2005-03-23 Daniel Berlin <dberlin@dberlin.org>
[official-gcc.git] / gcc / ada / a-coorse.adb
blob03cf0036ddb411ac1cf7c66118ce2990147443f6
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT LIBRARY COMPONENTS --
4 -- --
5 -- ADA.CONTAINERS.ORDERED_SETS --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 2004 Free Software Foundation, Inc. --
10 -- --
11 -- This specification is derived from the Ada Reference Manual for use with --
12 -- GNAT. The copyright notice above, and the license provisions that follow --
13 -- apply solely to the contents of the part following the private keyword. --
14 -- --
15 -- GNAT is free software; you can redistribute it and/or modify it under --
16 -- terms of the GNU General Public License as published by the Free Soft- --
17 -- ware Foundation; either version 2, or (at your option) any later ver- --
18 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
19 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
20 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
21 -- for more details. You should have received a copy of the GNU General --
22 -- Public License distributed with GNAT; see file COPYING. If not, write --
23 -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
24 -- MA 02111-1307, USA. --
25 -- --
26 -- As a special exception, if other files instantiate generics from this --
27 -- unit, or you link this unit with other files to produce an executable, --
28 -- this unit does not by itself cause the resulting executable to be --
29 -- covered by the GNU General Public License. This exception does not --
30 -- however invalidate any other reasons why the executable file might be --
31 -- covered by the GNU Public License. --
32 -- --
33 -- This unit was originally developed by Matthew J Heaney. --
34 ------------------------------------------------------------------------------
36 with Ada.Unchecked_Deallocation;
38 with Ada.Containers.Red_Black_Trees.Generic_Operations;
39 pragma Elaborate_All (Ada.Containers.Red_Black_Trees.Generic_Operations);
41 with Ada.Containers.Red_Black_Trees.Generic_Keys;
42 pragma Elaborate_All (Ada.Containers.Red_Black_Trees.Generic_Keys);
44 with Ada.Containers.Red_Black_Trees.Generic_Set_Operations;
45 pragma Elaborate_All (Ada.Containers.Red_Black_Trees.Generic_Set_Operations);
47 with System; use type System.Address;
49 package body Ada.Containers.Ordered_Sets is
51 use Red_Black_Trees;
53 type Node_Type is limited record
54 Parent : Node_Access;
55 Left : Node_Access;
56 Right : Node_Access;
57 Color : Red_Black_Trees.Color_Type := Red;
58 Element : Element_Type;
59 end record;
61 ------------------------------
62 -- Access to Fields of Node --
63 ------------------------------
65 -- These subprograms provide functional notation for access to fields
66 -- of a node, and procedural notation for modifiying these fields.
68 function Color (Node : Node_Access) return Color_Type;
69 pragma Inline (Color);
71 function Left (Node : Node_Access) return Node_Access;
72 pragma Inline (Left);
74 function Parent (Node : Node_Access) return Node_Access;
75 pragma Inline (Parent);
77 function Right (Node : Node_Access) return Node_Access;
78 pragma Inline (Right);
80 procedure Set_Color (Node : Node_Access; Color : Color_Type);
81 pragma Inline (Set_Color);
83 procedure Set_Left (Node : Node_Access; Left : Node_Access);
84 pragma Inline (Set_Left);
86 procedure Set_Right (Node : Node_Access; Right : Node_Access);
87 pragma Inline (Set_Right);
89 procedure Set_Parent (Node : Node_Access; Parent : Node_Access);
90 pragma Inline (Set_Parent);
92 -----------------------
93 -- Local Subprograms --
94 -----------------------
96 function Copy_Node (Source : Node_Access) return Node_Access;
97 pragma Inline (Copy_Node);
99 function Copy_Tree (Source_Root : Node_Access) return Node_Access;
101 procedure Delete_Tree (X : in out Node_Access);
103 procedure Insert_With_Hint
104 (Dst_Tree : in out Tree_Type;
105 Dst_Hint : Node_Access;
106 Src_Node : Node_Access;
107 Dst_Node : out Node_Access);
109 function Is_Equal_Node_Node (L, R : Node_Access) return Boolean;
110 pragma Inline (Is_Equal_Node_Node);
112 function Is_Greater_Element_Node
113 (Left : Element_Type;
114 Right : Node_Access) return Boolean;
115 pragma Inline (Is_Greater_Element_Node);
117 function Is_Less_Element_Node
118 (Left : Element_Type;
119 Right : Node_Access) return Boolean;
120 pragma Inline (Is_Less_Element_Node);
122 function Is_Less_Node_Node (L, R : Node_Access) return Boolean;
123 pragma Inline (Is_Less_Node_Node);
125 --------------------------
126 -- Local Instantiations --
127 --------------------------
129 package Tree_Operations is
130 new Red_Black_Trees.Generic_Operations
