PR testsuite/39776
[official-gcc.git] / gcc / ada / s-tassta.adb
blob76e3740277ddf7e18742efc0293191e0957a2936
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT RUN-TIME LIBRARY (GNARL) COMPONENTS --
4 -- --
5 -- S Y S T E M . T A S K I N G . S T A G E S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2009, Free Software Foundation, Inc. --
10 -- --
11 -- GNARL is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
17 -- --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
21 -- --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
26 -- --
27 -- GNARL was developed by the GNARL team at Florida State University. --
28 -- Extensive contributions were provided by Ada Core Technologies, Inc. --
29 -- --
30 ------------------------------------------------------------------------------
32 pragma Polling (Off);
33 -- Turn off polling, we do not want ATC polling to take place during tasking
34 -- operations. It causes infinite loops and other problems.
36 with Ada.Exceptions;
37 with Ada.Unchecked_Deallocation;
39 with System.Tasking.Debug;
40 with System.Address_Image;
41 with System.Task_Primitives;
42 with System.Task_Primitives.Operations;
43 with System.Tasking.Utilities;
44 with System.Tasking.Queuing;
45 with System.Tasking.Rendezvous;
46 with System.OS_Primitives;
47 with System.Secondary_Stack;
48 with System.Storage_Elements;
49 with System.Restrictions;
50 with System.Standard_Library;
51 with System.Traces.Tasking;
52 with System.Stack_Usage;
54 with System.Soft_Links;
55 -- These are procedure pointers to non-tasking routines that use task
56 -- specific data. In the absence of tasking, these routines refer to global
57 -- data. In the presence of tasking, they must be replaced with pointers to
58 -- task-specific versions. Also used for Create_TSD, Destroy_TSD,
59 -- Get_Current_Excep, Finalize_Global_List, Task_Termination, Handler.
61 with System.Tasking.Initialization;
62 pragma Elaborate_All (System.Tasking.Initialization);
63 -- This insures that tasking is initialized if any tasks are created
65 package body System.Tasking.Stages is
67 package STPO renames System.Task_Primitives.Operations;
68 package SSL renames System.Soft_Links;
69 package SSE renames System.Storage_Elements;
70 package SST renames System.Secondary_Stack;
72 use Ada.Exceptions;
74 use Parameters;
75 use Task_Primitives;
76 use Task_Primitives.Operations;
77 use Task_Info;
79 use System.Traces;
80 use System.Traces.Tasking;
82 -----------------------
83 -- Local Subprograms --
84 -----------------------
86 procedure Free is new
87 Ada.Unchecked_Deallocation (Ada_Task_Control_Block, Task_Id);
89 procedure Free_Entry_Names (T : Task_Id);
90 -- Deallocate all string names associated with task entries
92 procedure Trace_Unhandled_Exception_In_Task (Self_Id : Task_Id);
93 -- This procedure outputs the task specific message for exception
94 -- tracing purposes.
96 procedure Task_Wrapper (Self_ID : Task_Id);
97 pragma Convention (C, Task_Wrapper);
98 -- This is the procedure that is called by the GNULL from the new context
99 -- when a task is created. It waits for activation and then calls the task
100 -- body procedure. When the task body procedure completes, it terminates
101 -- the task.
103 -- The Task_Wrapper's address will be provided to the underlying threads
104 -- library as the task entry point. Convention C is what makes most sense
105 -- for that purpose (Export C would make the function globally visible,
106 -- and affect the link name on which GDB depends). This will in addition
107 -- trigger an automatic stack alignment suitable for GCC's assumptions if
108 -- need be.
110 -- "Vulnerable_..." in the procedure names below means they must be called
111 -- with abort deferred.
113 procedure Vulnerable_Complete_Task (Self_ID : Task_Id);
114 -- Complete the calling task. This procedure must be called with
115 -- abort deferred. It should only be called by Complete_Task and
116 -- Finalize_Global_Tasks (for the environment task).
118 procedure Vulnerable_Complete_Master (Self_ID : Task_Id);
119 -- Complete the current master of the calling task. This procedure
120 -- must be called with abort deferred. It should only be called by
121 -- Vulnerable_Complete_Task and Complete_Master.
123 procedure Vulnerable_Complete_Activation (Self_ID : Task_Id);
124 -- Signal to Self_ID's activator that Self_ID has completed activation.
125 -- This procedure must be called with abort deferred.
127 procedure Abort_Dependents (Self_ID : Task_Id);
128 -- Abort all the direct dependents of Self at its current master nesting
129 -- level, plus all of their dependents, transitively. RTS_Lock should be
130 -- locked by the caller.
132 procedure Vulnerable_Free_Task (T : Task_Id);
133 -- Recover all runtime system storage associated with the task T. This
134 -- should only be called after T has terminated and will no longer be
135 -- referenced.
137 -- For tasks created by an allocator that fails, due to an exception, it is
138 -- called from Expunge_Unactivated_Tasks.
140 -- Different code is used at master completion, in Terminate_Dependents,
141 -- due to a need for tighter synchronization with the master.
143 ----------------------
144 -- Abort_Dependents --
145 ----------------------
147 procedure Abort_Dependents (Self_ID : Task_Id) is
148 C : Task_Id;
149 P : Task_Id;
151 begin
152 C := All_Tasks_List;
153 while C /= null loop
154 P := C.Common.Parent;
155 while P /= null loop
156 if P = Self_ID then
158 -- ??? C is supposed to take care of its own dependents, so
159 -- there should be no need to worry about them. Need to double
160 -- check this.
162 if C.Master_of_Task = Self_ID.Master_Within then
163 Utilities.Abort_One_Task (Self_ID, C);
164 C.Dependents_Aborted := True;
165 end if;
167 exit;
168 end if;
170 P := P.Common.Parent;
171 end loop;
173 C := C.Common.All_Tasks_Link;
174 end loop;
176 Self_ID.Dependents_Aborted := True;
177 end Abort_Dependents;
179 -----------------
180 -- Abort_Tasks --
181 -----------------
183 procedure Abort_Tasks (Tasks : Task_List) is
184 begin
185 Utilities.Abort_Tasks (Tasks);
186 end Abort_Tasks;
188 --------------------
189 -- Activate_Tasks --
190 --------------------
192 -- Note that locks of activator and activated task are both locked here.
193 -- This is necessary because C.Common.State and Self.Common.Wait_Count have
194 -- to be synchronized. This is safe from deadlock because the activator is
195 -- always created before the activated task. That satisfies our
196 -- in-order-of-creation ATCB locking policy.
198 -- At one point, we may also lock the parent, if the parent is different
199 -- from the activator. That is also consistent with the lock ordering
200 -- policy, since the activator cannot be created before the parent.
202 -- Since we are holding both the activator's lock, and Task_Wrapper locks
203 -- that before it does anything more than initialize the low-level ATCB
204 -- components, it should be safe to wait to update the counts until we see
205 -- that the thread creation is successful.
207 -- If the thread creation fails, we do need to close the entries of the
208 -- task. The first phase, of dequeuing calls, only requires locking the
209 -- acceptor's ATCB, but the waking up of the callers requires locking the
210 -- caller's ATCB. We cannot safely do this while we are holding other
211 -- locks. Therefore, the queue-clearing operation is done in a separate
212 -- pass over the activation chain.
214 procedure Activate_Tasks (Chain_Access : Activation_Chain_Access) is
215 Self_ID : constant Task_Id := STPO.Self;
216 P : Task_Id;
217 C : Task_Id;
218 Next_C, Last_C : Task_Id;
219 Activate_Prio : System.Any_Priority;
220 Success : Boolean;
221 All_Elaborated : Boolean := True;
223 begin
224 -- If pragma Detect_Blocking is active, then we must check whether this
225 -- potentially blocking operation is called from a protected action.
227 if System.Tasking.Detect_Blocking
228 and then Self_ID.Common.Protected_Action_Nesting > 0
229 then
230 raise Program_Error with "potentially blocking operation";
231 end if;
233 pragma Debug
234 (Debug.Trace (Self_ID, "Activate_Tasks", 'C'));
236 Initialization.Defer_Abort_Nestable (Self_ID);
238 pragma Assert (Self_ID.Common.Wait_Count = 0);
240 -- Lock RTS_Lock, to prevent activated tasks from racing ahead before
241 -- we finish activating the chain.
243 Lock_RTS;
245 -- Check that all task bodies have been elaborated
247 C := Chain_Access.T_ID;
248 Last_C := null;
249 while C /= null loop
250 if C.Common.Elaborated /= null
251 and then not C.Common.Elaborated.all
252 then
253 All_Elaborated := False;
254 end if;
256 -- Reverse the activation chain so that tasks are activated in the
257 -- same order they're declared.
