* doc/xml/manual/profile_mode.xml: Update three ieeexplore.ieee.org
[official-gcc.git] / libgo / go / time / time.go
blob93909682f5102fca37c8d4a0ed67c95a83b82978
1 // Copyright 2009 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
5 // Package time provides functionality for measuring and displaying time.
6 //
7 // The calendrical calculations always assume a Gregorian calendar, with
8 // no leap seconds.
9 //
10 // Monotonic Clocks
12 // Operating systems provide both a “wall clock,” which is subject to
13 // changes for clock synchronization, and a “monotonic clock,” which is
14 // not. The general rule is that the wall clock is for telling time and
15 // the monotonic clock is for measuring time. Rather than split the API,
16 // in this package the Time returned by time.Now contains both a wall
17 // clock reading and a monotonic clock reading; later time-telling
18 // operations use the wall clock reading, but later time-measuring
19 // operations, specifically comparisons and subtractions, use the
20 // monotonic clock reading.
22 // For example, this code always computes a positive elapsed time of
23 // approximately 20 milliseconds, even if the wall clock is changed during
24 // the operation being timed:
26 // start := time.Now()
27 // ... operation that takes 20 milliseconds ...
28 // t := time.Now()
29 // elapsed := t.Sub(start)
31 // Other idioms, such as time.Since(start), time.Until(deadline), and
32 // time.Now().Before(deadline), are similarly robust against wall clock
33 // resets.
35 // The rest of this section gives the precise details of how operations
36 // use monotonic clocks, but understanding those details is not required
37 // to use this package.
39 // The Time returned by time.Now contains a monotonic clock reading.
40 // If Time t has a monotonic clock reading, t.Add adds the same duration to
41 // both the wall clock and monotonic clock readings to compute the result.
42 // Because t.AddDate(y, m, d), t.Round(d), and t.Truncate(d) are wall time
43 // computations, they always strip any monotonic clock reading from their results.
44 // Because t.In, t.Local, and t.UTC are used for their effect on the interpretation
45 // of the wall time, they also strip any monotonic clock reading from their results.
46 // The canonical way to strip a monotonic clock reading is to use t = t.Round(0).
48 // If Times t and u both contain monotonic clock readings, the operations
49 // t.After(u), t.Before(u), t.Equal(u), and t.Sub(u) are carried out
50 // using the monotonic clock readings alone, ignoring the wall clock
51 // readings. If either t or u contains no monotonic clock reading, these
52 // operations fall back to using the wall clock readings.
54 // Because the monotonic clock reading has no meaning outside
55 // the current process, the serialized forms generated by t.GobEncode,
56 // t.MarshalBinary, t.MarshalJSON, and t.MarshalText omit the monotonic
57 // clock reading, and t.Format provides no format for it. Similarly, the
58 // constructors time.Date, time.Parse, time.ParseInLocation, and time.Unix,
59 // as well as the unmarshalers t.GobDecode, t.UnmarshalBinary.
60 // t.UnmarshalJSON, and t.UnmarshalText always create times with
61 // no monotonic clock reading.
63 // Note that the Go == operator compares not just the time instant but
64 // also the Location and the monotonic clock reading. See the
65 // documentation for the Time type for a discussion of equality
66 // testing for Time values.
68 // For debugging, the result of t.String does include the monotonic
69 // clock reading if present. If t != u because of different monotonic clock readings,
70 // that difference will be visible when printing t.String() and u.String().
72 package time
74 import "errors"
76 // A Time represents an instant in time with nanosecond precision.
78 // Programs using times should typically store and pass them as values,
79 // not pointers. That is, time variables and struct fields should be of
80 // type time.Time, not *time.Time.
82 // A Time value can be used by multiple goroutines simultaneously except
83 // that the methods GobDecode, UnmarshalBinary, UnmarshalJSON and
84 // UnmarshalText are not concurrency-safe.
86 // Time instants can be compared using the Before, After, and Equal methods.
87 // The Sub method subtracts two instants, producing a Duration.
88 // The Add method adds a Time and a Duration, producing a Time.
90 // The zero value of type Time is January 1, year 1, 00:00:00.000000000 UTC.
91 // As this time is unlikely to come up in practice, the IsZero method gives
92 // a simple way of detecting a time that has not been initialized explicitly.
94 // Each Time has associated with it a Location, consulted when computing the
95 // presentation form of the time, such as in the Format, Hour, and Year methods.
96 // The methods Local, UTC, and In return a Time with a specific location.
97 // Changing the location in this way changes only the presentation; it does not
98 // change the instant in time being denoted and therefore does not affect the
99 // computations described in earlier paragraphs.
101 // In addition to the required “wall clock” reading, a Time may contain an optional
102 // reading of the current process's monotonic clock, to provide additional precision
103 // for comparison or subtraction.
104 // See the “Monotonic Clocks” section in the package documentation for details.
106 // Note that the Go == operator compares not just the time instant but also the
107 // Location and the monotonic clock reading. Therefore, Time values should not
108 // be used as map or database keys without first guaranteeing that the
109 // identical Location has been set for all values, which can be achieved
110 // through use of the UTC or Local method, and that the monotonic clock reading
111 // has been stripped by setting t = t.Round(0). In general, prefer t.Equal(u)
112 // to t == u, since t.Equal uses the most accurate comparison available and
113 // correctly handles the case when only one of its arguments has a monotonic
114 // clock reading.
116 type Time struct {
117 // wall and ext encode the wall time seconds, wall time nanoseconds,
118 // and optional monotonic clock reading in nanoseconds.
120 // From high to low bit position, wall encodes a 1-bit flag (hasMonotonic),
121 // a 33-bit seconds field, and a 30-bit wall time nanoseconds field.
122 // The nanoseconds field is in the range [0, 999999999].
123 // If the hasMonotonic bit is 0, then the 33-bit field must be zero
124 // and the full signed 64-bit wall seconds since Jan 1 year 1 is stored in ext.
125 // If the hasMonotonic bit is 1, then the 33-bit field holds a 33-bit
126 // unsigned wall seconds since Jan 1 year 1885, and ext holds a
127 // signed 64-bit monotonic clock reading, nanoseconds since process start.
128 wall uint64
129 ext int64
131 // loc specifies the Location that should be used to
132 // determine the minute, hour, month, day, and year
133 // that correspond to this Time.
134 // The nil location means UTC.
135 // All UTC times are represented with loc==nil, never loc==&utcLoc.
