Don't warn when alignment of global common data exceeds maximum alignment.
[official-gcc.git] / gcc / tree-vectorizer.h
blob9c2c29d61fae5e651a112b103482131e3d646fb6
1 /* Vectorizer
2 Copyright (C) 2003-2021 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #ifndef GCC_TREE_VECTORIZER_H
22 #define GCC_TREE_VECTORIZER_H
24 typedef class _stmt_vec_info *stmt_vec_info;
26 #include "tree-data-ref.h"
27 #include "tree-hash-traits.h"
28 #include "target.h"
29 #include "internal-fn.h"
30 #include "tree-ssa-operands.h"
32 /* Used for naming of new temporaries. */
33 enum vect_var_kind {
34 vect_simple_var,
35 vect_pointer_var,
36 vect_scalar_var,
37 vect_mask_var
40 /* Defines type of operation. */
41 enum operation_type {
42 unary_op = 1,
43 binary_op,
44 ternary_op
47 /* Define type of available alignment support. */
48 enum dr_alignment_support {
49 dr_unaligned_unsupported,
50 dr_unaligned_supported,
51 dr_explicit_realign,
52 dr_explicit_realign_optimized,
53 dr_aligned
56 /* Define type of def-use cross-iteration cycle. */
57 enum vect_def_type {
58 vect_uninitialized_def = 0,
59 vect_constant_def = 1,
60 vect_external_def,
61 vect_internal_def,
62 vect_induction_def,
63 vect_reduction_def,
64 vect_double_reduction_def,
65 vect_nested_cycle,
66 vect_unknown_def_type
69 /* Define type of reduction. */
70 enum vect_reduction_type {
71 TREE_CODE_REDUCTION,
72 COND_REDUCTION,
73 INTEGER_INDUC_COND_REDUCTION,
74 CONST_COND_REDUCTION,
76 /* Retain a scalar phi and use a FOLD_EXTRACT_LAST within the loop
77 to implement:
79 for (int i = 0; i < VF; ++i)
80 res = cond[i] ? val[i] : res; */
81 EXTRACT_LAST_REDUCTION,
83 /* Use a folding reduction within the loop to implement:
85 for (int i = 0; i < VF; ++i)
86 res = res OP val[i];
88 (with no reassocation). */
89 FOLD_LEFT_REDUCTION
92 #define VECTORIZABLE_CYCLE_DEF(D) (((D) == vect_reduction_def) \
93 || ((D) == vect_double_reduction_def) \
94 || ((D) == vect_nested_cycle))
96 /* Structure to encapsulate information about a group of like
97 instructions to be presented to the target cost model. */
98 struct stmt_info_for_cost {
99 int count;
100 enum vect_cost_for_stmt kind;
101 enum vect_cost_model_location where;
102 stmt_vec_info stmt_info;
103 tree vectype;
104 int misalign;
107 typedef vec<stmt_info_for_cost> stmt_vector_for_cost;
109 /* Maps base addresses to an innermost_loop_behavior that gives the maximum
110 known alignment for that base. */
111 typedef hash_map<tree_operand_hash,
112 innermost_loop_behavior *> vec_base_alignments;
114 /************************************************************************
116 ************************************************************************/
117 typedef struct _slp_tree *slp_tree;
118 typedef vec<std::pair<unsigned, unsigned> > lane_permutation_t;
119 typedef vec<unsigned> load_permutation_t;
121 /* A computation tree of an SLP instance. Each node corresponds to a group of
122 stmts to be packed in a SIMD stmt. */
123 struct _slp_tree {
124 _slp_tree ();
125 ~_slp_tree ();
127 /* Nodes that contain def-stmts of this node statements operands. */
128 vec<slp_tree> children;
130 /* A group of scalar stmts to be vectorized together. */
131 vec<stmt_vec_info> stmts;
132 /* A group of scalar operands to be vectorized together. */
133 vec<tree> ops;
134 /* The representative that should be used for analysis and
135 code generation. */
136 stmt_vec_info representative;
138 /* Load permutation relative to the stores, NULL if there is no
139 permutation. */
140 load_permutation_t load_permutation;
141 /* Lane permutation of the operands scalar lanes encoded as pairs
142 of { operand number, lane number }. The number of elements
143 denotes the number of output lanes. */
144 lane_permutation_t lane_permutation;
146 tree vectype;
147 /* Vectorized stmt/s. */
148 vec<gimple *> vec_stmts;
149 vec<tree> vec_defs;
150 /* Number of vector stmts that are created to replace the group of scalar
151 stmts. It is calculated during the transformation phase as the number of
152 scalar elements in one scalar iteration (GROUP_SIZE) multiplied by VF
153 divided by vector size. */
154 unsigned int vec_stmts_size;
156 /* Reference count in the SLP graph. */
157 unsigned int refcnt;
158 /* The maximum number of vector elements for the subtree rooted
159 at this node. */
160 poly_uint64 max_nunits;
161 /* The DEF type of this node. */
162 enum vect_def_type def_type;
163 /* The number of scalar lanes produced by this node. */
164 unsigned int lanes;
165 /* The operation of this node. */
166 enum tree_code code;
168 int vertex;
170 /* If not NULL this is a cached failed SLP discovery attempt with
171 the lanes that failed during SLP discovery as 'false'. This is
172 a copy of the matches array. */
173 bool *failed;
175 /* Allocate from slp_tree_pool. */
176 static void *operator new (size_t);
178 /* Return memory to slp_tree_pool. */
179 static void operator delete (void *, size_t);
181 /* Linked list of nodes to release when we free the slp_tree_pool. */
182 slp_tree next_node;
183 slp_tree prev_node;
186 /* The enum describes the type of operations that an SLP instance
187 can perform. */
189 enum slp_instance_kind {
190 slp_inst_kind_store,
191 slp_inst_kind_reduc_group,
192 slp_inst_kind_reduc_chain,
193 slp_inst_kind_bb_reduc,
194 slp_inst_kind_ctor
197 /* SLP instance is a sequence of stmts in a loop that can be packed into
198 SIMD stmts. */
199 typedef class _slp_instance {
200 public:
201 /* The root of SLP tree. */
202 slp_tree root;
204 /* For vector constructors, the constructor stmt that the SLP tree is built
205 from, NULL otherwise. */
206 vec<stmt_vec_info> root_stmts;
208 /* The unrolling factor required to vectorized this SLP instance. */
209 poly_uint64 unrolling_factor;
211 /* The group of nodes that contain loads of this SLP instance. */
212 vec<slp_tree> loads;
214 /* The SLP node containing the reduction PHIs. */
215 slp_tree reduc_phis;
217 /* Vector cost of this entry to the SLP graph. */
218 stmt_vector_for_cost cost_vec;
220 /* If this instance is the main entry of a subgraph the set of
221 entries into the same subgraph, including itself. */
222 vec<_slp_instance *> subgraph_entries;
224 /* The type of operation the SLP instance is performing. */
225 slp_instance_kind kind;
227 dump_user_location_t location () const;
228 } *slp_instance;
231 /* Access Functions. */
232 #define SLP_INSTANCE_TREE(S) (S)->root
233 #define SLP_INSTANCE_UNROLLING_FACTOR(S) (S)->unrolling_factor
234 #define SLP_INSTANCE_LOADS(S) (S)->loads
