1 /* Coalesce SSA_NAMES together for the out-of-ssa pass.
2 Copyright (C) 2004-2015 Free Software Foundation, Inc.
3 Contributed by Andrew MacLeod <amacleod@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
28 #include "hard-reg-set.h"
31 #include "fold-const.h"
33 #include "tree-pretty-print.h"
35 #include "internal-fn.h"
36 #include "gimple-iterator.h"
37 #include "tree-ssa-live.h"
38 #include "tree-ssa-coalesce.h"
39 #include "diagnostic-core.h"
42 /* This set of routines implements a coalesce_list. This is an object which
43 is used to track pairs of ssa_names which are desirable to coalesce
44 together to avoid copies. Costs are associated with each pair, and when
45 all desired information has been collected, the object can be used to
46 order the pairs for processing. */
48 /* This structure defines a pair entry. */
50 typedef struct coalesce_pair
56 typedef const struct coalesce_pair
*const_coalesce_pair_p
;
58 /* Coalesce pair hashtable helpers. */
60 struct coalesce_pair_hasher
: nofree_ptr_hash
<coalesce_pair
>
62 static inline hashval_t
hash (const coalesce_pair
*);
63 static inline bool equal (const coalesce_pair
*, const coalesce_pair
*);
66 /* Hash function for coalesce list. Calculate hash for PAIR. */
69 coalesce_pair_hasher::hash (const coalesce_pair
*pair
)
71 hashval_t a
= (hashval_t
)(pair
->first_element
);
72 hashval_t b
= (hashval_t
)(pair
->second_element
);
74 return b
* (b
- 1) / 2 + a
;
77 /* Equality function for coalesce list hash table. Compare PAIR1 and PAIR2,
78 returning TRUE if the two pairs are equivalent. */
81 coalesce_pair_hasher::equal (const coalesce_pair
*p1
, const coalesce_pair
*p2
)
83 return (p1
->first_element
== p2
->first_element
84 && p1
->second_element
== p2
->second_element
);
87 typedef hash_table
<coalesce_pair_hasher
> coalesce_table_type
;
88 typedef coalesce_table_type::iterator coalesce_iterator_type
;
91 typedef struct cost_one_pair_d
95 struct cost_one_pair_d
*next
;
98 /* This structure maintains the list of coalesce pairs. */
100 typedef struct coalesce_list_d
102 coalesce_table_type
*list
; /* Hash table. */
103 coalesce_pair_p
*sorted
; /* List when sorted. */
104 int num_sorted
; /* Number in the sorted list. */
105 cost_one_pair_p cost_one_list
;/* Single use coalesces with cost 1. */
108 #define NO_BEST_COALESCE -1
109 #define MUST_COALESCE_COST INT_MAX
112 /* Return cost of execution of copy instruction with FREQUENCY. */
115 coalesce_cost (int frequency
, bool optimize_for_size
)
117 /* Base costs on BB frequencies bounded by 1. */
118 int cost
= frequency
;
123 if (optimize_for_size
)
130 /* Return the cost of executing a copy instruction in basic block BB. */
133 coalesce_cost_bb (basic_block bb
)
135 return coalesce_cost (bb
->frequency
, optimize_bb_for_size_p (bb
));
139 /* Return the cost of executing a copy instruction on edge E. */
142 coalesce_cost_edge (edge e
)
146 /* Inserting copy on critical edge costs more than inserting it elsewhere. */
147 if (EDGE_CRITICAL_P (e
))
149 if (e
->flags
& EDGE_ABNORMAL
)
150 return MUST_COALESCE_COST
;
151 if (e
->flags
& EDGE_EH
)
155 FOR_EACH_EDGE (e2
, ei
, e
->dest
->preds
)
158 /* Putting code on EH edge that leads to BB
159 with multiple predecestors imply splitting of
163 /* If there are multiple EH predecestors, we
164 also copy EH regions and produce separate
165 landing pad. This is expensive. */
166 if (e2
->flags
& EDGE_EH
)
174 return coalesce_cost (EDGE_FREQUENCY (e
),
175 optimize_edge_for_size_p (e
)) * mult
;
179 /* Retrieve a pair to coalesce from the cost_one_list in CL. Returns the
180 2 elements via P1 and P2. 1 is returned by the function if there is a pair,
181 NO_BEST_COALESCE is returned if there aren't any. */
184 pop_cost_one_pair (coalesce_list_p cl
, int *p1
, int *p2
)
188 ptr
= cl
->cost_one_list
;
190 return NO_BEST_COALESCE
;
192 *p1
= ptr
->first_element
;
193 *p2
= ptr
->second_element
;
194 cl
->cost_one_list
= ptr
->next
;
201 /* Retrieve the most expensive remaining pair to coalesce from CL. Returns the
202 2 elements via P1 and P2. Their calculated cost is returned by the function.
