* arm.c (arm_compute_initial_elimination_offset): If optimizing for
[official-gcc.git] / gcc / explow.c
blobdf5bcf659ef558f747954715482a59cc4b88cf12
1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987, 1991, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "toplev.h"
28 #include "rtl.h"
29 #include "tree.h"
30 #include "tm_p.h"
31 #include "flags.h"
32 #include "function.h"
33 #include "expr.h"
34 #include "optabs.h"
35 #include "hard-reg-set.h"
36 #include "insn-config.h"
37 #include "ggc.h"
38 #include "recog.h"
39 #include "langhooks.h"
41 static rtx break_out_memory_refs PARAMS ((rtx));
42 static void emit_stack_probe PARAMS ((rtx));
45 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
47 HOST_WIDE_INT
48 trunc_int_for_mode (c, mode)
49 HOST_WIDE_INT c;
50 enum machine_mode mode;
52 int width = GET_MODE_BITSIZE (mode);
54 /* You want to truncate to a _what_? */
55 if (! SCALAR_INT_MODE_P (mode))
56 abort ();
58 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
59 if (mode == BImode)
60 return c & 1 ? STORE_FLAG_VALUE : 0;
62 /* Sign-extend for the requested mode. */
64 if (width < HOST_BITS_PER_WIDE_INT)
66 HOST_WIDE_INT sign = 1;
67 sign <<= width - 1;
68 c &= (sign << 1) - 1;
69 c ^= sign;
70 c -= sign;
73 return c;
76 /* Return an rtx for the sum of X and the integer C.
78 This function should be used via the `plus_constant' macro. */
80 rtx
81 plus_constant_wide (x, c)
82 rtx x;
83 HOST_WIDE_INT c;
85 RTX_CODE code;
86 rtx y;
87 enum machine_mode mode;
88 rtx tem;
89 int all_constant = 0;
91 if (c == 0)
92 return x;
94 restart:
96 code = GET_CODE (x);
97 mode = GET_MODE (x);
98 y = x;
100 switch (code)
102 case CONST_INT:
103 return GEN_INT (INTVAL (x) + c);
105 case CONST_DOUBLE:
107 unsigned HOST_WIDE_INT l1 = CONST_DOUBLE_LOW (x);
108 HOST_WIDE_INT h1 = CONST_DOUBLE_HIGH (x);
109 unsigned HOST_WIDE_INT l2 = c;
110 HOST_WIDE_INT h2 = c < 0 ? ~0 : 0;
111 unsigned HOST_WIDE_INT lv;
112 HOST_WIDE_INT hv;
114 add_double (l1, h1, l2, h2, &lv, &hv);
116 return immed_double_const (lv, hv, VOIDmode);
119 case MEM:
120 /* If this is a reference to the constant pool, try replacing it with
121 a reference to a new constant. If the resulting address isn't
122 valid, don't return it because we have no way to validize it. */
123 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
124 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
127 = force_const_mem (GET_MODE (x),
128 plus_constant (get_pool_constant (XEXP (x, 0)),
129 c));
130 if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
131 return tem;
133 break;
135 case CONST:
136 /* If adding to something entirely constant, set a flag
137 so that we can add a CONST around the result. */
138 x = XEXP (x, 0);
139 all_constant = 1;
140 goto restart;
142 case SYMBOL_REF:
143 case LABEL_REF:
144 all_constant = 1;
145 break;
147 case PLUS:
148 /* The interesting case is adding the integer to a sum.
149 Look for constant term in the sum and combine
150 with C. For an integer constant term, we make a combined
151 integer. For a constant term that is not an explicit integer,
152 we cannot really combine, but group them together anyway.
154 Restart or use a recursive call in case the remaining operand is
155 something that we handle specially, such as a SYMBOL_REF.
157 We may not immediately return from the recursive call here, lest
158 all_constant gets lost. */
160 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
162 c += INTVAL (XEXP (x, 1));
164 if (GET_MODE (x) != VOIDmode)
165 c = trunc_int_for_mode (c, GET_MODE (x));
167 x = XEXP (x, 0);
168 goto restart;
170 else if (CONSTANT_P (XEXP (x, 1)))
172 x = gen_rtx_PLUS (mode, XEXP (x, 0), plus_constant (XEXP (x, 1), c));
173 c = 0;
175 else if (find_constant_term_loc (&y))
177 /* We need to be careful since X may be shared and we can't
178 modify it in place. */
179 rtx copy = copy_rtx (x);
180 rtx *const_loc = find_constant_term_loc (&copy);
182 *const_loc = plus_constant (*const_loc, c);
183 x = copy;
184 c = 0;
186 break;
188 default:
189 break;
192 if (c != 0)
193 x = gen_rtx_PLUS (mode, x, GEN_INT (c));
195 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
196 return x;
197 else if (all_constant)
198 return gen_rtx_CONST (mode, x);
199 else
200 return x;
203 /* If X is a sum, return a new sum like X but lacking any constant terms.