235 #define SLP_INSTANCE_ROOT_STMTS(S) (S)->root_stmts
236 #define SLP_INSTANCE_KIND(S) (S)->kind
238 #define SLP_TREE_CHILDREN(S) (S)->children
239 #define SLP_TREE_SCALAR_STMTS(S) (S)->stmts
240 #define SLP_TREE_SCALAR_OPS(S) (S)->ops
241 #define SLP_TREE_REF_COUNT(S) (S)->refcnt
242 #define SLP_TREE_VEC_STMTS(S) (S)->vec_stmts
243 #define SLP_TREE_VEC_DEFS(S) (S)->vec_defs
244 #define SLP_TREE_NUMBER_OF_VEC_STMTS(S) (S)->vec_stmts_size
245 #define SLP_TREE_LOAD_PERMUTATION(S) (S)->load_permutation
246 #define SLP_TREE_LANE_PERMUTATION(S) (S)->lane_permutation
247 #define SLP_TREE_DEF_TYPE(S) (S)->def_type
248 #define SLP_TREE_VECTYPE(S) (S)->vectype
249 #define SLP_TREE_REPRESENTATIVE(S) (S)->representative
250 #define SLP_TREE_LANES(S) (S)->lanes
251 #define SLP_TREE_CODE(S) (S)->code
253 /* Key for map that records association between
254 scalar conditions and corresponding loop mask, and
255 is populated by vect_record_loop_mask. */
257 struct scalar_cond_masked_key
259 scalar_cond_masked_key (tree t, unsigned ncopies_)
260 : ncopies (ncopies_)
262 get_cond_ops_from_tree (t);
265 void get_cond_ops_from_tree (tree);
267 unsigned ncopies;
268 tree_code code;
269 tree op0;
270 tree op1;
273 template<>
274 struct default_hash_traits<scalar_cond_masked_key>
276 typedef scalar_cond_masked_key compare_type;
277 typedef scalar_cond_masked_key value_type;
279 static inline hashval_t
280 hash (value_type v)
282 inchash::hash h;
283 h.add_int (v.code);
284 inchash::add_expr (v.op0, h, 0);
285 inchash::add_expr (v.op1, h, 0);
286 h.add_int (v.ncopies);
287 return h.end ();
290 static inline bool
291 equal (value_type existing, value_type candidate)
293 return (existing.ncopies == candidate.ncopies
294 && existing.code == candidate.code
295 && operand_equal_p (existing.op0, candidate.op0, 0)
296 && operand_equal_p (existing.op1, candidate.op1, 0));
299 static const bool empty_zero_p = true;
301 static inline void
302 mark_empty (value_type &v)
304 v.ncopies = 0;
307 static inline bool
308 is_empty (value_type v)
310 return v.ncopies == 0;
313 static inline void mark_deleted (value_type &) {}
315 static inline bool is_deleted (const value_type &)
317 return false;
320 static inline void remove (value_type &) {}
323 typedef hash_set<scalar_cond_masked_key> scalar_cond_masked_set_type;
325 /* Describes two objects whose addresses must be unequal for the vectorized
326 loop to be valid. */
327 typedef std::pair<tree, tree> vec_object_pair;
329 /* Records that vectorization is only possible if abs (EXPR) >= MIN_VALUE.
330 UNSIGNED_P is true if we can assume that abs (EXPR) == EXPR. */
331 class vec_lower_bound {
332 public:
333 vec_lower_bound () {}
334 vec_lower_bound (tree e, bool u, poly_uint64 m)
335 : expr (e), unsigned_p (u), min_value (m) {}
337 tree expr;
338 bool unsigned_p;
339 poly_uint64 min_value;
342 /* Vectorizer state shared between different analyses like vector sizes
343 of the same CFG region. */
344 class vec_info_shared {
345 public:
346 vec_info_shared();
347 ~vec_info_shared();
349 void save_datarefs();
350 void check_datarefs();
352 /* All data references. Freed by free_data_refs, so not an auto_vec. */
353 vec<data_reference_p> datarefs;
354 vec<data_reference> datarefs_copy;
356 /* The loop nest in which the data dependences are computed. */
357 auto_vec<loop_p> loop_nest;
359 /* All data dependences. Freed by free_dependence_relations, so not
360 an auto_vec. */
361 vec<ddr_p> ddrs;
364 /* Vectorizer state common between loop and basic-block vectorization. */
365 class vec_info {
366 public:
367 typedef hash_set<int_hash<machine_mode, E_VOIDmode, E_BLKmode> > mode_set;
368 enum vec_kind { bb, loop };
370 vec_info (vec_kind, void *, vec_info_shared *);
371 ~vec_info ();
373 stmt_vec_info add_stmt (gimple *);
374 stmt_vec_info add_pattern_stmt (gimple *, stmt_vec_info);
375 stmt_vec_info lookup_stmt (gimple *);
376 stmt_vec_info lookup_def (tree);
377 stmt_vec_info lookup_single_use (tree);
378 class dr_vec_info *lookup_dr (data_reference *);
379 void move_dr (stmt_vec_info, stmt_vec_info);
380 void remove_stmt (stmt_vec_info);
381 void replace_stmt (gimple_stmt_iterator *, stmt_vec_info, gimple *);
382 void insert_on_entry (stmt_vec_info, gimple *);
383 void insert_seq_on_entry (stmt_vec_info, gimple_seq);
385 /* The type of vectorization. */
386 vec_kind kind;
388 /* Shared vectorizer state. */
389 vec_info_shared *shared;
391 /* The mapping of GIMPLE UID to stmt_vec_info. */
392 vec<stmt_vec_info> stmt_vec_infos;
393 /* Whether the above mapping is complete. */
394 bool stmt_vec_info_ro;
396 /* The SLP graph. */
397 auto_vec<slp_instance> slp_instances;
399 /* Maps base addresses to an innermost_loop_behavior that gives the maximum
400 known alignment for that base. */
401 vec_base_alignments base_alignments;
403 /* All interleaving chains of stores, represented by the first
404 stmt in the chain. */
405 auto_vec<stmt_vec_info> grouped_stores;
407 /* Cost data used by the target cost model. */
408 void *target_cost_data;
410 /* The set of vector modes used in the vectorized region. */
411 mode_set used_vector_modes;
413 /* The argument we should pass to related_vector_mode when looking up
414 the vector mode for a scalar mode, or VOIDmode if we haven't yet
415 made any decisions about which vector modes to use. */
416 machine_mode vector_mode;
418 private:
419 stmt_vec_info new_stmt_vec_info (gimple *stmt);
420 void set_vinfo_for_stmt (gimple *, stmt_vec_info, bool = true);
421 void free_stmt_vec_infos ();
422 void free_stmt_vec_info (stmt_vec_info);
425 class _loop_vec_info;
426 class _bb_vec_info;
428 template<>
429 template<>
430 inline bool
431 is_a_helper <_loop_vec_info *>::test (vec_info *i)
433 return i->kind == vec_info::loop;
436 template<>
437 template<>
438 inline bool
439 is_a_helper <_bb_vec_info *>::test (vec_info *i)
441 return i->kind == vec_info::bb;
444 /* In general, we can divide the vector statements in a vectorized loop
445 into related groups ("rgroups") and say that for each rgroup there is
446 some nS such that the rgroup operates on nS values from one scalar
447 iteration followed by nS values from the next. That is, if VF is the
448 vectorization factor of the loop, the rgroup operates on a sequence:
450 (1,1) (1,2) ... (1,nS) (2,1) ... (2,nS) ... (VF,1) ... (VF,nS)
452 where (i,j) represents a scalar value with index j in a scalar
453 iteration with index i.
455 [ We use the term "rgroup" to emphasise that this grouping isn't
456 necessarily the same as the grouping of statements used elsewhere.