203 NO_BEST_COALESCE is returned if the coalesce list is empty. */
206 pop_best_coalesce (coalesce_list_p cl
, int *p1
, int *p2
)
208 coalesce_pair_p node
;
211 if (cl
->sorted
== NULL
)
212 return pop_cost_one_pair (cl
, p1
, p2
);
214 if (cl
->num_sorted
== 0)
215 return pop_cost_one_pair (cl
, p1
, p2
);
217 node
= cl
->sorted
[--(cl
->num_sorted
)];
218 *p1
= node
->first_element
;
219 *p2
= node
->second_element
;
227 /* Create a new empty coalesce list object and return it. */
229 static inline coalesce_list_p
230 create_coalesce_list (void)
232 coalesce_list_p list
;
233 unsigned size
= num_ssa_names
* 3;
238 list
= (coalesce_list_p
) xmalloc (sizeof (struct coalesce_list_d
));
239 list
->list
= new coalesce_table_type (size
);
241 list
->num_sorted
= 0;
242 list
->cost_one_list
= NULL
;
247 /* Delete coalesce list CL. */
250 delete_coalesce_list (coalesce_list_p cl
)
252 gcc_assert (cl
->cost_one_list
== NULL
);
256 gcc_assert (cl
->num_sorted
== 0);
261 /* Find a matching coalesce pair object in CL for the pair P1 and P2. If
262 one isn't found, return NULL if CREATE is false, otherwise create a new
263 coalesce pair object and return it. */
265 static coalesce_pair_p
266 find_coalesce_pair (coalesce_list_p cl
, int p1
, int p2
, bool create
)
268 struct coalesce_pair p
;
269 coalesce_pair
**slot
;
272 /* Normalize so that p1 is the smaller value. */
275 p
.first_element
= p2
;
276 p
.second_element
= p1
;
280 p
.first_element
= p1
;
281 p
.second_element
= p2
;
284 hash
= coalesce_pair_hasher::hash (&p
);
285 slot
= cl
->list
->find_slot_with_hash (&p
, hash
, create
? INSERT
: NO_INSERT
);
291 struct coalesce_pair
* pair
= XNEW (struct coalesce_pair
);
292 gcc_assert (cl
->sorted
== NULL
);
293 pair
->first_element
= p
.first_element
;
294 pair
->second_element
= p
.second_element
;
299 return (struct coalesce_pair
*) *slot
;
303 add_cost_one_coalesce (coalesce_list_p cl
, int p1
, int p2
)
305 cost_one_pair_p pair
;
307 pair
= XNEW (struct cost_one_pair_d
);
308 pair
->first_element
= p1
;
309 pair
->second_element
= p2
;
310 pair
->next
= cl
->cost_one_list
;
311 cl
->cost_one_list
= pair
;
315 /* Add a coalesce between P1 and P2 in list CL with a cost of VALUE. */
318 add_coalesce (coalesce_list_p cl
, int p1
, int p2
, int value
)
320 coalesce_pair_p node
;
322 gcc_assert (cl
->sorted
== NULL
);
326 node
= find_coalesce_pair (cl
, p1
, p2
, true);
328 /* Once the value is at least MUST_COALESCE_COST - 1, leave it that way. */
329 if (node
->cost
< MUST_COALESCE_COST
- 1)
331 if (value
< MUST_COALESCE_COST
- 1)
339 /* Comparison function to allow qsort to sort P1 and P2 in Ascending order. */
342 compare_pairs (const void *p1
, const void *p2
)
344 const_coalesce_pair_p
const *const pp1
= (const_coalesce_pair_p
const *) p1
;
345 const_coalesce_pair_p
const *const pp2
= (const_coalesce_pair_p
const *) p2
;
348 result
= (* pp1
)->cost
- (* pp2
)->cost
;
349 /* Since qsort does not guarantee stability we use the elements
350 as a secondary key. This provides us with independence from
351 the host's implementation of the sorting algorithm. */
354 result
= (* pp2
)->first_element
- (* pp1
)->first_element
;
356 result
= (* pp2
)->second_element
- (* pp1
)->second_element
;
363 /* Return the number of unique coalesce pairs in CL. */
366 num_coalesce_pairs (coalesce_list_p cl
)
368 return cl
->list
->elements ();
372 /* Iterate over CL using ITER, returning values in PAIR. */
374 #define FOR_EACH_PARTITION_PAIR(PAIR, ITER, CL) \
375 FOR_EACH_HASH_TABLE_ELEMENT (*(CL)->list, (PAIR), coalesce_pair_p, (ITER))
378 /* Prepare CL for removal of preferred pairs. When finished they are sorted
379 in order from most important coalesce to least important. */
382 sort_coalesce_list (coalesce_list_p cl
)
386 coalesce_iterator_type ppi
;
388 gcc_assert (cl
->sorted
== NULL
);
390 num
= num_coalesce_pairs (cl
);
391 cl
->num_sorted
= num
;
395 /* Allocate a vector for the pair pointers. */
396 cl
->sorted
= XNEWVEC (coalesce_pair_p
, num
);
398 /* Populate the vector with pointers to the pairs. */
400 FOR_EACH_PARTITION_PAIR (p
, ppi
, cl
)
402 gcc_assert (x
== num
);
404 /* Already sorted. */
408 /* If there are only 2, just pick swap them if the order isn't correct. */
411 if (cl
->sorted
[0]->cost
> cl
->sorted
[1]->cost
)
412 std::swap (cl
->sorted
[0], cl
->sorted
[1]);
416 /* Only call qsort if there are more than 2 items.
