1 /* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2 This file is consumed by genmatch which produces gimple-match.c
3 and generic-match.c from it.
5 Copyright (C) 2014-2018 Free Software Foundation, Inc.
6 Contributed by Richard Biener <rguenther@suse.de>
7 and Prathamesh Kulkarni <bilbotheelffriend@gmail.com>
9 This file is part of GCC.
11 GCC is free software; you can redistribute it and/or modify it under
12 the terms of the GNU General Public License as published by the Free
13 Software Foundation; either version 3, or (at your option) any later
16 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17 WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3. If not see
23 <http://www.gnu.org/licenses/>. */
26 /* Generic tree predicates we inherit. */
28 integer_onep integer_zerop integer_all_onesp integer_minus_onep
29 integer_each_onep integer_truep integer_nonzerop
30 real_zerop real_onep real_minus_onep
33 tree_expr_nonnegative_p
40 (define_operator_list tcc_comparison
41 lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
42 (define_operator_list inverted_tcc_comparison
43 ge gt ne eq lt le ordered unordered ge gt le lt ltgt uneq)
44 (define_operator_list inverted_tcc_comparison_with_nans
45 unge ungt ne eq unlt unle ordered unordered ge gt le lt ltgt uneq)
46 (define_operator_list swapped_tcc_comparison
47 gt ge eq ne le lt unordered ordered ungt unge unlt unle uneq ltgt)
48 (define_operator_list simple_comparison lt le eq ne ge gt)
49 (define_operator_list swapped_simple_comparison gt ge eq ne le lt)
51 #include "cfn-operators.pd"
53 /* Define operand lists for math rounding functions {,i,l,ll}FN,
54 where the versions prefixed with "i" return an int, those prefixed with
55 "l" return a long and those prefixed with "ll" return a long long.
57 Also define operand lists:
59 X<FN>F for all float functions, in the order i, l, ll
60 X<FN> for all double functions, in the same order
61 X<FN>L for all long double functions, in the same order. */
62 #define DEFINE_INT_AND_FLOAT_ROUND_FN(FN) \
63 (define_operator_list X##FN##F BUILT_IN_I##FN##F \
66 (define_operator_list X##FN BUILT_IN_I##FN \
69 (define_operator_list X##FN##L BUILT_IN_I##FN##L \
73 DEFINE_INT_AND_FLOAT_ROUND_FN (FLOOR)
74 DEFINE_INT_AND_FLOAT_ROUND_FN (CEIL)
75 DEFINE_INT_AND_FLOAT_ROUND_FN (ROUND)
76 DEFINE_INT_AND_FLOAT_ROUND_FN (RINT)
78 /* Binary operations and their associated IFN_COND_* function. */
79 (define_operator_list UNCOND_BINARY
81 mult trunc_div trunc_mod rdiv
83 bit_and bit_ior bit_xor)
84 (define_operator_list COND_BINARY
85 IFN_COND_ADD IFN_COND_SUB
86 IFN_COND_MUL IFN_COND_DIV IFN_COND_MOD IFN_COND_RDIV
87 IFN_COND_MIN IFN_COND_MAX
88 IFN_COND_AND IFN_COND_IOR IFN_COND_XOR)
90 /* As opposed to convert?, this still creates a single pattern, so
91 it is not a suitable replacement for convert? in all cases. */
92 (match (nop_convert @0)
94 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))))
95 (match (nop_convert @0)
97 (if (VECTOR_TYPE_P (type) && VECTOR_TYPE_P (TREE_TYPE (@0))
98 && known_eq (TYPE_VECTOR_SUBPARTS (type),
99 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0)))
100 && tree_nop_conversion_p (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
101 /* This one has to be last, or it shadows the others. */
102 (match (nop_convert @0)
105 /* Simplifications of operations with one constant operand and
106 simplifications to constants or single values. */
108 (for op (plus pointer_plus minus bit_ior bit_xor)
110 (op @0 integer_zerop)
113 /* 0 +p index -> (type)index */
115 (pointer_plus integer_zerop @1)
116 (non_lvalue (convert @1)))
118 /* ptr - 0 -> (type)ptr */
120 (pointer_diff @0 integer_zerop)
123 /* See if ARG1 is zero and X + ARG1 reduces to X.
124 Likewise if the operands are reversed. */
126 (plus:c @0 real_zerop@1)
127 (if (fold_real_zero_addition_p (type, @1, 0))
130 /* See if ARG1 is zero and X - ARG1 reduces to X. */
132 (minus @0 real_zerop@1)
133 (if (fold_real_zero_addition_p (type, @1, 1))
137 This is unsafe for certain floats even in non-IEEE formats.
138 In IEEE, it is unsafe because it does wrong for NaNs.
139 Also note that operand_equal_p is always false if an operand
143 (if (!FLOAT_TYPE_P (type) || !HONOR_NANS (type))
144 { build_zero_cst (type); }))
146 (pointer_diff @@0 @0)
147 { build_zero_cst (type); })
150 (mult @0 integer_zerop@1)
153 /* Maybe fold x * 0 to 0. The expressions aren't the same
154 when x is NaN, since x * 0 is also NaN. Nor are they the
155 same in modes with signed zeros, since multiplying a
156 negative value by 0 gives -0, not +0. */
158 (mult @0 real_zerop@1)
159 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
162 /* In IEEE floating point, x*1 is not equivalent to x for snans.
163 Likewise for complex arithmetic with signed zeros. */
166 (if (!HONOR_SNANS (type)
167 && (!HONOR_SIGNED_ZEROS (type)
168 || !COMPLEX_FLOAT_TYPE_P (type)))
171 /* Transform x * -1.0 into -x. */
173 (mult @0 real_minus_onep)
174 (if (!HONOR_SNANS (type)
175 && (!HONOR_SIGNED_ZEROS (type)
176 || !COMPLEX_FLOAT_TYPE_P (type)))
179 (for cmp (gt ge lt le)
180 outp (convert convert negate negate)
181 outn (negate negate convert convert)
182 /* Transform (X > 0.0 ? 1.0 : -1.0) into copysign(1, X). */
183 /* Transform (X >= 0.0 ? 1.0 : -1.0) into copysign(1, X). */
184 /* Transform (X < 0.0 ? 1.0 : -1.0) into copysign(1,-X). */
185 /* Transform (X <= 0.0 ? 1.0 : -1.0) into copysign(1,-X). */
187 (cond (cmp @0 real_zerop) real_onep@1 real_minus_onep)
188 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type)
189 && types_match (type, TREE_TYPE (@0)))
191 (if (types_match (type, float_type_node))
192 (BUILT_IN_COPYSIGNF @1 (outp @0)))
193 (if (types_match (type, double_type_node))
194 (BUILT_IN_COPYSIGN @1 (outp @0)))
195 (if (types_match (type, long_double_type_node))
196 (BUILT_IN_COPYSIGNL @1 (outp @0))))))
197 /* Transform (X > 0.0 ? -1.0 : 1.0) into copysign(1,-X). */
198 /* Transform (X >= 0.0 ? -1.0 : 1.0) into copysign(1,-X). */
199 /* Transform (X < 0.0 ? -1.0 : 1.0) into copysign(1,X). */
200 /* Transform (X <= 0.0 ? -1.0 : 1.0) into copysign(1,X). */
202 (cond (cmp @0 real_zerop) real_minus_onep real_onep@1)
203 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type)
204 && types_match (type, TREE_TYPE (@0)))
206 (if (types_match (type, float_type_node))
207 (BUILT_IN_COPYSIGNF @1 (outn @0)))
208 (if (types_match (type, double_type_node))
209 (BUILT_IN_COPYSIGN @1 (outn @0)))
210 (if (types_match (type, long_double_type_node))
211 (BUILT_IN_COPYSIGNL @1 (outn @0)))))))
213 /* Transform X * copysign (1.0, X) into abs(X). */
215 (mult:c @0 (COPYSIGN_ALL real_onep @0))
216 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
219 /* Transform X * copysign (1.0, -X) into -abs(X). */
221 (mult:c @0 (COPYSIGN_ALL real_onep (negate @0)))
222 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
225 /* Transform copysign (CST, X) into copysign (ABS(CST), X). */
227 (COPYSIGN_ALL REAL_CST@0 @1)
228 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@0)))
229 (COPYSIGN_ALL (negate @0) @1)))
231 /* X * 1, X / 1 -> X. */
232 (for op (mult trunc_div ceil_div floor_div round_div exact_div)
237 /* (A / (1 << B)) -> (A >> B).
238 Only for unsigned A. For signed A, this would not preserve rounding
240 For example: (-1 / ( 1 << B)) != -1 >> B. */
242 (trunc_div @0 (lshift integer_onep@1 @2))
243 (if ((TYPE_UNSIGNED (type) || tree_expr_nonnegative_p (@0))
244 && (!VECTOR_TYPE_P (type)
245 || target_supports_op_p (type, RSHIFT_EXPR, optab_vector)
246 || target_supports_op_p (type, RSHIFT_EXPR, optab_scalar)))
249 /* Preserve explicit divisions by 0: the C++ front-end wants to detect
250 undefined behavior in constexpr evaluation, and assuming that the division
251 traps enables better optimizations than these anyway. */
252 (for div (trunc_div ceil_div floor_div round_div exact_div)
253 /* 0 / X is always zero. */
255 (div integer_zerop@0 @1)
256 /* But not for 0 / 0 so that we can get the proper warnings and errors. */
257 (if (!integer_zerop (@1))
261 (div @0 integer_minus_onep@1)
262 (if (!TYPE_UNSIGNED (type))
267 /* But not for 0 / 0 so that we can get the proper warnings and errors.
268 And not for _Fract types where we can't build 1. */
269 (if (!integer_zerop (@0) && !ALL_FRACT_MODE_P (TYPE_MODE (type)))
270 { build_one_cst (type); }))
271 /* X / abs (X) is X < 0 ? -1 : 1. */
274 (if (INTEGRAL_TYPE_P (type)
275 && TYPE_OVERFLOW_UNDEFINED (type))
276 (cond (lt @0 { build_zero_cst (type); })
277 { build_minus_one_cst (type); } { build_one_cst (type); })))
280 (div:C @0 (negate @0))
281 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
282 && TYPE_OVERFLOW_UNDEFINED (type))
283 { build_minus_one_cst (type); })))
285 /* For unsigned integral types, FLOOR_DIV_EXPR is the same as
286 TRUNC_DIV_EXPR. Rewrite into the latter in this case. */
289 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
290 && TYPE_UNSIGNED (type))
293 /* Combine two successive divisions. Note that combining ceil_div
294 and floor_div is trickier and combining round_div even more so. */
295 (for div (trunc_div exact_div)
297 (div (div @0 INTEGER_CST@1) INTEGER_CST@2)
300 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
301 TYPE_SIGN (type), &overflow_p);
304 (div @0 { wide_int_to_tree (type, mul); })
305 (if (TYPE_UNSIGNED (type)
306 || mul != wi::min_value (TYPE_PRECISION (type), SIGNED))
307 { build_zero_cst (type); })))))
309 /* Combine successive multiplications. Similar to above, but handling
310 overflow is different. */
312 (mult (mult @0 INTEGER_CST@1) INTEGER_CST@2)
315 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
316 TYPE_SIGN (type), &overflow_p);
318 /* Skip folding on overflow: the only special case is @1 * @2 == -INT_MIN,
319 otherwise undefined overflow implies that @0 must be zero. */
320 (if (!overflow_p || TYPE_OVERFLOW_WRAPS (type))
321 (mult @0 { wide_int_to_tree (type, mul); }))))
323 /* Optimize A / A to 1.0 if we don't care about
324 NaNs or Infinities. */
327 (if (FLOAT_TYPE_P (type)
328 && ! HONOR_NANS (type)
329 && ! HONOR_INFINITIES (type))
330 { build_one_cst (type); }))
332 /* Optimize -A / A to -1.0 if we don't care about
333 NaNs or Infinities. */
335 (rdiv:C @0 (negate @0))
336 (if (FLOAT_TYPE_P (type)
337 && ! HONOR_NANS (type)
338 && ! HONOR_INFINITIES (type))
339 { build_minus_one_cst (type); }))
341 /* PR71078: x / abs(x) -> copysign (1.0, x) */
343 (rdiv:C (convert? @0) (convert? (abs @0)))
344 (if (SCALAR_FLOAT_TYPE_P (type)
345 && ! HONOR_NANS (type)
346 && ! HONOR_INFINITIES (type))
348 (if (types_match (type, float_type_node))
349 (BUILT_IN_COPYSIGNF { build_one_cst (type); } (convert @0)))
350 (if (types_match (type, double_type_node))
351 (BUILT_IN_COPYSIGN { build_one_cst (type); } (convert @0)))
352 (if (types_match (type, long_double_type_node))
353 (BUILT_IN_COPYSIGNL { build_one_cst (type); } (convert @0))))))
355 /* In IEEE floating point, x/1 is not equivalent to x for snans. */
358 (if (!HONOR_SNANS (type))
361 /* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
363 (rdiv @0 real_minus_onep)
364 (if (!HONOR_SNANS (type))
367 (if (flag_reciprocal_math)
368 /* Convert (A/B)/C to A/(B*C). */
370 (rdiv (rdiv:s @0 @1) @2)
371 (rdiv @0 (mult @1 @2)))
373 /* Canonicalize x / (C1 * y) to (x * C2) / y. */
375 (rdiv @0 (mult:s @1 REAL_CST@2))
377 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @2); }
379 (rdiv (mult @0 { tem; } ) @1))))
381 /* Convert A/(B/C) to (A/B)*C */
383 (rdiv @0 (rdiv:s @1 @2))
384 (mult (rdiv @0 @1) @2)))
386 /* Simplify x / (- y) to -x / y. */
388 (rdiv @0 (negate @1))
389 (rdiv (negate @0) @1))
391 /* Optimize (X & (-A)) / A where A is a power of 2, to X >> log2(A) */
392 (for div (trunc_div ceil_div floor_div round_div exact_div)
394 (div (convert? (bit_and @0 INTEGER_CST@1)) INTEGER_CST@2)
395 (if (integer_pow2p (@2)
396 && tree_int_cst_sgn (@2) > 0
397 && tree_nop_conversion_p (type, TREE_TYPE (@0))
398 && wi::to_wide (@2) + wi::to_wide (@1) == 0)
400 { build_int_cst (integer_type_node,
401 wi::exact_log2 (wi::to_wide (@2))); }))))
403 /* If ARG1 is a constant, we can convert this to a multiply by the
404 reciprocal. This does not have the same rounding properties,
405 so only do this if -freciprocal-math. We can actually
406 always safely do it if ARG1 is a power of two, but it's hard to
407 tell if it is or not in a portable manner. */
408 (for cst (REAL_CST COMPLEX_CST VECTOR_CST)
412 (if (flag_reciprocal_math
415 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
417 (mult @0 { tem; } )))
418 (if (cst != COMPLEX_CST)
419 (with { tree inverse = exact_inverse (type, @1); }
421 (mult @0 { inverse; } ))))))))
423 (for mod (ceil_mod floor_mod round_mod trunc_mod)
424 /* 0 % X is always zero. */
426 (mod integer_zerop@0 @1)
427 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
428 (if (!integer_zerop (@1))
430 /* X % 1 is always zero. */
432 (mod @0 integer_onep)
433 { build_zero_cst (type); })
434 /* X % -1 is zero. */
436 (mod @0 integer_minus_onep@1)
437 (if (!TYPE_UNSIGNED (type))
438 { build_zero_cst (type); }))
442 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
443 (if (!integer_zerop (@0))
444 { build_zero_cst (type); }))
445 /* (X % Y) % Y is just X % Y. */
447 (mod (mod@2 @0 @1) @1)
449 /* From extract_muldiv_1: (X * C1) % C2 is zero if C1 is a multiple of C2. */
451 (mod (mult @0 INTEGER_CST@1) INTEGER_CST@2)
452 (if (ANY_INTEGRAL_TYPE_P (type)
453 && TYPE_OVERFLOW_UNDEFINED (type)
454 && wi::multiple_of_p (wi::to_wide (@1), wi::to_wide (@2),
456 { build_zero_cst (type); })))
458 /* X % -C is the same as X % C. */
460 (trunc_mod @0 INTEGER_CST@1)
461 (if (TYPE_SIGN (type) == SIGNED
462 && !TREE_OVERFLOW (@1)
463 && wi::neg_p (wi::to_wide (@1))
464 && !TYPE_OVERFLOW_TRAPS (type)
465 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
466 && !sign_bit_p (@1, @1))
467 (trunc_mod @0 (negate @1))))
469 /* X % -Y is the same as X % Y. */
471 (trunc_mod @0 (convert? (negate @1)))
472 (if (INTEGRAL_TYPE_P (type)
473 && !TYPE_UNSIGNED (type)
474 && !TYPE_OVERFLOW_TRAPS (type)
475 && tree_nop_conversion_p (type, TREE_TYPE (@1))
476 /* Avoid this transformation if X might be INT_MIN or
477 Y might be -1, because we would then change valid
478 INT_MIN % -(-1) into invalid INT_MIN % -1. */
479 && (expr_not_equal_to (@0, wi::to_wide (TYPE_MIN_VALUE (type)))
480 || expr_not_equal_to (@1, wi::minus_one (TYPE_PRECISION
482 (trunc_mod @0 (convert @1))))
484 /* X - (X / Y) * Y is the same as X % Y. */
486 (minus (convert1? @0) (convert2? (mult:c (trunc_div @@0 @@1) @1)))
487 (if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
488 (convert (trunc_mod @0 @1))))
490 /* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
491 i.e. "X % C" into "X & (C - 1)", if X and C are positive.
492 Also optimize A % (C << N) where C is a power of 2,
493 to A & ((C << N) - 1). */
494 (match (power_of_two_cand @1)
496 (match (power_of_two_cand @1)
497 (lshift INTEGER_CST@1 @2))
498 (for mod (trunc_mod floor_mod)
500 (mod @0 (convert?@3 (power_of_two_cand@1 @2)))
501 (if ((TYPE_UNSIGNED (type)
502 || tree_expr_nonnegative_p (@0))
503 && tree_nop_conversion_p (type, TREE_TYPE (@3))
504 && integer_pow2p (@2) && tree_int_cst_sgn (@2) > 0)
505 (bit_and @0 (convert (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))))
507 /* Simplify (unsigned t * 2)/2 -> unsigned t & 0x7FFFFFFF. */
509 (trunc_div (mult @0 integer_pow2p@1) @1)
510 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
511 (bit_and @0 { wide_int_to_tree
512 (type, wi::mask (TYPE_PRECISION (type)
513 - wi::exact_log2 (wi::to_wide (@1)),
514 false, TYPE_PRECISION (type))); })))
516 /* Simplify (unsigned t / 2) * 2 -> unsigned t & ~1. */
518 (mult (trunc_div @0 integer_pow2p@1) @1)
519 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
520 (bit_and @0 (negate @1))))
522 /* Simplify (t * 2) / 2) -> t. */
523 (for div (trunc_div ceil_div floor_div round_div exact_div)
525 (div (mult:c @0 @1) @1)
526 (if (ANY_INTEGRAL_TYPE_P (type)
527 && TYPE_OVERFLOW_UNDEFINED (type))
531 /* Simplify cos(-x) and cos(|x|) -> cos(x). Similarly for cosh. */
536 /* Simplify pow(-x, y) and pow(|x|,y) -> pow(x,y) if y is an even integer. */
539 (pows (op @0) REAL_CST@1)
540 (with { HOST_WIDE_INT n; }
541 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
543 /* Likewise for powi. */
546 (pows (op @0) INTEGER_CST@1)
547 (if ((wi::to_wide (@1) & 1) == 0)
549 /* Strip negate and abs from both operands of hypot. */
557 /* copysign(-x, y) and copysign(abs(x), y) -> copysign(x, y). */
558 (for copysigns (COPYSIGN_ALL)
560 (copysigns (op @0) @1)
563 /* abs(x)*abs(x) -> x*x. Should be valid for all types. */
568 /* cos(copysign(x, y)) -> cos(x). Similarly for cosh. */
572 (coss (copysigns @0 @1))
575 /* pow(copysign(x, y), z) -> pow(x, z) if z is an even integer. */
579 (pows (copysigns @0 @2) REAL_CST@1)
580 (with { HOST_WIDE_INT n; }
581 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
583 /* Likewise for powi. */
587 (pows (copysigns @0 @2) INTEGER_CST@1)
588 (if ((wi::to_wide (@1) & 1) == 0)
593 /* hypot(copysign(x, y), z) -> hypot(x, z). */
595 (hypots (copysigns @0 @1) @2)
597 /* hypot(x, copysign(y, z)) -> hypot(x, y). */
599 (hypots @0 (copysigns @1 @2))
602 /* copysign(x, CST) -> [-]abs (x). */
603 (for copysigns (COPYSIGN_ALL)
605 (copysigns @0 REAL_CST@1)
606 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
610 /* copysign(copysign(x, y), z) -> copysign(x, z). */
611 (for copysigns (COPYSIGN_ALL)
613 (copysigns (copysigns @0 @1) @2)
616 /* copysign(x,y)*copysign(x,y) -> x*x. */
617 (for copysigns (COPYSIGN_ALL)
619 (mult (copysigns@2 @0 @1) @2)
622 /* ccos(-x) -> ccos(x). Similarly for ccosh. */
623 (for ccoss (CCOS CCOSH)
628 /* cabs(-x) and cos(conj(x)) -> cabs(x). */
629 (for ops (conj negate)
635 /* Fold (a * (1 << b)) into (a << b) */
637 (mult:c @0 (convert? (lshift integer_onep@1 @2)))
638 (if (! FLOAT_TYPE_P (type)
639 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
642 /* Fold (1 << (C - x)) where C = precision(type) - 1
643 into ((1 << C) >> x). */
645 (lshift integer_onep@0 (minus@1 INTEGER_CST@2 @3))
646 (if (INTEGRAL_TYPE_P (type)
647 && wi::eq_p (wi::to_wide (@2), TYPE_PRECISION (type) - 1)
649 (if (TYPE_UNSIGNED (type))
650 (rshift (lshift @0 @2) @3)
652 { tree utype = unsigned_type_for (type); }
653 (convert (rshift (lshift (convert:utype @0) @2) @3))))))
655 /* Fold (C1/X)*C2 into (C1*C2)/X. */
657 (mult (rdiv@3 REAL_CST@0 @1) REAL_CST@2)
658 (if (flag_associative_math
661 { tree tem = const_binop (MULT_EXPR, type, @0, @2); }
663 (rdiv { tem; } @1)))))
665 /* Simplify ~X & X as zero. */
667 (bit_and:c (convert? @0) (convert? (bit_not @0)))
668 { build_zero_cst (type); })
670 /* PR71636: Transform x & ((1U << b) - 1) -> x & ~(~0U << b); */
672 (bit_and:c @0 (plus:s (lshift:s integer_onep @1) integer_minus_onep))
673 (if (TYPE_UNSIGNED (type))
674 (bit_and @0 (bit_not (lshift { build_all_ones_cst (type); } @1)))))
676 (for bitop (bit_and bit_ior)
678 /* PR35691: Transform
679 (x == 0 & y == 0) -> (x | typeof(x)(y)) == 0.