136 loc *Location
139 const (
140 hasMonotonic = 1 << 63
141 maxWall = wallToInternal + (1<<33 - 1) // year 2157
142 minWall = wallToInternal // year 1885
143 nsecMask = 1<<30 - 1
144 nsecShift = 30
147 // These helpers for manipulating the wall and monotonic clock readings
148 // take pointer receivers, even when they don't modify the time,
149 // to make them cheaper to call.
151 // nsec returns the time's nanoseconds.
152 func (t *Time) nsec() int32 {
153 return int32(t.wall & nsecMask)
156 // sec returns the time's seconds since Jan 1 year 1.
157 func (t *Time) sec() int64 {
158 if t.wall&hasMonotonic != 0 {
159 return wallToInternal + int64(t.wall<<1>>(nsecShift+1))
161 return int64(t.ext)
164 // unixSec returns the time's seconds since Jan 1 1970 (Unix time).
165 func (t *Time) unixSec() int64 { return t.sec() + internalToUnix }
167 // addSec adds d seconds to the time.
168 func (t *Time) addSec(d int64) {
169 if t.wall&hasMonotonic != 0 {
170 sec := int64(t.wall << 1 >> (nsecShift + 1))
171 dsec := sec + d
172 if 0 <= dsec && dsec <= 1<<33-1 {
173 t.wall = t.wall&nsecMask | uint64(dsec)<<nsecShift | hasMonotonic
174 return
176 // Wall second now out of range for packed field.
177 // Move to ext.
178 t.stripMono()
181 // TODO: Check for overflow.
182 t.ext += d
185 // setLoc sets the location associated with the time.
186 func (t *Time) setLoc(loc *Location) {
187 if loc == &utcLoc {
188 loc = nil
190 t.stripMono()
191 t.loc = loc
194 // stripMono strips the monotonic clock reading in t.
195 func (t *Time) stripMono() {
196 if t.wall&hasMonotonic != 0 {
197 t.ext = t.sec()
198 t.wall &= nsecMask
202 // setMono sets the monotonic clock reading in t.
203 // If t cannot hold a monotonic clock reading,
204 // because its wall time is too large,
205 // setMono is a no-op.
206 func (t *Time) setMono(m int64) {
207 if t.wall&hasMonotonic == 0 {
208 sec := int64(t.ext)
209 if sec < minWall || maxWall < sec {
210 return
212 t.wall |= hasMonotonic | uint64(sec-minWall)<<nsecShift
214 t.ext = m
217 // mono returns t's monotonic clock reading.
218 // It returns 0 for a missing reading.
219 // This function is used only for testing,
220 // so it's OK that technically 0 is a valid
221 // monotonic clock reading as well.
222 func (t *Time) mono() int64 {
223 if t.wall&hasMonotonic == 0 {
224 return 0
226 return t.ext
229 // After reports whether the time instant t is after u.
230 func (t Time) After(u Time) bool {
231 if t.wall&u.wall&hasMonotonic != 0 {
232 return t.ext > u.ext
234 ts := t.sec()
235 us := u.sec()
236 return ts > us || ts == us && t.nsec() > u.nsec()
239 // Before reports whether the time instant t is before u.
240 func (t Time) Before(u Time) bool {
241 if t.wall&u.wall&hasMonotonic != 0 {
242 return t.ext < u.ext
244 return t.sec() < u.sec() || t.sec() == u.sec() && t.nsec() < u.nsec()
247 // Equal reports whether t and u represent the same time instant.
248 // Two times can be equal even if they are in different locations.
249 // For example, 6:00 +0200 CEST and 4:00 UTC are Equal.
250 // See the documentation on the Time type for the pitfalls of using == with
251 // Time values; most code should use Equal instead.
252 func (t Time) Equal(u Time) bool {
253 if t.wall&u.wall&hasMonotonic != 0 {
254 return t.ext == u.ext
256 return t.sec() == u.sec() && t.nsec() == u.nsec()
259 // A Month specifies a month of the year (January = 1, ...).
260 type Month int
262 const (
263 January Month = 1 + iota
264 February
265 March
266 April
268 June
269 July
270 August
271 September
272 October
273 November
274 December
277 var months = [...]string{
278 "January",
279 "February",
280 "March",
281 "April",
282 "May",
283 "June",
284 "July",
285 "August",
286 "September",
287 "October",
288 "November",
289 "December",
292 // String returns the English name of the month ("January", "February", ...).
293 func (m Month) String() string {
294 if January <= m && m <= December {
295 return months[m-1]
297 buf := make([]byte, 20)
298 n := fmtInt(buf, uint64(m))
299 return "%!Month(" + string(buf[n:]) + ")"
302 // A Weekday specifies a day of the week (Sunday = 0, ...).
303 type Weekday int
305 const (
306 Sunday Weekday = iota
307 Monday
308 Tuesday
309 Wednesday
310 Thursday
311 Friday
312 Saturday
315 var days = [...]string{
316 "Sunday",
317 "Monday",
318 "Tuesday",
319 "Wednesday",
320 "Thursday",
321 "Friday",
322 "Saturday",
325 // String returns the English name of the day ("Sunday", "Monday", ...).
326 func (d Weekday) String() string { return days[d] }
328 // Computations on time.
330 // The zero value for a Time is defined to be
331 // January 1, year 1, 00:00:00.000000000 UTC
332 // which (1) looks like a zero, or as close as you can get in a date
333 // (1-1-1 00:00:00 UTC), (2) is unlikely enough to arise in practice to
334 // be a suitable "not set" sentinel, unlike Jan 1 1970, and (3) has a
335 // non-negative year even in time zones west of UTC, unlike 1-1-0
336 // 00:00:00 UTC, which would be 12-31-(-1) 19:00:00 in New York.
338 // The zero Time value does not force a specific epoch for the time
339 // representation. For example, to use the Unix epoch internally, we
340 // could define that to distinguish a zero value from Jan 1 1970, that
341 // time would be represented by sec=-1, nsec=1e9. However, it does
342 // suggest a representation, namely using 1-1-1 00:00:00 UTC as the
343 // epoch, and that's what we do.
345 // The Add and Sub computations are oblivious to the choice of epoch.