457 For example, if we implement a group of scalar loads using gather
458 loads, we'll use a separate gather load for each scalar load, and
459 thus each gather load will belong to its own rgroup. ]
461 In general this sequence will occupy nV vectors concatenated
462 together. If these vectors have nL lanes each, the total number
463 of scalar values N is given by:
465 N = nS * VF = nV * nL
467 None of nS, VF, nV and nL are required to be a power of 2. nS and nV
468 are compile-time constants but VF and nL can be variable (if the target
469 supports variable-length vectors).
471 In classical vectorization, each iteration of the vector loop would
472 handle exactly VF iterations of the original scalar loop. However,
473 in vector loops that are able to operate on partial vectors, a
474 particular iteration of the vector loop might handle fewer than VF
475 iterations of the scalar loop. The vector lanes that correspond to
476 iterations of the scalar loop are said to be "active" and the other
477 lanes are said to be "inactive".
479 In such vector loops, many rgroups need to be controlled to ensure
480 that they have no effect for the inactive lanes. Conceptually, each
481 such rgroup needs a sequence of booleans in the same order as above,
482 but with each (i,j) replaced by a boolean that indicates whether
483 iteration i is active. This sequence occupies nV vector controls
484 that again have nL lanes each. Thus the control sequence as a whole
485 consists of VF independent booleans that are each repeated nS times.
487 Taking mask-based approach as a partially-populated vectors example.
488 We make the simplifying assumption that if a sequence of nV masks is
489 suitable for one (nS,nL) pair, we can reuse it for (nS/2,nL/2) by
490 VIEW_CONVERTing it. This holds for all current targets that support
491 fully-masked loops. For example, suppose the scalar loop is:
493 float *f;
494 double *d;
495 for (int i = 0; i < n; ++i)
497 f[i * 2 + 0] += 1.0f;
498 f[i * 2 + 1] += 2.0f;
499 d[i] += 3.0;
502 and suppose that vectors have 256 bits. The vectorized f accesses
503 will belong to one rgroup and the vectorized d access to another:
505 f rgroup: nS = 2, nV = 1, nL = 8
506 d rgroup: nS = 1, nV = 1, nL = 4
507 VF = 4
509 [ In this simple example the rgroups do correspond to the normal
510 SLP grouping scheme. ]
512 If only the first three lanes are active, the masks we need are:
514 f rgroup: 1 1 | 1 1 | 1 1 | 0 0
515 d rgroup: 1 | 1 | 1 | 0
517 Here we can use a mask calculated for f's rgroup for d's, but not
518 vice versa.
520 Thus for each value of nV, it is enough to provide nV masks, with the
521 mask being calculated based on the highest nL (or, equivalently, based
522 on the highest nS) required by any rgroup with that nV. We therefore
523 represent the entire collection of masks as a two-level table, with the
524 first level being indexed by nV - 1 (since nV == 0 doesn't exist) and
525 the second being indexed by the mask index 0 <= i < nV. */
527 /* The controls (like masks or lengths) needed by rgroups with nV vectors,
528 according to the description above. */
529 struct rgroup_controls {
530 /* The largest nS for all rgroups that use these controls. */
531 unsigned int max_nscalars_per_iter;
533 /* For the largest nS recorded above, the loop controls divide each scalar
534 into FACTOR equal-sized pieces. This is useful if we need to split
535 element-based accesses into byte-based accesses. */
536 unsigned int factor;
538 /* This is a vector type with MAX_NSCALARS_PER_ITER * VF / nV elements.
539 For mask-based controls, it is the type of the masks in CONTROLS.
540 For length-based controls, it can be any vector type that has the
541 specified number of elements; the type of the elements doesn't matter. */
542 tree type;
544 /* A vector of nV controls, in iteration order. */
545 vec<tree> controls;
548 typedef auto_vec<rgroup_controls> vec_loop_masks;
550 typedef auto_vec<rgroup_controls> vec_loop_lens;
552 typedef auto_vec<std::pair<data_reference*, tree> > drs_init_vec;
554 /* Information about a reduction accumulator from the main loop that could
555 conceivably be reused as the input to a reduction in an epilogue loop. */
556 struct vect_reusable_accumulator {
557 /* The final value of the accumulator, which forms the input to the
558 reduction operation. */
559 tree reduc_input;
561 /* The stmt_vec_info that describes the reduction (i.e. the one for
562 which is_reduc_info is true). */
563 stmt_vec_info reduc_info;
566 /*-----------------------------------------------------------------*/
567 /* Info on vectorized loops. */
568 /*-----------------------------------------------------------------*/
569 typedef class _loop_vec_info : public vec_info {
570 public:
571 _loop_vec_info (class loop *, vec_info_shared *);
572 ~_loop_vec_info ();
574 /* The loop to which this info struct refers to. */
575 class loop *loop;
577 /* The loop basic blocks. */
578 basic_block *bbs;
580 /* Number of latch executions. */
581 tree num_itersm1;
582 /* Number of iterations. */
583 tree num_iters;
584 /* Number of iterations of the original loop. */
585 tree num_iters_unchanged;
586 /* Condition under which this loop is analyzed and versioned. */
587 tree num_iters_assumptions;
589 /* Threshold of number of iterations below which vectorization will not be
590 performed. It is calculated from MIN_PROFITABLE_ITERS and
591 param_min_vect_loop_bound. */
592 unsigned int th;
594 /* When applying loop versioning, the vector form should only be used
595 if the number of scalar iterations is >= this value, on top of all
596 the other requirements. Ignored when loop versioning is not being
597 used. */
598 poly_uint64 versioning_threshold;
600 /* Unrolling factor */
601 poly_uint64 vectorization_factor;
603 /* If this loop is an epilogue loop whose main loop can be skipped,
604 MAIN_LOOP_EDGE is the edge from the main loop to this loop's
605 preheader. SKIP_MAIN_LOOP_EDGE is then the edge that skips the
606 main loop and goes straight to this loop's preheader.
608 Both fields are null otherwise. */
609 edge main_loop_edge;
610 edge skip_main_loop_edge;
612 /* If this loop is an epilogue loop that might be skipped after executing
613 the main loop, this edge is the one that skips the epilogue. */
614 edge skip_this_loop_edge;
616 /* The vectorized form of a standard reduction replaces the original
617 scalar code's final result (a loop-closed SSA PHI) with the result
618 of a vector-to-scalar reduction operation. After vectorization,
619 this variable maps these vector-to-scalar results to information
620 about the reductions that generated them. */
621 hash_map<tree, vect_reusable_accumulator> reusable_accumulators;
623 /* Maximum runtime vectorization factor, or MAX_VECTORIZATION_FACTOR
624 if there is no particular limit. */
625 unsigned HOST_WIDE_INT max_vectorization_factor;
627 /* The masks that a fully-masked loop should use to avoid operating
628 on inactive scalars. */
629 vec_loop_masks masks;
631 /* The lengths that a loop with length should use to avoid operating
632 on inactive scalars. */
633 vec_loop_lens lens;
635 /* Set of scalar conditions that have loop mask applied. */
636 scalar_cond_masked_set_type scalar_cond_masked_set;
638 /* If we are using a loop mask to align memory addresses, this variable
639 contains the number of vector elements that we should skip in the
640 first iteration of the vector loop (i.e. the number of leading
641 elements that should be false in the first mask). */
642 tree mask_skip_niters;
644 /* The type that the loop control IV should be converted to before
645 testing which of the VF scalars are active and inactive.