131 (Tree_Types => Tree_Types,
132 Null_Node => Node_Access'(null));
134 use Tree_Operations;
136 procedure Free is
137 new Ada.Unchecked_Deallocation (Node_Type, Node_Access);
139 function Is_Equal is
140 new Tree_Operations.Generic_Equal (Is_Equal_Node_Node);
142 package Element_Keys is
143 new Red_Black_Trees.Generic_Keys
144 (Tree_Operations => Tree_Operations,
145 Key_Type => Element_Type,
146 Is_Less_Key_Node => Is_Less_Element_Node,
147 Is_Greater_Key_Node => Is_Greater_Element_Node);
149 package Set_Ops is
150 new Generic_Set_Operations
151 (Tree_Operations => Tree_Operations,
152 Insert_With_Hint => Insert_With_Hint,
153 Copy_Tree => Copy_Tree,
154 Delete_Tree => Delete_Tree,
155 Is_Less => Is_Less_Node_Node,
156 Free => Free);
158 ---------
159 -- "<" --
160 ---------
162 function "<" (Left, Right : Cursor) return Boolean is
163 begin
164 return Left.Node.Element < Right.Node.Element;
165 end "<";
167 function "<" (Left : Cursor; Right : Element_Type) return Boolean is
168 begin
169 return Left.Node.Element < Right;
170 end "<";
172 function "<" (Left : Element_Type; Right : Cursor) return Boolean is
173 begin
174 return Left < Right.Node.Element;
175 end "<";
177 ---------
178 -- "=" --
179 ---------
181 function "=" (Left, Right : Set) return Boolean is
182 begin
183 if Left'Address = Right'Address then
184 return True;
185 end if;
187 return Is_Equal (Left.Tree, Right.Tree);
188 end "=";
190 ---------
191 -- ">" --
192 ---------
194 function ">" (Left, Right : Cursor) return Boolean is
195 begin
196 -- L > R same as R < L
198 return Right.Node.Element < Left.Node.Element;
199 end ">";
201 function ">" (Left : Element_Type; Right : Cursor) return Boolean is
202 begin
203 return Right.Node.Element < Left;
204 end ">";
206 function ">" (Left : Cursor; Right : Element_Type) return Boolean is
207 begin
208 return Right < Left.Node.Element;
209 end ">";
211 ------------
212 -- Adjust --
213 ------------
215 procedure Adjust (Container : in out Set) is
216 Tree : Tree_Type renames Container.Tree;
218 N : constant Count_Type := Tree.Length;
219 X : constant Node_Access := Tree.Root;
221 begin
222 if N = 0 then
223 pragma Assert (X = null);
224 return;
225 end if;
227 Tree := (Length => 0, others => null);
229 Tree.Root := Copy_Tree (X);
230 Tree.First := Min (Tree.Root);
231 Tree.Last := Max (Tree.Root);
232 Tree.Length := N;
233 end Adjust;
235 -------------
236 -- Ceiling --
237 -------------
239 function Ceiling (Container : Set; Item : Element_Type) return Cursor is
240 Node : constant Node_Access :=
241 Element_Keys.Ceiling (Container.Tree, Item);
243 begin
244 if Node = null then
245 return No_Element;
246 end if;
248 return Cursor'(Container'Unchecked_Access, Node);
249 end Ceiling;
251 -----------
252 -- Clear --
253 -----------
255 procedure Clear (Container : in out Set) is
256 Tree : Tree_Type renames Container.Tree;
257 Root : Node_Access := Tree.Root;
258 begin
259 Tree := (Length => 0, others => null);
260 Delete_Tree (Root);
261 end Clear;
263 -----------
264 -- Color --
265 -----------
267 function Color (Node : Node_Access) return Color_Type is
268 begin
269 return Node.Color;
270 end Color;
272 --------------
273 -- Contains --
274 --------------
276 function Contains
277 (Container : Set;
278 Item : Element_Type) return Boolean
280 begin
281 return Find (Container, Item) /= No_Element;
282 end Contains;
284 ---------------
285 -- Copy_Node --
286 ---------------
288 function Copy_Node (Source : Node_Access) return Node_Access is
289 Target : constant Node_Access :=
290 new Node_Type'(Parent => null,
291 Left => null,
292 Right => null,
293 Color => Source.Color,
294 Element => Source.Element);
295 begin
296 return Target;
297 end Copy_Node;
299 ---------------
300 -- Copy_Tree --
301 ---------------
303 function Copy_Tree (Source_Root : Node_Access) return Node_Access is
304 Target_Root : Node_Access := Copy_Node (Source_Root);
306 P, X : Node_Access;
308 begin
309 if Source_Root.Right /= null then
310 Target_Root.Right := Copy_Tree (Source_Root.Right);
311 Target_Root.Right.Parent := Target_Root;
312 end if;
314 P := Target_Root;
315 X := Source_Root.Left;
316 while X /= null loop
317 declare
318 Y : Node_Access := Copy_Node (X);
320 begin
321 P.Left := Y;
322 Y.Parent := P;
324 if X.Right /= null then
325 Y.Right := Copy_Tree (X.Right);
326 Y.Right.Parent := Y;
327 end if;
329 P := Y;
330 X := X.Left;
331 end;
332 end loop;
334 return Target_Root;
336 exception
337 when others =>
339 Delete_Tree (Target_Root);
340 raise;
341 end Copy_Tree;
343 ------------
344 -- Delete --
345 ------------
347 procedure Delete (Container : in out Set; Position : in out Cursor) is
348 begin
