram
(Stm
);
3913 -- Check for explicit call cases which likely raise an exception
3915 elsif Nkind
(Ostm
) = N_Procedure_Call_Statement
then
3916 if Is_Entity_Name
(Name
(Ostm
)) then
3918 Ent
: constant Entity_Id
:= Entity
(Name
(Ostm
));
3921 -- If the procedure is marked No_Return, then likely it
3922 -- raises an exception, but in any case it is not coming
3923 -- back here, so turn on the flag.
3926 and then Ekind
(Ent
) = E_Procedure
3927 and then No_Return
(Ent
)
3929 Set_Trivial_Subprogram
(Stm
);
3937 -- Check for variables that are never modified
3943 -- If there is a separate spec, then transfer Never_Set_In_Source
3944 -- flags from out parameters to the corresponding entities in the
3945 -- body. The reason we do that is we want to post error flags on
3946 -- the body entities, not the spec entities.
3948 if Present
(Spec_Id
) then
3949 E1
:= First_Entity
(Spec_Id
);
3950 while Present
(E1
) loop
3951 if Ekind
(E1
) = E_Out_Parameter
then
3952 E2
:= First_Entity
(Body_Id
);
3953 while Present
(E2
) loop
3954 exit when Chars
(E1
) = Chars
(E2
);
3958 if Present
(E2
) then
3959 Set_Never_Set_In_Source
(E2
, Never_Set_In_Source
(E1
));
3967 -- Check references in body
3969 Check_References
(Body_Id
);
3971 end Analyze_Subprogram_Body_Helper
;
3973 ---------------------------------
3974 -- Analyze_Subprogram_Contract --
3975 ---------------------------------
3977 procedure Analyze_Subprogram_Contract
(Subp
: Entity_Id
) is
3978 Items
: constant Node_Id
:= Contract
(Subp
);
3979 Case_Prag
: Node_Id
:= Empty
;
3980 Depends
: Node_Id
:= Empty
;
3981 Global
: Node_Id
:= Empty
;
3982 Mode
: SPARK_Mode_Type
;
3984 Post_Prag
: Node_Id
:= Empty
;
3986 Seen_In_Case
: Boolean := False;
3987 Seen_In_Post
: Boolean := False;
3990 -- Due to the timing of contract analysis, delayed pragmas may be
3991 -- subject to the wrong SPARK_Mode, usually that of the enclosing
3992 -- context. To remedy this, restore the original SPARK_Mode of the
3993 -- related subprogram body.
3995 Save_SPARK_Mode_And_Set
(Subp
, Mode
);
3997 if Present
(Items
) then
3999 -- Analyze pre- and postconditions
4001 Prag
:= Pre_Post_Conditions
(Items
);
4002 while Present
(Prag
) loop
4003 Analyze_Pre_Post_Condition_In_Decl_Part
(Prag
, Subp
);
4005 -- Verify whether a postcondition mentions attribute 'Result and
4006 -- its expression introduces a post-state.
4008 if Warn_On_Suspicious_Contract
4009 and then Pragma_Name
(Prag
) = Name_Postcondition
4012 Check_Result_And_Post_State
(Prag
, Seen_In_Post
);
4015 Prag
:= Next_Pragma
(Prag
);
4018 -- Analyze contract-cases and test-cases
4020 Prag
:= Contract_Test_Cases
(Items
);
4021 while Present
(Prag
) loop
4022 Nam
:= Pragma_Name
(Prag
);
4024 if Nam
= Name_Contract_Cases
then
4025 Analyze_Contract_Cases_In_Decl_Part
(Prag
);
4027 -- Verify whether contract-cases mention attribute 'Result and
4028 -- its expression introduces a post-state. Perform the check
4029 -- only when the pragma is legal.
4031 if Warn_On_Suspicious_Contract
4032 and then not Error_Posted
(Prag
)
4035 Check_Result_And_Post_State
(Prag
, Seen_In_Case
);
4039 pragma Assert
(Nam
= Name_Test_Case
);
4040 Analyze_Test_Case_In_Decl_Part
(Prag
, Subp
);
4043 Prag
:= Next_Pragma
(Prag
);
4046 -- Analyze classification pragmas
4048 Prag
:= Classifications
(Items
);
4049 while Present
(Prag
) loop
4050 Nam
:= Pragma_Name
(Prag
);
4052 if Nam
= Name_Depends
then
4054 else pragma Assert
(Nam
= Name_Global
);
4058 Prag
:= Next_Pragma
(Prag
);
4061 -- Analyze Global first as Depends may mention items classified in
4062 -- the global categorization.
4064 if Present
(Global
) then
4065 Analyze_Global_In_Decl_Part
(Global
);
4068 -- Depends must be analyzed after Global in order to see the modes of
4069 -- all global items.
4071 if Present
(Depends
) then
4072 Analyze_Depends_In_Decl_Part
(Depends
);
4076 -- Emit an error when neither the postconditions nor the contract-cases
4077 -- mention attribute 'Result in the context of a function.
4079 if Warn_On_Suspicious_Contract
4080 and then Ekind_In
(Subp
, E_Function
, E_Generic_Function
)
4082 if Present
(Case_Prag
)
4083 and then not Seen_In_Case
4084 and then Present
(Post_Prag
)
4085 and then not Seen_In_Post
4088 ("neither function postcondition nor contract cases mention "
4089 & "result?T?", Post_Prag
);
4091 elsif Present
(Case_Prag
) and then not Seen_In_Case
then
4093 ("contract cases do not mention result?T?", Case_Prag
);
4095 -- OK if we have at least one IN OUT parameter
4097 elsif Present
(Post_Prag
) and then not Seen_In_Post
then
4101 F
:= First_Formal
(Subp
);
4102 while Present
(F
) loop
4103 if Ekind
(F
) = E_In_Out_Parameter
then
4111 -- If no in-out parameters and no mention of Result, the contract
4112 -- is certainly suspicious.
4115 ("function postcondition does not mention result?T?", Post_Prag
);
4119 -- Restore the SPARK_Mode of the enclosing context after all delayed
4120 -- pragmas have been analyzed.
4122 Restore_SPARK_Mode
(Mode
);
4123 end Analyze_Subprogram_Contract
;
4125 ------------------------------------
4126 -- Analyze_Subprogram_Declaration --
4127 ------------------------------------
4129 procedure Analyze_Subprogram_Declaration
(N
: Node_Id
) is
4130 Scop
: constant Entity_Id
:= Current_Scope
;
4131 Designator
: Entity_Id
;
4133 Is_Completion
: Boolean;
4134 -- Indicates whether a null procedure declaration is a completion
4137 -- Null procedures are not allowed in SPARK
4139 if Nkind
(Specification
(N
)) = N_Procedure_Specification
4140 and then Null_Present
(Specification
(N
))
4142 Check_SPARK_05_Restriction
("null procedure is not allowed", N
);
4144 if Is_Protected_Type
(Current_Scope
) then
4145 Error_Msg_N
("protected operation cannot be a null procedure", N
);
4148 Analyze_Null_Procedure
(N
, Is_Completion
);
4150 if Is_Completion
then
4152 -- The null procedure acts as a body, nothing further is needed.
4158 Designator
:= Analyze_Subprogram_Specification
(Specification
(N
));
4160 -- A reference may already have been generated for the unit name, in
4161 -- which case the following call is redundant. However it is needed for
4162 -- declarations that are the rewriting of an expression function.
4164 Generate_Definition
(Designator
);
4166 -- Set SPARK mode from current context (may be overwritten later with
4167 -- explicit pragma).
4169 Set_SPARK_Pragma
(Designator
, SPARK_Mode_Pragma
);
4170 Set_SPARK_Pragma_Inherited
(Designator
, True);
4172 if Debug_Flag_C
then
4173 Write_Str
("==> subprogram spec ");
4174 Write_Name
(Chars
(Designator
));
4175 Write_Str
(" from ");
4176 Write_Location
(Sloc
(N
));
4181 Validate_RCI_Subprogram_Declaration
(N
);
4182 New_Overloaded_Entity
(Designator
);
4183 Check_Delayed_Subprogram
(Designator
);
4185 -- If the type of the first formal of the current subprogram is a non-
4186 -- generic tagged private type, mark the subprogram as being a private
4187 -- primitive. Ditto if this is a function with controlling result, and
4188 -- the return type is currently private. In both cases, the type of the
4189 -- controlling argument or result must be in the current scope for the
4190 -- operation to be primitive.
4192 if Has_Controlling_Result
(Designator
)
4193 and then Is_Private_Type
(Etype
(Designator
))
4194 and then Scope
(Etype
(Designator
)) = Current_Scope
4195 and then not Is_Generic_Actual_Type
(Etype
(Designator
))
4197 Set_Is_Private_Primitive
(Designator
);
4199 elsif Present
(First_Formal
(Designator
)) then
4201 Formal_Typ
: constant Entity_Id
:=
4202 Etype
(First_Formal
(Designator
));
4204 Set_Is_Private_Primitive
(Designator
,
4205 Is_Tagged_Type
(Formal_Typ
)
4206 and then Scope
(Formal_Typ
) = Current_Scope
4207 and then Is_Private_Type
(Formal_Typ
)
4208 and then not Is_Generic_Actual_Type
(Formal_Typ
));
4212 -- Ada 2005 (AI-251): Abstract interface primitives must be abstract
4215 if Ada_Version
>= Ada_2005
4216 and then Comes_From_Source
(N
)
4217 and then Is_Dispatching_Operation
(Designator
)
4224 if Has_Controlling_Result
(Designator
) then
4225 Etyp
:= Etype
(Designator
);
4228 E
:= First_Entity
(Designator
);
4230 and then Is_Formal
(E
)
4231 and then not Is_Controlling_Formal
(E
)
4239 if Is_Access_Type
(Etyp
) then
4240 Etyp
:= Directly_Designated_Type
(Etyp
);
4243 if Is_Interface
(Etyp
)
4244 and then not Is_Abstract_Subprogram
(Designator
)
4245 and then not (Ekind
(Designator
) = E_Procedure
4246 and then Null_Present
(Specification
(N
)))
4248 Error_Msg_Name_1
:= Chars
(Defining_Entity
(N
));
4250 -- Specialize error message based on procedures vs. functions,
4251 -- since functions can't be null subprograms.
4253 if Ekind
(Designator
) = E_Procedure
then
4255 ("interface procedure % must be abstract or null", N
);
4258 ("interface function % must be abstract", N
);
4264 -- What is the following code for, it used to be
4266 -- ??? Set_Suppress_Elaboration_Checks
4267 -- ??? (Designator, Elaboration_Checks_Suppressed (Designator));
4269 -- The following seems equivalent, but a bit dubious
4271 if Elaboration_Checks_Suppressed
(Designator
) then
4272 Set_Kill_Elaboration_Checks
(Designator
);
4275 if Scop
/= Standard_Standard
and then not Is_Child_Unit
(Designator
) then
4276 Set_Categorization_From_Scope
(Designator
, Scop
);
4279 -- For a compilation unit, check for library-unit pragmas
4281 Push_Scope
(Designator
);
4282 Set_Categorization_From_Pragmas
(N
);
4283 Validate_Categorization_Dependency
(N
, Designator
);
4287 -- For a compilation unit, set body required. This flag will only be
4288 -- reset if a valid Import or Interface pragma is processed later on.
4290 if Nkind
(Parent
(N
)) = N_Compilation_Unit
then
4291 Set_Body_Required
(Parent
(N
), True);
4293 if Ada_Version
>= Ada_2005
4294 and then Nkind
(Specification
(N
)) = N_Procedure_Specification
4295 and then Null_Present
(Specification
(N
))
4298 ("null procedure cannot be declared at library level", N
);
4302 Generate_Reference_To_Formals
(Designator
);
4303 Check_Eliminated
(Designator
);
4305 if Debug_Flag_C
then
4307 Write_Str
("<== subprogram spec ");
4308 Write_Name
(Chars
(Designator
));
4309 Write_Str
(" from ");
4310 Write_Location
(Sloc
(N
));
4314 if Is_Protected_Type
(Current_Scope
) then
4316 -- Indicate that this is a protected operation, because it may be
4317 -- used in subsequent declarations within the protected type.
4319 Set_Convention
(Designator
, Convention_Protected
);
4322 List_Inherited_Pre_Post_Aspects
(Designator
);
4324 if Has_Aspects
(N
) then
4325 Analyze_Aspect_Specifications
(N
, Designator
);
4327 end Analyze_Subprogram_Declaration
;
4329 --------------------------------------
4330 -- Analyze_Subprogram_Specification --
4331 --------------------------------------
4333 -- Reminder: N here really is a subprogram specification (not a subprogram
4334 -- declaration). This procedure is called to analyze the specification in
4335 -- both subprogram bodies and subprogram declarations (specs).
4337 function Analyze_Subprogram_Specification
(N
: Node_Id
) return Entity_Id
is
4338 Designator
: constant Entity_Id
:= Defining_Entity
(N
);
4339 Formals
: constant List_Id
:= Parameter_Specifications
(N
);
4341 -- Start of processing for Analyze_Subprogram_Specification
4344 -- User-defined operator is not allowed in SPARK, except as a renaming
4346 if Nkind
(Defining_Unit_Name
(N
)) = N_Defining_Operator_Symbol
4347 and then Nkind
(Parent
(N
)) /= N_Subprogram_Renaming_Declaration
4349 Check_SPARK_05_Restriction
4350 ("user-defined operator is not allowed", N
);
4353 -- Proceed with analysis. Do not emit a cross-reference entry if the
4354 -- specification comes from an expression function, because it may be
4355 -- the completion of a previous declaration. It is is not, the cross-
4356 -- reference entry will be emitted for the new subprogram declaration.
4358 if Nkind
(Parent
(N
)) /= N_Expression_Function
then
4359 Generate_Definition
(Designator
);
4362 Set_Contract
(Designator
, Make_Contract
(Sloc
(Designator
)));
4364 if Nkind
(N
) = N_Function_Specification
then
4365 Set_Ekind
(Designator
, E_Function
);
4366 Set_Mechanism
(Designator
, Default_Mechanism
);
4368 Set_Ekind
(Designator
, E_Procedure
);
4369 Set_Etype
(Designator
, Standard_Void_Type
);
4372 -- Flag Is_Inlined_Always is True by default, and reversed to False for
4373 -- those subprograms which could be inlined in GNATprove mode (because
4374 -- Body_To_Inline is non-Empty) but cannot be inlined.
4376 if GNATprove_Mode
then
4377 Set_Is_Inlined_Always
(Designator
);
4380 -- Introduce new scope for analysis of the formals and the return type
4382 Set_Scope
(Designator
, Current_Scope
);
4384 if Present
(Formals
) then
4385 Push_Scope
(Designator
);
4386 Process_Formals
(Formals
, N
);
4388 -- Check dimensions in N for formals with default expression
4390 Analyze_Dimension_Formals
(N
, Formals
);
4392 -- Ada 2005 (AI-345): If this is an overriding operation of an
4393 -- inherited interface operation, and the controlling type is
4394 -- a synchronized type, replace the type with its corresponding
4395 -- record, to match the proper signature of an overriding operation.
4396 -- Same processing for an access parameter whose designated type is
4397 -- derived from a synchronized interface.
4399 if Ada_Version
>= Ada_2005
then
4402 Formal_Typ
: Entity_Id
;
4403 Rec_Typ
: Entity_Id
;
4404 Desig_Typ
: Entity_Id
;
4407 Formal
:= First_Formal
(Designator
);
4408 while Present
(Formal
) loop
4409 Formal_Typ
:= Etype
(Formal
);
4411 if Is_Concurrent_Type
(Formal_Typ
)
4412 and then Present
(Corresponding_Record_Type
(Formal_Typ
))
4414 Rec_Typ
:= Corresponding_Record_Type
(Formal_Typ
);
4416 if Present
(Interfaces
(Rec_Typ
)) then
4417 Set_Etype
(Formal
, Rec_Typ
);
4420 elsif Ekind
(Formal_Typ
) = E_Anonymous_Access_Type
then
4421 Desig_Typ
:= Designated_Type
(Formal_Typ
);
4423 if Is_Concurrent_Type
(Desig_Typ
)
4424 and then Present
(Corresponding_Record_Type
(Desig_Typ
))
4426 Rec_Typ
:= Corresponding_Record_Type
(Desig_Typ
);
4428 if Present
(Interfaces
(Rec_Typ
)) then
4429 Set_Directly_Designated_Type
(Formal_Typ
, Rec_Typ
);
4434 Next_Formal
(Formal
);
4441 -- The subprogram scope is pushed and popped around the processing of
4442 -- the return type for consistency with call above to Process_Formals
4443 -- (which itself can call Analyze_Return_Type), and to ensure that any
4444 -- itype created for the return type will be associated with the proper
4447 elsif Nkind
(N
) = N_Function_Specification
then
4448 Push_Scope
(Designator
);
4449 Analyze_Return_Type
(N
);
4455 if Nkind
(N
) = N_Function_Specification
then
4457 -- Deal with operator symbol case
4459 if Nkind
(Designator
) = N_Defining_Operator_Symbol
then
4460 Valid_Operator_Definition
(Designator
);
4463 May_Need_Actuals
(Designator
);
4465 -- Ada 2005 (AI-251): If the return type is abstract, verify that
4466 -- the subprogram is abstract also. This does not apply to renaming
4467 -- declarations, where abstractness is inherited, and to subprogram
4468 -- bodies generated for stream operations, which become renamings as
4471 -- In case of primitives associated with abstract interface types
4472 -- the check is applied later (see Analyze_Subprogram_Declaration).
4474 if not Nkind_In
(Original_Node
(Parent
(N
)),
4475 N_Subprogram_Renaming_Declaration
,
4476 N_Abstract_Subprogram_Declaration
,
4477 N_Formal_Abstract_Subprogram_Declaration
)
4479 if Is_Abstract_Type
(Etype
(Designator
))
4480 and then not Is_Interface
(Etype
(Designator
))
4483 ("function that returns abstract type must be abstract", N
);
4485 -- Ada 2012 (AI-0073): Extend this test to subprograms with an
4486 -- access result whose designated type is abstract.
4488 elsif Nkind
(Result_Definition
(N
)) = N_Access_Definition
4490 not Is_Class_Wide_Type
(Designated_Type
(Etype
(Designator
)))
4491 and then Is_Abstract_Type
(Designated_Type
(Etype
(Designator
)))
4492 and then Ada_Version
>= Ada_2012
4494 Error_Msg_N
("function whose access result designates "
4495 & "abstract type must be abstract", N
);
4501 end Analyze_Subprogram_Specification
;
4503 -----------------------
4504 -- Check_Conformance --
4505 -----------------------
4507 procedure Check_Conformance
4508 (New_Id
: Entity_Id
;
4510 Ctype
: Conformance_Type
;
4512 Conforms
: out Boolean;
4513 Err_Loc
: Node_Id
:= Empty
;
4514 Get_Inst
: Boolean := False;
4515 Skip_Controlling_Formals
: Boolean := False)
4517 procedure Conformance_Error
(Msg
: String; N
: Node_Id
:= New_Id
);
4518 -- Sets Conforms to False. If Errmsg is False, then that's all it does.
4519 -- If Errmsg is True, then processing continues to post an error message
4520 -- for conformance error on given node. Two messages are output. The
4521 -- first message points to the previous declaration with a general "no
4522 -- conformance" message. The second is the detailed reason, supplied as
4523 -- Msg. The parameter N provide information for a possible & insertion
4524 -- in the message, and also provides the location for posting the
4525 -- message in the absence of a specified Err_Loc location.
4527 -----------------------
4528 -- Conformance_Error --
4529 -----------------------
4531 procedure Conformance_Error
(Msg
: String; N
: Node_Id
:= New_Id
) is
4538 if No
(Err_Loc
) then
4544 Error_Msg_Sloc
:= Sloc
(Old_Id
);
4547 when Type_Conformant
=>
4548 Error_Msg_N
-- CODEFIX
4549 ("not type conformant with declaration#!", Enode
);
4551 when Mode_Conformant
=>
4552 if Nkind
(Parent
(Old_Id
)) = N_Full_Type_Declaration
then
4554 ("not mode conformant with operation inherited#!",
4558 ("not mode conformant with declaration#!", Enode
);
4561 when Subtype_Conformant
=>
4562 if Nkind
(Parent
(Old_Id
)) = N_Full_Type_Declaration
then
4564 ("not subtype conformant with operation inherited#!",
4568 ("not subtype conformant with declaration#!", Enode
);
4571 when Fully_Conformant
=>
4572 if Nkind
(Parent
(Old_Id
)) = N_Full_Type_Declaration
then
4573 Error_Msg_N
-- CODEFIX
4574 ("not fully conformant with operation inherited#!",
4577 Error_Msg_N
-- CODEFIX
4578 ("not fully conformant with declaration#!", Enode
);
4582 Error_Msg_NE
(Msg
, Enode
, N
);
4584 end Conformance_Error
;
4588 Old_Type
: constant Entity_Id
:= Etype
(Old_Id
);
4589 New_Type
: constant Entity_Id
:= Etype
(New_Id
);
4590 Old_Formal
: Entity_Id
;
4591 New_Formal
: Entity_Id
;
4592 Access_Types_Match
: Boolean;
4593 Old_Formal_Base
: Entity_Id
;
4594 New_Formal_Base
: Entity_Id
;
4596 -- Start of processing for Check_Conformance
4601 -- We need a special case for operators, since they don't appear
4604 if Ctype
= Type_Conformant
then
4605 if Ekind
(New_Id
) = E_Operator
4606 and then Operator_Matches_Spec
(New_Id
, Old_Id
)
4612 -- If both are functions/operators, check return types conform
4614 if Old_Type
/= Standard_Void_Type
4615 and then New_Type
/= Standard_Void_Type
4618 -- If we are checking interface conformance we omit controlling
4619 -- arguments and result, because we are only checking the conformance
4620 -- of the remaining parameters.
4622 if Has_Controlling_Result
(Old_Id
)
4623 and then Has_Controlling_Result
(New_Id
)
4624 and then Skip_Controlling_Formals
4628 elsif not Conforming_Types
(Old_Type
, New_Type
, Ctype
, Get_Inst
) then
4629 if Ctype
>= Subtype_Conformant
4630 and then not Predicates_Match
(Old_Type
, New_Type
)
4633 ("\predicate of return type does not match!", New_Id
);
4636 ("\return type does not match!", New_Id
);
4642 -- Ada 2005 (AI-231): In case of anonymous access types check the
4643 -- null-exclusion and access-to-constant attributes match.
4645 if Ada_Version
>= Ada_2005
4646 and then Ekind
(Etype
(Old_Type
)) = E_Anonymous_Access_Type
4648 (Can_Never_Be_Null
(Old_Type
) /= Can_Never_Be_Null
(New_Type
)
4649 or else Is_Access_Constant
(Etype
(Old_Type
)) /=
4650 Is_Access_Constant
(Etype
(New_Type
)))
4652 Conformance_Error
("\return type does not match!", New_Id
);
4656 -- If either is a function/operator and the other isn't, error
4658 elsif Old_Type
/= Standard_Void_Type
4659 or else New_Type
/= Standard_Void_Type
4661 Conformance_Error
("\functions can only match functions!", New_Id
);
4665 -- In subtype conformant case, conventions must match (RM 6.3.1(16)).
4666 -- If this is a renaming as body, refine error message to indicate that
4667 -- the conflict is with the original declaration. If the entity is not
4668 -- frozen, the conventions don't have to match, the one of the renamed
4669 -- entity is inherited.
4671 if Ctype
>= Subtype_Conformant
then
4672 if Convention
(Old_Id
) /= Convention
(New_Id
) then
4673 if not Is_Frozen
(New_Id
) then
4676 elsif Present
(Err_Loc
)
4677 and then Nkind
(Err_Loc
) = N_Subprogram_Renaming_Declaration
4678 and then Present
(Corresponding_Spec
(Err_Loc
))
4680 Error_Msg_Name_1
:= Chars
(New_Id
);
4682 Name_Ada
+ Convention_Id
'Pos (Convention
(New_Id
));
4683 Conformance_Error
("\prior declaration for% has convention %!");
4686 Conformance_Error
("\calling conventions do not match!");
4691 elsif Is_Formal_Subprogram
(Old_Id
)
4692 or else Is_Formal_Subprogram
(New_Id
)
4694 Conformance_Error
("\formal subprograms not allowed!");
4699 -- Deal with parameters
4701 -- Note: we use the entity information, rather than going directly
4702 -- to the specification in the tree. This is not only simpler, but
4703 -- absolutely necessary for some cases of conformance tests between
4704 -- operators, where the declaration tree simply does not exist.
4706 Old_Formal
:= First_Formal
(Old_Id
);
4707 New_Formal
:= First_Formal
(New_Id
);
4708 while Present
(Old_Formal
) and then Present
(New_Formal
) loop
4709 if Is_Controlling_Formal
(Old_Formal
)
4710 and then Is_Controlling_Formal
(New_Formal
)
4711 and then Skip_Controlling_Formals
4713 -- The controlling formals will have different types when
4714 -- comparing an interface operation with its match, but both
4715 -- or neither must be access parameters.
4717 if Is_Access_Type
(Etype
(Old_Formal
))
4719 Is_Access_Type
(Etype
(New_Formal
))
4721 goto Skip_Controlling_Formal
;
4724 ("\access parameter does not match!", New_Formal
);
4728 -- Ada 2012: Mode conformance also requires that formal parameters
4729 -- be both aliased, or neither.
4731 if Ctype
>= Mode_Conformant
and then Ada_Version
>= Ada_2012
then
4732 if Is_Aliased
(Old_Formal
) /= Is_Aliased
(New_Formal
) then
4734 ("\aliased parameter mismatch!", New_Formal
);
4738 if Ctype
= Fully_Conformant
then
4740 -- Names must match. Error message is more accurate if we do
4741 -- this before checking that the types of the formals match.
4743 if Chars
(Old_Formal
) /= Chars
(New_Formal
) then
4744 Conformance_Error
("\name& does not match!", New_Formal
);
4746 -- Set error posted flag on new formal as well to stop
4747 -- junk cascaded messages in some cases.
4749 Set_Error_Posted
(New_Formal
);
4753 -- Null exclusion must match
4755 if Null_Exclusion_Present
(Parent
(Old_Formal
))
4757 Null_Exclusion_Present
(Parent
(New_Formal
))
4759 -- Only give error if both come from source. This should be
4760 -- investigated some time, since it should not be needed ???