417 ??? Maybe std::sort will do better, provided that compare_pairs
420 qsort (cl
->sorted
, num
, sizeof (coalesce_pair_p
), compare_pairs
);
424 /* Send debug info for coalesce list CL to file F. */
427 dump_coalesce_list (FILE *f
, coalesce_list_p cl
)
429 coalesce_pair_p node
;
430 coalesce_iterator_type ppi
;
435 if (cl
->sorted
== NULL
)
437 fprintf (f
, "Coalesce List:\n");
438 FOR_EACH_PARTITION_PAIR (node
, ppi
, cl
)
440 tree var1
= ssa_name (node
->first_element
);
441 tree var2
= ssa_name (node
->second_element
);
442 print_generic_expr (f
, var1
, TDF_SLIM
);
443 fprintf (f
, " <-> ");
444 print_generic_expr (f
, var2
, TDF_SLIM
);
445 fprintf (f
, " (%1d), ", node
->cost
);
451 fprintf (f
, "Sorted Coalesce list:\n");
452 for (x
= cl
->num_sorted
- 1 ; x
>=0; x
--)
454 node
= cl
->sorted
[x
];
455 fprintf (f
, "(%d) ", node
->cost
);
456 var
= ssa_name (node
->first_element
);
457 print_generic_expr (f
, var
, TDF_SLIM
);
458 fprintf (f
, " <-> ");
459 var
= ssa_name (node
->second_element
);
460 print_generic_expr (f
, var
, TDF_SLIM
);
467 /* This represents a conflict graph. Implemented as an array of bitmaps.
468 A full matrix is used for conflicts rather than just upper triangular form.
469 this make sit much simpler and faster to perform conflict merges. */
471 typedef struct ssa_conflicts_d
473 bitmap_obstack obstack
; /* A place to allocate our bitmaps. */
474 vec
<bitmap
> conflicts
;
477 /* Return an empty new conflict graph for SIZE elements. */
479 static inline ssa_conflicts_p
480 ssa_conflicts_new (unsigned size
)
484 ptr
= XNEW (struct ssa_conflicts_d
);
485 bitmap_obstack_initialize (&ptr
->obstack
);
486 ptr
->conflicts
.create (size
);
487 ptr
->conflicts
.safe_grow_cleared (size
);
492 /* Free storage for conflict graph PTR. */
495 ssa_conflicts_delete (ssa_conflicts_p ptr
)
497 bitmap_obstack_release (&ptr
->obstack
);
498 ptr
->conflicts
.release ();
503 /* Test if elements X and Y conflict in graph PTR. */
506 ssa_conflicts_test_p (ssa_conflicts_p ptr
, unsigned x
, unsigned y
)
508 bitmap bx
= ptr
->conflicts
[x
];
509 bitmap by
= ptr
->conflicts
[y
];
511 gcc_checking_assert (x
!= y
);
514 /* Avoid the lookup if Y has no conflicts. */
515 return by
? bitmap_bit_p (bx
, y
) : false;
521 /* Add a conflict with Y to the bitmap for X in graph PTR. */
524 ssa_conflicts_add_one (ssa_conflicts_p ptr
, unsigned x
, unsigned y
)
526 bitmap bx
= ptr
->conflicts
[x
];
527 /* If there are no conflicts yet, allocate the bitmap and set bit. */
529 bx
= ptr
->conflicts
[x
] = BITMAP_ALLOC (&ptr
->obstack
);
530 bitmap_set_bit (bx
, y
);
534 /* Add conflicts between X and Y in graph PTR. */
537 ssa_conflicts_add (ssa_conflicts_p ptr
, unsigned x
, unsigned y
)
539 gcc_checking_assert (x
!= y
);
540 ssa_conflicts_add_one (ptr
, x
, y
);
541 ssa_conflicts_add_one (ptr
, y
, x
);
545 /* Merge all Y's conflict into X in graph PTR. */
548 ssa_conflicts_merge (ssa_conflicts_p ptr
, unsigned x
, unsigned y
)
552 bitmap bx
= ptr
->conflicts
[x
];
553 bitmap by
= ptr
->conflicts
[y
];
555 gcc_checking_assert (x
!= y
);
559 /* Add a conflict between X and every one Y has. If the bitmap doesn't
560 exist, then it has already been coalesced, and we don't need to add a
562 EXECUTE_IF_SET_IN_BITMAP (by
, 0, z
, bi
)
564 bitmap bz
= ptr
->conflicts
[z
];
566 bitmap_set_bit (bz
, x
);
571 /* If X has conflicts, add Y's to X. */
572 bitmap_ior_into (bx
, by
);
574 ptr
->conflicts
[y
] = NULL
;
578 /* If X has no conflicts, simply use Y's. */
579 ptr
->conflicts
[x
] = by
;
580 ptr
->conflicts
[y
] = NULL
;
585 /* Dump a conflicts graph. */
588 ssa_conflicts_dump (FILE *file
, ssa_conflicts_p ptr
)
593 fprintf (file
, "\nConflict graph:\n");
595 FOR_EACH_VEC_ELT (ptr
->conflicts
, x
, b
)
598 fprintf (file
, "%d: ", x
);
599 dump_bitmap (file
, b
);