349 if Position = No_Element then
350 return;
351 end if;
353 if Position.Container /= Set_Access'(Container'Unchecked_Access) then
354 raise Program_Error;
355 end if;
357 Delete_Node_Sans_Free (Container.Tree, Position.Node);
358 Free (Position.Node);
359 Position.Container := null;
360 end Delete;
362 procedure Delete (Container : in out Set; Item : Element_Type) is
363 X : Node_Access := Element_Keys.Find (Container.Tree, Item);
365 begin
366 if X = null then
367 raise Constraint_Error;
368 end if;
370 Delete_Node_Sans_Free (Container.Tree, X);
371 Free (X);
372 end Delete;
374 ------------------
375 -- Delete_First --
376 ------------------
378 procedure Delete_First (Container : in out Set) is
379 C : Cursor := First (Container);
380 begin
381 Delete (Container, C);
382 end Delete_First;
384 -----------------
385 -- Delete_Last --
386 -----------------
388 procedure Delete_Last (Container : in out Set) is
389 C : Cursor := Last (Container);
390 begin
391 Delete (Container, C);
392 end Delete_Last;
394 -----------------
395 -- Delete_Tree --
396 -----------------
398 procedure Delete_Tree (X : in out Node_Access) is
399 Y : Node_Access;
400 begin
401 while X /= null loop
402 Y := X.Right;
403 Delete_Tree (Y);
404 Y := X.Left;
405 Free (X);
406 X := Y;
407 end loop;
408 end Delete_Tree;
410 ----------------
411 -- Difference --
412 ----------------
414 procedure Difference (Target : in out Set; Source : Set) is
415 begin
416 if Target'Address = Source'Address then
417 Clear (Target);
418 return;
419 end if;
421 Set_Ops.Difference (Target.Tree, Source.Tree);
422 end Difference;
424 function Difference (Left, Right : Set) return Set is
425 begin
426 if Left'Address = Right'Address then
427 return Empty_Set;
428 end if;
430 declare
431 Tree : constant Tree_Type :=
432 Set_Ops.Difference (Left.Tree, Right.Tree);
433 begin
434 return (Controlled with Tree);
435 end;
436 end Difference;
438 -------------
439 -- Element --
440 -------------
442 function Element (Position : Cursor) return Element_Type is
443 begin
444 return Position.Node.Element;
445 end Element;
447 -------------
448 -- Exclude --
449 -------------
451 procedure Exclude (Container : in out Set; Item : Element_Type) is
452 X : Node_Access := Element_Keys.Find (Container.Tree, Item);
454 begin
455 if X /= null then
456 Delete_Node_Sans_Free (Container.Tree, X);
457 Free (X);
458 end if;
459 end Exclude;
461 ----------
462 -- Find --
463 ----------
465 function Find (Container : Set; Item : Element_Type) return Cursor is
466 Node : constant Node_Access :=
467 Element_Keys.Find (Container.Tree, Item);
469 begin
470 if Node = null then
471 return No_Element;
472 end if;
474 return Cursor'(Container'Unchecked_Access, Node);
475 end Find;
477 -----------
478 -- First --
479 -----------
481 function First (Container : Set) return Cursor is
482 begin
483 if Container.Tree.First = null then
484 return No_Element;
485 end if;
487 return Cursor'(Container'Unchecked_Access, Container.Tree.First);
488 end First;
490 -------------------
491 -- First_Element --
492 -------------------
494 function First_Element (Container : Set) return Element_Type is
495 begin
496 return Container.Tree.First.Element;
497 end First_Element;
499 -----------
500 -- Floor --
501 -----------
503 function Floor (Container : Set; Item : Element_Type) return Cursor is
504 Node : constant Node_Access :=
505 Element_Keys.Floor (Container.Tree, Item);
507 begin
508 if Node = null then
509 return No_Element;
510 end if;
512 return Cursor'(Container'Unchecked_Access, Node);
513 end Floor;
515 ------------------
516 -- Generic_Keys --
517 ------------------
519 package body Generic_Keys is
521 -----------------------
522 -- Local Subprograms --
523 -----------------------
525 function Is_Greater_Key_Node
526 (Left : Key_Type;
527 Right : Node_Access) return Boolean;
528 pragma Inline (Is_Greater_Key_Node);
530 function Is_Less_Key_Node
531 (Left : Key_Type;
532 Right : Node_Access) return Boolean;
533 pragma Inline (Is_Less_Key_Node);
535 --------------------------
536 -- Local Instantiations --
537 --------------------------
539 package Key_Keys is
540 new Red_Black_Trees.Generic_Keys
541 (Tree_Operations => Tree_Operations,
542 Key_Type => Key_Type,
543 Is_Less_Key_Node => Is_Less_Key_Node,
544 Is_Greater_Key_Node => Is_Greater_Key_Node);
546 ---------
547 -- "<" --
548 ---------
550 function "<" (Left : Key_Type; Right : Cursor) return Boolean is
551 begin
552 return Left < Right.Node.Element;
553 end "<";
555 function "<" (Left : Cursor; Right : Key_Type) return Boolean is
556 begin
557 return Right > Left.Node.Element;
558 end "<";
560 ---------
561 -- ">" --
562 ---------
