PR testsuite/39776
[official-gcc.git] / gcc / ada / repinfo.adb
blob04ad81758cbe1ddd837d84e7fb78450d43544b7e
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- R E P I N F O --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1999-2009, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
17 -- --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
21 -- --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
26 -- --
27 -- GNAT was originally developed by the GNAT team at New York University. --
28 -- Extensive contributions were provided by Ada Core Technologies Inc. --
29 -- --
30 ------------------------------------------------------------------------------
32 with Alloc; use Alloc;
33 with Atree; use Atree;
34 with Casing; use Casing;
35 with Debug; use Debug;
36 with Einfo; use Einfo;
37 with Lib; use Lib;
38 with Namet; use Namet;
39 with Opt; use Opt;
40 with Output; use Output;
41 with Sinfo; use Sinfo;
42 with Sinput; use Sinput;
43 with Snames; use Snames;
44 with Stand; use Stand;
45 with Table; use Table;
46 with Uname; use Uname;
47 with Urealp; use Urealp;
49 with Ada.Unchecked_Conversion;
51 package body Repinfo is
53 SSU : constant := 8;
54 -- Value for Storage_Unit, we do not want to get this from TTypes, since
55 -- this introduces problematic dependencies in ASIS, and in any case this
56 -- value is assumed to be 8 for the implementation of the DDA.
58 -- This is wrong for AAMP???
60 ---------------------------------------
61 -- Representation of gcc Expressions --
62 ---------------------------------------
64 -- This table is used only if Frontend_Layout_On_Target is False, so gigi
65 -- lays out dynamic size/offset fields using encoded gcc expressions.
67 -- A table internal to this unit is used to hold the values of back
68 -- annotated expressions. This table is written out by -gnatt and read
69 -- back in for ASIS processing.
71 -- Node values are stored as Uint values using the negative of the node
72 -- index in this table. Constants appear as non-negative Uint values.
74 type Exp_Node is record
75 Expr : TCode;
76 Op1 : Node_Ref_Or_Val;
77 Op2 : Node_Ref_Or_Val;
78 Op3 : Node_Ref_Or_Val;
79 end record;
81 -- The following representation clause ensures that the above record
82 -- has no holes. We do this so that when instances of this record are
83 -- written by Tree_Gen, we do not write uninitialized values to the file.
85 for Exp_Node use record
86 Expr at 0 range 0 .. 31;
87 Op1 at 4 range 0 .. 31;
88 Op2 at 8 range 0 .. 31;
89 Op3 at 12 range 0 .. 31;
90 end record;
92 for Exp_Node'Size use 16 * 8;
93 -- This ensures that we did not leave out any fields
95 package Rep_Table is new Table.Table (
96 Table_Component_Type => Exp_Node,
97 Table_Index_Type => Nat,
98 Table_Low_Bound => 1,
99 Table_Initial => Alloc.Rep_Table_Initial,
100 Table_Increment => Alloc.Rep_Table_Increment,
101 Table_Name => "BE_Rep_Table");
103 --------------------------------------------------------------
104 -- Representation of Front-End Dynamic Size/Offset Entities --
105 --------------------------------------------------------------
107 package Dynamic_SO_Entity_Table is new Table.Table (
108 Table_Component_Type => Entity_Id,
109 Table_Index_Type => Nat,
110 Table_Low_Bound => 1,
111 Table_Initial => Alloc.Rep_Table_Initial,
112 Table_Increment => Alloc.Rep_Table_Increment,
113 Table_Name => "FE_Rep_Table");
115 Unit_Casing : Casing_Type;
116 -- Identifier casing for current unit
118 Need_Blank_Line : Boolean;
119 -- Set True if a blank line is needed before outputting any information for
120 -- the current entity. Set True when a new entity is processed, and false
121 -- when the blank line is output.
123 -----------------------
124 -- Local Subprograms --
125 -----------------------
127 function Back_End_Layout return Boolean;
128 -- Test for layout mode, True = back end, False = front end. This function
129 -- is used rather than checking the configuration parameter because we do
130 -- not want Repinfo to depend on Targparm (for ASIS)
132 procedure Blank_Line;
133 -- Called before outputting anything for an entity. Ensures that
134 -- a blank line precedes the output for a particular entity.
136 procedure List_Entities (Ent : Entity_Id);
137 -- This procedure lists the entities associated with the entity E, starting
138 -- with the First_Entity and using the Next_Entity link. If a nested
139 -- package is found, entities within the package are recursively processed.
141 procedure List_Name (Ent : Entity_Id);
142 -- List name of entity Ent in appropriate case. The name is listed with
143 -- full qualification up to but not including the compilation unit name.
145 procedure List_Array_Info (Ent : Entity_Id);
146 -- List representation info for array type Ent
148 procedure List_Mechanisms (Ent : Entity_Id);
149 -- List mechanism information for parameters of Ent, which is subprogram,
150 -- subprogram type, or an entry or entry family.
152 procedure List_Object_Info (Ent : Entity_Id);
153 -- List representation info for object Ent
155 procedure List_Record_Info (Ent : Entity_Id);
156 -- List representation info for record type Ent
158 procedure List_Type_Info (Ent : Entity_Id);
159 -- List type info for type Ent
161 function Rep_Not_Constant (Val : Node_Ref_Or_Val) return Boolean;
162 -- Returns True if Val represents a variable value, and False if it
163 -- represents a value that is fixed at compile time.