4762 if Comes_From_Source
(Old_Formal
)
4764 Comes_From_Source
(New_Formal
)
4767 ("\null exclusion for& does not match", New_Formal
);
4769 -- Mark error posted on the new formal to avoid duplicated
4770 -- complaint about types not matching.
4772 Set_Error_Posted
(New_Formal
);
4777 -- Ada 2005 (AI-423): Possible access [sub]type and itype match. This
4778 -- case occurs whenever a subprogram is being renamed and one of its
4779 -- parameters imposes a null exclusion. For example:
4781 -- type T is null record;
4782 -- type Acc_T is access T;
4783 -- subtype Acc_T_Sub is Acc_T;
4785 -- procedure P (Obj : not null Acc_T_Sub); -- itype
4786 -- procedure Ren_P (Obj : Acc_T_Sub) -- subtype
4789 Old_Formal_Base
:= Etype
(Old_Formal
);
4790 New_Formal_Base
:= Etype
(New_Formal
);
4793 Old_Formal_Base
:= Get_Instance_Of
(Old_Formal_Base
);
4794 New_Formal_Base
:= Get_Instance_Of
(New_Formal_Base
);
4797 Access_Types_Match
:= Ada_Version
>= Ada_2005
4799 -- Ensure that this rule is only applied when New_Id is a
4800 -- renaming of Old_Id.
4802 and then Nkind
(Parent
(Parent
(New_Id
))) =
4803 N_Subprogram_Renaming_Declaration
4804 and then Nkind
(Name
(Parent
(Parent
(New_Id
)))) in N_Has_Entity
4805 and then Present
(Entity
(Name
(Parent
(Parent
(New_Id
)))))
4806 and then Entity
(Name
(Parent
(Parent
(New_Id
)))) = Old_Id
4808 -- Now handle the allowed access-type case
4810 and then Is_Access_Type
(Old_Formal_Base
)
4811 and then Is_Access_Type
(New_Formal_Base
)
4813 -- The type kinds must match. The only exception occurs with
4814 -- multiple generics of the form:
4817 -- type F is private; type A is private;
4818 -- type F_Ptr is access F; type A_Ptr is access A;
4819 -- with proc F_P (X : F_Ptr); with proc A_P (X : A_Ptr);
4820 -- package F_Pack is ... package A_Pack is
4821 -- package F_Inst is
4822 -- new F_Pack (A, A_Ptr, A_P);
4824 -- When checking for conformance between the parameters of A_P
4825 -- and F_P, the type kinds of F_Ptr and A_Ptr will not match
4826 -- because the compiler has transformed A_Ptr into a subtype of
4827 -- F_Ptr. We catch this case in the code below.
4829 and then (Ekind
(Old_Formal_Base
) = Ekind
(New_Formal_Base
)
4831 (Is_Generic_Type
(Old_Formal_Base
)
4832 and then Is_Generic_Type
(New_Formal_Base
)
4833 and then Is_Internal
(New_Formal_Base
)
4834 and then Etype
(Etype
(New_Formal_Base
)) =
4836 and then Directly_Designated_Type
(Old_Formal_Base
) =
4837 Directly_Designated_Type
(New_Formal_Base
)
4838 and then ((Is_Itype
(Old_Formal_Base
)
4839 and then Can_Never_Be_Null
(Old_Formal_Base
))
4841 (Is_Itype
(New_Formal_Base
)
4842 and then Can_Never_Be_Null
(New_Formal_Base
)));
4844 -- Types must always match. In the visible part of an instance,
4845 -- usual overloading rules for dispatching operations apply, and
4846 -- we check base types (not the actual subtypes).
4848 if In_Instance_Visible_Part
4849 and then Is_Dispatching_Operation
(New_Id
)
4851 if not Conforming_Types
4852 (T1
=> Base_Type
(Etype
(Old_Formal
)),
4853 T2
=> Base_Type
(Etype
(New_Formal
)),
4855 Get_Inst
=> Get_Inst
)
4856 and then not Access_Types_Match
4858 Conformance_Error
("\type of & does not match!", New_Formal
);
4862 elsif not Conforming_Types
4863 (T1
=> Old_Formal_Base
,
4864 T2
=> New_Formal_Base
,
4866 Get_Inst
=> Get_Inst
)
4867 and then not Access_Types_Match
4869 -- Don't give error message if old type is Any_Type. This test
4870 -- avoids some cascaded errors, e.g. in case of a bad spec.
4872 if Errmsg
and then Old_Formal_Base
= Any_Type
then
4875 if Ctype
>= Subtype_Conformant
4877 not Predicates_Match
(Old_Formal_Base
, New_Formal_Base
)
4880 ("\predicate of & does not match!", New_Formal
);
4883 ("\type of & does not match!", New_Formal
);
4890 -- For mode conformance, mode must match
4892 if Ctype
>= Mode_Conformant
then
4893 if Parameter_Mode
(Old_Formal
) /= Parameter_Mode
(New_Formal
) then
4894 if not Ekind_In
(New_Id
, E_Function
, E_Procedure
)
4895 or else not Is_Primitive_Wrapper
(New_Id
)
4897 Conformance_Error
("\mode of & does not match!", New_Formal
);
4901 T
: constant Entity_Id
:= Find_Dispatching_Type
(New_Id
);
4903 if Is_Protected_Type
(Corresponding_Concurrent_Type
(T
))
4905 Error_Msg_PT
(T
, New_Id
);
4908 ("\mode of & does not match!", New_Formal
);
4915 -- Part of mode conformance for access types is having the same
4916 -- constant modifier.
4918 elsif Access_Types_Match
4919 and then Is_Access_Constant
(Old_Formal_Base
) /=
4920 Is_Access_Constant
(New_Formal_Base
)
4923 ("\constant modifier does not match!", New_Formal
);
4928 if Ctype
>= Subtype_Conformant
then
4930 -- Ada 2005 (AI-231): In case of anonymous access types check
4931 -- the null-exclusion and access-to-constant attributes must
4932 -- match. For null exclusion, we test the types rather than the
4933 -- formals themselves, since the attribute is only set reliably
4934 -- on the formals in the Ada 95 case, and we exclude the case
4935 -- where Old_Formal is marked as controlling, to avoid errors
4936 -- when matching completing bodies with dispatching declarations
4937 -- (access formals in the bodies aren't marked Can_Never_Be_Null).
4939 if Ada_Version
>= Ada_2005
4940 and then Ekind
(Etype
(Old_Formal
)) = E_Anonymous_Access_Type
4941 and then Ekind
(Etype
(New_Formal
)) = E_Anonymous_Access_Type
4943 ((Can_Never_Be_Null
(Etype
(Old_Formal
)) /=
4944 Can_Never_Be_Null
(Etype
(New_Formal
))
4946 not Is_Controlling_Formal
(Old_Formal
))
4948 Is_Access_Constant
(Etype
(Old_Formal
)) /=
4949 Is_Access_Constant
(Etype
(New_Formal
)))
4951 -- Do not complain if error already posted on New_Formal. This
4952 -- avoids some redundant error messages.
4954 and then not Error_Posted
(New_Formal
)
4956 -- It is allowed to omit the null-exclusion in case of stream
4957 -- attribute subprograms. We recognize stream subprograms
4958 -- through their TSS-generated suffix.
4961 TSS_Name
: constant TSS_Name_Type
:= Get_TSS_Name
(New_Id
);
4964 if TSS_Name
/= TSS_Stream_Read
4965 and then TSS_Name
/= TSS_Stream_Write
4966 and then TSS_Name
/= TSS_Stream_Input
4967 and then TSS_Name
/= TSS_Stream_Output
4969 -- Here we have a definite conformance error. It is worth
4970 -- special casing the error message for the case of a
4971 -- controlling formal (which excludes null).
4973 if Is_Controlling_Formal
(New_Formal
) then
4974 Error_Msg_Node_2
:= Scope
(New_Formal
);
4976 ("\controlling formal & of & excludes null, "
4977 & "declaration must exclude null as well",
4980 -- Normal case (couldn't we give more detail here???)
4984 ("\type of & does not match!", New_Formal
);
4993 -- Full conformance checks
4995 if Ctype
= Fully_Conformant
then
4997 -- We have checked already that names match
4999 if Parameter_Mode
(Old_Formal
) = E_In_Parameter
then
5001 -- Check default expressions for in parameters
5004 NewD
: constant Boolean :=
5005 Present
(Default_Value
(New_Formal
));
5006 OldD
: constant Boolean :=
5007 Present
(Default_Value
(Old_Formal
));
5009 if NewD
or OldD
then
5011 -- The old default value has been analyzed because the
5012 -- current full declaration will have frozen everything
5013 -- before. The new default value has not been analyzed,
5014 -- so analyze it now before we check for conformance.
5017 Push_Scope
(New_Id
);
5018 Preanalyze_Spec_Expression
5019 (Default_Value
(New_Formal
), Etype
(New_Formal
));
5023 if not (NewD
and OldD
)
5024 or else not Fully_Conformant_Expressions
5025 (Default_Value
(Old_Formal
),
5026 Default_Value
(New_Formal
))
5029 ("\default expression for & does not match!",
5038 -- A couple of special checks for Ada 83 mode. These checks are
5039 -- skipped if either entity is an operator in package Standard,
5040 -- or if either old or new instance is not from the source program.
5042 if Ada_Version
= Ada_83
5043 and then Sloc
(Old_Id
) > Standard_Location
5044 and then Sloc
(New_Id
) > Standard_Location
5045 and then Comes_From_Source
(Old_Id
)
5046 and then Comes_From_Source
(New_Id
)
5049 Old_Param
: constant Node_Id
:= Declaration_Node
(Old_Formal
);
5050 New_Param
: constant Node_Id
:= Declaration_Node
(New_Formal
);
5053 -- Explicit IN must be present or absent in both cases. This
5054 -- test is required only in the full conformance case.
5056 if In_Present
(Old_Param
) /= In_Present
(New_Param
)
5057 and then Ctype
= Fully_Conformant
5060 ("\(Ada 83) IN must appear in both declarations",
5065 -- Grouping (use of comma in param lists) must be the same
5066 -- This is where we catch a misconformance like:
5069 -- A : Integer; B : Integer
5071 -- which are represented identically in the tree except
5072 -- for the setting of the flags More_Ids and Prev_Ids.
5074 if More_Ids
(Old_Param
) /= More_Ids
(New_Param
)
5075 or else Prev_Ids
(Old_Param
) /= Prev_Ids
(New_Param
)
5078 ("\grouping of & does not match!", New_Formal
);
5084 -- This label is required when skipping controlling formals
5086 <<Skip_Controlling_Formal
>>
5088 Next_Formal
(Old_Formal
);
5089 Next_Formal
(New_Formal
);
5092 if Present
(Old_Formal
) then
5093 Conformance_Error
("\too few parameters!");
5096 elsif Present
(New_Formal
) then
5097 Conformance_Error
("\too many parameters!", New_Formal
);
5100 end Check_Conformance
;
5102 -----------------------
5103 -- Check_Conventions --
5104 -----------------------
5106 procedure Check_Conventions
(Typ
: Entity_Id
) is
5107 Ifaces_List
: Elist_Id
;
5109 procedure Check_Convention
(Op
: Entity_Id
);
5110 -- Verify that the convention of inherited dispatching operation Op is
5111 -- consistent among all subprograms it overrides. In order to minimize
5112 -- the search, Search_From is utilized to designate a specific point in
5113 -- the list rather than iterating over the whole list once more.
5115 ----------------------
5116 -- Check_Convention --
5117 ----------------------
5119 procedure Check_Convention
(Op
: Entity_Id
) is
5120 function Convention_Of
(Id
: Entity_Id
) return Convention_Id
;
5121 -- Given an entity, return its convention. The function treats Ghost
5122 -- as convention Ada because the two have the same dynamic semantics.
5128 function Convention_Of
(Id
: Entity_Id
) return Convention_Id
is
5129 Conv
: constant Convention_Id
:= Convention
(Id
);
5131 if Conv
= Convention_Ghost
then
5132 return Convention_Ada
;
5140 Op_Conv
: constant Convention_Id
:= Convention_Of
(Op
);
5141 Iface_Conv
: Convention_Id
;
5142 Iface_Elmt
: Elmt_Id
;
5143 Iface_Prim_Elmt
: Elmt_Id
;
5144 Iface_Prim
: Entity_Id
;
5146 -- Start of processing for Check_Convention
5149 Iface_Elmt
:= First_Elmt
(Ifaces_List
);
5150 while Present
(Iface_Elmt
) loop
5152 First_Elmt
(Primitive_Operations
(Node
(Iface_Elmt
)));
5153 while Present
(Iface_Prim_Elmt
) loop
5154 Iface_Prim
:= Node
(Iface_Prim_Elmt
);
5155 Iface_Conv
:= Convention_Of
(Iface_Prim
);
5157 if Is_Interface_Conformant
(Typ
, Iface_Prim
, Op
)
5158 and then Iface_Conv
/= Op_Conv
5161 ("inconsistent conventions in primitive operations", Typ
);
5163 Error_Msg_Name_1
:= Chars
(Op
);
5164 Error_Msg_Name_2
:= Get_Convention_Name
(Op_Conv
);
5165 Error_Msg_Sloc
:= Sloc
(Op
);
5167 if Comes_From_Source
(Op
) or else No
(Alias
(Op
)) then
5168 if not Present
(Overridden_Operation
(Op
)) then
5169 Error_Msg_N
("\\primitive % defined #", Typ
);
5172 ("\\overriding operation % with "
5173 & "convention % defined #", Typ
);
5176 else pragma Assert
(Present
(Alias
(Op
)));
5177 Error_Msg_Sloc
:= Sloc
(Alias
(Op
));
5178 Error_Msg_N
("\\inherited operation % with "
5179 & "convention % defined #", Typ
);
5182 Error_Msg_Name_1
:= Chars
(Op
);
5183 Error_Msg_Name_2
:= Get_Convention_Name
(Iface_Conv
);
5184 Error_Msg_Sloc
:= Sloc
(Iface_Prim
);
5185 Error_Msg_N
("\\overridden operation % with "
5186 & "convention % defined #", Typ
);
5188 -- Avoid cascading errors
5193 Next_Elmt
(Iface_Prim_Elmt
);
5196 Next_Elmt
(Iface_Elmt
);
5198 end Check_Convention
;
5202 Prim_Op
: Entity_Id
;
5203 Prim_Op_Elmt
: Elmt_Id
;
5205 -- Start of processing for Check_Conventions
5208 if not Has_Interfaces
(Typ
) then
5212 Collect_Interfaces
(Typ
, Ifaces_List
);
5214 -- The algorithm checks every overriding dispatching operation against
5215 -- all the corresponding overridden dispatching operations, detecting
5216 -- differences in conventions.
5218 Prim_Op_Elmt
:= First_Elmt
(Primitive_Operations
(Typ
));
5219 while Present
(Prim_Op_Elmt
) loop
5220 Prim_Op
:= Node
(Prim_Op_Elmt
);
5222 -- A small optimization: skip the predefined dispatching operations
5223 -- since they always have the same convention.
5225 if not Is_Predefined_Dispatching_Operation
(Prim_Op
) then
5226 Check_Convention
(Prim_Op
);
5229 Next_Elmt
(Prim_Op_Elmt
);
5231 end Check_Conventions
;
5233 ------------------------------
5234 -- Check_Delayed_Subprogram --
5235 ------------------------------
5237 procedure Check_Delayed_Subprogram
(Designator
: Entity_Id
) is
5240 procedure Possible_Freeze
(T
: Entity_Id
);
5241 -- T is the type of either a formal parameter or of the return type.
5242 -- If T is not yet frozen and needs a delayed freeze, then the
5243 -- subprogram itself must be delayed. If T is the limited view of an
5244 -- incomplete type the subprogram must be frozen as well, because
5245 -- T may depend on local types that have not been frozen yet.
5247 ---------------------
5248 -- Possible_Freeze --
5249 ---------------------
5251 procedure Possible_Freeze
(T
: Entity_Id
) is
5253 if Has_Delayed_Freeze
(T
) and then not Is_Frozen
(T
) then
5254 Set_Has_Delayed_Freeze
(Designator
);
5256 elsif Is_Access_Type
(T
)
5257 and then Has_Delayed_Freeze
(Designated_Type
(T
))
5258 and then not Is_Frozen
(Designated_Type
(T
))
5260 Set_Has_Delayed_Freeze
(Designator
);
5262 elsif Ekind
(T
) = E_Incomplete_Type
5263 and then From_Limited_With
(T
)
5265 Set_Has_Delayed_Freeze
(Designator
);
5267 -- AI05-0151: In Ada 2012, Incomplete types can appear in the profile
5268 -- of a subprogram or entry declaration.
5270 elsif Ekind
(T
) = E_Incomplete_Type
5271 and then Ada_Version
>= Ada_2012
5273 Set_Has_Delayed_Freeze
(Designator
);
5276 end Possible_Freeze
;
5278 -- Start of processing for Check_Delayed_Subprogram
5281 -- All subprograms, including abstract subprograms, may need a freeze
5282 -- node if some formal type or the return type needs one.
5284 Possible_Freeze
(Etype
(Designator
));
5285 Possible_Freeze
(Base_Type
(Etype
(Designator
))); -- needed ???
5287 -- Need delayed freeze if any of the formal types themselves need
5288 -- a delayed freeze and are not yet frozen.
5290 F
:= First_Formal
(Designator
);
5291 while Present
(F
) loop
5292 Possible_Freeze
(Etype
(F
));
5293 Possible_Freeze
(Base_Type
(Etype
(F
))); -- needed ???
5297 -- Mark functions that return by reference. Note that it cannot be
5298 -- done for delayed_freeze subprograms because the underlying
5299 -- returned type may not be known yet (for private types)
5301 if not Has_Delayed_Freeze
(Designator
) and then Expander_Active
then
5303 Typ
: constant Entity_Id
:= Etype
(Designator
);
5304 Utyp
: constant Entity_Id
:= Underlying_Type
(Typ
);
5306 if Is_Limited_View
(Typ
) then
5307 Set_Returns_By_Ref
(Designator
);
5308 elsif Present
(Utyp
) and then CW_Or_Has_Controlled_Part
(Utyp
) then
5309 Set_Returns_By_Ref
(Designator
);
5313 end Check_Delayed_Subprogram
;
5315 ------------------------------------
5316 -- Check_Discriminant_Conformance --
5317 ------------------------------------
5319 procedure Check_Discriminant_Conformance
5324 Old_Discr
: Entity_Id
:= First_Discriminant
(Prev
);
5325 New_Discr
: Node_Id
:= First
(Discriminant_Specifications
(N
));
5326 New_Discr_Id
: Entity_Id
;
5327 New_Discr_Type
: Entity_Id
;
5329 procedure Conformance_Error
(Msg
: String; N
: Node_Id
);
5330 -- Post error message for conformance error on given node. Two messages
5331 -- are output. The first points to the previous declaration with a
5332 -- general "no conformance" message. The second is the detailed reason,
5333 -- supplied as Msg. The parameter N provide information for a possible
5334 -- & insertion in the message.
5336 -----------------------
5337 -- Conformance_Error --
5338 -----------------------
5340 procedure Conformance_Error
(Msg
: String; N
: Node_Id
) is
5342 Error_Msg_Sloc
:= Sloc
(Prev_Loc
);
5343 Error_Msg_N
-- CODEFIX
5344 ("not fully conformant with declaration#!", N
);
5345 Error_Msg_NE
(Msg
, N
, N
);
5346 end Conformance_Error
;
5348 -- Start of processing for Check_Discriminant_Conformance
5351 while Present
(Old_Discr
) and then Present
(New_Discr
) loop
5352 New_Discr_Id
:= Defining_Identifier
(New_Discr
);
5354 -- The subtype mark of the discriminant on the full type has not
5355 -- been analyzed so we do it here. For an access discriminant a new
5358 if Nkind
(Discriminant_Type
(New_Discr
)) = N_Access_Definition
then
5360 Access_Definition
(N
, Discriminant_Type
(New_Discr
));
5363 Analyze
(Discriminant_Type
(New_Discr
));
5364 New_Discr_Type
:= Etype
(Discriminant_Type
(New_Discr
));
5366 -- Ada 2005: if the discriminant definition carries a null
5367 -- exclusion, create an itype to check properly for consistency
5368 -- with partial declaration.
5370 if Is_Access_Type
(New_Discr_Type
)
5371 and then Null_Exclusion_Present
(New_Discr
)
5374 Create_Null_Excluding_Itype
5375 (T
=> New_Discr_Type
,
5376 Related_Nod
=> New_Discr
,
5377 Scope_Id
=> Current_Scope
);
5381 if not Conforming_Types
5382 (Etype
(Old_Discr
), New_Discr_Type
, Fully_Conformant
)
5384 Conformance_Error
("type of & does not match!", New_Discr_Id
);
5387 -- Treat the new discriminant as an occurrence of the old one,
5388 -- for navigation purposes, and fill in some semantic
5389 -- information, for completeness.
5391 Generate_Reference
(Old_Discr
, New_Discr_Id
, 'r');
5392 Set_Etype
(New_Discr_Id
, Etype
(Old_Discr
));
5393 Set_Scope
(New_Discr_Id
, Scope
(Old_Discr
));
5398 if Chars
(Old_Discr
) /= Chars
(Defining_Identifier
(New_Discr
)) then
5399 Conformance_Error
("name & does not match!", New_Discr_Id
);
5403 -- Default expressions must match
5406 NewD
: constant Boolean :=
5407 Present
(Expression
(New_Discr
));
5408 OldD
: constant Boolean :=
5409 Present
(Expression
(Parent
(Old_Discr
)));
5412 if NewD
or OldD
then
5414 -- The old default value has been analyzed and expanded,
5415 -- because the current full declaration will have frozen
5416 -- everything before. The new default values have not been
5417 -- expanded, so expand now to check conformance.
5420 Preanalyze_Spec_Expression
5421 (Expression
(New_Discr
), New_Discr_Type
);
5424 if not (NewD
and OldD
)
5425 or else not Fully_Conformant_Expressions
5426 (Expression
(Parent
(Old_Discr
)),
5427 Expression
(New_Discr
))
5431 ("default expression for & does not match!",
5438 -- In Ada 83 case, grouping must match: (A,B : X) /= (A : X; B : X)
5440 if Ada_Version
= Ada_83
then
5442 Old_Disc
: constant Node_Id
:= Declaration_Node
(Old_Discr
);
5445 -- Grouping (use of comma in param lists) must be the same
5446 -- This is where we catch a misconformance like:
5449 -- A : Integer; B : Integer
5451 -- which are represented identically in the tree except
5452 -- for the setting of the flags More_Ids and Prev_Ids.
5454 if More_Ids
(Old_Disc
) /= More_Ids
(New_Discr
)
5455 or else Prev_Ids
(Old_Disc
) /= Prev_Ids
(New_Discr
)
5458 ("grouping of & does not match!", New_Discr_Id
);
5464 Next_Discriminant
(Old_Discr
);
5468 if Present
(Old_Discr
) then
5469 Conformance_Error
("too few discriminants!", Defining_Identifier
(N
));
5472 elsif Present
(New_Discr
) then
5474 ("too many discriminants!", Defining_Identifier
(New_Discr
));
5477 end Check_Discriminant_Conformance
;
5479 ----------------------------
5480 -- Check_Fully_Conformant --
5481 ----------------------------
5483 procedure Check_Fully_Conformant
5484 (New_Id
: Entity_Id
;
5486 Err_Loc
: Node_Id
:= Empty
)
5489 pragma Warnings
(Off
, Result
);
5492 (New_Id
, Old_Id
, Fully_Conformant
, True, Result
, Err_Loc
);
5493 end Check_Fully_Conformant
;
5495 ---------------------------
5496 -- Check_Mode_Conformant --
5497 ---------------------------
5499 procedure Check_Mode_Conformant
5500 (New_Id
: Entity_Id
;
5502 Err_Loc
: Node_Id
:= Empty
;
5503 Get_Inst
: Boolean := False)
5506 pragma Warnings
(Off
, Result
);
5509 (New_Id
, Old_Id
, Mode_Conformant
, True, Result
, Err_Loc
, Get_Inst
);
5510 end Check_Mode_Conformant
;
5512 --------------------------------
5513 -- Check_Overriding_Indicator --
5514 --------------------------------
5516 procedure Check_Overriding_Indicator
5518 Overridden_Subp
: Entity_Id
;
5519 Is_Primitive
: Boolean)
5525 -- No overriding indicator for literals
5527 if Ekind
(Subp
) = E_Enumeration_Literal
then
5530 elsif Ekind
(Subp
) = E_Entry
then
5531 Decl
:= Parent
(Subp
);
5533 -- No point in analyzing a malformed operator
5535 elsif Nkind
(Subp
) = N_Defining_Operator_Symbol
5536 and then Error_Posted
(Subp
)
5541 Decl
:= Unit_Declaration_Node
(Subp
);
5544 if Nkind_In
(Decl
, N_Subprogram_Body
,
5545 N_Subprogram_Body_Stub
,
5546 N_Subprogram_Declaration
,
5547 N_Abstract_Subprogram_Declaration
,
5548 N_Subprogram_Renaming_Declaration
)
5550 Spec
:= Specification
(Decl
);
5552 elsif Nkind
(Decl
) = N_Entry_Declaration
then
5559 -- The overriding operation is type conformant with the overridden one,
5560 -- but the names of the formals are not required to match. If the names
5561 -- appear permuted in the overriding operation, this is a possible
5562 -- source of confusion that is worth diagnosing. Controlling formals
5563 -- often carry names that reflect the type, and it is not worthwhile
5564 -- requiring that their names match.
5566 if Present
(Overridden_Subp
)
5567 and then Nkind
(Subp
) /= N_Defining_Operator_Symbol
5574 Form1
:= First_Formal
(Subp
);
5575 Form2
:= First_Formal
(Overridden_Subp
);
5577 -- If the overriding operation is a synchronized operation, skip
5578 -- the first parameter of the overridden operation, which is
5579 -- implicit in the new one. If the operation is declared in the
5580 -- body it is not primitive and all formals must match.