564 function ">" (Left : Key_Type; Right : Cursor) return Boolean is
565 begin
566 return Left > Right.Node.Element;
567 end ">";
569 function ">" (Left : Cursor; Right : Key_Type) return Boolean is
570 begin
571 return Right < Left.Node.Element;
572 end ">";
574 -------------
575 -- Ceiling --
576 -------------
578 function Ceiling (Container : Set; Key : Key_Type) return Cursor is
579 Node : constant Node_Access :=
580 Key_Keys.Ceiling (Container.Tree, Key);
582 begin
583 if Node = null then
584 return No_Element;
585 end if;
587 return Cursor'(Container'Unchecked_Access, Node);
588 end Ceiling;
590 ----------------------------
591 -- Checked_Update_Element --
592 ----------------------------
594 procedure Checked_Update_Element
595 (Container : in out Set;
596 Position : Cursor;
597 Process : not null access procedure (Element : in out Element_Type))
599 begin
600 if Position.Container = null then
601 raise Constraint_Error;
602 end if;
604 if Position.Container /= Set_Access'(Container'Unchecked_Access) then
605 raise Program_Error;
606 end if;
608 declare
609 Old_Key : Key_Type renames Key (Position.Node.Element);
611 begin
612 Process (Position.Node.Element);
614 if Old_Key < Position.Node.Element
615 or else Old_Key > Position.Node.Element
616 then
617 null;
618 else
619 return;
620 end if;
621 end;
623 Delete_Node_Sans_Free (Container.Tree, Position.Node);
625 declare
626 Result : Node_Access;
627 Success : Boolean;
629 function New_Node return Node_Access;
630 pragma Inline (New_Node);
632 procedure Local_Insert_Post is
633 new Key_Keys.Generic_Insert_Post (New_Node);
635 procedure Local_Conditional_Insert is
636 new Key_Keys.Generic_Conditional_Insert (Local_Insert_Post);
638 --------------
639 -- New_Node --
640 --------------
642 function New_Node return Node_Access is
643 begin
644 return Position.Node;
645 end New_Node;
648 begin
649 Local_Conditional_Insert
650 (Tree => Container.Tree,
651 Key => Key (Position.Node.Element),
652 Node => Result,
653 Success => Success);
655 if not Success then
656 declare
657 X : Node_Access := Position.Node;
658 begin
659 Free (X);
660 end;
662 raise Program_Error;
663 end if;
665 pragma Assert (Result = Position.Node);
666 end;
667 end Checked_Update_Element;
669 --------------
670 -- Contains --
671 --------------
673 function Contains (Container : Set; Key : Key_Type) return Boolean is
674 begin
675 return Find (Container, Key) /= No_Element;
676 end Contains;
678 ------------
679 -- Delete --
680 ------------
682 procedure Delete (Container : in out Set; Key : Key_Type) is
683 X : Node_Access := Key_Keys.Find (Container.Tree, Key);
685 begin
686 if X = null then
687 raise Constraint_Error;
688 end if;
690 Delete_Node_Sans_Free (Container.Tree, X);
691 Free (X);
692 end Delete;
694 -------------
695 -- Element --
696 -------------
698 function Element
699 (Container : Set;
700 Key : Key_Type) return Element_Type
702 Node : constant Node_Access := Key_Keys.Find (Container.Tree, Key);
703 begin
704 return Node.Element;
705 end Element;
707 -------------
708 -- Exclude --
709 -------------
711 procedure Exclude (Container : in out Set; Key : Key_Type) is
712 X : Node_Access := Key_Keys.Find (Container.Tree, Key);
713 begin
714 if X /= null then
715 Delete_Node_Sans_Free (Container.Tree, X);
716 Free (X);
717 end if;
718 end Exclude;
720 ----------
721 -- Find --
722 ----------
724 function Find (Container : Set; Key : Key_Type) return Cursor is
725 Node : constant Node_Access := Key_Keys.Find (Container.Tree, Key);
727 begin
728 if Node = null then
729 return No_Element;
730 end if;
732 return Cursor'(Container'Unchecked_Access, Node);
733 end Find;
735 -----------
736 -- Floor --
737 -----------
739 function Floor (Container : Set; Key : Key_Type) return Cursor is
740 Node : constant Node_Access := Key_Keys.Floor (Container.Tree, Key);
742 begin
743 if Node = null then
744 return No_Element;
745 end if;
747 return Cursor'(Container'Unchecked_Access, Node);
748 end Floor;
750 -------------------------
751 -- Is_Greater_Key_Node --
752 -------------------------
754 function Is_Greater_Key_Node
755 (Left : Key_Type;
756 Right : Node_Access) return Boolean
758 begin
759 return Left > Right.Element;
760 end Is_Greater_Key_Node;
762 ----------------------
763 -- Is_Less_Key_Node --
764 ----------------------
766 function Is_Less_Key_Node
767 (Left : Key_Type;
768 Right : Node_Access) return Boolean
770 begin
771 return Left < Right.Element;
772 end Is_Less_Key_Node;
774 ---------
775 -- Key --
776 ---------
778 function Key (Position : Cursor) return Key_Type is
779 begin
780 return Key (Position.Node.Element);
781 end Key;
783 -------------
784 -- Replace --
785 -------------
787 -- TODO???