165 procedure Spaces (N : Natural);
166 -- Output given number of spaces
168 procedure Write_Info_Line (S : String);
169 -- Routine to write a line to Repinfo output file. This routine is passed
170 -- as a special output procedure to Output.Set_Special_Output. Note that
171 -- Write_Info_Line is called with an EOL character at the end of each line,
172 -- as per the Output spec, but the internal call to the appropriate routine
173 -- in Osint requires that the end of line sequence be stripped off.
175 procedure Write_Mechanism (M : Mechanism_Type);
176 -- Writes symbolic string for mechanism represented by M
178 procedure Write_Val (Val : Node_Ref_Or_Val; Paren : Boolean := False);
179 -- Given a representation value, write it out. No_Uint values or values
180 -- dependent on discriminants are written as two question marks. If the
181 -- flag Paren is set, then the output is surrounded in parentheses if it is
182 -- other than a simple value.
184 ---------------------
185 -- Back_End_Layout --
186 ---------------------
188 function Back_End_Layout return Boolean is
189 begin
190 -- We have back end layout if the back end has made any entries in the
191 -- table of GCC expressions, otherwise we have front end layout.
193 return Rep_Table.Last > 0;
194 end Back_End_Layout;
196 ----------------
197 -- Blank_Line --
198 ----------------
200 procedure Blank_Line is
201 begin
202 if Need_Blank_Line then
203 Write_Eol;
204 Need_Blank_Line := False;
205 end if;
206 end Blank_Line;
208 ------------------------
209 -- Create_Discrim_Ref --
210 ------------------------
212 function Create_Discrim_Ref (Discr : Entity_Id) return Node_Ref is
213 begin
214 return Create_Node
215 (Expr => Discrim_Val,
216 Op1 => Discriminant_Number (Discr));
217 end Create_Discrim_Ref;
219 ---------------------------
220 -- Create_Dynamic_SO_Ref --
221 ---------------------------
223 function Create_Dynamic_SO_Ref (E : Entity_Id) return Dynamic_SO_Ref is
224 begin
225 Dynamic_SO_Entity_Table.Append (E);
226 return UI_From_Int (-Dynamic_SO_Entity_Table.Last);
227 end Create_Dynamic_SO_Ref;
229 -----------------
230 -- Create_Node --
231 -----------------
233 function Create_Node
234 (Expr : TCode;
235 Op1 : Node_Ref_Or_Val;
236 Op2 : Node_Ref_Or_Val := No_Uint;
237 Op3 : Node_Ref_Or_Val := No_Uint) return Node_Ref
239 begin
240 Rep_Table.Append (
241 (Expr => Expr,
242 Op1 => Op1,
243 Op2 => Op2,
244 Op3 => Op3));
245 return UI_From_Int (-Rep_Table.Last);
246 end Create_Node;
248 ---------------------------
249 -- Get_Dynamic_SO_Entity --
250 ---------------------------
252 function Get_Dynamic_SO_Entity (U : Dynamic_SO_Ref) return Entity_Id is
253 begin
254 return Dynamic_SO_Entity_Table.Table (-UI_To_Int (U));
255 end Get_Dynamic_SO_Entity;
257 -----------------------
258 -- Is_Dynamic_SO_Ref --
259 -----------------------
261 function Is_Dynamic_SO_Ref (U : SO_Ref) return Boolean is
262 begin
263 return U < Uint_0;
264 end Is_Dynamic_SO_Ref;
266 ----------------------
267 -- Is_Static_SO_Ref --
268 ----------------------
270 function Is_Static_SO_Ref (U : SO_Ref) return Boolean is
271 begin
272 return U >= Uint_0;
273 end Is_Static_SO_Ref;
275 ---------
276 -- lgx --
277 ---------
279 procedure lgx (U : Node_Ref_Or_Val) is
280 begin
281 List_GCC_Expression (U);
282 Write_Eol;
283 end lgx;
285 ----------------------
286 -- List_Array_Info --
287 ----------------------
289 procedure List_Array_Info (Ent : Entity_Id) is
290 begin
291 List_Type_Info (Ent);
292 Write_Str ("for ");
293 List_Name (Ent);
294 Write_Str ("'Component_Size use ");
295 Write_Val (Component_Size (Ent));
296 Write_Line (";");
297 end List_Array_Info;
299 -------------------
300 -- List_Entities --
301 -------------------
303 procedure List_Entities (Ent : Entity_Id) is
304 Body_E : Entity_Id;
305 E : Entity_Id;
307 function Find_Declaration (E : Entity_Id) return Node_Id;
308 -- Utility to retrieve declaration node for entity in the
309 -- case of package bodies and subprograms.