204 Add all the removed constant terms into *CONSTPTR.
205 X itself is not altered. The result != X if and only if
206 it is not isomorphic to X. */
209 eliminate_constant_term (x, constptr)
210 rtx x;
211 rtx *constptr;
213 rtx x0, x1;
214 rtx tem;
216 if (GET_CODE (x) != PLUS)
217 return x;
219 /* First handle constants appearing at this level explicitly. */
220 if (GET_CODE (XEXP (x, 1)) == CONST_INT
221 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
222 XEXP (x, 1)))
223 && GET_CODE (tem) == CONST_INT)
225 *constptr = tem;
226 return eliminate_constant_term (XEXP (x, 0), constptr);
229 tem = const0_rtx;
230 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
231 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
232 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
233 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
234 *constptr, tem))
235 && GET_CODE (tem) == CONST_INT)
237 *constptr = tem;
238 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
241 return x;
244 /* Returns the insn that next references REG after INSN, or 0
245 if REG is clobbered before next referenced or we cannot find
246 an insn that references REG in a straight-line piece of code. */
249 find_next_ref (reg, insn)
250 rtx reg;
251 rtx insn;
253 rtx next;
255 for (insn = NEXT_INSN (insn); insn; insn = next)
257 next = NEXT_INSN (insn);
258 if (GET_CODE (insn) == NOTE)
259 continue;
260 if (GET_CODE (insn) == CODE_LABEL
261 || GET_CODE (insn) == BARRIER)
262 return 0;
263 if (GET_CODE (insn) == INSN
264 || GET_CODE (insn) == JUMP_INSN
265 || GET_CODE (insn) == CALL_INSN)
267 if (reg_set_p (reg, insn))
268 return 0;
269 if (reg_mentioned_p (reg, PATTERN (insn)))
270 return insn;
271 if (GET_CODE (insn) == JUMP_INSN)
273 if (any_uncondjump_p (insn))
274 next = JUMP_LABEL (insn);
275 else
276 return 0;
278 if (GET_CODE (insn) == CALL_INSN
279 && REGNO (reg) < FIRST_PSEUDO_REGISTER
280 && call_used_regs[REGNO (reg)])
281 return 0;
283 else
284 abort ();
286 return 0;
289 /* Return an rtx for the size in bytes of the value of EXP. */
292 expr_size (exp)
293 tree exp;
295 tree size = (*lang_hooks.expr_size) (exp);
297 if (TREE_CODE (size) != INTEGER_CST
298 && contains_placeholder_p (size))
299 size = build (WITH_RECORD_EXPR, sizetype, size, exp);
301 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), 0);
304 /* Return a wide integer for the size in bytes of the value of EXP, or -1
305 if the size can vary or is larger than an integer. */
307 HOST_WIDE_INT
308 int_expr_size (exp)
309 tree exp;
311 tree t = (*lang_hooks.expr_size) (exp);
313 if (t == 0
314 || TREE_CODE (t) != INTEGER_CST
315 || TREE_OVERFLOW (t)
316 || TREE_INT_CST_HIGH (t) != 0
317 /* If the result would appear negative, it's too big to represent. */
318 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
319 return -1;
321 return TREE_INT_CST_LOW (t);
324 /* Return a copy of X in which all memory references
325 and all constants that involve symbol refs
326 have been replaced with new temporary registers.
327 Also emit code to load the memory locations and constants
328 into those registers.
330 If X contains no such constants or memory references,
331 X itself (not a copy) is returned.
333 If a constant is found in the address that is not a legitimate constant
334 in an insn, it is left alone in the hope that it might be valid in the
335 address.
337 X may contain no arithmetic except addition, subtraction and multiplication.
338 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
340 static rtx
341 break_out_memory_refs (x)
342 rtx x;
344 if (GET_CODE (x) == MEM
345 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
346 && GET_MODE (x) != VOIDmode))
347 x = force_reg (GET_MODE (x), x);
348 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
349 || GET_CODE (x) == MULT)
351 rtx op0 = break_out_memory_refs (XEXP (x, 0));
352 rtx op1 = break_out_memory_refs (XEXP (x, 1));
354 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
355 x = gen_rtx_fmt_ee (GET_CODE (x), Pmode, op0, op1);
358 return x;
361 #ifdef POINTERS_EXTEND_UNSIGNED
363 /* Given X, a memory address in ptr_mode, convert it to an address
364 in Pmode, or vice versa (TO_MODE says which way). We take advantage of
365 the fact that pointers are not allowed to overflow by commuting arithmetic
366 operations over conversions so that address arithmetic insns can be
367 used. */
370 convert_memory_address (to_mode, x)
371 enum machine_mode to_mode;
372 rtx x;
374 enum machine_mode from_mode = to_mode == ptr_mode ? Pmode : ptr_mode;
375 rtx temp;
376 enum rtx_code code;
378 /* Here we handle some special cases. If none of them apply, fall through
379 to the default case. */
380 switch (GET_CODE (x))
382 case CONST_INT:
383 case CONST_DOUBLE:
384 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode))
385 code = TRUNCATE;
386 else if (POINTERS_EXTEND_UNSIGNED < 0)
387 break;
388 else if (POINTERS_EXTEND_UNSIGNED > 0)
389 code = ZERO_EXTEND;
390 else
391 code = SIGN_EXTEND;
392 temp = simplify_unary_operation (code, to_mode, x, from_mode);
393 if (temp)
394 return temp;
395 break;
397 case SUBREG:
398 if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x)))
399 && GET_MODE (SUBREG_REG (x)) == to_mode)
400 return SUBREG_REG (x);
401 break;
403 case LABEL_REF:
404 temp = gen_rtx_LABEL_REF (to_mode, XEXP (x, 0));
405 LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
406 return temp;
407 break;
409 case SYMBOL_REF:
410 temp = shallow_copy_rtx (x);
411 PUT_MODE (temp, to_mode);
412 return temp;
413 break;
415 case CONST:
416 return gen_rtx_CONST (to_mode,
417 convert_memory_address (to_mode, XEXP (x, 0)));
418 break;
420 case PLUS:
421 case MULT:
422 /* For addition we can safely permute the conversion and addition
423 operation if one operand is a constant and converting the constant
424 does not change it. We can always safely permute them if we are
425 making the address narrower. */
426 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
427 || (GET_CODE (x) == PLUS
428 && GET_CODE (XEXP (x, 1)) == CONST_INT
429 && XEXP (x, 1) == convert_memory_address (to_mode, XEXP (x, 1))))
430 return gen_rtx_fmt_ee (GET_CODE (x), to_mode,
431 convert_memory_address (to_mode, XEXP (x, 0)),
432 XEXP (x, 1));
433 break;
435 default:
436 break;
439 return convert_modes (to_mode, from_mode,
440 x, POINTERS_EXTEND_UNSIGNED);
442 #endif
444 /* Given a memory address or facsimile X, construct a new address,
445 currently equivalent, that is stable: future stores won't change it.
447 X must be composed of constants, register and memory references
448 combined with addition, subtraction and multiplication:
449 in other words, just what you can get from expand_expr if sum_ok is 1.
451 Works by making copies of all regs and memory locations used
452 by X and combining them the same way X does.
453 You could also stabilize the reference to this address
454 by copying the address to a register with copy_to_reg;
455 but then you wouldn't get indexed addressing in the reference. */
458 copy_all_regs (x)
459 rtx x;
461 if (GET_CODE (x) == REG)
463 if (REGNO (x) != FRAME_POINTER_REGNUM
464 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
465 && REGNO (x) != HARD_FRAME_POINTER_REGNUM
466 #endif
468 x = copy_to_reg (x);
470 else if (GET_CODE (x) == MEM)
471 x = copy_to_reg (x);
472 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
473 || GET_CODE (x) == MULT)
475 rtx op0 = copy_all_regs (XEXP (x, 0));
476 rtx op1 = copy_all_regs (XEXP (x, 1));
477 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
478 x = gen_rtx_fmt_ee (GET_CODE (x), Pmode, op0, op1);
480 return x;
483 /* Return something equivalent to X but valid as a memory address
484 for something of mode MODE. When X is not itself valid, this
485 works by copying X or subexpressions of it into registers. */
488 memory_address (mode, x)
489 enum machine_mode mode;
490 rtx x;
492 rtx oldx = x;
494 if (GET_CODE (x) == ADDRESSOF)
495 return x;
497 #ifdef POINTERS_EXTEND_UNSIGNED
498 if (GET_MODE (x) != Pmode)
499 x = convert_memory_address (Pmode, x);
500 #endif
502 /* By passing constant addresses thru registers
503 we get a chance to cse them. */
504 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
505 x = force_reg (Pmode, x);
507 /* Accept a QUEUED that refers to a REG
508 even though that isn't a valid address.