259 Next_C := C.Common.Activation_Link;
260 C.Common.Activation_Link := Last_C;
261 Last_C := C;
262 C := Next_C;
263 end loop;
265 Chain_Access.T_ID := Last_C;
267 if not All_Elaborated then
268 Unlock_RTS;
269 Initialization.Undefer_Abort_Nestable (Self_ID);
270 raise Program_Error with "Some tasks have not been elaborated";
271 end if;
273 -- Activate all the tasks in the chain. Creation of the thread of
274 -- control was deferred until activation. So create it now.
276 C := Chain_Access.T_ID;
277 while C /= null loop
278 if C.Common.State /= Terminated then
279 pragma Assert (C.Common.State = Unactivated);
281 P := C.Common.Parent;
282 Write_Lock (P);
283 Write_Lock (C);
285 if C.Common.Base_Priority < Get_Priority (Self_ID) then
286 Activate_Prio := Get_Priority (Self_ID);
287 else
288 Activate_Prio := C.Common.Base_Priority;
289 end if;
291 System.Task_Primitives.Operations.Create_Task
292 (C, Task_Wrapper'Address,
293 Parameters.Size_Type
294 (C.Common.Compiler_Data.Pri_Stack_Info.Size),
295 Activate_Prio, Success);
297 -- There would be a race between the created task and the creator
298 -- to do the following initialization, if we did not have a
299 -- Lock/Unlock_RTS pair in the task wrapper to prevent it from
300 -- racing ahead.
302 if Success then
303 C.Common.State := Activating;
304 C.Awake_Count := 1;
305 C.Alive_Count := 1;
306 P.Awake_Count := P.Awake_Count + 1;
307 P.Alive_Count := P.Alive_Count + 1;
309 if P.Common.State = Master_Completion_Sleep and then
310 C.Master_of_Task = P.Master_Within
311 then
312 pragma Assert (Self_ID /= P);
313 P.Common.Wait_Count := P.Common.Wait_Count + 1;
314 end if;
316 for J in System.Tasking.Debug.Known_Tasks'Range loop
317 if System.Tasking.Debug.Known_Tasks (J) = null then
318 System.Tasking.Debug.Known_Tasks (J) := C;
319 C.Known_Tasks_Index := J;
320 exit;
321 end if;
322 end loop;
324 if Global_Task_Debug_Event_Set then
325 Debug.Signal_Debug_Event
326 (Debug.Debug_Event_Activating, C);
327 end if;
329 C.Common.State := Runnable;
331 Unlock (C);
332 Unlock (P);
334 else
335 -- No need to set Awake_Count, State, etc. here since the loop
336 -- below will do that for any Unactivated tasks.
338 Unlock (C);
339 Unlock (P);
340 Self_ID.Common.Activation_Failed := True;
341 end if;
342 end if;
344 C := C.Common.Activation_Link;
345 end loop;
347 if not Single_Lock then
348 Unlock_RTS;
349 end if;
351 -- Close the entries of any tasks that failed thread creation, and count
352 -- those that have not finished activation.
354 Write_Lock (Self_ID);
355 Self_ID.Common.State := Activator_Sleep;
357 C := Chain_Access.T_ID;
358 while C /= null loop
359 Write_Lock (C);
361 if C.Common.State = Unactivated then
362 C.Common.Activator := null;
363 C.Common.State := Terminated;
364 C.Callable := False;
365 Utilities.Cancel_Queued_Entry_Calls (C);
367 elsif C.Common.Activator /= null then
368 Self_ID.Common.Wait_Count := Self_ID.Common.Wait_Count + 1;
369 end if;
371 Unlock (C);
372 P := C.Common.Activation_Link;
373 C.Common.Activation_Link := null;
374 C := P;
375 end loop;
377 -- Wait for the activated tasks to complete activation. It is
378 -- unsafe to abort any of these tasks until the count goes to zero.
380 loop
381 exit when Self_ID.Common.Wait_Count = 0;
382 Sleep (Self_ID, Activator_Sleep);
383 end loop;
385 Self_ID.Common.State := Runnable;
386 Unlock (Self_ID);
388 if Single_Lock then
389 Unlock_RTS;
390 end if;
392 -- Remove the tasks from the chain
394 Chain_Access.T_ID := null;
395 Initialization.Undefer_Abort_Nestable (Self_ID);
397 if Self_ID.Common.Activation_Failed then
398 Self_ID.Common.Activation_Failed := False;
399 raise Tasking_Error with "Failure during activation";
400 end if;
401 end Activate_Tasks;
403 -------------------------
404 -- Complete_Activation --
405 -------------------------
407 procedure Complete_Activation is
408 Self_ID : constant Task_Id := STPO.Self;
410 begin
411 Initialization.Defer_Abort_Nestable (Self_ID);
413 if Single_Lock then
414 Lock_RTS;
415 end if;
417 Vulnerable_Complete_Activation (Self_ID);
419 if Single_Lock then
420 Unlock_RTS;
421 end if;
423 Initialization.Undefer_Abort_Nestable (Self_ID);
425 -- ??? Why do we need to allow for nested deferral here?
427 if Runtime_Traces then
428 Send_Trace_Info (T_Activate);
429 end if;
430 end Complete_Activation;
432 ---------------------
433 -- Complete_Master --
434 ---------------------
436 procedure Complete_Master is
437 Self_ID : constant Task_Id := STPO.Self;
438 begin
439 pragma Assert
440 (Self_ID.Deferral_Level > 0
441 or else not System.Restrictions.Abort_Allowed);
442 Vulnerable_Complete_Master (Self_ID);
443 end Complete_Master;
445 -------------------
446 -- Complete_Task --
447 -------------------
449 -- See comments on Vulnerable_Complete_Task for details
451 procedure Complete_Task is
452 Self_ID : constant Task_Id := STPO.Self;
454 begin
455 pragma Assert
456 (Self_ID.Deferral_Level > 0
457 or else not System.Restrictions.Abort_Allowed);
459 Vulnerable_Complete_Task (Self_ID);
461 -- All of our dependents have terminated. Never undefer abort again!
463 end Complete_Task;
465 -----------------
466 -- Create_Task --
467 -----------------
469 -- Compiler interface only. Do not call from within the RTS. This must be
470 -- called to create a new task.
472 procedure Create_Task
473 (Priority : Integer;
474 Size : System.Parameters.Size_Type;
475 Task_Info : System.Task_Info.Task_Info_Type;
476 Relative_Deadline : Ada.Real_Time.Time_Span;
477 Num_Entries : Task_Entry_Index;
478 Master : Master_Level;
479 State : Task_Procedure_Access;
480 Discriminants : System.Address;
481 Elaborated : Access_Boolean;
482 Chain : in out Activation_Chain;
483 Task_Image : String;
484 Created_Task : out Task_Id;
485 Build_Entry_Names : Boolean)
487 T, P : Task_Id;
488 Self_ID : constant Task_Id := STPO.Self;
489 Success : Boolean;
490 Base_Priority : System.Any_Priority;
491 Len : Natural;
493 pragma Unreferenced (Relative_Deadline);
494 -- EDF scheduling is not supported by any of the target platforms so
495 -- this parameter is not passed any further.
497 begin
498 -- If Master is greater than the current master, it means that Master
499 -- has already awaited its dependent tasks. This raises Program_Error,
500 -- by 4.8(10.3/2). See AI-280. Ignore this check for foreign threads.
502 if Self_ID.Master_of_Task /= Foreign_Task_Level
503 and then Master > Self_ID.Master_Within
504 then
505 raise Program_Error with
506 "create task after awaiting termination";
507 end if;
509 -- If pragma Detect_Blocking is active must be checked whether this
510 -- potentially blocking operation is called from a protected action.
512 if System.Tasking.Detect_Blocking
513 and then Self_ID.Common.Protected_Action_Nesting > 0
514 then
515 raise Program_Error with "potentially blocking operation";
516 end if;
518 pragma Debug (Debug.Trace (Self_ID, "Create_Task", 'C'));
520 if Priority = Unspecified_Priority then
521 Base_Priority := Self_ID.Common.Base_Priority;
522 else
523 Base_Priority := System.Any_Priority (Priority);
524 end if;
526 -- Find parent P of new Task, via master level number
528 P := Self_ID;
530 if P /= null then
531 while P.Master_of_Task >= Master loop
532 P := P.Common.Parent;
533 exit when P = null;
534 end loop;
535 end if;
537 Initialization.Defer_Abort_Nestable (Self_ID);
539 begin
540 T := New_ATCB (Num_Entries);
541 exception
542 when others =>
543 Initialization.Undefer_Abort_Nestable (Self_ID);
544 raise Storage_Error with "Cannot allocate task";
545 end;
547 -- RTS_Lock is used by Abort_Dependents and Abort_Tasks. Up to this
548 -- point, it is possible that we may be part of a family of tasks that
549 -- is being aborted.