604 /* This structure is used to efficiently record the current status of live
605 SSA_NAMES when building a conflict graph.
606 LIVE_BASE_VAR has a bit set for each base variable which has at least one
608 LIVE_BASE_PARTITIONS is an array of bitmaps using the basevar table as an
609 index, and is used to track what partitions of each base variable are
610 live. This makes it easy to add conflicts between just live partitions
611 with the same base variable.
612 The values in LIVE_BASE_PARTITIONS are only valid if the base variable is
613 marked as being live. This delays clearing of these bitmaps until
614 they are actually needed again. */
616 typedef struct live_track_d
618 bitmap_obstack obstack
; /* A place to allocate our bitmaps. */
619 bitmap live_base_var
; /* Indicates if a basevar is live. */
620 bitmap
*live_base_partitions
; /* Live partitions for each basevar. */
621 var_map map
; /* Var_map being used for partition mapping. */
625 /* This routine will create a new live track structure based on the partitions
629 new_live_track (var_map map
)
634 /* Make sure there is a partition view in place. */
635 gcc_assert (map
->partition_to_base_index
!= NULL
);
637 ptr
= (live_track_p
) xmalloc (sizeof (struct live_track_d
));
639 lim
= num_basevars (map
);
640 bitmap_obstack_initialize (&ptr
->obstack
);
641 ptr
->live_base_partitions
= (bitmap
*) xmalloc (sizeof (bitmap
*) * lim
);
642 ptr
->live_base_var
= BITMAP_ALLOC (&ptr
->obstack
);
643 for (x
= 0; x
< lim
; x
++)
644 ptr
->live_base_partitions
[x
] = BITMAP_ALLOC (&ptr
->obstack
);
649 /* This routine will free the memory associated with PTR. */
652 delete_live_track (live_track_p ptr
)
654 bitmap_obstack_release (&ptr
->obstack
);
655 free (ptr
->live_base_partitions
);
660 /* This function will remove PARTITION from the live list in PTR. */
663 live_track_remove_partition (live_track_p ptr
, int partition
)
667 root
= basevar_index (ptr
->map
, partition
);
668 bitmap_clear_bit (ptr
->live_base_partitions
[root
], partition
);
669 /* If the element list is empty, make the base variable not live either. */
670 if (bitmap_empty_p (ptr
->live_base_partitions
[root
]))
671 bitmap_clear_bit (ptr
->live_base_var
, root
);
675 /* This function will adds PARTITION to the live list in PTR. */
678 live_track_add_partition (live_track_p ptr
, int partition
)
682 root
= basevar_index (ptr
->map
, partition
);
683 /* If this base var wasn't live before, it is now. Clear the element list
684 since it was delayed until needed. */
685 if (bitmap_set_bit (ptr
->live_base_var
, root
))
686 bitmap_clear (ptr
->live_base_partitions
[root
]);
687 bitmap_set_bit (ptr
->live_base_partitions
[root
], partition
);
692 /* Clear the live bit for VAR in PTR. */
695 live_track_clear_var (live_track_p ptr
, tree var
)
699 p
= var_to_partition (ptr
->map
, var
);
700 if (p
!= NO_PARTITION
)
701 live_track_remove_partition (ptr
, p
);
705 /* Return TRUE if VAR is live in PTR. */
708 live_track_live_p (live_track_p ptr
, tree var
)
712 p
= var_to_partition (ptr
->map
, var
);
713 if (p
!= NO_PARTITION
)
715 root
= basevar_index (ptr
->map
, p
);
716 if (bitmap_bit_p (ptr
->live_base_var
, root
))
717 return bitmap_bit_p (ptr
->live_base_partitions
[root
], p
);
723 /* This routine will add USE to PTR. USE will be marked as live in both the
724 ssa live map and the live bitmap for the root of USE. */