509 On attempting to put this in an insn we will call protect_from_queue
510 which will turn it into a REG, which is valid. */
511 else if (GET_CODE (x) == QUEUED
512 && GET_CODE (QUEUED_VAR (x)) == REG)
515 /* We get better cse by rejecting indirect addressing at this stage.
516 Let the combiner create indirect addresses where appropriate.
517 For now, generate the code so that the subexpressions useful to share
518 are visible. But not if cse won't be done! */
519 else
521 if (! cse_not_expected && GET_CODE (x) != REG)
522 x = break_out_memory_refs (x);
524 /* At this point, any valid address is accepted. */
525 GO_IF_LEGITIMATE_ADDRESS (mode, x, win);
527 /* If it was valid before but breaking out memory refs invalidated it,
528 use it the old way. */
529 if (memory_address_p (mode, oldx))
530 goto win2;
532 /* Perform machine-dependent transformations on X
533 in certain cases. This is not necessary since the code
534 below can handle all possible cases, but machine-dependent
535 transformations can make better code. */
536 LEGITIMIZE_ADDRESS (x, oldx, mode, win);
538 /* PLUS and MULT can appear in special ways
539 as the result of attempts to make an address usable for indexing.
540 Usually they are dealt with by calling force_operand, below.
541 But a sum containing constant terms is special
542 if removing them makes the sum a valid address:
543 then we generate that address in a register
544 and index off of it. We do this because it often makes
545 shorter code, and because the addresses thus generated
546 in registers often become common subexpressions. */
547 if (GET_CODE (x) == PLUS)
549 rtx constant_term = const0_rtx;
550 rtx y = eliminate_constant_term (x, &constant_term);
551 if (constant_term == const0_rtx
552 || ! memory_address_p (mode, y))
553 x = force_operand (x, NULL_RTX);
554 else
556 y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
557 if (! memory_address_p (mode, y))
558 x = force_operand (x, NULL_RTX);
559 else
560 x = y;
564 else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
565 x = force_operand (x, NULL_RTX);
567 /* If we have a register that's an invalid address,
568 it must be a hard reg of the wrong class. Copy it to a pseudo. */
569 else if (GET_CODE (x) == REG)
570 x = copy_to_reg (x);
572 /* Last resort: copy the value to a register, since
573 the register is a valid address. */
574 else
575 x = force_reg (Pmode, x);
577 goto done;
579 win2:
580 x = oldx;
581 win:
582 if (flag_force_addr && ! cse_not_expected && GET_CODE (x) != REG
583 /* Don't copy an addr via a reg if it is one of our stack slots. */
584 && ! (GET_CODE (x) == PLUS
585 && (XEXP (x, 0) == virtual_stack_vars_rtx
586 || XEXP (x, 0) == virtual_incoming_args_rtx)))
588 if (general_operand (x, Pmode))
589 x = force_reg (Pmode, x);
590 else
591 x = force_operand (x, NULL_RTX);
595 done:
597 /* If we didn't change the address, we are done. Otherwise, mark
598 a reg as a pointer if we have REG or REG + CONST_INT. */
599 if (oldx == x)
600 return x;
601 else if (GET_CODE (x) == REG)
602 mark_reg_pointer (x, BITS_PER_UNIT);
603 else if (GET_CODE (x) == PLUS
604 && GET_CODE (XEXP (x, 0)) == REG
605 && GET_CODE (XEXP (x, 1)) == CONST_INT)
606 mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
608 /* OLDX may have been the address on a temporary. Update the address
609 to indicate that X is now used. */
610 update_temp_slot_address (oldx, x);
612 return x;
615 /* Like `memory_address' but pretend `flag_force_addr' is 0. */
618 memory_address_noforce (mode, x)
619 enum machine_mode mode;
620 rtx x;
622 int ambient_force_addr = flag_force_addr;
623 rtx val;
625 flag_force_addr = 0;
626 val = memory_address (mode, x);
627 flag_force_addr = ambient_force_addr;
628 return val;
631 /* Convert a mem ref into one with a valid memory address.
632 Pass through anything else unchanged. */
635 validize_mem (ref)
636 rtx ref;
638 if (GET_CODE (ref) != MEM)
639 return ref;
640 if (! (flag_force_addr && CONSTANT_ADDRESS_P (XEXP (ref, 0)))
641 && memory_address_p (GET_MODE (ref), XEXP (ref, 0)))
642 return ref;
644 /* Don't alter REF itself, since that is probably a stack slot. */
645 return replace_equiv_address (ref, XEXP (ref, 0));
648 /* Given REF, either a MEM or a REG, and T, either the type of X or
649 the expression corresponding to REF, set RTX_UNCHANGING_P if
650 appropriate. */
652 void
653 maybe_set_unchanging (ref, t)
654 rtx ref;
655 tree t;
657 /* We can set RTX_UNCHANGING_P from TREE_READONLY for decls whose
658 initialization is only executed once, or whose initializer always
659 has the same value. Currently we simplify this to PARM_DECLs in the
660 first case, and decls with TREE_CONSTANT initializers in the second. */
661 if ((TREE_READONLY (t) && DECL_P (t)
662 && (TREE_CODE (t) == PARM_DECL
663 || (DECL_INITIAL (t) && TREE_CONSTANT (DECL_INITIAL (t)))))
664 || TREE_CODE_CLASS (TREE_CODE (t)) == 'c')
665 RTX_UNCHANGING_P (ref) = 1;
668 /* Return a modified copy of X with its memory address copied
669 into a temporary register to protect it from side effects.