311 ----------------------
312 -- Find_Declaration --
313 ----------------------
315 function Find_Declaration (E : Entity_Id) return Node_Id is
316 Decl : Node_Id;
318 begin
319 Decl := Parent (E);
320 while Present (Decl)
321 and then Nkind (Decl) /= N_Package_Body
322 and then Nkind (Decl) /= N_Subprogram_Declaration
323 and then Nkind (Decl) /= N_Subprogram_Body
324 loop
325 Decl := Parent (Decl);
326 end loop;
328 return Decl;
329 end Find_Declaration;
331 -- Start of processing for List_Entities
333 begin
334 -- List entity if we have one, and it is not a renaming declaration.
335 -- For renamings, we don't get proper information, and really it makes
336 -- sense to restrict the output to the renamed entity.
338 if Present (Ent)
339 and then Nkind (Declaration_Node (Ent)) not in N_Renaming_Declaration
340 then
341 -- If entity is a subprogram and we are listing mechanisms,
342 -- then we need to list mechanisms for this entity.
344 if List_Representation_Info_Mechanisms
345 and then (Is_Subprogram (Ent)
346 or else Ekind (Ent) = E_Entry
347 or else Ekind (Ent) = E_Entry_Family)
348 then
349 Need_Blank_Line := True;
350 List_Mechanisms (Ent);
351 end if;
353 E := First_Entity (Ent);
354 while Present (E) loop
355 Need_Blank_Line := True;
357 -- We list entities that come from source (excluding private or
358 -- incomplete types or deferred constants, where we will list the
359 -- info for the full view). If debug flag A is set, then all
360 -- entities are listed
362 if (Comes_From_Source (E)
363 and then not Is_Incomplete_Or_Private_Type (E)
364 and then not (Ekind (E) = E_Constant
365 and then Present (Full_View (E))))
366 or else Debug_Flag_AA
367 then
368 if Is_Subprogram (E)
369 or else
370 Ekind (E) = E_Entry
371 or else
372 Ekind (E) = E_Entry_Family
373 or else
374 Ekind (E) = E_Subprogram_Type
375 then
376 if List_Representation_Info_Mechanisms then
377 List_Mechanisms (E);
378 end if;
380 elsif Is_Record_Type (E) then
381 if List_Representation_Info >= 1 then
382 List_Record_Info (E);
383 end if;
385 elsif Is_Array_Type (E) then
386 if List_Representation_Info >= 1 then
387 List_Array_Info (E);
388 end if;
390 elsif Is_Type (E) then
391 if List_Representation_Info >= 2 then
392 List_Type_Info (E);
393 end if;
395 elsif Ekind (E) = E_Variable
396 or else
397 Ekind (E) = E_Constant
398 or else
399 Ekind (E) = E_Loop_Parameter
400 or else
401 Is_Formal (E)
402 then
403 if List_Representation_Info >= 2 then
404 List_Object_Info (E);
405 end if;
407 end if;
409 -- Recurse into nested package, but not if they are package
410 -- renamings (in particular renamings of the enclosing package,
411 -- as for some Java bindings and for generic instances).
413 if Ekind (E) = E_Package then
414 if No (Renamed_Object (E)) then
415 List_Entities (E);
416 end if;
418 -- Recurse into bodies
420 elsif Ekind (E) = E_Protected_Type
421 or else
422 Ekind (E) = E_Task_Type
423 or else
424 Ekind (E) = E_Subprogram_Body
425 or else
426 Ekind (E) = E_Package_Body
427 or else
428 Ekind (E) = E_Task_Body
429 or else
430 Ekind (E) = E_Protected_Body
431 then
432 List_Entities (E);
434 -- Recurse into blocks
436 elsif Ekind (E) = E_Block then
437 List_Entities (E);
438 end if;
439 end if;
441 E := Next_Entity (E);
442 end loop;
444 -- For a package body, the entities of the visible subprograms are
445 -- declared in the corresponding spec. Iterate over its entities in
446 -- order to handle properly the subprogram bodies. Skip bodies in
447 -- subunits, which are listed independently.