680 (x != 0 | y != 0) -> (x | typeof(x)(y)) != 0. */
682 (bitop (cmp @0 integer_zerop@2) (cmp @1 integer_zerop))
683 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
684 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
685 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
686 (cmp (bit_ior @0 (convert @1)) @2)))
688 (x == -1 & y == -1) -> (x & typeof(x)(y)) == -1.
689 (x != -1 | y != -1) -> (x & typeof(x)(y)) != -1. */
691 (bitop (cmp @0 integer_all_onesp@2) (cmp @1 integer_all_onesp))
692 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
693 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
694 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
695 (cmp (bit_and @0 (convert @1)) @2))))
697 /* Fold (A & ~B) - (A & B) into (A ^ B) - B. */
699 (minus (bit_and:cs @0 (bit_not @1)) (bit_and:cs @0 @1))
700 (minus (bit_xor @0 @1) @1))
702 (minus (bit_and:s @0 INTEGER_CST@2) (bit_and:s @0 INTEGER_CST@1))
703 (if (~wi::to_wide (@2) == wi::to_wide (@1))
704 (minus (bit_xor @0 @1) @1)))
706 /* Fold (A & B) - (A & ~B) into B - (A ^ B). */
708 (minus (bit_and:cs @0 @1) (bit_and:cs @0 (bit_not @1)))
709 (minus @1 (bit_xor @0 @1)))
711 /* Simplify (X & ~Y) |^+ (~X & Y) -> X ^ Y. */
712 (for op (bit_ior bit_xor plus)
714 (op (bit_and:c @0 (bit_not @1)) (bit_and:c (bit_not @0) @1))
717 (op:c (bit_and @0 INTEGER_CST@2) (bit_and (bit_not @0) INTEGER_CST@1))
718 (if (~wi::to_wide (@2) == wi::to_wide (@1))
721 /* PR53979: Transform ((a ^ b) | a) -> (a | b) */
723 (bit_ior:c (bit_xor:c @0 @1) @0)
726 /* (a & ~b) | (a ^ b) --> a ^ b */
728 (bit_ior:c (bit_and:c @0 (bit_not @1)) (bit_xor:c@2 @0 @1))
731 /* (a & ~b) ^ ~a --> ~(a & b) */
733 (bit_xor:c (bit_and:cs @0 (bit_not @1)) (bit_not @0))
734 (bit_not (bit_and @0 @1)))
736 /* (a | b) & ~(a ^ b) --> a & b */
738 (bit_and:c (bit_ior @0 @1) (bit_not (bit_xor:c @0 @1)))
741 /* a | ~(a ^ b) --> a | ~b */
743 (bit_ior:c @0 (bit_not:s (bit_xor:c @0 @1)))
744 (bit_ior @0 (bit_not @1)))
746 /* (a | b) | (a &^ b) --> a | b */
747 (for op (bit_and bit_xor)
749 (bit_ior:c (bit_ior@2 @0 @1) (op:c @0 @1))
752 /* (a & b) | ~(a ^ b) --> ~(a ^ b) */
754 (bit_ior:c (bit_and:c @0 @1) (bit_not@2 (bit_xor @0 @1)))
757 /* ~(~a & b) --> a | ~b */
759 (bit_not (bit_and:cs (bit_not @0) @1))
760 (bit_ior @0 (bit_not @1)))
762 /* Simplify (~X & Y) to X ^ Y if we know that (X & ~Y) is 0. */
765 (bit_and (bit_not SSA_NAME@0) INTEGER_CST@1)
766 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
767 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
771 /* X % Y is smaller than Y. */
774 (cmp (trunc_mod @0 @1) @1)
775 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
776 { constant_boolean_node (cmp == LT_EXPR, type); })))
779 (cmp @1 (trunc_mod @0 @1))
780 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
781 { constant_boolean_node (cmp == GT_EXPR, type); })))
785 (bit_ior @0 integer_all_onesp@1)
790 (bit_ior @0 integer_zerop)
795 (bit_and @0 integer_zerop@1)
801 (for op (bit_ior bit_xor plus)
803 (op:c (convert? @0) (convert? (bit_not @0)))
804 (convert { build_all_ones_cst (TREE_TYPE (@0)); })))
809 { build_zero_cst (type); })
811 /* Canonicalize X ^ ~0 to ~X. */
813 (bit_xor @0 integer_all_onesp@1)
818 (bit_and @0 integer_all_onesp)
821 /* x & x -> x, x | x -> x */
822 (for bitop (bit_and bit_ior)
827 /* x & C -> x if we know that x & ~C == 0. */
830 (bit_and SSA_NAME@0 INTEGER_CST@1)
831 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
832 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
836 /* x + (x & 1) -> (x + 1) & ~1 */
838 (plus:c @0 (bit_and:s @0 integer_onep@1))
839 (bit_and (plus @0 @1) (bit_not @1)))
841 /* x & ~(x & y) -> x & ~y */
842 /* x | ~(x | y) -> x | ~y */
843 (for bitop (bit_and bit_ior)
845 (bitop:c @0 (bit_not (bitop:cs @0 @1)))
846 (bitop @0 (bit_not @1))))
848 /* (x | y) & ~x -> y & ~x */
849 /* (x & y) | ~x -> y | ~x */
850 (for bitop (bit_and bit_ior)
851 rbitop (bit_ior bit_and)
853 (bitop:c (rbitop:c @0 @1) (bit_not@2 @0))
856 /* (x & y) ^ (x | y) -> x ^ y */
858 (bit_xor:c (bit_and @0 @1) (bit_ior @0 @1))
861 /* (x ^ y) ^ (x | y) -> x & y */
863 (bit_xor:c (bit_xor @0 @1) (bit_ior @0 @1))
866 /* (x & y) + (x ^ y) -> x | y */
867 /* (x & y) | (x ^ y) -> x | y */
868 /* (x & y) ^ (x ^ y) -> x | y */
869 (for op (plus bit_ior bit_xor)
871 (op:c (bit_and @0 @1) (bit_xor @0 @1))
874 /* (x & y) + (x | y) -> x + y */
876 (plus:c (bit_and @0 @1) (bit_ior @0 @1))
879 /* (x + y) - (x | y) -> x & y */
881 (minus (plus @0 @1) (bit_ior @0 @1))
882 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
883 && !TYPE_SATURATING (type))
886 /* (x + y) - (x & y) -> x | y */
888 (minus (plus @0 @1) (bit_and @0 @1))
889 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
890 && !TYPE_SATURATING (type))
893 /* (x | y) - (x ^ y) -> x & y */
895 (minus (bit_ior @0 @1) (bit_xor @0 @1))
898 /* (x | y) - (x & y) -> x ^ y */
900 (minus (bit_ior @0 @1) (bit_and @0 @1))
903 /* (x | y) & ~(x & y) -> x ^ y */
905 (bit_and:c (bit_ior @0 @1) (bit_not (bit_and @0 @1)))
908 /* (x | y) & (~x ^ y) -> x & y */
910 (bit_and:c (bit_ior:c @0 @1) (bit_xor:c @1 (bit_not @0)))
913 /* ~x & ~y -> ~(x | y)
914 ~x | ~y -> ~(x & y) */
915 (for op (bit_and bit_ior)
916 rop (bit_ior bit_and)
918 (op (convert1? (bit_not @0)) (convert2? (bit_not @1)))
919 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
920 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
921 (bit_not (rop (convert @0) (convert @1))))))
923 /* If we are XORing or adding two BIT_AND_EXPR's, both of which are and'ing
924 with a constant, and the two constants have no bits in common,
925 we should treat this as a BIT_IOR_EXPR since this may produce more
927 (for op (bit_xor plus)
929 (op (convert1? (bit_and@4 @0 INTEGER_CST@1))
930 (convert2? (bit_and@5 @2 INTEGER_CST@3)))
931 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
932 && tree_nop_conversion_p (type, TREE_TYPE (@2))
933 && (wi::to_wide (@1) & wi::to_wide (@3)) == 0)
934 (bit_ior (convert @4) (convert @5)))))
936 /* (X | Y) ^ X -> Y & ~ X*/
938 (bit_xor:c (convert1? (bit_ior:c @@0 @1)) (convert2? @0))
939 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
940 (convert (bit_and @1 (bit_not @0)))))
942 /* Convert ~X ^ ~Y to X ^ Y. */
944 (bit_xor (convert1? (bit_not @0)) (convert2? (bit_not @1)))
945 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
946 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
947 (bit_xor (convert @0) (convert @1))))
949 /* Convert ~X ^ C to X ^ ~C. */
951 (bit_xor (convert? (bit_not @0)) INTEGER_CST@1)
952 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
953 (bit_xor (convert @0) (bit_not @1))))
955 /* Fold (X & Y) ^ Y and (X ^ Y) & Y as ~X & Y. */
956 (for opo (bit_and bit_xor)
957 opi (bit_xor bit_and)
959 (opo:c (opi:c @0 @1) @1)
960 (bit_and (bit_not @0) @1)))
962 /* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
963 operands are another bit-wise operation with a common input. If so,
964 distribute the bit operations to save an operation and possibly two if
965 constants are involved. For example, convert
966 (A | B) & (A | C) into A | (B & C)
967 Further simplification will occur if B and C are constants. */
968 (for op (bit_and bit_ior bit_xor)
969 rop (bit_ior bit_and bit_and)
971 (op (convert? (rop:c @@0 @1)) (convert? (rop:c @0 @2)))
972 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
973 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
974 (rop (convert @0) (op (convert @1) (convert @2))))))
976 /* Some simple reassociation for bit operations, also handled in reassoc. */
977 /* (X & Y) & Y -> X & Y
978 (X | Y) | Y -> X | Y */
979 (for op (bit_and bit_ior)
981 (op:c (convert1?@2 (op:c @0 @@1)) (convert2? @1))
983 /* (X ^ Y) ^ Y -> X */
985 (bit_xor:c (convert1? (bit_xor:c @0 @@1)) (convert2? @1))
987 /* (X & Y) & (X & Z) -> (X & Y) & Z
988 (X | Y) | (X | Z) -> (X | Y) | Z */
989 (for op (bit_and bit_ior)
991 (op (convert1?@3 (op:c@4 @0 @1)) (convert2?@5 (op:c@6 @0 @2)))
992 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
993 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
994 (if (single_use (@5) && single_use (@6))
996 (if (single_use (@3) && single_use (@4))
997 (op (convert @1) @5))))))
998 /* (X ^ Y) ^ (X ^ Z) -> Y ^ Z */
1000 (bit_xor (convert1? (bit_xor:c @0 @1)) (convert2? (bit_xor:c @0 @2)))
1001 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1002 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1003 (bit_xor (convert @1) (convert @2))))
1012 (abs tree_expr_nonnegative_p@0)
1015 /* A few cases of fold-const.c negate_expr_p predicate. */
1016 (match negate_expr_p
1018 (if ((INTEGRAL_TYPE_P (type)
1019 && TYPE_UNSIGNED (type))
1020 || (!TYPE_OVERFLOW_SANITIZED (type)
1021 && may_negate_without_overflow_p (t)))))
1022 (match negate_expr_p
1024 (match negate_expr_p
1026 (if (!TYPE_OVERFLOW_SANITIZED (type))))
1027 (match negate_expr_p
1029 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (t)))))
1030 /* VECTOR_CST handling of non-wrapping types would recurse in unsupported
1032 (match negate_expr_p
1034 (if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))))
1035 (match negate_expr_p
1037 (if ((ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type))
1038 || (FLOAT_TYPE_P (type)
1039 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1040 && !HONOR_SIGNED_ZEROS (type)))))
1042 /* (-A) * (-B) -> A * B */
1044 (mult:c (convert1? (negate @0)) (convert2? negate_expr_p@1))
1045 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1046 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1047 (mult (convert @0) (convert (negate @1)))))
1049 /* -(A + B) -> (-B) - A. */
1051 (negate (plus:c @0 negate_expr_p@1))
1052 (if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
1053 && !HONOR_SIGNED_ZEROS (element_mode (type)))
1054 (minus (negate @1) @0)))
1056 /* -(A - B) -> B - A. */
1058 (negate (minus @0 @1))
1059 (if ((ANY_INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_SANITIZED (type))
1060 || (FLOAT_TYPE_P (type)
1061 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1062 && !HONOR_SIGNED_ZEROS (type)))
1065 (negate (pointer_diff @0 @1))
1066 (if (TYPE_OVERFLOW_UNDEFINED (type))
1067 (pointer_diff @1 @0)))
1069 /* A - B -> A + (-B) if B is easily negatable. */
1071 (minus @0 negate_expr_p@1)
1072 (if (!FIXED_POINT_TYPE_P (type))
1073 (plus @0 (negate @1))))
1075 /* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
1077 For bitwise binary operations apply operand conversions to the
1078 binary operation result instead of to the operands. This allows
1079 to combine successive conversions and bitwise binary operations.
1080 We combine the above two cases by using a conditional convert. */
1081 (for bitop (bit_and bit_ior bit_xor)
1083 (bitop (convert @0) (convert? @1))
1084 (if (((TREE_CODE (@1) == INTEGER_CST
1085 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1086 && int_fits_type_p (@1, TREE_TYPE (@0)))
1087 || types_match (@0, @1))
1088 /* ??? This transform conflicts with fold-const.c doing
1089 Convert (T)(x & c) into (T)x & (T)c, if c is an integer
1090 constants (if x has signed type, the sign bit cannot be set
1091 in c). This folds extension into the BIT_AND_EXPR.
1092 Restrict it to GIMPLE to avoid endless recursions. */
1093 && (bitop != BIT_AND_EXPR || GIMPLE)
1094 && (/* That's a good idea if the conversion widens the operand, thus
1095 after hoisting the conversion the operation will be narrower. */
1096 TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
1097 /* It's also a good idea if the conversion is to a non-integer
1099 || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
1100 /* Or if the precision of TO is not the same as the precision
1102 || !type_has_mode_precision_p (type)))
1103 (convert (bitop @0 (convert @1))))))
1105 (for bitop (bit_and bit_ior)
1106 rbitop (bit_ior bit_and)
1107 /* (x | y) & x -> x */
1108 /* (x & y) | x -> x */
1110 (bitop:c (rbitop:c @0 @1) @0)
1112 /* (~x | y) & x -> x & y */
1113 /* (~x & y) | x -> x | y */
1115 (bitop:c (rbitop:c (bit_not @0) @1) @0)
1118 /* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
1120 (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1121 (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
1123 /* Combine successive equal operations with constants. */
1124 (for bitop (bit_and bit_ior bit_xor)
1126 (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1127 (if (!CONSTANT_CLASS_P (@0))
1128 /* This is the canonical form regardless of whether (bitop @1 @2) can be
1129 folded to a constant. */
1130 (bitop @0 (bitop @1 @2))
1131 /* In this case we have three constants and (bitop @0 @1) doesn't fold
1132 to a constant. This can happen if @0 or @1 is a POLY_INT_CST and if
1133 the values involved are such that the operation can't be decided at
1134 compile time. Try folding one of @0 or @1 with @2 to see whether
1135 that combination can be decided at compile time.
1137 Keep the existing form if both folds fail, to avoid endless
1139 (with { tree cst1 = const_binop (bitop, type, @0, @2); }
1141 (bitop @1 { cst1; })
1142 (with { tree cst2 = const_binop (bitop, type, @1, @2); }
1144 (bitop @0 { cst2; }))))))))
1146 /* Try simple folding for X op !X, and X op X with the help
1147 of the truth_valued_p and logical_inverted_value predicates. */
1148 (match truth_valued_p
1150 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
1151 (for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
1152 (match truth_valued_p
1154 (match truth_valued_p
1157 (match (logical_inverted_value @0)
1159 (match (logical_inverted_value @0)
1160 (bit_not truth_valued_p@0))
1161 (match (logical_inverted_value @0)
1162 (eq @0 integer_zerop))
1163 (match (logical_inverted_value @0)
1164 (ne truth_valued_p@0 integer_truep))
1165 (match (logical_inverted_value @0)
1166 (bit_xor truth_valued_p@0 integer_truep))
1170 (bit_and:c @0 (logical_inverted_value @0))
1171 { build_zero_cst (type); })
1172 /* X | !X and X ^ !X -> 1, , if X is truth-valued. */
1173 (for op (bit_ior bit_xor)
1175 (op:c truth_valued_p@0 (logical_inverted_value @0))
1176 { constant_boolean_node (true, type); }))
1177 /* X ==/!= !X is false/true. */
1180 (op:c truth_valued_p@0 (logical_inverted_value @0))
1181 { constant_boolean_node (op == NE_EXPR ? true : false, type); }))
1185 (bit_not (bit_not @0))
1188 /* Convert ~ (-A) to A - 1. */
1190 (bit_not (convert? (negate @0)))
1191 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1192 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1193 (convert (minus @0 { build_each_one_cst (TREE_TYPE (@0)); }))))
1195 /* Convert - (~A) to A + 1. */
1197 (negate (nop_convert (bit_not @0)))
1198 (plus (view_convert @0) { build_each_one_cst (type); }))
1200 /* Convert ~ (A - 1) or ~ (A + -1) to -A. */
1202 (bit_not (convert? (minus @0 integer_each_onep)))
1203 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1204 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1205 (convert (negate @0))))
1207 (bit_not (convert? (plus @0 integer_all_onesp)))
1208 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1209 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1210 (convert (negate @0))))
1212 /* Part of convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
1214 (bit_not (convert? (bit_xor @0 INTEGER_CST@1)))
1215 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1216 (convert (bit_xor @0 (bit_not @1)))))
1218 (bit_not (convert? (bit_xor:c (bit_not @0) @1)))
1219 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1220 (convert (bit_xor @0 @1))))
1222 /* Otherwise prefer ~(X ^ Y) to ~X ^ Y as more canonical. */
1224 (bit_xor:c (nop_convert:s (bit_not:s @0)) @1)
1225 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1226 (bit_not (bit_xor (view_convert @0) @1))))
1228 /* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
1230 (bit_ior:c (bit_and:cs @0 (bit_not @2)) (bit_and:cs @1 @2))
1231 (bit_xor (bit_and (bit_xor @0 @1) @2) @0))
1233 /* Fold A - (A & B) into ~B & A. */
1235 (minus (convert1? @0) (convert2?:s (bit_and:cs @@0 @1)))
1236 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1237 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1238 (convert (bit_and (bit_not @1) @0))))
1240 /* (m1 CMP m2) * d -> (m1 CMP m2) ? d : 0 */
1241 (for cmp (gt lt ge le)
1243 (mult (convert (cmp @0 @1)) @2)
1244 (cond (cmp @0 @1) @2 { build_zero_cst (type); })))
1246 /* For integral types with undefined overflow and C != 0 fold
1247 x * C EQ/NE y * C into x EQ/NE y. */
1250 (cmp (mult:c @0 @1) (mult:c @2 @1))
1251 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1252 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1253 && tree_expr_nonzero_p (@1))
1256 /* For integral types with wrapping overflow and C odd fold
1257 x * C EQ/NE y * C into x EQ/NE y. */
1260 (cmp (mult @0 INTEGER_CST@1) (mult @2 @1))
1261 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1262 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
1263 && (TREE_INT_CST_LOW (@1) & 1) != 0)
1266 /* For integral types with undefined overflow and C != 0 fold
1267 x * C RELOP y * C into:
1269 x RELOP y for nonnegative C
1270 y RELOP x for negative C */
1271 (for cmp (lt gt le ge)
1273 (cmp (mult:c @0 @1) (mult:c @2 @1))
1274 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1275 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1276 (if (tree_expr_nonnegative_p (@1) && tree_expr_nonzero_p (@1))
1278 (if (TREE_CODE (@1) == INTEGER_CST
1279 && wi::neg_p (wi::to_wide (@1), TYPE_SIGN (TREE_TYPE (@1))))
1282 /* (X - 1U) <= INT_MAX-1U into (int) X > 0. */
1286 (cmp (plus @0 integer_minus_onep@1) INTEGER_CST@2)
1287 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1288 && TYPE_UNSIGNED (TREE_TYPE (@0))
1289 && TYPE_PRECISION (TREE_TYPE (@0)) > 1
1290 && (wi::to_wide (@2)
1291 == wi::max_value (TYPE_PRECISION (TREE_TYPE (@0)), SIGNED) - 1))
1292 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
1293 (icmp (convert:stype @0) { build_int_cst (stype, 0); })))))
1295 /* X / 4 < Y / 4 iff X < Y when the division is known to be exact. */
1296 (for cmp (simple_comparison)
1298 (cmp (exact_div @0 INTEGER_CST@2) (exact_div @1 @2))
1299 (if (wi::gt_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2))))
1302 /* X / C1 op C2 into a simple range test. */
1303 (for cmp (simple_comparison)
1305 (cmp (trunc_div:s @0 INTEGER_CST@1) INTEGER_CST@2)
1306 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1307 && integer_nonzerop (@1)
1308 && !TREE_OVERFLOW (@1)
1309 && !TREE_OVERFLOW (@2))
1310 (with { tree lo, hi; bool neg_overflow;
1311 enum tree_code code = fold_div_compare (cmp, @1, @2, &lo, &hi,
1314 (if (code == LT_EXPR || code == GE_EXPR)
1315 (if (TREE_OVERFLOW (lo))
1316 { build_int_cst (type, (code == LT_EXPR) ^ neg_overflow); }
1317 (if (code == LT_EXPR)
1320 (if (code == LE_EXPR || code == GT_EXPR)
1321 (if (TREE_OVERFLOW (hi))
1322 { build_int_cst (type, (code == LE_EXPR) ^ neg_overflow); }
1323 (if (code == LE_EXPR)
1327 { build_int_cst (type, code == NE_EXPR); })
1328 (if (code == EQ_EXPR && !hi)
1330 (if (code == EQ_EXPR && !lo)
1332 (if (code == NE_EXPR && !hi)
1334 (if (code == NE_EXPR && !lo)
1337 { build_range_check (UNKNOWN_LOCATION, type, @0, code == EQ_EXPR,
1341 tree etype = range_check_type (TREE_TYPE (@0));
1344 if (! TYPE_UNSIGNED (etype))
1345 etype = unsigned_type_for (etype);
1346 hi = fold_convert (etype, hi);
1347 lo = fold_convert (etype, lo);
1348 hi = const_binop (MINUS_EXPR, etype, hi, lo);
1351 (if (etype && hi && !TREE_OVERFLOW (hi))
1352 (if (code == EQ_EXPR)
1353 (le (minus (convert:etype @0) { lo; }) { hi; })
1354 (gt (minus (convert:etype @0) { lo; }) { hi; })))))))))
1356 /* X + Z < Y + Z is the same as X < Y when there is no overflow. */
1357 (for op (lt le ge gt)
1359 (op (plus:c @0 @2) (plus:c @1 @2))
1360 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1361 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1363 /* For equality and subtraction, this is also true with wrapping overflow. */
1364 (for op (eq ne minus)
1366 (op (plus:c @0 @2) (plus:c @1 @2))
1367 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1368 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1369 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1372 /* X - Z < Y - Z is the same as X < Y when there is no overflow. */
1373 (for op (lt le ge gt)
1375 (op (minus @0 @2) (minus @1 @2))
1376 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1377 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1379 /* For equality and subtraction, this is also true with wrapping overflow. */
1380 (for op (eq ne minus)
1382 (op (minus @0 @2) (minus @1 @2))
1383 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1384 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1385 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1387 /* And for pointers... */
1388 (for op (simple_comparison)
1390 (op (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1391 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1394 (minus (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1395 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1396 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1397 (pointer_diff @0 @1)))
1399 /* Z - X < Z - Y is the same as Y < X when there is no overflow. */
1400 (for op (lt le ge gt)
1402 (op (minus @2 @0) (minus @2 @1))
1403 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1404 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1406 /* For equality and subtraction, this is also true with wrapping overflow. */
1407 (for op (eq ne minus)
1409 (op (minus @2 @0) (minus @2 @1))
1410 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1411 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1412 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1414 /* And for pointers... */
1415 (for op (simple_comparison)
1417 (op (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1418 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1421 (minus (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1422 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1423 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1424 (pointer_diff @1 @0)))
1426 /* X + Y < Y is the same as X < 0 when there is no overflow. */
1427 (for op (lt le gt ge)
1429 (op:c (plus:c@2 @0 @1) @1)
1430 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1431 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1432 && (CONSTANT_CLASS_P (@0) || single_use (@2)))
1433 (op @0 { build_zero_cst (TREE_TYPE (@0)); }))))
1434 /* For equality, this is also true with wrapping overflow. */
1437 (op:c (nop_convert@3 (plus:c@2 @0 (convert1? @1))) (convert2? @1))
1438 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1439 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1440 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1441 && (CONSTANT_CLASS_P (@0) || (single_use (@2) && single_use (@3)))
1442 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@2))
1443 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@1)))
1444 (op @0 { build_zero_cst (TREE_TYPE (@0)); })))
1446 (op:c (nop_convert@3 (pointer_plus@2 (convert1? @0) @1)) (convert2? @0))
1447 (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0))
1448 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
1449 && (CONSTANT_CLASS_P (@1) || (single_use (@2) && single_use (@3))))
1450 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1452 /* X - Y < X is the same as Y > 0 when there is no overflow.