670 If X is not a MEM, it is returned unchanged (and not copied).
671 Perhaps even if it is a MEM, if there is no need to change it. */
674 stabilize (x)
675 rtx x;
678 if (GET_CODE (x) != MEM
679 || ! rtx_unstable_p (XEXP (x, 0)))
680 return x;
682 return
683 replace_equiv_address (x, force_reg (Pmode, copy_all_regs (XEXP (x, 0))));
686 /* Copy the value or contents of X to a new temp reg and return that reg. */
689 copy_to_reg (x)
690 rtx x;
692 rtx temp = gen_reg_rtx (GET_MODE (x));
694 /* If not an operand, must be an address with PLUS and MULT so
695 do the computation. */
696 if (! general_operand (x, VOIDmode))
697 x = force_operand (x, temp);
699 if (x != temp)
700 emit_move_insn (temp, x);
702 return temp;
705 /* Like copy_to_reg but always give the new register mode Pmode
706 in case X is a constant. */
709 copy_addr_to_reg (x)
710 rtx x;
712 return copy_to_mode_reg (Pmode, x);
715 /* Like copy_to_reg but always give the new register mode MODE
716 in case X is a constant. */
719 copy_to_mode_reg (mode, x)
720 enum machine_mode mode;
721 rtx x;
723 rtx temp = gen_reg_rtx (mode);
725 /* If not an operand, must be an address with PLUS and MULT so
726 do the computation. */
727 if (! general_operand (x, VOIDmode))
728 x = force_operand (x, temp);
730 if (GET_MODE (x) != mode && GET_MODE (x) != VOIDmode)
731 abort ();
732 if (x != temp)
733 emit_move_insn (temp, x);
734 return temp;
737 /* Load X into a register if it is not already one.
738 Use mode MODE for the register.
739 X should be valid for mode MODE, but it may be a constant which
740 is valid for all integer modes; that's why caller must specify MODE.
742 The caller must not alter the value in the register we return,
743 since we mark it as a "constant" register. */
746 force_reg (mode, x)
747 enum machine_mode mode;
748 rtx x;
750 rtx temp, insn, set;
752 if (GET_CODE (x) == REG)
753 return x;
755 if (general_operand (x, mode))
757 temp = gen_reg_rtx (mode);
758 insn = emit_move_insn (temp, x);
760 else
762 temp = force_operand (x, NULL_RTX);
763 if (GET_CODE (temp) == REG)
764 insn = get_last_insn ();
765 else
767 rtx temp2 = gen_reg_rtx (mode);
768 insn = emit_move_insn (temp2, temp);
769 temp = temp2;
773 /* Let optimizers know that TEMP's value never changes
774 and that X can be substituted for it. Don't get confused
775 if INSN set something else (such as a SUBREG of TEMP). */
776 if (CONSTANT_P (x)
777 && (set = single_set (insn)) != 0
778 && SET_DEST (set) == temp)
779 set_unique_reg_note (insn, REG_EQUAL, x);
781 return temp;
784 /* If X is a memory ref, copy its contents to a new temp reg and return
785 that reg. Otherwise, return X. */
788 force_not_mem (x)
789 rtx x;
791 rtx temp;
793 if (GET_CODE (x) != MEM || GET_MODE (x) == BLKmode)
794 return x;
796 temp = gen_reg_rtx (GET_MODE (x));
797 emit_move_insn (temp, x);
798 return temp;
801 /* Copy X to TARGET (if it's nonzero and a reg)
802 or to a new temp reg and return that reg.
803 MODE is the mode to use for X in case it is a constant. */
806 copy_to_suggested_reg (x, target, mode)
807 rtx x, target;
808 enum machine_mode mode;
810 rtx temp;
812 if (target && GET_CODE (target) == REG)
813 temp = target;
814 else
815 temp = gen_reg_rtx (mode);
817 emit_move_insn (temp, x);
818 return temp;
821 /* Return the mode to use to store a scalar of TYPE and MODE.
822 PUNSIGNEDP points to the signedness of the type and may be adjusted
823 to show what signedness to use on extension operations.
825 FOR_CALL is nonzero if this call is promoting args for a call. */
827 enum machine_mode
828 promote_mode (type, mode, punsignedp, for_call)
829 tree type;
830 enum machine_mode mode;
831 int *punsignedp;
832 int for_call ATTRIBUTE_UNUSED;
834 enum tree_code code = TREE_CODE (type);
835 int unsignedp = *punsignedp;
837 #ifdef PROMOTE_FOR_CALL_ONLY
838 if (! for_call)
839 return mode;
840 #endif
842 switch (code)
844 #ifdef PROMOTE_MODE
845 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
846 case CHAR_TYPE: case REAL_TYPE: case OFFSET_TYPE:
847 PROMOTE_MODE (mode, unsignedp, type);
848 break;
849 #endif
851 #ifdef POINTERS_EXTEND_UNSIGNED
852 case REFERENCE_TYPE:
853 case POINTER_TYPE:
854 mode = Pmode;
855 unsignedp = POINTERS_EXTEND_UNSIGNED;
856 break;
857 #endif
859 default:
860 break;
863 *punsignedp = unsignedp;
864 return mode;
867 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
868 This pops when ADJUST is positive. ADJUST need not be constant. */
870 void
871 adjust_stack (adjust)
872 rtx adjust;
874 rtx temp;
875 adjust = protect_from_queue (adjust, 0);
877 if (adjust == const0_rtx)
878 return;
880 /* We expect all variable sized adjustments to be multiple of
881 PREFERRED_STACK_BOUNDARY. */
882 if (GET_CODE (adjust) == CONST_INT)
883 stack_pointer_delta -= INTVAL (adjust);
885 temp = expand_binop (Pmode,
886 #ifdef STACK_GROWS_DOWNWARD
887 add_optab,
888 #else
889 sub_optab,
890 #endif
891 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
892 OPTAB_LIB_WIDEN);
894 if (temp != stack_pointer_rtx)
895 emit_move_insn (stack_pointer_rtx, temp);
898 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
899 This pushes when ADJUST is positive. ADJUST need not be constant. */
901 void
902 anti_adjust_stack (adjust)
903 rtx adjust;
905 rtx temp;
906 adjust = protect_from_queue (adjust, 0);
908 if (adjust == const0_rtx)
909 return;
911 /* We expect all variable sized adjustments to be multiple of
912 PREFERRED_STACK_BOUNDARY. */
913 if (GET_CODE (adjust) == CONST_INT)
914 stack_pointer_delta += INTVAL (adjust);
916 temp = expand_binop (Pmode,
917 #ifdef STACK_GROWS_DOWNWARD
918 sub_optab,
919 #else
920 add_optab,
921 #endif
922 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
923 OPTAB_LIB_WIDEN);
925 if (temp != stack_pointer_rtx)
926 emit_move_insn (stack_pointer_rtx, temp);
929 /* Round the size of a block to be pushed up to the boundary required
930 by this machine. SIZE is the desired size, which need not be constant. */
933 round_push (size)
934 rtx size;
936 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
937 if (align == 1)
938 return size;
939 if (GET_CODE (size) == CONST_INT)
941 int new = (INTVAL (size) + align - 1) / align * align;
942 if (INTVAL (size) != new)
943 size = GEN_INT (new);
945 else
947 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
948 but we know it can't. So add ourselves and then do
949 TRUNC_DIV_EXPR. */
950 size = expand_binop (Pmode, add_optab, size, GEN_INT (align - 1),
951 NULL_RTX, 1, OPTAB_LIB_WIDEN);
952 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, GEN_INT (align),
953 NULL_RTX, 1);
954 size = expand_mult (Pmode, size, GEN_INT (align), NULL_RTX, 1);
956 return size;
959 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
960 to a previously-created save area. If no save area has been allocated,
961 this function will allocate one. If a save area is specified, it
962 must be of the proper mode.