449 if Ekind (Ent) = E_Package_Body
450 and then Present (Corresponding_Spec (Find_Declaration (Ent)))
451 then
452 E := First_Entity (Corresponding_Spec (Find_Declaration (Ent)));
454 while Present (E) loop
455 if Is_Subprogram (E)
456 and then
457 Nkind (Find_Declaration (E)) = N_Subprogram_Declaration
458 then
459 Body_E := Corresponding_Body (Find_Declaration (E));
461 if Present (Body_E)
462 and then
463 Nkind (Parent (Find_Declaration (Body_E))) /= N_Subunit
464 then
465 List_Entities (Body_E);
466 end if;
467 end if;
469 Next_Entity (E);
470 end loop;
471 end if;
472 end if;
473 end List_Entities;
475 -------------------------
476 -- List_GCC_Expression --
477 -------------------------
479 procedure List_GCC_Expression (U : Node_Ref_Or_Val) is
481 procedure Print_Expr (Val : Node_Ref_Or_Val);
482 -- Internal recursive procedure to print expression
484 ----------------
485 -- Print_Expr --
486 ----------------
488 procedure Print_Expr (Val : Node_Ref_Or_Val) is
489 begin
490 if Val >= 0 then
491 UI_Write (Val, Decimal);
493 else
494 declare
495 Node : Exp_Node renames Rep_Table.Table (-UI_To_Int (Val));
497 procedure Binop (S : String);
498 -- Output text for binary operator with S being operator name
500 -----------
501 -- Binop --
502 -----------
504 procedure Binop (S : String) is
505 begin
506 Write_Char ('(');
507 Print_Expr (Node.Op1);
508 Write_Str (S);
509 Print_Expr (Node.Op2);
510 Write_Char (')');
511 end Binop;
513 -- Start of processing for Print_Expr
515 begin
516 case Node.Expr is
517 when Cond_Expr =>
518 Write_Str ("(if ");
519 Print_Expr (Node.Op1);
520 Write_Str (" then ");
521 Print_Expr (Node.Op2);
522 Write_Str (" else ");
523 Print_Expr (Node.Op3);
524 Write_Str (" end)");
526 when Plus_Expr =>
527 Binop (" + ");
529 when Minus_Expr =>
530 Binop (" - ");
532 when Mult_Expr =>
533 Binop (" * ");
535 when Trunc_Div_Expr =>
536 Binop (" /t ");
538 when Ceil_Div_Expr =>
539 Binop (" /c ");
541 when Floor_Div_Expr =>
542 Binop (" /f ");
544 when Trunc_Mod_Expr =>
545 Binop (" modt ");
547 when Floor_Mod_Expr =>
548 Binop (" modf ");
550 when Ceil_Mod_Expr =>
551 Binop (" modc ");
553 when Exact_Div_Expr =>
554 Binop (" /e ");
556 when Negate_Expr =>
557 Write_Char ('-');
558 Print_Expr (Node.Op1);
560 when Min_Expr =>
561 Binop (" min ");
563 when Max_Expr =>
564 Binop (" max ");
566 when Abs_Expr =>
567 Write_Str ("abs ");
568 Print_Expr (Node.Op1);
570 when Truth_Andif_Expr =>
571 Binop (" and if ");
573 when Truth_Orif_Expr =>
574 Binop (" or if ");
576 when Truth_And_Expr =>
577 Binop (" and ");
579 when Truth_Or_Expr =>
580 Binop (" or ");
582 when Truth_Xor_Expr =>
583 Binop (" xor ");
585 when Truth_Not_Expr =>
586 Write_Str ("not ");
587 Print_Expr (Node.Op1);
589 when Bit_And_Expr =>
590 Binop (" & ");
592 when Lt_Expr =>
593 Binop (" < ");
595 when Le_Expr =>
596 Binop (" <= ");
598 when Gt_Expr =>
599 Binop (" > ");
601 when Ge_Expr =>
602 Binop (" >= ");
604 when Eq_Expr =>
605 Binop (" == ");
607 when Ne_Expr =>
608 Binop (" != ");
610 when Discrim_Val =>
611 Write_Char ('#');
612 UI_Write (Node.Op1);
614 end case;
615 end;
616 end if;
617 end Print_Expr;
619 -- Start of processing for List_GCC_Expression
621 begin
622 if U = No_Uint then
623 Write_Str ("??");
624 else
625 Print_Expr (U);
626 end if;
627 end List_GCC_Expression;
629 ---------------------
630 -- List_Mechanisms --
631 ---------------------
633 procedure List_Mechanisms (Ent : Entity_Id) is
634 Plen : Natural;
635 Form : Entity_Id;
637 begin
638 Blank_Line;
640 case Ekind (Ent) is
641 when E_Function =>
642 Write_Str ("function ");
644 when E_Operator =>
645 Write_Str ("operator ");
647 when E_Procedure =>
648 Write_Str ("procedure ");
650 when E_Subprogram_Type =>
651 Write_Str ("type ");
653 when E_Entry | E_Entry_Family =>
654 Write_Str ("entry ");
656 when others =>
657 raise Program_Error;
658 end case;
660 Get_Unqualified_Decoded_Name_String (Chars (Ent));
661 Write_Str (Name_Buffer (1 .. Name_Len));
662 Write_Str (" declared at ");
663 Write_Location (Sloc (Ent));
664 Write_Eol;
666 Write_Str (" convention : ");
668 case Convention (Ent) is
669 when Convention_Ada => Write_Line ("Ada");
670 when Convention_Intrinsic => Write_Line ("InLineinsic");
671 when Convention_Entry => Write_Line ("Entry");
672 when Convention_Protected => Write_Line ("Protected");
673 when Convention_Assembler => Write_Line ("Assembler");
674 when Convention_C => Write_Line ("C");
675 when Convention_CIL => Write_Line ("CIL");
676 when Convention_COBOL => Write_Line ("COBOL");
677 when Convention_CPP => Write_Line ("C++");
678 when Convention_Fortran => Write_Line ("Fortran");
679 when Convention_Java => Write_Line ("Java");
