2005-03-23 Daniel Berlin <dberlin@dberlin.org>
[official-gcc.git] / gcc / ada / a-nudira.adb
blobf3ef91afdf6a6cc3d3378ade49d0b9ad73fdc562
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT RUNTIME COMPONENTS --
4 -- --
5 -- A D A . N U M E R I C S . D I S C R E T E _ R A N D O M --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2003 Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
20 -- MA 02111-1307, USA. --
21 -- --
22 -- As a special exception, if other files instantiate generics from this --
23 -- unit, or you link this unit with other files to produce an executable, --
24 -- this unit does not by itself cause the resulting executable to be --
25 -- covered by the GNU General Public License. This exception does not --
26 -- however invalidate any other reasons why the executable file might be --
27 -- covered by the GNU Public License. --
28 -- --
29 -- GNAT was originally developed by the GNAT team at New York University. --
30 -- Extensive contributions were provided by Ada Core Technologies Inc. --
31 -- --
32 ------------------------------------------------------------------------------
34 with Ada.Calendar;
35 with Interfaces; use Interfaces;
37 package body Ada.Numerics.Discrete_Random is
39 -------------------------
40 -- Implementation Note --
41 -------------------------
43 -- The design of this spec is very awkward, as a result of Ada 95 not
44 -- permitting in-out parameters for function formals (most naturally
45 -- Generator values would be passed this way). In pure Ada 95, the only
46 -- solution is to use the heap and pointers, and, to avoid memory leaks,
47 -- controlled types.
49 -- This is awfully heavy, so what we do is to use Unrestricted_Access to
50 -- get a pointer to the state in the passed Generator. This works because
51 -- Generator is a limited type and will thus always be passed by reference.
53 type Pointer is access all State;
55 Need_64 : constant Boolean := Rst'Pos (Rst'Last) > Int'Last;
56 -- Set if we need more than 32 bits in the result. In practice we will
57 -- only use the meaningful 48 bits of any 64 bit number generated, since
58 -- if more than 48 bits are required, we split the computation into two
59 -- separate parts, since the algorithm does not behave above 48 bits.
61 -----------------------
62 -- Local Subprograms --
63 -----------------------
65 function Square_Mod_N (X, N : Int) return Int;
66 pragma Inline (Square_Mod_N);
67 -- Computes X**2 mod N avoiding intermediate overflow
69 -----------
70 -- Image --
71 -----------
73 function Image (Of_State : State) return String is
74 begin
75 return Int'Image (Of_State.X1) &
76 ',' &
77 Int'Image (Of_State.X2) &
78 ',' &
79 Int'Image (Of_State.Q);
80 end Image;
82 ------------
83 -- Random --
84 ------------
86 function Random (Gen : Generator) return Rst is
87 Genp : constant Pointer := Gen.Gen_State'Unrestricted_Access;
88 Temp : Int;
89 TF : Flt;
91 begin
92 -- Check for flat range here, since we are typically run with checks
93 -- off, note that in practice, this condition will usually be static
94 -- so we will not actually generate any code for the normal case.
96 if Rst'Last < Rst'First then
97 raise Constraint_Error;
98 end if;
100 -- Continue with computation if non-flat range
102 Genp.X1 := Square_Mod_N (Genp.X1, Genp.P);
103 Genp.X2 := Square_Mod_N (Genp.X2, Genp.Q);
104 Temp := Genp.X2 - Genp.X1;
106 -- Following duplication is not an error, it is a loop unwinding!
108 if Temp < 0 then
109 Temp := Temp + Genp.Q;
110 end if;
112 if Temp < 0 then
113 Temp := Temp + Genp.Q;
114 end if;
116 TF := Offs + (Flt (Temp) * Flt (Genp.P) + Flt (Genp.X1)) * Genp.Scl;
118 -- Pathological, but there do exist cases where the rounding implicit
119 -- in calculating the scale factor will cause rounding to 'Last + 1.
120 -- In those cases, returning 'First results in the least bias.