789 -- procedure Replace
790 -- (Container : in out Set;
791 -- Key : Key_Type;
792 -- New_Item : Element_Type)
793 -- is
794 -- Node : Node_Access := Key_Keys.Find (Container.Tree, Key);
796 -- begin
797 -- if Node = null then
798 -- raise Constraint_Error;
799 -- end if;
801 -- Replace_Element (Container, Node, New_Item);
802 -- end Replace;
804 end Generic_Keys;
806 -----------------
807 -- Has_Element --
808 -----------------
810 function Has_Element (Position : Cursor) return Boolean is
811 begin
812 return Position /= No_Element;
813 end Has_Element;
815 -------------
816 -- Include --
817 -------------
819 procedure Include (Container : in out Set; New_Item : Element_Type) is
820 Position : Cursor;
821 Inserted : Boolean;
823 begin
824 Insert (Container, New_Item, Position, Inserted);
826 if not Inserted then
827 Position.Node.Element := New_Item;
828 end if;
829 end Include;
831 ------------
832 -- Insert --
833 ------------
835 procedure Insert
836 (Container : in out Set;
837 New_Item : Element_Type;
838 Position : out Cursor;
839 Inserted : out Boolean)
841 function New_Node return Node_Access;
842 pragma Inline (New_Node);
844 procedure Insert_Post is
845 new Element_Keys.Generic_Insert_Post (New_Node);
847 procedure Insert_Sans_Hint is
848 new Element_Keys.Generic_Conditional_Insert (Insert_Post);
850 --------------
851 -- New_Node --
852 --------------
854 function New_Node return Node_Access is
855 Node : constant Node_Access :=
856 new Node_Type'(Parent => null,
857 Left => null,
858 Right => null,
859 Color => Red,
860 Element => New_Item);
861 begin
862 return Node;
863 end New_Node;
865 -- Start of processing for Insert
867 begin
868 Insert_Sans_Hint
869 (Container.Tree,
870 New_Item,
871 Position.Node,
872 Inserted);
874 Position.Container := Container'Unchecked_Access;
875 end Insert;
877 procedure Insert
878 (Container : in out Set;
879 New_Item : Element_Type)
882 Position : Cursor;
883 Inserted : Boolean;
885 begin
886 Insert (Container, New_Item, Position, Inserted);
888 if not Inserted then
889 raise Constraint_Error;
890 end if;
891 end Insert;
893 ----------------------
894 -- Insert_With_Hint --
895 ----------------------
897 procedure Insert_With_Hint
898 (Dst_Tree : in out Tree_Type;
899 Dst_Hint : Node_Access;
900 Src_Node : Node_Access;
901 Dst_Node : out Node_Access)
903 Success : Boolean;
905 function New_Node return Node_Access;
906 pragma Inline (New_Node);
908 procedure Insert_Post is
909 new Element_Keys.Generic_Insert_Post (New_Node);
911 procedure Insert_Sans_Hint is
912 new Element_Keys.Generic_Conditional_Insert (Insert_Post);
914 procedure Local_Insert_With_Hint is
915 new Element_Keys.Generic_Conditional_Insert_With_Hint
916 (Insert_Post,
917 Insert_Sans_Hint);
919 --------------
920 -- New_Node --
921 --------------
923 function New_Node return Node_Access is
924 Node : constant Node_Access :=
925 new Node_Type'(Parent => null,
926 Left => null,
927 Right => null,
928 Color => Red,
929 Element => Src_Node.Element);
930 begin
931 return Node;
932 end New_Node;
934 -- Start of processing for Insert_With_Hint
936 begin
937 Local_Insert_With_Hint
938 (Dst_Tree,
939 Dst_Hint,
940 Src_Node.Element,
941 Dst_Node,
942 Success);
943 end Insert_With_Hint;
945 ------------------
946 -- Intersection --
947 ------------------
949 procedure Intersection (Target : in out Set; Source : Set) is
950 begin
951 if Target'Address = Source'Address then
952 return;
953 end if;
955 Set_Ops.Intersection (Target.Tree, Source.Tree);
956 end Intersection;
958 function Intersection (Left, Right : Set) return Set is
959 begin
960 if Left'Address = Right'Address then
961 return Left;
962 end if;
964 declare
965 Tree : constant Tree_Type :=
966 Set_Ops.Intersection (Left.Tree, Right.Tree);
967 begin
968 return (Controlled with Tree);
969 end;
970 end Intersection;
972 --------------
973 -- Is_Empty --
974 --------------
976 function Is_Empty (Container : Set) return Boolean is