727 live_track_process_use (live_track_p ptr
, tree use
)
731 p
= var_to_partition (ptr
->map
, use
);
732 if (p
== NO_PARTITION
)
735 /* Mark as live in the appropriate live list. */
736 live_track_add_partition (ptr
, p
);
740 /* This routine will process a DEF in PTR. DEF will be removed from the live
741 lists, and if there are any other live partitions with the same base
742 variable, conflicts will be added to GRAPH. */
745 live_track_process_def (live_track_p ptr
, tree def
, ssa_conflicts_p graph
)
752 p
= var_to_partition (ptr
->map
, def
);
753 if (p
== NO_PARTITION
)
756 /* Clear the liveness bit. */
757 live_track_remove_partition (ptr
, p
);
759 /* If the bitmap isn't empty now, conflicts need to be added. */
760 root
= basevar_index (ptr
->map
, p
);
761 if (bitmap_bit_p (ptr
->live_base_var
, root
))
763 b
= ptr
->live_base_partitions
[root
];
764 EXECUTE_IF_SET_IN_BITMAP (b
, 0, x
, bi
)
765 ssa_conflicts_add (graph
, p
, x
);
770 /* Initialize PTR with the partitions set in INIT. */
773 live_track_init (live_track_p ptr
, bitmap init
)
778 /* Mark all live on exit partitions. */
779 EXECUTE_IF_SET_IN_BITMAP (init
, 0, p
, bi
)
780 live_track_add_partition (ptr
, p
);
784 /* This routine will clear all live partitions in PTR. */
787 live_track_clear_base_vars (live_track_p ptr
)
789 /* Simply clear the live base list. Anything marked as live in the element
790 lists will be cleared later if/when the base variable ever comes alive
792 bitmap_clear (ptr
->live_base_var
);
796 /* Build a conflict graph based on LIVEINFO. Any partitions which are in the
797 partition view of the var_map liveinfo is based on get entries in the
798 conflict graph. Only conflicts between ssa_name partitions with the same
799 base variable are added. */
801 static ssa_conflicts_p
802 build_ssa_conflict_graph (tree_live_info_p liveinfo
)
804 ssa_conflicts_p graph
;
810 map
= live_var_map (liveinfo
);
811 graph
= ssa_conflicts_new (num_var_partitions (map
));
813 live
= new_live_track (map
);
815 FOR_EACH_BB_FN (bb
, cfun
)
817 /* Start with live on exit temporaries. */
818 live_track_init (live
, live_on_exit (liveinfo
, bb
));
820 for (gimple_stmt_iterator gsi
= gsi_last_bb (bb
); !gsi_end_p (gsi
);
824 gimple stmt
= gsi_stmt (gsi
);
826 /* A copy between 2 partitions does not introduce an interference
827 by itself. If they did, you would never be able to coalesce
828 two things which are copied. If the two variables really do
829 conflict, they will conflict elsewhere in the program.
831 This is handled by simply removing the SRC of the copy from the
832 live list, and processing the stmt normally. */
833 if (is_gimple_assign (stmt
))
835 tree lhs
= gimple_assign_lhs (stmt
);
836 tree rhs1
= gimple_assign_rhs1 (stmt
);
837 if (gimple_assign_copy_p (stmt
)
838 && TREE_CODE (lhs
) == SSA_NAME
839 && TREE_CODE (rhs1
) == SSA_NAME
)
840 live_track_clear_var (live
, rhs1
);
842 else if (is_gimple_debug (stmt
))
845 FOR_EACH_SSA_TREE_OPERAND (var
, stmt
, iter
, SSA_OP_DEF
)
846 live_track_process_def (live
, var
, graph
);
848 FOR_EACH_SSA_TREE_OPERAND (var
, stmt
, iter
, SSA_OP_USE
)
849 live_track_process_use (live
, var
);
852 /* If result of a PHI is unused, looping over the statements will not
853 record any conflicts since the def was never live. Since the PHI node
854 is going to be translated out of SSA form, it will insert a copy.