646 Only meaningful if LOOP_VINFO_USING_PARTIAL_VECTORS_P. */
647 tree rgroup_compare_type;
649 /* For #pragma omp simd if (x) loops the x expression. If constant 0,
650 the loop should not be vectorized, if constant non-zero, simd_if_cond
651 shouldn't be set and loop vectorized normally, if SSA_NAME, the loop
652 should be versioned on that condition, using scalar loop if the condition
653 is false and vectorized loop otherwise. */
654 tree simd_if_cond;
656 /* The type that the vector loop control IV should have when
657 LOOP_VINFO_USING_PARTIAL_VECTORS_P is true. */
658 tree rgroup_iv_type;
660 /* Unknown DRs according to which loop was peeled. */
661 class dr_vec_info *unaligned_dr;
663 /* peeling_for_alignment indicates whether peeling for alignment will take
664 place, and what the peeling factor should be:
665 peeling_for_alignment = X means:
666 If X=0: Peeling for alignment will not be applied.
667 If X>0: Peel first X iterations.
668 If X=-1: Generate a runtime test to calculate the number of iterations
669 to be peeled, using the dataref recorded in the field
670 unaligned_dr. */
671 int peeling_for_alignment;
673 /* The mask used to check the alignment of pointers or arrays. */
674 int ptr_mask;
676 /* Data Dependence Relations defining address ranges that are candidates
677 for a run-time aliasing check. */
678 auto_vec<ddr_p> may_alias_ddrs;
680 /* Data Dependence Relations defining address ranges together with segment
681 lengths from which the run-time aliasing check is built. */
682 auto_vec<dr_with_seg_len_pair_t> comp_alias_ddrs;
684 /* Check that the addresses of each pair of objects is unequal. */
685 auto_vec<vec_object_pair> check_unequal_addrs;
687 /* List of values that are required to be nonzero. This is used to check
688 whether things like "x[i * n] += 1;" are safe and eventually gets added
689 to the checks for lower bounds below. */
690 auto_vec<tree> check_nonzero;
692 /* List of values that need to be checked for a minimum value. */
693 auto_vec<vec_lower_bound> lower_bounds;
695 /* Statements in the loop that have data references that are candidates for a
696 runtime (loop versioning) misalignment check. */
697 auto_vec<stmt_vec_info> may_misalign_stmts;
699 /* Reduction cycles detected in the loop. Used in loop-aware SLP. */
700 auto_vec<stmt_vec_info> reductions;
702 /* All reduction chains in the loop, represented by the first
703 stmt in the chain. */
704 auto_vec<stmt_vec_info> reduction_chains;
706 /* Cost vector for a single scalar iteration. */
707 auto_vec<stmt_info_for_cost> scalar_cost_vec;
709 /* Map of IV base/step expressions to inserted name in the preheader. */
710 hash_map<tree_operand_hash, tree> *ivexpr_map;
712 /* Map of OpenMP "omp simd array" scan variables to corresponding
713 rhs of the store of the initializer. */
714 hash_map<tree, tree> *scan_map;
716 /* The unrolling factor needed to SLP the loop. In case of that pure SLP is
717 applied to the loop, i.e., no unrolling is needed, this is 1. */
718 poly_uint64 slp_unrolling_factor;
720 /* Cost of a single scalar iteration. */
721 int single_scalar_iteration_cost;
723 /* The cost of the vector prologue and epilogue, including peeled
724 iterations and set-up code. */
725 int vec_outside_cost;
727 /* The cost of the vector loop body. */
728 int vec_inside_cost;
730 /* The factor used to over weight those statements in an inner loop
731 relative to the loop being vectorized. */
732 unsigned int inner_loop_cost_factor;
734 /* Is the loop vectorizable? */
735 bool vectorizable;
737 /* Records whether we still have the option of vectorizing this loop
738 using partially-populated vectors; in other words, whether it is
739 still possible for one iteration of the vector loop to handle
740 fewer than VF scalars. */
741 bool can_use_partial_vectors_p;
743 /* True if we've decided to use partially-populated vectors, so that
744 the vector loop can handle fewer than VF scalars. */
745 bool using_partial_vectors_p;
747 /* True if we've decided to use partially-populated vectors for the
748 epilogue of loop. */
749 bool epil_using_partial_vectors_p;
751 /* When we have grouped data accesses with gaps, we may introduce invalid
752 memory accesses. We peel the last iteration of the loop to prevent
753 this. */
754 bool peeling_for_gaps;
756 /* When the number of iterations is not a multiple of the vector size
757 we need to peel off iterations at the end to form an epilogue loop. */
758 bool peeling_for_niter;
760 /* True if there are no loop carried data dependencies in the loop.
761 If loop->safelen <= 1, then this is always true, either the loop
762 didn't have any loop carried data dependencies, or the loop is being
763 vectorized guarded with some runtime alias checks, or couldn't
764 be vectorized at all, but then this field shouldn't be used.
765 For loop->safelen >= 2, the user has asserted that there are no
766 backward dependencies, but there still could be loop carried forward
767 dependencies in such loops. This flag will be false if normal
768 vectorizer data dependency analysis would fail or require versioning
769 for alias, but because of loop->safelen >= 2 it has been vectorized
770 even without versioning for alias. E.g. in:
771 #pragma omp simd
772 for (int i = 0; i < m; i++)
773 a[i] = a[i + k] * c;
774 (or #pragma simd or #pragma ivdep) we can vectorize this and it will
775 DTRT even for k > 0 && k < m, but without safelen we would not
776 vectorize this, so this field would be false. */
777 bool no_data_dependencies;
779 /* Mark loops having masked stores. */
780 bool has_mask_store;
782 /* Queued scaling factor for the scalar loop. */
783 profile_probability scalar_loop_scaling;
785 /* If if-conversion versioned this loop before conversion, this is the
786 loop version without if-conversion. */
787 class loop *scalar_loop;
789 /* For loops being epilogues of already vectorized loops
790 this points to the original vectorized loop. Otherwise NULL. */
791 _loop_vec_info *orig_loop_info;
793 /* Used to store loop_vec_infos of epilogues of this loop during
794 analysis. */
795 vec<_loop_vec_info *> epilogue_vinfos;
797 } *loop_vec_info;
799 /* Access Functions. */
800 #define LOOP_VINFO_LOOP(L) (L)->loop
801 #define LOOP_VINFO_BBS(L) (L)->bbs
802 #define LOOP_VINFO_NITERSM1(L) (L)->num_itersm1
803 #define LOOP_VINFO_NITERS(L) (L)->num_iters
804 /* Since LOOP_VINFO_NITERS and LOOP_VINFO_NITERSM1 can change after
805 prologue peeling retain total unchanged scalar loop iterations for
806 cost model. */
807 #define LOOP_VINFO_NITERS_UNCHANGED(L) (L)->num_iters_unchanged
808 #define LOOP_VINFO_NITERS_ASSUMPTIONS(L) (L)->num_iters_assumptions
809 #define LOOP_VINFO_COST_MODEL_THRESHOLD(L) (L)->th
810 #define LOOP_VINFO_VERSIONING_THRESHOLD(L) (L)->versioning_threshold
811 #define LOOP_VINFO_VECTORIZABLE_P(L) (L)->vectorizable
812 #define LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P(L) (L)->can_use_partial_vectors_p
813 #define LOOP_VINFO_USING_PARTIAL_VECTORS_P(L) (L)->using_partial_vectors_p
814 #define LOOP_VINFO_EPIL_USING_PARTIAL_VECTORS_P(L) \
815 (L)->epil_using_partial_vectors_p