5582 if Is_Concurrent_Type
(Scope
(Subp
))
5583 and then Is_Tagged_Type
(Scope
(Subp
))
5584 and then not Has_Completion
(Scope
(Subp
))
5586 Form2
:= Next_Formal
(Form2
);
5589 if Present
(Form1
) then
5590 Form1
:= Next_Formal
(Form1
);
5591 Form2
:= Next_Formal
(Form2
);
5594 while Present
(Form1
) loop
5595 if not Is_Controlling_Formal
(Form1
)
5596 and then Present
(Next_Formal
(Form2
))
5597 and then Chars
(Form1
) = Chars
(Next_Formal
(Form2
))
5599 Error_Msg_Node_2
:= Alias
(Overridden_Subp
);
5600 Error_Msg_Sloc
:= Sloc
(Error_Msg_Node_2
);
5602 ("& does not match corresponding formal of&#",
5607 Next_Formal
(Form1
);
5608 Next_Formal
(Form2
);
5613 -- If there is an overridden subprogram, then check that there is no
5614 -- "not overriding" indicator, and mark the subprogram as overriding.
5615 -- This is not done if the overridden subprogram is marked as hidden,
5616 -- which can occur for the case of inherited controlled operations
5617 -- (see Derive_Subprogram), unless the inherited subprogram's parent
5618 -- subprogram is not itself hidden. (Note: This condition could probably
5619 -- be simplified, leaving out the testing for the specific controlled
5620 -- cases, but it seems safer and clearer this way, and echoes similar
5621 -- special-case tests of this kind in other places.)
5623 if Present
(Overridden_Subp
)
5624 and then (not Is_Hidden
(Overridden_Subp
)
5626 (Nam_In
(Chars
(Overridden_Subp
), Name_Initialize
,
5629 and then Present
(Alias
(Overridden_Subp
))
5630 and then not Is_Hidden
(Alias
(Overridden_Subp
))))
5632 if Must_Not_Override
(Spec
) then
5633 Error_Msg_Sloc
:= Sloc
(Overridden_Subp
);
5635 if Ekind
(Subp
) = E_Entry
then
5637 ("entry & overrides inherited operation #", Spec
, Subp
);
5640 ("subprogram & overrides inherited operation #", Spec
, Subp
);
5643 -- Special-case to fix a GNAT oddity: Limited_Controlled is declared
5644 -- as an extension of Root_Controlled, and thus has a useless Adjust
5645 -- operation. This operation should not be inherited by other limited
5646 -- controlled types. An explicit Adjust for them is not overriding.
5648 elsif Must_Override
(Spec
)
5649 and then Chars
(Overridden_Subp
) = Name_Adjust
5650 and then Is_Limited_Type
(Etype
(First_Formal
(Subp
)))
5651 and then Present
(Alias
(Overridden_Subp
))
5653 Is_Predefined_File_Name
5654 (Unit_File_Name
(Get_Source_Unit
(Alias
(Overridden_Subp
))))
5656 Error_Msg_NE
("subprogram & is not overriding", Spec
, Subp
);
5658 elsif Is_Subprogram
(Subp
) then
5659 if Is_Init_Proc
(Subp
) then
5662 elsif No
(Overridden_Operation
(Subp
)) then
5664 -- For entities generated by Derive_Subprograms the overridden
5665 -- operation is the inherited primitive (which is available
5666 -- through the attribute alias)
5668 if (Is_Dispatching_Operation
(Subp
)
5669 or else Is_Dispatching_Operation
(Overridden_Subp
))
5670 and then not Comes_From_Source
(Overridden_Subp
)
5671 and then Find_Dispatching_Type
(Overridden_Subp
) =
5672 Find_Dispatching_Type
(Subp
)
5673 and then Present
(Alias
(Overridden_Subp
))
5674 and then Comes_From_Source
(Alias
(Overridden_Subp
))
5676 Set_Overridden_Operation
(Subp
, Alias
(Overridden_Subp
));
5679 Set_Overridden_Operation
(Subp
, Overridden_Subp
);
5684 -- If primitive flag is set or this is a protected operation, then
5685 -- the operation is overriding at the point of its declaration, so
5686 -- warn if necessary. Otherwise it may have been declared before the
5687 -- operation it overrides and no check is required.
5690 and then not Must_Override
(Spec
)
5691 and then (Is_Primitive
5692 or else Ekind
(Scope
(Subp
)) = E_Protected_Type
)
5694 Style
.Missing_Overriding
(Decl
, Subp
);
5697 -- If Subp is an operator, it may override a predefined operation, if
5698 -- it is defined in the same scope as the type to which it applies.
5699 -- In that case Overridden_Subp is empty because of our implicit
5700 -- representation for predefined operators. We have to check whether the
5701 -- signature of Subp matches that of a predefined operator. Note that
5702 -- first argument provides the name of the operator, and the second
5703 -- argument the signature that may match that of a standard operation.
5704 -- If the indicator is overriding, then the operator must match a
5705 -- predefined signature, because we know already that there is no
5706 -- explicit overridden operation.
5708 elsif Nkind
(Subp
) = N_Defining_Operator_Symbol
then
5709 if Must_Not_Override
(Spec
) then
5711 -- If this is not a primitive or a protected subprogram, then
5712 -- "not overriding" is illegal.
5715 and then Ekind
(Scope
(Subp
)) /= E_Protected_Type
5717 Error_Msg_N
("overriding indicator only allowed "
5718 & "if subprogram is primitive", Subp
);
5720 elsif Can_Override_Operator
(Subp
) then
5722 ("subprogram& overrides predefined operator ", Spec
, Subp
);
5725 elsif Must_Override
(Spec
) then
5726 if No
(Overridden_Operation
(Subp
))
5727 and then not Can_Override_Operator
(Subp
)
5729 Error_Msg_NE
("subprogram & is not overriding", Spec
, Subp
);
5732 elsif not Error_Posted
(Subp
)
5733 and then Style_Check
5734 and then Can_Override_Operator
(Subp
)
5736 not Is_Predefined_File_Name
5737 (Unit_File_Name
(Get_Source_Unit
(Subp
)))
5739 -- If style checks are enabled, indicate that the indicator is
5740 -- missing. However, at the point of declaration, the type of
5741 -- which this is a primitive operation may be private, in which
5742 -- case the indicator would be premature.
5744 if Has_Private_Declaration
(Etype
(Subp
))
5745 or else Has_Private_Declaration
(Etype
(First_Formal
(Subp
)))
5749 Style
.Missing_Overriding
(Decl
, Subp
);
5753 elsif Must_Override
(Spec
) then
5754 if Ekind
(Subp
) = E_Entry
then
5755 Error_Msg_NE
("entry & is not overriding", Spec
, Subp
);
5757 Error_Msg_NE
("subprogram & is not overriding", Spec
, Subp
);
5760 -- If the operation is marked "not overriding" and it's not primitive
5761 -- then an error is issued, unless this is an operation of a task or
5762 -- protected type (RM05-8.3.1(3/2-4/2)). Error cases where "overriding"
5763 -- has been specified have already been checked above.
5765 elsif Must_Not_Override
(Spec
)
5766 and then not Is_Primitive
5767 and then Ekind
(Subp
) /= E_Entry
5768 and then Ekind
(Scope
(Subp
)) /= E_Protected_Type
5771 ("overriding indicator only allowed if subprogram is primitive",
5775 end Check_Overriding_Indicator
;
5781 -- Note: this procedure needs to know far too much about how the expander
5782 -- messes with exceptions. The use of the flag Exception_Junk and the
5783 -- incorporation of knowledge of Exp_Ch11.Expand_Local_Exception_Handlers
5784 -- works, but is not very clean. It would be better if the expansion
5785 -- routines would leave Original_Node working nicely, and we could use
5786 -- Original_Node here to ignore all the peculiar expander messing ???
5788 procedure Check_Returns
5792 Proc
: Entity_Id
:= Empty
)
5796 procedure Check_Statement_Sequence
(L
: List_Id
);
5797 -- Internal recursive procedure to check a list of statements for proper
5798 -- termination by a return statement (or a transfer of control or a
5799 -- compound statement that is itself internally properly terminated).
5801 ------------------------------
5802 -- Check_Statement_Sequence --
5803 ------------------------------
5805 procedure Check_Statement_Sequence
(L
: List_Id
) is
5810 function Assert_False
return Boolean;
5811 -- Returns True if Last_Stm is a pragma Assert (False) that has been
5812 -- rewritten as a null statement when assertions are off. The assert
5813 -- is not active, but it is still enough to kill the warning.
5819 function Assert_False
return Boolean is
5820 Orig
: constant Node_Id
:= Original_Node
(Last_Stm
);
5823 if Nkind
(Orig
) = N_Pragma
5824 and then Pragma_Name
(Orig
) = Name_Assert
5825 and then not Error_Posted
(Orig
)
5828 Arg
: constant Node_Id
:=
5829 First
(Pragma_Argument_Associations
(Orig
));
5830 Exp
: constant Node_Id
:= Expression
(Arg
);
5832 return Nkind
(Exp
) = N_Identifier
5833 and then Chars
(Exp
) = Name_False
;
5843 Raise_Exception_Call
: Boolean;
5844 -- Set True if statement sequence terminated by Raise_Exception call
5845 -- or a Reraise_Occurrence call.
5847 -- Start of processing for Check_Statement_Sequence
5850 Raise_Exception_Call
:= False;
5852 -- Get last real statement
5854 Last_Stm
:= Last
(L
);
5856 -- Deal with digging out exception handler statement sequences that
5857 -- have been transformed by the local raise to goto optimization.
5858 -- See Exp_Ch11.Expand_Local_Exception_Handlers for details. If this
5859 -- optimization has occurred, we are looking at something like:
5862 -- original stmts in block
5866 -- goto L1; | omitted if No_Exception_Propagation
5871 -- goto L3; -- skip handler when exception not raised
5873 -- <<L1>> -- target label for local exception
5887 -- and what we have to do is to dig out the estmts1 and estmts2
5888 -- sequences (which were the original sequences of statements in
5889 -- the exception handlers) and check them.
5891 if Nkind
(Last_Stm
) = N_Label
and then Exception_Junk
(Last_Stm
) then
5896 exit when Nkind
(Stm
) /= N_Block_Statement
;
5897 exit when not Exception_Junk
(Stm
);
5900 exit when Nkind
(Stm
) /= N_Label
;
5901 exit when not Exception_Junk
(Stm
);
5902 Check_Statement_Sequence
5903 (Statements
(Handled_Statement_Sequence
(Next
(Stm
))));
5908 exit when Nkind
(Stm
) /= N_Goto_Statement
;
5909 exit when not Exception_Junk
(Stm
);
5913 -- Don't count pragmas
5915 while Nkind
(Last_Stm
) = N_Pragma
5917 -- Don't count call to SS_Release (can happen after Raise_Exception)
5920 (Nkind
(Last_Stm
) = N_Procedure_Call_Statement
5922 Nkind
(Name
(Last_Stm
)) = N_Identifier
5924 Is_RTE
(Entity
(Name
(Last_Stm
)), RE_SS_Release
))
5926 -- Don't count exception junk
5929 (Nkind_In
(Last_Stm
, N_Goto_Statement
,
5931 N_Object_Declaration
)
5932 and then Exception_Junk
(Last_Stm
))
5933 or else Nkind
(Last_Stm
) in N_Push_xxx_Label
5934 or else Nkind
(Last_Stm
) in N_Pop_xxx_Label
5936 -- Inserted code, such as finalization calls, is irrelevant: we only
5937 -- need to check original source.
5939 or else Is_Rewrite_Insertion
(Last_Stm
)
5944 -- Here we have the "real" last statement
5946 Kind
:= Nkind
(Last_Stm
);
5948 -- Transfer of control, OK. Note that in the No_Return procedure
5949 -- case, we already diagnosed any explicit return statements, so
5950 -- we can treat them as OK in this context.
5952 if Is_Transfer
(Last_Stm
) then
5955 -- Check cases of explicit non-indirect procedure calls
5957 elsif Kind
= N_Procedure_Call_Statement
5958 and then Is_Entity_Name
(Name
(Last_Stm
))
5960 -- Check call to Raise_Exception procedure which is treated
5961 -- specially, as is a call to Reraise_Occurrence.
5963 -- We suppress the warning in these cases since it is likely that
5964 -- the programmer really does not expect to deal with the case
5965 -- of Null_Occurrence, and thus would find a warning about a
5966 -- missing return curious, and raising Program_Error does not
5967 -- seem such a bad behavior if this does occur.
5969 -- Note that in the Ada 2005 case for Raise_Exception, the actual
5970 -- behavior will be to raise Constraint_Error (see AI-329).
5972 if Is_RTE
(Entity
(Name
(Last_Stm
)), RE_Raise_Exception
)
5974 Is_RTE
(Entity
(Name
(Last_Stm
)), RE_Reraise_Occurrence
)
5976 Raise_Exception_Call
:= True;
5978 -- For Raise_Exception call, test first argument, if it is
5979 -- an attribute reference for a 'Identity call, then we know
5980 -- that the call cannot possibly return.
5983 Arg
: constant Node_Id
:=
5984 Original_Node
(First_Actual
(Last_Stm
));
5986 if Nkind
(Arg
) = N_Attribute_Reference
5987 and then Attribute_Name
(Arg
) = Name_Identity
5994 -- If statement, need to look inside if there is an else and check
5995 -- each constituent statement sequence for proper termination.
5997 elsif Kind
= N_If_Statement
5998 and then Present
(Else_Statements
(Last_Stm
))
6000 Check_Statement_Sequence
(Then_Statements
(Last_Stm
));
6001 Check_Statement_Sequence
(Else_Statements
(Last_Stm
));
6003 if Present
(Elsif_Parts
(Last_Stm
)) then
6005 Elsif_Part
: Node_Id
:= First
(Elsif_Parts
(Last_Stm
));
6008 while Present
(Elsif_Part
) loop
6009 Check_Statement_Sequence
(Then_Statements
(Elsif_Part
));
6017 -- Case statement, check each case for proper termination
6019 elsif Kind
= N_Case_Statement
then
6023 Case_Alt
:= First_Non_Pragma
(Alternatives
(Last_Stm
));
6024 while Present
(Case_Alt
) loop
6025 Check_Statement_Sequence
(Statements
(Case_Alt
));
6026 Next_Non_Pragma
(Case_Alt
);
6032 -- Block statement, check its handled sequence of statements
6034 elsif Kind
= N_Block_Statement
then
6040 (Handled_Statement_Sequence
(Last_Stm
), Mode
, Err1
);
6049 -- Loop statement. If there is an iteration scheme, we can definitely
6050 -- fall out of the loop. Similarly if there is an exit statement, we
6051 -- can fall out. In either case we need a following return.
6053 elsif Kind
= N_Loop_Statement
then
6054 if Present
(Iteration_Scheme
(Last_Stm
))
6055 or else Has_Exit
(Entity
(Identifier
(Last_Stm
)))
6059 -- A loop with no exit statement or iteration scheme is either
6060 -- an infinite loop, or it has some other exit (raise/return).
6061 -- In either case, no warning is required.
6067 -- Timed entry call, check entry call and delay alternatives
6069 -- Note: in expanded code, the timed entry call has been converted
6070 -- to a set of expanded statements on which the check will work
6071 -- correctly in any case.
6073 elsif Kind
= N_Timed_Entry_Call
then
6075 ECA
: constant Node_Id
:= Entry_Call_Alternative
(Last_Stm
);
6076 DCA
: constant Node_Id
:= Delay_Alternative
(Last_Stm
);
6079 -- If statement sequence of entry call alternative is missing,
6080 -- then we can definitely fall through, and we post the error
6081 -- message on the entry call alternative itself.
6083 if No
(Statements
(ECA
)) then
6086 -- If statement sequence of delay alternative is missing, then
6087 -- we can definitely fall through, and we post the error
6088 -- message on the delay alternative itself.
6090 -- Note: if both ECA and DCA are missing the return, then we
6091 -- post only one message, should be enough to fix the bugs.
6092 -- If not we will get a message next time on the DCA when the
6095 elsif No
(Statements
(DCA
)) then
6098 -- Else check both statement sequences
6101 Check_Statement_Sequence
(Statements
(ECA
));
6102 Check_Statement_Sequence
(Statements
(DCA
));
6107 -- Conditional entry call, check entry call and else part
6109 -- Note: in expanded code, the conditional entry call has been
6110 -- converted to a set of expanded statements on which the check
6111 -- will work correctly in any case.
6113 elsif Kind
= N_Conditional_Entry_Call
then
6115 ECA
: constant Node_Id
:= Entry_Call_Alternative
(Last_Stm
);
6118 -- If statement sequence of entry call alternative is missing,
6119 -- then we can definitely fall through, and we post the error
6120 -- message on the entry call alternative itself.
6122 if No
(Statements
(ECA
)) then
6125 -- Else check statement sequence and else part
6128 Check_Statement_Sequence
(Statements
(ECA
));
6129 Check_Statement_Sequence
(Else_Statements
(Last_Stm
));
6135 -- If we fall through, issue appropriate message
6139 -- Kill warning if last statement is a raise exception call,
6140 -- or a pragma Assert (False). Note that with assertions enabled,
6141 -- such a pragma has been converted into a raise exception call
6142 -- already, so the Assert_False is for the assertions off case.
6144 if not Raise_Exception_Call
and then not Assert_False
then
6146 -- In GNATprove mode, it is an error to have a missing return
6148 Error_Msg_Warn
:= SPARK_Mode
/= On
;
6150 -- Issue error message or warning
6153 ("RETURN statement missing following this statement<<!",
6156 ("\Program_Error ]<<!", Last_Stm
);
6159 -- Note: we set Err even though we have not issued a warning
6160 -- because we still have a case of a missing return. This is
6161 -- an extremely marginal case, probably will never be noticed
6162 -- but we might as well get it right.
6166 -- Otherwise we have the case of a procedure marked No_Return
6169 if not Raise_Exception_Call
then
6170 if GNATprove_Mode
then
6172 ("implied return after this statement "
6173 & "would have raised Program_Error", Last_Stm
);
6176 ("implied return after this statement "
6177 & "will raise Program_Error??", Last_Stm
);
6180 Error_Msg_Warn
:= SPARK_Mode
/= On
;
6182 ("\procedure & is marked as No_Return<<!", Last_Stm
, Proc
);
6186 RE
: constant Node_Id
:=
6187 Make_Raise_Program_Error
(Sloc
(Last_Stm
),
6188 Reason
=> PE_Implicit_Return
);
6190 Insert_After
(Last_Stm
, RE
);
6194 end Check_Statement_Sequence
;
6196 -- Start of processing for Check_Returns
6200 Check_Statement_Sequence
(Statements
(HSS
));
6202 if Present
(Exception_Handlers
(HSS
)) then
6203 Handler
:= First_Non_Pragma
(Exception_Handlers
(HSS
));
6204 while Present
(Handler
) loop
6205 Check_Statement_Sequence
(Statements
(Handler
));
6206 Next_Non_Pragma
(Handler
);
6211 ----------------------------
6212 -- Check_Subprogram_Order --
6213 ----------------------------
6215 procedure Check_Subprogram_Order
(N
: Node_Id
) is
6217 function Subprogram_Name_Greater
(S1
, S2
: String) return Boolean;
6218 -- This is used to check if S1 > S2 in the sense required by this test,
6219 -- for example nameab < namec, but name2 < name10.
6221 -----------------------------
6222 -- Subprogram_Name_Greater --
6223 -----------------------------
6225 function Subprogram_Name_Greater
(S1
, S2
: String) return Boolean is
6230 -- Deal with special case where names are identical except for a
6231 -- numerical suffix. These are handled specially, taking the numeric
6232 -- ordering from the suffix into account.
6235 while S1
(L1
) in '0' .. '9' loop
6240 while S2
(L2
) in '0' .. '9' loop
6244 -- If non-numeric parts non-equal, do straight compare
6246 if S1
(S1
'First .. L1
) /= S2
(S2
'First .. L2
) then
6249 -- If non-numeric parts equal, compare suffixed numeric parts. Note
6250 -- that a missing suffix is treated as numeric zero in this test.
6254 while L1
< S1
'Last loop
6256 N1
:= N1
* 10 + Character'Pos (S1
(L1
)) - Character'Pos ('0');
6260 while L2
< S2
'Last loop
6262 N2
:= N2
* 10 + Character'Pos (S2
(L2
)) - Character'Pos ('0');
6267 end Subprogram_Name_Greater
;
6269 -- Start of processing for Check_Subprogram_Order
6272 -- Check body in alpha order if this is option
6275 and then Style_Check_Order_Subprograms
6276 and then Nkind
(N
) = N_Subprogram_Body
6277 and then Comes_From_Source
(N
)
6278 and then In_Extended_Main_Source_Unit
(N
)
6282 renames Scope_Stack
.Table
6283 (Scope_Stack
.Last
).Last_Subprogram_Name
;
6285 Body_Id
: constant Entity_Id
:=
6286 Defining_Entity
(Specification
(N
));
6289 Get_Decoded_Name_String
(Chars
(Body_Id
));
6292 if Subprogram_Name_Greater
6293 (LSN
.all, Name_Buffer
(1 .. Name_Len
))
6295 Style
.Subprogram_Not_In_Alpha_Order
(Body_Id
);
6301 LSN
:= new String'(Name_Buffer (1 .. Name_Len));
6304 end Check_Subprogram_Order;
6306 ------------------------------
6307 -- Check_Subtype_Conformant --
6308 ------------------------------
6310 procedure Check_Subtype_Conformant
6311 (New_Id : Entity_Id;
6313 Err_Loc : Node_Id := Empty;
6314 Skip_Controlling_Formals : Boolean := False;
6315 Get_Inst : Boolean := False)
6318 pragma Warnings (Off, Result);
6321 (New_Id, Old_Id, Subtype_Conformant, True, Result, Err_Loc,
6322 Skip_Controlling_Formals => Skip_Controlling_Formals,
6323 Get_Inst => Get_Inst);
6324 end Check_Subtype_Conformant;
6326 ---------------------------
6327 -- Check_Type_Conformant --
6328 ---------------------------
6330 procedure Check_Type_Conformant
6331 (New_Id : Entity_Id;
6333 Err_Loc : Node_Id := Empty)
6336 pragma Warnings (Off, Result);
6339 (New_Id, Old_Id, Type_Conformant, True, Result, Err_Loc);
6340 end Check_Type_Conformant;
6342 ---------------------------
6343 -- Can_Override_Operator --
6344 ---------------------------
6346 function Can_Override_Operator (Subp : Entity_Id) return Boolean is
6350 if Nkind (Subp) /= N_Defining_Operator_Symbol then
6354 Typ := Base_Type (Etype (First_Formal (Subp)));
6356 -- Check explicitly that the operation is a primitive of the type
6358 return Operator_Matches_Spec (Subp, Subp)
6359 and then not Is_Generic_Type (Typ)
6360 and then Scope (Subp) = Scope (Typ)
6361 and then not Is_Class_Wide_Type (Typ);
6363 end Can_Override_Operator;
6365 ----------------------
6366 -- Conforming_Types --
6367 ----------------------
6369 function Conforming_Types
6372 Ctype : Conformance_Type;
6373 Get_Inst : Boolean := False) return Boolean
6375 Type_1 : Entity_Id := T1;
6376 Type_2 : Entity_Id := T2;
6377 Are_Anonymous_Access_To_Subprogram_Types : Boolean := False;
6379 function Base_Types_Match (T1, T2 : Entity_Id) return Boolean;
6380 -- If neither T1 nor T2 are generic actual types, or if they are in
6381 -- different scopes (e.g. parent and child instances), then verify that
6382 -- the base types are equal. Otherwise T1 and T2 must be on the same
6383 -- subtype chain. The whole purpose of this procedure is to prevent
6384 -- spurious ambiguities in an instantiation that may arise if two
6385 -- distinct generic types are instantiated with the same actual.
6387 function Find_Designated_Type (T : Entity_Id) return Entity_Id;
6388 -- An access parameter can designate an incomplete type. If the
6389 -- incomplete type is the limited view of a type from a limited_
6390 -- with_clause, check whether the non-limited view is available. If
6391 -- it is a (non-limited) incomplete type, get the full view.
6393 function Matches_Limited_With_View (T1, T2 : Entity_Id) return Boolean;
6394 -- Returns True if and only if either T1 denotes a limited view of T2
6395 -- or T2 denotes a limited view of T1. This can arise when the limited
6396 -- with view of a type is used in a subprogram declaration and the
6397 -- subprogram body is in the scope of a regular with clause for the
6398 -- same unit. In such a case, the two type entities can be considered
6399 -- identical for purposes of conformance checking.
6401 ----------------------
6402 -- Base_Types_Match --
6403 ----------------------
6405 function Base_Types_Match (T1, T2 : Entity_Id) return Boolean is
6406 BT1 : constant Entity_Id := Base_Type (T1);
6407 BT2 : constant Entity_Id := Base_Type (T2);
6413 elsif BT1 = BT2 then
6415 -- The following is too permissive. A more precise test should
6416 -- check that the generic actual is an ancestor subtype of the
6419 -- See code in Find_Corresponding_Spec that applies an additional
6420 -- filter to handle accidental amiguities in instances.
6422 return not Is_Generic_Actual_Type (T1)
6423 or else not Is_Generic_Actual_Type (T2)
6424 or else Scope (T1) /= Scope (T2);
6426 -- If T2 is a generic actual type it is declared as the subtype of
6427 -- the actual. If that actual is itself a subtype we need to use its
6428 -- own base type to check for compatibility.
6430 elsif Ekind (BT2) = Ekind (T2) and then BT1 = Base_Type (BT2) then
6433 elsif Ekind (BT1) = Ekind (T1) and then BT2 = Base_Type (BT1) then
6439 end Base_Types_Match;
6441 --------------------------
6442 -- Find_Designated_Type --
6443 --------------------------
6445 function Find_Designated_Type (T : Entity_Id) return Entity_Id is
6449 Desig := Directly_Designated_Type (T);
6451 if Ekind (Desig) = E_Incomplete_Type then
6453 -- If regular incomplete type, get full view if available
6455 if Present (Full_View (Desig)) then
6456 Desig := Full_View (Desig);
6458 -- If limited view of a type, get non-limited view if available,
6459 -- and check again for a regular incomplete type.
6461 elsif Present (Non_Limited_View (Desig)) then
6462 Desig := Get_Full_View (Non_Limited_View (Desig));
6467 end Find_Designated_Type;
6469 -------------------------------
6470 -- Matches_Limited_With_View --
6471 -------------------------------
6473 function Matches_Limited_With_View (T1, T2 : Entity_Id) return Boolean is
6475 -- In some cases a type imported through a limited_with clause, and
6476 -- its nonlimited view are both visible, for example in an anonymous
6477 -- access-to-class-wide type in a formal. Both entities designate the
6480 if From_Limited_With (T1) and then T2 = Available_View (T1) then
6483 elsif From_Limited_With (T2) and then T1 = Available_View (T2) then
6486 elsif From_Limited_With (T1)
6487 and then From_Limited_With (T2)
6488 and then Available_View (T1) = Available_View (T2)
6495 end Matches_Limited_With_View;
6497 -- Start of processing for Conforming_Types
6500 -- The context is an instance association for a formal access-to-
6501 -- subprogram type; the formal parameter types require mapping because
6502 -- they may denote other formal parameters of the generic unit.