964 The insns are emitted after insn AFTER, if nonzero, otherwise the insns
965 are emitted at the current position. */
967 void
968 emit_stack_save (save_level, psave, after)
969 enum save_level save_level;
970 rtx *psave;
971 rtx after;
973 rtx sa = *psave;
974 /* The default is that we use a move insn and save in a Pmode object. */
975 rtx (*fcn) PARAMS ((rtx, rtx)) = gen_move_insn;
976 enum machine_mode mode = STACK_SAVEAREA_MODE (save_level);
978 /* See if this machine has anything special to do for this kind of save. */
979 switch (save_level)
981 #ifdef HAVE_save_stack_block
982 case SAVE_BLOCK:
983 if (HAVE_save_stack_block)
984 fcn = gen_save_stack_block;
985 break;
986 #endif
987 #ifdef HAVE_save_stack_function
988 case SAVE_FUNCTION:
989 if (HAVE_save_stack_function)
990 fcn = gen_save_stack_function;
991 break;
992 #endif
993 #ifdef HAVE_save_stack_nonlocal
994 case SAVE_NONLOCAL:
995 if (HAVE_save_stack_nonlocal)
996 fcn = gen_save_stack_nonlocal;
997 break;
998 #endif
999 default:
1000 break;
1003 /* If there is no save area and we have to allocate one, do so. Otherwise
1004 verify the save area is the proper mode. */
1006 if (sa == 0)
1008 if (mode != VOIDmode)
1010 if (save_level == SAVE_NONLOCAL)
1011 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
1012 else
1013 *psave = sa = gen_reg_rtx (mode);
1016 else
1018 if (mode == VOIDmode || GET_MODE (sa) != mode)
1019 abort ();
1022 if (after)
1024 rtx seq;
1026 start_sequence ();
1027 /* We must validize inside the sequence, to ensure that any instructions
1028 created by the validize call also get moved to the right place. */
1029 if (sa != 0)
1030 sa = validize_mem (sa);
1031 emit_insn (fcn (sa, stack_pointer_rtx));
1032 seq = get_insns ();
1033 end_sequence ();
1034 emit_insn_after (seq, after);
1036 else
1038 if (sa != 0)
1039 sa = validize_mem (sa);
1040 emit_insn (fcn (sa, stack_pointer_rtx));
1044 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
1045 area made by emit_stack_save. If it is zero, we have nothing to do.
1047 Put any emitted insns after insn AFTER, if nonzero, otherwise at
1048 current position. */
1050 void
1051 emit_stack_restore (save_level, sa, after)
1052 enum save_level save_level;
1053 rtx after;
1054 rtx sa;
1056 /* The default is that we use a move insn. */
1057 rtx (*fcn) PARAMS ((rtx, rtx)) = gen_move_insn;
1059 /* See if this machine has anything special to do for this kind of save. */
1060 switch (save_level)
1062 #ifdef HAVE_restore_stack_block
1063 case SAVE_BLOCK:
1064 if (HAVE_restore_stack_block)
1065 fcn = gen_restore_stack_block;
1066 break;
1067 #endif
1068 #ifdef HAVE_restore_stack_function
1069 case SAVE_FUNCTION:
1070 if (HAVE_restore_stack_function)
1071 fcn = gen_restore_stack_function;
1072 break;
1073 #endif
1074 #ifdef HAVE_restore_stack_nonlocal
1075 case SAVE_NONLOCAL:
1076 if (HAVE_restore_stack_nonlocal)
1077 fcn = gen_restore_stack_nonlocal;
1078 break;
1079 #endif
1080 default:
1081 break;
1084 if (sa != 0)
1086 sa = validize_mem (sa);
1087 /* These clobbers prevent the scheduler from moving
1088 references to variable arrays below the code
1089 that deletes (pops) the arrays. */
1090 emit_insn (gen_rtx_CLOBBER (VOIDmode,
1091 gen_rtx_MEM (BLKmode,
1092 gen_rtx_SCRATCH (VOIDmode))));
1093 emit_insn (gen_rtx_CLOBBER (VOIDmode,
1094 gen_rtx_MEM (BLKmode, stack_pointer_rtx)));
1097 if (after)
1099 rtx seq;
1101 start_sequence ();
1102 emit_insn (fcn (stack_pointer_rtx, sa));
1103 seq = get_insns ();
1104 end_sequence ();
1105 emit_insn_after (seq, after);
1107 else
1108 emit_insn (fcn (stack_pointer_rtx, sa));
1111 #ifdef SETJMP_VIA_SAVE_AREA
1112 /* Optimize RTL generated by allocate_dynamic_stack_space for targets
1113 where SETJMP_VIA_SAVE_AREA is true. The problem is that on these
1114 platforms, the dynamic stack space used can corrupt the original
1115 frame, thus causing a crash if a longjmp unwinds to it. */
1117 void
1118 optimize_save_area_alloca (insns)
1119 rtx insns;
1121 rtx insn;
1123 for (insn = insns; insn; insn = NEXT_INSN(insn))
1125 rtx note;
1127 if (GET_CODE (insn) != INSN)
1128 continue;
1130 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1132 if (REG_NOTE_KIND (note) != REG_SAVE_AREA)
1133 continue;
1135 if (!current_function_calls_setjmp)
1137 rtx pat = PATTERN (insn);
1139 /* If we do not see the note in a pattern matching
1140 these precise characteristics, we did something
1141 entirely wrong in allocate_dynamic_stack_space.
1143 Note, one way this could happen is if SETJMP_VIA_SAVE_AREA
1144 was defined on a machine where stacks grow towards higher
1145 addresses.