551 Lock_RTS;
552 Write_Lock (Self_ID);
554 -- Now, we must check that we have not been aborted. If so, we should
555 -- give up on creating this task, and simply return.
557 if not Self_ID.Callable then
558 pragma Assert (Self_ID.Pending_ATC_Level = 0);
559 pragma Assert (Self_ID.Pending_Action);
560 pragma Assert
561 (Chain.T_ID = null or else Chain.T_ID.Common.State = Unactivated);
563 Unlock (Self_ID);
564 Unlock_RTS;
565 Initialization.Undefer_Abort_Nestable (Self_ID);
567 -- ??? Should never get here
569 pragma Assert (False);
570 raise Standard'Abort_Signal;
571 end if;
573 Initialize_ATCB (Self_ID, State, Discriminants, P, Elaborated,
574 Base_Priority, Task_Info, Size, T, Success);
576 if not Success then
577 Free (T);
578 Unlock (Self_ID);
579 Unlock_RTS;
580 Initialization.Undefer_Abort_Nestable (Self_ID);
581 raise Storage_Error with "Failed to initialize task";
582 end if;
584 if Master = Foreign_Task_Level + 2 then
586 -- This should not happen, except when a foreign task creates non
587 -- library-level Ada tasks. In this case, we pretend the master is
588 -- a regular library level task, otherwise the run-time will get
589 -- confused when waiting for these tasks to terminate.
591 T.Master_of_Task := Library_Task_Level;
592 else
593 T.Master_of_Task := Master;
594 end if;
596 T.Master_Within := T.Master_of_Task + 1;
598 for L in T.Entry_Calls'Range loop
599 T.Entry_Calls (L).Self := T;
600 T.Entry_Calls (L).Level := L;
601 end loop;
603 if Task_Image'Length = 0 then
604 T.Common.Task_Image_Len := 0;
605 else
606 Len := 1;
607 T.Common.Task_Image (1) := Task_Image (Task_Image'First);
609 -- Remove unwanted blank space generated by 'Image
611 for J in Task_Image'First + 1 .. Task_Image'Last loop
612 if Task_Image (J) /= ' '
613 or else Task_Image (J - 1) /= '('
614 then
615 Len := Len + 1;
616 T.Common.Task_Image (Len) := Task_Image (J);
617 exit when Len = T.Common.Task_Image'Last;
618 end if;
619 end loop;
621 T.Common.Task_Image_Len := Len;
622 end if;
624 Unlock (Self_ID);
625 Unlock_RTS;
627 -- Note: we should not call 'new' while holding locks since new
628 -- may use locks (e.g. RTS_Lock under Windows) itself and cause a
629 -- deadlock.
631 if Build_Entry_Names then
632 T.Entry_Names :=
633 new Entry_Names_Array (1 .. Entry_Index (Num_Entries));
634 end if;
636 -- Create TSD as early as possible in the creation of a task, since it
637 -- may be used by the operation of Ada code within the task.
639 SSL.Create_TSD (T.Common.Compiler_Data);
640 T.Common.Activation_Link := Chain.T_ID;
641 Chain.T_ID := T;
642 Initialization.Initialize_Attributes_Link.all (T);
643 Created_Task := T;
644 Initialization.Undefer_Abort_Nestable (Self_ID);
646 if Runtime_Traces then
647 Send_Trace_Info (T_Create, T);
648 end if;
649 end Create_Task;
651 --------------------
652 -- Current_Master --
653 --------------------
655 function Current_Master return Master_Level is
656 begin
657 return STPO.Self.Master_Within;
658 end Current_Master;
660 ------------------
661 -- Enter_Master --
662 ------------------
664 procedure Enter_Master is
665 Self_ID : constant Task_Id := STPO.Self;
666 begin
667 Self_ID.Master_Within := Self_ID.Master_Within + 1;
668 end Enter_Master;
670 -------------------------------
671 -- Expunge_Unactivated_Tasks --
672 -------------------------------
674 -- See procedure Close_Entries for the general case
676 procedure Expunge_Unactivated_Tasks (Chain : in out Activation_Chain) is
677 Self_ID : constant Task_Id := STPO.Self;
678 C : Task_Id;
679 Call : Entry_Call_Link;
680 Temp : Task_Id;
682 begin
683 pragma Debug
684 (Debug.Trace (Self_ID, "Expunge_Unactivated_Tasks", 'C'));
686 Initialization.Defer_Abort_Nestable (Self_ID);
688 -- ???
689 -- Experimentation has shown that abort is sometimes (but not always)
690 -- already deferred when this is called.
692 -- That may indicate an error. Find out what is going on
694 C := Chain.T_ID;
695 while C /= null loop
696 pragma Assert (C.Common.State = Unactivated);
698 Temp := C.Common.Activation_Link;
700 if C.Common.State = Unactivated then
701 Lock_RTS;
702 Write_Lock (C);
704 for J in 1 .. C.Entry_Num loop
705 Queuing.Dequeue_Head (C.Entry_Queues (J), Call);
706 pragma Assert (Call = null);
707 end loop;
709 Unlock (C);
711 Initialization.Remove_From_All_Tasks_List (C);
712 Unlock_RTS;
714 Vulnerable_Free_Task (C);
715 C := Temp;
716 end if;
717 end loop;
719 Chain.T_ID := null;
720 Initialization.Undefer_Abort_Nestable (Self_ID);
721 end Expunge_Unactivated_Tasks;
723 ---------------------------
724 -- Finalize_Global_Tasks --
725 ---------------------------
727 -- ???
728 -- We have a potential problem here if finalization of global objects does
729 -- anything with signals or the timer server, since by that time those
730 -- servers have terminated.
732 -- It is hard to see how that would occur
734 -- However, a better solution might be to do all this finalization
735 -- using the global finalization chain.
737 procedure Finalize_Global_Tasks is
738 Self_ID : constant Task_Id := STPO.Self;
740 Ignore : Boolean;
741 pragma Unreferenced (Ignore);
743 begin
744 if Self_ID.Deferral_Level = 0 then
745 -- ???
746 -- In principle, we should be able to predict whether abort is
747 -- already deferred here (and it should not be deferred yet but in
748 -- practice it seems Finalize_Global_Tasks is being called sometimes,
749 -- from RTS code for exceptions, with abort already deferred.
751 Initialization.Defer_Abort_Nestable (Self_ID);
753 -- Never undefer again!!!
754 end if;
756 -- This code is only executed by the environment task
758 pragma Assert (Self_ID = Environment_Task);
760 -- Set Environment_Task'Callable to false to notify library-level tasks
761 -- that it is waiting for them.
763 Self_ID.Callable := False;
765 -- Exit level 2 master, for normal tasks in library-level packages
767 Complete_Master;
769 -- Force termination of "independent" library-level server tasks
771 Lock_RTS;
773 Abort_Dependents (Self_ID);
775 if not Single_Lock then
776 Unlock_RTS;
777 end if;
779 -- We need to explicitly wait for the task to be terminated here
780 -- because on true concurrent system, we may end this procedure before
781 -- the tasks are really terminated.
783 Write_Lock (Self_ID);
785 loop
786 exit when Utilities.Independent_Task_Count = 0;
788 -- We used to yield here, but this did not take into account low
789 -- priority tasks that would cause dead lock in some cases (true
790 -- FIFO scheduling).
792 Timed_Sleep
793 (Self_ID, 0.01, System.OS_Primitives.Relative,
794 Self_ID.Common.State, Ignore, Ignore);
795 end loop;
797 -- ??? On multi-processor environments, it seems that the above loop
798 -- isn't sufficient, so we need to add an additional delay.
800 Timed_Sleep
801 (Self_ID, 0.01, System.OS_Primitives.Relative,
802 Self_ID.Common.State, Ignore, Ignore);
804 Unlock (Self_ID);
806 if Single_Lock then
807 Unlock_RTS;
808 end if;
810 -- Complete the environment task
812 Vulnerable_Complete_Task (Self_ID);
814 -- Handle normal task termination by the environment task, but only
815 -- for the normal task termination. In the case of Abnormal and
816 -- Unhandled_Exception they must have been handled before, and the
817 -- task termination soft link must have been changed so the task
818 -- termination routine is not executed twice.