855 There must be a conflict recorded between the result of the PHI and
856 any variables that are live. Otherwise the out-of-ssa translation
857 may create incorrect code. */
858 for (gphi_iterator gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
);
861 gphi
*phi
= gsi
.phi ();
862 tree result
= PHI_RESULT (phi
);
863 if (live_track_live_p (live
, result
))
864 live_track_process_def (live
, result
, graph
);
867 live_track_clear_base_vars (live
);
870 delete_live_track (live
);
875 /* Shortcut routine to print messages to file F of the form:
876 "STR1 EXPR1 STR2 EXPR2 STR3." */
879 print_exprs (FILE *f
, const char *str1
, tree expr1
, const char *str2
,
880 tree expr2
, const char *str3
)
882 fprintf (f
, "%s", str1
);
883 print_generic_expr (f
, expr1
, TDF_SLIM
);
884 fprintf (f
, "%s", str2
);
885 print_generic_expr (f
, expr2
, TDF_SLIM
);
886 fprintf (f
, "%s", str3
);
890 /* Print a failure to coalesce a MUST_COALESCE pair X and Y. */
893 fail_abnormal_edge_coalesce (int x
, int y
)
895 fprintf (stderr
, "\nUnable to coalesce ssa_names %d and %d",x
, y
);
896 fprintf (stderr
, " which are marked as MUST COALESCE.\n");
897 print_generic_expr (stderr
, ssa_name (x
), TDF_SLIM
);
898 fprintf (stderr
, " and ");
899 print_generic_stmt (stderr
, ssa_name (y
), TDF_SLIM
);
901 internal_error ("SSA corruption");
905 /* This function creates a var_map for the current function as well as creating
906 a coalesce list for use later in the out of ssa process. */
909 create_outofssa_var_map (coalesce_list_p cl
, bitmap used_in_copy
)
911 gimple_stmt_iterator gsi
;
921 map
= init_var_map (num_ssa_names
);
923 FOR_EACH_BB_FN (bb
, cfun
)
927 for (gphi_iterator gpi
= gsi_start_phis (bb
);
931 gphi
*phi
= gpi
.phi ();
935 bool saw_copy
= false;
937 res
= gimple_phi_result (phi
);
938 ver
= SSA_NAME_VERSION (res
);
939 register_ssa_partition (map
, res
);
941 /* Register ssa_names and coalesces between the args and the result
943 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
945 edge e
= gimple_phi_arg_edge (phi
, i
);
946 arg
= PHI_ARG_DEF (phi
, i
);
947 if (TREE_CODE (arg
) != SSA_NAME
)
950 register_ssa_partition (map
, arg
);
951 if (gimple_can_coalesce_p (arg
, res
)
952 || (e
->flags
& EDGE_ABNORMAL
))
955 bitmap_set_bit (used_in_copy
, SSA_NAME_VERSION (arg
));
956 if ((e
->flags
& EDGE_ABNORMAL
) == 0)
958 int cost
= coalesce_cost_edge (e
);
959 if (cost
== 1 && has_single_use (arg
))
960 add_cost_one_coalesce (cl
, ver
, SSA_NAME_VERSION (arg
));
962 add_coalesce (cl
, ver
, SSA_NAME_VERSION (arg
), cost
);
967 bitmap_set_bit (used_in_copy
, ver
);
970 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
972 stmt
= gsi_stmt (gsi
);
974 if (is_gimple_debug (stmt
))
977 /* Register USE and DEF operands in each statement. */
978 FOR_EACH_SSA_TREE_OPERAND (var
, stmt
, iter
, (SSA_OP_DEF
|SSA_OP_USE
))
979 register_ssa_partition (map
, var
);
981 /* Check for copy coalesces. */
982 switch (gimple_code (stmt
))
986 tree lhs
= gimple_assign_lhs (stmt
);
987 tree rhs1
= gimple_assign_rhs1 (stmt
);
988 if (gimple_assign_ssa_name_copy_p (stmt
)
989 && gimple_can_coalesce_p (lhs
, rhs1
))
991 v1
= SSA_NAME_VERSION (lhs
);
992 v2
= SSA_NAME_VERSION (rhs1
);
993 cost
= coalesce_cost_bb (bb
);
994 add_coalesce (cl
, v1
, v2
, cost
);
995 bitmap_set_bit (used_in_copy
, v1
);
996 bitmap_set_bit (used_in_copy
, v2
);
1003 gasm
*asm_stmt
= as_a
<gasm
*> (stmt
);
1004 unsigned long noutputs
, i
;
1005 unsigned long ninputs
;
1006 tree
*outputs
, link
;
1007 noutputs
= gimple_asm_noutputs (asm_stmt
);
1008 ninputs
= gimple_asm_ninputs (asm_stmt
);
1009 outputs
= (tree
*) alloca (noutputs
* sizeof (tree
));
1010 for (i
= 0; i
< noutputs
; ++i
)
1012 link
= gimple_asm_output_op (asm_stmt
, i
);
1013 outputs
[i
] = TREE_VALUE (link
);
1016 for (i
= 0; i
< ninputs
; ++i
)
1018 const char *constraint
;
1021 unsigned long match
;
1023 link
= gimple_asm_input_op (asm_stmt
, i
);
1025 = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link