1147 Right now only supported port with stack that grow upward
1148 is the HPPA and it does not define SETJMP_VIA_SAVE_AREA. */
1149 if (GET_CODE (pat) != SET
1150 || SET_DEST (pat) != stack_pointer_rtx
1151 || GET_CODE (SET_SRC (pat)) != MINUS
1152 || XEXP (SET_SRC (pat), 0) != stack_pointer_rtx)
1153 abort ();
1155 /* This will now be transformed into a (set REG REG)
1156 so we can just blow away all the other notes. */
1157 XEXP (SET_SRC (pat), 1) = XEXP (note, 0);
1158 REG_NOTES (insn) = NULL_RTX;
1160 else
1162 /* setjmp was called, we must remove the REG_SAVE_AREA
1163 note so that later passes do not get confused by its
1164 presence. */
1165 if (note == REG_NOTES (insn))
1167 REG_NOTES (insn) = XEXP (note, 1);
1169 else
1171 rtx srch;
1173 for (srch = REG_NOTES (insn); srch; srch = XEXP (srch, 1))
1174 if (XEXP (srch, 1) == note)
1175 break;
1177 if (srch == NULL_RTX)
1178 abort ();
1180 XEXP (srch, 1) = XEXP (note, 1);
1183 /* Once we've seen the note of interest, we need not look at
1184 the rest of them. */
1185 break;
1189 #endif /* SETJMP_VIA_SAVE_AREA */
1191 /* Return an rtx representing the address of an area of memory dynamically
1192 pushed on the stack. This region of memory is always aligned to
1193 a multiple of BIGGEST_ALIGNMENT.
1195 Any required stack pointer alignment is preserved.
1197 SIZE is an rtx representing the size of the area.
1198 TARGET is a place in which the address can be placed.
1200 KNOWN_ALIGN is the alignment (in bits) that we know SIZE has. */
1203 allocate_dynamic_stack_space (size, target, known_align)
1204 rtx size;
1205 rtx target;
1206 int known_align;
1208 #ifdef SETJMP_VIA_SAVE_AREA
1209 rtx setjmpless_size = NULL_RTX;
1210 #endif
1212 /* If we're asking for zero bytes, it doesn't matter what we point
1213 to since we can't dereference it. But return a reasonable
1214 address anyway. */
1215 if (size == const0_rtx)
1216 return virtual_stack_dynamic_rtx;
1218 /* Otherwise, show we're calling alloca or equivalent. */
1219 current_function_calls_alloca = 1;
1221 /* Ensure the size is in the proper mode. */
1222 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1223 size = convert_to_mode (Pmode, size, 1);
1225 /* We can't attempt to minimize alignment necessary, because we don't
1226 know the final value of preferred_stack_boundary yet while executing
1227 this code. */
1228 cfun->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1230 /* We will need to ensure that the address we return is aligned to
1231 BIGGEST_ALIGNMENT. If STACK_DYNAMIC_OFFSET is defined, we don't
1232 always know its final value at this point in the compilation (it
1233 might depend on the size of the outgoing parameter lists, for
1234 example), so we must align the value to be returned in that case.
1235 (Note that STACK_DYNAMIC_OFFSET will have a default nonzero value if
1236 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1237 We must also do an alignment operation on the returned value if
1238 the stack pointer alignment is less strict that BIGGEST_ALIGNMENT.
1240 If we have to align, we must leave space in SIZE for the hole
1241 that might result from the alignment operation. */
1243 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET)
1244 #define MUST_ALIGN 1
1245 #else
1246 #define MUST_ALIGN (PREFERRED_STACK_BOUNDARY < BIGGEST_ALIGNMENT)
1247 #endif
1249 if (MUST_ALIGN)
1250 size
1251 = force_operand (plus_constant (size,
1252 BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1253 NULL_RTX);
1255 #ifdef SETJMP_VIA_SAVE_AREA
1256 /* If setjmp restores regs from a save area in the stack frame,
1257 avoid clobbering the reg save area. Note that the offset of
1258 virtual_incoming_args_rtx includes the preallocated stack args space.
1259 It would be no problem to clobber that, but it's on the wrong side
1260 of the old save area. */
1262 rtx dynamic_offset
1263 = expand_binop (Pmode, sub_optab, virtual_stack_dynamic_rtx,
1264 stack_pointer_rtx, NULL_RTX, 1, OPTAB_LIB_WIDEN);
1266 if (!current_function_calls_setjmp)
1268 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
1270 /* See optimize_save_area_alloca to understand what is being
1271 set up here. */
1273 /* ??? Code below assumes that the save area needs maximal
1274 alignment. This constraint may be too strong. */
1275 if (PREFERRED_STACK_BOUNDARY != BIGGEST_ALIGNMENT)
1276 abort ();
1278 if (GET_CODE (size) == CONST_INT)
1280 HOST_WIDE_INT new = INTVAL (size) / align * align;
1282 if (INTVAL (size) != new)
1283 setjmpless_size = GEN_INT (new);
1284 else
1285 setjmpless_size = size;
1287 else
1289 /* Since we know overflow is not possible, we avoid using
1290 CEIL_DIV_EXPR and use TRUNC_DIV_EXPR instead. */
1291 setjmpless_size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size,
1292 GEN_INT (align), NULL_RTX, 1);
1293 setjmpless_size = expand_mult (Pmode, setjmpless_size,
1294 GEN_INT (align), NULL_RTX, 1);
1296 /* Our optimization works based upon being able to perform a simple
1297 transformation of this RTL into a (set REG REG) so make sure things
1298 did in fact end up in a REG. */
1299 if (!register_operand (setjmpless_size, Pmode))
1300 setjmpless_size = force_reg (Pmode, setjmpless_size);
1303 size = expand_binop (Pmode, add_optab, size, dynamic_offset,
1304 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1306 #endif /* SETJMP_VIA_SAVE_AREA */
1308 /* Round the size to a multiple of the required stack alignment.
1309 Since the stack if presumed to be rounded before this allocation,
1310 this will maintain the required alignment.