820 SSL.Task_Termination_Handler.all (Ada.Exceptions.Null_Occurrence);
822 -- Finalize the global list for controlled objects if needed
824 SSL.Finalize_Global_List.all;
826 -- Reset the soft links to non-tasking
828 SSL.Abort_Defer := SSL.Abort_Defer_NT'Access;
829 SSL.Abort_Undefer := SSL.Abort_Undefer_NT'Access;
830 SSL.Lock_Task := SSL.Task_Lock_NT'Access;
831 SSL.Unlock_Task := SSL.Task_Unlock_NT'Access;
832 SSL.Get_Jmpbuf_Address := SSL.Get_Jmpbuf_Address_NT'Access;
833 SSL.Set_Jmpbuf_Address := SSL.Set_Jmpbuf_Address_NT'Access;
834 SSL.Get_Sec_Stack_Addr := SSL.Get_Sec_Stack_Addr_NT'Access;
835 SSL.Set_Sec_Stack_Addr := SSL.Set_Sec_Stack_Addr_NT'Access;
836 SSL.Check_Abort_Status := SSL.Check_Abort_Status_NT'Access;
837 SSL.Get_Stack_Info := SSL.Get_Stack_Info_NT'Access;
839 -- Don't bother trying to finalize Initialization.Global_Task_Lock
840 -- and System.Task_Primitives.RTS_Lock.
842 end Finalize_Global_Tasks;
844 ----------------------
845 -- Free_Entry_Names --
846 ----------------------
848 procedure Free_Entry_Names (T : Task_Id) is
849 Names : Entry_Names_Array_Access := T.Entry_Names;
851 procedure Free_Entry_Names_Array_Access is new
852 Ada.Unchecked_Deallocation
853 (Entry_Names_Array, Entry_Names_Array_Access);
855 begin
856 if Names = null then
857 return;
858 end if;
860 Free_Entry_Names_Array (Names.all);
861 Free_Entry_Names_Array_Access (Names);
862 end Free_Entry_Names;
864 ---------------
865 -- Free_Task --
866 ---------------
868 procedure Free_Task (T : Task_Id) is
869 Self_Id : constant Task_Id := Self;
871 begin
872 if T.Common.State = Terminated then
874 -- It is not safe to call Abort_Defer or Write_Lock at this stage
876 Initialization.Task_Lock (Self_Id);
878 Lock_RTS;
879 Initialization.Finalize_Attributes_Link.all (T);
880 Initialization.Remove_From_All_Tasks_List (T);
881 Unlock_RTS;
883 Initialization.Task_Unlock (Self_Id);
885 Free_Entry_Names (T);
886 System.Task_Primitives.Operations.Finalize_TCB (T);
888 -- If the task is not terminated, then we simply ignore the call. This
889 -- happens when a user program attempts an unchecked deallocation on
890 -- a non-terminated task.
892 else
893 null;
894 end if;
895 end Free_Task;
897 ---------------------------
898 -- Move_Activation_Chain --
899 ---------------------------
901 procedure Move_Activation_Chain
902 (From, To : Activation_Chain_Access;
903 New_Master : Master_ID)
905 Self_ID : constant Task_Id := STPO.Self;
906 C : Task_Id;
908 begin
909 pragma Debug
910 (Debug.Trace (Self_ID, "Move_Activation_Chain", 'C'));
912 -- Nothing to do if From is empty, and we can check that without
913 -- deferring aborts.
915 C := From.all.T_ID;
917 if C = null then
918 return;
919 end if;
921 Initialization.Defer_Abort (Self_ID);
923 -- Loop through the From chain, changing their Master_of_Task
924 -- fields, and to find the end of the chain.
926 loop
927 C.Master_of_Task := New_Master;
928 exit when C.Common.Activation_Link = null;
929 C := C.Common.Activation_Link;
930 end loop;
932 -- Hook From in at the start of To
934 C.Common.Activation_Link := To.all.T_ID;
935 To.all.T_ID := From.all.T_ID;
937 -- Set From to empty
939 From.all.T_ID := null;
941 Initialization.Undefer_Abort (Self_ID);
942 end Move_Activation_Chain;
944 -- Compiler interface only. Do not call from within the RTS
946 --------------------
947 -- Set_Entry_Name --
948 --------------------
950 procedure Set_Entry_Name
951 (T : Task_Id;
952 Pos : Task_Entry_Index;
953 Val : String_Access)
955 begin
956 pragma Assert (T.Entry_Names /= null);
958 T.Entry_Names (Entry_Index (Pos)) := Val;
959 end Set_Entry_Name;
961 ------------------
962 -- Task_Wrapper --
963 ------------------
965 -- The task wrapper is a procedure that is called first for each task body
966 -- and which in turn calls the compiler-generated task body procedure.
967 -- The wrapper's main job is to do initialization for the task. It also
968 -- has some locally declared objects that serve as per-task local data.
969 -- Task finalization is done by Complete_Task, which is called from an
970 -- at-end handler that the compiler generates.
972 procedure Task_Wrapper (Self_ID : Task_Id) is
973 use type SSE.Storage_Offset;
974 use System.Standard_Library;
975 use System.Stack_Usage;
977 Bottom_Of_Stack : aliased Integer;
979 Task_Alternate_Stack :
980 aliased SSE.Storage_Array (1 .. Alternate_Stack_Size);
981 -- The alternate signal stack for this task, if any
983 Use_Alternate_Stack : constant Boolean := Alternate_Stack_Size /= 0;
984 -- Whether to use above alternate signal stack for stack overflows
986 Secondary_Stack_Size :
987 constant SSE.Storage_Offset :=
988 Self_ID.Common.Compiler_Data.Pri_Stack_Info.Size *
989 SSE.Storage_Offset (Parameters.Sec_Stack_Ratio) / 100;
991 Secondary_Stack : aliased SSE.Storage_Array (1 .. Secondary_Stack_Size);
993 pragma Warnings (Off);
994 -- Why are warnings being turned off here???
996 Secondary_Stack_Address : System.Address := Secondary_Stack'Address;
997 -- Address of secondary stack. In the fixed secondary stack case, this
998 -- value is not modified, causing a warning, hence the bracketing with
999 -- Warnings (Off/On). But why is so much *more* bracketed???
1001 Small_Overflow_Guard : constant := 12 * 1024;
1002 -- Note: this used to be 4K, but was changed to 12K, since smaller
1003 -- values resulted in segmentation faults from dynamic stack analysis.
1005 Big_Overflow_Guard : constant := 16 * 1024;
1006 Small_Stack_Limit : constant := 64 * 1024;
1007 -- ??? These three values are experimental, and seems to work on most
1008 -- platforms. They still need to be analyzed further. They also need
1009 -- documentation, what are they???
1011 Size : Natural :=
1012 Natural (Self_ID.Common.Compiler_Data.Pri_Stack_Info.Size);
1014 Overflow_Guard : Natural;
1015 -- Size of the overflow guard, used by dynamic stack usage analysis
1017 pragma Warnings (On);
1019 SEH_Table : aliased SSE.Storage_Array (1 .. 8);
1020 -- Structured Exception Registration table (2 words)
1022 procedure Install_SEH_Handler (Addr : System.Address);
1023 pragma Import (C, Install_SEH_Handler, "__gnat_install_SEH_handler");
1024 -- Install the SEH (Structured Exception Handling) handler
1026 Cause : Cause_Of_Termination := Normal;
1027 -- Indicates the reason why this task terminates. Normal corresponds to
1028 -- a task terminating due to completing the last statement of its body,
1029 -- or as a result of waiting on a terminate alternative. If the task
1030 -- terminates because it is being aborted then Cause will be set to
1031 -- Abnormal. If the task terminates because of an exception raised by
1032 -- the execution of its task body, then Cause is set to
1033 -- Unhandled_Exception.
1035 EO : Exception_Occurrence;
1036 -- If the task terminates because of an exception raised by the
1037 -- execution of its task body, then EO will contain the associated
1038 -- exception occurrence. Otherwise, it will contain Null_Occurrence.
1040 TH : Termination_Handler := null;
1041 -- Pointer to the protected procedure to be executed upon task
1042 -- termination.
1044 procedure Search_Fall_Back_Handler (ID : Task_Id);
1045 -- Procedure that searches recursively a fall-back handler through the
1046 -- master relationship. If the handler is found, its pointer is stored
1047 -- in TH.