347 // The presentation computations - year, month, minute, and so on - all
348 // rely heavily on division and modulus by positive constants. For
349 // calendrical calculations we want these divisions to round down, even
350 // for negative values, so that the remainder is always positive, but
351 // Go's division (like most hardware division instructions) rounds to
352 // zero. We can still do those computations and then adjust the result
353 // for a negative numerator, but it's annoying to write the adjustment
354 // over and over. Instead, we can change to a different epoch so long
355 // ago that all the times we care about will be positive, and then round
356 // to zero and round down coincide. These presentation routines already
357 // have to add the zone offset, so adding the translation to the
358 // alternate epoch is cheap. For example, having a non-negative time t
359 // means that we can write
361 // sec = t % 60
363 // instead of
365 // sec = t % 60
366 // if sec < 0 {
367 // sec += 60
368 // }
370 // everywhere.
372 // The calendar runs on an exact 400 year cycle: a 400-year calendar
373 // printed for 1970-2369 will apply as well to 2370-2769. Even the days
374 // of the week match up. It simplifies the computations to choose the
375 // cycle boundaries so that the exceptional years are always delayed as
376 // long as possible. That means choosing a year equal to 1 mod 400, so
377 // that the first leap year is the 4th year, the first missed leap year
378 // is the 100th year, and the missed missed leap year is the 400th year.
379 // So we'd prefer instead to print a calendar for 2001-2400 and reuse it
380 // for 2401-2800.
382 // Finally, it's convenient if the delta between the Unix epoch and
383 // long-ago epoch is representable by an int64 constant.
385 // These three considerations—choose an epoch as early as possible, that
386 // uses a year equal to 1 mod 400, and that is no more than 2⁶³ seconds
387 // earlier than 1970—bring us to the year -292277022399. We refer to
388 // this year as the absolute zero year, and to times measured as a uint64
389 // seconds since this year as absolute times.
391 // Times measured as an int64 seconds since the year 1—the representation
392 // used for Time's sec field—are called internal times.
394 // Times measured as an int64 seconds since the year 1970 are called Unix
395 // times.
397 // It is tempting to just use the year 1 as the absolute epoch, defining
398 // that the routines are only valid for years >= 1. However, the
399 // routines would then be invalid when displaying the epoch in time zones
400 // west of UTC, since it is year 0. It doesn't seem tenable to say that
401 // printing the zero time correctly isn't supported in half the time
402 // zones. By comparison, it's reasonable to mishandle some times in
403 // the year -292277022399.
405 // All this is opaque to clients of the API and can be changed if a
406 // better implementation presents itself.
408 const (
409 // The unsigned zero year for internal calculations.
410 // Must be 1 mod 400, and times before it will not compute correctly,
411 // but otherwise can be changed at will.
412 absoluteZeroYear = -292277022399
414 // The year of the zero Time.
415 // Assumed by the unixToInternal computation below.
416 internalYear = 1
418 // Offsets to convert between internal and absolute or Unix times.
419 absoluteToInternal int64 = (absoluteZeroYear - internalYear) * 365.2425 * secondsPerDay
420 internalToAbsolute = -absoluteToInternal
422 unixToInternal int64 = (1969*365 + 1969/4 - 1969/100 + 1969/400) * secondsPerDay
423 internalToUnix int64 = -unixToInternal
425 wallToInternal int64 = (1884*365 + 1884/4 - 1884/100 + 1884/400) * secondsPerDay
426 internalToWall int64 = -wallToInternal
429 // IsZero reports whether t represents the zero time instant,
430 // January 1, year 1, 00:00:00 UTC.
431 func (t Time) IsZero() bool {
432 return t.sec() == 0 && t.nsec() == 0
435 // abs returns the time t as an absolute time, adjusted by the zone offset.
436 // It is called when computing a presentation property like Month or Hour.
437 func (t Time) abs() uint64 {
438 l := t.loc
439 // Avoid function calls when possible.
440 if l == nil || l == &localLoc {
441 l = l.get()
443 sec := t.unixSec()
444 if l != &utcLoc {
445 if l.cacheZone != nil && l.cacheStart <= sec && sec < l.cacheEnd {
446 sec += int64(l.cacheZone.offset)
447 } else {
448 _, offset, _, _, _ := l.lookup(sec)
449 sec += int64(offset)
452 return uint64(sec + (unixToInternal + internalToAbsolute))
455 // locabs is a combination of the Zone and abs methods,
456 // extracting both return values from a single zone lookup.
457 func (t Time) locabs() (name string, offset int, abs uint64) {
458 l := t.loc
459 if l == nil || l == &localLoc {
460 l = l.get()
462 // Avoid function call if we hit the local time cache.
463 sec := t.unixSec()
464 if l != &utcLoc {
465 if l.cacheZone != nil && l.cacheStart <= sec && sec < l.cacheEnd {
466 name = l.cacheZone.name
467 offset = l.cacheZone.offset
468 } else {
469 name, offset, _, _, _ = l.lookup(sec)
471 sec += int64(offset)
472 } else {
473 name = "UTC"
475 abs = uint64(sec + (unixToInternal + internalToAbsolute))
476 return
479 // Date returns the year, month, and day in which t occurs.
480 func (t Time) Date() (year int, month Month, day int) {
481 year, month, day, _ = t.date(true)
482 return
485 // Year returns the year in which t occurs.
486 func (t Time) Year() int {
487 year, _, _, _ := t.date(false)
488 return year
491 // Month returns the month of the year specified by t.
492 func (t Time) Month() Month {
493 _, month, _, _ := t.date(true)
494 return month
497 // Day returns the day of the month specified by t.
498 func (t Time) Day() int {
499 _, _, day, _ := t.date(true)
500 return day
503 // Weekday returns the day of the week specified by t.
504 func (t Time) Weekday() Weekday {
505 return absWeekday(t.abs())
508 // absWeekday is like Weekday but operates on an absolute time.
509 func absWeekday(abs uint64) Weekday {
510 // January 1 of the absolute year, like January 1 of 2001, was a Monday.
511 sec := (abs + uint64(Monday)*secondsPerDay) % secondsPerWeek
512 return Weekday(int(sec) / secondsPerDay)
515 // ISOWeek returns the ISO 8601 year and week number in which t occurs.
516 // Week ranges from 1 to 53. Jan 01 to Jan 03 of year n might belong to
517 // week 52 or 53 of year n-1, and Dec 29 to Dec 31 might belong to week 1
518 // of year n+1.
519 func (t Time) ISOWeek() (year, week int) {
520 year, month, day, yday := t.date(true)
521 wday := int(t.Weekday()+6) % 7 // weekday but Monday = 0.