816 #define LOOP_VINFO_VECT_FACTOR(L) (L)->vectorization_factor
817 #define LOOP_VINFO_MAX_VECT_FACTOR(L) (L)->max_vectorization_factor
818 #define LOOP_VINFO_MASKS(L) (L)->masks
819 #define LOOP_VINFO_LENS(L) (L)->lens
820 #define LOOP_VINFO_MASK_SKIP_NITERS(L) (L)->mask_skip_niters
821 #define LOOP_VINFO_RGROUP_COMPARE_TYPE(L) (L)->rgroup_compare_type
822 #define LOOP_VINFO_RGROUP_IV_TYPE(L) (L)->rgroup_iv_type
823 #define LOOP_VINFO_PTR_MASK(L) (L)->ptr_mask
824 #define LOOP_VINFO_LOOP_NEST(L) (L)->shared->loop_nest
825 #define LOOP_VINFO_DATAREFS(L) (L)->shared->datarefs
826 #define LOOP_VINFO_DDRS(L) (L)->shared->ddrs
827 #define LOOP_VINFO_INT_NITERS(L) (TREE_INT_CST_LOW ((L)->num_iters))
828 #define LOOP_VINFO_PEELING_FOR_ALIGNMENT(L) (L)->peeling_for_alignment
829 #define LOOP_VINFO_UNALIGNED_DR(L) (L)->unaligned_dr
830 #define LOOP_VINFO_MAY_MISALIGN_STMTS(L) (L)->may_misalign_stmts
831 #define LOOP_VINFO_MAY_ALIAS_DDRS(L) (L)->may_alias_ddrs
832 #define LOOP_VINFO_COMP_ALIAS_DDRS(L) (L)->comp_alias_ddrs
833 #define LOOP_VINFO_CHECK_UNEQUAL_ADDRS(L) (L)->check_unequal_addrs
834 #define LOOP_VINFO_CHECK_NONZERO(L) (L)->check_nonzero
835 #define LOOP_VINFO_LOWER_BOUNDS(L) (L)->lower_bounds
836 #define LOOP_VINFO_GROUPED_STORES(L) (L)->grouped_stores
837 #define LOOP_VINFO_SLP_INSTANCES(L) (L)->slp_instances
838 #define LOOP_VINFO_SLP_UNROLLING_FACTOR(L) (L)->slp_unrolling_factor
839 #define LOOP_VINFO_REDUCTIONS(L) (L)->reductions
840 #define LOOP_VINFO_REDUCTION_CHAINS(L) (L)->reduction_chains
841 #define LOOP_VINFO_TARGET_COST_DATA(L) (L)->target_cost_data
842 #define LOOP_VINFO_PEELING_FOR_GAPS(L) (L)->peeling_for_gaps
843 #define LOOP_VINFO_PEELING_FOR_NITER(L) (L)->peeling_for_niter
844 #define LOOP_VINFO_NO_DATA_DEPENDENCIES(L) (L)->no_data_dependencies
845 #define LOOP_VINFO_SCALAR_LOOP(L) (L)->scalar_loop
846 #define LOOP_VINFO_SCALAR_LOOP_SCALING(L) (L)->scalar_loop_scaling
847 #define LOOP_VINFO_HAS_MASK_STORE(L) (L)->has_mask_store
848 #define LOOP_VINFO_SCALAR_ITERATION_COST(L) (L)->scalar_cost_vec
849 #define LOOP_VINFO_SINGLE_SCALAR_ITERATION_COST(L) (L)->single_scalar_iteration_cost
850 #define LOOP_VINFO_ORIG_LOOP_INFO(L) (L)->orig_loop_info
851 #define LOOP_VINFO_SIMD_IF_COND(L) (L)->simd_if_cond
852 #define LOOP_VINFO_INNER_LOOP_COST_FACTOR(L) (L)->inner_loop_cost_factor
854 #define LOOP_VINFO_FULLY_MASKED_P(L) \
855 (LOOP_VINFO_USING_PARTIAL_VECTORS_P (L) \
856 && !LOOP_VINFO_MASKS (L).is_empty ())
858 #define LOOP_VINFO_FULLY_WITH_LENGTH_P(L) \
859 (LOOP_VINFO_USING_PARTIAL_VECTORS_P (L) \
860 && !LOOP_VINFO_LENS (L).is_empty ())
862 #define LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT(L) \
863 ((L)->may_misalign_stmts.length () > 0)
864 #define LOOP_REQUIRES_VERSIONING_FOR_ALIAS(L) \
865 ((L)->comp_alias_ddrs.length () > 0 \
866 || (L)->check_unequal_addrs.length () > 0 \
867 || (L)->lower_bounds.length () > 0)
868 #define LOOP_REQUIRES_VERSIONING_FOR_NITERS(L) \
869 (LOOP_VINFO_NITERS_ASSUMPTIONS (L))
870 #define LOOP_REQUIRES_VERSIONING_FOR_SIMD_IF_COND(L) \
871 (LOOP_VINFO_SIMD_IF_COND (L))
872 #define LOOP_REQUIRES_VERSIONING(L) \
873 (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (L) \
874 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (L) \
875 || LOOP_REQUIRES_VERSIONING_FOR_NITERS (L) \
876 || LOOP_REQUIRES_VERSIONING_FOR_SIMD_IF_COND (L))
878 #define LOOP_VINFO_NITERS_KNOWN_P(L) \
879 (tree_fits_shwi_p ((L)->num_iters) && tree_to_shwi ((L)->num_iters) > 0)
881 #define LOOP_VINFO_EPILOGUE_P(L) \
882 (LOOP_VINFO_ORIG_LOOP_INFO (L) != NULL)
884 #define LOOP_VINFO_ORIG_MAX_VECT_FACTOR(L) \
885 (LOOP_VINFO_MAX_VECT_FACTOR (LOOP_VINFO_ORIG_LOOP_INFO (L)))
887 /* Wrapper for loop_vec_info, for tracking success/failure, where a non-NULL
888 value signifies success, and a NULL value signifies failure, supporting
889 propagating an opt_problem * describing the failure back up the call
890 stack. */
891 typedef opt_pointer_wrapper <loop_vec_info> opt_loop_vec_info;
893 static inline loop_vec_info
894 loop_vec_info_for_loop (class loop *loop)
896 return (loop_vec_info) loop->aux;
899 struct slp_root
901 slp_root (slp_instance_kind kind_, vec<stmt_vec_info> stmts_,
902 vec<stmt_vec_info> roots_)
903 : kind(kind_), stmts(stmts_), roots(roots_) {}
904 slp_instance_kind kind;
905 vec<stmt_vec_info> stmts;
906 vec<stmt_vec_info> roots;
909 typedef class _bb_vec_info : public vec_info
911 public:
912 _bb_vec_info (vec<basic_block> bbs, vec_info_shared *);
913 ~_bb_vec_info ();
915 /* The region we are operating on. bbs[0] is the entry, excluding
916 its PHI nodes. In the future we might want to track an explicit
917 entry edge to cover bbs[0] PHI nodes and have a region entry
918 insert location. */
919 vec<basic_block> bbs;
921 vec<slp_root> roots;
922 } *bb_vec_info;
924 #define BB_VINFO_BB(B) (B)->bb
925 #define BB_VINFO_GROUPED_STORES(B) (B)->grouped_stores
926 #define BB_VINFO_SLP_INSTANCES(B) (B)->slp_instances
927 #define BB_VINFO_DATAREFS(B) (B)->shared->datarefs
928 #define BB_VINFO_DDRS(B) (B)->shared->ddrs
930 static inline bb_vec_info
931 vec_info_for_bb (basic_block bb)
933 return (bb_vec_info) bb->aux;
936 /*-----------------------------------------------------------------*/
937 /* Info on vectorized defs. */
938 /*-----------------------------------------------------------------*/
939 enum stmt_vec_info_type {
940 undef_vec_info_type = 0,
941 load_vec_info_type,
942 store_vec_info_type,
943 shift_vec_info_type,
944 op_vec_info_type,
945 call_vec_info_type,
946 call_simd_clone_vec_info_type,
947 assignment_vec_info_type,
948 condition_vec_info_type,
949 comparison_vec_info_type,
950 reduc_vec_info_type,
951 induc_vec_info_type,
952 type_promotion_vec_info_type,
953 type_demotion_vec_info_type,
954 type_conversion_vec_info_type,
955 cycle_phi_info_type,
956 lc_phi_info_type,
957 phi_info_type,
958 loop_exit_ctrl_vec_info_type
961 /* Indicates whether/how a variable is used in the scope of loop/basic
962 block. */
963 enum vect_relevant {
964 vect_unused_in_scope = 0,
966 /* The def is only used outside the loop. */
967 vect_used_only_live,
968 /* The def is in the inner loop, and the use is in the outer loop, and the
969 use is a reduction stmt. */
970 vect_used_in_outer_by_reduction,
971 /* The def is in the inner loop, and the use is in the outer loop (and is
972 not part of reduction). */
973 vect_used_in_outer,
975 /* defs that feed computations that end up (only) in a reduction. These
976 defs may be used by non-reduction stmts, but eventually, any
977 computations/values that are affected by these defs are used to compute
978 a reduction (i.e. don't get stored to memory, for example). We use this
979 to identify computations that we can change the order in which they are
980 computed. */
981 vect_used_by_reduction,
983 vect_used_in_scope
986 /* The type of vectorization that can be applied to the stmt: regular loop-based
987 vectorization; pure SLP - the stmt is a part of SLP instances and does not
988 have uses outside SLP instances; or hybrid SLP and loop-based - the stmt is
989 a part of SLP instance and also must be loop-based vectorized, since it has
990 uses outside SLP sequences.