1049 ------------------------------
1050 -- Search_Fall_Back_Handler --
1051 ------------------------------
1053 procedure Search_Fall_Back_Handler (ID : Task_Id) is
1054 begin
1055 -- If there is a fall back handler, store its pointer for later
1056 -- execution.
1058 if ID.Common.Fall_Back_Handler /= null then
1059 TH := ID.Common.Fall_Back_Handler;
1061 -- Otherwise look for a fall back handler in the parent
1063 elsif ID.Common.Parent /= null then
1064 Search_Fall_Back_Handler (ID.Common.Parent);
1066 -- Otherwise, do nothing
1068 else
1069 return;
1070 end if;
1071 end Search_Fall_Back_Handler;
1073 begin
1074 pragma Assert (Self_ID.Deferral_Level = 1);
1076 -- Assume a size of the stack taken at this stage
1078 if Size < Small_Stack_Limit then
1079 Overflow_Guard := Small_Overflow_Guard;
1080 else
1081 Overflow_Guard := Big_Overflow_Guard;
1082 end if;
1084 if not Parameters.Sec_Stack_Dynamic then
1085 Self_ID.Common.Compiler_Data.Sec_Stack_Addr :=
1086 Secondary_Stack'Address;
1087 SST.SS_Init (Secondary_Stack_Address, Integer (Secondary_Stack'Last));
1088 Size := Size - Natural (Secondary_Stack_Size);
1089 end if;
1091 if Use_Alternate_Stack then
1092 Self_ID.Common.Task_Alternate_Stack := Task_Alternate_Stack'Address;
1093 end if;
1095 Size := Size - Overflow_Guard;
1097 if System.Stack_Usage.Is_Enabled then
1098 STPO.Lock_RTS;
1099 Initialize_Analyzer
1100 (Self_ID.Common.Analyzer,
1101 Self_ID.Common.Task_Image
1102 (1 .. Self_ID.Common.Task_Image_Len),
1103 Natural
1104 (Self_ID.Common.Compiler_Data.Pri_Stack_Info.Size),
1105 Size,
1106 SSE.To_Integer (Bottom_Of_Stack'Address));
1107 STPO.Unlock_RTS;
1108 Fill_Stack (Self_ID.Common.Analyzer);
1109 end if;
1111 -- Set the guard page at the bottom of the stack. The call to unprotect
1112 -- the page is done in Terminate_Task
1114 Stack_Guard (Self_ID, True);
1116 -- Initialize low-level TCB components, that cannot be initialized by
1117 -- the creator. Enter_Task sets Self_ID.LL.Thread
1119 Enter_Task (Self_ID);
1121 -- We setup the SEH (Structured Exception Handling) handler if supported
1122 -- on the target.
1124 Install_SEH_Handler (SEH_Table'Address);
1126 -- Initialize exception occurrence
1128 Save_Occurrence (EO, Ada.Exceptions.Null_Occurrence);
1130 -- We lock RTS_Lock to wait for activator to finish activating the rest
1131 -- of the chain, so that everyone in the chain comes out in priority
1132 -- order.
1134 -- This also protects the value of
1135 -- Self_ID.Common.Activator.Common.Wait_Count.
1137 Lock_RTS;
1138 Unlock_RTS;
1140 if not System.Restrictions.Abort_Allowed then
1142 -- If Abort is not allowed, reset the deferral level since it will
1143 -- not get changed by the generated code. Keeping a default value
1144 -- of one would prevent some operations (e.g. select or delay) to
1145 -- proceed successfully.
1147 Self_ID.Deferral_Level := 0;
1148 end if;
1150 if Global_Task_Debug_Event_Set then
1151 Debug.Signal_Debug_Event
1152 (Debug.Debug_Event_Run, Self_ID);
1153 end if;
1155 begin
1156 -- We are separating the following portion of the code in order to
1157 -- place the exception handlers in a different block. In this way,
1158 -- we do not call Set_Jmpbuf_Address (which needs Self) before we
1159 -- set Self in Enter_Task
1161 -- Call the task body procedure
1163 -- The task body is called with abort still deferred. That
1164 -- eliminates a dangerous window, for which we had to patch-up in
1165 -- Terminate_Task.
1167 -- During the expansion of the task body, we insert an RTS-call
1168 -- to Abort_Undefer, at the first point where abort should be
1169 -- allowed.
1171 Self_ID.Common.Task_Entry_Point (Self_ID.Common.Task_Arg);
1172 Initialization.Defer_Abort_Nestable (Self_ID);
1174 exception
1175 -- We can't call Terminate_Task in the exception handlers below,
1176 -- since there may be (e.g. in the case of GCC exception handling)
1177 -- clean ups associated with the exception handler that need to
1178 -- access task specific data.
1180 -- Defer abort so that this task can't be aborted while exiting
1182 when Standard'Abort_Signal =>
1183 Initialization.Defer_Abort_Nestable (Self_ID);
1185 -- Update the cause that motivated the task termination so that
1186 -- the appropriate information is passed to the task termination
1187 -- procedure. Task termination as a result of waiting on a
1188 -- terminate alternative is a normal termination, although it is
1189 -- implemented using the abort mechanisms.
1191 if Self_ID.Terminate_Alternative then
1192 Cause := Normal;
1194 if Global_Task_Debug_Event_Set then
1195 Debug.Signal_Debug_Event
1196 (Debug.Debug_Event_Terminated, Self_ID);
1197 end if;
1198 else
1199 Cause := Abnormal;
1201 if Global_Task_Debug_Event_Set then
1202 Debug.Signal_Debug_Event
1203 (Debug.Debug_Event_Abort_Terminated, Self_ID);
1204 end if;
1205 end if;
1206 when others =>
1207 -- ??? Using an E : others here causes CD2C11A to fail on Tru64
1209 Initialization.Defer_Abort_Nestable (Self_ID);
1211 -- Perform the task specific exception tracing duty. We handle
1212 -- these outputs here and not in the common notification routine
1213 -- because we need access to tasking related data and we don't
1214 -- want to drag dependencies against tasking related units in the
1215 -- the common notification units. Additionally, no trace is ever
1216 -- triggered from the common routine for the Unhandled_Raise case
1217 -- in tasks, since an exception never appears unhandled in this
1218 -- context because of this handler.
1220 if Exception_Trace = Unhandled_Raise then
1221 Trace_Unhandled_Exception_In_Task (Self_ID);
1222 end if;
1224 -- Update the cause that motivated the task termination so that
1225 -- the appropriate information is passed to the task termination
1226 -- procedure, as well as the associated Exception_Occurrence.
1228 Cause := Unhandled_Exception;
1230 Save_Occurrence (EO, SSL.Get_Current_Excep.all.all);
1232 if Global_Task_Debug_Event_Set then
1233 Debug.Signal_Debug_Event
1234 (Debug.Debug_Event_Exception_Terminated, Self_ID);
1235 end if;
1236 end;
1238 -- Look for a task termination handler. This code is for all tasks but
1239 -- the environment task. The task termination code for the environment
1240 -- task is executed by SSL.Task_Termination_Handler.
1242 if Single_Lock then
1243 Lock_RTS;
1244 end if;
1246 Write_Lock (Self_ID);
1248 if Self_ID.Common.Specific_Handler /= null then
1249 TH := Self_ID.Common.Specific_Handler;
1250 else
1251 -- Look for a fall-back handler following the master relationship
1252 -- for the task.
1254 Search_Fall_Back_Handler (Self_ID);
1255 end if;
1257 Unlock (Self_ID);
1259 if Single_Lock then
1260 Unlock_RTS;
1261 end if;
1263 -- Execute the task termination handler if we found it
1265 if TH /= null then
1266 TH.all (Cause, Self_ID, EO);
1267 end if;
1269 if System.Stack_Usage.Is_Enabled then
1270 Compute_Result (Self_ID.Common.Analyzer);
1271 Report_Result (Self_ID.Common.Analyzer);
1272 end if;
1274 Terminate_Task (Self_ID);
1275 end Task_Wrapper;
1277 --------------------
1278 -- Terminate_Task --
1279 --------------------
1281 -- Before we allow the thread to exit, we must clean up. This is a
1282 -- delicate job. We must wake up the task's master, who may immediately try
1283 -- to deallocate the ATCB out from under the current task WHILE IT IS STILL
1284 -- EXECUTING.
1286 -- To avoid this, the parent task must be blocked up to the latest
1287 -- statement executed. The trouble is that we have another step that we
1288 -- also want to postpone to the very end, i.e., calling SSL.Destroy_TSD.