122 if TF >= Flt (Rst'Pos (Rst'Last)) + 0.5 then
123 return Rst'First;
125 elsif Need_64 then
126 return Rst'Val (Interfaces.Integer_64 (TF));
128 else
129 return Rst'Val (Int (TF));
130 end if;
131 end Random;
133 -----------
134 -- Reset --
135 -----------
137 procedure Reset (Gen : Generator; Initiator : Integer) is
138 Genp : constant Pointer := Gen.Gen_State'Unrestricted_Access;
139 X1, X2 : Int;
141 begin
142 X1 := 2 + Int (Initiator) mod (K1 - 3);
143 X2 := 2 + Int (Initiator) mod (K2 - 3);
145 for J in 1 .. 5 loop
146 X1 := Square_Mod_N (X1, K1);
147 X2 := Square_Mod_N (X2, K2);
148 end loop;
150 -- Eliminate effects of small Initiators
152 Genp.all :=
153 (X1 => X1,
154 X2 => X2,
155 P => K1,
156 Q => K2,
157 FP => K1F,
158 Scl => Scal);
159 end Reset;
161 -----------
162 -- Reset --
163 -----------
165 procedure Reset (Gen : Generator) is
166 Genp : constant Pointer := Gen.Gen_State'Unrestricted_Access;
167 Now : constant Calendar.Time := Calendar.Clock;
168 X1 : Int;
169 X2 : Int;
171 begin
172 X1 := Int (Calendar.Year (Now)) * 12 * 31 +
173 Int (Calendar.Month (Now) * 31) +
174 Int (Calendar.Day (Now));
176 X2 := Int (Calendar.Seconds (Now) * Duration (1000.0));
178 X1 := 2 + X1 mod (K1 - 3);
179 X2 := 2 + X2 mod (K2 - 3);
181 -- Eliminate visible effects of same day starts
183 for J in 1 .. 5 loop
184 X1 := Square_Mod_N (X1, K1);
185 X2 := Square_Mod_N (X2, K2);
186 end loop;
188 Genp.all :=
189 (X1 => X1,
190 X2 => X2,
191 P => K1,
192 Q => K2,
193 FP => K1F,
194 Scl => Scal);
196 end Reset;
198 -----------
199 -- Reset --
200 -----------
202 procedure Reset (Gen : Generator; From_State : State) is
203 Genp : constant Pointer := Gen.Gen_State'Unrestricted_Access;
205 begin
206 Genp.all := From_State;
207 end Reset;
209 ----------
210 -- Save --
211 ----------
213 procedure Save (Gen : Generator; To_State : out State) is
214 begin
215 To_State := Gen.Gen_State;
216 end Save;
218 ------------------
219 -- Square_Mod_N --
220 ------------------
222 function Square_Mod_N (X, N : Int) return Int is
223 begin
224 return Int ((Integer_64 (X) ** 2) mod (Integer_64 (N)));
225 end Square_Mod_N;
227 -----------
228 -- Value --
229 -----------
231 function Value (Coded_State : String) return State is
232 Start : Positive := Coded_State'First;
233 Stop : Positive := Coded_State'First;
234 Outs : State;
236 begin
237 while Coded_State (Stop) /= ',' loop
238 Stop := Stop + 1;
239 end loop;
241 Outs.X1 := Int'Value (Coded_State (Start .. Stop - 1));
242 Start := Stop + 1;
244 loop
245 Stop := Stop + 1;
246 exit when Coded_State (Stop) = ',';
247 end loop;
249 Outs.X2 := Int'Value (Coded_State (Start .. Stop - 1));
250 Outs.Q := Int'Value (Coded_State (Stop + 1 .. Coded_State'Last));
251 Outs.P := Outs.Q * 2 + 1;
252 Outs.FP := Flt (Outs.P);
253 Outs.Scl := (RstL - RstF + 1.0) / (Flt (Outs.P) * Flt (Outs.Q));
255 -- Now do *some* sanity checks.
257 if Outs.Q < 31
258 or else Outs.X1 not in 2 .. Outs.P - 1
259 or else Outs.X2 not in 2 .. Outs.Q - 1
260 then
261 raise Constraint_Error;
262 end if;
264 return Outs;
265 end Value;
267 end Ada.Numerics.Discrete_Random;