522 const (
523 Mon int = iota
532 // Calculate week as number of Mondays in year up to
533 // and including today, plus 1 because the first week is week 0.
534 // Putting the + 1 inside the numerator as a + 7 keeps the
535 // numerator from being negative, which would cause it to
536 // round incorrectly.
537 week = (yday - wday + 7) / 7
539 // The week number is now correct under the assumption
540 // that the first Monday of the year is in week 1.
541 // If Jan 1 is a Tuesday, Wednesday, or Thursday, the first Monday
542 // is actually in week 2.
543 jan1wday := (wday - yday + 7*53) % 7
544 if Tue <= jan1wday && jan1wday <= Thu {
545 week++
548 // If the week number is still 0, we're in early January but in
549 // the last week of last year.
550 if week == 0 {
551 year--
552 week = 52
553 // A year has 53 weeks when Jan 1 or Dec 31 is a Thursday,
554 // meaning Jan 1 of the next year is a Friday
555 // or it was a leap year and Jan 1 of the next year is a Saturday.
556 if jan1wday == Fri || (jan1wday == Sat && isLeap(year)) {
557 week++
561 // December 29 to 31 are in week 1 of next year if
562 // they are after the last Thursday of the year and
563 // December 31 is a Monday, Tuesday, or Wednesday.
564 if month == December && day >= 29 && wday < Thu {
565 if dec31wday := (wday + 31 - day) % 7; Mon <= dec31wday && dec31wday <= Wed {
566 year++
567 week = 1
571 return
574 // Clock returns the hour, minute, and second within the day specified by t.
575 func (t Time) Clock() (hour, min, sec int) {
576 return absClock(t.abs())
579 // absClock is like clock but operates on an absolute time.
580 func absClock(abs uint64) (hour, min, sec int) {
581 sec = int(abs % secondsPerDay)
582 hour = sec / secondsPerHour
583 sec -= hour * secondsPerHour
584 min = sec / secondsPerMinute
585 sec -= min * secondsPerMinute
586 return
589 // Hour returns the hour within the day specified by t, in the range [0, 23].
590 func (t Time) Hour() int {
591 return int(t.abs()%secondsPerDay) / secondsPerHour
594 // Minute returns the minute offset within the hour specified by t, in the range [0, 59].
595 func (t Time) Minute() int {
596 return int(t.abs()%secondsPerHour) / secondsPerMinute
599 // Second returns the second offset within the minute specified by t, in the range [0, 59].
600 func (t Time) Second() int {
601 return int(t.abs() % secondsPerMinute)
604 // Nanosecond returns the nanosecond offset within the second specified by t,
605 // in the range [0, 999999999].
606 func (t Time) Nanosecond() int {
607 return int(t.nsec())
610 // YearDay returns the day of the year specified by t, in the range [1,365] for non-leap years,
611 // and [1,366] in leap years.
612 func (t Time) YearDay() int {
613 _, _, _, yday := t.date(false)
614 return yday + 1
617 // A Duration represents the elapsed time between two instants
618 // as an int64 nanosecond count. The representation limits the
619 // largest representable duration to approximately 290 years.
620 type Duration int64
622 const (
623 minDuration Duration = -1 << 63
624 maxDuration Duration = 1<<63 - 1
627 // Common durations. There is no definition for units of Day or larger
628 // to avoid confusion across daylight savings time zone transitions.
630 // To count the number of units in a Duration, divide:
631 // second := time.Second
632 // fmt.Print(int64(second/time.Millisecond)) // prints 1000
634 // To convert an integer number of units to a Duration, multiply:
635 // seconds := 10
636 // fmt.Print(time.Duration(seconds)*time.Second) // prints 10s
638 const (
639 Nanosecond Duration = 1
640 Microsecond = 1000 * Nanosecond
641 Millisecond = 1000 * Microsecond
642 Second = 1000 * Millisecond
643 Minute = 60 * Second
644 Hour = 60 * Minute
647 // String returns a string representing the duration in the form "72h3m0.5s".
648 // Leading zero units are omitted. As a special case, durations less than one
649 // second format use a smaller unit (milli-, micro-, or nanoseconds) to ensure
650 // that the leading digit is non-zero. The zero duration formats as 0s.
651 func (d Duration) String() string {
652 // Largest time is 2540400h10m10.000000000s
653 var buf [32]byte
654 w := len(buf)
656 u := uint64(d)
657 neg := d < 0
658 if neg {
659 u = -u
662 if u < uint64(Second) {
663 // Special case: if duration is smaller than a second,
664 // use smaller units, like 1.2ms
665 var prec int
667 buf[w] = 's'
669 switch {
670 case u == 0:
671 return "0s"
672 case u < uint64(Microsecond):
673 // print nanoseconds
674 prec = 0
675 buf[w] = 'n'
676 case u < uint64(Millisecond):
677 // print microseconds
678 prec = 3
679 // U+00B5 'µ' micro sign == 0xC2 0xB5
680 w-- // Need room for two bytes.
681 copy(buf[w:], "µ")
682 default:
683 // print milliseconds
684 prec = 6
685 buf[w] = 'm'
687 w, u = fmtFrac(buf[:w], u, prec)
688 w = fmtInt(buf[:w], u)
689 } else {
691 buf[w] = 's'
693 w, u = fmtFrac(buf[:w], u, 9)
695 // u is now integer seconds
696 w = fmtInt(buf[:w], u%60)
697 u /= 60
699 // u is now integer minutes
700 if u > 0 {
702 buf[w] = 'm'
703 w = fmtInt(buf[:w], u%60)
704 u /= 60
706 // u is now integer hours
707 // Stop at hours because days can be different lengths.
708 if u > 0 {
710 buf[w] = 'h'
711 w = fmtInt(buf[:w], u)
716 if neg {
718 buf[w] = '-'
721 return string(buf[w:])
724 // fmtFrac formats the fraction of v/10**prec (e.g., ".12345") into the
725 // tail of buf, omitting trailing zeros. It omits the decimal
726 // point too when the fraction is 0. It returns the index where the
727 // output bytes begin and the value v/10**prec.
728 func fmtFrac(buf []byte, v uint64, prec int) (nw int, nv uint64) {
729 // Omit trailing zeros up to and including decimal point.
730 w := len(buf)
731 print := false
732 for i := 0; i < prec; i++ {
733 digit := v % 10
734 print = print || digit != 0
735 if print {
737 buf[w] = byte(digit) + '0'
739 v /= 10
741 if print {
743 buf[w] = '.'