977 begin
978 return Length (Container) = 0;
979 end Is_Empty;
981 ------------------------
982 -- Is_Equal_Node_Node --
983 ------------------------
985 function Is_Equal_Node_Node (L, R : Node_Access) return Boolean is
986 begin
987 return L.Element = R.Element;
988 end Is_Equal_Node_Node;
990 -----------------------------
991 -- Is_Greater_Element_Node --
992 -----------------------------
994 function Is_Greater_Element_Node
995 (Left : Element_Type;
996 Right : Node_Access) return Boolean
998 begin
999 -- Compute e > node same as node < e
1001 return Right.Element < Left;
1002 end Is_Greater_Element_Node;
1004 --------------------------
1005 -- Is_Less_Element_Node --
1006 --------------------------
1008 function Is_Less_Element_Node
1009 (Left : Element_Type;
1010 Right : Node_Access) return Boolean
1012 begin
1013 return Left < Right.Element;
1014 end Is_Less_Element_Node;
1016 -----------------------
1017 -- Is_Less_Node_Node --
1018 -----------------------
1020 function Is_Less_Node_Node (L, R : Node_Access) return Boolean is
1021 begin
1022 return L.Element < R.Element;
1023 end Is_Less_Node_Node;
1025 ---------------
1026 -- Is_Subset --
1027 ---------------
1029 function Is_Subset (Subset : Set; Of_Set : Set) return Boolean is
1030 begin
1031 if Subset'Address = Of_Set'Address then
1032 return True;
1033 end if;
1035 return Set_Ops.Is_Subset (Subset => Subset.Tree, Of_Set => Of_Set.Tree);
1036 end Is_Subset;
1038 -------------
1039 -- Iterate --
1040 -------------
1042 procedure Iterate
1043 (Container : Set;
1044 Process : not null access procedure (Position : Cursor))
1046 procedure Process_Node (Node : Node_Access);
1047 pragma Inline (Process_Node);
1049 procedure Local_Iterate is
1050 new Tree_Operations.Generic_Iteration (Process_Node);
1052 ------------------
1053 -- Process_Node --
1054 ------------------
1056 procedure Process_Node (Node : Node_Access) is
1057 begin
1058 Process (Cursor'(Container'Unchecked_Access, Node));
1059 end Process_Node;
1061 -- Start of prccessing for Iterate
1063 begin
1064 Local_Iterate (Container.Tree);
1065 end Iterate;
1067 ----------
1068 -- Last --
1069 ----------
1071 function Last (Container : Set) return Cursor is
1072 begin
1073 if Container.Tree.Last = null then
1074 return No_Element;
1075 end if;
1077 return Cursor'(Container'Unchecked_Access, Container.Tree.Last);
1078 end Last;
1080 ------------------
1081 -- Last_Element --
1082 ------------------
1084 function Last_Element (Container : Set) return Element_Type is
1085 begin
1086 return Container.Tree.Last.Element;
1087 end Last_Element;
1089 ----------
1090 -- Left --
1091 ----------
1093 function Left (Node : Node_Access) return Node_Access is
1094 begin
1095 return Node.Left;
1096 end Left;
1098 ------------
1099 -- Length --
1100 ------------
1102 function Length (Container : Set) return Count_Type is
1103 begin
1104 return Container.Tree.Length;
1105 end Length;
1107 ----------
1108 -- Move --
1109 ----------
1111 procedure Move (Target : in out Set; Source : in out Set) is
1112 begin
1113 if Target'Address = Source'Address then
1114 return;
1115 end if;
1117 Move (Target => Target.Tree, Source => Source.Tree);
1118 end Move;
1120 ----------
1121 -- Next --
1122 ----------
1124 function Next (Position : Cursor) return Cursor is
1125 begin
1126 if Position = No_Element then
1127 return No_Element;
1128 end if;
1130 declare
1131 Node : constant Node_Access :=
1132 Tree_Operations.Next (Position.Node);
1133 begin
1134 if Node = null then
1135 return No_Element;
1136 end if;
1138 return Cursor'(Position.Container, Node);
1139 end;
1140 end Next;
1142 procedure Next (Position : in out Cursor) is
1143 begin
1144 Position := Next (Position);
1145 end Next;
1147 -------------
1148 -- Overlap --
1149 -------------
1151 function Overlap (Left, Right : Set) return Boolean is
1152 begin
1153 if Left'Address = Right'Address then
1154 return Left.Tree.Length /= 0;