1453 For equality, this is also true with wrapping overflow. */
1454 (for op (simple_comparison)
1456 (op:c @0 (minus@2 @0 @1))
1457 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1458 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1459 || ((op == EQ_EXPR || op == NE_EXPR)
1460 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1461 && (CONSTANT_CLASS_P (@1) || single_use (@2)))
1462 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1465 (X / Y) == 0 -> X < Y if X, Y are unsigned.
1466 (X / Y) != 0 -> X >= Y, if X, Y are unsigned. */
1470 (cmp (trunc_div @0 @1) integer_zerop)
1471 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
1472 /* Complex ==/!= is allowed, but not </>=. */
1473 && TREE_CODE (TREE_TYPE (@0)) != COMPLEX_TYPE
1474 && (VECTOR_TYPE_P (type) || !VECTOR_TYPE_P (TREE_TYPE (@0))))
1477 /* X == C - X can never be true if C is odd. */
1480 (cmp:c (convert? @0) (convert1? (minus INTEGER_CST@1 (convert2? @0))))
1481 (if (TREE_INT_CST_LOW (@1) & 1)
1482 { constant_boolean_node (cmp == NE_EXPR, type); })))
1484 /* Arguments on which one can call get_nonzero_bits to get the bits
1486 (match with_possible_nonzero_bits
1488 (match with_possible_nonzero_bits
1490 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))))
1491 /* Slightly extended version, do not make it recursive to keep it cheap. */
1492 (match (with_possible_nonzero_bits2 @0)
1493 with_possible_nonzero_bits@0)
1494 (match (with_possible_nonzero_bits2 @0)
1495 (bit_and:c with_possible_nonzero_bits@0 @2))
1497 /* Same for bits that are known to be set, but we do not have
1498 an equivalent to get_nonzero_bits yet. */
1499 (match (with_certain_nonzero_bits2 @0)
1501 (match (with_certain_nonzero_bits2 @0)
1502 (bit_ior @1 INTEGER_CST@0))
1504 /* X == C (or X & Z == Y | C) is impossible if ~nonzero(X) & C != 0. */
1507 (cmp:c (with_possible_nonzero_bits2 @0) (with_certain_nonzero_bits2 @1))
1508 (if (wi::bit_and_not (wi::to_wide (@1), get_nonzero_bits (@0)) != 0)
1509 { constant_boolean_node (cmp == NE_EXPR, type); })))
1511 /* ((X inner_op C0) outer_op C1)
1512 With X being a tree where value_range has reasoned certain bits to always be
1513 zero throughout its computed value range,
1514 inner_op = {|,^}, outer_op = {|,^} and inner_op != outer_op
1515 where zero_mask has 1's for all bits that are sure to be 0 in
1517 if (inner_op == '^') C0 &= ~C1;
1518 if ((C0 & ~zero_mask) == 0) then emit (X outer_op (C0 outer_op C1)
1519 if ((C1 & ~zero_mask) == 0) then emit (X inner_op (C0 outer_op C1)
1521 (for inner_op (bit_ior bit_xor)
1522 outer_op (bit_xor bit_ior)
1525 (inner_op:s @2 INTEGER_CST@0) INTEGER_CST@1)
1529 wide_int zero_mask_not;
1533 if (TREE_CODE (@2) == SSA_NAME)
1534 zero_mask_not = get_nonzero_bits (@2);
1538 if (inner_op == BIT_XOR_EXPR)
1540 C0 = wi::bit_and_not (wi::to_wide (@0), wi::to_wide (@1));
1541 cst_emit = C0 | wi::to_wide (@1);
1545 C0 = wi::to_wide (@0);
1546 cst_emit = C0 ^ wi::to_wide (@1);
1549 (if (!fail && (C0 & zero_mask_not) == 0)
1550 (outer_op @2 { wide_int_to_tree (type, cst_emit); })
1551 (if (!fail && (wi::to_wide (@1) & zero_mask_not) == 0)
1552 (inner_op @2 { wide_int_to_tree (type, cst_emit); }))))))
1554 /* Associate (p +p off1) +p off2 as (p +p (off1 + off2)). */
1556 (pointer_plus (pointer_plus:s @0 @1) @3)
1557 (pointer_plus @0 (plus @1 @3)))
1563 tem4 = (unsigned long) tem3;
1568 (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
1569 /* Conditionally look through a sign-changing conversion. */
1570 (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
1571 && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
1572 || (GENERIC && type == TREE_TYPE (@1))))
1575 (pointer_plus @0 (convert?@2 (pointer_diff@3 @1 @@0)))
1576 (if (TYPE_PRECISION (TREE_TYPE (@2)) >= TYPE_PRECISION (TREE_TYPE (@3)))
1580 tem = (sizetype) ptr;
1584 and produce the simpler and easier to analyze with respect to alignment
1585 ... = ptr & ~algn; */
1587 (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
1588 (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), ~wi::to_wide (@1)); }
1589 (bit_and @0 { algn; })))
1591 /* Try folding difference of addresses. */
1593 (minus (convert ADDR_EXPR@0) (convert @1))
1594 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1595 (with { poly_int64 diff; }
1596 (if (ptr_difference_const (@0, @1, &diff))
1597 { build_int_cst_type (type, diff); }))))
1599 (minus (convert @0) (convert ADDR_EXPR@1))
1600 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1601 (with { poly_int64 diff; }
1602 (if (ptr_difference_const (@0, @1, &diff))
1603 { build_int_cst_type (type, diff); }))))
1605 (pointer_diff (convert?@2 ADDR_EXPR@0) (convert?@3 @1))
1606 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
1607 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
1608 (with { poly_int64 diff; }
1609 (if (ptr_difference_const (@0, @1, &diff))
1610 { build_int_cst_type (type, diff); }))))
1612 (pointer_diff (convert?@2 @0) (convert?@3 ADDR_EXPR@1))
1613 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
1614 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
1615 (with { poly_int64 diff; }
1616 (if (ptr_difference_const (@0, @1, &diff))
1617 { build_int_cst_type (type, diff); }))))
1619 /* If arg0 is derived from the address of an object or function, we may
1620 be able to fold this expression using the object or function's
1623 (bit_and (convert? @0) INTEGER_CST@1)
1624 (if (POINTER_TYPE_P (TREE_TYPE (@0))
1625 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
1629 unsigned HOST_WIDE_INT bitpos;
1630 get_pointer_alignment_1 (@0, &align, &bitpos);
1632 (if (wi::ltu_p (wi::to_wide (@1), align / BITS_PER_UNIT))
1633 { wide_int_to_tree (type, (wi::to_wide (@1)
1634 & (bitpos / BITS_PER_UNIT))); }))))
1637 /* We can't reassociate at all for saturating types. */
1638 (if (!TYPE_SATURATING (type))
1640 /* Contract negates. */
1641 /* A + (-B) -> A - B */
1643 (plus:c @0 (convert? (negate @1)))
1644 /* Apply STRIP_NOPS on the negate. */
1645 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1646 && !TYPE_OVERFLOW_SANITIZED (type))
1650 if (INTEGRAL_TYPE_P (type)
1651 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
1652 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
1654 (convert (minus (convert:t1 @0) (convert:t1 @1))))))
1655 /* A - (-B) -> A + B */
1657 (minus @0 (convert? (negate @1)))
1658 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1659 && !TYPE_OVERFLOW_SANITIZED (type))
1663 if (INTEGRAL_TYPE_P (type)
1664 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
1665 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
1667 (convert (plus (convert:t1 @0) (convert:t1 @1))))))
1669 Sign-extension is ok except for INT_MIN, which thankfully cannot
1670 happen without overflow. */
1672 (negate (convert (negate @1)))
1673 (if (INTEGRAL_TYPE_P (type)
1674 && (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@1))
1675 || (!TYPE_UNSIGNED (TREE_TYPE (@1))
1676 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
1677 && !TYPE_OVERFLOW_SANITIZED (type)
1678 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
1681 (negate (convert negate_expr_p@1))
1682 (if (SCALAR_FLOAT_TYPE_P (type)
1683 && ((DECIMAL_FLOAT_TYPE_P (type)
1684 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))
1685 && TYPE_PRECISION (type) >= TYPE_PRECISION (TREE_TYPE (@1)))
1686 || !HONOR_SIGN_DEPENDENT_ROUNDING (type)))
1687 (convert (negate @1))))
1689 (negate (nop_convert (negate @1)))
1690 (if (!TYPE_OVERFLOW_SANITIZED (type)
1691 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
1694 /* We can't reassociate floating-point unless -fassociative-math
1695 or fixed-point plus or minus because of saturation to +-Inf. */
1696 (if ((!FLOAT_TYPE_P (type) || flag_associative_math)
1697 && !FIXED_POINT_TYPE_P (type))
1699 /* Match patterns that allow contracting a plus-minus pair
1700 irrespective of overflow issues. */
1701 /* (A +- B) - A -> +- B */
1702 /* (A +- B) -+ B -> A */
1703 /* A - (A +- B) -> -+ B */
1704 /* A +- (B -+ A) -> +- B */
1706 (minus (plus:c @0 @1) @0)
1709 (minus (minus @0 @1) @0)
1712 (plus:c (minus @0 @1) @1)
1715 (minus @0 (plus:c @0 @1))
1718 (minus @0 (minus @0 @1))
1720 /* (A +- B) + (C - A) -> C +- B */
1721 /* (A + B) - (A - C) -> B + C */
1722 /* More cases are handled with comparisons. */
1724 (plus:c (plus:c @0 @1) (minus @2 @0))
1727 (plus:c (minus @0 @1) (minus @2 @0))
1730 (plus:c (pointer_diff @0 @1) (pointer_diff @2 @0))
1731 (if (TYPE_OVERFLOW_UNDEFINED (type)
1732 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0)))
1733 (pointer_diff @2 @1)))
1735 (minus (plus:c @0 @1) (minus @0 @2))
1738 /* (A +- CST1) +- CST2 -> A + CST3
1739 Use view_convert because it is safe for vectors and equivalent for
1741 (for outer_op (plus minus)
1742 (for inner_op (plus minus)
1743 neg_inner_op (minus plus)
1745 (outer_op (nop_convert (inner_op @0 CONSTANT_CLASS_P@1))
1747 /* If one of the types wraps, use that one. */
1748 (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
1749 /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
1750 forever if something doesn't simplify into a constant. */
1751 (if (!CONSTANT_CLASS_P (@0))
1752 (if (outer_op == PLUS_EXPR)
1753 (plus (view_convert @0) (inner_op @2 (view_convert @1)))
1754 (minus (view_convert @0) (neg_inner_op @2 (view_convert @1)))))
1755 (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1756 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1757 (if (outer_op == PLUS_EXPR)
1758 (view_convert (plus @0 (inner_op (view_convert @2) @1)))
1759 (view_convert (minus @0 (neg_inner_op (view_convert @2) @1))))
1760 /* If the constant operation overflows we cannot do the transform
1761 directly as we would introduce undefined overflow, for example
1762 with (a - 1) + INT_MIN. */
1763 (if (types_match (type, @0))
1764 (with { tree cst = const_binop (outer_op == inner_op
1765 ? PLUS_EXPR : MINUS_EXPR,
1767 (if (cst && !TREE_OVERFLOW (cst))
1768 (inner_op @0 { cst; } )
1769 /* X+INT_MAX+1 is X-INT_MIN. */
1770 (if (INTEGRAL_TYPE_P (type) && cst
1771 && wi::to_wide (cst) == wi::min_value (type))
1772 (neg_inner_op @0 { wide_int_to_tree (type, wi::to_wide (cst)); })
1773 /* Last resort, use some unsigned type. */
1774 (with { tree utype = unsigned_type_for (type); }
1776 (view_convert (inner_op
1777 (view_convert:utype @0)
1779 { drop_tree_overflow (cst); }))))))))))))))
1781 /* (CST1 - A) +- CST2 -> CST3 - A */
1782 (for outer_op (plus minus)
1784 (outer_op (minus CONSTANT_CLASS_P@1 @0) CONSTANT_CLASS_P@2)
1785 (with { tree cst = const_binop (outer_op, type, @1, @2); }
1786 (if (cst && !TREE_OVERFLOW (cst))
1787 (minus { cst; } @0)))))
1789 /* CST1 - (CST2 - A) -> CST3 + A */
1791 (minus CONSTANT_CLASS_P@1 (minus CONSTANT_CLASS_P@2 @0))
1792 (with { tree cst = const_binop (MINUS_EXPR, type, @1, @2); }
1793 (if (cst && !TREE_OVERFLOW (cst))
1794 (plus { cst; } @0))))
1798 (plus:c (bit_not @0) @0)
1799 (if (!TYPE_OVERFLOW_TRAPS (type))
1800 { build_all_ones_cst (type); }))
1804 (plus (convert? (bit_not @0)) integer_each_onep)
1805 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1806 (negate (convert @0))))
1810 (minus (convert? (negate @0)) integer_each_onep)
1811 (if (!TYPE_OVERFLOW_TRAPS (type)
1812 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
1813 (bit_not (convert @0))))
1817 (minus integer_all_onesp @0)
1820 /* (T)(P + A) - (T)P -> (T) A */
1822 (minus (convert (plus:c @@0 @1))
1824 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1825 /* For integer types, if A has a smaller type
1826 than T the result depends on the possible
1828 E.g. T=size_t, A=(unsigned)429497295, P>0.
1829 However, if an overflow in P + A would cause
1830 undefined behavior, we can assume that there
1832 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1833 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
1836 (minus (convert (pointer_plus @@0 @1))
1838 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1839 /* For pointer types, if the conversion of A to the
1840 final type requires a sign- or zero-extension,
1841 then we have to punt - it is not defined which
1843 || (POINTER_TYPE_P (TREE_TYPE (@0))
1844 && TREE_CODE (@1) == INTEGER_CST
1845 && tree_int_cst_sign_bit (@1) == 0))
1848 (pointer_diff (pointer_plus @@0 @1) @0)
1849 /* The second argument of pointer_plus must be interpreted as signed, and
1850 thus sign-extended if necessary. */
1851 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
1852 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
1853 second arg is unsigned even when we need to consider it as signed,
1854 we don't want to diagnose overflow here. */
1855 (convert (view_convert:stype @1))))
1857 /* (T)P - (T)(P + A) -> -(T) A */
1859 (minus (convert? @0)
1860 (convert (plus:c @@0 @1)))
1861 (if (INTEGRAL_TYPE_P (type)
1862 && TYPE_OVERFLOW_UNDEFINED (type)
1863 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1864 (with { tree utype = unsigned_type_for (type); }
1865 (convert (negate (convert:utype @1))))
1866 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1867 /* For integer types, if A has a smaller type
1868 than T the result depends on the possible
1870 E.g. T=size_t, A=(unsigned)429497295, P>0.
1871 However, if an overflow in P + A would cause
1872 undefined behavior, we can assume that there
1874 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1875 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
1876 (negate (convert @1)))))
1879 (convert (pointer_plus @@0 @1)))
1880 (if (INTEGRAL_TYPE_P (type)
1881 && TYPE_OVERFLOW_UNDEFINED (type)
1882 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1883 (with { tree utype = unsigned_type_for (type); }
1884 (convert (negate (convert:utype @1))))
1885 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1886 /* For pointer types, if the conversion of A to the
1887 final type requires a sign- or zero-extension,
1888 then we have to punt - it is not defined which
1890 || (POINTER_TYPE_P (TREE_TYPE (@0))
1891 && TREE_CODE (@1) == INTEGER_CST
1892 && tree_int_cst_sign_bit (@1) == 0))
1893 (negate (convert @1)))))
1895 (pointer_diff @0 (pointer_plus @@0 @1))
1896 /* The second argument of pointer_plus must be interpreted as signed, and
1897 thus sign-extended if necessary. */
1898 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
1899 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
1900 second arg is unsigned even when we need to consider it as signed,
1901 we don't want to diagnose overflow here. */
1902 (negate (convert (view_convert:stype @1)))))
1904 /* (T)(P + A) - (T)(P + B) -> (T)A - (T)B */
1906 (minus (convert (plus:c @@0 @1))
1907 (convert (plus:c @0 @2)))
1908 (if (INTEGRAL_TYPE_P (type)
1909 && TYPE_OVERFLOW_UNDEFINED (type)
1910 && element_precision (type) <= element_precision (TREE_TYPE (@1))
1911 && element_precision (type) <= element_precision (TREE_TYPE (@2)))
1912 (with { tree utype = unsigned_type_for (type); }
1913 (convert (minus (convert:utype @1) (convert:utype @2))))
1914 (if (((element_precision (type) <= element_precision (TREE_TYPE (@1)))
1915 == (element_precision (type) <= element_precision (TREE_TYPE (@2))))
1916 && (element_precision (type) <= element_precision (TREE_TYPE (@1))
1917 /* For integer types, if A has a smaller type
1918 than T the result depends on the possible
1920 E.g. T=size_t, A=(unsigned)429497295, P>0.
1921 However, if an overflow in P + A would cause
1922 undefined behavior, we can assume that there
1924 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1925 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
1926 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))
1927 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@2)))))
1928 (minus (convert @1) (convert @2)))))
1930 (minus (convert (pointer_plus @@0 @1))
1931 (convert (pointer_plus @0 @2)))
1932 (if (INTEGRAL_TYPE_P (type)
1933 && TYPE_OVERFLOW_UNDEFINED (type)
1934 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1935 (with { tree utype = unsigned_type_for (type); }
1936 (convert (minus (convert:utype @1) (convert:utype @2))))
1937 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1938 /* For pointer types, if the conversion of A to the
1939 final type requires a sign- or zero-extension,
1940 then we have to punt - it is not defined which
1942 || (POINTER_TYPE_P (TREE_TYPE (@0))
1943 && TREE_CODE (@1) == INTEGER_CST
1944 && tree_int_cst_sign_bit (@1) == 0
1945 && TREE_CODE (@2) == INTEGER_CST
1946 && tree_int_cst_sign_bit (@2) == 0))
1947 (minus (convert @1) (convert @2)))))
1949 (pointer_diff (pointer_plus @@0 @1) (pointer_plus @0 @2))
1950 /* The second argument of pointer_plus must be interpreted as signed, and
1951 thus sign-extended if necessary. */
1952 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
1953 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
1954 second arg is unsigned even when we need to consider it as signed,
1955 we don't want to diagnose overflow here. */
1956 (minus (convert (view_convert:stype @1))
1957 (convert (view_convert:stype @2)))))))
1959 /* (A * C) +- (B * C) -> (A+-B) * C and (A * C) +- A -> A * (C+-1).