1289 -- We have to postpone that until the end because compiler-generated code
1290 -- is likely to try to access that data at just about any point.
1292 -- We can't call Destroy_TSD while we are holding any other locks, because
1293 -- it locks Global_Task_Lock, and our deadlock prevention rules require
1294 -- that to be the outermost lock. Our first "solution" was to just lock
1295 -- Global_Task_Lock in addition to the other locks, and force the parent to
1296 -- also lock this lock between its wakeup and its freeing of the ATCB. See
1297 -- Complete_Task for the parent-side of the code that has the matching
1298 -- calls to Task_Lock and Task_Unlock. That was not really a solution,
1299 -- since the operation Task_Unlock continued to access the ATCB after
1300 -- unlocking, after which the parent was observed to race ahead, deallocate
1301 -- the ATCB, and then reallocate it to another task. The call to
1302 -- Undefer_Abort in Task_Unlock by the "terminated" task was overwriting
1303 -- the data of the new task that reused the ATCB! To solve this problem, we
1304 -- introduced the new operation Final_Task_Unlock.
1306 procedure Terminate_Task (Self_ID : Task_Id) is
1307 Environment_Task : constant Task_Id := STPO.Environment_Task;
1308 Master_of_Task : Integer;
1310 begin
1311 Debug.Task_Termination_Hook;
1313 if Runtime_Traces then
1314 Send_Trace_Info (T_Terminate);
1315 end if;
1317 -- Since GCC cannot allocate stack chunks efficiently without reordering
1318 -- some of the allocations, we have to handle this unexpected situation
1319 -- here. We should normally never have to call Vulnerable_Complete_Task
1320 -- here.
1322 if Self_ID.Common.Activator /= null then
1323 Vulnerable_Complete_Task (Self_ID);
1324 end if;
1326 Initialization.Task_Lock (Self_ID);
1328 if Single_Lock then
1329 Lock_RTS;
1330 end if;
1332 Master_of_Task := Self_ID.Master_of_Task;
1334 -- Check if the current task is an independent task If so, decrement
1335 -- the Independent_Task_Count value.
1337 if Master_of_Task = Independent_Task_Level then
1338 if Single_Lock then
1339 Utilities.Independent_Task_Count :=
1340 Utilities.Independent_Task_Count - 1;
1341 else
1342 Write_Lock (Environment_Task);
1343 Utilities.Independent_Task_Count :=
1344 Utilities.Independent_Task_Count - 1;
1345 Unlock (Environment_Task);
1346 end if;
1347 end if;
1349 -- Unprotect the guard page if needed
1351 Stack_Guard (Self_ID, False);
1353 Utilities.Make_Passive (Self_ID, Task_Completed => True);
1355 if Single_Lock then
1356 Unlock_RTS;
1357 end if;
1359 pragma Assert (Check_Exit (Self_ID));
1361 SSL.Destroy_TSD (Self_ID.Common.Compiler_Data);
1362 Initialization.Final_Task_Unlock (Self_ID);
1364 -- WARNING: past this point, this thread must assume that the ATCB has
1365 -- been deallocated. It should not be accessed again.
1367 if Master_of_Task > 0 then
1368 STPO.Exit_Task;
1369 end if;
1370 end Terminate_Task;
1372 ----------------
1373 -- Terminated --
1374 ----------------
1376 function Terminated (T : Task_Id) return Boolean is
1377 Self_ID : constant Task_Id := STPO.Self;
1378 Result : Boolean;
1380 begin
1381 Initialization.Defer_Abort_Nestable (Self_ID);
1383 if Single_Lock then
1384 Lock_RTS;
1385 end if;
1387 Write_Lock (T);
1388 Result := T.Common.State = Terminated;
1389 Unlock (T);
1391 if Single_Lock then
1392 Unlock_RTS;
1393 end if;
1395 Initialization.Undefer_Abort_Nestable (Self_ID);
1396 return Result;
1397 end Terminated;
1399 ----------------------------------------
1400 -- Trace_Unhandled_Exception_In_Task --
1401 ----------------------------------------
1403 procedure Trace_Unhandled_Exception_In_Task (Self_Id : Task_Id) is
1404 procedure To_Stderr (S : String);
1405 pragma Import (Ada, To_Stderr, "__gnat_to_stderr");
1407 use System.Soft_Links;
1408 use System.Standard_Library;
1410 function To_Address is new
1411 Ada.Unchecked_Conversion
1412 (Task_Id, System.Task_Primitives.Task_Address);
1414 function Tailored_Exception_Information
1415 (E : Exception_Occurrence) return String;
1416 pragma Import
1417 (Ada, Tailored_Exception_Information,
1418 "__gnat_tailored_exception_information");
1420 Excep : constant Exception_Occurrence_Access :=
1421 SSL.Get_Current_Excep.all;
1423 begin
1424 -- This procedure is called by the task outermost handler in
1425 -- Task_Wrapper below, so only once the task stack has been fully
1426 -- unwound. The common notification routine has been called at the
1427 -- raise point already.
1429 -- Lock to prevent unsynchronized output
1431 Initialization.Task_Lock (Self_Id);
1432 To_Stderr ("task ");
1434 if Self_Id.Common.Task_Image_Len /= 0 then
1435 To_Stderr
1436 (Self_Id.Common.Task_Image (1 .. Self_Id.Common.Task_Image_Len));
1437 To_Stderr ("_");
1438 end if;
1440 To_Stderr (System.Address_Image (To_Address (Self_Id)));
1441 To_Stderr (" terminated by unhandled exception");
1442 To_Stderr ((1 => ASCII.LF));
1443 To_Stderr (Tailored_Exception_Information (Excep.all));
1444 Initialization.Task_Unlock (Self_Id);
1445 end Trace_Unhandled_Exception_In_Task;
1447 ------------------------------------
1448 -- Vulnerable_Complete_Activation --
1449 ------------------------------------
1451 -- As in several other places, the locks of the activator and activated
1452 -- task are both locked here. This follows our deadlock prevention lock
1453 -- ordering policy, since the activated task must be created after the
1454 -- activator.
1456 procedure Vulnerable_Complete_Activation (Self_ID : Task_Id) is
1457 Activator : constant Task_Id := Self_ID.Common.Activator;
1459 begin
1460 pragma Debug (Debug.Trace (Self_ID, "V_Complete_Activation", 'C'));
1462 Write_Lock (Activator);
1463 Write_Lock (Self_ID);
1465 pragma Assert (Self_ID.Common.Activator /= null);
1467 -- Remove dangling reference to Activator, since a task may
1468 -- outlive its activator.
1470 Self_ID.Common.Activator := null;
1472 -- Wake up the activator, if it is waiting for a chain of tasks to
1473 -- activate, and we are the last in the chain to complete activation.
1475 if Activator.Common.State = Activator_Sleep then
1476 Activator.Common.Wait_Count := Activator.Common.Wait_Count - 1;
1478 if Activator.Common.Wait_Count = 0 then
1479 Wakeup (Activator, Activator_Sleep);
1480 end if;
1481 end if;
1483 -- The activator raises a Tasking_Error if any task it is activating
1484 -- is completed before the activation is done. However, if the reason
1485 -- for the task completion is an abort, we do not raise an exception.
1486 -- See RM 9.2(5).
1488 if not Self_ID.Callable and then Self_ID.Pending_ATC_Level /= 0 then
1489 Activator.Common.Activation_Failed := True;
1490 end if;
1492 Unlock (Self_ID);
1493 Unlock (Activator);
1495 -- After the activation, active priority should be the same as base
1496 -- priority. We must unlock the Activator first, though, since it
1497 -- should not wait if we have lower priority.
1499 if Get_Priority (Self_ID) /= Self_ID.Common.Base_Priority then
1500 Write_Lock (Self_ID);
1501 Set_Priority (Self_ID, Self_ID.Common.Base_Priority);
1502 Unlock (Self_ID);
1503 end if;
1504 end Vulnerable_Complete_Activation;
1506 --------------------------------
1507 -- Vulnerable_Complete_Master --
1508 --------------------------------
1510 procedure Vulnerable_Complete_Master (Self_ID : Task_Id) is
1511 C : Task_Id;
1512 P : Task_Id;
1513 CM : constant Master_Level := Self_ID.Master_Within;
1514 T : aliased Task_Id;
1516 To_Be_Freed : Task_Id;
1517 -- This is a list of ATCBs to be freed, after we have released all RTS
1518 -- locks. This is necessary because of the locking order rules, since
1519 -- the storage manager uses Global_Task_Lock.