1312 If the stack grows downward, we could save an insn by subtracting
1313 SIZE from the stack pointer and then aligning the stack pointer.
1314 The problem with this is that the stack pointer may be unaligned
1315 between the execution of the subtraction and alignment insns and
1316 some machines do not allow this. Even on those that do, some
1317 signal handlers malfunction if a signal should occur between those
1318 insns. Since this is an extremely rare event, we have no reliable
1319 way of knowing which systems have this problem. So we avoid even
1320 momentarily mis-aligning the stack. */
1322 /* If we added a variable amount to SIZE,
1323 we can no longer assume it is aligned. */
1324 #if !defined (SETJMP_VIA_SAVE_AREA)
1325 if (MUST_ALIGN || known_align % PREFERRED_STACK_BOUNDARY != 0)
1326 #endif
1327 size = round_push (size);
1329 do_pending_stack_adjust ();
1331 /* We ought to be called always on the toplevel and stack ought to be aligned
1332 properly. */
1333 if (stack_pointer_delta % (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT))
1334 abort ();
1336 /* If needed, check that we have the required amount of stack. Take into
1337 account what has already been checked. */
1338 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1339 probe_stack_range (STACK_CHECK_MAX_FRAME_SIZE + STACK_CHECK_PROTECT, size);
1341 /* Don't use a TARGET that isn't a pseudo or is the wrong mode. */
1342 if (target == 0 || GET_CODE (target) != REG
1343 || REGNO (target) < FIRST_PSEUDO_REGISTER
1344 || GET_MODE (target) != Pmode)
1345 target = gen_reg_rtx (Pmode);
1347 mark_reg_pointer (target, known_align);
1349 /* Perform the required allocation from the stack. Some systems do
1350 this differently than simply incrementing/decrementing from the
1351 stack pointer, such as acquiring the space by calling malloc(). */
1352 #ifdef HAVE_allocate_stack
1353 if (HAVE_allocate_stack)
1355 enum machine_mode mode = STACK_SIZE_MODE;
1356 insn_operand_predicate_fn pred;
1358 /* We don't have to check against the predicate for operand 0 since
1359 TARGET is known to be a pseudo of the proper mode, which must
1360 be valid for the operand. For operand 1, convert to the
1361 proper mode and validate. */
1362 if (mode == VOIDmode)
1363 mode = insn_data[(int) CODE_FOR_allocate_stack].operand[1].mode;
1365 pred = insn_data[(int) CODE_FOR_allocate_stack].operand[1].predicate;
1366 if (pred && ! ((*pred) (size, mode)))
1367 size = copy_to_mode_reg (mode, size);
1369 emit_insn (gen_allocate_stack (target, size));
1371 else
1372 #endif
1374 #ifndef STACK_GROWS_DOWNWARD
1375 emit_move_insn (target, virtual_stack_dynamic_rtx);
1376 #endif
1378 /* Check stack bounds if necessary. */
1379 if (current_function_limit_stack)
1381 rtx available;
1382 rtx space_available = gen_label_rtx ();
1383 #ifdef STACK_GROWS_DOWNWARD
1384 available = expand_binop (Pmode, sub_optab,
1385 stack_pointer_rtx, stack_limit_rtx,
1386 NULL_RTX, 1, OPTAB_WIDEN);
1387 #else
1388 available = expand_binop (Pmode, sub_optab,
1389 stack_limit_rtx, stack_pointer_rtx,
1390 NULL_RTX, 1, OPTAB_WIDEN);
1391 #endif
1392 emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
1393 space_available);
1394 #ifdef HAVE_trap
1395 if (HAVE_trap)
1396 emit_insn (gen_trap ());
1397 else
1398 #endif
1399 error ("stack limits not supported on this target");
1400 emit_barrier ();
1401 emit_label (space_available);
1404 anti_adjust_stack (size);
1405 #ifdef SETJMP_VIA_SAVE_AREA
1406 if (setjmpless_size != NULL_RTX)
1408 rtx note_target = get_last_insn ();
1410 REG_NOTES (note_target)
1411 = gen_rtx_EXPR_LIST (REG_SAVE_AREA, setjmpless_size,
1412 REG_NOTES (note_target));
1414 #endif /* SETJMP_VIA_SAVE_AREA */
1416 #ifdef STACK_GROWS_DOWNWARD
1417 emit_move_insn (target, virtual_stack_dynamic_rtx);
1418 #endif
1421 if (MUST_ALIGN)
1423 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1424 but we know it can't. So add ourselves and then do
1425 TRUNC_DIV_EXPR. */
1426 target = expand_binop (Pmode, add_optab, target,
1427 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1428 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1429 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1430 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1431 NULL_RTX, 1);
1432 target = expand_mult (Pmode, target,
1433 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1434 NULL_RTX, 1);
1437 /* Some systems require a particular insn to refer to the stack
1438 to make the pages exist. */
1439 #ifdef HAVE_probe
1440 if (HAVE_probe)
1441 emit_insn (gen_probe ());
1442 #endif
1444 /* Record the new stack level for nonlocal gotos. */
1445 if (nonlocal_goto_handler_slots != 0)
1446 emit_stack_save (SAVE_NONLOCAL, &nonlocal_goto_stack_level, NULL_RTX);
1448 return target;
1451 /* A front end may want to override GCC's stack checking by providing a
1452 run-time routine to call to check the stack, so provide a mechanism for
1453 calling that routine. */
1455 static GTY(()) rtx stack_check_libfunc;
1457 void
1458 set_stack_check_libfunc (libfunc)
1459 rtx libfunc;
1461 stack_check_libfunc = libfunc;
1464 /* Emit one stack probe at ADDRESS, an address within the stack. */
1466 static void
1467 emit_stack_probe (address)
1468 rtx address;
1470 rtx memref = gen_rtx_MEM (word_mode, address);
1472 MEM_VOLATILE_P (memref) = 1;
1474 if (STACK_CHECK_PROBE_LOAD)
1475 emit_move_insn (gen_reg_rtx (word_mode), memref);
1476 else
1477 emit_move_insn (memref, const0_rtx);
1480 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1481 FIRST is a constant and size is a Pmode RTX. These are offsets from the
1482 current stack pointer. STACK_GROWS_DOWNWARD says whether to add or
1483 subtract from the stack. If SIZE is constant, this is done
1484 with a fixed number of probes. Otherwise, we must make a loop. */
1486 #ifdef STACK_GROWS_DOWNWARD
1487 #define STACK_GROW_OP MINUS
1488 #else
1489 #define STACK_GROW_OP PLUS
1490 #endif
1492 void
1493 probe_stack_range (first, size)
1494 HOST_WIDE_INT first;
1495 rtx size;
1497 /* First ensure SIZE is Pmode. */