1960 Modeled after fold_plusminus_mult_expr. */
1961 (if (!TYPE_SATURATING (type)
1962 && (!FLOAT_TYPE_P (type) || flag_associative_math))
1963 (for plusminus (plus minus)
1965 (plusminus (mult:cs@3 @0 @1) (mult:cs@4 @0 @2))
1966 (if ((!ANY_INTEGRAL_TYPE_P (type)
1967 || TYPE_OVERFLOW_WRAPS (type)
1968 || (INTEGRAL_TYPE_P (type)
1969 && tree_expr_nonzero_p (@0)
1970 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
1971 /* If @1 +- @2 is constant require a hard single-use on either
1972 original operand (but not on both). */
1973 && (single_use (@3) || single_use (@4)))
1974 (mult (plusminus @1 @2) @0)))
1975 /* We cannot generate constant 1 for fract. */
1976 (if (!ALL_FRACT_MODE_P (TYPE_MODE (type)))
1978 (plusminus @0 (mult:c@3 @0 @2))
1979 (if ((!ANY_INTEGRAL_TYPE_P (type)
1980 || TYPE_OVERFLOW_WRAPS (type)
1981 || (INTEGRAL_TYPE_P (type)
1982 && tree_expr_nonzero_p (@0)
1983 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
1985 (mult (plusminus { build_one_cst (type); } @2) @0)))
1987 (plusminus (mult:c@3 @0 @2) @0)
1988 (if ((!ANY_INTEGRAL_TYPE_P (type)
1989 || TYPE_OVERFLOW_WRAPS (type)
1990 || (INTEGRAL_TYPE_P (type)
1991 && tree_expr_nonzero_p (@0)
1992 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
1994 (mult (plusminus @2 { build_one_cst (type); }) @0))))))
1996 /* Simplifications of MIN_EXPR, MAX_EXPR, fmin() and fmax(). */
1998 (for minmax (min max FMIN_ALL FMAX_ALL)
2002 /* min(max(x,y),y) -> y. */
2004 (min:c (max:c @0 @1) @1)
2006 /* max(min(x,y),y) -> y. */
2008 (max:c (min:c @0 @1) @1)
2010 /* max(a,-a) -> abs(a). */
2012 (max:c @0 (negate @0))
2013 (if (TREE_CODE (type) != COMPLEX_TYPE
2014 && (! ANY_INTEGRAL_TYPE_P (type)
2015 || TYPE_OVERFLOW_UNDEFINED (type)))
2017 /* min(a,-a) -> -abs(a). */
2019 (min:c @0 (negate @0))
2020 (if (TREE_CODE (type) != COMPLEX_TYPE
2021 && (! ANY_INTEGRAL_TYPE_P (type)
2022 || TYPE_OVERFLOW_UNDEFINED (type)))
2027 (if (INTEGRAL_TYPE_P (type)
2028 && TYPE_MIN_VALUE (type)
2029 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
2031 (if (INTEGRAL_TYPE_P (type)
2032 && TYPE_MAX_VALUE (type)
2033 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
2038 (if (INTEGRAL_TYPE_P (type)
2039 && TYPE_MAX_VALUE (type)
2040 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
2042 (if (INTEGRAL_TYPE_P (type)
2043 && TYPE_MIN_VALUE (type)
2044 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
2047 /* max (a, a + CST) -> a + CST where CST is positive. */
2048 /* max (a, a + CST) -> a where CST is negative. */
2050 (max:c @0 (plus@2 @0 INTEGER_CST@1))
2051 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2052 (if (tree_int_cst_sgn (@1) > 0)
2056 /* min (a, a + CST) -> a where CST is positive. */
2057 /* min (a, a + CST) -> a + CST where CST is negative. */
2059 (min:c @0 (plus@2 @0 INTEGER_CST@1))
2060 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2061 (if (tree_int_cst_sgn (@1) > 0)
2065 /* (convert (minmax ((convert (x) c)))) -> minmax (x c) if x is promoted
2066 and the outer convert demotes the expression back to x's type. */
2067 (for minmax (min max)
2069 (convert (minmax@0 (convert @1) INTEGER_CST@2))
2070 (if (INTEGRAL_TYPE_P (type)
2071 && types_match (@1, type) && int_fits_type_p (@2, type)
2072 && TYPE_SIGN (TREE_TYPE (@0)) == TYPE_SIGN (type)
2073 && TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type))
2074 (minmax @1 (convert @2)))))
2076 (for minmax (FMIN_ALL FMAX_ALL)
2077 /* If either argument is NaN, return the other one. Avoid the
2078 transformation if we get (and honor) a signalling NaN. */
2080 (minmax:c @0 REAL_CST@1)
2081 (if (real_isnan (TREE_REAL_CST_PTR (@1))
2082 && (!HONOR_SNANS (@1) || !TREE_REAL_CST (@1).signalling))
2084 /* Convert fmin/fmax to MIN_EXPR/MAX_EXPR. C99 requires these
2085 functions to return the numeric arg if the other one is NaN.
2086 MIN and MAX don't honor that, so only transform if -ffinite-math-only
2087 is set. C99 doesn't require -0.0 to be handled, so we don't have to
2088 worry about it either. */
2089 (if (flag_finite_math_only)
2096 /* min (-A, -B) -> -max (A, B) */
2097 (for minmax (min max FMIN_ALL FMAX_ALL)
2098 maxmin (max min FMAX_ALL FMIN_ALL)
2100 (minmax (negate:s@2 @0) (negate:s@3 @1))
2101 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
2102 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2103 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
2104 (negate (maxmin @0 @1)))))
2105 /* MIN (~X, ~Y) -> ~MAX (X, Y)
2106 MAX (~X, ~Y) -> ~MIN (X, Y) */
2107 (for minmax (min max)
2110 (minmax (bit_not:s@2 @0) (bit_not:s@3 @1))
2111 (bit_not (maxmin @0 @1))))
2113 /* MIN (X, Y) == X -> X <= Y */
2114 (for minmax (min min max max)
2118 (cmp:c (minmax:c @0 @1) @0)
2119 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)))
2121 /* MIN (X, 5) == 0 -> X == 0
2122 MIN (X, 5) == 7 -> false */
2125 (cmp (min @0 INTEGER_CST@1) INTEGER_CST@2)
2126 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
2127 TYPE_SIGN (TREE_TYPE (@0))))
2128 { constant_boolean_node (cmp == NE_EXPR, type); }
2129 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
2130 TYPE_SIGN (TREE_TYPE (@0))))
2134 (cmp (max @0 INTEGER_CST@1) INTEGER_CST@2)
2135 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
2136 TYPE_SIGN (TREE_TYPE (@0))))
2137 { constant_boolean_node (cmp == NE_EXPR, type); }
2138 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
2139 TYPE_SIGN (TREE_TYPE (@0))))
2141 /* MIN (X, C1) < C2 -> X < C2 || C1 < C2 */
2142 (for minmax (min min max max min min max max )
2143 cmp (lt le gt ge gt ge lt le )
2144 comb (bit_ior bit_ior bit_ior bit_ior bit_and bit_and bit_and bit_and)
2146 (cmp (minmax @0 INTEGER_CST@1) INTEGER_CST@2)
2147 (comb (cmp @0 @2) (cmp @1 @2))))
2149 /* Simplifications of shift and rotates. */
2151 (for rotate (lrotate rrotate)
2153 (rotate integer_all_onesp@0 @1)
2156 /* Optimize -1 >> x for arithmetic right shifts. */
2158 (rshift integer_all_onesp@0 @1)
2159 (if (!TYPE_UNSIGNED (type)
2160 && tree_expr_nonnegative_p (@1))
2163 /* Optimize (x >> c) << c into x & (-1<<c). */
2165 (lshift (rshift @0 INTEGER_CST@1) @1)
2166 (if (wi::ltu_p (wi::to_wide (@1), element_precision (type)))
2167 (bit_and @0 (lshift { build_minus_one_cst (type); } @1))))
2169 /* Optimize (x << c) >> c into x & ((unsigned)-1 >> c) for unsigned
2172 (rshift (lshift @0 INTEGER_CST@1) @1)
2173 (if (TYPE_UNSIGNED (type)
2174 && (wi::ltu_p (wi::to_wide (@1), element_precision (type))))
2175 (bit_and @0 (rshift { build_minus_one_cst (type); } @1))))
2177 (for shiftrotate (lrotate rrotate lshift rshift)
2179 (shiftrotate @0 integer_zerop)
2182 (shiftrotate integer_zerop@0 @1)
2184 /* Prefer vector1 << scalar to vector1 << vector2
2185 if vector2 is uniform. */
2186 (for vec (VECTOR_CST CONSTRUCTOR)
2188 (shiftrotate @0 vec@1)
2189 (with { tree tem = uniform_vector_p (@1); }
2191 (shiftrotate @0 { tem; }))))))
2193 /* Simplify X << Y where Y's low width bits are 0 to X, as only valid
2194 Y is 0. Similarly for X >> Y. */
2196 (for shift (lshift rshift)
2198 (shift @0 SSA_NAME@1)
2199 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
2201 int width = ceil_log2 (element_precision (TREE_TYPE (@0)));
2202 int prec = TYPE_PRECISION (TREE_TYPE (@1));
2204 (if ((get_nonzero_bits (@1) & wi::mask (width, false, prec)) == 0)
2208 /* Rewrite an LROTATE_EXPR by a constant into an
2209 RROTATE_EXPR by a new constant. */
2211 (lrotate @0 INTEGER_CST@1)
2212 (rrotate @0 { const_binop (MINUS_EXPR, TREE_TYPE (@1),
2213 build_int_cst (TREE_TYPE (@1),
2214 element_precision (type)), @1); }))
2216 /* Turn (a OP c1) OP c2 into a OP (c1+c2). */
2217 (for op (lrotate rrotate rshift lshift)
2219 (op (op @0 INTEGER_CST@1) INTEGER_CST@2)
2220 (with { unsigned int prec = element_precision (type); }
2221 (if (wi::ge_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1)))
2222 && wi::lt_p (wi::to_wide (@1), prec, TYPE_SIGN (TREE_TYPE (@1)))
2223 && wi::ge_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2)))
2224 && wi::lt_p (wi::to_wide (@2), prec, TYPE_SIGN (TREE_TYPE (@2))))
2225 (with { unsigned int low = (tree_to_uhwi (@1)
2226 + tree_to_uhwi (@2)); }
2227 /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
2228 being well defined. */
2230 (if (op == LROTATE_EXPR || op == RROTATE_EXPR)
2231 (op @0 { build_int_cst (TREE_TYPE (@1), low % prec); })
2232 (if (TYPE_UNSIGNED (type) || op == LSHIFT_EXPR)
2233 { build_zero_cst (type); }
2234 (op @0 { build_int_cst (TREE_TYPE (@1), prec - 1); })))
2235 (op @0 { build_int_cst (TREE_TYPE (@1), low); })))))))
2238 /* ((1 << A) & 1) != 0 -> A == 0
2239 ((1 << A) & 1) == 0 -> A != 0 */
2243 (cmp (bit_and (lshift integer_onep @0) integer_onep) integer_zerop)
2244 (icmp @0 { build_zero_cst (TREE_TYPE (@0)); })))
2246 /* (CST1 << A) == CST2 -> A == ctz (CST2) - ctz (CST1)
2247 (CST1 << A) != CST2 -> A != ctz (CST2) - ctz (CST1)
2251 (cmp (lshift INTEGER_CST@0 @1) INTEGER_CST@2)
2252 (with { int cand = wi::ctz (wi::to_wide (@2)) - wi::ctz (wi::to_wide (@0)); }
2254 || (!integer_zerop (@2)
2255 && wi::lshift (wi::to_wide (@0), cand) != wi::to_wide (@2)))
2256 { constant_boolean_node (cmp == NE_EXPR, type); }
2257 (if (!integer_zerop (@2)
2258 && wi::lshift (wi::to_wide (@0), cand) == wi::to_wide (@2))
2259 (cmp @1 { build_int_cst (TREE_TYPE (@1), cand); }))))))
2261 /* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
2262 (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
2263 if the new mask might be further optimized. */
2264 (for shift (lshift rshift)
2266 (bit_and (convert?:s@4 (shift:s@5 (convert1?@3 @0) INTEGER_CST@1))
2268 (if (tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@5))
2269 && TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT
2270 && tree_fits_uhwi_p (@1)
2271 && tree_to_uhwi (@1) > 0
2272 && tree_to_uhwi (@1) < TYPE_PRECISION (type))
2275 unsigned int shiftc = tree_to_uhwi (@1);
2276 unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (@2);
2277 unsigned HOST_WIDE_INT newmask, zerobits = 0;
2278 tree shift_type = TREE_TYPE (@3);
2281 if (shift == LSHIFT_EXPR)
2282 zerobits = ((HOST_WIDE_INT_1U << shiftc) - 1);
2283 else if (shift == RSHIFT_EXPR
2284 && type_has_mode_precision_p (shift_type))
2286 prec = TYPE_PRECISION (TREE_TYPE (@3));
2288 /* See if more bits can be proven as zero because of
2291 && TYPE_UNSIGNED (TREE_TYPE (@0)))
2293 tree inner_type = TREE_TYPE (@0);
2294 if (type_has_mode_precision_p (inner_type)
2295 && TYPE_PRECISION (inner_type) < prec)
2297 prec = TYPE_PRECISION (inner_type);
2298 /* See if we can shorten the right shift. */
2300 shift_type = inner_type;
2301 /* Otherwise X >> C1 is all zeros, so we'll optimize
2302 it into (X, 0) later on by making sure zerobits
2306 zerobits = HOST_WIDE_INT_M1U;
2309 zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
2310 zerobits <<= prec - shiftc;
2312 /* For arithmetic shift if sign bit could be set, zerobits
2313 can contain actually sign bits, so no transformation is
2314 possible, unless MASK masks them all away. In that
2315 case the shift needs to be converted into logical shift. */
2316 if (!TYPE_UNSIGNED (TREE_TYPE (@3))
2317 && prec == TYPE_PRECISION (TREE_TYPE (@3)))
2319 if ((mask & zerobits) == 0)
2320 shift_type = unsigned_type_for (TREE_TYPE (@3));
2326 /* ((X << 16) & 0xff00) is (X, 0). */
2327 (if ((mask & zerobits) == mask)
2328 { build_int_cst (type, 0); }
2329 (with { newmask = mask | zerobits; }
2330 (if (newmask != mask && (newmask & (newmask + 1)) == 0)
2333 /* Only do the transformation if NEWMASK is some integer
2335 for (prec = BITS_PER_UNIT;
2336 prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
2337 if (newmask == (HOST_WIDE_INT_1U << prec) - 1)
2340 (if (prec < HOST_BITS_PER_WIDE_INT
2341 || newmask == HOST_WIDE_INT_M1U)
2343 { tree newmaskt = build_int_cst_type (TREE_TYPE (@2), newmask); }
2344 (if (!tree_int_cst_equal (newmaskt, @2))
2345 (if (shift_type != TREE_TYPE (@3))
2346 (bit_and (convert (shift:shift_type (convert @3) @1)) { newmaskt; })
2347 (bit_and @4 { newmaskt; })))))))))))))
2349 /* Fold (X {&,^,|} C2) << C1 into (X << C1) {&,^,|} (C2 << C1)
2350 (X {&,^,|} C2) >> C1 into (X >> C1) & (C2 >> C1). */
2351 (for shift (lshift rshift)
2352 (for bit_op (bit_and bit_xor bit_ior)
2354 (shift (convert?:s (bit_op:s @0 INTEGER_CST@2)) INTEGER_CST@1)
2355 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2356 (with { tree mask = int_const_binop (shift, fold_convert (type, @2), @1); }
2357 (bit_op (shift (convert @0) @1) { mask; }))))))
2359 /* ~(~X >> Y) -> X >> Y (for arithmetic shift). */
2361 (bit_not (convert1?:s (rshift:s (convert2?@0 (bit_not @1)) @2)))
2362 (if (!TYPE_UNSIGNED (TREE_TYPE (@0))
2363 && (element_precision (TREE_TYPE (@0))
2364 <= element_precision (TREE_TYPE (@1))
2365 || !TYPE_UNSIGNED (TREE_TYPE (@1))))
2367 { tree shift_type = TREE_TYPE (@0); }
2368 (convert (rshift (convert:shift_type @1) @2)))))
2370 /* ~(~X >>r Y) -> X >>r Y
2371 ~(~X <<r Y) -> X <<r Y */
2372 (for rotate (lrotate rrotate)
2374 (bit_not (convert1?:s (rotate:s (convert2?@0 (bit_not @1)) @2)))
2375 (if ((element_precision (TREE_TYPE (@0))
2376 <= element_precision (TREE_TYPE (@1))
2377 || !TYPE_UNSIGNED (TREE_TYPE (@1)))
2378 && (element_precision (type) <= element_precision (TREE_TYPE (@0))
2379 || !TYPE_UNSIGNED (TREE_TYPE (@0))))
2381 { tree rotate_type = TREE_TYPE (@0); }
2382 (convert (rotate (convert:rotate_type @1) @2))))))
2384 /* Simplifications of conversions. */
2386 /* Basic strip-useless-type-conversions / strip_nops. */
2387 (for cvt (convert view_convert float fix_trunc)
2390 (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
2391 || (GENERIC && type == TREE_TYPE (@0)))
2394 /* Contract view-conversions. */
2396 (view_convert (view_convert @0))
2399 /* For integral conversions with the same precision or pointer
2400 conversions use a NOP_EXPR instead. */
2403 (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
2404 && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
2405 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
2408 /* Strip inner integral conversions that do not change precision or size, or
2409 zero-extend while keeping the same size (for bool-to-char). */
2411 (view_convert (convert@0 @1))
2412 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
2413 && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
2414 && TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))
2415 && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1))
2416 || (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@1))
2417 && TYPE_UNSIGNED (TREE_TYPE (@1)))))
2420 /* Re-association barriers around constants and other re-association
2421 barriers can be removed. */
2423 (paren CONSTANT_CLASS_P@0)
2426 (paren (paren@1 @0))
2429 /* Handle cases of two conversions in a row. */
2430 (for ocvt (convert float fix_trunc)
2431 (for icvt (convert float)
2436 tree inside_type = TREE_TYPE (@0);
2437 tree inter_type = TREE_TYPE (@1);
2438 int inside_int = INTEGRAL_TYPE_P (inside_type);
2439 int inside_ptr = POINTER_TYPE_P (inside_type);
2440 int inside_float = FLOAT_TYPE_P (inside_type);
2441 int inside_vec = VECTOR_TYPE_P (inside_type);
2442 unsigned int inside_prec = TYPE_PRECISION (inside_type);
2443 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
2444 int inter_int = INTEGRAL_TYPE_P (inter_type);
2445 int inter_ptr = POINTER_TYPE_P (inter_type);
2446 int inter_float = FLOAT_TYPE_P (inter_type);
2447 int inter_vec = VECTOR_TYPE_P (inter_type);
2448 unsigned int inter_prec = TYPE_PRECISION (inter_type);
2449 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
2450 int final_int = INTEGRAL_TYPE_P (type);
2451 int final_ptr = POINTER_TYPE_P (type);
2452 int final_float = FLOAT_TYPE_P (type);
2453 int final_vec = VECTOR_TYPE_P (type);
2454 unsigned int final_prec = TYPE_PRECISION (type);
2455 int final_unsignedp = TYPE_UNSIGNED (type);
2458 /* In addition to the cases of two conversions in a row
2459 handled below, if we are converting something to its own
2460 type via an object of identical or wider precision, neither
2461 conversion is needed. */
2462 (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
2464 && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
2465 && (((inter_int || inter_ptr) && final_int)
2466 || (inter_float && final_float))
2467 && inter_prec >= final_prec)
2470 /* Likewise, if the intermediate and initial types are either both
2471 float or both integer, we don't need the middle conversion if the
2472 former is wider than the latter and doesn't change the signedness
2473 (for integers). Avoid this if the final type is a pointer since
2474 then we sometimes need the middle conversion. */
2475 (if (((inter_int && inside_int) || (inter_float && inside_float))
2476 && (final_int || final_float)
2477 && inter_prec >= inside_prec
2478 && (inter_float || inter_unsignedp == inside_unsignedp))
2481 /* If we have a sign-extension of a zero-extended value, we can
2482 replace that by a single zero-extension. Likewise if the
2483 final conversion does not change precision we can drop the
2484 intermediate conversion. */
2485 (if (inside_int && inter_int && final_int
2486 && ((inside_prec < inter_prec && inter_prec < final_prec
2487 && inside_unsignedp && !inter_unsignedp)
2488 || final_prec == inter_prec))
2491 /* Two conversions in a row are not needed unless:
2492 - some conversion is floating-point (overstrict for now), or
2493 - some conversion is a vector (overstrict for now), or
2494 - the intermediate type is narrower than both initial and
2496 - the intermediate type and innermost type differ in signedness,
2497 and the outermost type is wider than the intermediate, or
2498 - the initial type is a pointer type and the precisions of the
2499 intermediate and final types differ, or
2500 - the final type is a pointer type and the precisions of the
2501 initial and intermediate types differ. */
2502 (if (! inside_float && ! inter_float && ! final_float
2503 && ! inside_vec && ! inter_vec && ! final_vec
2504 && (inter_prec >= inside_prec || inter_prec >= final_prec)
2505 && ! (inside_int && inter_int
2506 && inter_unsignedp != inside_unsignedp
2507 && inter_prec < final_prec)
2508 && ((inter_unsignedp && inter_prec > inside_prec)
2509 == (final_unsignedp && final_prec > inter_prec))
2510 && ! (inside_ptr && inter_prec != final_prec)
2511 && ! (final_ptr && inside_prec != inter_prec))
2514 /* A truncation to an unsigned type (a zero-extension) should be
2515 canonicalized as bitwise and of a mask. */
2516 (if (GIMPLE /* PR70366: doing this in GENERIC breaks -Wconversion. */
2517 && final_int && inter_int && inside_int
2518 && final_prec == inside_prec
2519 && final_prec > inter_prec
2521 (convert (bit_and @0 { wide_int_to_tree
2523 wi::mask (inter_prec, false,
2524 TYPE_PRECISION (inside_type))); })))
2526 /* If we are converting an integer to a floating-point that can
2527 represent it exactly and back to an integer, we can skip the
2528 floating-point conversion. */
2529 (if (GIMPLE /* PR66211 */
2530 && inside_int && inter_float && final_int &&
2531 (unsigned) significand_size (TYPE_MODE (inter_type))
2532 >= inside_prec - !inside_unsignedp)
2535 /* If we have a narrowing conversion to an integral type that is fed by a
2536 BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
2537 masks off bits outside the final type (and nothing else). */
2539 (convert (bit_and @0 INTEGER_CST@1))
2540 (if (INTEGRAL_TYPE_P (type)
2541 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
2542 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
2543 && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
2544 TYPE_PRECISION (type)), 0))
2548 /* (X /[ex] A) * A -> X. */
2550 (mult (convert1? (exact_div @0 @@1)) (convert2? @1))
2553 /* Canonicalization of binary operations. */
2555 /* Convert X + -C into X - C. */
2557 (plus @0 REAL_CST@1)
2558 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
2559 (with { tree tem = const_unop (NEGATE_EXPR, type, @1); }
2560 (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
2561 (minus @0 { tem; })))))
2563 /* Convert x+x into x*2. */
2566 (if (SCALAR_FLOAT_TYPE_P (type))
2567 (mult @0 { build_real (type, dconst2); })
2568 (if (INTEGRAL_TYPE_P (type))
2569 (mult @0 { build_int_cst (type, 2); }))))
2573 (minus integer_zerop @1)
2576 (pointer_diff integer_zerop @1)
2577 (negate (convert @1)))
2579 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
2580 ARG0 is zero and X + ARG0 reduces to X, since that would mean
2581 (-ARG1 + ARG0) reduces to -ARG1. */
2583 (minus real_zerop@0 @1)
2584 (if (fold_real_zero_addition_p (type, @0, 0))
2587 /* Transform x * -1 into -x. */
2589 (mult @0 integer_minus_onep)
2592 /* Reassociate (X * CST) * Y to (X * Y) * CST. This does not introduce
2593 signed overflow for CST != 0 && CST != -1. */
2595 (mult:c (mult:s@3 @0 INTEGER_CST@1) @2)
2596 (if (TREE_CODE (@2) != INTEGER_CST
2598 && !integer_zerop (@1) && !integer_minus_onep (@1))
2599 (mult (mult @0 @2) @1)))
2601 /* True if we can easily extract the real and imaginary parts of a complex
2603 (match compositional_complex
2604 (convert? (complex @0 @1)))
2606 /* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations. */
2608 (complex (realpart @0) (imagpart @0))
2611 (realpart (complex @0 @1))
2614 (imagpart (complex @0 @1))
2617 /* Sometimes we only care about half of a complex expression. */
2619 (realpart (convert?:s (conj:s @0)))
2620 (convert (realpart @0)))
2622 (imagpart (convert?:s (conj:s @0)))
2623 (convert (negate (imagpart @0))))
2624 (for part (realpart imagpart)
2625 (for op (plus minus)
2627 (part (convert?:s@2 (op:s @0 @1)))
2628 (convert (op (part @0) (part @1))))))
2630 (realpart (convert?:s (CEXPI:s @0)))
2633 (imagpart (convert?:s (CEXPI:s @0)))
2636 /* conj(conj(x)) -> x */
2638 (conj (convert? (conj @0)))
2639 (if (tree_nop_conversion_p (TREE_TYPE (@0), type))
2642 /* conj({x,y}) -> {x,-y} */
2644 (conj (convert?:s (complex:s @0 @1)))
2645 (with { tree itype = TREE_TYPE (type); }
2646 (complex (convert:itype @0) (negate (convert:itype @1)))))
2648 /* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c. */
2649 (for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32 BUILT_IN_BSWAP64)
2654 (bswap (bit_not (bswap @0)))
2656 (for bitop (bit_xor bit_ior bit_and)
2658 (bswap (bitop:c (bswap @0) @1))
2659 (bitop @0 (bswap @1)))))
2662 /* Combine COND_EXPRs and VEC_COND_EXPRs. */
2664 /* Simplify constant conditions.