6505 Type_1 := Get_Instance_Of (T1);
6506 Type_2 := Get_Instance_Of (T2);
6509 -- If one of the types is a view of the other introduced by a limited
6510 -- with clause, treat these as conforming for all purposes.
6512 if Matches_Limited_With_View (T1, T2) then
6515 elsif Base_Types_Match (Type_1, Type_2) then
6516 return Ctype <= Mode_Conformant
6517 or else Subtypes_Statically_Match (Type_1, Type_2);
6519 elsif Is_Incomplete_Or_Private_Type (Type_1)
6520 and then Present (Full_View (Type_1))
6521 and then Base_Types_Match (Full_View (Type_1), Type_2)
6523 return Ctype <= Mode_Conformant
6524 or else Subtypes_Statically_Match (Full_View (Type_1), Type_2);
6526 elsif Ekind (Type_2) = E_Incomplete_Type
6527 and then Present (Full_View (Type_2))
6528 and then Base_Types_Match (Type_1, Full_View (Type_2))
6530 return Ctype <= Mode_Conformant
6531 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
6533 elsif Is_Private_Type (Type_2)
6534 and then In_Instance
6535 and then Present (Full_View (Type_2))
6536 and then Base_Types_Match (Type_1, Full_View (Type_2))
6538 return Ctype <= Mode_Conformant
6539 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
6542 -- Ada 2005 (AI-254): Anonymous access-to-subprogram types must be
6543 -- treated recursively because they carry a signature. As far as
6544 -- conformance is concerned, convention plays no role, and either
6545 -- or both could be access to protected subprograms.
6547 Are_Anonymous_Access_To_Subprogram_Types :=
6548 Ekind_In (Type_1, E_Anonymous_Access_Subprogram_Type,
6549 E_Anonymous_Access_Protected_Subprogram_Type)
6551 Ekind_In (Type_2, E_Anonymous_Access_Subprogram_Type,
6552 E_Anonymous_Access_Protected_Subprogram_Type);
6554 -- Test anonymous access type case. For this case, static subtype
6555 -- matching is required for mode conformance (RM 6.3.1(15)). We check
6556 -- the base types because we may have built internal subtype entities
6557 -- to handle null-excluding types (see Process_Formals).
6559 if (Ekind (Base_Type (Type_1)) = E_Anonymous_Access_Type
6561 Ekind (Base_Type (Type_2)) = E_Anonymous_Access_Type)
6563 -- Ada 2005 (AI-254)
6565 or else Are_Anonymous_Access_To_Subprogram_Types
6568 Desig_1 : Entity_Id;
6569 Desig_2 : Entity_Id;
6572 -- In Ada 2005, access constant indicators must match for
6573 -- subtype conformance.
6575 if Ada_Version >= Ada_2005
6576 and then Ctype >= Subtype_Conformant
6578 Is_Access_Constant (Type_1) /= Is_Access_Constant (Type_2)
6583 Desig_1 := Find_Designated_Type (Type_1);
6584 Desig_2 := Find_Designated_Type (Type_2);
6586 -- If the context is an instance association for a formal
6587 -- access-to-subprogram type; formal access parameter designated
6588 -- types require mapping because they may denote other formal
6589 -- parameters of the generic unit.
6592 Desig_1 := Get_Instance_Of (Desig_1);
6593 Desig_2 := Get_Instance_Of (Desig_2);
6596 -- It is possible for a Class_Wide_Type to be introduced for an
6597 -- incomplete type, in which case there is a separate class_ wide
6598 -- type for the full view. The types conform if their Etypes
6599 -- conform, i.e. one may be the full view of the other. This can
6600 -- only happen in the context of an access parameter, other uses
6601 -- of an incomplete Class_Wide_Type are illegal.
6603 if Is_Class_Wide_Type (Desig_1)
6605 Is_Class_Wide_Type (Desig_2)
6609 (Etype (Base_Type (Desig_1)),
6610 Etype (Base_Type (Desig_2)), Ctype);
6612 elsif Are_Anonymous_Access_To_Subprogram_Types then
6613 if Ada_Version < Ada_2005 then
6614 return Ctype = Type_Conformant
6616 Subtypes_Statically_Match (Desig_1, Desig_2);
6618 -- We must check the conformance of the signatures themselves
6622 Conformant : Boolean;
6625 (Desig_1, Desig_2, Ctype, False, Conformant);
6631 return Base_Type (Desig_1) = Base_Type (Desig_2)
6632 and then (Ctype = Type_Conformant
6634 Subtypes_Statically_Match (Desig_1, Desig_2));
6638 -- Otherwise definitely no match
6641 if ((Ekind (Type_1) = E_Anonymous_Access_Type
6642 and then Is_Access_Type (Type_2))
6643 or else (Ekind (Type_2) = E_Anonymous_Access_Type
6644 and then Is_Access_Type (Type_1)))
6647 (Designated_Type (Type_1), Designated_Type (Type_2), Ctype)
6649 May_Hide_Profile := True;
6654 end Conforming_Types;
6656 --------------------------
6657 -- Create_Extra_Formals --
6658 --------------------------
6660 procedure Create_Extra_Formals (E : Entity_Id) is
6662 First_Extra : Entity_Id := Empty;
6663 Last_Extra : Entity_Id;
6664 Formal_Type : Entity_Id;
6665 P_Formal : Entity_Id := Empty;
6667 function Add_Extra_Formal
6668 (Assoc_Entity : Entity_Id;
6671 Suffix : String) return Entity_Id;
6672 -- Add an extra formal to the current list of formals and extra formals.
6673 -- The extra formal is added to the end of the list of extra formals,
6674 -- and also returned as the result. These formals are always of mode IN.
6675 -- The new formal has the type Typ, is declared in Scope, and its name
6676 -- is given by a concatenation of the name of Assoc_Entity and Suffix.
6677 -- The following suffixes are currently used. They should not be changed
6678 -- without coordinating with CodePeer, which makes use of these to
6679 -- provide better messages.
6681 -- O denotes the Constrained bit.
6682 -- L denotes the accessibility level.
6683 -- BIP_xxx denotes an extra formal for a build-in-place function. See
6684 -- the full list in exp_ch6.BIP_Formal_Kind.
6686 ----------------------
6687 -- Add_Extra_Formal --
6688 ----------------------
6690 function Add_Extra_Formal
6691 (Assoc_Entity : Entity_Id;
6694 Suffix : String) return Entity_Id
6696 EF : constant Entity_Id :=
6697 Make_Defining_Identifier (Sloc (Assoc_Entity),
6698 Chars => New_External_Name (Chars (Assoc_Entity),
6702 -- A little optimization. Never generate an extra formal for the
6703 -- _init operand of an initialization procedure, since it could
6706 if Chars (Formal) = Name_uInit then
6710 Set_Ekind (EF, E_In_Parameter);
6711 Set_Actual_Subtype (EF, Typ);
6712 Set_Etype (EF, Typ);
6713 Set_Scope (EF, Scope);
6714 Set_Mechanism (EF, Default_Mechanism);
6715 Set_Formal_Validity (EF);
6717 if No (First_Extra) then
6719 Set_Extra_Formals (Scope, First_Extra);
6722 if Present (Last_Extra) then
6723 Set_Extra_Formal (Last_Extra, EF);
6729 end Add_Extra_Formal;
6731 -- Start of processing for Create_Extra_Formals
6734 -- We never generate extra formals if expansion is not active because we
6735 -- don't need them unless we are generating code.
6737 if not Expander_Active then
6741 -- No need to generate extra formals in interface thunks whose target
6742 -- primitive has no extra formals.
6744 if Is_Thunk (E) and then No (Extra_Formals (Thunk_Entity (E))) then
6748 -- If this is a derived subprogram then the subtypes of the parent
6749 -- subprogram's formal parameters will be used to determine the need
6750 -- for extra formals.
6752 if Is_Overloadable (E) and then Present (Alias (E)) then
6753 P_Formal := First_Formal (Alias (E));
6756 Last_Extra := Empty;
6757 Formal := First_Formal (E);
6758 while Present (Formal) loop
6759 Last_Extra := Formal;
6760 Next_Formal (Formal);
6763 -- If Extra_formals were already created, don't do it again. This
6764 -- situation may arise for subprogram types created as part of
6765 -- dispatching calls (see Expand_Dispatching_Call)
6767 if Present (Last_Extra) and then Present (Extra_Formal (Last_Extra)) then
6771 -- If the subprogram is a predefined dispatching subprogram then don't
6772 -- generate any extra constrained or accessibility level formals. In
6773 -- general we suppress these for internal subprograms (by not calling
6774 -- Freeze_Subprogram and Create_Extra_Formals at all), but internally
6775 -- generated stream attributes do get passed through because extra
6776 -- build-in-place formals are needed in some cases (limited 'Input
).
6778 if Is_Predefined_Internal_Operation
(E
) then
6779 goto Test_For_Func_Result_Extras
;
6782 Formal
:= First_Formal
(E
);
6783 while Present
(Formal
) loop
6785 -- Create extra formal for supporting the attribute 'Constrained.
6786 -- The case of a private type view without discriminants also
6787 -- requires the extra formal if the underlying type has defaulted
6790 if Ekind
(Formal
) /= E_In_Parameter
then
6791 if Present
(P_Formal
) then
6792 Formal_Type
:= Etype
(P_Formal
);
6794 Formal_Type
:= Etype
(Formal
);
6797 -- Do not produce extra formals for Unchecked_Union parameters.
6798 -- Jump directly to the end of the loop.
6800 if Is_Unchecked_Union
(Base_Type
(Formal_Type
)) then
6801 goto Skip_Extra_Formal_Generation
;
6804 if not Has_Discriminants
(Formal_Type
)
6805 and then Ekind
(Formal_Type
) in Private_Kind
6806 and then Present
(Underlying_Type
(Formal_Type
))
6808 Formal_Type
:= Underlying_Type
(Formal_Type
);
6811 -- Suppress the extra formal if formal's subtype is constrained or
6812 -- indefinite, or we're compiling for Ada 2012 and the underlying
6813 -- type is tagged and limited. In Ada 2012, a limited tagged type
6814 -- can have defaulted discriminants, but 'Constrained is required
6815 -- to return True, so the formal is never needed (see AI05-0214).
6816 -- Note that this ensures consistency of calling sequences for
6817 -- dispatching operations when some types in a class have defaults
6818 -- on discriminants and others do not (and requiring the extra
6819 -- formal would introduce distributed overhead).
6821 -- If the type does not have a completion yet, treat as prior to
6822 -- Ada 2012 for consistency.
6824 if Has_Discriminants
(Formal_Type
)
6825 and then not Is_Constrained
(Formal_Type
)
6826 and then not Is_Indefinite_Subtype
(Formal_Type
)
6827 and then (Ada_Version
< Ada_2012
6828 or else No
(Underlying_Type
(Formal_Type
))
6830 (Is_Limited_Type
(Formal_Type
)
6833 (Underlying_Type
(Formal_Type
)))))
6835 Set_Extra_Constrained
6836 (Formal
, Add_Extra_Formal
(Formal
, Standard_Boolean
, E
, "O"));
6840 -- Create extra formal for supporting accessibility checking. This
6841 -- is done for both anonymous access formals and formals of named
6842 -- access types that are marked as controlling formals. The latter
6843 -- case can occur when Expand_Dispatching_Call creates a subprogram
6844 -- type and substitutes the types of access-to-class-wide actuals
6845 -- for the anonymous access-to-specific-type of controlling formals.
6846 -- Base_Type is applied because in cases where there is a null
6847 -- exclusion the formal may have an access subtype.
6849 -- This is suppressed if we specifically suppress accessibility
6850 -- checks at the package level for either the subprogram, or the
6851 -- package in which it resides. However, we do not suppress it
6852 -- simply if the scope has accessibility checks suppressed, since
6853 -- this could cause trouble when clients are compiled with a
6854 -- different suppression setting. The explicit checks at the
6855 -- package level are safe from this point of view.
6857 if (Ekind
(Base_Type
(Etype
(Formal
))) = E_Anonymous_Access_Type
6858 or else (Is_Controlling_Formal
(Formal
)
6859 and then Is_Access_Type
(Base_Type
(Etype
(Formal
)))))
6861 (Explicit_Suppress
(E
, Accessibility_Check
)
6863 Explicit_Suppress
(Scope
(E
), Accessibility_Check
))
6866 or else Present
(Extra_Accessibility
(P_Formal
)))
6868 Set_Extra_Accessibility
6869 (Formal
, Add_Extra_Formal
(Formal
, Standard_Natural
, E
, "L"));
6872 -- This label is required when skipping extra formal generation for
6873 -- Unchecked_Union parameters.
6875 <<Skip_Extra_Formal_Generation
>>
6877 if Present
(P_Formal
) then
6878 Next_Formal
(P_Formal
);
6881 Next_Formal
(Formal
);
6884 <<Test_For_Func_Result_Extras
>>
6886 -- Ada 2012 (AI05-234): "the accessibility level of the result of a
6887 -- function call is ... determined by the point of call ...".
6889 if Needs_Result_Accessibility_Level
(E
) then
6890 Set_Extra_Accessibility_Of_Result
6891 (E
, Add_Extra_Formal
(E
, Standard_Natural
, E
, "L"));
6894 -- Ada 2005 (AI-318-02): In the case of build-in-place functions, add
6895 -- appropriate extra formals. See type Exp_Ch6.BIP_Formal_Kind.
6897 if Ada_Version
>= Ada_2005
and then Is_Build_In_Place_Function
(E
) then
6899 Result_Subt
: constant Entity_Id
:= Etype
(E
);
6900 Full_Subt
: constant Entity_Id
:= Available_View
(Result_Subt
);
6901 Formal_Typ
: Entity_Id
;
6903 Discard
: Entity_Id
;
6904 pragma Warnings
(Off
, Discard
);
6907 -- In the case of functions with unconstrained result subtypes,
6908 -- add a 4-state formal indicating whether the return object is
6909 -- allocated by the caller (1), or should be allocated by the
6910 -- callee on the secondary stack (2), in the global heap (3), or
6911 -- in a user-defined storage pool (4). For the moment we just use
6912 -- Natural for the type of this formal. Note that this formal
6913 -- isn't usually needed in the case where the result subtype is
6914 -- constrained, but it is needed when the function has a tagged
6915 -- result, because generally such functions can be called in a
6916 -- dispatching context and such calls must be handled like calls
6917 -- to a class-wide function.
6919 if Needs_BIP_Alloc_Form
(E
) then
6922 (E
, Standard_Natural
,
6923 E
, BIP_Formal_Suffix
(BIP_Alloc_Form
));
6925 -- Add BIP_Storage_Pool, in case BIP_Alloc_Form indicates to
6926 -- use a user-defined pool. This formal is not added on
6927 -- .NET/JVM/ZFP as those targets do not support pools.
6929 if VM_Target
= No_VM
6930 and then RTE_Available
(RE_Root_Storage_Pool_Ptr
)
6934 (E
, RTE
(RE_Root_Storage_Pool_Ptr
),
6935 E
, BIP_Formal_Suffix
(BIP_Storage_Pool
));
6939 -- In the case of functions whose result type needs finalization,
6940 -- add an extra formal which represents the finalization master.
6942 if Needs_BIP_Finalization_Master
(E
) then
6945 (E
, RTE
(RE_Finalization_Master_Ptr
),
6946 E
, BIP_Formal_Suffix
(BIP_Finalization_Master
));
6949 -- When the result type contains tasks, add two extra formals: the
6950 -- master of the tasks to be created, and the caller's activation
6953 if Has_Task
(Full_Subt
) then
6956 (E
, RTE
(RE_Master_Id
),
6957 E
, BIP_Formal_Suffix
(BIP_Task_Master
));
6960 (E
, RTE
(RE_Activation_Chain_Access
),
6961 E
, BIP_Formal_Suffix
(BIP_Activation_Chain
));
6964 -- All build-in-place functions get an extra formal that will be
6965 -- passed the address of the return object within the caller.
6968 Create_Itype
(E_Anonymous_Access_Type
, E
, Scope_Id
=> Scope
(E
));
6970 Set_Directly_Designated_Type
(Formal_Typ
, Result_Subt
);
6971 Set_Etype
(Formal_Typ
, Formal_Typ
);
6972 Set_Depends_On_Private
6973 (Formal_Typ
, Has_Private_Component
(Formal_Typ
));
6974 Set_Is_Public
(Formal_Typ
, Is_Public
(Scope
(Formal_Typ
)));
6975 Set_Is_Access_Constant
(Formal_Typ
, False);
6977 -- Ada 2005 (AI-50217): Propagate the attribute that indicates
6978 -- the designated type comes from the limited view (for back-end
6981 Set_From_Limited_With
6982 (Formal_Typ
, From_Limited_With
(Result_Subt
));
6984 Layout_Type
(Formal_Typ
);
6988 (E
, Formal_Typ
, E
, BIP_Formal_Suffix
(BIP_Object_Access
));
6991 end Create_Extra_Formals
;
6993 -----------------------------
6994 -- Enter_Overloaded_Entity --
6995 -----------------------------
6997 procedure Enter_Overloaded_Entity
(S
: Entity_Id
) is
6998 E
: Entity_Id
:= Current_Entity_In_Scope
(S
);
6999 C_E
: Entity_Id
:= Current_Entity
(S
);
7003 Set_Has_Homonym
(E
);
7004 Set_Has_Homonym
(S
);
7007 Set_Is_Immediately_Visible
(S
);
7008 Set_Scope
(S
, Current_Scope
);
7010 -- Chain new entity if front of homonym in current scope, so that
7011 -- homonyms are contiguous.
7013 if Present
(E
) and then E
/= C_E
then
7014 while Homonym
(C_E
) /= E
loop
7015 C_E
:= Homonym
(C_E
);
7018 Set_Homonym
(C_E
, S
);
7022 Set_Current_Entity
(S
);
7027 if Is_Inherited_Operation
(S
) then
7028 Append_Inherited_Subprogram
(S
);
7030 Append_Entity
(S
, Current_Scope
);
7033 Set_Public_Status
(S
);
7035 if Debug_Flag_E
then
7036 Write_Str
("New overloaded entity chain: ");
7037 Write_Name
(Chars
(S
));
7040 while Present
(E
) loop
7041 Write_Str
(" "); Write_Int
(Int
(E
));
7048 -- Generate warning for hiding
7051 and then Comes_From_Source
(S
)
7052 and then In_Extended_Main_Source_Unit
(S
)
7059 -- Warn unless genuine overloading. Do not emit warning on
7060 -- hiding predefined operators in Standard (these are either an
7061 -- (artifact of our implicit declarations, or simple noise) but
7062 -- keep warning on a operator defined on a local subtype, because
7063 -- of the real danger that different operators may be applied in
7064 -- various parts of the program.
7066 -- Note that if E and S have the same scope, there is never any
7067 -- hiding. Either the two conflict, and the program is illegal,
7068 -- or S is overriding an implicit inherited subprogram.
7070 if Scope
(E
) /= Scope
(S
)
7071 and then (not Is_Overloadable
(E
)
7072 or else Subtype_Conformant
(E
, S
))
7073 and then (Is_Immediately_Visible
(E
)
7075 Is_Potentially_Use_Visible
(S
))
7077 if Scope
(E
) /= Standard_Standard
then
7078 Error_Msg_Sloc
:= Sloc
(E
);
7079 Error_Msg_N
("declaration of & hides one #?h?", S
);
7081 elsif Nkind
(S
) = N_Defining_Operator_Symbol
7083 Scope
(Base_Type
(Etype
(First_Formal
(S
)))) /= Scope
(S
)
7086 ("declaration of & hides predefined operator?h?", S
);
7091 end Enter_Overloaded_Entity
;
7093 -----------------------------
7094 -- Check_Untagged_Equality --
7095 -----------------------------
7097 procedure Check_Untagged_Equality
(Eq_Op
: Entity_Id
) is
7098 Typ
: constant Entity_Id
:= Etype
(First_Formal
(Eq_Op
));
7099 Decl
: constant Node_Id
:= Unit_Declaration_Node
(Eq_Op
);
7103 -- This check applies only if we have a subprogram declaration with an
7104 -- untagged record type.
7106 if Nkind
(Decl
) /= N_Subprogram_Declaration
7107 or else not Is_Record_Type
(Typ
)
7108 or else Is_Tagged_Type
(Typ
)
7113 -- In Ada 2012 case, we will output errors or warnings depending on
7114 -- the setting of debug flag -gnatd.E.
7116 if Ada_Version
>= Ada_2012
then
7117 Error_Msg_Warn
:= Debug_Flag_Dot_EE
;
7119 -- In earlier versions of Ada, nothing to do unless we are warning on
7120 -- Ada 2012 incompatibilities (Warn_On_Ada_2012_Incompatibility set).
7123 if not Warn_On_Ada_2012_Compatibility
then
7128 -- Cases where the type has already been frozen
7130 if Is_Frozen
(Typ
) then
7132 -- If the type is not declared in a package, or if we are in the body
7133 -- of the package or in some other scope, the new operation is not
7134 -- primitive, and therefore legal, though suspicious. Should we
7135 -- generate a warning in this case ???
7137 if Ekind
(Scope
(Typ
)) /= E_Package
7138 or else Scope
(Typ
) /= Current_Scope
7142 -- If the type is a generic actual (sub)type, the operation is not
7143 -- primitive either because the base type is declared elsewhere.
7145 elsif Is_Generic_Actual_Type
(Typ
) then
7148 -- Here we have a definite error of declaration after freezing
7151 if Ada_Version
>= Ada_2012
then
7153 ("equality operator must be declared before type & is "
7154 & "frozen (RM 4.5.2 (9.8)) (Ada 2012)<<", Eq_Op
, Typ
);
7156 -- In Ada 2012 mode with error turned to warning, output one
7157 -- more warning to warn that the equality operation may not
7158 -- compose. This is the consequence of ignoring the error.
7160 if Error_Msg_Warn
then
7161 Error_Msg_N
("\equality operation may not compose??", Eq_Op
);
7166 ("equality operator must be declared before type& is "
7167 & "frozen (RM 4.5.2 (9.8)) (Ada 2012)?y?", Eq_Op
, Typ
);
7170 -- If we are in the package body, we could just move the
7171 -- declaration to the package spec, so add a message saying that.
7173 if In_Package_Body
(Scope
(Typ
)) then
7174 if Ada_Version
>= Ada_2012
then
7176 ("\move declaration to package spec<<", Eq_Op
);
7179 ("\move declaration to package spec (Ada 2012)?y?", Eq_Op
);
7182 -- Otherwise try to find the freezing point
7185 Obj_Decl
:= Next
(Parent
(Typ
));
7186 while Present
(Obj_Decl
) and then Obj_Decl
/= Decl
loop
7187 if Nkind
(Obj_Decl
) = N_Object_Declaration
7188 and then Etype
(Defining_Identifier
(Obj_Decl
)) = Typ
7190 -- Freezing point, output warnings
7192 if Ada_Version
>= Ada_2012
then
7194 ("type& is frozen by declaration??", Obj_Decl
, Typ
);
7196 ("\an equality operator cannot be declared after "
7201 ("type& is frozen by declaration (Ada 2012)?y?",
7204 ("\an equality operator cannot be declared after "
7205 & "this point (Ada 2012)?y?",
7217 -- Here if type is not frozen yet. It is illegal to have a primitive
7218 -- equality declared in the private part if the type is visible.
7220 elsif not In_Same_List
(Parent
(Typ
), Decl
)
7221 and then not Is_Limited_Type
(Typ
)
7223 -- Shouldn't we give an RM reference here???
7225 if Ada_Version
>= Ada_2012
then
7227 ("equality operator appears too late<<", Eq_Op
);
7230 ("equality operator appears too late (Ada 2012)?y?", Eq_Op
);
7233 -- No error detected
7238 end Check_Untagged_Equality
;
7240 -----------------------------
7241 -- Find_Corresponding_Spec --
7242 -----------------------------
7244 function Find_Corresponding_Spec
7246 Post_Error
: Boolean := True) return Entity_Id
7248 Spec
: constant Node_Id
:= Specification
(N
);
7249 Designator
: constant Entity_Id
:= Defining_Entity
(Spec
);
7253 function Different_Generic_Profile
(E
: Entity_Id
) return Boolean;
7254 -- Even if fully conformant, a body may depend on a generic actual when
7255 -- the spec does not, or vice versa, in which case they were distinct
7256 -- entities in the generic.
7258 -------------------------------
7259 -- Different_Generic_Profile --
7260 -------------------------------
7262 function Different_Generic_Profile
(E
: Entity_Id
) return Boolean is
7265 function Same_Generic_Actual
(T1
, T2
: Entity_Id
) return Boolean;
7266 -- Check that the types of corresponding formals have the same
7267 -- generic actual if any. We have to account for subtypes of a
7268 -- generic formal, declared between a spec and a body, which may
7269 -- appear distinct in an instance but matched in the generic, and
7270 -- the subtype may be used either in the spec or the body of the
7271 -- subprogram being checked.