)));
1026 input
= TREE_VALUE (link
);
1028 if (TREE_CODE (input
) != SSA_NAME
)
1031 match
= strtoul (constraint
, &end
, 10);
1032 if (match
>= noutputs
|| end
== constraint
)
1035 if (TREE_CODE (outputs
[match
]) != SSA_NAME
)
1038 v1
= SSA_NAME_VERSION (outputs
[match
]);
1039 v2
= SSA_NAME_VERSION (input
);
1041 if (gimple_can_coalesce_p (outputs
[match
], input
))
1043 cost
= coalesce_cost (REG_BR_PROB_BASE
,
1044 optimize_bb_for_size_p (bb
));
1045 add_coalesce (cl
, v1
, v2
, cost
);
1046 bitmap_set_bit (used_in_copy
, v1
);
1047 bitmap_set_bit (used_in_copy
, v2
);
1059 /* Now process result decls and live on entry variables for entry into
1060 the coalesce list. */
1062 for (i
= 1; i
< num_ssa_names
; i
++)
1065 if (var
!= NULL_TREE
&& !virtual_operand_p (var
))
1067 /* Add coalesces between all the result decls. */
1068 if (SSA_NAME_VAR (var
)
1069 && TREE_CODE (SSA_NAME_VAR (var
)) == RESULT_DECL
)
1071 if (first
== NULL_TREE
)
1075 gcc_assert (gimple_can_coalesce_p (var
, first
));
1076 v1
= SSA_NAME_VERSION (first
);
1077 v2
= SSA_NAME_VERSION (var
);
1078 bitmap_set_bit (used_in_copy
, v1
);
1079 bitmap_set_bit (used_in_copy
, v2
);
1080 cost
= coalesce_cost_bb (EXIT_BLOCK_PTR_FOR_FN (cfun
));
1081 add_coalesce (cl
, v1
, v2
, cost
);
1084 /* Mark any default_def variables as being in the coalesce list
1085 since they will have to be coalesced with the base variable. If
1086 not marked as present, they won't be in the coalesce view. */
1087 if (SSA_NAME_IS_DEFAULT_DEF (var
)
1088 && !has_zero_uses (var
))
1089 bitmap_set_bit (used_in_copy
, SSA_NAME_VERSION (var
));
1097 /* Attempt to coalesce ssa versions X and Y together using the partition
1098 mapping in MAP and checking conflicts in GRAPH. Output any debug info to
1099 DEBUG, if it is nun-NULL. */
1102 attempt_coalesce (var_map map
, ssa_conflicts_p graph
, int x
, int y
,
1109 p1
= var_to_partition (map
, ssa_name (x
));
1110 p2
= var_to_partition (map
, ssa_name (y
));
1114 fprintf (debug
, "(%d)", x
);
1115 print_generic_expr (debug
, partition_to_var (map
, p1
), TDF_SLIM
);
1116 fprintf (debug
, " & (%d)", y
);
1117 print_generic_expr (debug
, partition_to_var (map
, p2
), TDF_SLIM
);
1123 fprintf (debug
, ": Already Coalesced.\n");
1128 fprintf (debug
, " [map: %d, %d] ", p1
, p2
);
1131 if (!ssa_conflicts_test_p (graph
, p1
, p2
))
1133 var1
= partition_to_var (map
, p1
);
1134 var2
= partition_to_var (map
, p2
);
1135 z
= var_union (map
, var1
, var2
);
1136 if (z
== NO_PARTITION
)
1139 fprintf (debug
, ": Unable to perform partition union.\n");
1143 /* z is the new combined partition. Remove the other partition from
1144 the list, and merge the conflicts. */
1146 ssa_conflicts_merge (graph
, p1
, p2
);
1148 ssa_conflicts_merge (graph
, p2
, p1
);
1151 fprintf (debug
, ": Success -> %d\n", z
);
1156 fprintf (debug
, ": Fail due to conflict\n");
1162 /* Attempt to Coalesce partitions in MAP which occur in the list CL using
1163 GRAPH. Debug output is sent to DEBUG if it is non-NULL. */
1166 coalesce_partitions (var_map map
, ssa_conflicts_p graph
, coalesce_list_p cl
,
1176 /* First, coalesce all the copies across abnormal edges. These are not placed
1177 in the coalesce list because they do not need to be sorted, and simply
1178 consume extra memory/compilation time in large programs. */
1180 FOR_EACH_BB_FN (bb
, cfun
)
1182 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
1183 if (e
->flags
& EDGE_ABNORMAL
)
1186 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
);
1189 gphi
*phi
= gsi
.phi ();
1190 tree arg
= PHI_ARG_DEF (phi
, e
->dest_idx
);
1191 if (SSA_NAME_IS_DEFAULT_DEF (arg
)
1192 && (!SSA_NAME_VAR (arg
)
1193 || TREE_CODE (SSA_NAME_VAR (arg
)) != PARM_DECL
))
1196 tree res
= PHI_RESULT (phi
);
1197 int v1
= SSA_NAME_VERSION (res
);
1198 int v2
= SSA_NAME_VERSION (arg
);
1201 fprintf (debug
, "Abnormal coalesce: ");
1203 if (!attempt_coalesce (map
, graph
, v1
, v2
, debug
))
1204 fail_abnormal_edge_coalesce (v1