745 return w, v
748 // fmtInt formats v into the tail of buf.
749 // It returns the index where the output begins.
750 func fmtInt(buf []byte, v uint64) int {
751 w := len(buf)
752 if v == 0 {
754 buf[w] = '0'
755 } else {
756 for v > 0 {
758 buf[w] = byte(v%10) + '0'
759 v /= 10
762 return w
765 // Nanoseconds returns the duration as an integer nanosecond count.
766 func (d Duration) Nanoseconds() int64 { return int64(d) }
768 // These methods return float64 because the dominant
769 // use case is for printing a floating point number like 1.5s, and
770 // a truncation to integer would make them not useful in those cases.
771 // Splitting the integer and fraction ourselves guarantees that
772 // converting the returned float64 to an integer rounds the same
773 // way that a pure integer conversion would have, even in cases
774 // where, say, float64(d.Nanoseconds())/1e9 would have rounded
775 // differently.
777 // Seconds returns the duration as a floating point number of seconds.
778 func (d Duration) Seconds() float64 {
779 sec := d / Second
780 nsec := d % Second
781 return float64(sec) + float64(nsec)/1e9
784 // Minutes returns the duration as a floating point number of minutes.
785 func (d Duration) Minutes() float64 {
786 min := d / Minute
787 nsec := d % Minute
788 return float64(min) + float64(nsec)/(60*1e9)
791 // Hours returns the duration as a floating point number of hours.
792 func (d Duration) Hours() float64 {
793 hour := d / Hour
794 nsec := d % Hour
795 return float64(hour) + float64(nsec)/(60*60*1e9)
798 // Truncate returns the result of rounding d toward zero to a multiple of m.
799 // If m <= 0, Truncate returns d unchanged.
800 func (d Duration) Truncate(m Duration) Duration {
801 if m <= 0 {
802 return d
804 return d - d%m
807 // lessThanHalf reports whether x+x < y but avoids overflow,
808 // assuming x and y are both positive (Duration is signed).
809 func lessThanHalf(x, y Duration) bool {
810 return uint64(x)+uint64(x) < uint64(y)
813 // Round returns the result of rounding d to the nearest multiple of m.
814 // The rounding behavior for halfway values is to round away from zero.
815 // If the result exceeds the maximum (or minimum)
816 // value that can be stored in a Duration,
817 // Round returns the maximum (or minimum) duration.
818 // If m <= 0, Round returns d unchanged.
819 func (d Duration) Round(m Duration) Duration {
820 if m <= 0 {
821 return d
823 r := d % m
824 if d < 0 {
825 r = -r
826 if lessThanHalf(r, m) {
827 return d + r
829 if d1 := d - m + r; d1 < d {
830 return d1
832 return minDuration // overflow
834 if lessThanHalf(r, m) {
835 return d - r
837 if d1 := d + m - r; d1 > d {
838 return d1
840 return maxDuration // overflow
843 // Add returns the time t+d.
844 func (t Time) Add(d Duration) Time {
845 dsec := int64(d / 1e9)
846 nsec := t.nsec() + int32(d%1e9)
847 if nsec >= 1e9 {
848 dsec++
849 nsec -= 1e9
850 } else if nsec < 0 {
851 dsec--
852 nsec += 1e9
854 t.wall = t.wall&^nsecMask | uint64(nsec) // update nsec
855 t.addSec(dsec)
856 if t.wall&hasMonotonic != 0 {
857 te := t.ext + int64(d)
858 if d < 0 && te > int64(t.ext) || d > 0 && te < int64(t.ext) {
859 // Monotonic clock reading now out of range; degrade to wall-only.
860 t.stripMono()
861 } else {
862 t.ext = te
865 return t
868 // Sub returns the duration t-u. If the result exceeds the maximum (or minimum)
869 // value that can be stored in a Duration, the maximum (or minimum) duration
870 // will be returned.
871 // To compute t-d for a duration d, use t.Add(-d).
872 func (t Time) Sub(u Time) Duration {
873 if t.wall&u.wall&hasMonotonic != 0 {
874 te := int64(t.ext)
875 ue := int64(u.ext)
876 d := Duration(te - ue)
877 if d < 0 && te > ue {
878 return maxDuration // t - u is positive out of range
880 if d > 0 && te < ue {
881 return minDuration // t - u is negative out of range
883 return d
885 d := Duration(t.sec()-u.sec())*Second + Duration(t.nsec()-u.nsec())
886 // Check for overflow or underflow.
887 switch {
888 case u.Add(d).Equal(t):
889 return d // d is correct
890 case t.Before(u):
891 return minDuration // t - u is negative out of range
892 default:
893 return maxDuration // t - u is positive out of range
897 // Since returns the time elapsed since t.
898 // It is shorthand for time.Now().Sub(t).
899 func Since(t Time) Duration {
900 return Now().Sub(t)
903 // Until returns the duration until t.
904 // It is shorthand for t.Sub(time.Now()).
905 func Until(t Time) Duration {
906 return t.Sub(Now())
909 // AddDate returns the time corresponding to adding the
910 // given number of years, months, and days to t.
911 // For example, AddDate(-1, 2, 3) applied to January 1, 2011
912 // returns March 4, 2010.
914 // AddDate normalizes its result in the same way that Date does,
915 // so, for example, adding one month to October 31 yields
916 // December 1, the normalized form for November 31.
917 func (t Time) AddDate(years int, months int, days int) Time {
918 year, month, day := t.Date()
919 hour, min, sec := t.Clock()
920 return Date(year+years, month+Month(months), day+days, hour, min, sec, int(t.nsec()), t.Location())
923 const (
924 secondsPerMinute = 60
925 secondsPerHour = 60 * 60
926 secondsPerDay = 24 * secondsPerHour
927 secondsPerWeek = 7 * secondsPerDay
928 daysPer400Years = 365*400 + 97
929 daysPer100Years = 365*100 + 24
930 daysPer4Years = 365*4 + 1
933 // date computes the year, day of year, and when full=true,
934 // the month and day in which t occurs.
935 func (t Time) date(full bool) (year int, month Month, day int, yday int) {
936 return absDate(t.abs(), full)
939 // absDate is like date but operates on an absolute time.
940 func absDate(abs uint64, full bool) (year int, month Month, day int, yday int) {
941 // Split into time and day.