7273 -------------------------
7274 -- Same_Generic_Actual --
7275 -------------------------
7277 function Same_Generic_Actual
(T1
, T2
: Entity_Id
) return Boolean is
7279 function Is_Declared_Subtype
(S1
, S2
: Entity_Id
) return Boolean;
7280 -- Predicate to check whether S1 is a subtype of S2 in the source
7283 -------------------------
7284 -- Is_Declared_Subtype --
7285 -------------------------
7287 function Is_Declared_Subtype
(S1
, S2
: Entity_Id
) return Boolean is
7289 return Comes_From_Source
(Parent
(S1
))
7290 and then Nkind
(Parent
(S1
)) = N_Subtype_Declaration
7291 and then Is_Entity_Name
(Subtype_Indication
(Parent
(S1
)))
7292 and then Entity
(Subtype_Indication
(Parent
(S1
))) = S2
;
7293 end Is_Declared_Subtype
;
7295 -- Start of processing for Same_Generic_Actual
7298 return Is_Generic_Actual_Type
(T1
) = Is_Generic_Actual_Type
(T2
)
7299 or else Is_Declared_Subtype
(T1
, T2
)
7300 or else Is_Declared_Subtype
(T2
, T1
);
7301 end Same_Generic_Actual
;
7303 -- Start of processing for Different_Generic_Profile
7306 if not In_Instance
then
7309 elsif Ekind
(E
) = E_Function
7310 and then not Same_Generic_Actual
(Etype
(E
), Etype
(Designator
))
7315 F1
:= First_Formal
(Designator
);
7316 F2
:= First_Formal
(E
);
7317 while Present
(F1
) loop
7318 if not Same_Generic_Actual
(Etype
(F1
), Etype
(F2
)) then
7327 end Different_Generic_Profile
;
7329 -- Start of processing for Find_Corresponding_Spec
7332 E
:= Current_Entity
(Designator
);
7333 while Present
(E
) loop
7335 -- We are looking for a matching spec. It must have the same scope,
7336 -- and the same name, and either be type conformant, or be the case
7337 -- of a library procedure spec and its body (which belong to one
7338 -- another regardless of whether they are type conformant or not).
7340 if Scope
(E
) = Current_Scope
then
7341 if Current_Scope
= Standard_Standard
7342 or else (Ekind
(E
) = Ekind
(Designator
)
7343 and then Type_Conformant
(E
, Designator
))
7345 -- Within an instantiation, we know that spec and body are
7346 -- subtype conformant, because they were subtype conformant in
7347 -- the generic. We choose the subtype-conformant entity here as
7348 -- well, to resolve spurious ambiguities in the instance that
7349 -- were not present in the generic (i.e. when two different
7350 -- types are given the same actual). If we are looking for a
7351 -- spec to match a body, full conformance is expected.
7354 Set_Convention
(Designator
, Convention
(E
));
7356 -- Skip past subprogram bodies and subprogram renamings that
7357 -- may appear to have a matching spec, but that aren't fully
7358 -- conformant with it. That can occur in cases where an
7359 -- actual type causes unrelated homographs in the instance.
7361 if Nkind_In
(N
, N_Subprogram_Body
,
7362 N_Subprogram_Renaming_Declaration
)
7363 and then Present
(Homonym
(E
))
7364 and then not Fully_Conformant
(Designator
, E
)
7368 elsif not Subtype_Conformant
(Designator
, E
) then
7371 elsif Different_Generic_Profile
(E
) then
7376 -- Ada 2012 (AI05-0165): For internally generated bodies of
7377 -- null procedures locate the internally generated spec. We
7378 -- enforce mode conformance since a tagged type may inherit
7379 -- from interfaces several null primitives which differ only
7380 -- in the mode of the formals.
7382 if not (Comes_From_Source
(E
))
7383 and then Is_Null_Procedure
(E
)
7384 and then not Mode_Conformant
(Designator
, E
)
7388 -- For null procedures coming from source that are completions,
7389 -- analysis of the generated body will establish the link.
7391 elsif Comes_From_Source
(E
)
7392 and then Nkind
(Spec
) = N_Procedure_Specification
7393 and then Null_Present
(Spec
)
7397 elsif not Has_Completion
(E
) then
7398 if Nkind
(N
) /= N_Subprogram_Body_Stub
then
7399 Set_Corresponding_Spec
(N
, E
);
7402 Set_Has_Completion
(E
);
7405 elsif Nkind
(Parent
(N
)) = N_Subunit
then
7407 -- If this is the proper body of a subunit, the completion
7408 -- flag is set when analyzing the stub.
7412 -- If E is an internal function with a controlling result that
7413 -- was created for an operation inherited by a null extension,
7414 -- it may be overridden by a body without a previous spec (one
7415 -- more reason why these should be shunned). In that case we
7416 -- remove the generated body if present, because the current
7417 -- one is the explicit overriding.
7419 elsif Ekind
(E
) = E_Function
7420 and then Ada_Version
>= Ada_2005
7421 and then not Comes_From_Source
(E
)
7422 and then Has_Controlling_Result
(E
)
7423 and then Is_Null_Extension
(Etype
(E
))
7424 and then Comes_From_Source
(Spec
)
7426 Set_Has_Completion
(E
, False);
7429 and then Nkind
(Parent
(E
)) = N_Function_Specification
7432 (Unit_Declaration_Node
7433 (Corresponding_Body
(Unit_Declaration_Node
(E
))));
7437 -- If expansion is disabled, or if the wrapper function has
7438 -- not been generated yet, this a late body overriding an
7439 -- inherited operation, or it is an overriding by some other
7440 -- declaration before the controlling result is frozen. In
7441 -- either case this is a declaration of a new entity.
7447 -- If the body already exists, then this is an error unless
7448 -- the previous declaration is the implicit declaration of a
7449 -- derived subprogram. It is also legal for an instance to
7450 -- contain type conformant overloadable declarations (but the
7451 -- generic declaration may not), per 8.3(26/2).
7453 elsif No
(Alias
(E
))
7454 and then not Is_Intrinsic_Subprogram
(E
)
7455 and then not In_Instance
7458 Error_Msg_Sloc
:= Sloc
(E
);
7460 if Is_Imported
(E
) then
7462 ("body not allowed for imported subprogram & declared#",
7465 Error_Msg_NE
("duplicate body for & declared#", N
, E
);
7469 -- Child units cannot be overloaded, so a conformance mismatch
7470 -- between body and a previous spec is an error.
7472 elsif Is_Child_Unit
(E
)
7474 Nkind
(Unit_Declaration_Node
(Designator
)) = N_Subprogram_Body
7476 Nkind
(Parent
(Unit_Declaration_Node
(Designator
))) =
7481 ("body of child unit does not match previous declaration", N
);
7489 -- On exit, we know that no previous declaration of subprogram exists
7492 end Find_Corresponding_Spec
;
7494 ----------------------
7495 -- Fully_Conformant --
7496 ----------------------
7498 function Fully_Conformant
(New_Id
, Old_Id
: Entity_Id
) return Boolean is
7501 Check_Conformance
(New_Id
, Old_Id
, Fully_Conformant
, False, Result
);
7503 end Fully_Conformant
;
7505 ----------------------------------
7506 -- Fully_Conformant_Expressions --
7507 ----------------------------------
7509 function Fully_Conformant_Expressions
7510 (Given_E1
: Node_Id
;
7511 Given_E2
: Node_Id
) return Boolean
7513 E1
: constant Node_Id
:= Original_Node
(Given_E1
);
7514 E2
: constant Node_Id
:= Original_Node
(Given_E2
);
7515 -- We always test conformance on original nodes, since it is possible
7516 -- for analysis and/or expansion to make things look as though they
7517 -- conform when they do not, e.g. by converting 1+2 into 3.
7519 function FCE
(Given_E1
, Given_E2
: Node_Id
) return Boolean
7520 renames Fully_Conformant_Expressions
;
7522 function FCL
(L1
, L2
: List_Id
) return Boolean;
7523 -- Compare elements of two lists for conformance. Elements have to be
7524 -- conformant, and actuals inserted as default parameters do not match
7525 -- explicit actuals with the same value.
7527 function FCO
(Op_Node
, Call_Node
: Node_Id
) return Boolean;
7528 -- Compare an operator node with a function call
7534 function FCL
(L1
, L2
: List_Id
) return Boolean is
7538 if L1
= No_List
then
7544 if L2
= No_List
then
7550 -- Compare two lists, skipping rewrite insertions (we want to compare
7551 -- the original trees, not the expanded versions).
7554 if Is_Rewrite_Insertion
(N1
) then
7556 elsif Is_Rewrite_Insertion
(N2
) then
7562 elsif not FCE
(N1
, N2
) then
7575 function FCO
(Op_Node
, Call_Node
: Node_Id
) return Boolean is
7576 Actuals
: constant List_Id
:= Parameter_Associations
(Call_Node
);
7581 or else Entity
(Op_Node
) /= Entity
(Name
(Call_Node
))
7586 Act
:= First
(Actuals
);
7588 if Nkind
(Op_Node
) in N_Binary_Op
then
7589 if not FCE
(Left_Opnd
(Op_Node
), Act
) then
7596 return Present
(Act
)
7597 and then FCE
(Right_Opnd
(Op_Node
), Act
)
7598 and then No
(Next
(Act
));
7602 -- Start of processing for Fully_Conformant_Expressions
7605 -- Non-conformant if paren count does not match. Note: if some idiot
7606 -- complains that we don't do this right for more than 3 levels of
7607 -- parentheses, they will be treated with the respect they deserve.
7609 if Paren_Count
(E1
) /= Paren_Count
(E2
) then
7612 -- If same entities are referenced, then they are conformant even if
7613 -- they have different forms (RM 8.3.1(19-20)).
7615 elsif Is_Entity_Name
(E1
) and then Is_Entity_Name
(E2
) then
7616 if Present
(Entity
(E1
)) then
7617 return Entity
(E1
) = Entity
(E2
)
7618 or else (Chars
(Entity
(E1
)) = Chars
(Entity
(E2
))
7619 and then Ekind
(Entity
(E1
)) = E_Discriminant
7620 and then Ekind
(Entity
(E2
)) = E_In_Parameter
);
7622 elsif Nkind
(E1
) = N_Expanded_Name
7623 and then Nkind
(E2
) = N_Expanded_Name
7624 and then Nkind
(Selector_Name
(E1
)) = N_Character_Literal
7625 and then Nkind
(Selector_Name
(E2
)) = N_Character_Literal
7627 return Chars
(Selector_Name
(E1
)) = Chars
(Selector_Name
(E2
));
7630 -- Identifiers in component associations don't always have
7631 -- entities, but their names must conform.
7633 return Nkind
(E1
) = N_Identifier
7634 and then Nkind
(E2
) = N_Identifier
7635 and then Chars
(E1
) = Chars
(E2
);
7638 elsif Nkind
(E1
) = N_Character_Literal
7639 and then Nkind
(E2
) = N_Expanded_Name
7641 return Nkind
(Selector_Name
(E2
)) = N_Character_Literal
7642 and then Chars
(E1
) = Chars
(Selector_Name
(E2
));
7644 elsif Nkind
(E2
) = N_Character_Literal
7645 and then Nkind
(E1
) = N_Expanded_Name
7647 return Nkind
(Selector_Name
(E1
)) = N_Character_Literal
7648 and then Chars
(E2
) = Chars
(Selector_Name
(E1
));
7650 elsif Nkind
(E1
) in N_Op
and then Nkind
(E2
) = N_Function_Call
then
7651 return FCO
(E1
, E2
);
7653 elsif Nkind
(E2
) in N_Op
and then Nkind
(E1
) = N_Function_Call
then
7654 return FCO
(E2
, E1
);
7656 -- Otherwise we must have the same syntactic entity
7658 elsif Nkind
(E1
) /= Nkind
(E2
) then
7661 -- At this point, we specialize by node type
7668 FCL
(Expressions
(E1
), Expressions
(E2
))
7670 FCL
(Component_Associations
(E1
),
7671 Component_Associations
(E2
));
7674 if Nkind
(Expression
(E1
)) = N_Qualified_Expression
7676 Nkind
(Expression
(E2
)) = N_Qualified_Expression
7678 return FCE
(Expression
(E1
), Expression
(E2
));
7680 -- Check that the subtype marks and any constraints
7685 Indic1
: constant Node_Id
:= Expression
(E1
);
7686 Indic2
: constant Node_Id
:= Expression
(E2
);
7691 if Nkind
(Indic1
) /= N_Subtype_Indication
then
7693 Nkind
(Indic2
) /= N_Subtype_Indication
7694 and then Entity
(Indic1
) = Entity
(Indic2
);
7696 elsif Nkind
(Indic2
) /= N_Subtype_Indication
then
7698 Nkind
(Indic1
) /= N_Subtype_Indication
7699 and then Entity
(Indic1
) = Entity
(Indic2
);
7702 if Entity
(Subtype_Mark
(Indic1
)) /=
7703 Entity
(Subtype_Mark
(Indic2
))
7708 Elt1
:= First
(Constraints
(Constraint
(Indic1
)));
7709 Elt2
:= First
(Constraints
(Constraint
(Indic2
)));
7710 while Present
(Elt1
) and then Present
(Elt2
) loop
7711 if not FCE
(Elt1
, Elt2
) then
7724 when N_Attribute_Reference
=>
7726 Attribute_Name
(E1
) = Attribute_Name
(E2
)
7727 and then FCL
(Expressions
(E1
), Expressions
(E2
));
7731 Entity
(E1
) = Entity
(E2
)
7732 and then FCE
(Left_Opnd
(E1
), Left_Opnd
(E2
))
7733 and then FCE
(Right_Opnd
(E1
), Right_Opnd
(E2
));
7735 when N_Short_Circuit | N_Membership_Test
=>
7737 FCE
(Left_Opnd
(E1
), Left_Opnd
(E2
))
7739 FCE
(Right_Opnd
(E1
), Right_Opnd
(E2
));
7741 when N_Case_Expression
=>
7747 if not FCE
(Expression
(E1
), Expression
(E2
)) then
7751 Alt1
:= First
(Alternatives
(E1
));
7752 Alt2
:= First
(Alternatives
(E2
));
7754 if Present
(Alt1
) /= Present
(Alt2
) then
7756 elsif No
(Alt1
) then
7760 if not FCE
(Expression
(Alt1
), Expression
(Alt2
))
7761 or else not FCL
(Discrete_Choices
(Alt1
),
7762 Discrete_Choices
(Alt2
))
7773 when N_Character_Literal
=>
7775 Char_Literal_Value
(E1
) = Char_Literal_Value
(E2
);
7777 when N_Component_Association
=>
7779 FCL
(Choices
(E1
), Choices
(E2
))
7781 FCE
(Expression
(E1
), Expression
(E2
));
7783 when N_Explicit_Dereference
=>
7785 FCE
(Prefix
(E1
), Prefix
(E2
));
7787 when N_Extension_Aggregate
=>
7789 FCL
(Expressions
(E1
), Expressions
(E2
))
7790 and then Null_Record_Present
(E1
) =
7791 Null_Record_Present
(E2
)
7792 and then FCL
(Component_Associations
(E1
),
7793 Component_Associations
(E2
));
7795 when N_Function_Call
=>
7797 FCE
(Name
(E1
), Name
(E2
))
7799 FCL
(Parameter_Associations
(E1
),
7800 Parameter_Associations
(E2
));
7802 when N_If_Expression
=>
7804 FCL
(Expressions
(E1
), Expressions
(E2
));
7806 when N_Indexed_Component
=>
7808 FCE
(Prefix
(E1
), Prefix
(E2
))
7810 FCL
(Expressions
(E1
), Expressions
(E2
));
7812 when N_Integer_Literal
=>
7813 return (Intval
(E1
) = Intval
(E2
));
7818 when N_Operator_Symbol
=>
7820 Chars
(E1
) = Chars
(E2
);
7822 when N_Others_Choice
=>
7825 when N_Parameter_Association
=>
7827 Chars
(Selector_Name
(E1
)) = Chars
(Selector_Name
(E2
))
7828 and then FCE
(Explicit_Actual_Parameter
(E1
),
7829 Explicit_Actual_Parameter
(E2
));
7831 when N_Qualified_Expression
=>
7833 FCE
(Subtype_Mark
(E1
), Subtype_Mark
(E2
))
7835 FCE
(Expression
(E1
), Expression
(E2
));
7837 when N_Quantified_Expression
=>
7838 if not FCE
(Condition
(E1
), Condition
(E2
)) then
7842 if Present
(Loop_Parameter_Specification
(E1
))
7843 and then Present
(Loop_Parameter_Specification
(E2
))
7846 L1
: constant Node_Id
:=
7847 Loop_Parameter_Specification
(E1
);
7848 L2
: constant Node_Id
:=
7849 Loop_Parameter_Specification
(E2
);
7853 Reverse_Present
(L1
) = Reverse_Present
(L2
)
7855 FCE
(Defining_Identifier
(L1
),
7856 Defining_Identifier
(L2
))
7858 FCE
(Discrete_Subtype_Definition
(L1
),
7859 Discrete_Subtype_Definition
(L2
));
7862 elsif Present
(Iterator_Specification
(E1
))
7863 and then Present
(Iterator_Specification
(E2
))
7866 I1
: constant Node_Id
:= Iterator_Specification
(E1
);
7867 I2
: constant Node_Id
:= Iterator_Specification
(E2
);
7871 FCE
(Defining_Identifier
(I1
),
7872 Defining_Identifier
(I2
))
7874 Of_Present
(I1
) = Of_Present
(I2
)
7876 Reverse_Present
(I1
) = Reverse_Present
(I2
)
7877 and then FCE
(Name
(I1
), Name
(I2
))
7878 and then FCE
(Subtype_Indication
(I1
),
7879 Subtype_Indication
(I2
));
7882 -- The quantified expressions used different specifications to
7883 -- walk their respective ranges.
7891 FCE
(Low_Bound
(E1
), Low_Bound
(E2
))
7893 FCE
(High_Bound
(E1
), High_Bound
(E2
));
7895 when N_Real_Literal
=>
7896 return (Realval
(E1
) = Realval
(E2
));
7898 when N_Selected_Component
=>
7900 FCE
(Prefix
(E1
), Prefix
(E2
))
7902 FCE
(Selector_Name
(E1
), Selector_Name
(E2
));
7906 FCE
(Prefix
(E1
), Prefix
(E2
))
7908 FCE
(Discrete_Range
(E1
), Discrete_Range
(E2
));
7910 when N_String_Literal
=>
7912 S1
: constant String_Id
:= Strval
(E1
);
7913 S2
: constant String_Id
:= Strval
(E2
);
7914 L1
: constant Nat
:= String_Length
(S1
);
7915 L2
: constant Nat
:= String_Length
(S2
);
7922 for J
in 1 .. L1
loop
7923 if Get_String_Char
(S1
, J
) /=
7924 Get_String_Char
(S2
, J
)
7934 when N_Type_Conversion
=>
7936 FCE
(Subtype_Mark
(E1
), Subtype_Mark
(E2
))
7938 FCE
(Expression
(E1
), Expression
(E2
));
7942 Entity
(E1
) = Entity
(E2
)
7944 FCE
(Right_Opnd
(E1
), Right_Opnd
(E2
));
7946 when N_Unchecked_Type_Conversion
=>
7948 FCE
(Subtype_Mark
(E1
), Subtype_Mark
(E2
))
7950 FCE
(Expression
(E1
), Expression
(E2
));
7952 -- All other node types cannot appear in this context. Strictly
7953 -- we should raise a fatal internal error. Instead we just ignore
7954 -- the nodes. This means that if anyone makes a mistake in the
7955 -- expander and mucks an expression tree irretrievably, the result
7956 -- will be a failure to detect a (probably very obscure) case
7957 -- of non-conformance, which is better than bombing on some
7958 -- case where two expressions do in fact conform.
7965 end Fully_Conformant_Expressions
;
7967 ----------------------------------------
7968 -- Fully_Conformant_Discrete_Subtypes --
7969 ----------------------------------------
7971 function Fully_Conformant_Discrete_Subtypes
7972 (Given_S1
: Node_Id
;
7973 Given_S2
: Node_Id
) return Boolean
7975 S1
: constant Node_Id
:= Original_Node
(Given_S1
);
7976 S2
: constant Node_Id
:= Original_Node
(Given_S2
);
7978 function Conforming_Bounds
(B1
, B2
: Node_Id
) return Boolean;
7979 -- Special-case for a bound given by a discriminant, which in the body
7980 -- is replaced with the discriminal of the enclosing type.
7982 function Conforming_Ranges
(R1
, R2
: Node_Id
) return Boolean;
7983 -- Check both bounds
7985 -----------------------
7986 -- Conforming_Bounds --
7987 -----------------------
7989 function Conforming_Bounds
(B1
, B2
: Node_Id
) return Boolean is
7991 if Is_Entity_Name
(B1
)
7992 and then Is_Entity_Name
(B2
)
7993 and then Ekind
(Entity
(B1
)) = E_Discriminant
7995 return Chars
(B1
) = Chars
(B2
);
7998 return Fully_Conformant_Expressions
(B1
, B2
);
8000 end Conforming_Bounds
;
8002 -----------------------
8003 -- Conforming_Ranges --
8004 -----------------------
8006 function Conforming_Ranges
(R1
, R2
: Node_Id
) return Boolean is
8009 Conforming_Bounds
(Low_Bound
(R1
), Low_Bound
(R2
))
8011 Conforming_Bounds
(High_Bound
(R1
), High_Bound
(R2
));
8012 end Conforming_Ranges
;
8014 -- Start of processing for Fully_Conformant_Discrete_Subtypes
8017 if Nkind
(S1
) /= Nkind
(S2
) then
8020 elsif Is_Entity_Name
(S1
) then
8021 return Entity
(S1
) = Entity
(S2
);
8023 elsif Nkind
(S1
) = N_Range
then
8024 return Conforming_Ranges
(S1
, S2
);
8026 elsif Nkind
(S1
) = N_Subtype_Indication
then
8028 Entity
(Subtype_Mark
(S1
)) = Entity
(Subtype_Mark
(S2
))
8031 (Range_Expression
(Constraint
(S1
)),
8032 Range_Expression
(Constraint
(S2
)));
8036 end Fully_Conformant_Discrete_Subtypes
;
8038 --------------------
8039 -- Install_Entity --
8040 --------------------
8042 procedure Install_Entity
(E
: Entity_Id
) is
8043 Prev
: constant Entity_Id
:= Current_Entity
(E
);
8045 Set_Is_Immediately_Visible
(E
);
8046 Set_Current_Entity
(E
);
8047 Set_Homonym
(E
, Prev
);
8050 ---------------------
8051 -- Install_Formals --
8052 ---------------------
8054 procedure Install_Formals
(Id
: Entity_Id
) is
8057 F
:= First_Formal
(Id
);
8058 while Present
(F
) loop
8062 end Install_Formals
;
8064 -----------------------------
8065 -- Is_Interface_Conformant --
8066 -----------------------------
8068 function Is_Interface_Conformant
8069 (Tagged_Type
: Entity_Id
;
8070 Iface_Prim
: Entity_Id
;
8071 Prim
: Entity_Id
) return Boolean
8073 -- The operation may in fact be an inherited (implicit) operation
8074 -- rather than the original interface primitive, so retrieve the
8075 -- ultimate ancestor.
8077 Iface
: constant Entity_Id
:=
8078 Find_Dispatching_Type
(Ultimate_Alias
(Iface_Prim
));
8079 Typ
: constant Entity_Id
:= Find_Dispatching_Type
(Prim
);
8081 function Controlling_Formal
(Prim
: Entity_Id
) return Entity_Id
;
8082 -- Return the controlling formal of Prim
8084 ------------------------
8085 -- Controlling_Formal --
8086 ------------------------
8088 function Controlling_Formal
(Prim
: Entity_Id
) return Entity_Id
is
8092 E
:= First_Entity
(Prim
);
8093 while Present
(E
) loop
8094 if Is_Formal
(E
) and then Is_Controlling_Formal
(E
) then
8102 end Controlling_Formal
;
8106 Iface_Ctrl_F
: constant Entity_Id
:= Controlling_Formal
(Iface_Prim
);
8107 Prim_Ctrl_F
: constant Entity_Id
:= Controlling_Formal
(Prim
);
8109 -- Start of processing for Is_Interface_Conformant
8112 pragma Assert
(Is_Subprogram
(Iface_Prim
)
8113 and then Is_Subprogram
(Prim
)
8114 and then Is_Dispatching_Operation
(Iface_Prim
)
8115 and then Is_Dispatching_Operation
(Prim
));
8117 pragma Assert
(Is_Interface
(Iface
)
8118 or else (Present
(Alias
(Iface_Prim
))
8121 (Find_Dispatching_Type
(Ultimate_Alias
(Iface_Prim
)))));
8123 if Prim
= Iface_Prim
8124 or else not Is_Subprogram
(Prim
)
8125 or else Ekind
(Prim
) /= Ekind
(Iface_Prim
)
8126 or else not Is_Dispatching_Operation
(Prim
)
8127 or else Scope
(Prim
) /= Scope
(Tagged_Type
)
8129 or else Base_Type
(Typ
) /= Base_Type
(Tagged_Type
)
8130 or else not Primitive_Names_Match
(Iface_Prim
, Prim
)
8134 -- The mode of the controlling formals must match
8136 elsif Present
(Iface_Ctrl_F
)
8137 and then Present
(Prim_Ctrl_F
)
8138 and then Ekind
(Iface_Ctrl_F
) /= Ekind
(Prim_Ctrl_F
)
8142 -- Case of a procedure, or a function whose result type matches the
8143 -- result type of the interface primitive, or a function that has no
8144 -- controlling result (I or access I).
8146 elsif Ekind
(Iface_Prim
) = E_Procedure
8147 or else Etype
(Prim
) = Etype
(Iface_Prim
)
8148 or else not Has_Controlling_Result
(Prim
)
8150 return Type_Conformant
8151 (Iface_Prim
, Prim
, Skip_Controlling_Formals
=> True);
8153 -- Case of a function returning an interface, or an access to one. Check
8154 -- that the return types correspond.
8156 elsif Implements_Interface
(Typ
, Iface
) then
8157 if (Ekind
(Etype
(Prim
)) = E_Anonymous_Access_Type
)
8159 (Ekind
(Etype
(Iface_Prim
)) = E_Anonymous_Access_Type
)
8164 Type_Conformant
(Prim
, Ultimate_Alias
(Iface_Prim
),
8165 Skip_Controlling_Formals
=> True);
8171 end Is_Interface_Conformant
;
8173 ---------------------------------
8174 -- Is_Non_Overriding_Operation --
8175 ---------------------------------
8177 function Is_Non_Overriding_Operation
8178 (Prev_E
: Entity_Id
;
8179 New_E
: Entity_Id
) return Boolean
8183 G_Typ
: Entity_Id
:= Empty
;
8185 function Get_Generic_Parent_Type
(F_Typ
: Entity_Id
) return Entity_Id
;
8186 -- If F_Type is a derived type associated with a generic actual subtype,
8187 -- then return its Generic_Parent_Type attribute, else return Empty.
8189 function Types_Correspond
8190 (P_Type
: Entity_Id
;
8191 N_Type
: Entity_Id
) return Boolean;
8192 -- Returns true if and only if the types (or designated types in the
8193 -- case of anonymous access types) are the same or N_Type is derived
8194 -- directly or indirectly from P_Type.