2665 Only optimize constant conditions when the selected branch
2666 has the same type as the COND_EXPR. This avoids optimizing
2667 away "c ? x : throw", where the throw has a void type.
2668 Note that we cannot throw away the fold-const.c variant nor
2669 this one as we depend on doing this transform before possibly
2670 A ? B : B -> B triggers and the fold-const.c one can optimize
2671 0 ? A : B to B even if A has side-effects. Something
2672 genmatch cannot handle. */
2674 (cond INTEGER_CST@0 @1 @2)
2675 (if (integer_zerop (@0))
2676 (if (!VOID_TYPE_P (TREE_TYPE (@2)) || VOID_TYPE_P (type))
2678 (if (!VOID_TYPE_P (TREE_TYPE (@1)) || VOID_TYPE_P (type))
2681 (vec_cond VECTOR_CST@0 @1 @2)
2682 (if (integer_all_onesp (@0))
2684 (if (integer_zerop (@0))
2687 /* Simplification moved from fold_cond_expr_with_comparison. It may also
2689 /* This pattern implements two kinds simplification:
2692 (cond (cmp (convert1? x) c1) (convert2? x) c2) -> (minmax (x c)) if:
2693 1) Conversions are type widening from smaller type.
2694 2) Const c1 equals to c2 after canonicalizing comparison.
2695 3) Comparison has tree code LT, LE, GT or GE.
2696 This specific pattern is needed when (cmp (convert x) c) may not
2697 be simplified by comparison patterns because of multiple uses of
2698 x. It also makes sense here because simplifying across multiple
2699 referred var is always benefitial for complicated cases.
2702 (cond (eq (convert1? x) c1) (convert2? x) c2) -> (cond (eq x c1) c1 c2). */
2703 (for cmp (lt le gt ge eq)
2705 (cond (cmp (convert1? @1) INTEGER_CST@3) (convert2? @1) INTEGER_CST@2)
2708 tree from_type = TREE_TYPE (@1);
2709 tree c1_type = TREE_TYPE (@3), c2_type = TREE_TYPE (@2);
2710 enum tree_code code = ERROR_MARK;
2712 if (INTEGRAL_TYPE_P (from_type)
2713 && int_fits_type_p (@2, from_type)
2714 && (types_match (c1_type, from_type)
2715 || (TYPE_PRECISION (c1_type) > TYPE_PRECISION (from_type)
2716 && (TYPE_UNSIGNED (from_type)
2717 || TYPE_SIGN (c1_type) == TYPE_SIGN (from_type))))
2718 && (types_match (c2_type, from_type)
2719 || (TYPE_PRECISION (c2_type) > TYPE_PRECISION (from_type)
2720 && (TYPE_UNSIGNED (from_type)
2721 || TYPE_SIGN (c2_type) == TYPE_SIGN (from_type)))))
2725 if (wi::to_widest (@3) == (wi::to_widest (@2) - 1))
2727 /* X <= Y - 1 equals to X < Y. */
2730 /* X > Y - 1 equals to X >= Y. */
2734 if (wi::to_widest (@3) == (wi::to_widest (@2) + 1))
2736 /* X < Y + 1 equals to X <= Y. */
2739 /* X >= Y + 1 equals to X > Y. */
2743 if (code != ERROR_MARK
2744 || wi::to_widest (@2) == wi::to_widest (@3))
2746 if (cmp == LT_EXPR || cmp == LE_EXPR)
2748 if (cmp == GT_EXPR || cmp == GE_EXPR)
2752 /* Can do A == C1 ? A : C2 -> A == C1 ? C1 : C2? */
2753 else if (int_fits_type_p (@3, from_type))
2757 (if (code == MAX_EXPR)
2758 (convert (max @1 (convert @2)))
2759 (if (code == MIN_EXPR)
2760 (convert (min @1 (convert @2)))
2761 (if (code == EQ_EXPR)
2762 (convert (cond (eq @1 (convert @3))
2763 (convert:from_type @3) (convert:from_type @2)))))))))
2765 /* (cond (cmp (convert? x) c1) (op x c2) c3) -> (op (minmax x c1) c2) if:
2767 1) OP is PLUS or MINUS.
2768 2) CMP is LT, LE, GT or GE.
2769 3) C3 == (C1 op C2), and computation doesn't have undefined behavior.
2771 This pattern also handles special cases like:
2773 A) Operand x is a unsigned to signed type conversion and c1 is
2774 integer zero. In this case,
2775 (signed type)x < 0 <=> x > MAX_VAL(signed type)
2776 (signed type)x >= 0 <=> x <= MAX_VAL(signed type)
2777 B) Const c1 may not equal to (C3 op' C2). In this case we also
2778 check equality for (c1+1) and (c1-1) by adjusting comparison
2781 TODO: Though signed type is handled by this pattern, it cannot be
2782 simplified at the moment because C standard requires additional
2783 type promotion. In order to match&simplify it here, the IR needs
2784 to be cleaned up by other optimizers, i.e, VRP. */
2785 (for op (plus minus)
2786 (for cmp (lt le gt ge)
2788 (cond (cmp (convert? @X) INTEGER_CST@1) (op @X INTEGER_CST@2) INTEGER_CST@3)
2789 (with { tree from_type = TREE_TYPE (@X), to_type = TREE_TYPE (@1); }
2790 (if (types_match (from_type, to_type)
2791 /* Check if it is special case A). */
2792 || (TYPE_UNSIGNED (from_type)
2793 && !TYPE_UNSIGNED (to_type)
2794 && TYPE_PRECISION (from_type) == TYPE_PRECISION (to_type)
2795 && integer_zerop (@1)
2796 && (cmp == LT_EXPR || cmp == GE_EXPR)))
2799 bool overflow = false;
2800 enum tree_code code, cmp_code = cmp;
2802 wide_int c1 = wi::to_wide (@1);
2803 wide_int c2 = wi::to_wide (@2);
2804 wide_int c3 = wi::to_wide (@3);
2805 signop sgn = TYPE_SIGN (from_type);
2807 /* Handle special case A), given x of unsigned type:
2808 ((signed type)x < 0) <=> (x > MAX_VAL(signed type))
2809 ((signed type)x >= 0) <=> (x <= MAX_VAL(signed type)) */
2810 if (!types_match (from_type, to_type))
2812 if (cmp_code == LT_EXPR)
2814 if (cmp_code == GE_EXPR)
2816 c1 = wi::max_value (to_type);
2818 /* To simplify this pattern, we require c3 = (c1 op c2). Here we
2819 compute (c3 op' c2) and check if it equals to c1 with op' being
2820 the inverted operator of op. Make sure overflow doesn't happen
2821 if it is undefined. */
2822 if (op == PLUS_EXPR)
2823 real_c1 = wi::sub (c3, c2, sgn, &overflow);
2825 real_c1 = wi::add (c3, c2, sgn, &overflow);
2828 if (!overflow || !TYPE_OVERFLOW_UNDEFINED (from_type))
2830 /* Check if c1 equals to real_c1. Boundary condition is handled
2831 by adjusting comparison operation if necessary. */
2832 if (!wi::cmp (wi::sub (real_c1, 1, sgn, &overflow), c1, sgn)
2835 /* X <= Y - 1 equals to X < Y. */
2836 if (cmp_code == LE_EXPR)
2838 /* X > Y - 1 equals to X >= Y. */
2839 if (cmp_code == GT_EXPR)
2842 if (!wi::cmp (wi::add (real_c1, 1, sgn, &overflow), c1, sgn)
2845 /* X < Y + 1 equals to X <= Y. */
2846 if (cmp_code == LT_EXPR)
2848 /* X >= Y + 1 equals to X > Y. */
2849 if (cmp_code == GE_EXPR)
2852 if (code != cmp_code || !wi::cmp (real_c1, c1, sgn))
2854 if (cmp_code == LT_EXPR || cmp_code == LE_EXPR)
2856 if (cmp_code == GT_EXPR || cmp_code == GE_EXPR)
2861 (if (code == MAX_EXPR)
2862 (op (max @X { wide_int_to_tree (from_type, real_c1); })
2863 { wide_int_to_tree (from_type, c2); })
2864 (if (code == MIN_EXPR)
2865 (op (min @X { wide_int_to_tree (from_type, real_c1); })
2866 { wide_int_to_tree (from_type, c2); })))))))))
2868 (for cnd (cond vec_cond)
2869 /* A ? B : (A ? X : C) -> A ? B : C. */
2871 (cnd @0 (cnd @0 @1 @2) @3)
2874 (cnd @0 @1 (cnd @0 @2 @3))
2876 /* A ? B : (!A ? C : X) -> A ? B : C. */
2877 /* ??? This matches embedded conditions open-coded because genmatch
2878 would generate matching code for conditions in separate stmts only.
2879 The following is still important to merge then and else arm cases
2880 from if-conversion. */
2882 (cnd @0 @1 (cnd @2 @3 @4))
2883 (if (COMPARISON_CLASS_P (@0)
2884 && COMPARISON_CLASS_P (@2)
2885 && invert_tree_comparison
2886 (TREE_CODE (@0), HONOR_NANS (TREE_OPERAND (@0, 0))) == TREE_CODE (@2)
2887 && operand_equal_p (TREE_OPERAND (@0, 0), TREE_OPERAND (@2, 0), 0)
2888 && operand_equal_p (TREE_OPERAND (@0, 1), TREE_OPERAND (@2, 1), 0))
2891 (cnd @0 (cnd @1 @2 @3) @4)
2892 (if (COMPARISON_CLASS_P (@0)
2893 && COMPARISON_CLASS_P (@1)
2894 && invert_tree_comparison
2895 (TREE_CODE (@0), HONOR_NANS (TREE_OPERAND (@0, 0))) == TREE_CODE (@1)
2896 && operand_equal_p (TREE_OPERAND (@0, 0), TREE_OPERAND (@1, 0), 0)
2897 && operand_equal_p (TREE_OPERAND (@0, 1), TREE_OPERAND (@1, 1), 0))
2900 /* A ? B : B -> B. */
2905 /* !A ? B : C -> A ? C : B. */
2907 (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
2910 /* A + (B vcmp C ? 1 : 0) -> A - (B vcmp C ? -1 : 0), since vector comparisons
2911 return all -1 or all 0 results. */
2912 /* ??? We could instead convert all instances of the vec_cond to negate,
2913 but that isn't necessarily a win on its own. */
2915 (plus:c @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
2916 (if (VECTOR_TYPE_P (type)
2917 && known_eq (TYPE_VECTOR_SUBPARTS (type),
2918 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
2919 && (TYPE_MODE (TREE_TYPE (type))
2920 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
2921 (minus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
2923 /* ... likewise A - (B vcmp C ? 1 : 0) -> A + (B vcmp C ? -1 : 0). */
2925 (minus @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
2926 (if (VECTOR_TYPE_P (type)
2927 && known_eq (TYPE_VECTOR_SUBPARTS (type),
2928 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
2929 && (TYPE_MODE (TREE_TYPE (type))
2930 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
2931 (plus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
2934 /* Simplifications of comparisons. */
2936 /* See if we can reduce the magnitude of a constant involved in a
2937 comparison by changing the comparison code. This is a canonicalization
2938 formerly done by maybe_canonicalize_comparison_1. */
2942 (cmp @0 INTEGER_CST@1)
2943 (if (tree_int_cst_sgn (@1) == -1)
2944 (acmp @0 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) + 1); }))))
2948 (cmp @0 INTEGER_CST@1)
2949 (if (tree_int_cst_sgn (@1) == 1)
2950 (acmp @0 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) - 1); }))))
2953 /* We can simplify a logical negation of a comparison to the
2954 inverted comparison. As we cannot compute an expression
2955 operator using invert_tree_comparison we have to simulate
2956 that with expression code iteration. */
2957 (for cmp (tcc_comparison)
2958 icmp (inverted_tcc_comparison)
2959 ncmp (inverted_tcc_comparison_with_nans)
2960 /* Ideally we'd like to combine the following two patterns
2961 and handle some more cases by using
2962 (logical_inverted_value (cmp @0 @1))
2963 here but for that genmatch would need to "inline" that.
2964 For now implement what forward_propagate_comparison did. */
2966 (bit_not (cmp @0 @1))
2967 (if (VECTOR_TYPE_P (type)
2968 || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
2969 /* Comparison inversion may be impossible for trapping math,
2970 invert_tree_comparison will tell us. But we can't use
2971 a computed operator in the replacement tree thus we have
2972 to play the trick below. */
2973 (with { enum tree_code ic = invert_tree_comparison
2974 (cmp, HONOR_NANS (@0)); }
2980 (bit_xor (cmp @0 @1) integer_truep)
2981 (with { enum tree_code ic = invert_tree_comparison
2982 (cmp, HONOR_NANS (@0)); }
2988 /* Transform comparisons of the form X - Y CMP 0 to X CMP Y.