1155 end if;
1157 return Set_Ops.Overlap (Left.Tree, Right.Tree);
1158 end Overlap;
1160 ------------
1161 -- Parent --
1162 ------------
1164 function Parent (Node : Node_Access) return Node_Access is
1165 begin
1166 return Node.Parent;
1167 end Parent;
1169 --------------
1170 -- Previous --
1171 --------------
1173 function Previous (Position : Cursor) return Cursor is
1174 begin
1175 if Position = No_Element then
1176 return No_Element;
1177 end if;
1179 declare
1180 Node : constant Node_Access :=
1181 Tree_Operations.Previous (Position.Node);
1183 begin
1184 if Node = null then
1185 return No_Element;
1186 end if;
1188 return Cursor'(Position.Container, Node);
1189 end;
1190 end Previous;
1192 procedure Previous (Position : in out Cursor) is
1193 begin
1194 Position := Previous (Position);
1195 end Previous;
1197 -------------------
1198 -- Query_Element --
1199 -------------------
1201 procedure Query_Element
1202 (Position : Cursor;
1203 Process : not null access procedure (Element : Element_Type))
1205 begin
1206 Process (Position.Node.Element);
1207 end Query_Element;
1209 ----------
1210 -- Read --
1211 ----------
1213 procedure Read
1214 (Stream : access Root_Stream_Type'Class;
1215 Container : out Set)
1217 N : Count_Type'Base;
1219 function New_Node return Node_Access;
1220 pragma Inline (New_Node);
1222 procedure Local_Read is new Tree_Operations.Generic_Read (New_Node);
1224 --------------
1225 -- New_Node --
1226 --------------
1228 function New_Node return Node_Access is
1229 Node : Node_Access := new Node_Type;
1231 begin
1232 begin
1233 Element_Type'Read (Stream, Node.Element);
1235 exception
1236 when others =>
1237 Free (Node);
1238 raise;
1239 end;
1241 return Node;
1242 end New_Node;
1244 -- Start of processing for Read
1246 begin
1247 Clear (Container);
1249 Count_Type'Base'Read (Stream, N);
1250 pragma Assert (N >= 0);
1252 Local_Read (Container.Tree, N);
1253 end Read;
1255 -------------
1256 -- Replace --
1257 -------------
1259 procedure Replace (Container : in out Set; New_Item : Element_Type) is
1260 Node : constant Node_Access :=
1261 Element_Keys.Find (Container.Tree, New_Item);
1263 begin
1264 if Node = null then
1265 raise Constraint_Error;
1266 end if;
1268 Node.Element := New_Item;
1269 end Replace;
1271 ---------------------
1272 -- Replace_Element --
1273 ---------------------
1275 -- TODO: ???
1276 -- procedure Replace_Element
1277 -- (Container : in out Set;
1278 -- Position : Node_Access;
1279 -- By : Element_Type)
1280 -- is
1281 -- Node : Node_Access := Position;
1283 -- begin
1284 -- if By < Node.Element
1285 -- or else Node.Element < By
1286 -- then
1287 -- null;
1289 -- else
1290 -- begin
1291 -- Node.Element := By;
1293 -- exception
1294 -- when others =>
1295 -- Delete_Node_Sans_Free (Container.Tree, Node);
1296 -- Free (Node);
1297 -- raise;
1298 -- end;
1300 -- return;
1301 -- end if;
1303 -- Delete_Node_Sans_Free (Container.Tree, Node);
1305 -- begin
1306 -- Node.Element := By;
1307 -- exception
1308 -- when others =>
1309 -- Free (Node);
1310 -- raise;
1311 -- end;
1313 -- declare
1314 -- function New_Node return Node_Access;
1315 -- pragma Inline (New_Node);
1317 -- function New_Node return Node_Access is
1318 -- begin
1319 -- return Node;
1320 -- end New_Node;
1322 -- procedure Insert_Post is
1323 -- new Element_Keys.Generic_Insert_Post (New_Node);
1325 -- procedure Insert is
1326 -- new Element_Keys.Generic_Conditional_Insert (Insert_Post);
1328 -- Result : Node_Access;
1329 -- Success : Boolean;
1331 -- begin
1332 -- Insert
1333 -- (Tree => Container.Tree,
1334 -- Key => Node.Element,
1335 -- Node => Result,
1336 -- Success => Success);
1338 -- if not Success then
1339 -- Free (Node);
1340 -- raise Program_Error;
1341 -- end if;
1343 -- pragma Assert (Result = Node);
1344 -- end;
1345 -- end Replace_Element;
1348 -- procedure Replace_Element
1349 -- (Container : in out Set;
1350 -- Position : Cursor;