8196 -----------------------------
8197 -- Get_Generic_Parent_Type --
8198 -----------------------------
8200 function Get_Generic_Parent_Type
(F_Typ
: Entity_Id
) return Entity_Id
is
8206 if Is_Derived_Type
(F_Typ
)
8207 and then Nkind
(Parent
(F_Typ
)) = N_Full_Type_Declaration
8209 -- The tree must be traversed to determine the parent subtype in
8210 -- the generic unit, which unfortunately isn't always available
8211 -- via semantic attributes. ??? (Note: The use of Original_Node
8212 -- is needed for cases where a full derived type has been
8215 Defn
:= Type_Definition
(Original_Node
(Parent
(F_Typ
)));
8216 if Nkind
(Defn
) = N_Derived_Type_Definition
then
8217 Indic
:= Subtype_Indication
(Defn
);
8219 if Nkind
(Indic
) = N_Subtype_Indication
then
8220 G_Typ
:= Entity
(Subtype_Mark
(Indic
));
8222 G_Typ
:= Entity
(Indic
);
8225 if Nkind
(Parent
(G_Typ
)) = N_Subtype_Declaration
8226 and then Present
(Generic_Parent_Type
(Parent
(G_Typ
)))
8228 return Generic_Parent_Type
(Parent
(G_Typ
));
8234 end Get_Generic_Parent_Type
;
8236 ----------------------
8237 -- Types_Correspond --
8238 ----------------------
8240 function Types_Correspond
8241 (P_Type
: Entity_Id
;
8242 N_Type
: Entity_Id
) return Boolean
8244 Prev_Type
: Entity_Id
:= Base_Type
(P_Type
);
8245 New_Type
: Entity_Id
:= Base_Type
(N_Type
);
8248 if Ekind
(Prev_Type
) = E_Anonymous_Access_Type
then
8249 Prev_Type
:= Designated_Type
(Prev_Type
);
8252 if Ekind
(New_Type
) = E_Anonymous_Access_Type
then
8253 New_Type
:= Designated_Type
(New_Type
);
8256 if Prev_Type
= New_Type
then
8259 elsif not Is_Class_Wide_Type
(New_Type
) then
8260 while Etype
(New_Type
) /= New_Type
loop
8261 New_Type
:= Etype
(New_Type
);
8262 if New_Type
= Prev_Type
then
8268 end Types_Correspond
;
8270 -- Start of processing for Is_Non_Overriding_Operation
8273 -- In the case where both operations are implicit derived subprograms
8274 -- then neither overrides the other. This can only occur in certain
8275 -- obscure cases (e.g., derivation from homographs created in a generic
8278 if Present
(Alias
(Prev_E
)) and then Present
(Alias
(New_E
)) then
8281 elsif Ekind
(Current_Scope
) = E_Package
8282 and then Is_Generic_Instance
(Current_Scope
)
8283 and then In_Private_Part
(Current_Scope
)
8284 and then Comes_From_Source
(New_E
)
8286 -- We examine the formals and result type of the inherited operation,
8287 -- to determine whether their type is derived from (the instance of)
8288 -- a generic type. The first such formal or result type is the one
8291 Formal
:= First_Formal
(Prev_E
);
8292 while Present
(Formal
) loop
8293 F_Typ
:= Base_Type
(Etype
(Formal
));
8295 if Ekind
(F_Typ
) = E_Anonymous_Access_Type
then
8296 F_Typ
:= Designated_Type
(F_Typ
);
8299 G_Typ
:= Get_Generic_Parent_Type
(F_Typ
);
8300 exit when Present
(G_Typ
);
8302 Next_Formal
(Formal
);
8305 if No
(G_Typ
) and then Ekind
(Prev_E
) = E_Function
then
8306 G_Typ
:= Get_Generic_Parent_Type
(Base_Type
(Etype
(Prev_E
)));
8313 -- If the generic type is a private type, then the original operation
8314 -- was not overriding in the generic, because there was no primitive
8315 -- operation to override.
8317 if Nkind
(Parent
(G_Typ
)) = N_Formal_Type_Declaration
8318 and then Nkind
(Formal_Type_Definition
(Parent
(G_Typ
))) =
8319 N_Formal_Private_Type_Definition
8323 -- The generic parent type is the ancestor of a formal derived
8324 -- type declaration. We need to check whether it has a primitive
8325 -- operation that should be overridden by New_E in the generic.
8329 P_Formal
: Entity_Id
;
8330 N_Formal
: Entity_Id
;
8334 Prim_Elt
: Elmt_Id
:= First_Elmt
(Primitive_Operations
(G_Typ
));
8337 while Present
(Prim_Elt
) loop
8338 P_Prim
:= Node
(Prim_Elt
);
8340 if Chars
(P_Prim
) = Chars
(New_E
)
8341 and then Ekind
(P_Prim
) = Ekind
(New_E
)
8343 P_Formal
:= First_Formal
(P_Prim
);
8344 N_Formal
:= First_Formal
(New_E
);
8345 while Present
(P_Formal
) and then Present
(N_Formal
) loop
8346 P_Typ
:= Etype
(P_Formal
);
8347 N_Typ
:= Etype
(N_Formal
);
8349 if not Types_Correspond
(P_Typ
, N_Typ
) then
8353 Next_Entity
(P_Formal
);
8354 Next_Entity
(N_Formal
);
8357 -- Found a matching primitive operation belonging to the
8358 -- formal ancestor type, so the new subprogram is
8362 and then No
(N_Formal
)
8363 and then (Ekind
(New_E
) /= E_Function
8366 (Etype
(P_Prim
), Etype
(New_E
)))
8372 Next_Elmt
(Prim_Elt
);
8375 -- If no match found, then the new subprogram does not override
8376 -- in the generic (nor in the instance).
8378 -- If the type in question is not abstract, and the subprogram
8379 -- is, this will be an error if the new operation is in the
8380 -- private part of the instance. Emit a warning now, which will
8381 -- make the subsequent error message easier to understand.
8383 if not Is_Abstract_Type
(F_Typ
)
8384 and then Is_Abstract_Subprogram
(Prev_E
)
8385 and then In_Private_Part
(Current_Scope
)
8387 Error_Msg_Node_2
:= F_Typ
;
8389 ("private operation& in generic unit does not override "
8390 & "any primitive operation of& (RM 12.3 (18))??",
8400 end Is_Non_Overriding_Operation
;
8402 -------------------------------------
8403 -- List_Inherited_Pre_Post_Aspects --
8404 -------------------------------------
8406 procedure List_Inherited_Pre_Post_Aspects
(E
: Entity_Id
) is
8408 if Opt
.List_Inherited_Aspects
8409 and then (Is_Subprogram
(E
) or else Is_Generic_Subprogram
(E
))
8412 Inherited
: constant Subprogram_List
:= Inherited_Subprograms
(E
);
8416 for J
in Inherited
'Range loop
8417 P
:= Pre_Post_Conditions
(Contract
(Inherited
(J
)));
8418 while Present
(P
) loop
8419 Error_Msg_Sloc
:= Sloc
(P
);
8421 if Class_Present
(P
) and then not Split_PPC
(P
) then
8422 if Pragma_Name
(P
) = Name_Precondition
then
8423 Error_Msg_N
("info: & inherits `Pre''Class` aspect "
8426 Error_Msg_N
("info: & inherits `Post''Class` aspect "
8431 P
:= Next_Pragma
(P
);
8436 end List_Inherited_Pre_Post_Aspects
;
8438 ------------------------------
8439 -- Make_Inequality_Operator --
8440 ------------------------------
8442 -- S is the defining identifier of an equality operator. We build a
8443 -- subprogram declaration with the right signature. This operation is
8444 -- intrinsic, because it is always expanded as the negation of the
8445 -- call to the equality function.
8447 procedure Make_Inequality_Operator
(S
: Entity_Id
) is
8448 Loc
: constant Source_Ptr
:= Sloc
(S
);
8451 Op_Name
: Entity_Id
;
8453 FF
: constant Entity_Id
:= First_Formal
(S
);
8454 NF
: constant Entity_Id
:= Next_Formal
(FF
);
8457 -- Check that equality was properly defined, ignore call if not
8464 A
: constant Entity_Id
:=
8465 Make_Defining_Identifier
(Sloc
(FF
),
8466 Chars
=> Chars
(FF
));
8468 B
: constant Entity_Id
:=
8469 Make_Defining_Identifier
(Sloc
(NF
),
8470 Chars
=> Chars
(NF
));
8473 Op_Name
:= Make_Defining_Operator_Symbol
(Loc
, Name_Op_Ne
);
8475 Formals
:= New_List
(
8476 Make_Parameter_Specification
(Loc
,
8477 Defining_Identifier
=> A
,
8479 New_Occurrence_Of
(Etype
(First_Formal
(S
)),
8480 Sloc
(Etype
(First_Formal
(S
))))),
8482 Make_Parameter_Specification
(Loc
,
8483 Defining_Identifier
=> B
,
8485 New_Occurrence_Of
(Etype
(Next_Formal
(First_Formal
(S
))),
8486 Sloc
(Etype
(Next_Formal
(First_Formal
(S
)))))));
8489 Make_Subprogram_Declaration
(Loc
,
8491 Make_Function_Specification
(Loc
,
8492 Defining_Unit_Name
=> Op_Name
,
8493 Parameter_Specifications
=> Formals
,
8494 Result_Definition
=>
8495 New_Occurrence_Of
(Standard_Boolean
, Loc
)));
8497 -- Insert inequality right after equality if it is explicit or after
8498 -- the derived type when implicit. These entities are created only
8499 -- for visibility purposes, and eventually replaced in the course
8500 -- of expansion, so they do not need to be attached to the tree and
8501 -- seen by the back-end. Keeping them internal also avoids spurious
8502 -- freezing problems. The declaration is inserted in the tree for
8503 -- analysis, and removed afterwards. If the equality operator comes
8504 -- from an explicit declaration, attach the inequality immediately
8505 -- after. Else the equality is inherited from a derived type
8506 -- declaration, so insert inequality after that declaration.
8508 if No
(Alias
(S
)) then
8509 Insert_After
(Unit_Declaration_Node
(S
), Decl
);
8510 elsif Is_List_Member
(Parent
(S
)) then
8511 Insert_After
(Parent
(S
), Decl
);
8513 Insert_After
(Parent
(Etype
(First_Formal
(S
))), Decl
);
8516 Mark_Rewrite_Insertion
(Decl
);
8517 Set_Is_Intrinsic_Subprogram
(Op_Name
);
8520 Set_Has_Completion
(Op_Name
);
8521 Set_Corresponding_Equality
(Op_Name
, S
);
8522 Set_Is_Abstract_Subprogram
(Op_Name
, Is_Abstract_Subprogram
(S
));
8524 end Make_Inequality_Operator
;
8526 ----------------------
8527 -- May_Need_Actuals --
8528 ----------------------
8530 procedure May_Need_Actuals
(Fun
: Entity_Id
) is
8535 F
:= First_Formal
(Fun
);
8537 while Present
(F
) loop
8538 if No
(Default_Value
(F
)) then
8546 Set_Needs_No_Actuals
(Fun
, B
);
8547 end May_Need_Actuals
;
8549 ---------------------
8550 -- Mode_Conformant --
8551 ---------------------
8553 function Mode_Conformant
(New_Id
, Old_Id
: Entity_Id
) return Boolean is
8556 Check_Conformance
(New_Id
, Old_Id
, Mode_Conformant
, False, Result
);
8558 end Mode_Conformant
;
8560 ---------------------------
8561 -- New_Overloaded_Entity --
8562 ---------------------------
8564 procedure New_Overloaded_Entity
8566 Derived_Type
: Entity_Id
:= Empty
)
8568 Overridden_Subp
: Entity_Id
:= Empty
;
8569 -- Set if the current scope has an operation that is type-conformant
8570 -- with S, and becomes hidden by S.
8572 Is_Primitive_Subp
: Boolean;
8573 -- Set to True if the new subprogram is primitive
8576 -- Entity that S overrides
8578 Prev_Vis
: Entity_Id
:= Empty
;
8579 -- Predecessor of E in Homonym chain
8581 procedure Check_For_Primitive_Subprogram
8582 (Is_Primitive
: out Boolean;
8583 Is_Overriding
: Boolean := False);
8584 -- If the subprogram being analyzed is a primitive operation of the type
8585 -- of a formal or result, set the Has_Primitive_Operations flag on the
8586 -- type, and set Is_Primitive to True (otherwise set to False). Set the
8587 -- corresponding flag on the entity itself for later use.
8589 procedure Check_Synchronized_Overriding
8590 (Def_Id
: Entity_Id
;
8591 Overridden_Subp
: out Entity_Id
);
8592 -- First determine if Def_Id is an entry or a subprogram either defined
8593 -- in the scope of a task or protected type, or is a primitive of such
8594 -- a type. Check whether Def_Id overrides a subprogram of an interface
8595 -- implemented by the synchronized type, return the overridden entity
8598 function Is_Private_Declaration
(E
: Entity_Id
) return Boolean;
8599 -- Check that E is declared in the private part of the current package,
8600 -- or in the package body, where it may hide a previous declaration.
8601 -- We can't use In_Private_Part by itself because this flag is also
8602 -- set when freezing entities, so we must examine the place of the
8603 -- declaration in the tree, and recognize wrapper packages as well.
8605 function Is_Overriding_Alias
8607 New_E
: Entity_Id
) return Boolean;
8608 -- Check whether new subprogram and old subprogram are both inherited
8609 -- from subprograms that have distinct dispatch table entries. This can
8610 -- occur with derivations from instances with accidental homonyms. The
8611 -- function is conservative given that the converse is only true within
8612 -- instances that contain accidental overloadings.
8614 ------------------------------------
8615 -- Check_For_Primitive_Subprogram --
8616 ------------------------------------
8618 procedure Check_For_Primitive_Subprogram
8619 (Is_Primitive
: out Boolean;
8620 Is_Overriding
: Boolean := False)
8626 function Visible_Part_Type
(T
: Entity_Id
) return Boolean;
8627 -- Returns true if T is declared in the visible part of the current
8628 -- package scope; otherwise returns false. Assumes that T is declared
8631 procedure Check_Private_Overriding
(T
: Entity_Id
);
8632 -- Checks that if a primitive abstract subprogram of a visible
8633 -- abstract type is declared in a private part, then it must override
8634 -- an abstract subprogram declared in the visible part. Also checks
8635 -- that if a primitive function with a controlling result is declared
8636 -- in a private part, then it must override a function declared in
8637 -- the visible part.
8639 ------------------------------
8640 -- Check_Private_Overriding --
8641 ------------------------------
8643 procedure Check_Private_Overriding
(T
: Entity_Id
) is
8645 if Is_Package_Or_Generic_Package
(Current_Scope
)
8646 and then In_Private_Part
(Current_Scope
)
8647 and then Visible_Part_Type
(T
)
8648 and then not In_Instance
8650 if Is_Abstract_Type
(T
)
8651 and then Is_Abstract_Subprogram
(S
)
8652 and then (not Is_Overriding
8653 or else not Is_Abstract_Subprogram
(E
))
8655 Error_Msg_N
("abstract subprograms must be visible "
8656 & "(RM 3.9.3(10))!", S
);
8658 elsif Ekind
(S
) = E_Function
and then not Is_Overriding
then
8659 if Is_Tagged_Type
(T
) and then T
= Base_Type
(Etype
(S
)) then
8660 Error_Msg_N
("private function with tagged result must"
8661 & " override visible-part function", S
);
8662 Error_Msg_N
("\move subprogram to the visible part"
8663 & " (RM 3.9.3(10))", S
);
8665 -- AI05-0073: extend this test to the case of a function
8666 -- with a controlling access result.
8668 elsif Ekind
(Etype
(S
)) = E_Anonymous_Access_Type
8669 and then Is_Tagged_Type
(Designated_Type
(Etype
(S
)))
8671 not Is_Class_Wide_Type
(Designated_Type
(Etype
(S
)))
8672 and then Ada_Version
>= Ada_2012
8675 ("private function with controlling access result "
8676 & "must override visible-part function", S
);
8678 ("\move subprogram to the visible part"
8679 & " (RM 3.9.3(10))", S
);
8683 end Check_Private_Overriding
;
8685 -----------------------
8686 -- Visible_Part_Type --
8687 -----------------------
8689 function Visible_Part_Type
(T
: Entity_Id
) return Boolean is
8690 P
: constant Node_Id
:= Unit_Declaration_Node
(Scope
(T
));
8694 -- If the entity is a private type, then it must be declared in a
8697 if Ekind
(T
) in Private_Kind
then
8701 -- Otherwise, we traverse the visible part looking for its
8702 -- corresponding declaration. We cannot use the declaration
8703 -- node directly because in the private part the entity of a
8704 -- private type is the one in the full view, which does not
8705 -- indicate that it is the completion of something visible.
8707 N
:= First
(Visible_Declarations
(Specification
(P
)));
8708 while Present
(N
) loop
8709 if Nkind
(N
) = N_Full_Type_Declaration
8710 and then Present
(Defining_Identifier
(N
))
8711 and then T
= Defining_Identifier
(N
)
8715 elsif Nkind_In
(N
, N_Private_Type_Declaration
,
8716 N_Private_Extension_Declaration
)
8717 and then Present
(Defining_Identifier
(N
))
8718 and then T
= Full_View
(Defining_Identifier
(N
))
8727 end Visible_Part_Type
;
8729 -- Start of processing for Check_For_Primitive_Subprogram
8732 Is_Primitive
:= False;
8734 if not Comes_From_Source
(S
) then
8737 -- If subprogram is at library level, it is not primitive operation
8739 elsif Current_Scope
= Standard_Standard
then
8742 elsif (Is_Package_Or_Generic_Package
(Current_Scope
)
8743 and then not In_Package_Body
(Current_Scope
))
8744 or else Is_Overriding
8746 -- For function, check return type
8748 if Ekind
(S
) = E_Function
then
8749 if Ekind
(Etype
(S
)) = E_Anonymous_Access_Type
then
8750 F_Typ
:= Designated_Type
(Etype
(S
));
8755 B_Typ
:= Base_Type
(F_Typ
);
8757 if Scope
(B_Typ
) = Current_Scope
8758 and then not Is_Class_Wide_Type
(B_Typ
)
8759 and then not Is_Generic_Type
(B_Typ
)
8761 Is_Primitive
:= True;
8762 Set_Has_Primitive_Operations
(B_Typ
);
8763 Set_Is_Primitive
(S
);
8764 Check_Private_Overriding
(B_Typ
);
8768 -- For all subprograms, check formals
8770 Formal
:= First_Formal
(S
);
8771 while Present
(Formal
) loop
8772 if Ekind
(Etype
(Formal
)) = E_Anonymous_Access_Type
then
8773 F_Typ
:= Designated_Type
(Etype
(Formal
));
8775 F_Typ
:= Etype
(Formal
);
8778 B_Typ
:= Base_Type
(F_Typ
);
8780 if Ekind
(B_Typ
) = E_Access_Subtype
then
8781 B_Typ
:= Base_Type
(B_Typ
);
8784 if Scope
(B_Typ
) = Current_Scope
8785 and then not Is_Class_Wide_Type
(B_Typ
)
8786 and then not Is_Generic_Type
(B_Typ
)
8788 Is_Primitive
:= True;
8789 Set_Is_Primitive
(S
);
8790 Set_Has_Primitive_Operations
(B_Typ
);
8791 Check_Private_Overriding
(B_Typ
);
8794 Next_Formal
(Formal
);
8797 -- Special case: An equality function can be redefined for a type
8798 -- occurring in a declarative part, and won't otherwise be treated as
8799 -- a primitive because it doesn't occur in a package spec and doesn't
8800 -- override an inherited subprogram. It's important that we mark it
8801 -- primitive so it can be returned by Collect_Primitive_Operations
8802 -- and be used in composing the equality operation of later types
8803 -- that have a component of the type.
8805 elsif Chars
(S
) = Name_Op_Eq
8806 and then Etype
(S
) = Standard_Boolean
8808 B_Typ
:= Base_Type
(Etype
(First_Formal
(S
)));
8810 if Scope
(B_Typ
) = Current_Scope
8812 Base_Type
(Etype
(Next_Formal
(First_Formal
(S
)))) = B_Typ
8813 and then not Is_Limited_Type
(B_Typ
)
8815 Is_Primitive
:= True;
8816 Set_Is_Primitive
(S
);
8817 Set_Has_Primitive_Operations
(B_Typ
);
8818 Check_Private_Overriding
(B_Typ
);
8821 end Check_For_Primitive_Subprogram
;
8823 -----------------------------------
8824 -- Check_Synchronized_Overriding --
8825 -----------------------------------
8827 procedure Check_Synchronized_Overriding
8828 (Def_Id
: Entity_Id
;
8829 Overridden_Subp
: out Entity_Id
)
8831 Ifaces_List
: Elist_Id
;
8835 function Matches_Prefixed_View_Profile
8836 (Prim_Params
: List_Id
;
8837 Iface_Params
: List_Id
) return Boolean;
8838 -- Determine whether a subprogram's parameter profile Prim_Params
8839 -- matches that of a potentially overridden interface subprogram
8840 -- Iface_Params. Also determine if the type of first parameter of
8841 -- Iface_Params is an implemented interface.
8843 -----------------------------------
8844 -- Matches_Prefixed_View_Profile --
8845 -----------------------------------
8847 function Matches_Prefixed_View_Profile
8848 (Prim_Params
: List_Id
;
8849 Iface_Params
: List_Id
) return Boolean
8851 Iface_Id
: Entity_Id
;
8852 Iface_Param
: Node_Id
;
8853 Iface_Typ
: Entity_Id
;
8854 Prim_Id
: Entity_Id
;
8855 Prim_Param
: Node_Id
;
8856 Prim_Typ
: Entity_Id
;
8858 function Is_Implemented
8859 (Ifaces_List
: Elist_Id
;
8860 Iface
: Entity_Id
) return Boolean;
8861 -- Determine if Iface is implemented by the current task or
8864 --------------------
8865 -- Is_Implemented --
8866 --------------------
8868 function Is_Implemented
8869 (Ifaces_List
: Elist_Id
;
8870 Iface
: Entity_Id
) return Boolean
8872 Iface_Elmt
: Elmt_Id
;
8875 Iface_Elmt
:= First_Elmt
(Ifaces_List
);
8876 while Present
(Iface_Elmt
) loop
8877 if Node
(Iface_Elmt
) = Iface
then
8881 Next_Elmt
(Iface_Elmt
);
8887 -- Start of processing for Matches_Prefixed_View_Profile
8890 Iface_Param
:= First
(Iface_Params
);
8891 Iface_Typ
:= Etype
(Defining_Identifier
(Iface_Param
));
8893 if Is_Access_Type
(Iface_Typ
) then
8894 Iface_Typ
:= Designated_Type
(Iface_Typ
);
8897 Prim_Param
:= First
(Prim_Params
);
8899 -- The first parameter of the potentially overridden subprogram
8900 -- must be an interface implemented by Prim.
8902 if not Is_Interface
(Iface_Typ
)
8903 or else not Is_Implemented
(Ifaces_List
, Iface_Typ
)
8908 -- The checks on the object parameters are done, move onto the
8909 -- rest of the parameters.
8911 if not In_Scope
then
8912 Prim_Param
:= Next
(Prim_Param
);
8915 Iface_Param
:= Next
(Iface_Param
);
8916 while Present
(Iface_Param
) and then Present
(Prim_Param
) loop
8917 Iface_Id
:= Defining_Identifier
(Iface_Param
);
8918 Iface_Typ
:= Find_Parameter_Type
(Iface_Param
);
8920 Prim_Id
:= Defining_Identifier
(Prim_Param
);
8921 Prim_Typ
:= Find_Parameter_Type
(Prim_Param
);
8923 if Ekind
(Iface_Typ
) = E_Anonymous_Access_Type
8924 and then Ekind
(Prim_Typ
) = E_Anonymous_Access_Type
8925 and then Is_Concurrent_Type
(Designated_Type
(Prim_Typ
))
8927 Iface_Typ
:= Designated_Type
(Iface_Typ
);
8928 Prim_Typ
:= Designated_Type
(Prim_Typ
);
8931 -- Case of multiple interface types inside a parameter profile
8933 -- (Obj_Param : in out Iface; ...; Param : Iface)
8935 -- If the interface type is implemented, then the matching type
8936 -- in the primitive should be the implementing record type.
8938 if Ekind
(Iface_Typ
) = E_Record_Type
8939 and then Is_Interface
(Iface_Typ
)
8940 and then Is_Implemented
(Ifaces_List
, Iface_Typ
)
8942 if Prim_Typ
/= Typ
then
8946 -- The two parameters must be both mode and subtype conformant
8948 elsif Ekind
(Iface_Id
) /= Ekind
(Prim_Id
)
8950 Conforming_Types
(Iface_Typ
, Prim_Typ
, Subtype_Conformant
)
8959 -- One of the two lists contains more parameters than the other
8961 if Present
(Iface_Param
) or else Present
(Prim_Param
) then
8966 end Matches_Prefixed_View_Profile
;
8968 -- Start of processing for Check_Synchronized_Overriding
8971 Overridden_Subp
:= Empty
;
8973 -- Def_Id must be an entry or a subprogram. We should skip predefined
8974 -- primitives internally generated by the frontend; however at this
8975 -- stage predefined primitives are still not fully decorated. As a
8976 -- minor optimization we skip here internally generated subprograms.
8978 if (Ekind
(Def_Id
) /= E_Entry
8979 and then Ekind
(Def_Id
) /= E_Function
8980 and then Ekind
(Def_Id
) /= E_Procedure
)
8981 or else not Comes_From_Source
(Def_Id
)
8986 -- Search for the concurrent declaration since it contains the list
8987 -- of all implemented interfaces. In this case, the subprogram is
8988 -- declared within the scope of a protected or a task type.
8990 if Present
(Scope
(Def_Id
))
8991 and then Is_Concurrent_Type
(Scope
(Def_Id
))
8992 and then not Is_Generic_Actual_Type
(Scope
(Def_Id
))
8994 Typ
:= Scope
(Def_Id
);
8997 -- The enclosing scope is not a synchronized type and the subprogram
9000 elsif No
(First_Formal
(Def_Id
)) then
9003 -- The subprogram has formals and hence it may be a primitive of a
9007 Typ
:= Etype
(First_Formal
(Def_Id
));
9009 if Is_Access_Type
(Typ
) then
9010 Typ
:= Directly_Designated_Type
(Typ
);
9013 if Is_Concurrent_Type
(Typ
)
9014 and then not Is_Generic_Actual_Type
(Typ
)
9018 -- This case occurs when the concurrent type is declared within
9019 -- a generic unit. As a result the corresponding record has been
9020 -- built and used as the type of the first formal, we just have
9021 -- to retrieve the corresponding concurrent type.