2989 ??? The transformation is valid for the other operators if overflow
2990 is undefined for the type, but performing it here badly interacts
2991 with the transformation in fold_cond_expr_with_comparison which
2992 attempts to synthetize ABS_EXPR. */
2994 (for sub (minus pointer_diff)
2996 (cmp (sub@2 @0 @1) integer_zerop)
2997 (if (single_use (@2))
3000 /* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
3001 signed arithmetic case. That form is created by the compiler
3002 often enough for folding it to be of value. One example is in
3003 computing loop trip counts after Operator Strength Reduction. */
3004 (for cmp (simple_comparison)
3005 scmp (swapped_simple_comparison)
3007 (cmp (mult@3 @0 INTEGER_CST@1) integer_zerop@2)
3008 /* Handle unfolded multiplication by zero. */
3009 (if (integer_zerop (@1))
3011 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3012 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
3014 /* If @1 is negative we swap the sense of the comparison. */
3015 (if (tree_int_cst_sgn (@1) < 0)
3019 /* Simplify comparison of something with itself. For IEEE
3020 floating-point, we can only do some of these simplifications. */
3024 (if (! FLOAT_TYPE_P (TREE_TYPE (@0))
3025 || ! HONOR_NANS (@0))
3026 { constant_boolean_node (true, type); }
3027 (if (cmp != EQ_EXPR)
3033 || ! FLOAT_TYPE_P (TREE_TYPE (@0))
3034 || ! HONOR_NANS (@0))
3035 { constant_boolean_node (false, type); })))
3036 (for cmp (unle unge uneq)
3039 { constant_boolean_node (true, type); }))
3040 (for cmp (unlt ungt)
3046 (if (!flag_trapping_math)
3047 { constant_boolean_node (false, type); }))
3049 /* Fold ~X op ~Y as Y op X. */
3050 (for cmp (simple_comparison)
3052 (cmp (bit_not@2 @0) (bit_not@3 @1))
3053 (if (single_use (@2) && single_use (@3))
3056 /* Fold ~X op C as X op' ~C, where op' is the swapped comparison. */
3057 (for cmp (simple_comparison)
3058 scmp (swapped_simple_comparison)
3060 (cmp (bit_not@2 @0) CONSTANT_CLASS_P@1)
3061 (if (single_use (@2)
3062 && (TREE_CODE (@1) == INTEGER_CST || TREE_CODE (@1) == VECTOR_CST))
3063 (scmp @0 (bit_not @1)))))
3065 (for cmp (simple_comparison)
3066 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
3068 (cmp (convert@2 @0) (convert? @1))
3069 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3070 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
3071 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
3072 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
3073 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))))
3076 tree type1 = TREE_TYPE (@1);
3077 if (TREE_CODE (@1) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (type1))
3079 REAL_VALUE_TYPE orig = TREE_REAL_CST (@1);
3080 if (TYPE_PRECISION (type1) > TYPE_PRECISION (float_type_node)
3081 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
3082 type1 = float_type_node;
3083 if (TYPE_PRECISION (type1) > TYPE_PRECISION (double_type_node)
3084 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
3085 type1 = double_type_node;
3088 = (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type1)
3089 ? TREE_TYPE (@0) : type1);
3091 (if (TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (newtype))
3092 (cmp (convert:newtype @0) (convert:newtype @1))))))
3096 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
3098 /* a CMP (-0) -> a CMP 0 */
3099 (if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)))
3100 (cmp @0 { build_real (TREE_TYPE (@1), dconst0); }))
3101 /* x != NaN is always true, other ops are always false. */
3102 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
3103 && ! HONOR_SNANS (@1))
3104 { constant_boolean_node (cmp == NE_EXPR, type); })
3105 /* Fold comparisons against infinity. */
3106 (if (REAL_VALUE_ISINF (TREE_REAL_CST (@1))
3107 && MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (@1))))
3110 REAL_VALUE_TYPE max;
3111 enum tree_code code = cmp;
3112 bool neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1));
3114 code = swap_tree_comparison (code);
3117 /* x > +Inf is always false, if we ignore NaNs or exceptions. */
3118 (if (code == GT_EXPR
3119 && !(HONOR_NANS (@0) && flag_trapping_math))
3120 { constant_boolean_node (false, type); })
3121 (if (code == LE_EXPR)
3122 /* x <= +Inf is always true, if we don't care about NaNs. */
3123 (if (! HONOR_NANS (@0))
3124 { constant_boolean_node (true, type); }
3125 /* x <= +Inf is the same as x == x, i.e. !isnan(x), but this loses
3126 an "invalid" exception. */
3127 (if (!flag_trapping_math)
3129 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX, but
3130 for == this introduces an exception for x a NaN. */
3131 (if ((code == EQ_EXPR && !(HONOR_NANS (@0) && flag_trapping_math))
3133 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3135 (lt @0 { build_real (TREE_TYPE (@0), max); })
3136 (gt @0 { build_real (TREE_TYPE (@0), max); }))))
3137 /* x < +Inf is always equal to x <= DBL_MAX. */
3138 (if (code == LT_EXPR)
3139 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3141 (ge @0 { build_real (TREE_TYPE (@0), max); })
3142 (le @0 { build_real (TREE_TYPE (@0), max); }))))
3143 /* x != +Inf is always equal to !(x > DBL_MAX), but this introduces
3144 an exception for x a NaN so use an unordered comparison. */
3145 (if (code == NE_EXPR)
3146 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3147 (if (! HONOR_NANS (@0))
3149 (ge @0 { build_real (TREE_TYPE (@0), max); })
3150 (le @0 { build_real (TREE_TYPE (@0), max); }))
3152 (unge @0 { build_real (TREE_TYPE (@0), max); })
3153 (unle @0 { build_real (TREE_TYPE (@0), max); }))))))))))
3155 /* If this is a comparison of a real constant with a PLUS_EXPR
3156 or a MINUS_EXPR of a real constant, we can convert it into a
3157 comparison with a revised real constant as long as no overflow
3158 occurs when unsafe_math_optimizations are enabled. */
3159 (if (flag_unsafe_math_optimizations)
3160 (for op (plus minus)
3162 (cmp (op @0 REAL_CST@1) REAL_CST@2)
3165 tree tem = const_binop (op == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR,
3166 TREE_TYPE (@1), @2, @1);
3168 (if (tem && !TREE_OVERFLOW (tem))
3169 (cmp @0 { tem; }))))))
3171 /* Likewise, we can simplify a comparison of a real constant with
3172 a MINUS_EXPR whose first operand is also a real constant, i.e.
3173 (c1 - x) < c2 becomes x > c1-c2. Reordering is allowed on
3174 floating-point types only if -fassociative-math is set. */
3175 (if (flag_associative_math)
3177 (cmp (minus REAL_CST@0 @1) REAL_CST@2)
3178 (with { tree tem = const_binop (MINUS_EXPR, TREE_TYPE (@1), @0, @2); }
3179 (if (tem && !TREE_OVERFLOW (tem))
3180 (cmp { tem; } @1)))))
3182 /* Fold comparisons against built-in math functions. */
3183 (if (flag_unsafe_math_optimizations
3184 && ! flag_errno_math)
3187 (cmp (sq @0) REAL_CST@1)
3189 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
3191 /* sqrt(x) < y is always false, if y is negative. */
3192 (if (cmp == EQ_EXPR || cmp == LT_EXPR || cmp == LE_EXPR)
3193 { constant_boolean_node (false, type); })
3194 /* sqrt(x) > y is always true, if y is negative and we
3195 don't care about NaNs, i.e. negative values of x. */
3196 (if (cmp == NE_EXPR || !HONOR_NANS (@0))
3197 { constant_boolean_node (true, type); })
3198 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
3199 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })))
3200 (if (real_equal (TREE_REAL_CST_PTR (@1), &dconst0))
3202 /* sqrt(x) < 0 is always false. */
3203 (if (cmp == LT_EXPR)
3204 { constant_boolean_node (false, type); })
3205 /* sqrt(x) >= 0 is always true if we don't care about NaNs. */
3206 (if (cmp == GE_EXPR && !HONOR_NANS (@0))
3207 { constant_boolean_node (true, type); })
3208 /* sqrt(x) <= 0 -> x == 0. */
3209 (if (cmp == LE_EXPR)
3211 /* Otherwise sqrt(x) cmp 0 -> x cmp 0. Here cmp can be >=, >,
3212 == or !=. In the last case:
3214 (sqrt(x) != 0) == (NaN != 0) == true == (x != 0)
3216 if x is negative or NaN. Due to -funsafe-math-optimizations,
3217 the results for other x follow from natural arithmetic. */
3219 (if (cmp == GT_EXPR || cmp == GE_EXPR)
3223 real_arithmetic (&c2, MULT_EXPR,
3224 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
3225 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
3227 (if (REAL_VALUE_ISINF (c2))
3228 /* sqrt(x) > y is x == +Inf, when y is very large. */
3229 (if (HONOR_INFINITIES (@0))
3230 (eq @0 { build_real (TREE_TYPE (@0), c2); })
3231 { constant_boolean_node (false, type); })
3232 /* sqrt(x) > c is the same as x > c*c. */
3233 (cmp @0 { build_real (TREE_TYPE (@0), c2); }))))
3234 (if (cmp == LT_EXPR || cmp == LE_EXPR)
3238 real_arithmetic (&c2, MULT_EXPR,
3239 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
3240 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
3242 (if (REAL_VALUE_ISINF (c2))
3244 /* sqrt(x) < y is always true, when y is a very large
3245 value and we don't care about NaNs or Infinities. */
3246 (if (! HONOR_NANS (@0) && ! HONOR_INFINITIES (@0))
3247 { constant_boolean_node (true, type); })
3248 /* sqrt(x) < y is x != +Inf when y is very large and we
3249 don't care about NaNs. */
3250 (if (! HONOR_NANS (@0))
3251 (ne @0 { build_real (TREE_TYPE (@0), c2); }))
3252 /* sqrt(x) < y is x >= 0 when y is very large and we
3253 don't care about Infinities. */
3254 (if (! HONOR_INFINITIES (@0))
3255 (ge @0 { build_real (TREE_TYPE (@0), dconst0); }))
3256 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
3259 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
3260 (ne @0 { build_real (TREE_TYPE (@0), c2); }))))
3261 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
3262 (if (! HONOR_NANS (@0))
3263 (cmp @0 { build_real (TREE_TYPE (@0), c2); })
3264 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
3267 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
3268 (cmp @0 { build_real (TREE_TYPE (@0), c2); })))))))))
3269 /* Transform sqrt(x) cmp sqrt(y) -> x cmp y. */
3271 (cmp (sq @0) (sq @1))
3272 (if (! HONOR_NANS (@0))
3275 /* Optimize various special cases of (FTYPE) N CMP CST. */
3276 (for cmp (lt le eq ne ge gt)
3277 icmp (le le eq ne ge ge)
3279 (cmp (float @0) REAL_CST@1)
3280 (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@1))
3281 && ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1)))
3284 tree itype = TREE_TYPE (@0);
3285 signop isign = TYPE_SIGN (itype);
3286 format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@1))));
3287 const REAL_VALUE_TYPE *cst = TREE_REAL_CST_PTR (@1);
3288 /* Be careful to preserve any potential exceptions due to
3289 NaNs. qNaNs are ok in == or != context.
3290 TODO: relax under -fno-trapping-math or
3291 -fno-signaling-nans. */
3293 = real_isnan (cst) && (cst->signalling
3294 || (cmp != EQ_EXPR && cmp != NE_EXPR));
3295 /* INT?_MIN is power-of-two so it takes
3296 only one mantissa bit. */
3297 bool signed_p = isign == SIGNED;
3298 bool itype_fits_ftype_p
3299 = TYPE_PRECISION (itype) - signed_p <= significand_size (fmt);
3301 /* TODO: allow non-fitting itype and SNaNs when
3302 -fno-trapping-math. */
3303 (if (itype_fits_ftype_p && ! exception_p)
3306 REAL_VALUE_TYPE imin, imax;
3307 real_from_integer (&imin, fmt, wi::min_value (itype), isign);
3308 real_from_integer (&imax, fmt, wi::max_value (itype), isign);
3310 REAL_VALUE_TYPE icst;
3311 if (cmp == GT_EXPR || cmp == GE_EXPR)
3312 real_ceil (&icst, fmt, cst);
3313 else if (cmp == LT_EXPR || cmp == LE_EXPR)
3314 real_floor (&icst, fmt, cst);
3316 real_trunc (&icst, fmt, cst);
3318 bool cst_int_p = !real_isnan (cst) && real_identical (&icst, cst);
3320 bool overflow_p = false;
3322 = real_to_integer (&icst, &overflow_p, TYPE_PRECISION (itype));
3325 /* Optimize cases when CST is outside of ITYPE's range. */
3326 (if (real_compare (LT_EXPR, cst, &imin))
3327 { constant_boolean_node (cmp == GT_EXPR || cmp == GE_EXPR || cmp == NE_EXPR,
3329 (if (real_compare (GT_EXPR, cst, &imax))
3330 { constant_boolean_node (cmp == LT_EXPR || cmp == LE_EXPR || cmp == NE_EXPR,
3332 /* Remove cast if CST is an integer representable by ITYPE. */
3334 (cmp @0 { gcc_assert (!overflow_p);
3335 wide_int_to_tree (itype, icst_val); })
3337 /* When CST is fractional, optimize
3338 (FTYPE) N == CST -> 0
3339 (FTYPE) N != CST -> 1. */
3340 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
3341 { constant_boolean_node (cmp == NE_EXPR, type); })
3342 /* Otherwise replace with sensible integer constant. */
3345 gcc_checking_assert (!overflow_p);
3347 (icmp @0 { wide_int_to_tree (itype, icst_val); })))))))))
3349 /* Fold A /[ex] B CMP C to A CMP B * C. */
3352 (cmp (exact_div @0 @1) INTEGER_CST@2)
3353 (if (!integer_zerop (@1))
3354 (if (wi::to_wide (@2) == 0)
3356 (if (TREE_CODE (@1) == INTEGER_CST)
3360 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
3361 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
3364 { constant_boolean_node (cmp == NE_EXPR, type); }
3365 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))))
3366 (for cmp (lt le gt ge)
3368 (cmp (exact_div @0 INTEGER_CST@1) INTEGER_CST@2)
3369 (if (wi::gt_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1))))
3373 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
3374 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
3377 { constant_boolean_node (wi::lt_p (wi::to_wide (@2), 0,
3378 TYPE_SIGN (TREE_TYPE (@2)))
3379 != (cmp == LT_EXPR || cmp == LE_EXPR), type); }
3380 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))
3382 /* Unordered tests if either argument is a NaN. */
3384 (bit_ior (unordered @0 @0) (unordered @1 @1))
3385 (if (types_match (@0, @1))
3388 (bit_and (ordered @0 @0) (ordered @1 @1))
3389 (if (types_match (@0, @1))
3392 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
3395 (bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1))
3398 /* Simple range test simplifications. */
3399 /* A < B || A >= B -> true. */
3400 (for test1 (lt le le le ne ge)
3401 test2 (ge gt ge ne eq ne)
3403 (bit_ior:c (test1 @0 @1) (test2 @0 @1))
3404 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3405 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
3406 { constant_boolean_node (true, type); })))
3407 /* A < B && A >= B -> false. */
3408 (for test1 (lt lt lt le ne eq)
3409 test2 (ge gt eq gt eq gt)
3411 (bit_and:c (test1 @0 @1) (test2 @0 @1))
3412 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3413 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
3414 { constant_boolean_node (false, type); })))
3416 /* A & (2**N - 1) <= 2**K - 1 -> A & (2**N - 2**K) == 0
3417 A & (2**N - 1) > 2**K - 1 -> A & (2**N - 2**K) != 0
3419 Note that comparisons
3420 A & (2**N - 1) < 2**K -> A & (2**N - 2**K) == 0
3421 A & (2**N - 1) >= 2**K -> A & (2**N - 2**K) != 0
3422 will be canonicalized to above so there's no need to
3429 (cmp (bit_and@0 @1 INTEGER_CST@2) INTEGER_CST@3)
3430 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)))
3433 tree ty = TREE_TYPE (@0);
3434 unsigned prec = TYPE_PRECISION (ty);
3435 wide_int mask = wi::to_wide (@2, prec);
3436 wide_int rhs = wi::to_wide (@3, prec);
3437 signop sgn = TYPE_SIGN (ty);
3439 (if ((mask & (mask + 1)) == 0 && wi::gt_p (rhs, 0, sgn)
3440 && (rhs & (rhs + 1)) == 0 && wi::ge_p (mask, rhs, sgn))
3441 (eqcmp (bit_and @1 { wide_int_to_tree (ty, mask - rhs); })
3442 { build_zero_cst (ty); }))))))
3444 /* -A CMP -B -> B CMP A. */
3445 (for cmp (tcc_comparison)
3446 scmp (swapped_tcc_comparison)
3448 (cmp (negate @0) (negate @1))
3449 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3450 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3451 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
3454 (cmp (negate @0) CONSTANT_CLASS_P@1)
3455 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3456 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3457 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
3458 (with { tree tem = const_unop (NEGATE_EXPR, TREE_TYPE (@0), @1); }
3459 (if (tem && !TREE_OVERFLOW (tem))
3460 (scmp @0 { tem; }))))))
3462 /* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0. */
3465 (op (abs @0) zerop@1)
3468 /* From fold_sign_changed_comparison and fold_widened_comparison.
3469 FIXME: the lack of symmetry is disturbing. */
3470 (for cmp (simple_comparison)
3472 (cmp (convert@0 @00) (convert?@1 @10))
3473 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3474 /* Disable this optimization if we're casting a function pointer
3475 type on targets that require function pointer canonicalization. */
3476 && !(targetm.have_canonicalize_funcptr_for_compare ()
3477 && TREE_CODE (TREE_TYPE (@00)) == POINTER_TYPE
3478 && TREE_CODE (TREE_TYPE (TREE_TYPE (@00))) == FUNCTION_TYPE)
3480 (if (TYPE_PRECISION (TREE_TYPE (@00)) == TYPE_PRECISION (TREE_TYPE (@0))
3481 && (TREE_CODE (@10) == INTEGER_CST
3483 && (TYPE_UNSIGNED (TREE_TYPE (@00)) == TYPE_UNSIGNED (TREE_TYPE (@0))
3486 && !POINTER_TYPE_P (TREE_TYPE (@00)))
3487 /* ??? The special-casing of INTEGER_CST conversion was in the original
3488 code and here to avoid a spurious overflow flag on the resulting
3489 constant which fold_convert produces. */
3490 (if (TREE_CODE (@1) == INTEGER_CST)
3491 (cmp @00 { force_fit_type (TREE_TYPE (@00), wi::to_widest (@1), 0,
3492 TREE_OVERFLOW (@1)); })
3493 (cmp @00 (convert @1)))
3495 (if (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@00)))
3496 /* If possible, express the comparison in the shorter mode. */
3497 (if ((cmp == EQ_EXPR || cmp == NE_EXPR
3498 || TYPE_UNSIGNED (TREE_TYPE (@0)) == TYPE_UNSIGNED (TREE_TYPE (@00))
3499 || (!TYPE_UNSIGNED (TREE_TYPE (@0))
3500 && TYPE_UNSIGNED (TREE_TYPE (@00))))
3501 && (types_match (TREE_TYPE (@10), TREE_TYPE (@00))
3502 || ((TYPE_PRECISION (TREE_TYPE (@00))
3503 >= TYPE_PRECISION (TREE_TYPE (@10)))
3504 && (TYPE_UNSIGNED (TREE_TYPE (@00))
3505 == TYPE_UNSIGNED (TREE_TYPE (@10))))
3506 || (TREE_CODE (@10) == INTEGER_CST
3507 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
3508 && int_fits_type_p (@10, TREE_TYPE (@00)))))
3509 (cmp @00 (convert @10))
3510 (if (TREE_CODE (@10) == INTEGER_CST
3511 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
3512 && !int_fits_type_p (@10, TREE_TYPE (@00)))
3515 tree min = lower_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
3516 tree max = upper_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
3517 bool above = integer_nonzerop (const_binop (LT_EXPR, type, max, @10));
3518 bool below = integer_nonzerop (const_binop (LT_EXPR, type, @10, min));
3520 (if (above || below)
3521 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
3522 { constant_boolean_node (cmp == EQ_EXPR ? false : true, type); }
3523 (if (cmp == LT_EXPR || cmp == LE_EXPR)
3524 { constant_boolean_node (above ? true : false, type); }
3525 (if (cmp == GT_EXPR || cmp == GE_EXPR)
3526 { constant_boolean_node (above ? false : true, type); }))))))))))))
3529 /* A local variable can never be pointed to by
3530 the default SSA name of an incoming parameter.
3531 SSA names are canonicalized to 2nd place. */
3533 (cmp addr@0 SSA_NAME@1)
3534 (if (SSA_NAME_IS_DEFAULT_DEF (@1)
3535 && TREE_CODE (SSA_NAME_VAR (@1)) == PARM_DECL)
3536 (with { tree base = get_base_address (TREE_OPERAND (@0, 0)); }
3537 (if (TREE_CODE (base) == VAR_DECL
3538 && auto_var_in_fn_p (base, current_function_decl))
3539 (if (cmp == NE_EXPR)
3540 { constant_boolean_node (true, type); }
3541 { constant_boolean_node (false, type); }))))))
3543 /* Equality compare simplifications from fold_binary */
3546 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
3547 Similarly for NE_EXPR. */
3549 (cmp (convert?@3 (bit_ior @0 INTEGER_CST@1)) INTEGER_CST@2)
3550 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
3551 && wi::bit_and_not (wi::to_wide (@1), wi::to_wide (@2)) != 0)
3552 { constant_boolean_node (cmp == NE_EXPR, type); }))
3554 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
3556 (cmp (bit_xor @0 @1) integer_zerop)
3559 /* (X ^ Y) == Y becomes X == 0.
3560 Likewise (X ^ Y) == X becomes Y == 0. */
3562 (cmp:c (bit_xor:c @0 @1) @0)
3563 (cmp @1 { build_zero_cst (TREE_TYPE (@1)); }))
3565 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
3567 (cmp (convert?@3 (bit_xor @0 INTEGER_CST@1)) INTEGER_CST@2)
3568 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0)))
3569 (cmp @0 (bit_xor @1 (convert @2)))))
3572 (cmp (convert? addr@0) integer_zerop)
3573 (if (tree_single_nonzero_warnv_p (@0, NULL))
3574 { constant_boolean_node (cmp == NE_EXPR, type); })))
3576 /* If we have (A & C) == C where C is a power of 2, convert this into
3577 (A & C) != 0. Similarly for NE_EXPR. */
3581 (cmp (bit_and@2 @0 integer_pow2p@1) @1)
3582 (icmp @2 { build_zero_cst (TREE_TYPE (@0)); })))
3584 /* If we have (A & C) != 0 ? D : 0 where C and D are powers of 2,
3585 convert this into a shift followed by ANDing with D. */
3588 (ne (bit_and @0 integer_pow2p@1) integer_zerop)
3589 INTEGER_CST@2 integer_zerop)
3590 (if (integer_pow2p (@2))
3592 int shift = (wi::exact_log2 (wi::to_wide (@2))
3593 - wi::exact_log2 (wi::to_wide (@1)));
3597 (lshift (convert @0) { build_int_cst (integer_type_node, shift); }) @2)
3599 (convert (rshift @0 { build_int_cst (integer_type_node, -shift); }))
3602 /* If we have (A & C) != 0 where C is the sign bit of A, convert
3603 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
3607 (cmp (bit_and (convert?@2 @0) integer_pow2p@1) integer_zerop)
3608 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3609 && type_has_mode_precision_p (TREE_TYPE (@0))
3610 && element_precision (@2) >= element_precision (@0)
3611 && wi::only_sign_bit_p (wi::to_wide (@1), element_precision (@0)))
3612 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
3613 (ncmp (convert:stype @0) { build_zero_cst (stype); })))))
3615 /* If we have A < 0 ? C : 0 where C is a power of 2, convert
3616 this into a right shift or sign extension followed by ANDing with C. */
3619 (lt @0 integer_zerop)
3620 INTEGER_CST@1 integer_zerop)
3621 (if (integer_pow2p (@1)
3622 && !TYPE_UNSIGNED (TREE_TYPE (@0)))
3624 int shift = element_precision (@0) - wi::exact_log2 (wi::to_wide (@1)) - 1;
3628 (convert (rshift @0 { build_int_cst (integer_type_node, shift); }))
3630 /* Otherwise ctype must be wider than TREE_TYPE (@0) and pure
3631 sign extension followed by AND with C will achieve the effect. */
3632 (bit_and (convert @0) @1)))))
3634 /* When the addresses are not directly of decls compare base and offset.