992 In the loop context the meanings of pure and hybrid SLP are slightly
993 different. By saying that pure SLP is applied to the loop, we mean that we
994 exploit only intra-iteration parallelism in the loop; i.e., the loop can be
995 vectorized without doing any conceptual unrolling, cause we don't pack
996 together stmts from different iterations, only within a single iteration.
997 Loop hybrid SLP means that we exploit both intra-iteration and
998 inter-iteration parallelism (e.g., number of elements in the vector is 4
999 and the slp-group-size is 2, in which case we don't have enough parallelism
1000 within an iteration, so we obtain the rest of the parallelism from subsequent
1001 iterations by unrolling the loop by 2). */
1002 enum slp_vect_type {
1003 loop_vect = 0,
1004 pure_slp,
1005 hybrid
1008 /* Says whether a statement is a load, a store of a vectorized statement
1009 result, or a store of an invariant value. */
1010 enum vec_load_store_type {
1011 VLS_LOAD,
1012 VLS_STORE,
1013 VLS_STORE_INVARIANT
1016 /* Describes how we're going to vectorize an individual load or store,
1017 or a group of loads or stores. */
1018 enum vect_memory_access_type {
1019 /* An access to an invariant address. This is used only for loads. */
1020 VMAT_INVARIANT,
1022 /* A simple contiguous access. */
1023 VMAT_CONTIGUOUS,
1025 /* A contiguous access that goes down in memory rather than up,
1026 with no additional permutation. This is used only for stores
1027 of invariants. */
1028 VMAT_CONTIGUOUS_DOWN,
1030 /* A simple contiguous access in which the elements need to be permuted
1031 after loading or before storing. Only used for loop vectorization;
1032 SLP uses separate permutes. */
1033 VMAT_CONTIGUOUS_PERMUTE,
1035 /* A simple contiguous access in which the elements need to be reversed
1036 after loading or before storing. */
1037 VMAT_CONTIGUOUS_REVERSE,
1039 /* An access that uses IFN_LOAD_LANES or IFN_STORE_LANES. */
1040 VMAT_LOAD_STORE_LANES,
1042 /* An access in which each scalar element is loaded or stored
1043 individually. */
1044 VMAT_ELEMENTWISE,
1046 /* A hybrid of VMAT_CONTIGUOUS and VMAT_ELEMENTWISE, used for grouped
1047 SLP accesses. Each unrolled iteration uses a contiguous load
1048 or store for the whole group, but the groups from separate iterations
1049 are combined in the same way as for VMAT_ELEMENTWISE. */
1050 VMAT_STRIDED_SLP,
1052 /* The access uses gather loads or scatter stores. */
1053 VMAT_GATHER_SCATTER
1056 class dr_vec_info {
1057 public:
1058 /* The data reference itself. */
1059 data_reference *dr;
1060 /* The statement that contains the data reference. */
1061 stmt_vec_info stmt;
1062 /* The misalignment in bytes of the reference, or -1 if not known. */
1063 int misalignment;
1064 /* The byte alignment that we'd ideally like the reference to have,
1065 and the value that misalignment is measured against. */
1066 poly_uint64 target_alignment;
1067 /* If true the alignment of base_decl needs to be increased. */
1068 bool base_misaligned;
1069 tree base_decl;
1071 /* Stores current vectorized loop's offset. To be added to the DR's
1072 offset to calculate current offset of data reference. */
1073 tree offset;
1076 typedef struct data_reference *dr_p;
1078 class _stmt_vec_info {
1079 public:
1081 enum stmt_vec_info_type type;
1083 /* Indicates whether this stmts is part of a computation whose result is
1084 used outside the loop. */
1085 bool live;
1087 /* Stmt is part of some pattern (computation idiom) */
1088 bool in_pattern_p;
1090 /* True if the statement was created during pattern recognition as
1091 part of the replacement for RELATED_STMT. This implies that the
1092 statement isn't part of any basic block, although for convenience
1093 its gimple_bb is the same as for RELATED_STMT. */
1094 bool pattern_stmt_p;
1096 /* Is this statement vectorizable or should it be skipped in (partial)
1097 vectorization. */
1098 bool vectorizable;
1100 /* The stmt to which this info struct refers to. */
1101 gimple *stmt;
1103 /* The vector type to be used for the LHS of this statement. */
1104 tree vectype;
1106 /* The vectorized stmts. */
1107 vec<gimple *> vec_stmts;
1109 /* The following is relevant only for stmts that contain a non-scalar
1110 data-ref (array/pointer/struct access). A GIMPLE stmt is expected to have
1111 at most one such data-ref. */
1113 dr_vec_info dr_aux;
1115 /* Information about the data-ref relative to this loop
1116 nest (the loop that is being considered for vectorization). */
1117 innermost_loop_behavior dr_wrt_vec_loop;
1119 /* For loop PHI nodes, the base and evolution part of it. This makes sure
1120 this information is still available in vect_update_ivs_after_vectorizer
1121 where we may not be able to re-analyze the PHI nodes evolution as
1122 peeling for the prologue loop can make it unanalyzable. The evolution
1123 part is still correct after peeling, but the base may have changed from
1124 the version here. */
1125 tree loop_phi_evolution_base_unchanged;
1126 tree loop_phi_evolution_part;
1128 /* Used for various bookkeeping purposes, generally holding a pointer to
1129 some other stmt S that is in some way "related" to this stmt.
1130 Current use of this field is:
1131 If this stmt is part of a pattern (i.e. the field 'in_pattern_p' is
1132 true): S is the "pattern stmt" that represents (and replaces) the
1133 sequence of stmts that constitutes the pattern. Similarly, the
1134 related_stmt of the "pattern stmt" points back to this stmt (which is
1135 the last stmt in the original sequence of stmts that constitutes the
1136 pattern). */
1137 stmt_vec_info related_stmt;
1139 /* Used to keep a sequence of def stmts of a pattern stmt if such exists.