9023 elsif Is_Concurrent_Record_Type
(Typ
)
9024 and then not Is_Class_Wide_Type
(Typ
)
9025 and then Present
(Corresponding_Concurrent_Type
(Typ
))
9027 Typ
:= Corresponding_Concurrent_Type
(Typ
);
9035 -- There is no overriding to check if is an inherited operation in a
9036 -- type derivation on for a generic actual.
9038 Collect_Interfaces
(Typ
, Ifaces_List
);
9040 if Is_Empty_Elmt_List
(Ifaces_List
) then
9044 -- Determine whether entry or subprogram Def_Id overrides a primitive
9045 -- operation that belongs to one of the interfaces in Ifaces_List.
9048 Candidate
: Entity_Id
:= Empty
;
9049 Hom
: Entity_Id
:= Empty
;
9050 Iface_Typ
: Entity_Id
;
9051 Subp
: Entity_Id
:= Empty
;
9054 -- Traverse the homonym chain, looking for a potentially
9055 -- overridden subprogram that belongs to an implemented
9058 Hom
:= Current_Entity_In_Scope
(Def_Id
);
9059 while Present
(Hom
) loop
9063 or else not Is_Overloadable
(Subp
)
9064 or else not Is_Primitive
(Subp
)
9065 or else not Is_Dispatching_Operation
(Subp
)
9066 or else not Present
(Find_Dispatching_Type
(Subp
))
9067 or else not Is_Interface
(Find_Dispatching_Type
(Subp
))
9071 -- Entries and procedures can override abstract or null
9072 -- interface procedures.
9074 elsif (Ekind
(Def_Id
) = E_Procedure
9075 or else Ekind
(Def_Id
) = E_Entry
)
9076 and then Ekind
(Subp
) = E_Procedure
9077 and then Matches_Prefixed_View_Profile
9078 (Parameter_Specifications
(Parent
(Def_Id
)),
9079 Parameter_Specifications
(Parent
(Subp
)))
9083 -- For an overridden subprogram Subp, check whether the mode
9084 -- of its first parameter is correct depending on the kind
9085 -- of synchronized type.
9088 Formal
: constant Node_Id
:= First_Formal
(Candidate
);
9091 -- In order for an entry or a protected procedure to
9092 -- override, the first parameter of the overridden
9093 -- routine must be of mode "out", "in out" or
9094 -- access-to-variable.
9096 if Ekind_In
(Candidate
, E_Entry
, E_Procedure
)
9097 and then Is_Protected_Type
(Typ
)
9098 and then Ekind
(Formal
) /= E_In_Out_Parameter
9099 and then Ekind
(Formal
) /= E_Out_Parameter
9100 and then Nkind
(Parameter_Type
(Parent
(Formal
))) /=
9105 -- All other cases are OK since a task entry or routine
9106 -- does not have a restriction on the mode of the first
9107 -- parameter of the overridden interface routine.
9110 Overridden_Subp
:= Candidate
;
9115 -- Functions can override abstract interface functions
9117 elsif Ekind
(Def_Id
) = E_Function
9118 and then Ekind
(Subp
) = E_Function
9119 and then Matches_Prefixed_View_Profile
9120 (Parameter_Specifications
(Parent
(Def_Id
)),
9121 Parameter_Specifications
(Parent
(Subp
)))
9122 and then Etype
(Result_Definition
(Parent
(Def_Id
))) =
9123 Etype
(Result_Definition
(Parent
(Subp
)))
9125 Overridden_Subp
:= Subp
;
9129 Hom
:= Homonym
(Hom
);
9132 -- After examining all candidates for overriding, we are left with
9133 -- the best match which is a mode incompatible interface routine.
9134 -- Do not emit an error if the Expander is active since this error
9135 -- will be detected later on after all concurrent types are
9136 -- expanded and all wrappers are built. This check is meant for
9137 -- spec-only compilations.
9139 if Present
(Candidate
) and then not Expander_Active
then
9141 Find_Parameter_Type
(Parent
(First_Formal
(Candidate
)));
9143 -- Def_Id is primitive of a protected type, declared inside the
9144 -- type, and the candidate is primitive of a limited or
9145 -- synchronized interface.
9148 and then Is_Protected_Type
(Typ
)
9150 (Is_Limited_Interface
(Iface_Typ
)
9151 or else Is_Protected_Interface
(Iface_Typ
)
9152 or else Is_Synchronized_Interface
(Iface_Typ
)
9153 or else Is_Task_Interface
(Iface_Typ
))
9155 Error_Msg_PT
(Parent
(Typ
), Candidate
);
9159 Overridden_Subp
:= Candidate
;
9162 end Check_Synchronized_Overriding
;
9164 ----------------------------
9165 -- Is_Private_Declaration --
9166 ----------------------------
9168 function Is_Private_Declaration
(E
: Entity_Id
) return Boolean is
9169 Priv_Decls
: List_Id
;
9170 Decl
: constant Node_Id
:= Unit_Declaration_Node
(E
);
9173 if Is_Package_Or_Generic_Package
(Current_Scope
)
9174 and then In_Private_Part
(Current_Scope
)
9177 Private_Declarations
(Package_Specification
(Current_Scope
));
9179 return In_Package_Body
(Current_Scope
)
9181 (Is_List_Member
(Decl
)
9182 and then List_Containing
(Decl
) = Priv_Decls
)
9183 or else (Nkind
(Parent
(Decl
)) = N_Package_Specification
9186 (Defining_Entity
(Parent
(Decl
)))
9187 and then List_Containing
(Parent
(Parent
(Decl
))) =
9192 end Is_Private_Declaration
;
9194 --------------------------
9195 -- Is_Overriding_Alias --
9196 --------------------------
9198 function Is_Overriding_Alias
9200 New_E
: Entity_Id
) return Boolean
9202 AO
: constant Entity_Id
:= Alias
(Old_E
);
9203 AN
: constant Entity_Id
:= Alias
(New_E
);
9205 return Scope
(AO
) /= Scope
(AN
)
9206 or else No
(DTC_Entity
(AO
))
9207 or else No
(DTC_Entity
(AN
))
9208 or else DT_Position
(AO
) = DT_Position
(AN
);
9209 end Is_Overriding_Alias
;
9211 -- Start of processing for New_Overloaded_Entity
9214 -- We need to look for an entity that S may override. This must be a
9215 -- homonym in the current scope, so we look for the first homonym of
9216 -- S in the current scope as the starting point for the search.
9218 E
:= Current_Entity_In_Scope
(S
);
9220 -- Ada 2005 (AI-251): Derivation of abstract interface primitives.
9221 -- They are directly added to the list of primitive operations of
9222 -- Derived_Type, unless this is a rederivation in the private part
9223 -- of an operation that was already derived in the visible part of
9224 -- the current package.
9226 if Ada_Version
>= Ada_2005
9227 and then Present
(Derived_Type
)
9228 and then Present
(Alias
(S
))
9229 and then Is_Dispatching_Operation
(Alias
(S
))
9230 and then Present
(Find_Dispatching_Type
(Alias
(S
)))
9231 and then Is_Interface
(Find_Dispatching_Type
(Alias
(S
)))
9233 -- For private types, when the full-view is processed we propagate to
9234 -- the full view the non-overridden entities whose attribute "alias"
9235 -- references an interface primitive. These entities were added by
9236 -- Derive_Subprograms to ensure that interface primitives are
9239 -- Inside_Freeze_Actions is non zero when S corresponds with an
9240 -- internal entity that links an interface primitive with its
9241 -- covering primitive through attribute Interface_Alias (see
9242 -- Add_Internal_Interface_Entities).
9244 if Inside_Freezing_Actions
= 0
9245 and then Is_Package_Or_Generic_Package
(Current_Scope
)
9246 and then In_Private_Part
(Current_Scope
)
9247 and then Nkind
(Parent
(E
)) = N_Private_Extension_Declaration
9248 and then Nkind
(Parent
(S
)) = N_Full_Type_Declaration
9249 and then Full_View
(Defining_Identifier
(Parent
(E
)))
9250 = Defining_Identifier
(Parent
(S
))
9251 and then Alias
(E
) = Alias
(S
)
9253 Check_Operation_From_Private_View
(S
, E
);
9254 Set_Is_Dispatching_Operation
(S
);
9259 Enter_Overloaded_Entity
(S
);
9260 Check_Dispatching_Operation
(S
, Empty
);
9261 Check_For_Primitive_Subprogram
(Is_Primitive_Subp
);
9267 -- If there is no homonym then this is definitely not overriding
9270 Enter_Overloaded_Entity
(S
);
9271 Check_Dispatching_Operation
(S
, Empty
);
9272 Check_For_Primitive_Subprogram
(Is_Primitive_Subp
);
9274 -- If subprogram has an explicit declaration, check whether it has an
9275 -- overriding indicator.
9277 if Comes_From_Source
(S
) then
9278 Check_Synchronized_Overriding
(S
, Overridden_Subp
);
9280 -- (Ada 2012: AI05-0125-1): If S is a dispatching operation then
9281 -- it may have overridden some hidden inherited primitive. Update
9282 -- Overridden_Subp to avoid spurious errors when checking the
9283 -- overriding indicator.
9285 if Ada_Version
>= Ada_2012
9286 and then No
(Overridden_Subp
)
9287 and then Is_Dispatching_Operation
(S
)
9288 and then Present
(Overridden_Operation
(S
))
9290 Overridden_Subp
:= Overridden_Operation
(S
);
9293 Check_Overriding_Indicator
9294 (S
, Overridden_Subp
, Is_Primitive
=> Is_Primitive_Subp
);
9297 -- If there is a homonym that is not overloadable, then we have an
9298 -- error, except for the special cases checked explicitly below.
9300 elsif not Is_Overloadable
(E
) then
9302 -- Check for spurious conflict produced by a subprogram that has the
9303 -- same name as that of the enclosing generic package. The conflict
9304 -- occurs within an instance, between the subprogram and the renaming
9305 -- declaration for the package. After the subprogram, the package
9306 -- renaming declaration becomes hidden.
9308 if Ekind
(E
) = E_Package
9309 and then Present
(Renamed_Object
(E
))
9310 and then Renamed_Object
(E
) = Current_Scope
9311 and then Nkind
(Parent
(Renamed_Object
(E
))) =
9312 N_Package_Specification
9313 and then Present
(Generic_Parent
(Parent
(Renamed_Object
(E
))))
9316 Set_Is_Immediately_Visible
(E
, False);
9317 Enter_Overloaded_Entity
(S
);
9318 Set_Homonym
(S
, Homonym
(E
));
9319 Check_Dispatching_Operation
(S
, Empty
);
9320 Check_Overriding_Indicator
(S
, Empty
, Is_Primitive
=> False);
9322 -- If the subprogram is implicit it is hidden by the previous
9323 -- declaration. However if it is dispatching, it must appear in the
9324 -- dispatch table anyway, because it can be dispatched to even if it
9325 -- cannot be called directly.
9327 elsif Present
(Alias
(S
)) and then not Comes_From_Source
(S
) then
9328 Set_Scope
(S
, Current_Scope
);
9330 if Is_Dispatching_Operation
(Alias
(S
)) then
9331 Check_Dispatching_Operation
(S
, Empty
);
9337 Error_Msg_Sloc
:= Sloc
(E
);
9339 -- Generate message, with useful additional warning if in generic
9341 if Is_Generic_Unit
(E
) then
9342 Error_Msg_N
("previous generic unit cannot be overloaded", S
);
9343 Error_Msg_N
("\& conflicts with declaration#", S
);
9345 Error_Msg_N
("& conflicts with declaration#", S
);
9351 -- E exists and is overloadable
9354 Check_Synchronized_Overriding
(S
, Overridden_Subp
);
9356 -- Loop through E and its homonyms to determine if any of them is
9357 -- the candidate for overriding by S.
9359 while Present
(E
) loop
9361 -- Definitely not interesting if not in the current scope
9363 if Scope
(E
) /= Current_Scope
then
9366 -- A function can overload the name of an abstract state. The
9367 -- state can be viewed as a function with a profile that cannot
9368 -- be matched by anything.
9370 elsif Ekind
(S
) = E_Function
9371 and then Ekind
(E
) = E_Abstract_State
9373 Enter_Overloaded_Entity
(S
);
9376 -- Ada 2012 (AI05-0165): For internally generated bodies of null
9377 -- procedures locate the internally generated spec. We enforce
9378 -- mode conformance since a tagged type may inherit from
9379 -- interfaces several null primitives which differ only in
9380 -- the mode of the formals.
9382 elsif not Comes_From_Source
(S
)
9383 and then Is_Null_Procedure
(S
)
9384 and then not Mode_Conformant
(E
, S
)
9388 -- Check if we have type conformance
9390 elsif Type_Conformant
(E
, S
) then
9392 -- If the old and new entities have the same profile and one
9393 -- is not the body of the other, then this is an error, unless
9394 -- one of them is implicitly declared.
9396 -- There are some cases when both can be implicit, for example
9397 -- when both a literal and a function that overrides it are
9398 -- inherited in a derivation, or when an inherited operation
9399 -- of a tagged full type overrides the inherited operation of
9400 -- a private extension. Ada 83 had a special rule for the
9401 -- literal case. In Ada 95, the later implicit operation hides
9402 -- the former, and the literal is always the former. In the
9403 -- odd case where both are derived operations declared at the
9404 -- same point, both operations should be declared, and in that
9405 -- case we bypass the following test and proceed to the next
9406 -- part. This can only occur for certain obscure cases in
9407 -- instances, when an operation on a type derived from a formal
9408 -- private type does not override a homograph inherited from
9409 -- the actual. In subsequent derivations of such a type, the
9410 -- DT positions of these operations remain distinct, if they
9413 if Present
(Alias
(S
))
9414 and then (No
(Alias
(E
))
9415 or else Comes_From_Source
(E
)
9416 or else Is_Abstract_Subprogram
(S
)
9418 (Is_Dispatching_Operation
(E
)
9419 and then Is_Overriding_Alias
(E
, S
)))
9420 and then Ekind
(E
) /= E_Enumeration_Literal
9422 -- When an derived operation is overloaded it may be due to
9423 -- the fact that the full view of a private extension
9424 -- re-inherits. It has to be dealt with.
9426 if Is_Package_Or_Generic_Package
(Current_Scope
)
9427 and then In_Private_Part
(Current_Scope
)
9429 Check_Operation_From_Private_View
(S
, E
);
9432 -- In any case the implicit operation remains hidden by the
9433 -- existing declaration, which is overriding. Indicate that
9434 -- E overrides the operation from which S is inherited.
9436 if Present
(Alias
(S
)) then
9437 Set_Overridden_Operation
(E
, Alias
(S
));
9439 Set_Overridden_Operation
(E
, S
);
9442 if Comes_From_Source
(E
) then
9443 Check_Overriding_Indicator
(E
, S
, Is_Primitive
=> False);
9448 -- Within an instance, the renaming declarations for actual
9449 -- subprograms may become ambiguous, but they do not hide each
9452 elsif Ekind
(E
) /= E_Entry
9453 and then not Comes_From_Source
(E
)
9454 and then not Is_Generic_Instance
(E
)
9455 and then (Present
(Alias
(E
))
9456 or else Is_Intrinsic_Subprogram
(E
))
9457 and then (not In_Instance
9458 or else No
(Parent
(E
))
9459 or else Nkind
(Unit_Declaration_Node
(E
)) /=
9460 N_Subprogram_Renaming_Declaration
)
9462 -- A subprogram child unit is not allowed to override an
9463 -- inherited subprogram (10.1.1(20)).
9465 if Is_Child_Unit
(S
) then
9467 ("child unit overrides inherited subprogram in parent",
9472 if Is_Non_Overriding_Operation
(E
, S
) then
9473 Enter_Overloaded_Entity
(S
);
9475 if No
(Derived_Type
)
9476 or else Is_Tagged_Type
(Derived_Type
)
9478 Check_Dispatching_Operation
(S
, Empty
);
9484 -- E is a derived operation or an internal operator which
9485 -- is being overridden. Remove E from further visibility.
9486 -- Furthermore, if E is a dispatching operation, it must be
9487 -- replaced in the list of primitive operations of its type
9488 -- (see Override_Dispatching_Operation).
9490 Overridden_Subp
:= E
;
9496 Prev
:= First_Entity
(Current_Scope
);
9497 while Present
(Prev
) and then Next_Entity
(Prev
) /= E
loop
9501 -- It is possible for E to be in the current scope and
9502 -- yet not in the entity chain. This can only occur in a
9503 -- generic context where E is an implicit concatenation
9504 -- in the formal part, because in a generic body the
9505 -- entity chain starts with the formals.
9508 (Present
(Prev
) or else Chars
(E
) = Name_Op_Concat
);
9510 -- E must be removed both from the entity_list of the
9511 -- current scope, and from the visibility chain
9513 if Debug_Flag_E
then
9514 Write_Str
("Override implicit operation ");
9515 Write_Int
(Int
(E
));
9519 -- If E is a predefined concatenation, it stands for four
9520 -- different operations. As a result, a single explicit
9521 -- declaration does not hide it. In a possible ambiguous
9522 -- situation, Disambiguate chooses the user-defined op,
9523 -- so it is correct to retain the previous internal one.
9525 if Chars
(E
) /= Name_Op_Concat
9526 or else Ekind
(E
) /= E_Operator
9528 -- For nondispatching derived operations that are
9529 -- overridden by a subprogram declared in the private
9530 -- part of a package, we retain the derived subprogram
9531 -- but mark it as not immediately visible. If the
9532 -- derived operation was declared in the visible part
9533 -- then this ensures that it will still be visible
9534 -- outside the package with the proper signature
9535 -- (calls from outside must also be directed to this
9536 -- version rather than the overriding one, unlike the
9537 -- dispatching case). Calls from inside the package
9538 -- will still resolve to the overriding subprogram
9539 -- since the derived one is marked as not visible
9540 -- within the package.
9542 -- If the private operation is dispatching, we achieve
9543 -- the overriding by keeping the implicit operation
9544 -- but setting its alias to be the overriding one. In
9545 -- this fashion the proper body is executed in all
9546 -- cases, but the original signature is used outside
9549 -- If the overriding is not in the private part, we
9550 -- remove the implicit operation altogether.
9552 if Is_Private_Declaration
(S
) then
9553 if not Is_Dispatching_Operation
(E
) then
9554 Set_Is_Immediately_Visible
(E
, False);
9556 -- Work done in Override_Dispatching_Operation,
9557 -- so nothing else needs to be done here.
9563 -- Find predecessor of E in Homonym chain
9565 if E
= Current_Entity
(E
) then
9568 Prev_Vis
:= Current_Entity
(E
);
9569 while Homonym
(Prev_Vis
) /= E
loop
9570 Prev_Vis
:= Homonym
(Prev_Vis
);
9574 if Prev_Vis
/= Empty
then
9576 -- Skip E in the visibility chain
9578 Set_Homonym
(Prev_Vis
, Homonym
(E
));
9581 Set_Name_Entity_Id
(Chars
(E
), Homonym
(E
));
9584 Set_Next_Entity
(Prev
, Next_Entity
(E
));
9586 if No
(Next_Entity
(Prev
)) then
9587 Set_Last_Entity
(Current_Scope
, Prev
);
9592 Enter_Overloaded_Entity
(S
);
9594 -- For entities generated by Derive_Subprograms the
9595 -- overridden operation is the inherited primitive
9596 -- (which is available through the attribute alias).
9598 if not (Comes_From_Source
(E
))
9599 and then Is_Dispatching_Operation
(E
)
9600 and then Find_Dispatching_Type
(E
) =
9601 Find_Dispatching_Type
(S
)
9602 and then Present
(Alias
(E
))
9603 and then Comes_From_Source
(Alias
(E
))
9605 Set_Overridden_Operation
(S
, Alias
(E
));
9607 -- Normal case of setting entity as overridden
9609 -- Note: Static_Initialization and Overridden_Operation
9610 -- attributes use the same field in subprogram entities.
9611 -- Static_Initialization is only defined for internal
9612 -- initialization procedures, where Overridden_Operation
9613 -- is irrelevant. Therefore the setting of this attribute
9614 -- must check whether the target is an init_proc.
9616 elsif not Is_Init_Proc
(S
) then
9617 Set_Overridden_Operation
(S
, E
);
9620 Check_Overriding_Indicator
(S
, E
, Is_Primitive
=> True);
9622 -- If S is a user-defined subprogram or a null procedure
9623 -- expanded to override an inherited null procedure, or a
9624 -- predefined dispatching primitive then indicate that E
9625 -- overrides the operation from which S is inherited.
9627 if Comes_From_Source
(S
)
9629 (Present
(Parent
(S
))
9631 Nkind
(Parent
(S
)) = N_Procedure_Specification
9633 Null_Present
(Parent
(S
)))
9635 (Present
(Alias
(E
))
9637 Is_Predefined_Dispatching_Operation
(Alias
(E
)))
9639 if Present
(Alias
(E
)) then
9640 Set_Overridden_Operation
(S
, Alias
(E
));
9644 if Is_Dispatching_Operation
(E
) then
9646 -- An overriding dispatching subprogram inherits the
9647 -- convention of the overridden subprogram (AI-117).
9649 Set_Convention
(S
, Convention
(E
));
9650 Check_Dispatching_Operation
(S
, E
);
9653 Check_Dispatching_Operation
(S
, Empty
);
9656 Check_For_Primitive_Subprogram
9657 (Is_Primitive_Subp
, Is_Overriding
=> True);
9658 goto Check_Inequality
;
9661 -- Apparent redeclarations in instances can occur when two
9662 -- formal types get the same actual type. The subprograms in
9663 -- in the instance are legal, even if not callable from the
9664 -- outside. Calls from within are disambiguated elsewhere.
9665 -- For dispatching operations in the visible part, the usual
9666 -- rules apply, and operations with the same profile are not
9669 elsif (In_Instance_Visible_Part
9670 and then not Is_Dispatching_Operation
(E
))
9671 or else In_Instance_Not_Visible
9675 -- Here we have a real error (identical profile)
9678 Error_Msg_Sloc
:= Sloc
(E
);
9680 -- Avoid cascaded errors if the entity appears in
9681 -- subsequent calls.
9683 Set_Scope
(S
, Current_Scope
);
9685 -- Generate error, with extra useful warning for the case
9686 -- of a generic instance with no completion.
9688 if Is_Generic_Instance
(S
)
9689 and then not Has_Completion
(E
)
9692 ("instantiation cannot provide body for&", S
);
9693 Error_Msg_N
("\& conflicts with declaration#", S
);
9695 Error_Msg_N
("& conflicts with declaration#", S
);
9702 -- If one subprogram has an access parameter and the other
9703 -- a parameter of an access type, calls to either might be
9704 -- ambiguous. Verify that parameters match except for the
9705 -- access parameter.
9707 if May_Hide_Profile
then
9713 F1
:= First_Formal
(S
);
9714 F2
:= First_Formal
(E
);
9715 while Present
(F1
) and then Present
(F2
) loop
9716 if Is_Access_Type
(Etype
(F1
)) then
9717 if not Is_Access_Type
(Etype
(F2
))
9718 or else not Conforming_Types
9719 (Designated_Type
(Etype
(F1
)),
9720 Designated_Type
(Etype
(F2
)),
9723 May_Hide_Profile
:= False;
9727 not Conforming_Types
9728 (Etype
(F1
), Etype
(F2
), Type_Conformant
)
9730 May_Hide_Profile
:= False;
9741 Error_Msg_NE
("calls to& may be ambiguous??", S
, S
);
9750 -- On exit, we know that S is a new entity
9752 Enter_Overloaded_Entity
(S
);
9753 Check_For_Primitive_Subprogram
(Is_Primitive_Subp
);
9754 Check_Overriding_Indicator
9755 (S
, Overridden_Subp
, Is_Primitive
=> Is_Primitive_Subp
);
9757 -- Overloading is not allowed in SPARK, except for operators
9759 if Nkind
(S
) /= N_Defining_Operator_Symbol
then
9760 Error_Msg_Sloc
:= Sloc
(Homonym
(S
));
9761 Check_SPARK_05_Restriction
9762 ("overloading not allowed with entity#", S
);
9765 -- If S is a derived operation for an untagged type then by
9766 -- definition it's not a dispatching operation (even if the parent
9767 -- operation was dispatching), so Check_Dispatching_Operation is not
9768 -- called in that case.
9770 if No
(Derived_Type
)
9771 or else Is_Tagged_Type
(Derived_Type
)
9773 Check_Dispatching_Operation
(S
, Empty
);
9777 -- If this is a user-defined equality operator that is not a derived
9778 -- subprogram, create the corresponding inequality. If the operation is
9779 -- dispatching, the expansion is done elsewhere, and we do not create
9780 -- an explicit inequality operation.
9782 <<Check_Inequality
>>
9783 if Chars
(S
) = Name_Op_Eq
9784 and then Etype
(S
) = Standard_Boolean
9785 and then Present
(Parent
(S
))
9786 and then not Is_Dispatching_Operation
(S
)
9788 Make_Inequality_Operator
(S
);
9789 Check_Untagged_Equality
(S
);
9791 end New_Overloaded_Entity
;
9793 ---------------------
9794 -- Process_Formals --
9795 ---------------------
9797 procedure Process_Formals
9799 Related_Nod
: Node_Id
)
9801 Param_Spec
: Node_Id
;
9803 Formal_Type
: Entity_Id
;
9807 Num_Out_Params
: Nat
:= 0;
9808 First_Out_Param
: Entity_Id
:= Empty
;
9809 -- Used for setting Is_Only_Out_Parameter
9811 function Designates_From_Limited_With
(Typ
: Entity_Id
) return Boolean;
9812 -- Determine whether an access type designates a type coming from a
9815 function Is_Class_Wide_Default
(D
: Node_Id
) return Boolean;
9816 -- Check whether the default has a class-wide type. After analysis the
9817 -- default has the type of the formal, so we must also check explicitly
9818 -- for an access attribute.