942 d := abs / secondsPerDay
944 // Account for 400 year cycles.
945 n := d / daysPer400Years
946 y := 400 * n
947 d -= daysPer400Years * n
949 // Cut off 100-year cycles.
950 // The last cycle has one extra leap year, so on the last day
951 // of that year, day / daysPer100Years will be 4 instead of 3.
952 // Cut it back down to 3 by subtracting n>>2.
953 n = d / daysPer100Years
954 n -= n >> 2
955 y += 100 * n
956 d -= daysPer100Years * n
958 // Cut off 4-year cycles.
959 // The last cycle has a missing leap year, which does not
960 // affect the computation.
961 n = d / daysPer4Years
962 y += 4 * n
963 d -= daysPer4Years * n
965 // Cut off years within a 4-year cycle.
966 // The last year is a leap year, so on the last day of that year,
967 // day / 365 will be 4 instead of 3. Cut it back down to 3
968 // by subtracting n>>2.
969 n = d / 365
970 n -= n >> 2
971 y += n
972 d -= 365 * n
974 year = int(int64(y) + absoluteZeroYear)
975 yday = int(d)
977 if !full {
978 return
981 day = yday
982 if isLeap(year) {
983 // Leap year
984 switch {
985 case day > 31+29-1:
986 // After leap day; pretend it wasn't there.
987 day--
988 case day == 31+29-1:
989 // Leap day.
990 month = February
991 day = 29
992 return
996 // Estimate month on assumption that every month has 31 days.
997 // The estimate may be too low by at most one month, so adjust.
998 month = Month(day / 31)
999 end := int(daysBefore[month+1])
1000 var begin int
1001 if day >= end {
1002 month++
1003 begin = end
1004 } else {
1005 begin = int(daysBefore[month])
1008 month++ // because January is 1
1009 day = day - begin + 1
1010 return
1013 // daysBefore[m] counts the number of days in a non-leap year
1014 // before month m begins. There is an entry for m=12, counting
1015 // the number of days before January of next year (365).
1016 var daysBefore = [...]int32{
1019 31 + 28,
1020 31 + 28 + 31,
1021 31 + 28 + 31 + 30,
1022 31 + 28 + 31 + 30 + 31,
1023 31 + 28 + 31 + 30 + 31 + 30,
1024 31 + 28 + 31 + 30 + 31 + 30 + 31,
1025 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31,
1026 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30,
1027 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31,
1028 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30,
1029 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30 + 31,
1032 func daysIn(m Month, year int) int {
1033 if m == February && isLeap(year) {
1034 return 29
1036 return int(daysBefore[m] - daysBefore[m-1])
1039 // Provided by package runtime.
1040 func now() (sec int64, nsec int32, mono int64)
1042 // Now returns the current local time.
1043 func Now() Time {
1044 sec, nsec, mono := now()
1045 sec += unixToInternal - minWall
1046 if uint64(sec)>>33 != 0 {
1047 return Time{uint64(nsec), sec + minWall, Local}
1049 return Time{hasMonotonic | uint64(sec)<<nsecShift | uint64(nsec), mono, Local}
1052 func unixTime(sec int64, nsec int32) Time {
1053 return Time{uint64(nsec), sec + unixToInternal, Local}
1056 // UTC returns t with the location set to UTC.
1057 func (t Time) UTC() Time {
1058 t.setLoc(&utcLoc)
1059 return t
1062 // Local returns t with the location set to local time.
1063 func (t Time) Local() Time {
1064 t.setLoc(Local)
1065 return t
1068 // In returns t with the location information set to loc.
1070 // In panics if loc is nil.
1071 func (t Time) In(loc *Location) Time {
1072 if loc == nil {
1073 panic("time: missing Location in call to Time.In")
1075 t.setLoc(loc)
1076 return t
1079 // Location returns the time zone information associated with t.
1080 func (t Time) Location() *Location {
1081 l := t.loc
1082 if l == nil {
1083 l = UTC
1085 return l
1088 // Zone computes the time zone in effect at time t, returning the abbreviated
1089 // name of the zone (such as "CET") and its offset in seconds east of UTC.
1090 func (t Time) Zone() (name string, offset int) {
1091 name, offset, _, _, _ = t.loc.lookup(t.unixSec())
1092 return
1095 // Unix returns t as a Unix time, the number of seconds elapsed
1096 // since January 1, 1970 UTC.
1097 func (t Time) Unix() int64 {
1098 return t.unixSec()
1101 // UnixNano returns t as a Unix time, the number of nanoseconds elapsed
1102 // since January 1, 1970 UTC. The result is undefined if the Unix time
1103 // in nanoseconds cannot be represented by an int64 (a date before the year
1104 // 1678 or after 2262). Note that this means the result of calling UnixNano
1105 // on the zero Time is undefined.
1106 func (t Time) UnixNano() int64 {
1107 return (t.unixSec())*1e9 + int64(t.nsec())
1110 const timeBinaryVersion byte = 1
1112 // MarshalBinary implements the encoding.BinaryMarshaler interface.
1113 func (t Time) MarshalBinary() ([]byte, error) {
1114 var offsetMin int16 // minutes east of UTC. -1 is UTC.
1116 if t.Location() == UTC {
1117 offsetMin = -1
1118 } else {
1119 _, offset := t.Zone()
1120 if offset%60 != 0 {
1121 return nil, errors.New("Time.MarshalBinary: zone offset has fractional minute")
1123 offset /= 60
1124 if offset < -32768 || offset == -1 || offset > 32767 {
1125 return nil, errors.New("Time.MarshalBinary: unexpected zone offset")
1127 offsetMin = int16(offset)
1130 sec := t.sec()
1131 nsec := t.nsec()
1132 enc := []byte{
1133 timeBinaryVersion, // byte 0 : version
1134 byte(sec >> 56), // bytes 1-8: seconds
1135 byte(sec >> 48),
1136 byte(sec >> 40),
1137 byte(sec >> 32),
1138 byte(sec >> 24),
1139 byte(sec >> 16),
1140 byte(sec >> 8),
1141 byte(sec),
1142 byte(nsec >> 24), // bytes 9-12: nanoseconds
1143 byte(nsec >> 16),
1144 byte(nsec >> 8),
1145 byte(nsec),
1146 byte(offsetMin >> 8), // bytes 13-14: zone offset in minutes
1147 byte(offsetMin),
1150 return enc, nil
1153 // UnmarshalBinary implements the encoding.BinaryUnmarshaler interface.