, v2
);
1209 /* Now process the items in the coalesce list. */
1211 while ((cost
= pop_best_coalesce (cl
, &x
, &y
)) != NO_BEST_COALESCE
)
1213 var1
= ssa_name (x
);
1214 var2
= ssa_name (y
);
1216 /* Assert the coalesces have the same base variable. */
1217 gcc_assert (gimple_can_coalesce_p (var1
, var2
));
1220 fprintf (debug
, "Coalesce list: ");
1221 attempt_coalesce (map
, graph
, x
, y
, debug
);
1226 /* Hashtable support for storing SSA names hashed by their SSA_NAME_VAR. */
1228 struct ssa_name_var_hash
: nofree_ptr_hash
<tree_node
>
1230 static inline hashval_t
hash (const tree_node
*);
1231 static inline int equal (const tree_node
*, const tree_node
*);
1235 ssa_name_var_hash::hash (const_tree n
)
1237 return DECL_UID (SSA_NAME_VAR (n
));
1241 ssa_name_var_hash::equal (const tree_node
*n1
, const tree_node
*n2
)
1243 return SSA_NAME_VAR (n1
) == SSA_NAME_VAR (n2
);
1247 /* Reduce the number of copies by coalescing variables in the function. Return
1248 a partition map with the resulting coalesces. */
1251 coalesce_ssa_name (void)
1253 tree_live_info_p liveinfo
;
1254 ssa_conflicts_p graph
;
1256 bitmap used_in_copies
= BITMAP_ALLOC (NULL
);
1260 cl
= create_coalesce_list ();
1261 map
= create_outofssa_var_map (cl
, used_in_copies
);
1263 /* If optimization is disabled, we need to coalesce all the names originating
1264 from the same SSA_NAME_VAR so debug info remains undisturbed. */
1267 hash_table
<ssa_name_var_hash
> ssa_name_hash (10);
1269 for (i
= 1; i
< num_ssa_names
; i
++)
1271 tree a
= ssa_name (i
);
1275 && !DECL_IGNORED_P (SSA_NAME_VAR (a
))
1276 && (!has_zero_uses (a
) || !SSA_NAME_IS_DEFAULT_DEF (a
)))
1278 tree
*slot
= ssa_name_hash
.find_slot (a
, INSERT
);
1284 /* If the variable is a PARM_DECL or a RESULT_DECL, we
1285 _require_ that all the names originating from it be
1286 coalesced, because there must be a single partition
1287 containing all the names so that it can be assigned
1288 the canonical RTL location of the DECL safely.
1289 If in_lto_p, a function could have been compiled
1290 originally with optimizations and only the link
1291 performed at -O0, so we can't actually require it. */
1293 = (TREE_CODE (SSA_NAME_VAR (a
)) == VAR_DECL
|| in_lto_p
)
1294 ? MUST_COALESCE_COST
- 1 : MUST_COALESCE_COST
;
1295 add_coalesce (cl
, SSA_NAME_VERSION (a
),
1296 SSA_NAME_VERSION (*slot
), cost
);
1297 bitmap_set_bit (used_in_copies
, SSA_NAME_VERSION (a
));
1298 bitmap_set_bit (used_in_copies
, SSA_NAME_VERSION (*slot
));
1303 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1304 dump_var_map (dump_file
, map
);
1306 /* Don't calculate live ranges for variables not in the coalesce list. */
1307 partition_view_bitmap (map
, used_in_copies
, true);
1308 BITMAP_FREE (used_in_copies
);
1310 if (num_var_partitions (map
) < 1)
1312 delete_coalesce_list (cl
);
1316 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1317 dump_var_map (dump_file
, map
);
1319 liveinfo
= calculate_live_ranges (map
, false);
1321 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1322 dump_live_info (dump_file
, liveinfo
, LIVEDUMP_ENTRY
);
1324 /* Build a conflict graph. */
1325 graph
= build_ssa_conflict_graph (liveinfo
);
1326 delete_tree_live_info (liveinfo
);
1327 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1328 ssa_conflicts_dump (dump_file
, graph
);
1330 sort_coalesce_list (cl
);
1332 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1334 fprintf (dump_file
, "\nAfter sorting:\n");
1335 dump_coalesce_list (dump_file
, cl
);
1338 /* First, coalesce all live on entry variables to their base variable.
1339 This will ensure the first use is coming from the correct location. */
1341 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1342 dump_var_map (dump_file
, map
);
1344 /* Now coalesce everything in the list. */
1345 coalesce_partitions (map
, graph
, cl
,
1346 ((dump_flags
& TDF_DETAILS
) ? dump_file
1349 delete_coalesce_list (cl
);
1350 ssa_conflicts_delete (graph
);