1140 The sequence is attached to the original statement rather than the
1141 pattern statement. */
1142 gimple_seq pattern_def_seq;
1144 /* Selected SIMD clone's function info. First vector element
1145 is SIMD clone's function decl, followed by a pair of trees (base + step)
1146 for linear arguments (pair of NULLs for other arguments). */
1147 vec<tree> simd_clone_info;
1149 /* Classify the def of this stmt. */
1150 enum vect_def_type def_type;
1152 /* Whether the stmt is SLPed, loop-based vectorized, or both. */
1153 enum slp_vect_type slp_type;
1155 /* Interleaving and reduction chains info. */
1156 /* First element in the group. */
1157 stmt_vec_info first_element;
1158 /* Pointer to the next element in the group. */
1159 stmt_vec_info next_element;
1160 /* The size of the group. */
1161 unsigned int size;
1162 /* For stores, number of stores from this group seen. We vectorize the last
1163 one. */
1164 unsigned int store_count;
1165 /* For loads only, the gap from the previous load. For consecutive loads, GAP
1166 is 1. */
1167 unsigned int gap;
1169 /* The minimum negative dependence distance this stmt participates in
1170 or zero if none. */
1171 unsigned int min_neg_dist;
1173 /* Not all stmts in the loop need to be vectorized. e.g, the increment
1174 of the loop induction variable and computation of array indexes. relevant
1175 indicates whether the stmt needs to be vectorized. */
1176 enum vect_relevant relevant;
1178 /* For loads if this is a gather, for stores if this is a scatter. */
1179 bool gather_scatter_p;
1181 /* True if this is an access with loop-invariant stride. */
1182 bool strided_p;
1184 /* For both loads and stores. */
1185 unsigned simd_lane_access_p : 3;
1187 /* Classifies how the load or store is going to be implemented
1188 for loop vectorization. */
1189 vect_memory_access_type memory_access_type;
1191 /* For INTEGER_INDUC_COND_REDUCTION, the initial value to be used. */
1192 tree induc_cond_initial_val;
1194 /* If not NULL the value to be added to compute final reduction value. */
1195 tree reduc_epilogue_adjustment;
1197 /* On a reduction PHI the reduction type as detected by
1198 vect_is_simple_reduction and vectorizable_reduction. */
1199 enum vect_reduction_type reduc_type;
1201 /* The original reduction code, to be used in the epilogue. */
1202 enum tree_code reduc_code;
1203 /* An internal function we should use in the epilogue. */
1204 internal_fn reduc_fn;
1206 /* On a stmt participating in the reduction the index of the operand
1207 on the reduction SSA cycle. */
1208 int reduc_idx;
1210 /* On a reduction PHI the def returned by vect_force_simple_reduction.
1211 On the def returned by vect_force_simple_reduction the
1212 corresponding PHI. */
1213 stmt_vec_info reduc_def;
1215 /* The vector input type relevant for reduction vectorization. */
1216 tree reduc_vectype_in;
1218 /* The vector type for performing the actual reduction. */
1219 tree reduc_vectype;
1221 /* If IS_REDUC_INFO is true and if the vector code is performing
1222 N scalar reductions in parallel, this variable gives the initial
1223 scalar values of those N reductions. */
1224 vec<tree> reduc_initial_values;
1226 /* If IS_REDUC_INFO is true and if the vector code is performing
1227 N scalar reductions in parallel, this variable gives the vectorized code's
1228 final (scalar) result for each of those N reductions. In other words,
1229 REDUC_SCALAR_RESULTS[I] replaces the original scalar code's loop-closed
1230 SSA PHI for reduction number I. */
1231 vec<tree> reduc_scalar_results;
1233 /* Only meaningful if IS_REDUC_INFO. If non-null, the reduction is
1234 being performed by an epilogue loop and we have decided to reuse
1235 this accumulator from the main loop. */
1236 vect_reusable_accumulator *reused_accumulator;
1238 /* Whether we force a single cycle PHI during reduction vectorization. */
1239 bool force_single_cycle;
1241 /* Whether on this stmt reduction meta is recorded. */
1242 bool is_reduc_info;
1244 /* If nonzero, the lhs of the statement could be truncated to this
1245 many bits without affecting any users of the result. */
1246 unsigned int min_output_precision;
1248 /* If nonzero, all non-boolean input operands have the same precision,
1249 and they could each be truncated to this many bits without changing
1250 the result. */
1251 unsigned int min_input_precision;
1253 /* If OPERATION_BITS is nonzero, the statement could be performed on
1254 an integer with the sign and number of bits given by OPERATION_SIGN
1255 and OPERATION_BITS without changing the result. */
1256 unsigned int operation_precision;
1257 signop operation_sign;
1259 /* If the statement produces a boolean result, this value describes
1260 how we should choose the associated vector type. The possible
1261 values are:
1263 - an integer precision N if we should use the vector mask type
1264 associated with N-bit integers. This is only used if all relevant
1265 input booleans also want the vector mask type for N-bit integers,
1266 or if we can convert them into that form by pattern-matching.
1268 - ~0U if we considered choosing a vector mask type but decided
1269 to treat the boolean as a normal integer type instead.
1271 - 0 otherwise. This means either that the operation isn't one that
1272 could have a vector mask type (and so should have a normal vector
1273 type instead) or that we simply haven't made a choice either way. */
1274 unsigned int mask_precision;
1276 /* True if this is only suitable for SLP vectorization. */
1277 bool slp_vect_only_p;
1279 /* True if this is a pattern that can only be handled by SLP
1280 vectorization. */
1281 bool slp_vect_pattern_only_p;
1284 /* Information about a gather/scatter call. */
1285 struct gather_scatter_info {
1286 /* The internal function to use for the gather/scatter operation,
1287 or IFN_LAST if a built-in function should be used instead. */
1288 internal_fn ifn;
1290 /* The FUNCTION_DECL for the built-in gather/scatter function,
1291 or null if an internal function should be used instead. */
1292 tree decl;
1294 /* The loop-invariant base value. */
1295 tree base;
1297 /* The original scalar offset, which is a non-loop-invariant SSA_NAME. */
1298 tree offset;
1300 /* Each offset element should be multiplied by this amount before
1301 being added to the base. */
1302 int scale;
1304 /* The definition type for the vectorized offset. */