680 when Convention_Stdcall => Write_Line ("Stdcall");
681 when Convention_Stubbed => Write_Line ("Stubbed");
682 end case;
684 -- Find max length of formal name
686 Plen := 0;
687 Form := First_Formal (Ent);
688 while Present (Form) loop
689 Get_Unqualified_Decoded_Name_String (Chars (Form));
691 if Name_Len > Plen then
692 Plen := Name_Len;
693 end if;
695 Next_Formal (Form);
696 end loop;
698 -- Output formals and mechanisms
700 Form := First_Formal (Ent);
701 while Present (Form) loop
702 Get_Unqualified_Decoded_Name_String (Chars (Form));
704 while Name_Len <= Plen loop
705 Name_Len := Name_Len + 1;
706 Name_Buffer (Name_Len) := ' ';
707 end loop;
709 Write_Str (" ");
710 Write_Str (Name_Buffer (1 .. Plen + 1));
711 Write_Str (": passed by ");
713 Write_Mechanism (Mechanism (Form));
714 Write_Eol;
715 Next_Formal (Form);
716 end loop;
718 if Etype (Ent) /= Standard_Void_Type then
719 Write_Str (" returns by ");
720 Write_Mechanism (Mechanism (Ent));
721 Write_Eol;
722 end if;
723 end List_Mechanisms;
725 ---------------
726 -- List_Name --
727 ---------------
729 procedure List_Name (Ent : Entity_Id) is
730 begin
731 if not Is_Compilation_Unit (Scope (Ent)) then
732 List_Name (Scope (Ent));
733 Write_Char ('.');
734 end if;
736 Get_Unqualified_Decoded_Name_String (Chars (Ent));
737 Set_Casing (Unit_Casing);
738 Write_Str (Name_Buffer (1 .. Name_Len));
739 end List_Name;
741 ---------------------
742 -- List_Object_Info --
743 ---------------------
745 procedure List_Object_Info (Ent : Entity_Id) is
746 begin
747 Blank_Line;
749 Write_Str ("for ");
750 List_Name (Ent);
751 Write_Str ("'Size use ");
752 Write_Val (Esize (Ent));
753 Write_Line (";");
755 Write_Str ("for ");
756 List_Name (Ent);
757 Write_Str ("'Alignment use ");
758 Write_Val (Alignment (Ent));
759 Write_Line (";");
760 end List_Object_Info;
762 ----------------------
763 -- List_Record_Info --
764 ----------------------
766 procedure List_Record_Info (Ent : Entity_Id) is
767 Comp : Entity_Id;
768 Cfbit : Uint;
769 Sunit : Uint;
771 Max_Name_Length : Natural;
772 Max_Suni_Length : Natural;
774 begin
775 Blank_Line;
776 List_Type_Info (Ent);
778 Write_Str ("for ");
779 List_Name (Ent);
780 Write_Line (" use record");
782 -- First loop finds out max line length and max starting position
783 -- length, for the purpose of lining things up nicely.
785 Max_Name_Length := 0;
786 Max_Suni_Length := 0;
788 Comp := First_Component_Or_Discriminant (Ent);
789 while Present (Comp) loop
790 Get_Decoded_Name_String (Chars (Comp));
791 Max_Name_Length := Natural'Max (Max_Name_Length, Name_Len);
793 Cfbit := Component_Bit_Offset (Comp);
795 if Rep_Not_Constant (Cfbit) then
796 UI_Image_Length := 2;
798 else
799 -- Complete annotation in case not done
801 Set_Normalized_Position (Comp, Cfbit / SSU);
802 Set_Normalized_First_Bit (Comp, Cfbit mod SSU);
804 Sunit := Cfbit / SSU;
805 UI_Image (Sunit);
806 end if;
808 -- If the record is not packed, then we know that all fields whose
809 -- position is not specified have a starting normalized bit position
810 -- of zero.
812 if Unknown_Normalized_First_Bit (Comp)
813 and then not Is_Packed (Ent)
814 then
815 Set_Normalized_First_Bit (Comp, Uint_0);
816 end if;
818 Max_Suni_Length :=
819 Natural'Max (Max_Suni_Length, UI_Image_Length);
821 Next_Component_Or_Discriminant (Comp);
822 end loop;
824 -- Second loop does actual output based on those values
826 Comp := First_Component_Or_Discriminant (Ent);
827 while Present (Comp) loop
828 declare
829 Esiz : constant Uint := Esize (Comp);
830 Bofs : constant Uint := Component_Bit_Offset (Comp);
831 Npos : constant Uint := Normalized_Position (Comp);
832 Fbit : constant Uint := Normalized_First_Bit (Comp);
833 Lbit : Uint;
835 begin
836 Write_Str (" ");
837 Get_Decoded_Name_String (Chars (Comp));
838 Set_Casing (Unit_Casing);
839 Write_Str (Name_Buffer (1 .. Name_Len));
841 for J in 1 .. Max_Name_Length - Name_Len loop
842 Write_Char (' ');
843 end loop;
845 Write_Str (" at ");
847 if Known_Static_Normalized_Position (Comp) then
848 UI_Image (Npos);
849 Spaces (Max_Suni_Length - UI_Image_Length);
850 Write_Str (UI_Image_Buffer (1 .. UI_Image_Length));
852 elsif Known_Component_Bit_Offset (Comp)
853 and then List_Representation_Info = 3
854 then
855 Spaces (Max_Suni_Length - 2);
856 Write_Str ("bit offset");
857 Write_Val (Bofs, Paren => True);
858 Write_Str (" size in bits = ");
859 Write_Val (Esiz, Paren => True);
860 Write_Eol;
861 goto Continue;
863 elsif Known_Normalized_Position (Comp)
864 and then List_Representation_Info = 3
865 then
866 Spaces (Max_Suni_Length - 2);
867 Write_Val (Npos);
869 else
870 -- For the packed case, we don't know the bit positions if we
871 -- don't know the starting position!