1521 pragma Warnings (Off);
1522 function Check_Unactivated_Tasks return Boolean;
1523 pragma Warnings (On);
1524 -- Temporary error-checking code below. This is part of the checks
1525 -- added in the new run time. Call it only inside a pragma Assert.
1527 -----------------------------
1528 -- Check_Unactivated_Tasks --
1529 -----------------------------
1531 function Check_Unactivated_Tasks return Boolean is
1532 begin
1533 if not Single_Lock then
1534 Lock_RTS;
1535 end if;
1537 Write_Lock (Self_ID);
1539 C := All_Tasks_List;
1540 while C /= null loop
1541 if C.Common.Activator = Self_ID and then C.Master_of_Task = CM then
1542 return False;
1543 end if;
1545 if C.Common.Parent = Self_ID and then C.Master_of_Task = CM then
1546 Write_Lock (C);
1548 if C.Common.State = Unactivated then
1549 return False;
1550 end if;
1552 Unlock (C);
1553 end if;
1555 C := C.Common.All_Tasks_Link;
1556 end loop;
1558 Unlock (Self_ID);
1560 if not Single_Lock then
1561 Unlock_RTS;
1562 end if;
1564 return True;
1565 end Check_Unactivated_Tasks;
1567 -- Start of processing for Vulnerable_Complete_Master
1569 begin
1570 pragma Debug
1571 (Debug.Trace (Self_ID, "V_Complete_Master", 'C'));
1573 pragma Assert (Self_ID.Common.Wait_Count = 0);
1574 pragma Assert
1575 (Self_ID.Deferral_Level > 0
1576 or else not System.Restrictions.Abort_Allowed);
1578 -- Count how many active dependent tasks this master currently has, and
1579 -- record this in Wait_Count.
1581 -- This count should start at zero, since it is initialized to zero for
1582 -- new tasks, and the task should not exit the sleep-loops that use this
1583 -- count until the count reaches zero.
1585 -- While we're counting, if we run across any unactivated tasks that
1586 -- belong to this master, we summarily terminate them as required by
1587 -- RM-9.2(6).
1589 Lock_RTS;
1590 Write_Lock (Self_ID);
1592 C := All_Tasks_List;
1593 while C /= null loop
1595 -- Terminate unactivated (never-to-be activated) tasks
1597 if C.Common.Activator = Self_ID and then C.Master_of_Task = CM then
1599 pragma Assert (C.Common.State = Unactivated);
1600 -- Usually, C.Common.Activator = Self_ID implies C.Master_of_Task
1601 -- = CM. The only case where C is pending activation by this
1602 -- task, but the master of C is not CM is in Ada 2005, when C is
1603 -- part of a return object of a build-in-place function.
1605 Write_Lock (C);
1606 C.Common.Activator := null;
1607 C.Common.State := Terminated;
1608 C.Callable := False;
1609 Utilities.Cancel_Queued_Entry_Calls (C);
1610 Unlock (C);
1611 end if;
1613 -- Count it if dependent on this master
1615 if C.Common.Parent = Self_ID and then C.Master_of_Task = CM then
1616 Write_Lock (C);
1618 if C.Awake_Count /= 0 then
1619 Self_ID.Common.Wait_Count := Self_ID.Common.Wait_Count + 1;
1620 end if;
1622 Unlock (C);
1623 end if;
1625 C := C.Common.All_Tasks_Link;
1626 end loop;
1628 Self_ID.Common.State := Master_Completion_Sleep;
1629 Unlock (Self_ID);
1631 if not Single_Lock then
1632 Unlock_RTS;
1633 end if;
1635 -- Wait until dependent tasks are all terminated or ready to terminate.
1636 -- While waiting, the task may be awakened if the task's priority needs
1637 -- changing, or this master is aborted. In the latter case, we abort the
1638 -- dependents, and resume waiting until Wait_Count goes to zero.
1640 Write_Lock (Self_ID);
1642 loop
1643 exit when Self_ID.Common.Wait_Count = 0;
1645 -- Here is a difference as compared to Complete_Master
1647 if Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level
1648 and then not Self_ID.Dependents_Aborted
1649 then
1650 if Single_Lock then
1651 Abort_Dependents (Self_ID);
1652 else
1653 Unlock (Self_ID);
1654 Lock_RTS;
1655 Abort_Dependents (Self_ID);
1656 Unlock_RTS;
1657 Write_Lock (Self_ID);
1658 end if;
1659 else
1660 Sleep (Self_ID, Master_Completion_Sleep);
1661 end if;
1662 end loop;
1664 Self_ID.Common.State := Runnable;
1665 Unlock (Self_ID);
1667 -- Dependents are all terminated or on terminate alternatives. Now,
1668 -- force those on terminate alternatives to terminate, by aborting them.
1670 pragma Assert (Check_Unactivated_Tasks);
1672 if Self_ID.Alive_Count > 1 then
1673 -- ???
1674 -- Consider finding a way to skip the following extra steps if there
1675 -- are no dependents with terminate alternatives. This could be done
1676 -- by adding another count to the ATCB, similar to Awake_Count, but
1677 -- keeping track of tasks that are on terminate alternatives.
1679 pragma Assert (Self_ID.Common.Wait_Count = 0);
1681 -- Force any remaining dependents to terminate by aborting them
1683 if not Single_Lock then
1684 Lock_RTS;
1685 end if;
1687 Abort_Dependents (Self_ID);
1689 -- Above, when we "abort" the dependents we are simply using this
1690 -- operation for convenience. We are not required to support the full
1691 -- abort-statement semantics; in particular, we are not required to
1692 -- immediately cancel any queued or in-service entry calls. That is
1693 -- good, because if we tried to cancel a call we would need to lock
1694 -- the caller, in order to wake the caller up. Our anti-deadlock
1695 -- rules prevent us from doing that without releasing the locks on C
1696 -- and Self_ID. Releasing and retaking those locks would be wasteful
1697 -- at best, and should not be considered further without more
1698 -- detailed analysis of potential concurrent accesses to the ATCBs
1699 -- of C and Self_ID.
1701 -- Count how many "alive" dependent tasks this master currently has,
1702 -- and record this in Wait_Count. This count should start at zero,
1703 -- since it is initialized to zero for new tasks, and the task should
1704 -- not exit the sleep-loops that use this count until the count
1705 -- reaches zero.
1707 pragma Assert (Self_ID.Common.Wait_Count = 0);
1709 Write_Lock (Self_ID);
1711 C := All_Tasks_List;
1712 while C /= null loop
1713 if C.Common.Parent = Self_ID and then C.Master_of_Task = CM then
1714 Write_Lock (C);
1716 pragma Assert (C.Awake_Count = 0);
1718 if C.Alive_Count > 0 then
1719 pragma Assert (C.Terminate_Alternative);
1720 Self_ID.Common.Wait_Count := Self_ID.Common.Wait_Count + 1;
1721 end if;
1723 Unlock (C);
1724 end if;
1726 C := C.Common.All_Tasks_Link;
1727 end loop;
1729 Self_ID.Common.State := Master_Phase_2_Sleep;
1730 Unlock (Self_ID);
1732 if not Single_Lock then
1733 Unlock_RTS;
1734 end if;
1736 -- Wait for all counted tasks to finish terminating themselves
1738 Write_Lock (Self_ID);
1740 loop
1741 exit when Self_ID.Common.Wait_Count = 0;
1742 Sleep (Self_ID, Master_Phase_2_Sleep);
1743 end loop;
1745 Self_ID.Common.State := Runnable;
1746 Unlock (Self_ID);
1747 end if;
1749 -- We don't wake up for abort here. We are already terminating just as
1750 -- fast as we can, so there is no point.
1752 -- Remove terminated tasks from the list of Self_ID's dependents, but
1753 -- don't free their ATCBs yet, because of lock order restrictions, which
1754 -- don't allow us to call "free" or "malloc" while holding any other
1755 -- locks. Instead, we put those ATCBs to be freed onto a temporary list,
1756 -- called To_Be_Freed.
1758 if not Single_Lock then
1759 Lock_RTS;
1760 end if;
1762 C := All_Tasks_List;
1763 P := null;
1764 while C /= null loop
1765 if C.Common.Parent = Self_ID and then C.Master_of_Task >= CM then
1766 if P /= null then
1767 P.Common.All_Tasks_Link := C.Common.All_Tasks_Link;
1768 else
1769 All_Tasks_List := C.Common.All_Tasks_Link;
1770 end if;
1772 T := C.Common.All_Tasks_Link;
1773 C.Common.All_Tasks_Link := To_Be_Freed;
1774 To_Be_Freed := C;
1775 C := T;
1777 else
1778 P := C;
1779 C := C.Common.All_Tasks_Link;
1780 end if;
1781 end loop;
1783 Unlock_RTS;
1785 -- Free all the ATCBs on the list To_Be_Freed
1787 -- The ATCBs in the list are no longer in All_Tasks_List, and after
1788 -- any interrupt entries are detached from them they should no longer
1789 -- be referenced.