1154 func (t *Time) UnmarshalBinary(data []byte) error {
1155 buf := data
1156 if len(buf) == 0 {
1157 return errors.New("Time.UnmarshalBinary: no data")
1160 if buf[0] != timeBinaryVersion {
1161 return errors.New("Time.UnmarshalBinary: unsupported version")
1164 if len(buf) != /*version*/ 1+ /*sec*/ 8+ /*nsec*/ 4+ /*zone offset*/ 2 {
1165 return errors.New("Time.UnmarshalBinary: invalid length")
1168 buf = buf[1:]
1169 sec := int64(buf[7]) | int64(buf[6])<<8 | int64(buf[5])<<16 | int64(buf[4])<<24 |
1170 int64(buf[3])<<32 | int64(buf[2])<<40 | int64(buf[1])<<48 | int64(buf[0])<<56
1172 buf = buf[8:]
1173 nsec := int32(buf[3]) | int32(buf[2])<<8 | int32(buf[1])<<16 | int32(buf[0])<<24
1175 buf = buf[4:]
1176 offset := int(int16(buf[1])|int16(buf[0])<<8) * 60
1178 *t = Time{}
1179 t.wall = uint64(nsec)
1180 t.ext = sec
1182 if offset == -1*60 {
1183 t.setLoc(&utcLoc)
1184 } else if _, localoff, _, _, _ := Local.lookup(t.unixSec()); offset == localoff {
1185 t.setLoc(Local)
1186 } else {
1187 t.setLoc(FixedZone("", offset))
1190 return nil
1193 // TODO(rsc): Remove GobEncoder, GobDecoder, MarshalJSON, UnmarshalJSON in Go 2.
1194 // The same semantics will be provided by the generic MarshalBinary, MarshalText,
1195 // UnmarshalBinary, UnmarshalText.
1197 // GobEncode implements the gob.GobEncoder interface.
1198 func (t Time) GobEncode() ([]byte, error) {
1199 return t.MarshalBinary()
1202 // GobDecode implements the gob.GobDecoder interface.
1203 func (t *Time) GobDecode(data []byte) error {
1204 return t.UnmarshalBinary(data)
1207 // MarshalJSON implements the json.Marshaler interface.
1208 // The time is a quoted string in RFC 3339 format, with sub-second precision added if present.
1209 func (t Time) MarshalJSON() ([]byte, error) {
1210 if y := t.Year(); y < 0 || y >= 10000 {
1211 // RFC 3339 is clear that years are 4 digits exactly.
1212 // See golang.org/issue/4556#c15 for more discussion.
1213 return nil, errors.New("Time.MarshalJSON: year outside of range [0,9999]")
1216 b := make([]byte, 0, len(RFC3339Nano)+2)
1217 b = append(b, '"')
1218 b = t.AppendFormat(b, RFC3339Nano)
1219 b = append(b, '"')
1220 return b, nil
1223 // UnmarshalJSON implements the json.Unmarshaler interface.
1224 // The time is expected to be a quoted string in RFC 3339 format.
1225 func (t *Time) UnmarshalJSON(data []byte) error {
1226 // Ignore null, like in the main JSON package.
1227 if string(data) == "null" {
1228 return nil
1230 // Fractional seconds are handled implicitly by Parse.
1231 var err error
1232 *t, err = Parse(`"`+RFC3339+`"`, string(data))
1233 return err
1236 // MarshalText implements the encoding.TextMarshaler interface.
1237 // The time is formatted in RFC 3339 format, with sub-second precision added if present.
1238 func (t Time) MarshalText() ([]byte, error) {
1239 if y := t.Year(); y < 0 || y >= 10000 {
1240 return nil, errors.New("Time.MarshalText: year outside of range [0,9999]")
1243 b := make([]byte, 0, len(RFC3339Nano))
1244 return t.AppendFormat(b, RFC3339Nano), nil
1247 // UnmarshalText implements the encoding.TextUnmarshaler interface.
1248 // The time is expected to be in RFC 3339 format.
1249 func (t *Time) UnmarshalText(data []byte) error {
1250 // Fractional seconds are handled implicitly by Parse.
1251 var err error
1252 *t, err = Parse(RFC3339, string(data))
1253 return err
1256 // Unix returns the local Time corresponding to the given Unix time,
1257 // sec seconds and nsec nanoseconds since January 1, 1970 UTC.
1258 // It is valid to pass nsec outside the range [0, 999999999].
1259 // Not all sec values have a corresponding time value. One such
1260 // value is 1<<63-1 (the largest int64 value).
1261 func Unix(sec int64, nsec int64) Time {
1262 if nsec < 0 || nsec >= 1e9 {
1263 n := nsec / 1e9
1264 sec += n
1265 nsec -= n * 1e9
1266 if nsec < 0 {
1267 nsec += 1e9
1268 sec--
1271 return unixTime(sec, int32(nsec))
1274 func isLeap(year int) bool {
1275 return year%4 == 0 && (year%100 != 0 || year%400 == 0)
1278 // norm returns nhi, nlo such that
1279 // hi * base + lo == nhi * base + nlo
1280 // 0 <= nlo < base
1281 func norm(hi, lo, base int) (nhi, nlo int) {
1282 if lo < 0 {
1283 n := (-lo-1)/base + 1
1284 hi -= n
1285 lo += n * base
1287 if lo >= base {
1288 n := lo / base
1289 hi += n
1290 lo -= n * base
1292 return hi, lo
1295 // Date returns the Time corresponding to
1296 // yyyy-mm-dd hh:mm:ss + nsec nanoseconds
1297 // in the appropriate zone for that time in the given location.
1299 // The month, day, hour, min, sec, and nsec values may be outside
1300 // their usual ranges and will be normalized during the conversion.
1301 // For example, October 32 converts to November 1.
1303 // A daylight savings time transition skips or repeats times.
1304 // For example, in the United States, March 13, 2011 2:15am never occurred,
1305 // while November 6, 2011 1:15am occurred twice. In such cases, the
1306 // choice of time zone, and therefore the time, is not well-defined.
1307 // Date returns a time that is correct in one of the two zones involved
1308 // in the transition, but it does not guarantee which.
1310 // Date panics if loc is nil.
1311 func Date(year int, month Month, day, hour, min, sec, nsec int, loc *Location) Time {
1312 if loc == nil {
1313 panic("time: missing Location in call to Date")
1316 // Normalize month, overflowing into year.