873 if Is_Packed (Ent) then
874 Write_Line ("?? range ? .. ??;");
875 goto Continue;
877 -- Otherwise we can continue
879 else
880 Write_Str ("??");
881 end if;
882 end if;
884 Write_Str (" range ");
885 UI_Write (Fbit);
886 Write_Str (" .. ");
888 -- Allowing Uint_0 here is a kludge, really this should be a
889 -- fine Esize value but currently it means unknown, except that
890 -- we know after gigi has back annotated that a size of zero is
891 -- real, since otherwise gigi back annotates using No_Uint as
892 -- the value to indicate unknown).
894 if (Esize (Comp) = Uint_0 or else Known_Static_Esize (Comp))
895 and then Known_Static_Normalized_First_Bit (Comp)
896 then
897 Lbit := Fbit + Esiz - 1;
899 if Lbit < 10 then
900 Write_Char (' ');
901 end if;
903 UI_Write (Lbit);
905 -- The test for Esize (Comp) not being Uint_0 here is a kludge.
906 -- Officially a value of zero for Esize means unknown, but here
907 -- we use the fact that we know that gigi annotates Esize with
908 -- No_Uint, not Uint_0. Really everyone should use No_Uint???
910 elsif List_Representation_Info < 3
911 or else (Esize (Comp) /= Uint_0 and then Unknown_Esize (Comp))
912 then
913 Write_Str ("??");
915 -- List_Representation >= 3 and Known_Esize (Comp)
917 else
918 Write_Val (Esiz, Paren => True);
920 -- If in front end layout mode, then dynamic size is stored
921 -- in storage units, so renormalize for output
923 if not Back_End_Layout then
924 Write_Str (" * ");
925 Write_Int (SSU);
926 end if;
928 -- Add appropriate first bit offset
930 if Fbit = 0 then
931 Write_Str (" - 1");
933 elsif Fbit = 1 then
934 null;
936 else
937 Write_Str (" + ");
938 Write_Int (UI_To_Int (Fbit) - 1);
939 end if;
940 end if;
942 Write_Line (";");
943 end;
945 <<Continue>>
946 Next_Component_Or_Discriminant (Comp);
947 end loop;
949 Write_Line ("end record;");
950 end List_Record_Info;
952 -------------------
953 -- List_Rep_Info --
954 -------------------
956 procedure List_Rep_Info is
957 Col : Nat;
959 begin
960 if List_Representation_Info /= 0
961 or else List_Representation_Info_Mechanisms
962 then
963 for U in Main_Unit .. Last_Unit loop
964 if In_Extended_Main_Source_Unit (Cunit_Entity (U)) then
966 -- Normal case, list to standard output
968 if not List_Representation_Info_To_File then
969 Unit_Casing := Identifier_Casing (Source_Index (U));
970 Write_Eol;
971 Write_Str ("Representation information for unit ");
972 Write_Unit_Name (Unit_Name (U));
973 Col := Column;
974 Write_Eol;
976 for J in 1 .. Col - 1 loop
977 Write_Char ('-');
978 end loop;
980 Write_Eol;
981 List_Entities (Cunit_Entity (U));
983 -- List representation information to file
985 else
986 Create_Repinfo_File_Access.all
987 (Get_Name_String (File_Name (Source_Index (U))));
988 Set_Special_Output (Write_Info_Line'Access);
989 List_Entities (Cunit_Entity (U));
990 Set_Special_Output (null);
991 Close_Repinfo_File_Access.all;
992 end if;
993 end if;
994 end loop;
995 end if;
996 end List_Rep_Info;
998 --------------------
999 -- List_Type_Info --
1000 --------------------
1002 procedure List_Type_Info (Ent : Entity_Id) is
1003 begin
1004 Blank_Line;
1006 -- Do not list size info for unconstrained arrays, not meaningful
1008 if Is_Array_Type (Ent) and then not Is_Constrained (Ent) then
1009 null;
1011 else
1012 -- If Esize and RM_Size are the same and known, list as Size. This
1013 -- is a common case, which we may as well list in simple form.
1015 if Esize (Ent) = RM_Size (Ent) then
1016 Write_Str ("for ");
1017 List_Name (Ent);
1018 Write_Str ("'Size use ");
1019 Write_Val (Esize (Ent));
1020 Write_Line (";");
1022 -- For now, temporary case, to be removed when gigi properly back
1023 -- annotates RM_Size, if RM_Size is not set, then list Esize as Size.
1024 -- This avoids odd Object_Size output till we fix things???
1026 elsif Unknown_RM_Size (Ent) then
1027 Write_Str ("for ");
1028 List_Name (Ent);
1029 Write_Str ("'Size use ");
1030 Write_Val (Esize (Ent));
1031 Write_Line (";");
1033 -- Otherwise list size values separately if they are set
1035 else
1036 Write_Str ("for ");
1037 List_Name (Ent);
1038 Write_Str ("'Object_Size use ");
1039 Write_Val (Esize (Ent));
1040 Write_Line (";");
1042 -- Note on following check: The RM_Size of a discrete type can
1043 -- legitimately be set to zero, so a special check is needed.