1351 -- By : Element_Type)
1352 -- is
1353 -- begin
1354 -- if Position.Container = null then
1355 -- raise Constraint_Error;
1356 -- end if;
1358 -- if Position.Container /= Set_Access'(Container'Unchecked_Access) then
1359 -- raise Program_Error;
1360 -- end if;
1362 -- Replace_Element (Container, Position.Node, By);
1363 -- end Replace_Element;
1365 ---------------------
1366 -- Reverse_Iterate --
1367 ---------------------
1369 procedure Reverse_Iterate
1370 (Container : Set;
1371 Process : not null access procedure (Position : Cursor))
1373 procedure Process_Node (Node : Node_Access);
1374 pragma Inline (Process_Node);
1376 procedure Local_Reverse_Iterate is
1377 new Tree_Operations.Generic_Reverse_Iteration (Process_Node);
1379 ------------------
1380 -- Process_Node --
1381 ------------------
1383 procedure Process_Node (Node : Node_Access) is
1384 begin
1385 Process (Cursor'(Container'Unchecked_Access, Node));
1386 end Process_Node;
1388 -- Start of processing for Reverse_Iterate
1390 begin
1391 Local_Reverse_Iterate (Container.Tree);
1392 end Reverse_Iterate;
1394 -----------
1395 -- Right --
1396 -----------
1398 function Right (Node : Node_Access) return Node_Access is
1399 begin
1400 return Node.Right;
1401 end Right;
1403 ---------------
1404 -- Set_Color --
1405 ---------------
1407 procedure Set_Color (Node : Node_Access; Color : Color_Type) is
1408 begin
1409 Node.Color := Color;
1410 end Set_Color;
1412 --------------
1413 -- Set_Left --
1414 --------------
1416 procedure Set_Left (Node : Node_Access; Left : Node_Access) is
1417 begin
1418 Node.Left := Left;
1419 end Set_Left;
1421 ----------------
1422 -- Set_Parent --
1423 ----------------
1425 procedure Set_Parent (Node : Node_Access; Parent : Node_Access) is
1426 begin
1427 Node.Parent := Parent;
1428 end Set_Parent;
1430 ---------------
1431 -- Set_Right --
1432 ---------------
1434 procedure Set_Right (Node : Node_Access; Right : Node_Access) is
1435 begin
1436 Node.Right := Right;
1437 end Set_Right;
1439 --------------------------
1440 -- Symmetric_Difference --
1441 --------------------------
1443 procedure Symmetric_Difference (Target : in out Set; Source : Set) is
1444 begin
1445 if Target'Address = Source'Address then
1446 Clear (Target);
1447 return;
1448 end if;
1450 Set_Ops.Symmetric_Difference (Target.Tree, Source.Tree);
1451 end Symmetric_Difference;
1453 function Symmetric_Difference (Left, Right : Set) return Set is
1454 begin
1455 if Left'Address = Right'Address then
1456 return Empty_Set;
1457 end if;
1459 declare
1460 Tree : constant Tree_Type :=
1461 Set_Ops.Symmetric_Difference (Left.Tree, Right.Tree);
1462 begin
1463 return (Controlled with Tree);
1464 end;
1465 end Symmetric_Difference;
1467 -----------
1468 -- Union --
1469 -----------
1471 procedure Union (Target : in out Set; Source : Set) is
1472 begin
1474 if Target'Address = Source'Address then
1475 return;
1476 end if;
1478 Set_Ops.Union (Target.Tree, Source.Tree);
1479 end Union;
1481 function Union (Left, Right : Set) return Set is
1482 begin
1483 if Left'Address = Right'Address then
1484 return Left;
1485 end if;
1487 declare
1488 Tree : constant Tree_Type := Set_Ops.Union (Left.Tree, Right.Tree);
1489 begin
1490 return (Controlled with Tree);
1491 end;
1492 end Union;
1494 -----------
1495 -- Write --
1496 -----------
1498 procedure Write
1499 (Stream : access Root_Stream_Type'Class;
1500 Container : Set)
1502 procedure Process (Node : Node_Access);
1503 pragma Inline (Process);
1505 procedure Iterate is
1506 new Tree_Operations.Generic_Iteration (Process);
1508 -------------
1509 -- Process --
1510 -------------
1512 procedure Process (Node : Node_Access) is
1513 begin
1514 Element_Type'Write (Stream, Node.Element);
1515 end Process;
1517 -- Start of processing for Write
1519 begin
1520 Count_Type'Base'Write (Stream, Container.Tree.Length);
1521 Iterate (Container.Tree);
1522 end Write;
1527 end Ada.Containers.Ordered_Sets;