1317 m := int(month) - 1
1318 year, m = norm(year, m, 12)
1319 month = Month(m) + 1
1321 // Normalize nsec, sec, min, hour, overflowing into day.
1322 sec, nsec = norm(sec, nsec, 1e9)
1323 min, sec = norm(min, sec, 60)
1324 hour, min = norm(hour, min, 60)
1325 day, hour = norm(day, hour, 24)
1327 y := uint64(int64(year) - absoluteZeroYear)
1329 // Compute days since the absolute epoch.
1331 // Add in days from 400-year cycles.
1332 n := y / 400
1333 y -= 400 * n
1334 d := daysPer400Years * n
1336 // Add in 100-year cycles.
1337 n = y / 100
1338 y -= 100 * n
1339 d += daysPer100Years * n
1341 // Add in 4-year cycles.
1342 n = y / 4
1343 y -= 4 * n
1344 d += daysPer4Years * n
1346 // Add in non-leap years.
1347 n = y
1348 d += 365 * n
1350 // Add in days before this month.
1351 d += uint64(daysBefore[month-1])
1352 if isLeap(year) && month >= March {
1353 d++ // February 29
1356 // Add in days before today.
1357 d += uint64(day - 1)
1359 // Add in time elapsed today.
1360 abs := d * secondsPerDay
1361 abs += uint64(hour*secondsPerHour + min*secondsPerMinute + sec)
1363 unix := int64(abs) + (absoluteToInternal + internalToUnix)
1365 // Look for zone offset for t, so we can adjust to UTC.
1366 // The lookup function expects UTC, so we pass t in the
1367 // hope that it will not be too close to a zone transition,
1368 // and then adjust if it is.
1369 _, offset, _, start, end := loc.lookup(unix)
1370 if offset != 0 {
1371 switch utc := unix - int64(offset); {
1372 case utc < start:
1373 _, offset, _, _, _ = loc.lookup(start - 1)
1374 case utc >= end:
1375 _, offset, _, _, _ = loc.lookup(end)
1377 unix -= int64(offset)
1380 t := unixTime(unix, int32(nsec))
1381 t.setLoc(loc)
1382 return t
1385 // Truncate returns the result of rounding t down to a multiple of d (since the zero time).
1386 // If d <= 0, Truncate returns t stripped of any monotonic clock reading but otherwise unchanged.
1388 // Truncate operates on the time as an absolute duration since the
1389 // zero time; it does not operate on the presentation form of the
1390 // time. Thus, Truncate(Hour) may return a time with a non-zero
1391 // minute, depending on the time's Location.
1392 func (t Time) Truncate(d Duration) Time {
1393 t.stripMono()
1394 if d <= 0 {
1395 return t
1397 _, r := div(t, d)
1398 return t.Add(-r)
1401 // Round returns the result of rounding t to the nearest multiple of d (since the zero time).
1402 // The rounding behavior for halfway values is to round up.
1403 // If d <= 0, Round returns t stripped of any monotonic clock reading but otherwise unchanged.
1405 // Round operates on the time as an absolute duration since the
1406 // zero time; it does not operate on the presentation form of the
1407 // time. Thus, Round(Hour) may return a time with a non-zero
1408 // minute, depending on the time's Location.
1409 func (t Time) Round(d Duration) Time {
1410 t.stripMono()
1411 if d <= 0 {
1412 return t
1414 _, r := div(t, d)
1415 if lessThanHalf(r, d) {
1416 return t.Add(-r)
1418 return t.Add(d - r)
1421 // div divides t by d and returns the quotient parity and remainder.
1422 // We don't use the quotient parity anymore (round half up instead of round to even)
1423 // but it's still here in case we change our minds.
1424 func div(t Time, d Duration) (qmod2 int, r Duration) {
1425 neg := false
1426 nsec := t.nsec()
1427 sec := t.sec()
1428 if sec < 0 {
1429 // Operate on absolute value.
1430 neg = true
1431 sec = -sec
1432 nsec = -nsec
1433 if nsec < 0 {
1434 nsec += 1e9
1435 sec-- // sec >= 1 before the -- so safe
1439 switch {
1440 // Special case: 2d divides 1 second.
1441 case d < Second && Second%(d+d) == 0:
1442 qmod2 = int(nsec/int32(d)) & 1
1443 r = Duration(nsec % int32(d))
1445 // Special case: d is a multiple of 1 second.
1446 case d%Second == 0:
1447 d1 := int64(d / Second)
1448 qmod2 = int(sec/d1) & 1
1449 r = Duration(sec%d1)*Second + Duration(nsec)
1451 // General case.
1452 // This could be faster if more cleverness were applied,
1453 // but it's really only here to avoid special case restrictions in the API.
1454 // No one will care about these cases.
1455 default:
1456 // Compute nanoseconds as 128-bit number.
1457 sec := uint64(sec)
1458 tmp := (sec >> 32) * 1e9
1459 u1 := tmp >> 32
1460 u0 := tmp << 32
1461 tmp = (sec & 0xFFFFFFFF) * 1e9
1462 u0x, u0 := u0, u0+tmp
1463 if u0 < u0x {
1464 u1++
1466 u0x, u0 = u0, u0+uint64(nsec)
1467 if u0 < u0x {
1468 u1++
1471 // Compute remainder by subtracting r<<k for decreasing k.
1472 // Quotient parity is whether we subtract on last round.
1473 d1 := uint64(d)
1474 for d1>>63 != 1 {
1475 d1 <<= 1
1477 d0 := uint64(0)
1478 for {
1479 qmod2 = 0
1480 if u1 > d1 || u1 == d1 && u0 >= d0 {
1481 // subtract
1482 qmod2 = 1
1483 u0x, u0 = u0, u0-d0
1484 if u0 > u0x {
1485 u1--
1487 u1 -= d1
1489 if d1 == 0 && d0 == uint64(d) {
1490 break
1492 d0 >>= 1
1493 d0 |= (d1 & 1) << 63
1494 d1 >>= 1
1496 r = Duration(u0)
1499 if neg && r != 0 {
1500 // If input was negative and not an exact multiple of d, we computed q, r such that
1501 // q*d + r = -t
1502 // But the right answers are given by -(q-1), d-r:
1503 // q*d + r = -t
1504 // -q*d - r = t
1505 // -(q-1)*d + (d - r) = t
1506 qmod2 ^= 1
1507 r = d - r
1509 return