1045 Write_Str ("for ");
1046 List_Name (Ent);
1047 Write_Str ("'Value_Size use ");
1048 Write_Val (RM_Size (Ent));
1049 Write_Line (";");
1050 end if;
1051 end if;
1053 Write_Str ("for ");
1054 List_Name (Ent);
1055 Write_Str ("'Alignment use ");
1056 Write_Val (Alignment (Ent));
1057 Write_Line (";");
1058 end List_Type_Info;
1060 ----------------------
1061 -- Rep_Not_Constant --
1062 ----------------------
1064 function Rep_Not_Constant (Val : Node_Ref_Or_Val) return Boolean is
1065 begin
1066 if Val = No_Uint or else Val < 0 then
1067 return True;
1068 else
1069 return False;
1070 end if;
1071 end Rep_Not_Constant;
1073 ---------------
1074 -- Rep_Value --
1075 ---------------
1077 function Rep_Value
1078 (Val : Node_Ref_Or_Val;
1079 D : Discrim_List) return Uint
1081 function B (Val : Boolean) return Uint;
1082 -- Returns Uint_0 for False, Uint_1 for True
1084 function T (Val : Node_Ref_Or_Val) return Boolean;
1085 -- Returns True for 0, False for any non-zero (i.e. True)
1087 function V (Val : Node_Ref_Or_Val) return Uint;
1088 -- Internal recursive routine to evaluate tree
1090 function W (Val : Uint) return Word;
1091 -- Convert Val to Word, assuming Val is always in the Int range. This is
1092 -- a helper function for the evaluation of bitwise expressions like
1093 -- Bit_And_Expr, for which there is no direct support in uintp. Uint
1094 -- values out of the Int range are expected to be seen in such
1095 -- expressions only with overflowing byte sizes around, introducing
1096 -- inherent unreliabilities in computations anyway.
1098 -------
1099 -- B --
1100 -------
1102 function B (Val : Boolean) return Uint is
1103 begin
1104 if Val then
1105 return Uint_1;
1106 else
1107 return Uint_0;
1108 end if;
1109 end B;
1111 -------
1112 -- T --
1113 -------
1115 function T (Val : Node_Ref_Or_Val) return Boolean is
1116 begin
1117 if V (Val) = 0 then
1118 return False;
1119 else
1120 return True;
1121 end if;
1122 end T;
1124 -------
1125 -- V --
1126 -------
1128 function V (Val : Node_Ref_Or_Val) return Uint is
1129 L, R, Q : Uint;
1131 begin
1132 if Val >= 0 then
1133 return Val;
1135 else
1136 declare
1137 Node : Exp_Node renames Rep_Table.Table (-UI_To_Int (Val));
1139 begin
1140 case Node.Expr is
1141 when Cond_Expr =>
1142 if T (Node.Op1) then
1143 return V (Node.Op2);
1144 else
1145 return V (Node.Op3);
1146 end if;
1148 when Plus_Expr =>
1149 return V (Node.Op1) + V (Node.Op2);
1151 when Minus_Expr =>
1152 return V (Node.Op1) - V (Node.Op2);
1154 when Mult_Expr =>
1155 return V (Node.Op1) * V (Node.Op2);
1157 when Trunc_Div_Expr =>
1158 return V (Node.Op1) / V (Node.Op2);
1160 when Ceil_Div_Expr =>
1161 return
1162 UR_Ceiling
1163 (V (Node.Op1) / UR_From_Uint (V (Node.Op2)));
1165 when Floor_Div_Expr =>
1166 return
1167 UR_Floor
1168 (V (Node.Op1) / UR_From_Uint (V (Node.Op2)));
1170 when Trunc_Mod_Expr =>
1171 return V (Node.Op1) rem V (Node.Op2);
1173 when Floor_Mod_Expr =>
1174 return V (Node.Op1) mod V (Node.Op2);
1176 when Ceil_Mod_Expr =>
1177 L := V (Node.Op1);
1178 R := V (Node.Op2);
1179 Q := UR_Ceiling (L / UR_From_Uint (R));
1180 return L - R * Q;
1182 when Exact_Div_Expr =>
1183 return V (Node.Op1) / V (Node.Op2);
1185 when Negate_Expr =>
1186 return -V (Node.Op1);
1188 when Min_Expr =>
1189 return UI_Min (V (Node.Op1), V (Node.Op2));
1191 when Max_Expr =>
1192 return UI_Max (V (Node.Op1), V (Node.Op2));
1194 when Abs_Expr =>
1195 return UI_Abs (V (Node.Op1));
1197 when Truth_Andif_Expr =>
1198 return B (T (Node.Op1) and then T (Node.Op2));
1200 when Truth_Orif_Expr =>
1201 return B (T (Node.Op1) or else T (Node.Op2));
1203 when Truth_And_Expr =>
1204 return B (T (Node.Op1) and T (Node.Op2));
1206 when Truth_Or_Expr =>
1207 return B (T (Node.Op1) or T (Node.Op2));
1209 when Truth_Xor_Expr =>
1210 return B (T (Node.Op1) xor T (Node.Op2));
1212 when Truth_Not_Expr =>
1213 return B (not T (Node.Op1));