3635 This implements some remaining parts of fold_comparison address
3636 comparisons but still no complete part of it. Still it is good
3637 enough to make fold_stmt not regress when not dispatching to fold_binary. */
3638 (for cmp (simple_comparison)
3640 (cmp (convert1?@2 addr@0) (convert2? addr@1))
3643 poly_int64 off0, off1;
3644 tree base0 = get_addr_base_and_unit_offset (TREE_OPERAND (@0, 0), &off0);
3645 tree base1 = get_addr_base_and_unit_offset (TREE_OPERAND (@1, 0), &off1);
3646 if (base0 && TREE_CODE (base0) == MEM_REF)
3648 off0 += mem_ref_offset (base0).force_shwi ();
3649 base0 = TREE_OPERAND (base0, 0);
3651 if (base1 && TREE_CODE (base1) == MEM_REF)
3653 off1 += mem_ref_offset (base1).force_shwi ();
3654 base1 = TREE_OPERAND (base1, 0);
3657 (if (base0 && base1)
3661 /* Punt in GENERIC on variables with value expressions;
3662 the value expressions might point to fields/elements
3663 of other vars etc. */
3665 && ((VAR_P (base0) && DECL_HAS_VALUE_EXPR_P (base0))
3666 || (VAR_P (base1) && DECL_HAS_VALUE_EXPR_P (base1))))
3668 else if (decl_in_symtab_p (base0)
3669 && decl_in_symtab_p (base1))
3670 equal = symtab_node::get_create (base0)
3671 ->equal_address_to (symtab_node::get_create (base1));
3672 else if ((DECL_P (base0)
3673 || TREE_CODE (base0) == SSA_NAME
3674 || TREE_CODE (base0) == STRING_CST)
3676 || TREE_CODE (base1) == SSA_NAME
3677 || TREE_CODE (base1) == STRING_CST))
3678 equal = (base0 == base1);
3681 && (cmp == EQ_EXPR || cmp == NE_EXPR
3682 /* If the offsets are equal we can ignore overflow. */
3683 || known_eq (off0, off1)
3684 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
3685 /* Or if we compare using pointers to decls or strings. */
3686 || (POINTER_TYPE_P (TREE_TYPE (@2))
3687 && (DECL_P (base0) || TREE_CODE (base0) == STRING_CST))))
3689 (if (cmp == EQ_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
3690 { constant_boolean_node (known_eq (off0, off1), type); })
3691 (if (cmp == NE_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
3692 { constant_boolean_node (known_ne (off0, off1), type); })
3693 (if (cmp == LT_EXPR && (known_lt (off0, off1) || known_ge (off0, off1)))
3694 { constant_boolean_node (known_lt (off0, off1), type); })
3695 (if (cmp == LE_EXPR && (known_le (off0, off1) || known_gt (off0, off1)))
3696 { constant_boolean_node (known_le (off0, off1), type); })
3697 (if (cmp == GE_EXPR && (known_ge (off0, off1) || known_lt (off0, off1)))
3698 { constant_boolean_node (known_ge (off0, off1), type); })
3699 (if (cmp == GT_EXPR && (known_gt (off0, off1) || known_le (off0, off1)))
3700 { constant_boolean_node (known_gt (off0, off1), type); }))
3702 && DECL_P (base0) && DECL_P (base1)
3703 /* If we compare this as integers require equal offset. */
3704 && (!INTEGRAL_TYPE_P (TREE_TYPE (@2))
3705 || known_eq (off0, off1)))
3707 (if (cmp == EQ_EXPR)
3708 { constant_boolean_node (false, type); })
3709 (if (cmp == NE_EXPR)
3710 { constant_boolean_node (true, type); })))))))))
3712 /* Simplify pointer equality compares using PTA. */
3716 (if (POINTER_TYPE_P (TREE_TYPE (@0))
3717 && ptrs_compare_unequal (@0, @1))
3718 { constant_boolean_node (neeq != EQ_EXPR, type); })))
3720 /* PR70920: Transform (intptr_t)x eq/ne CST to x eq/ne (typeof x) CST.
3721 and (typeof ptr_cst) x eq/ne ptr_cst to x eq/ne (typeof x) CST.
3722 Disable the transform if either operand is pointer to function.
3723 This broke pr22051-2.c for arm where function pointer
3724 canonicalizaion is not wanted. */
3728 (cmp (convert @0) INTEGER_CST@1)
3729 (if (((POINTER_TYPE_P (TREE_TYPE (@0))
3730 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@0)))
3731 && INTEGRAL_TYPE_P (TREE_TYPE (@1)))
3732 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3733 && POINTER_TYPE_P (TREE_TYPE (@1))
3734 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@1)))))
3735 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
3736 (cmp @0 (convert @1)))))
3738 /* Non-equality compare simplifications from fold_binary */
3739 (for cmp (lt gt le ge)
3740 /* Comparisons with the highest or lowest possible integer of
3741 the specified precision will have known values. */
3743 (cmp (convert?@2 @0) INTEGER_CST@1)
3744 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
3745 && tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0)))
3748 tree arg1_type = TREE_TYPE (@1);
3749 unsigned int prec = TYPE_PRECISION (arg1_type);
3750 wide_int max = wi::max_value (arg1_type);
3751 wide_int signed_max = wi::max_value (prec, SIGNED);
3752 wide_int min = wi::min_value (arg1_type);
3755 (if (wi::to_wide (@1) == max)
3757 (if (cmp == GT_EXPR)
3758 { constant_boolean_node (false, type); })
3759 (if (cmp == GE_EXPR)
3761 (if (cmp == LE_EXPR)
3762 { constant_boolean_node (true, type); })
3763 (if (cmp == LT_EXPR)
3765 (if (wi::to_wide (@1) == min)
3767 (if (cmp == LT_EXPR)
3768 { constant_boolean_node (false, type); })
3769 (if (cmp == LE_EXPR)
3771 (if (cmp == GE_EXPR)
3772 { constant_boolean_node (true, type); })
3773 (if (cmp == GT_EXPR)
3775 (if (wi::to_wide (@1) == max - 1)
3777 (if (cmp == GT_EXPR)
3778 (eq @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) + 1); }))
3779 (if (cmp == LE_EXPR)
3780 (ne @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) + 1); }))))
3781 (if (wi::to_wide (@1) == min + 1)
3783 (if (cmp == GE_EXPR)
3784 (ne @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) - 1); }))
3785 (if (cmp == LT_EXPR)
3786 (eq @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) - 1); }))))
3787 (if (wi::to_wide (@1) == signed_max
3788 && TYPE_UNSIGNED (arg1_type)
3789 /* We will flip the signedness of the comparison operator
3790 associated with the mode of @1, so the sign bit is
3791 specified by this mode. Check that @1 is the signed
3792 max associated with this sign bit. */
3793 && prec == GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (arg1_type))
3794 /* signed_type does not work on pointer types. */
3795 && INTEGRAL_TYPE_P (arg1_type))
3796 /* The following case also applies to X < signed_max+1
3797 and X >= signed_max+1 because previous transformations. */
3798 (if (cmp == LE_EXPR || cmp == GT_EXPR)
3799 (with { tree st = signed_type_for (arg1_type); }
3800 (if (cmp == LE_EXPR)
3801 (ge (convert:st @0) { build_zero_cst (st); })
3802 (lt (convert:st @0) { build_zero_cst (st); }))))))))))
3804 (for cmp (unordered ordered unlt unle ungt unge uneq ltgt)
3805 /* If the second operand is NaN, the result is constant. */
3808 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
3809 && (cmp != LTGT_EXPR || ! flag_trapping_math))
3810 { constant_boolean_node (cmp == ORDERED_EXPR || cmp == LTGT_EXPR
3811 ? false : true, type); })))
3813 /* bool_var != 0 becomes bool_var. */
3815 (ne @0 integer_zerop)
3816 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
3817 && types_match (type, TREE_TYPE (@0)))
3819 /* bool_var == 1 becomes bool_var. */
3821 (eq @0 integer_onep)
3822 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
3823 && types_match (type, TREE_TYPE (@0)))
3826 bool_var == 0 becomes !bool_var or
3827 bool_var != 1 becomes !bool_var
3828 here because that only is good in assignment context as long
3829 as we require a tcc_comparison in GIMPLE_CONDs where we'd
3830 replace if (x == 0) with tem = ~x; if (tem != 0) which is
3831 clearly less optimal and which we'll transform again in forwprop. */
3833 /* When one argument is a constant, overflow detection can be simplified.
3834 Currently restricted to single use so as not to interfere too much with
3835 ADD_OVERFLOW detection in tree-ssa-math-opts.c.
3836 A + CST CMP A -> A CMP' CST' */
3837 (for cmp (lt le ge gt)
3840 (cmp:c (plus@2 @0 INTEGER_CST@1) @0)
3841 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
3842 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
3843 && wi::to_wide (@1) != 0
3845 (with { unsigned int prec = TYPE_PRECISION (TREE_TYPE (@0)); }
3846 (out @0 { wide_int_to_tree (TREE_TYPE (@0),
3847 wi::max_value (prec, UNSIGNED)
3848 - wi::to_wide (@1)); })))))
3850 /* To detect overflow in unsigned A - B, A < B is simpler than A - B > A.
3851 However, the detection logic for SUB_OVERFLOW in tree-ssa-math-opts.c
3852 expects the long form, so we restrict the transformation for now. */
3855 (cmp:c (minus@2 @0 @1) @0)
3856 (if (single_use (@2)
3857 && ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3858 && TYPE_UNSIGNED (TREE_TYPE (@0))
3859 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
3862 /* Testing for overflow is unnecessary if we already know the result. */
3867 (cmp:c (realpart (IFN_SUB_OVERFLOW@2 @0 @1)) @0)
3868 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
3869 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
3870 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
3875 (cmp:c (realpart (IFN_ADD_OVERFLOW:c@2 @0 @1)) @0)
3876 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
3877 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
3878 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
3880 /* For unsigned operands, -1 / B < A checks whether A * B would overflow.
3881 Simplify it to __builtin_mul_overflow (A, B, <unused>). */
3885 (cmp:c (trunc_div:s integer_all_onesp @1) @0)
3886 (if (TYPE_UNSIGNED (TREE_TYPE (@0)) && !VECTOR_TYPE_P (TREE_TYPE (@0)))
3887 (with { tree t = TREE_TYPE (@0), cpx = build_complex_type (t); }
3888 (out (imagpart (IFN_MUL_OVERFLOW:cpx @0 @1)) { build_zero_cst (t); })))))
3890 /* Simplification of math builtins. These rules must all be optimizations
3891 as well as IL simplifications. If there is a possibility that the new
3892 form could be a pessimization, the rule should go in the canonicalization
3893 section that follows this one.
3895 Rules can generally go in this section if they satisfy one of
3898 - the rule describes an identity
3900 - the rule replaces calls with something as simple as addition or
3903 - the rule contains unary calls only and simplifies the surrounding
3904 arithmetic. (The idea here is to exclude non-unary calls in which
3905 one operand is constant and in which the call is known to be cheap
3906 when the operand has that value.) */
3908 (if (flag_unsafe_math_optimizations)
3909 /* Simplify sqrt(x) * sqrt(x) -> x. */
3911 (mult (SQRT_ALL@1 @0) @1)
3912 (if (!HONOR_SNANS (type))
3915 (for op (plus minus)
3916 /* Simplify (A / C) +- (B / C) -> (A +- B) / C. */
3920 (rdiv (op @0 @2) @1)))
3922 /* Simplify sqrt(x) * sqrt(y) -> sqrt(x*y). */
3923 (for root (SQRT CBRT)
3925 (mult (root:s @0) (root:s @1))
3926 (root (mult @0 @1))))
3928 /* Simplify expN(x) * expN(y) -> expN(x+y). */
3929 (for exps (EXP EXP2 EXP10 POW10)
3931 (mult (exps:s @0) (exps:s @1))
3932 (exps (plus @0 @1))))
3934 /* Simplify a/root(b/c) into a*root(c/b). */
3935 (for root (SQRT CBRT)
3937 (rdiv @0 (root:s (rdiv:s @1 @2)))
3938 (mult @0 (root (rdiv @2 @1)))))
3940 /* Simplify x/expN(y) into x*expN(-y). */
3941 (for exps (EXP EXP2 EXP10 POW10)
3943 (rdiv @0 (exps:s @1))
3944 (mult @0 (exps (negate @1)))))
3946 (for logs (LOG LOG2 LOG10 LOG10)
3947 exps (EXP EXP2 EXP10 POW10)
3948 /* logN(expN(x)) -> x. */
3952 /* expN(logN(x)) -> x. */
3957 /* Optimize logN(func()) for various exponential functions. We
3958 want to determine the value "x" and the power "exponent" in
3959 order to transform logN(x**exponent) into exponent*logN(x). */
3960 (for logs (LOG LOG LOG LOG2 LOG2 LOG2 LOG10 LOG10)
3961 exps (EXP2 EXP10 POW10 EXP EXP10 POW10 EXP EXP2)
3964 (if (SCALAR_FLOAT_TYPE_P (type))
3970 /* Prepare to do logN(exp(exponent)) -> exponent*logN(e). */
3971 x = build_real_truncate (type, dconst_e ());
3974 /* Prepare to do logN(exp2(exponent)) -> exponent*logN(2). */
3975 x = build_real (type, dconst2);
3979 /* Prepare to do logN(exp10(exponent)) -> exponent*logN(10). */
3981 REAL_VALUE_TYPE dconst10;
3982 real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
3983 x = build_real (type, dconst10);
3990 (mult (logs { x; }) @0)))))
3998 (if (SCALAR_FLOAT_TYPE_P (type))
4004 /* Prepare to do logN(sqrt(x)) -> 0.5*logN(x). */
4005 x = build_real (type, dconsthalf);
4008 /* Prepare to do logN(cbrt(x)) -> (1/3)*logN(x). */
4009 x = build_real_truncate (type, dconst_third ());
4015 (mult { x; } (logs @0))))))
4017 /* logN(pow(x,exponent)) -> exponent*logN(x). */
4018 (for logs (LOG LOG2 LOG10)
4022 (mult @1 (logs @0))))
4024 /* pow(C,x) -> exp(log(C)*x) if C > 0,
4025 or if C is a positive power of 2,
4026 pow(C,x) -> exp2(log2(C)*x). */
4034 (pows REAL_CST@0 @1)
4035 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
4036 && real_isfinite (TREE_REAL_CST_PTR (@0))
4037 /* As libmvec doesn't have a vectorized exp2, defer optimizing
4038 the use_exp2 case until after vectorization. It seems actually
4039 beneficial for all constants to postpone this until later,
4040 because exp(log(C)*x), while faster, will have worse precision
4041 and if x folds into a constant too, that is unnecessary
4043 && canonicalize_math_after_vectorization_p ())
4045 const REAL_VALUE_TYPE *const value = TREE_REAL_CST_PTR (@0);
4046 bool use_exp2 = false;
4047 if (targetm.libc_has_function (function_c99_misc)
4048 && value->cl == rvc_normal)
4050 REAL_VALUE_TYPE frac_rvt = *value;
4051 SET_REAL_EXP (&frac_rvt, 1);
4052 if (real_equal (&frac_rvt, &dconst1))
4057 (if (optimize_pow_to_exp (@0, @1))
4058 (exps (mult (logs @0) @1)))
4059 (exp2s (mult (log2s @0) @1)))))))
4062 /* pow(C,x)*expN(y) -> expN(logN(C)*x+y) if C > 0. */
4064 exps (EXP EXP2 EXP10 POW10)
4065 logs (LOG LOG2 LOG10 LOG10)
4067 (mult:c (pows:s REAL_CST@0 @1) (exps:s @2))
4068 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
4069 && real_isfinite (TREE_REAL_CST_PTR (@0)))
4070 (exps (plus (mult (logs @0) @1) @2)))))
4075 exps (EXP EXP2 EXP10 POW10)
4076 /* sqrt(expN(x)) -> expN(x*0.5). */
4079 (exps (mult @0 { build_real (type, dconsthalf); })))
4080 /* cbrt(expN(x)) -> expN(x/3). */
4083 (exps (mult @0 { build_real_truncate (type, dconst_third ()); })))
4084 /* pow(expN(x), y) -> expN(x*y). */
4087 (exps (mult @0 @1))))
4089 /* tan(atan(x)) -> x. */
4096 /* cabs(x+0i) or cabs(0+xi) -> abs(x). */
4098 (CABS (complex:C @0 real_zerop@1))
4101 /* trunc(trunc(x)) -> trunc(x), etc. */
4102 (for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
4106 /* f(x) -> x if x is integer valued and f does nothing for such values. */
4107 (for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
4109 (fns integer_valued_real_p@0)
4112 /* hypot(x,0) and hypot(0,x) -> abs(x). */
4114 (HYPOT:c @0 real_zerop@1)
4117 /* pow(1,x) -> 1. */
4119 (POW real_onep@0 @1)
4123 /* copysign(x,x) -> x. */
4124 (COPYSIGN_ALL @0 @0)
4128 /* copysign(x,y) -> fabs(x) if y is nonnegative. */
4129 (COPYSIGN_ALL @0 tree_expr_nonnegative_p@1)
4132 (for scale (LDEXP SCALBN SCALBLN)
4133 /* ldexp(0, x) -> 0. */
4135 (scale real_zerop@0 @1)
4137 /* ldexp(x, 0) -> x. */
4139 (scale @0 integer_zerop@1)
4141 /* ldexp(x, y) -> x if x is +-Inf or NaN. */
4143 (scale REAL_CST@0 @1)
4144 (if (!real_isfinite (TREE_REAL_CST_PTR (@0)))
4147 /* Canonicalization of sequences of math builtins. These rules represent
4148 IL simplifications but are not necessarily optimizations.
4150 The sincos pass is responsible for picking "optimal" implementations
4151 of math builtins, which may be more complicated and can sometimes go
4152 the other way, e.g. converting pow into a sequence of sqrts.