9820 ----------------------------------
9821 -- Designates_From_Limited_With --
9822 ----------------------------------
9824 function Designates_From_Limited_With
(Typ
: Entity_Id
) return Boolean is
9825 Desig
: Entity_Id
:= Typ
;
9828 if Is_Access_Type
(Desig
) then
9829 Desig
:= Directly_Designated_Type
(Desig
);
9832 if Is_Class_Wide_Type
(Desig
) then
9833 Desig
:= Root_Type
(Desig
);
9837 Ekind
(Desig
) = E_Incomplete_Type
9838 and then From_Limited_With
(Desig
);
9839 end Designates_From_Limited_With
;
9841 ---------------------------
9842 -- Is_Class_Wide_Default --
9843 ---------------------------
9845 function Is_Class_Wide_Default
(D
: Node_Id
) return Boolean is
9847 return Is_Class_Wide_Type
(Designated_Type
(Etype
(D
)))
9848 or else (Nkind
(D
) = N_Attribute_Reference
9849 and then Attribute_Name
(D
) = Name_Access
9850 and then Is_Class_Wide_Type
(Etype
(Prefix
(D
))));
9851 end Is_Class_Wide_Default
;
9853 -- Start of processing for Process_Formals
9856 -- In order to prevent premature use of the formals in the same formal
9857 -- part, the Ekind is left undefined until all default expressions are
9858 -- analyzed. The Ekind is established in a separate loop at the end.
9860 Param_Spec
:= First
(T
);
9861 while Present
(Param_Spec
) loop
9862 Formal
:= Defining_Identifier
(Param_Spec
);
9863 Set_Never_Set_In_Source
(Formal
, True);
9864 Enter_Name
(Formal
);
9866 -- Case of ordinary parameters
9868 if Nkind
(Parameter_Type
(Param_Spec
)) /= N_Access_Definition
then
9869 Find_Type
(Parameter_Type
(Param_Spec
));
9870 Ptype
:= Parameter_Type
(Param_Spec
);
9872 if Ptype
= Error
then
9876 Formal_Type
:= Entity
(Ptype
);
9878 if Is_Incomplete_Type
(Formal_Type
)
9880 (Is_Class_Wide_Type
(Formal_Type
)
9881 and then Is_Incomplete_Type
(Root_Type
(Formal_Type
)))
9883 -- Ada 2005 (AI-326): Tagged incomplete types allowed in
9884 -- primitive operations, as long as their completion is
9885 -- in the same declarative part. If in the private part
9886 -- this means that the type cannot be a Taft-amendment type.
9887 -- Check is done on package exit. For access to subprograms,
9888 -- the use is legal for Taft-amendment types.
9890 -- Ada 2012: tagged incomplete types are allowed as generic
9891 -- formal types. They do not introduce dependencies and the
9892 -- corresponding generic subprogram does not have a delayed
9893 -- freeze, because it does not need a freeze node. However,
9894 -- it is still the case that untagged incomplete types cannot
9895 -- be Taft-amendment types and must be completed in private
9896 -- part, so the subprogram must appear in the list of private
9897 -- dependents of the type.
9899 if Is_Tagged_Type
(Formal_Type
)
9900 or else (Ada_Version
>= Ada_2012
9901 and then not From_Limited_With
(Formal_Type
)
9902 and then not Is_Generic_Type
(Formal_Type
))
9904 if Ekind
(Scope
(Current_Scope
)) = E_Package
9905 and then not Is_Generic_Type
(Formal_Type
)
9906 and then not Is_Class_Wide_Type
(Formal_Type
)
9909 (Parent
(T
), N_Access_Function_Definition
,
9910 N_Access_Procedure_Definition
)
9914 To
=> Private_Dependents
(Base_Type
(Formal_Type
)));
9916 -- Freezing is delayed to ensure that Register_Prim
9917 -- will get called for this operation, which is needed
9918 -- in cases where static dispatch tables aren't built.
9919 -- (Note that the same is done for controlling access
9920 -- parameter cases in function Access_Definition.)
9922 Set_Has_Delayed_Freeze
(Current_Scope
);
9926 -- Special handling of Value_Type for CIL case
9928 elsif Is_Value_Type
(Formal_Type
) then
9931 elsif not Nkind_In
(Parent
(T
), N_Access_Function_Definition
,
9932 N_Access_Procedure_Definition
)
9934 -- AI05-0151: Tagged incomplete types are allowed in all
9935 -- formal parts. Untagged incomplete types are not allowed
9936 -- in bodies. Limited views of either kind are not allowed
9937 -- if there is no place at which the non-limited view can
9938 -- become available.
9940 -- Incomplete formal untagged types are not allowed in
9941 -- subprogram bodies (but are legal in their declarations).
9943 if Is_Generic_Type
(Formal_Type
)
9944 and then not Is_Tagged_Type
(Formal_Type
)
9945 and then Nkind
(Parent
(Related_Nod
)) = N_Subprogram_Body
9948 ("invalid use of formal incomplete type", Param_Spec
);
9950 elsif Ada_Version
>= Ada_2012
then
9951 if Is_Tagged_Type
(Formal_Type
)
9952 and then (not From_Limited_With
(Formal_Type
)
9953 or else not In_Package_Body
)
9957 elsif Nkind_In
(Parent
(Parent
(T
)), N_Accept_Statement
,
9958 N_Accept_Alternative
,
9963 ("invalid use of untagged incomplete type&",
9964 Ptype
, Formal_Type
);
9969 ("invalid use of incomplete type&",
9970 Param_Spec
, Formal_Type
);
9972 -- Further checks on the legality of incomplete types
9973 -- in formal parts are delayed until the freeze point
9974 -- of the enclosing subprogram or access to subprogram.
9978 elsif Ekind
(Formal_Type
) = E_Void
then
9980 ("premature use of&",
9981 Parameter_Type
(Param_Spec
), Formal_Type
);
9984 -- Ada 2012 (AI-142): Handle aliased parameters
9986 if Ada_Version
>= Ada_2012
9987 and then Aliased_Present
(Param_Spec
)
9989 Set_Is_Aliased
(Formal
);
9992 -- Ada 2005 (AI-231): Create and decorate an internal subtype
9993 -- declaration corresponding to the null-excluding type of the
9994 -- formal in the enclosing scope. Finally, replace the parameter
9995 -- type of the formal with the internal subtype.
9997 if Ada_Version
>= Ada_2005
9998 and then Null_Exclusion_Present
(Param_Spec
)
10000 if not Is_Access_Type
(Formal_Type
) then
10002 ("`NOT NULL` allowed only for an access type", Param_Spec
);
10005 if Can_Never_Be_Null
(Formal_Type
)
10006 and then Comes_From_Source
(Related_Nod
)
10009 ("`NOT NULL` not allowed (& already excludes null)",
10010 Param_Spec
, Formal_Type
);
10014 Create_Null_Excluding_Itype
10016 Related_Nod
=> Related_Nod
,
10017 Scope_Id
=> Scope
(Current_Scope
));
10019 -- If the designated type of the itype is an itype that is
10020 -- not frozen yet, we set the Has_Delayed_Freeze attribute
10021 -- on the access subtype, to prevent order-of-elaboration
10022 -- issues in the backend.
10025 -- type T is access procedure;
10026 -- procedure Op (O : not null T);
10028 if Is_Itype
(Directly_Designated_Type
(Formal_Type
))
10030 not Is_Frozen
(Directly_Designated_Type
(Formal_Type
))
10032 Set_Has_Delayed_Freeze
(Formal_Type
);
10037 -- An access formal type
10041 Access_Definition
(Related_Nod
, Parameter_Type
(Param_Spec
));
10043 -- No need to continue if we already notified errors
10045 if not Present
(Formal_Type
) then
10049 -- Ada 2005 (AI-254)
10052 AD
: constant Node_Id
:=
10053 Access_To_Subprogram_Definition
10054 (Parameter_Type
(Param_Spec
));
10056 if Present
(AD
) and then Protected_Present
(AD
) then
10058 Replace_Anonymous_Access_To_Protected_Subprogram
10064 Set_Etype
(Formal
, Formal_Type
);
10066 -- Deal with default expression if present
10068 Default
:= Expression
(Param_Spec
);
10070 if Present
(Default
) then
10071 Check_SPARK_05_Restriction
10072 ("default expression is not allowed", Default
);
10074 if Out_Present
(Param_Spec
) then
10076 ("default initialization only allowed for IN parameters",
10080 -- Do the special preanalysis of the expression (see section on
10081 -- "Handling of Default Expressions" in the spec of package Sem).
10083 Preanalyze_Spec_Expression
(Default
, Formal_Type
);
10085 -- An access to constant cannot be the default for
10086 -- an access parameter that is an access to variable.
10088 if Ekind
(Formal_Type
) = E_Anonymous_Access_Type
10089 and then not Is_Access_Constant
(Formal_Type
)
10090 and then Is_Access_Type
(Etype
(Default
))
10091 and then Is_Access_Constant
(Etype
(Default
))
10094 ("formal that is access to variable cannot be initialized "
10095 & "with an access-to-constant expression", Default
);
10098 -- Check that the designated type of an access parameter's default
10099 -- is not a class-wide type unless the parameter's designated type
10100 -- is also class-wide.
10102 if Ekind
(Formal_Type
) = E_Anonymous_Access_Type
10103 and then not Designates_From_Limited_With
(Formal_Type
)
10104 and then Is_Class_Wide_Default
(Default
)
10105 and then not Is_Class_Wide_Type
(Designated_Type
(Formal_Type
))
10108 ("access to class-wide expression not allowed here", Default
);
10111 -- Check incorrect use of dynamically tagged expressions
10113 if Is_Tagged_Type
(Formal_Type
) then
10114 Check_Dynamically_Tagged_Expression
10116 Typ
=> Formal_Type
,
10117 Related_Nod
=> Default
);
10121 -- Ada 2005 (AI-231): Static checks
10123 if Ada_Version
>= Ada_2005
10124 and then Is_Access_Type
(Etype
(Formal
))
10125 and then Can_Never_Be_Null
(Etype
(Formal
))
10127 Null_Exclusion_Static_Checks
(Param_Spec
);
10130 -- The following checks are relevant when SPARK_Mode is on as these
10131 -- are not standard Ada legality rules.
10133 if SPARK_Mode
= On
then
10134 if Ekind_In
(Scope
(Formal
), E_Function
, E_Generic_Function
) then
10136 -- A function cannot have a parameter of mode IN OUT or OUT
10139 if Ekind_In
(Formal
, E_In_Out_Parameter
, E_Out_Parameter
) then
10141 ("function cannot have parameter of mode `OUT` or "
10142 & "`IN OUT`", Formal
);
10144 -- A function cannot have an effectively volatile formal
10145 -- parameter (SPARK RM 7.1.3(10)).
10147 elsif Is_Effectively_Volatile
(Formal
) then
10149 ("function cannot have a volatile formal parameter",
10153 -- A procedure cannot have an effectively volatile formal
10154 -- parameter of mode IN because it behaves as a constant
10155 -- (SPARK RM 7.1.3(6)).
10157 elsif Ekind
(Scope
(Formal
)) = E_Procedure
10158 and then Ekind
(Formal
) = E_In_Parameter
10159 and then Is_Effectively_Volatile
(Formal
)
10162 ("formal parameter of mode `IN` cannot be volatile", Formal
);
10170 -- If this is the formal part of a function specification, analyze the
10171 -- subtype mark in the context where the formals are visible but not
10172 -- yet usable, and may hide outer homographs.
10174 if Nkind
(Related_Nod
) = N_Function_Specification
then
10175 Analyze_Return_Type
(Related_Nod
);
10178 -- Now set the kind (mode) of each formal
10180 Param_Spec
:= First
(T
);
10181 while Present
(Param_Spec
) loop
10182 Formal
:= Defining_Identifier
(Param_Spec
);
10183 Set_Formal_Mode
(Formal
);
10185 if Ekind
(Formal
) = E_In_Parameter
then
10186 Set_Default_Value
(Formal
, Expression
(Param_Spec
));
10188 if Present
(Expression
(Param_Spec
)) then
10189 Default
:= Expression
(Param_Spec
);
10191 if Is_Scalar_Type
(Etype
(Default
)) then
10192 if Nkind
(Parameter_Type
(Param_Spec
)) /=
10193 N_Access_Definition
10195 Formal_Type
:= Entity
(Parameter_Type
(Param_Spec
));
10199 (Related_Nod
, Parameter_Type
(Param_Spec
));
10202 Apply_Scalar_Range_Check
(Default
, Formal_Type
);
10206 elsif Ekind
(Formal
) = E_Out_Parameter
then
10207 Num_Out_Params
:= Num_Out_Params
+ 1;
10209 if Num_Out_Params
= 1 then
10210 First_Out_Param
:= Formal
;
10213 elsif Ekind
(Formal
) = E_In_Out_Parameter
then
10214 Num_Out_Params
:= Num_Out_Params
+ 1;
10217 -- Skip remaining processing if formal type was in error
10219 if Etype
(Formal
) = Any_Type
or else Error_Posted
(Formal
) then
10220 goto Next_Parameter
;
10223 -- Force call by reference if aliased
10225 if Is_Aliased
(Formal
) then
10226 Set_Mechanism
(Formal
, By_Reference
);
10228 -- Warn if user asked this to be passed by copy
10230 if Convention
(Formal_Type
) = Convention_Ada_Pass_By_Copy
then
10232 ("cannot pass aliased parameter & by copy??", Formal
);
10235 -- Force mechanism if type has Convention Ada_Pass_By_Ref/Copy
10237 elsif Convention
(Formal_Type
) = Convention_Ada_Pass_By_Copy
then
10238 Set_Mechanism
(Formal
, By_Copy
);
10240 elsif Convention
(Formal_Type
) = Convention_Ada_Pass_By_Reference
then
10241 Set_Mechanism
(Formal
, By_Reference
);
10248 if Present
(First_Out_Param
) and then Num_Out_Params
= 1 then
10249 Set_Is_Only_Out_Parameter
(First_Out_Param
);
10251 end Process_Formals
;
10253 ----------------------------
10254 -- Reference_Body_Formals --
10255 ----------------------------
10257 procedure Reference_Body_Formals
(Spec
: Entity_Id
; Bod
: Entity_Id
) is
10262 if Error_Posted
(Spec
) then
10266 -- Iterate over both lists. They may be of different lengths if the two
10267 -- specs are not conformant.
10269 Fs
:= First_Formal
(Spec
);
10270 Fb
:= First_Formal
(Bod
);
10271 while Present
(Fs
) and then Present
(Fb
) loop
10272 Generate_Reference
(Fs
, Fb
, 'b');
10274 if Style_Check
then
10275 Style
.Check_Identifier
(Fb
, Fs
);
10278 Set_Spec_Entity
(Fb
, Fs
);
10279 Set_Referenced
(Fs
, False);
10283 end Reference_Body_Formals
;
10285 -------------------------
10286 -- Set_Actual_Subtypes --
10287 -------------------------
10289 procedure Set_Actual_Subtypes
(N
: Node_Id
; Subp
: Entity_Id
) is
10291 Formal
: Entity_Id
;
10293 First_Stmt
: Node_Id
:= Empty
;
10294 AS_Needed
: Boolean;
10297 -- If this is an empty initialization procedure, no need to create
10298 -- actual subtypes (small optimization).
10300 if Ekind
(Subp
) = E_Procedure
and then Is_Null_Init_Proc
(Subp
) then
10304 Formal
:= First_Formal
(Subp
);
10305 while Present
(Formal
) loop
10306 T
:= Etype
(Formal
);
10308 -- We never need an actual subtype for a constrained formal
10310 if Is_Constrained
(T
) then
10311 AS_Needed
:= False;
10313 -- If we have unknown discriminants, then we do not need an actual
10314 -- subtype, or more accurately we cannot figure it out. Note that
10315 -- all class-wide types have unknown discriminants.
10317 elsif Has_Unknown_Discriminants
(T
) then
10318 AS_Needed
:= False;
10320 -- At this stage we have an unconstrained type that may need an
10321 -- actual subtype. For sure the actual subtype is needed if we have
10322 -- an unconstrained array type.
10324 elsif Is_Array_Type
(T
) then
10327 -- The only other case needing an actual subtype is an unconstrained
10328 -- record type which is an IN parameter (we cannot generate actual
10329 -- subtypes for the OUT or IN OUT case, since an assignment can
10330 -- change the discriminant values. However we exclude the case of
10331 -- initialization procedures, since discriminants are handled very
10332 -- specially in this context, see the section entitled "Handling of
10333 -- Discriminants" in Einfo.
10335 -- We also exclude the case of Discrim_SO_Functions (functions used
10336 -- in front end layout mode for size/offset values), since in such
10337 -- functions only discriminants are referenced, and not only are such
10338 -- subtypes not needed, but they cannot always be generated, because
10339 -- of order of elaboration issues.
10341 elsif Is_Record_Type
(T
)
10342 and then Ekind
(Formal
) = E_In_Parameter
10343 and then Chars
(Formal
) /= Name_uInit
10344 and then not Is_Unchecked_Union
(T
)
10345 and then not Is_Discrim_SO_Function
(Subp
)
10349 -- All other cases do not need an actual subtype
10352 AS_Needed
:= False;
10355 -- Generate actual subtypes for unconstrained arrays and
10356 -- unconstrained discriminated records.
10359 if Nkind
(N
) = N_Accept_Statement
then
10361 -- If expansion is active, the formal is replaced by a local
10362 -- variable that renames the corresponding entry of the
10363 -- parameter block, and it is this local variable that may
10364 -- require an actual subtype.
10366 if Expander_Active
then
10367 Decl
:= Build_Actual_Subtype
(T
, Renamed_Object
(Formal
));
10369 Decl
:= Build_Actual_Subtype
(T
, Formal
);
10372 if Present
(Handled_Statement_Sequence
(N
)) then
10374 First
(Statements
(Handled_Statement_Sequence
(N
)));
10375 Prepend
(Decl
, Statements
(Handled_Statement_Sequence
(N
)));
10376 Mark_Rewrite_Insertion
(Decl
);
10378 -- If the accept statement has no body, there will be no
10379 -- reference to the actuals, so no need to compute actual
10386 Decl
:= Build_Actual_Subtype
(T
, Formal
);
10387 Prepend
(Decl
, Declarations
(N
));
10388 Mark_Rewrite_Insertion
(Decl
);
10391 -- The declaration uses the bounds of an existing object, and
10392 -- therefore needs no constraint checks.
10394 Analyze
(Decl
, Suppress
=> All_Checks
);
10396 -- We need to freeze manually the generated type when it is
10397 -- inserted anywhere else than in a declarative part.
10399 if Present
(First_Stmt
) then
10400 Insert_List_Before_And_Analyze
(First_Stmt
,
10401 Freeze_Entity
(Defining_Identifier
(Decl
), N
));
10403 -- Ditto if the type has a dynamic predicate, because the
10404 -- generated function will mention the actual subtype.
10406 elsif Has_Dynamic_Predicate_Aspect
(T
) then
10407 Insert_List_Before_And_Analyze
(Decl
,
10408 Freeze_Entity
(Defining_Identifier
(Decl
), N
));
10411 if Nkind
(N
) = N_Accept_Statement
10412 and then Expander_Active
10414 Set_Actual_Subtype
(Renamed_Object
(Formal
),
10415 Defining_Identifier
(Decl
));
10417 Set_Actual_Subtype
(Formal
, Defining_Identifier
(Decl
));
10421 Next_Formal
(Formal
);
10423 end Set_Actual_Subtypes
;
10425 ---------------------
10426 -- Set_Formal_Mode --
10427 ---------------------
10429 procedure Set_Formal_Mode
(Formal_Id
: Entity_Id
) is
10430 Spec
: constant Node_Id
:= Parent
(Formal_Id
);
10433 -- Note: we set Is_Known_Valid for IN parameters and IN OUT parameters
10434 -- since we ensure that corresponding actuals are always valid at the
10435 -- point of the call.
10437 if Out_Present
(Spec
) then
10438 if Ekind_In
(Scope
(Formal_Id
), E_Function
, E_Generic_Function
) then
10440 -- [IN] OUT parameters allowed for functions in Ada 2012
10442 if Ada_Version
>= Ada_2012
then
10444 -- Even in Ada 2012 operators can only have IN parameters
10446 if Is_Operator_Symbol_Name
(Chars
(Scope
(Formal_Id
))) then
10447 Error_Msg_N
("operators can only have IN parameters", Spec
);
10450 if In_Present
(Spec
) then
10451 Set_Ekind
(Formal_Id
, E_In_Out_Parameter
);
10453 Set_Ekind
(Formal_Id
, E_Out_Parameter
);
10456 Set_Has_Out_Or_In_Out_Parameter
(Scope
(Formal_Id
), True);
10458 -- But not in earlier versions of Ada
10461 Error_Msg_N
("functions can only have IN parameters", Spec
);
10462 Set_Ekind
(Formal_Id
, E_In_Parameter
);
10465 elsif In_Present
(Spec
) then
10466 Set_Ekind
(Formal_Id
, E_In_Out_Parameter
);
10469 Set_Ekind
(Formal_Id
, E_Out_Parameter
);
10470 Set_Never_Set_In_Source
(Formal_Id
, True);
10471 Set_Is_True_Constant
(Formal_Id
, False);
10472 Set_Current_Value
(Formal_Id
, Empty
);
10476 Set_Ekind
(Formal_Id
, E_In_Parameter
);
10479 -- Set Is_Known_Non_Null for access parameters since the language
10480 -- guarantees that access parameters are always non-null. We also set
10481 -- Can_Never_Be_Null, since there is no way to change the value.
10483 if Nkind
(Parameter_Type
(Spec
)) = N_Access_Definition
then
10485 -- Ada 2005 (AI-231): In Ada 95, access parameters are always non-
10486 -- null; In Ada 2005, only if then null_exclusion is explicit.
10488 if Ada_Version
< Ada_2005
10489 or else Can_Never_Be_Null
(Etype
(Formal_Id
))
10491 Set_Is_Known_Non_Null
(Formal_Id
);
10492 Set_Can_Never_Be_Null
(Formal_Id
);
10495 -- Ada 2005 (AI-231): Null-exclusion access subtype
10497 elsif Is_Access_Type
(Etype
(Formal_Id
))
10498 and then Can_Never_Be_Null
(Etype
(Formal_Id
))
10500 Set_Is_Known_Non_Null
(Formal_Id
);
10502 -- We can also set Can_Never_Be_Null (thus preventing some junk
10503 -- access checks) for the case of an IN parameter, which cannot
10504 -- be changed, or for an IN OUT parameter, which can be changed but
10505 -- not to a null value. But for an OUT parameter, the initial value
10506 -- passed in can be null, so we can't set this flag in that case.
10508 if Ekind
(Formal_Id
) /= E_Out_Parameter
then
10509 Set_Can_Never_Be_Null
(Formal_Id
);
10513 Set_Mechanism
(Formal_Id
, Default_Mechanism
);
10514 Set_Formal_Validity
(Formal_Id
);
10515 end Set_Formal_Mode
;
10517 -------------------------
10518 -- Set_Formal_Validity --
10519 -------------------------
10521 procedure Set_Formal_Validity
(Formal_Id
: Entity_Id
) is
10523 -- If no validity checking, then we cannot assume anything about the
10524 -- validity of parameters, since we do not know there is any checking
10525 -- of the validity on the call side.
10527 if not Validity_Checks_On
then
10530 -- If validity checking for parameters is enabled, this means we are
10531 -- not supposed to make any assumptions about argument values.
10533 elsif Validity_Check_Parameters
then
10536 -- If we are checking in parameters, we will assume that the caller is
10537 -- also checking parameters, so we can assume the parameter is valid.
10539 elsif Ekind
(Formal_Id
) = E_In_Parameter
10540 and then Validity_Check_In_Params
10542 Set_Is_Known_Valid
(Formal_Id
, True);
10544 -- Similar treatment for IN OUT parameters
10546 elsif Ekind
(Formal_Id
) = E_In_Out_Parameter
10547 and then Validity_Check_In_Out_Params
10549 Set_Is_Known_Valid
(Formal_Id
, True);
10551 end Set_Formal_Validity
;
10553 ------------------------
10554 -- Subtype_Conformant --
10555 ------------------------
10557 function Subtype_Conformant
10558 (New_Id
: Entity_Id
;
10559 Old_Id
: Entity_Id
;
10560 Skip_Controlling_Formals
: Boolean := False) return Boolean
10564 Check_Conformance
(New_Id
, Old_Id
, Subtype_Conformant
, False, Result
,
10565 Skip_Controlling_Formals
=> Skip_Controlling_Formals
);
10567 end Subtype_Conformant
;
10569 ---------------------
10570 -- Type_Conformant --
10571 ---------------------
10573 function Type_Conformant
10574 (New_Id
: Entity_Id
;
10575 Old_Id
: Entity_Id
;
10576 Skip_Controlling_Formals
: Boolean := False) return Boolean
10580 May_Hide_Profile
:= False;
10582 (New_Id
, Old_Id
, Type_Conformant
, False, Result
,
10583 Skip_Controlling_Formals
=> Skip_Controlling_Formals
);
10585 end Type_Conformant
;
10587 -------------------------------
10588 -- Valid_Operator_Definition --
10589 -------------------------------
10591 procedure Valid_Operator_Definition
(Designator
: Entity_Id
) is
10594 Id
: constant Name_Id
:= Chars
(Designator
);
10598 F
:= First_Formal
(Designator
);
10599 while Present
(F
) loop
10602 if Present
(Default_Value
(F
)) then
10604 ("default values not allowed for operator parameters",
10607 -- For function instantiations that are operators, we must check
10608 -- separately that the corresponding generic only has in-parameters.
10609 -- For subprogram declarations this is done in Set_Formal_Mode. Such
10610 -- an error could not arise in earlier versions of the language.
10612 elsif Ekind
(F
) /= E_In_Parameter
then
10613 Error_Msg_N
("operators can only have IN parameters", F
);
10619 -- Verify that user-defined operators have proper number of arguments
10620 -- First case of operators which can only be unary
10622 if Nam_In
(Id
, Name_Op_Not
, Name_Op_Abs
) then
10625 -- Case of operators which can be unary or binary
10627 elsif Nam_In
(Id
, Name_Op_Add
, Name_Op_Subtract
) then
10628 N_OK
:= (N
in 1 .. 2);
10630 -- All other operators can only be binary
10638 ("incorrect number of arguments for operator", Designator
);
10642 and then Base_Type
(Etype
(Designator
)) = Standard_Boolean
10643 and then not Is_Intrinsic_Subprogram
(Designator
)
10646 ("explicit definition of inequality not allowed", Designator
);
10648 end Valid_Operator_Definition
;