1215 when Bit_And_Expr =>
1216 L := V (Node.Op1);
1217 R := V (Node.Op2);
1218 return UI_From_Int (Int (W (L) and W (R)));
1220 when Lt_Expr =>
1221 return B (V (Node.Op1) < V (Node.Op2));
1223 when Le_Expr =>
1224 return B (V (Node.Op1) <= V (Node.Op2));
1226 when Gt_Expr =>
1227 return B (V (Node.Op1) > V (Node.Op2));
1229 when Ge_Expr =>
1230 return B (V (Node.Op1) >= V (Node.Op2));
1232 when Eq_Expr =>
1233 return B (V (Node.Op1) = V (Node.Op2));
1235 when Ne_Expr =>
1236 return B (V (Node.Op1) /= V (Node.Op2));
1238 when Discrim_Val =>
1239 declare
1240 Sub : constant Int := UI_To_Int (Node.Op1);
1242 begin
1243 pragma Assert (Sub in D'Range);
1244 return D (Sub);
1245 end;
1247 end case;
1248 end;
1249 end if;
1250 end V;
1252 -------
1253 -- W --
1254 -------
1256 -- We use an unchecked conversion to map Int values to their Word
1257 -- bitwise equivalent, which we could not achieve with a normal type
1258 -- conversion for negative Ints. We want bitwise equivalents because W
1259 -- is used as a helper for bit operators like Bit_And_Expr, and can be
1260 -- called for negative Ints in the context of aligning expressions like
1261 -- X+Align & -Align.
1263 function W (Val : Uint) return Word is
1264 function To_Word is new Ada.Unchecked_Conversion (Int, Word);
1265 begin
1266 return To_Word (UI_To_Int (Val));
1267 end W;
1269 -- Start of processing for Rep_Value
1271 begin
1272 if Val = No_Uint then
1273 return No_Uint;
1275 else
1276 return V (Val);
1277 end if;
1278 end Rep_Value;
1280 ------------
1281 -- Spaces --
1282 ------------
1284 procedure Spaces (N : Natural) is
1285 begin
1286 for J in 1 .. N loop
1287 Write_Char (' ');
1288 end loop;
1289 end Spaces;
1291 ---------------
1292 -- Tree_Read --
1293 ---------------
1295 procedure Tree_Read is
1296 begin
1297 Rep_Table.Tree_Read;
1298 end Tree_Read;
1300 ----------------
1301 -- Tree_Write --
1302 ----------------
1304 procedure Tree_Write is
1305 begin
1306 Rep_Table.Tree_Write;
1307 end Tree_Write;
1309 ---------------------
1310 -- Write_Info_Line --
1311 ---------------------
1313 procedure Write_Info_Line (S : String) is
1314 begin
1315 Write_Repinfo_Line_Access.all (S (S'First .. S'Last - 1));
1316 end Write_Info_Line;
1318 ---------------------
1319 -- Write_Mechanism --
1320 ---------------------
1322 procedure Write_Mechanism (M : Mechanism_Type) is
1323 begin
1324 case M is
1325 when 0 =>
1326 Write_Str ("default");
1328 when -1 =>
1329 Write_Str ("copy");
1331 when -2 =>
1332 Write_Str ("reference");
1334 when -3 =>
1335 Write_Str ("descriptor");
1337 when -4 =>
1338 Write_Str ("descriptor (UBS)");
1340 when -5 =>
1341 Write_Str ("descriptor (UBSB)");
1343 when -6 =>
1344 Write_Str ("descriptor (UBA)");
1346 when -7 =>
1347 Write_Str ("descriptor (S)");
1349 when -8 =>
1350 Write_Str ("descriptor (SB)");
1352 when -9 =>
1353 Write_Str ("descriptor (A)");
1355 when -10 =>
1356 Write_Str ("descriptor (NCA)");
1358 when others =>
1359 raise Program_Error;
1360 end case;
1361 end Write_Mechanism;
1363 ---------------
1364 -- Write_Val --
1365 ---------------
1367 procedure Write_Val (Val : Node_Ref_Or_Val; Paren : Boolean := False) is
1368 begin
1369 if Rep_Not_Constant (Val) then
1370 if List_Representation_Info < 3 or else Val = No_Uint then
1371 Write_Str ("??");
1373 else
1374 if Back_End_Layout then
1375 Write_Char (' ');
1377 if Paren then
1378 Write_Char ('(');
1379 List_GCC_Expression (Val);
1380 Write_Char (')');
1381 else
1382 List_GCC_Expression (Val);
1383 end if;
1385 Write_Char (' ');
1387 else
1388 if Paren then
1389 Write_Char ('(');
1390 Write_Name_Decoded (Chars (Get_Dynamic_SO_Entity (Val)));
1391 Write_Char (')');
1392 else
1393 Write_Name_Decoded (Chars (Get_Dynamic_SO_Entity (Val)));
1394 end if;
1395 end if;
1396 end if;
1398 else
1399 UI_Write (Val);
1400 end if;
1401 end Write_Val;
1403 end Repinfo;