1498 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1499 size = convert_to_mode (Pmode, size, 1);
1501 /* Next see if the front end has set up a function for us to call to
1502 check the stack. */
1503 if (stack_check_libfunc != 0)
1505 rtx addr = memory_address (QImode,
1506 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1507 stack_pointer_rtx,
1508 plus_constant (size, first)));
1510 #ifdef POINTERS_EXTEND_UNSIGNED
1511 if (GET_MODE (addr) != ptr_mode)
1512 addr = convert_memory_address (ptr_mode, addr);
1513 #endif
1515 emit_library_call (stack_check_libfunc, LCT_NORMAL, VOIDmode, 1, addr,
1516 ptr_mode);
1519 /* Next see if we have an insn to check the stack. Use it if so. */
1520 #ifdef HAVE_check_stack
1521 else if (HAVE_check_stack)
1523 insn_operand_predicate_fn pred;
1524 rtx last_addr
1525 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1526 stack_pointer_rtx,
1527 plus_constant (size, first)),
1528 NULL_RTX);
1530 pred = insn_data[(int) CODE_FOR_check_stack].operand[0].predicate;
1531 if (pred && ! ((*pred) (last_addr, Pmode)))
1532 last_addr = copy_to_mode_reg (Pmode, last_addr);
1534 emit_insn (gen_check_stack (last_addr));
1536 #endif
1538 /* If we have to generate explicit probes, see if we have a constant
1539 small number of them to generate. If so, that's the easy case. */
1540 else if (GET_CODE (size) == CONST_INT
1541 && INTVAL (size) < 10 * STACK_CHECK_PROBE_INTERVAL)
1543 HOST_WIDE_INT offset;
1545 /* Start probing at FIRST + N * STACK_CHECK_PROBE_INTERVAL
1546 for values of N from 1 until it exceeds LAST. If only one
1547 probe is needed, this will not generate any code. Then probe
1548 at LAST. */
1549 for (offset = first + STACK_CHECK_PROBE_INTERVAL;
1550 offset < INTVAL (size);
1551 offset = offset + STACK_CHECK_PROBE_INTERVAL)
1552 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1553 stack_pointer_rtx,
1554 GEN_INT (offset)));
1556 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1557 stack_pointer_rtx,
1558 plus_constant (size, first)));
1561 /* In the variable case, do the same as above, but in a loop. We emit loop
1562 notes so that loop optimization can be done. */
1563 else
1565 rtx test_addr
1566 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1567 stack_pointer_rtx,
1568 GEN_INT (first + STACK_CHECK_PROBE_INTERVAL)),
1569 NULL_RTX);
1570 rtx last_addr
1571 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1572 stack_pointer_rtx,
1573 plus_constant (size, first)),
1574 NULL_RTX);
1575 rtx incr = GEN_INT (STACK_CHECK_PROBE_INTERVAL);
1576 rtx loop_lab = gen_label_rtx ();
1577 rtx test_lab = gen_label_rtx ();
1578 rtx end_lab = gen_label_rtx ();
1579 rtx temp;
1581 if (GET_CODE (test_addr) != REG
1582 || REGNO (test_addr) < FIRST_PSEUDO_REGISTER)
1583 test_addr = force_reg (Pmode, test_addr);
1585 emit_note (NULL, NOTE_INSN_LOOP_BEG);
1586 emit_jump (test_lab);
1588 emit_label (loop_lab);
1589 emit_stack_probe (test_addr);
1591 emit_note (NULL, NOTE_INSN_LOOP_CONT);
1593 #ifdef STACK_GROWS_DOWNWARD
1594 #define CMP_OPCODE GTU
1595 temp = expand_binop (Pmode, sub_optab, test_addr, incr, test_addr,
1596 1, OPTAB_WIDEN);
1597 #else
1598 #define CMP_OPCODE LTU
1599 temp = expand_binop (Pmode, add_optab, test_addr, incr, test_addr,
1600 1, OPTAB_WIDEN);
1601 #endif
1603 if (temp != test_addr)
1604 abort ();
1606 emit_label (test_lab);
1607 emit_cmp_and_jump_insns (test_addr, last_addr, CMP_OPCODE,
1608 NULL_RTX, Pmode, 1, loop_lab);
1609 emit_jump (end_lab);
1610 emit_note (NULL, NOTE_INSN_LOOP_END);
1611 emit_label (end_lab);
1613 emit_stack_probe (last_addr);
1617 /* Return an rtx representing the register or memory location
1618 in which a scalar value of data type VALTYPE
1619 was returned by a function call to function FUNC.
1620 FUNC is a FUNCTION_DECL node if the precise function is known,
1621 otherwise 0.
1622 OUTGOING is 1 if on a machine with register windows this function
1623 should return the register in which the function will put its result
1624 and 0 otherwise. */
1627 hard_function_value (valtype, func, outgoing)
1628 tree valtype;
1629 tree func ATTRIBUTE_UNUSED;
1630 int outgoing ATTRIBUTE_UNUSED;
1632 rtx val;
1634 #ifdef FUNCTION_OUTGOING_VALUE
1635 if (outgoing)
1636 val = FUNCTION_OUTGOING_VALUE (valtype, func);
1637 else
1638 #endif
1639 val = FUNCTION_VALUE (valtype, func);
1641 if (GET_CODE (val) == REG
1642 && GET_MODE (val) == BLKmode)
1644 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype);
1645 enum machine_mode tmpmode;
1647 /* int_size_in_bytes can return -1. We don't need a check here
1648 since the value of bytes will be large enough that no mode
1649 will match and we will abort later in this function. */
1651 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1652 tmpmode != VOIDmode;
1653 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1655 /* Have we found a large enough mode? */
1656 if (GET_MODE_SIZE (tmpmode) >= bytes)
1657 break;
1660 /* No suitable mode found. */
1661 if (tmpmode == VOIDmode)
1662 abort ();
1664 PUT_MODE (val, tmpmode);
1666 return val;
1669 /* Return an rtx representing the register or memory location
1670 in which a scalar value of mode MODE was returned by a library call. */
1673 hard_libcall_value (mode)
1674 enum machine_mode mode;
1676 return LIBCALL_VALUE (mode);
1679 /* Look up the tree code for a given rtx code
1680 to provide the arithmetic operation for REAL_ARITHMETIC.
1681 The function returns an int because the caller may not know
1682 what `enum tree_code' means. */
1685 rtx_to_tree_code (code)
1686 enum rtx_code code;
1688 enum tree_code tcode;
1690 switch (code)
1692 case PLUS:
1693 tcode = PLUS_EXPR;
1694 break;
1695 case MINUS:
1696 tcode = MINUS_EXPR;
1697 break;
1698 case MULT:
1699 tcode = MULT_EXPR;
1700 break;
1701 case DIV:
1702 tcode = RDIV_EXPR;
1703 break;
1704 case SMIN:
1705 tcode = MIN_EXPR;
1706 break;
1707 case SMAX:
1708 tcode = MAX_EXPR;
1709 break;
1710 default:
1711 tcode = LAST_AND_UNUSED_TREE_CODE;
1712 break;
1714 return ((int) tcode);
1717 #include "gt-explow.h"