4153 We only want to do these canonicalizations before the pass has run. */
4155 (if (flag_unsafe_math_optimizations && canonicalize_math_p ())
4156 /* Simplify tan(x) * cos(x) -> sin(x). */
4158 (mult:c (TAN:s @0) (COS:s @0))
4161 /* Simplify x * pow(x,c) -> pow(x,c+1). */
4163 (mult:c @0 (POW:s @0 REAL_CST@1))
4164 (if (!TREE_OVERFLOW (@1))
4165 (POW @0 (plus @1 { build_one_cst (type); }))))
4167 /* Simplify sin(x) / cos(x) -> tan(x). */
4169 (rdiv (SIN:s @0) (COS:s @0))
4172 /* Simplify cos(x) / sin(x) -> 1 / tan(x). */
4174 (rdiv (COS:s @0) (SIN:s @0))
4175 (rdiv { build_one_cst (type); } (TAN @0)))
4177 /* Simplify sin(x) / tan(x) -> cos(x). */
4179 (rdiv (SIN:s @0) (TAN:s @0))
4180 (if (! HONOR_NANS (@0)
4181 && ! HONOR_INFINITIES (@0))
4184 /* Simplify tan(x) / sin(x) -> 1.0 / cos(x). */
4186 (rdiv (TAN:s @0) (SIN:s @0))
4187 (if (! HONOR_NANS (@0)
4188 && ! HONOR_INFINITIES (@0))
4189 (rdiv { build_one_cst (type); } (COS @0))))
4191 /* Simplify pow(x,y) * pow(x,z) -> pow(x,y+z). */
4193 (mult (POW:s @0 @1) (POW:s @0 @2))
4194 (POW @0 (plus @1 @2)))
4196 /* Simplify pow(x,y) * pow(z,y) -> pow(x*z,y). */
4198 (mult (POW:s @0 @1) (POW:s @2 @1))
4199 (POW (mult @0 @2) @1))
4201 /* Simplify powi(x,y) * powi(z,y) -> powi(x*z,y). */
4203 (mult (POWI:s @0 @1) (POWI:s @2 @1))
4204 (POWI (mult @0 @2) @1))
4206 /* Simplify pow(x,c) / x -> pow(x,c-1). */
4208 (rdiv (POW:s @0 REAL_CST@1) @0)
4209 (if (!TREE_OVERFLOW (@1))
4210 (POW @0 (minus @1 { build_one_cst (type); }))))
4212 /* Simplify x / pow (y,z) -> x * pow(y,-z). */
4214 (rdiv @0 (POW:s @1 @2))
4215 (mult @0 (POW @1 (negate @2))))
4220 /* sqrt(sqrt(x)) -> pow(x,1/4). */
4223 (pows @0 { build_real (type, dconst_quarter ()); }))
4224 /* sqrt(cbrt(x)) -> pow(x,1/6). */
4227 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
4228 /* cbrt(sqrt(x)) -> pow(x,1/6). */
4231 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
4232 /* cbrt(cbrt(x)) -> pow(x,1/9), iff x is nonnegative. */
4234 (cbrts (cbrts tree_expr_nonnegative_p@0))
4235 (pows @0 { build_real_truncate (type, dconst_ninth ()); }))
4236 /* sqrt(pow(x,y)) -> pow(|x|,y*0.5). */
4238 (sqrts (pows @0 @1))
4239 (pows (abs @0) (mult @1 { build_real (type, dconsthalf); })))
4240 /* cbrt(pow(x,y)) -> pow(x,y/3), iff x is nonnegative. */
4242 (cbrts (pows tree_expr_nonnegative_p@0 @1))
4243 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
4244 /* pow(sqrt(x),y) -> pow(x,y*0.5). */
4246 (pows (sqrts @0) @1)
4247 (pows @0 (mult @1 { build_real (type, dconsthalf); })))
4248 /* pow(cbrt(x),y) -> pow(x,y/3) iff x is nonnegative. */
4250 (pows (cbrts tree_expr_nonnegative_p@0) @1)
4251 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
4252 /* pow(pow(x,y),z) -> pow(x,y*z) iff x is nonnegative. */
4254 (pows (pows tree_expr_nonnegative_p@0 @1) @2)
4255 (pows @0 (mult @1 @2))))
4257 /* cabs(x+xi) -> fabs(x)*sqrt(2). */
4259 (CABS (complex @0 @0))
4260 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
4262 /* hypot(x,x) -> fabs(x)*sqrt(2). */
4265 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
4267 /* cexp(x+yi) -> exp(x)*cexpi(y). */
4272 (cexps compositional_complex@0)
4273 (if (targetm.libc_has_function (function_c99_math_complex))
4275 (mult (exps@1 (realpart @0)) (realpart (cexpis:type@2 (imagpart @0))))
4276 (mult @1 (imagpart @2)))))))
4278 (if (canonicalize_math_p ())
4279 /* floor(x) -> trunc(x) if x is nonnegative. */
4280 (for floors (FLOOR_ALL)
4283 (floors tree_expr_nonnegative_p@0)
4286 (match double_value_p
4288 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == double_type_node)))
4289 (for froms (BUILT_IN_TRUNCL
4301 /* truncl(extend(x)) -> extend(trunc(x)), etc., if x is a double. */
4302 (if (optimize && canonicalize_math_p ())
4304 (froms (convert double_value_p@0))
4305 (convert (tos @0)))))
4307 (match float_value_p
4309 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == float_type_node)))
4310 (for froms (BUILT_IN_TRUNCL BUILT_IN_TRUNC
4311 BUILT_IN_FLOORL BUILT_IN_FLOOR
4312 BUILT_IN_CEILL BUILT_IN_CEIL
4313 BUILT_IN_ROUNDL BUILT_IN_ROUND
4314 BUILT_IN_NEARBYINTL BUILT_IN_NEARBYINT
4315 BUILT_IN_RINTL BUILT_IN_RINT)
4316 tos (BUILT_IN_TRUNCF BUILT_IN_TRUNCF
4317 BUILT_IN_FLOORF BUILT_IN_FLOORF
4318 BUILT_IN_CEILF BUILT_IN_CEILF
4319 BUILT_IN_ROUNDF BUILT_IN_ROUNDF
4320 BUILT_IN_NEARBYINTF BUILT_IN_NEARBYINTF
4321 BUILT_IN_RINTF BUILT_IN_RINTF)
4322 /* truncl(extend(x)) and trunc(extend(x)) -> extend(truncf(x)), etc.,
4324 (if (optimize && canonicalize_math_p ()
4325 && targetm.libc_has_function (function_c99_misc))
4327 (froms (convert float_value_p@0))
4328 (convert (tos @0)))))
4330 (for froms (XFLOORL XCEILL XROUNDL XRINTL)
4331 tos (XFLOOR XCEIL XROUND XRINT)
4332 /* llfloorl(extend(x)) -> llfloor(x), etc., if x is a double. */
4333 (if (optimize && canonicalize_math_p ())
4335 (froms (convert double_value_p@0))
4338 (for froms (XFLOORL XCEILL XROUNDL XRINTL
4339 XFLOOR XCEIL XROUND XRINT)
4340 tos (XFLOORF XCEILF XROUNDF XRINTF)
4341 /* llfloorl(extend(x)) and llfloor(extend(x)) -> llfloorf(x), etc.,
4343 (if (optimize && canonicalize_math_p ())
4345 (froms (convert float_value_p@0))
4348 (if (canonicalize_math_p ())
4349 /* xfloor(x) -> fix_trunc(x) if x is nonnegative. */
4350 (for floors (IFLOOR LFLOOR LLFLOOR)
4352 (floors tree_expr_nonnegative_p@0)
4355 (if (canonicalize_math_p ())
4356 /* xfloor(x) -> fix_trunc(x), etc., if x is integer valued. */
4357 (for fns (IFLOOR LFLOOR LLFLOOR
4359 IROUND LROUND LLROUND)
4361 (fns integer_valued_real_p@0)
4363 (if (!flag_errno_math)
4364 /* xrint(x) -> fix_trunc(x), etc., if x is integer valued. */
4365 (for rints (IRINT LRINT LLRINT)
4367 (rints integer_valued_real_p@0)
4370 (if (canonicalize_math_p ())
4371 (for ifn (IFLOOR ICEIL IROUND IRINT)
4372 lfn (LFLOOR LCEIL LROUND LRINT)
4373 llfn (LLFLOOR LLCEIL LLROUND LLRINT)
4374 /* Canonicalize iround (x) to lround (x) on ILP32 targets where
4375 sizeof (int) == sizeof (long). */
4376 (if (TYPE_PRECISION (integer_type_node)
4377 == TYPE_PRECISION (long_integer_type_node))
4380 (lfn:long_integer_type_node @0)))
4381 /* Canonicalize llround (x) to lround (x) on LP64 targets where
4382 sizeof (long long) == sizeof (long). */
4383 (if (TYPE_PRECISION (long_long_integer_type_node)
4384 == TYPE_PRECISION (long_integer_type_node))
4387 (lfn:long_integer_type_node @0)))))
4389 /* cproj(x) -> x if we're ignoring infinities. */
4392 (if (!HONOR_INFINITIES (type))
4395 /* If the real part is inf and the imag part is known to be
4396 nonnegative, return (inf + 0i). */
4398 (CPROJ (complex REAL_CST@0 tree_expr_nonnegative_p@1))
4399 (if (real_isinf (TREE_REAL_CST_PTR (@0)))
4400 { build_complex_inf (type, false); }))
4402 /* If the imag part is inf, return (inf+I*copysign(0,imag)). */
4404 (CPROJ (complex @0 REAL_CST@1))
4405 (if (real_isinf (TREE_REAL_CST_PTR (@1)))
4406 { build_complex_inf (type, TREE_REAL_CST_PTR (@1)->sign); }))
4412 (pows @0 REAL_CST@1)
4414 const REAL_VALUE_TYPE *value = TREE_REAL_CST_PTR (@1);
4415 REAL_VALUE_TYPE tmp;
4418 /* pow(x,0) -> 1. */
4419 (if (real_equal (value, &dconst0))
4420 { build_real (type, dconst1); })
4421 /* pow(x,1) -> x. */
4422 (if (real_equal (value, &dconst1))
4424 /* pow(x,-1) -> 1/x. */
4425 (if (real_equal (value, &dconstm1))
4426 (rdiv { build_real (type, dconst1); } @0))
4427 /* pow(x,0.5) -> sqrt(x). */
4428 (if (flag_unsafe_math_optimizations
4429 && canonicalize_math_p ()
4430 && real_equal (value, &dconsthalf))
4432 /* pow(x,1/3) -> cbrt(x). */
4433 (if (flag_unsafe_math_optimizations
4434 && canonicalize_math_p ()
4435 && (tmp = real_value_truncate (TYPE_MODE (type), dconst_third ()),
4436 real_equal (value, &tmp)))
4439 /* powi(1,x) -> 1. */
4441 (POWI real_onep@0 @1)
4445 (POWI @0 INTEGER_CST@1)
4447 /* powi(x,0) -> 1. */
4448 (if (wi::to_wide (@1) == 0)
4449 { build_real (type, dconst1); })
4450 /* powi(x,1) -> x. */
4451 (if (wi::to_wide (@1) == 1)
4453 /* powi(x,-1) -> 1/x. */
4454 (if (wi::to_wide (@1) == -1)
4455 (rdiv { build_real (type, dconst1); } @0))))
4457 /* Narrowing of arithmetic and logical operations.
4459 These are conceptually similar to the transformations performed for
4460 the C/C++ front-ends by shorten_binary_op and shorten_compare. Long
4461 term we want to move all that code out of the front-ends into here. */
4463 /* If we have a narrowing conversion of an arithmetic operation where
4464 both operands are widening conversions from the same type as the outer
4465 narrowing conversion. Then convert the innermost operands to a suitable
4466 unsigned type (to avoid introducing undefined behavior), perform the
4467 operation and convert the result to the desired type. */
4468 (for op (plus minus)
4470 (convert (op:s (convert@2 @0) (convert?@3 @1)))
4471 (if (INTEGRAL_TYPE_P (type)
4472 /* We check for type compatibility between @0 and @1 below,
4473 so there's no need to check that @1/@3 are integral types. */
4474 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
4475 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
4476 /* The precision of the type of each operand must match the
4477 precision of the mode of each operand, similarly for the
4479 && type_has_mode_precision_p (TREE_TYPE (@0))
4480 && type_has_mode_precision_p (TREE_TYPE (@1))
4481 && type_has_mode_precision_p (type)
4482 /* The inner conversion must be a widening conversion. */
4483 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
4484 && types_match (@0, type)
4485 && (types_match (@0, @1)
4486 /* Or the second operand is const integer or converted const
4487 integer from valueize. */
4488 || TREE_CODE (@1) == INTEGER_CST))
4489 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
4490 (op @0 (convert @1))
4491 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
4492 (convert (op (convert:utype @0)
4493 (convert:utype @1))))))))
4495 /* This is another case of narrowing, specifically when there's an outer
4496 BIT_AND_EXPR which masks off bits outside the type of the innermost
4497 operands. Like the previous case we have to convert the operands
4498 to unsigned types to avoid introducing undefined behavior for the
4499 arithmetic operation. */
4500 (for op (minus plus)
4502 (bit_and (op:s (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
4503 (if (INTEGRAL_TYPE_P (type)
4504 /* We check for type compatibility between @0 and @1 below,
4505 so there's no need to check that @1/@3 are integral types. */
4506 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
4507 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
4508 /* The precision of the type of each operand must match the
4509 precision of the mode of each operand, similarly for the
4511 && type_has_mode_precision_p (TREE_TYPE (@0))
4512 && type_has_mode_precision_p (TREE_TYPE (@1))
4513 && type_has_mode_precision_p (type)
4514 /* The inner conversion must be a widening conversion. */
4515 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
4516 && types_match (@0, @1)
4517 && (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
4518 <= TYPE_PRECISION (TREE_TYPE (@0)))
4519 && (wi::to_wide (@4)
4520 & wi::mask (TYPE_PRECISION (TREE_TYPE (@0)),
4521 true, TYPE_PRECISION (type))) == 0)
4522 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
4523 (with { tree ntype = TREE_TYPE (@0); }
4524 (convert (bit_and (op @0 @1) (convert:ntype @4))))
4525 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
4526 (convert (bit_and (op (convert:utype @0) (convert:utype @1))
4527 (convert:utype @4))))))))
4529 /* Transform (@0 < @1 and @0 < @2) to use min,
4530 (@0 > @1 and @0 > @2) to use max */
4531 (for logic (bit_and bit_and bit_and bit_and bit_ior bit_ior bit_ior bit_ior)
4532 op (lt le gt ge lt le gt ge )
4533 ext (min min max max max max min min )
4535 (logic (op:cs @0 @1) (op:cs @0 @2))
4536 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4537 && TREE_CODE (@0) != INTEGER_CST)
4538 (op @0 (ext @1 @2)))))
4541 /* signbit(x) -> 0 if x is nonnegative. */
4542 (SIGNBIT tree_expr_nonnegative_p@0)
4543 { integer_zero_node; })
4546 /* signbit(x) -> x<0 if x doesn't have signed zeros. */
4548 (if (!HONOR_SIGNED_ZEROS (@0))
4549 (convert (lt @0 { build_real (TREE_TYPE (@0), dconst0); }))))
4551 /* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 -+ C1. */
4553 (for op (plus minus)
4556 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
4557 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
4558 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
4559 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@0))
4560 && !TYPE_SATURATING (TREE_TYPE (@0)))
4561 (with { tree res = int_const_binop (rop, @2, @1); }
4562 (if (TREE_OVERFLOW (res)
4563 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
4564 { constant_boolean_node (cmp == NE_EXPR, type); }
4565 (if (single_use (@3))
4566 (cmp @0 { TREE_OVERFLOW (res)
4567 ? drop_tree_overflow (res) : res; }))))))))
4568 (for cmp (lt le gt ge)
4569 (for op (plus minus)
4572 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
4573 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
4574 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
4575 (with { tree res = int_const_binop (rop, @2, @1); }
4576 (if (TREE_OVERFLOW (res))
4578 fold_overflow_warning (("assuming signed overflow does not occur "
4579 "when simplifying conditional to constant"),
4580 WARN_STRICT_OVERFLOW_CONDITIONAL);
4581 bool less = cmp == LE_EXPR || cmp == LT_EXPR;
4582 /* wi::ges_p (@2, 0) should be sufficient for a signed type. */
4583 bool ovf_high = wi::lt_p (wi::to_wide (@1), 0,
4584 TYPE_SIGN (TREE_TYPE (@1)))
4585 != (op == MINUS_EXPR);
4586 constant_boolean_node (less == ovf_high, type);
4588 (if (single_use (@3))
4591 fold_overflow_warning (("assuming signed overflow does not occur "
4592 "when changing X +- C1 cmp C2 to "
4594 WARN_STRICT_OVERFLOW_COMPARISON);
4596 (cmp @0 { res; })))))))))
4598 /* Canonicalizations of BIT_FIELD_REFs. */
4601 (BIT_FIELD_REF @0 @1 @2)
4603 (if (TREE_CODE (TREE_TYPE (@0)) == COMPLEX_TYPE
4604 && tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
4606 (if (integer_zerop (@2))
4607 (view_convert (realpart @0)))
4608 (if (tree_int_cst_equal (@2, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
4609 (view_convert (imagpart @0)))))
4610 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4611 && INTEGRAL_TYPE_P (type)
4612 /* On GIMPLE this should only apply to register arguments. */
4613 && (! GIMPLE || is_gimple_reg (@0))
4614 /* A bit-field-ref that referenced the full argument can be stripped. */
4615 && ((compare_tree_int (@1, TYPE_PRECISION (TREE_TYPE (@0))) == 0
4616 && integer_zerop (@2))
4617 /* Low-parts can be reduced to integral conversions.
4618 ??? The following doesn't work for PDP endian. */
4619 || (BYTES_BIG_ENDIAN == WORDS_BIG_ENDIAN
4620 /* Don't even think about BITS_BIG_ENDIAN. */
4621 && TYPE_PRECISION (TREE_TYPE (@0)) % BITS_PER_UNIT == 0
4622 && TYPE_PRECISION (type) % BITS_PER_UNIT == 0
4623 && compare_tree_int (@2, (BYTES_BIG_ENDIAN
4624 ? (TYPE_PRECISION (TREE_TYPE (@0))
4625 - TYPE_PRECISION (type))
4629 /* Simplify vector extracts. */
4632 (BIT_FIELD_REF CONSTRUCTOR@0 @1 @2)
4633 (if (VECTOR_TYPE_P (TREE_TYPE (@0))
4634 && (types_match (type, TREE_TYPE (TREE_TYPE (@0)))
4635 || (VECTOR_TYPE_P (type)
4636 && types_match (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
4639 tree ctor = (TREE_CODE (@0) == SSA_NAME
4640 ? gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0)) : @0);
4641 tree eltype = TREE_TYPE (TREE_TYPE (ctor));
4642 unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype));
4643 unsigned HOST_WIDE_INT n = tree_to_uhwi (@1);
4644 unsigned HOST_WIDE_INT idx = tree_to_uhwi (@2);
4647 && (idx % width) == 0
4649 && known_le ((idx + n) / width,
4650 TYPE_VECTOR_SUBPARTS (TREE_TYPE (ctor))))
4655 /* Constructor elements can be subvectors. */
4657 if (CONSTRUCTOR_NELTS (ctor) != 0)
4659 tree cons_elem = TREE_TYPE (CONSTRUCTOR_ELT (ctor, 0)->value);
4660 if (TREE_CODE (cons_elem) == VECTOR_TYPE)
4661 k = TYPE_VECTOR_SUBPARTS (cons_elem);
4663 unsigned HOST_WIDE_INT elt, count, const_k;
4666 /* We keep an exact subset of the constructor elements. */
4667 (if (multiple_p (idx, k, &elt) && multiple_p (n, k, &count))
4668 (if (CONSTRUCTOR_NELTS (ctor) == 0)
4669 { build_constructor (type, NULL); }
4671 (if (elt < CONSTRUCTOR_NELTS (ctor))
4672 (view_convert { CONSTRUCTOR_ELT (ctor, elt)->value; })
4673 { build_zero_cst (type); })
4675 vec<constructor_elt, va_gc> *vals;
4676 vec_alloc (vals, count);
4677 for (unsigned i = 0;
4678 i < count && elt + i < CONSTRUCTOR_NELTS (ctor); ++i)
4679 CONSTRUCTOR_APPEND_ELT (vals, NULL_TREE,
4680 CONSTRUCTOR_ELT (ctor, elt + i)->value);
4681 build_constructor (type, vals);
4683 /* The bitfield references a single constructor element. */
4684 (if (k.is_constant (&const_k)
4685 && idx + n <= (idx / const_k + 1) * const_k)
4687 (if (CONSTRUCTOR_NELTS (ctor) <= idx / const_k)
4688 { build_zero_cst (type); })
4690 (view_convert { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }))
4691 (BIT_FIELD_REF { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }
4692 @1 { bitsize_int ((idx % const_k) * width); })))))))))
4694 /* Simplify a bit extraction from a bit insertion for the cases with
4695 the inserted element fully covering the extraction or the insertion
4696 not touching the extraction. */
4698 (BIT_FIELD_REF (bit_insert @0 @1 @ipos) @rsize @rpos)
4701 unsigned HOST_WIDE_INT isize;
4702 if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
4703 isize = TYPE_PRECISION (TREE_TYPE (@1));
4705 isize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (@1)));
4708 (if (wi::leu_p (wi::to_wide (@ipos), wi::to_wide (@rpos))
4709 && wi::leu_p (wi::to_wide (@rpos) + wi::to_wide (@rsize),
4710 wi::to_wide (@ipos) + isize))
4711 (BIT_FIELD_REF @1 @rsize { wide_int_to_tree (bitsizetype,
4713 - wi::to_wide (@ipos)); }))
4714 (if (wi::geu_p (wi::to_wide (@ipos),
4715 wi::to_wide (@rpos) + wi::to_wide (@rsize))
4716 || wi::geu_p (wi::to_wide (@rpos),
4717 wi::to_wide (@ipos) + isize))
4718 (BIT_FIELD_REF @0 @rsize @rpos)))))
4720 (if (canonicalize_math_after_vectorization_p ())
4723 (fmas:c (negate @0) @1 @2)
4724 (IFN_FNMA @0 @1 @2))
4726 (fmas @0 @1 (negate @2))
4729 (fmas:c (negate @0) @1 (negate @2))
4730 (IFN_FNMS @0 @1 @2))
4732 (negate (fmas@3 @0 @1 @2))
4733 (if (single_use (@3))
4734 (IFN_FNMS @0 @1 @2))))
4737 (IFN_FMS:c (negate @0) @1 @2)
4738 (IFN_FNMS @0 @1 @2))
4740 (IFN_FMS @0 @1 (negate @2))
4743 (IFN_FMS:c (negate @0) @1 (negate @2))
4744 (IFN_FNMA @0 @1 @2))
4746 (negate (IFN_FMS@3 @0 @1 @2))
4747 (if (single_use (@3))
4748 (IFN_FNMA @0 @1 @2)))
4751 (IFN_FNMA:c (negate @0) @1 @2)
4754 (IFN_FNMA @0 @1 (negate @2))
4755 (IFN_FNMS @0 @1 @2))
4757 (IFN_FNMA:c (negate @0) @1 (negate @2))
4760 (negate (IFN_FNMA@3 @0 @1 @2))
4761 (if (single_use (@3))
4762 (IFN_FMS @0 @1 @2)))
4765 (IFN_FNMS:c (negate @0) @1 @2)
4768 (IFN_FNMS @0 @1 (negate @2))
4769 (IFN_FNMA @0 @1 @2))
4771 (IFN_FNMS:c (negate @0) @1 (negate @2))
4774 (negate (IFN_FNMS@3 @0 @1 @2))
4775 (if (single_use (@3))
4776 (IFN_FMA @0 @1 @2))))
4778 /* POPCOUNT simplifications. */
4779 (for popcount (BUILT_IN_POPCOUNT BUILT_IN_POPCOUNTL BUILT_IN_POPCOUNTLL
4780 BUILT_IN_POPCOUNTIMAX)
4781 /* popcount(X&1) is nop_expr(X&1). */
4784 (if (tree_nonzero_bits (@0) == 1)
4786 /* popcount(X) + popcount(Y) is popcount(X|Y) when X&Y must be zero. */
4788 (plus (popcount:s @0) (popcount:s @1))
4789 (if (wi::bit_and (tree_nonzero_bits (@0), tree_nonzero_bits (@1)) == 0)
4790 (popcount (bit_ior @0 @1))))
4791 /* popcount(X) == 0 is X == 0, and related (in)equalities. */
4792 (for cmp (le eq ne gt)
4795 (cmp (popcount @0) integer_zerop)
4796 (rep @0 { build_zero_cst (TREE_TYPE (@0)); }))))
4805 r = c ? a1 op a2 : b;
4807 if the target can do it in one go. This makes the operation conditional
4808 on c, so could drop potentially-trapping arithmetic, but that's a valid
4809 simplification if the result of the operation isn't needed. */
4810 (for uncond_op (UNCOND_BINARY)
4811 cond_op (COND_BINARY)
4813 (vec_cond @0 (view_convert? (uncond_op@4 @1 @2)) @3)
4814 (with { tree op_type = TREE_TYPE (@4); }
4815 (if (element_precision (type) == element_precision (op_type))
4816 (view_convert (cond_op @0 @1 @2 (view_convert:op_type @3))))))
4818 (vec_cond @0 @1 (view_convert? (uncond_op@4 @2 @3)))
4819 (with { tree op_type = TREE_TYPE (@4); }
4820 (if (element_precision (type) == element_precision (op_type))
4821 (view_convert (cond_op (bit_not @0) @2 @3 (view_convert:op_type @1)))))))