1791 -- Global_Task_Lock (Task_Lock/Unlock) is locked in the loop below to
1792 -- avoid a race between a terminating task and its parent. The parent
1793 -- might try to deallocate the ACTB out from underneath the exiting
1794 -- task. Note that Free will also lock Global_Task_Lock, but that is
1795 -- OK, since this is the *one* lock for which we have a mechanism to
1796 -- support nested locking. See Task_Wrapper and its finalizer for more
1797 -- explanation.
1799 -- ???
1800 -- The check "T.Common.Parent /= null ..." below is to prevent dangling
1801 -- references to terminated library-level tasks, which could otherwise
1802 -- occur during finalization of library-level objects. A better solution
1803 -- might be to hook task objects into the finalization chain and
1804 -- deallocate the ATCB when the task object is deallocated. However,
1805 -- this change is not likely to gain anything significant, since all
1806 -- this storage should be recovered en-masse when the process exits.
1808 while To_Be_Freed /= null loop
1809 T := To_Be_Freed;
1810 To_Be_Freed := T.Common.All_Tasks_Link;
1812 -- ??? On SGI there is currently no Interrupt_Manager, that's
1813 -- why we need to check if the Interrupt_Manager_ID is null
1815 if T.Interrupt_Entry and Interrupt_Manager_ID /= null then
1816 declare
1817 Detach_Interrupt_Entries_Index : constant Task_Entry_Index := 1;
1818 -- Corresponds to the entry index of System.Interrupts.
1819 -- Interrupt_Manager.Detach_Interrupt_Entries.
1820 -- Be sure to update this value when changing
1821 -- Interrupt_Manager specs.
1823 type Param_Type is access all Task_Id;
1825 Param : aliased Param_Type := T'Access;
1827 begin
1828 System.Tasking.Rendezvous.Call_Simple
1829 (Interrupt_Manager_ID, Detach_Interrupt_Entries_Index,
1830 Param'Address);
1831 end;
1832 end if;
1834 if (T.Common.Parent /= null
1835 and then T.Common.Parent.Common.Parent /= null)
1836 or else T.Master_of_Task > Library_Task_Level
1837 then
1838 Initialization.Task_Lock (Self_ID);
1840 -- If Sec_Stack_Addr is not null, it means that Destroy_TSD
1841 -- has not been called yet (case of an unactivated task).
1843 if T.Common.Compiler_Data.Sec_Stack_Addr /= Null_Address then
1844 SSL.Destroy_TSD (T.Common.Compiler_Data);
1845 end if;
1847 Vulnerable_Free_Task (T);
1848 Initialization.Task_Unlock (Self_ID);
1849 end if;
1850 end loop;
1852 -- It might seem nice to let the terminated task deallocate its own
1853 -- ATCB. That would not cover the case of unactivated tasks. It also
1854 -- would force us to keep the underlying thread around past termination,
1855 -- since references to the ATCB are possible past termination.
1857 -- Currently, we get rid of the thread as soon as the task terminates,
1858 -- and let the parent recover the ATCB later.
1860 -- Some day, if we want to recover the ATCB earlier, at task
1861 -- termination, we could consider using "fat task IDs", that include the
1862 -- serial number with the ATCB pointer, to catch references to tasks
1863 -- that no longer have ATCBs. It is not clear how much this would gain,
1864 -- since the user-level task object would still be occupying storage.
1866 -- Make next master level up active. We don't need to lock the ATCB,
1867 -- since the value is only updated by each task for itself.
1869 Self_ID.Master_Within := CM - 1;
1870 end Vulnerable_Complete_Master;
1872 ------------------------------
1873 -- Vulnerable_Complete_Task --
1874 ------------------------------
1876 -- Complete the calling task
1878 -- This procedure must be called with abort deferred. It should only be
1879 -- called by Complete_Task and Finalize_Global_Tasks (for the environment
1880 -- task).
1882 -- The effect is similar to that of Complete_Master. Differences include
1883 -- the closing of entries here, and computation of the number of active
1884 -- dependent tasks in Complete_Master.
1886 -- We don't lock Self_ID before the call to Vulnerable_Complete_Activation,
1887 -- because that does its own locking, and because we do not need the lock
1888 -- to test Self_ID.Common.Activator. That value should only be read and
1889 -- modified by Self.
1891 procedure Vulnerable_Complete_Task (Self_ID : Task_Id) is
1892 begin
1893 pragma Assert
1894 (Self_ID.Deferral_Level > 0
1895 or else not System.Restrictions.Abort_Allowed);
1896 pragma Assert (Self_ID = Self);
1897 pragma Assert (Self_ID.Master_Within = Self_ID.Master_of_Task + 1
1898 or else
1899 Self_ID.Master_Within = Self_ID.Master_of_Task + 2);
1900 pragma Assert (Self_ID.Common.Wait_Count = 0);
1901 pragma Assert (Self_ID.Open_Accepts = null);
1902 pragma Assert (Self_ID.ATC_Nesting_Level = 1);
1904 pragma Debug (Debug.Trace (Self_ID, "V_Complete_Task", 'C'));
1906 if Single_Lock then
1907 Lock_RTS;
1908 end if;
1910 Write_Lock (Self_ID);
1911 Self_ID.Callable := False;
1913 -- In theory, Self should have no pending entry calls left on its
1914 -- call-stack. Each async. select statement should clean its own call,
1915 -- and blocking entry calls should defer abort until the calls are
1916 -- cancelled, then clean up.
1918 Utilities.Cancel_Queued_Entry_Calls (Self_ID);
1919 Unlock (Self_ID);
1921 if Self_ID.Common.Activator /= null then
1922 Vulnerable_Complete_Activation (Self_ID);
1923 end if;
1925 if Single_Lock then
1926 Unlock_RTS;
1927 end if;
1929 -- If Self_ID.Master_Within = Self_ID.Master_of_Task + 2 we may have
1930 -- dependent tasks for which we need to wait. Otherwise we just exit.
1932 if Self_ID.Master_Within = Self_ID.Master_of_Task + 2 then
1933 Vulnerable_Complete_Master (Self_ID);
1934 end if;
1935 end Vulnerable_Complete_Task;
1937 --------------------------
1938 -- Vulnerable_Free_Task --
1939 --------------------------
1941 -- Recover all runtime system storage associated with the task T. This
1942 -- should only be called after T has terminated and will no longer be
1943 -- referenced.
1945 -- For tasks created by an allocator that fails, due to an exception, it
1946 -- is called from Expunge_Unactivated_Tasks.
1948 -- For tasks created by elaboration of task object declarations it is
1949 -- called from the finalization code of the Task_Wrapper procedure. It is
1950 -- also called from Ada.Unchecked_Deallocation, for objects that are or
1951 -- contain tasks.
1953 procedure Vulnerable_Free_Task (T : Task_Id) is
1954 begin
1955 pragma Debug (Debug.Trace (Self, "Vulnerable_Free_Task", 'C', T));
1957 if Single_Lock then
1958 Lock_RTS;
1959 end if;
1961 Write_Lock (T);
1962 Initialization.Finalize_Attributes_Link.all (T);
1963 Unlock (T);
1965 if Single_Lock then
1966 Unlock_RTS;
1967 end if;
1969 Free_Entry_Names (T);
1970 System.Task_Primitives.Operations.Finalize_TCB (T);
1971 end Vulnerable_Free_Task;
1973 -- Package elaboration code
1975 begin
1976 -- Establish the Adafinal oftlink
1978 -- This is not done inside the central RTS initialization routine
1979 -- to avoid with-ing this package from System.Tasking.Initialization.
1981 SSL.Adafinal := Finalize_Global_Tasks'Access;
1983 -- Establish soft links for subprograms that manipulate master_id's.
1984 -- This cannot be done when the RTS is initialized, because of various
1985 -- elaboration constraints.
1987 SSL.Current_Master := Stages.Current_Master'Access;
1988 SSL.Enter_Master := Stages.Enter_Master'Access;
1989 SSL.Complete_Master := Stages.Complete_Master'Access;
1990 end System.Tasking.Stages;