1305 enum vect_def_type offset_dt;
1307 /* The type of the vectorized offset. */
1308 tree offset_vectype;
1310 /* The type of the scalar elements after loading or before storing. */
1311 tree element_type;
1313 /* The type of the scalar elements being loaded or stored. */
1314 tree memory_type;
1317 /* Access Functions. */
1318 #define STMT_VINFO_TYPE(S) (S)->type
1319 #define STMT_VINFO_STMT(S) (S)->stmt
1320 #define STMT_VINFO_RELEVANT(S) (S)->relevant
1321 #define STMT_VINFO_LIVE_P(S) (S)->live
1322 #define STMT_VINFO_VECTYPE(S) (S)->vectype
1323 #define STMT_VINFO_VEC_STMTS(S) (S)->vec_stmts
1324 #define STMT_VINFO_VECTORIZABLE(S) (S)->vectorizable
1325 #define STMT_VINFO_DATA_REF(S) ((S)->dr_aux.dr + 0)
1326 #define STMT_VINFO_GATHER_SCATTER_P(S) (S)->gather_scatter_p
1327 #define STMT_VINFO_STRIDED_P(S) (S)->strided_p
1328 #define STMT_VINFO_MEMORY_ACCESS_TYPE(S) (S)->memory_access_type
1329 #define STMT_VINFO_SIMD_LANE_ACCESS_P(S) (S)->simd_lane_access_p
1330 #define STMT_VINFO_VEC_INDUC_COND_INITIAL_VAL(S) (S)->induc_cond_initial_val
1331 #define STMT_VINFO_REDUC_EPILOGUE_ADJUSTMENT(S) (S)->reduc_epilogue_adjustment
1332 #define STMT_VINFO_REDUC_IDX(S) (S)->reduc_idx
1333 #define STMT_VINFO_FORCE_SINGLE_CYCLE(S) (S)->force_single_cycle
1335 #define STMT_VINFO_DR_WRT_VEC_LOOP(S) (S)->dr_wrt_vec_loop
1336 #define STMT_VINFO_DR_BASE_ADDRESS(S) (S)->dr_wrt_vec_loop.base_address
1337 #define STMT_VINFO_DR_INIT(S) (S)->dr_wrt_vec_loop.init
1338 #define STMT_VINFO_DR_OFFSET(S) (S)->dr_wrt_vec_loop.offset
1339 #define STMT_VINFO_DR_STEP(S) (S)->dr_wrt_vec_loop.step
1340 #define STMT_VINFO_DR_BASE_ALIGNMENT(S) (S)->dr_wrt_vec_loop.base_alignment
1341 #define STMT_VINFO_DR_BASE_MISALIGNMENT(S) \
1342 (S)->dr_wrt_vec_loop.base_misalignment
1343 #define STMT_VINFO_DR_OFFSET_ALIGNMENT(S) \
1344 (S)->dr_wrt_vec_loop.offset_alignment
1345 #define STMT_VINFO_DR_STEP_ALIGNMENT(S) \
1346 (S)->dr_wrt_vec_loop.step_alignment
1348 #define STMT_VINFO_DR_INFO(S) \
1349 (gcc_checking_assert ((S)->dr_aux.stmt == (S)), &(S)->dr_aux)
1351 #define STMT_VINFO_IN_PATTERN_P(S) (S)->in_pattern_p
1352 #define STMT_VINFO_RELATED_STMT(S) (S)->related_stmt
1353 #define STMT_VINFO_PATTERN_DEF_SEQ(S) (S)->pattern_def_seq
1354 #define STMT_VINFO_SIMD_CLONE_INFO(S) (S)->simd_clone_info
1355 #define STMT_VINFO_DEF_TYPE(S) (S)->def_type
1356 #define STMT_VINFO_GROUPED_ACCESS(S) \
1357 ((S)->dr_aux.dr && DR_GROUP_FIRST_ELEMENT(S))
1358 #define STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED(S) (S)->loop_phi_evolution_base_unchanged
1359 #define STMT_VINFO_LOOP_PHI_EVOLUTION_PART(S) (S)->loop_phi_evolution_part
1360 #define STMT_VINFO_MIN_NEG_DIST(S) (S)->min_neg_dist
1361 #define STMT_VINFO_REDUC_TYPE(S) (S)->reduc_type
1362 #define STMT_VINFO_REDUC_CODE(S) (S)->reduc_code
1363 #define STMT_VINFO_REDUC_FN(S) (S)->reduc_fn
1364 #define STMT_VINFO_REDUC_DEF(S) (S)->reduc_def
1365 #define STMT_VINFO_REDUC_VECTYPE(S) (S)->reduc_vectype
1366 #define STMT_VINFO_REDUC_VECTYPE_IN(S) (S)->reduc_vectype_in
1367 #define STMT_VINFO_SLP_VECT_ONLY(S) (S)->slp_vect_only_p
1368 #define STMT_VINFO_SLP_VECT_ONLY_PATTERN(S) (S)->slp_vect_pattern_only_p
1370 #define DR_GROUP_FIRST_ELEMENT(S) \
1371 (gcc_checking_assert ((S)->dr_aux.dr), (S)->first_element)
1372 #define DR_GROUP_NEXT_ELEMENT(S) \
1373 (gcc_checking_assert ((S)->dr_aux.dr), (S)->next_element)
1374 #define DR_GROUP_SIZE(S) \
1375 (gcc_checking_assert ((S)->dr_aux.dr), (S)->size)
1376 #define DR_GROUP_STORE_COUNT(S) \
1377 (gcc_checking_assert ((S)->dr_aux.dr), (S)->store_count)
1378 #define DR_GROUP_GAP(S) \
1379 (gcc_checking_assert ((S)->dr_aux.dr), (S)->gap)
1381 #define REDUC_GROUP_FIRST_ELEMENT(S) \
1382 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->first_element)
1383 #define REDUC_GROUP_NEXT_ELEMENT(S) \
1384 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->next_element)
1385 #define REDUC_GROUP_SIZE(S) \
1386 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->size)
1388 #define STMT_VINFO_RELEVANT_P(S) ((S)->relevant != vect_unused_in_scope)
1390 #define HYBRID_SLP_STMT(S) ((S)->slp_type == hybrid)
1391 #define PURE_SLP_STMT(S) ((S)->slp_type == pure_slp)
1392 #define STMT_SLP_TYPE(S) (S)->slp_type
1394 #define VECT_MAX_COST 1000
1396 /* The maximum number of intermediate steps required in multi-step type
1397 conversion. */
1398 #define MAX_INTERM_CVT_STEPS 3
1400 #define MAX_VECTORIZATION_FACTOR INT_MAX
1402 /* Nonzero if TYPE represents a (scalar) boolean type or type
1403 in the middle-end compatible with it (unsigned precision 1 integral
1404 types). Used to determine which types should be vectorized as
1405 VECTOR_BOOLEAN_TYPE_P. */
1407 #define VECT_SCALAR_BOOLEAN_TYPE_P(TYPE) \
1408 (TREE_CODE (TYPE) == BOOLEAN_TYPE \
1409 || ((TREE_CODE (TYPE) == INTEGER_TYPE \
1410 || TREE_CODE (TYPE) == ENUMERAL_TYPE) \
1411 && TYPE_PRECISION (TYPE) == 1 \
1412 && TYPE_UNSIGNED (TYPE)))
1414 static inline bool
1415 nested_in_vect_loop_p (class loop *loop, stmt_vec_info stmt_info)
1417 return (loop->inner
1418 && (loop->inner == (gimple_bb (stmt_info->stmt))->loop_father));
1421 /* PHI is either a scalar reduction phi or a scalar induction phi.
1422 Return the initial value of the variable on entry to the containing
1423 loop. */
1425 static inline tree
1426 vect_phi_initial_value (gphi *phi)
1428 basic_block bb = gimple_bb (phi);
1429 edge pe = loop_preheader_edge (bb->loop_father);
1430 gcc_assert (pe->dest == bb);
1431 return PHI_ARG_DEF_FROM_EDGE (phi, pe);
1434 /* Return true if STMT_INFO should produce a vector mask type rather than
1435 a normal nonmask type. */
1437 static inline bool
1438 vect_use_mask_type_p (stmt_vec_info stmt_info)
1440 return stmt_info->mask_precision && stmt_info->mask_precision != ~0U;
1443 /* Return TRUE if a statement represented by STMT_INFO is a part of a
1444 pattern. */
1446 static inline bool
1447 is_pattern_stmt_p (stmt_vec_info stmt_info)
1449 return stmt_info->pattern_stmt_p;
1452 /* If STMT_INFO is a pattern statement, return the statement that it
1453 replaces, otherwise return STMT_INFO itself. */
1455 inline stmt_vec_info
1456 vect_orig_stmt (stmt_vec_info stmt_info)
1458 if (is_pattern_stmt_p (stmt_info))
1459 return STMT_VINFO_RELATED_STMT (stmt_info);
1460 return stmt_info;
1463 /* Return the later statement between STMT1_INFO and STMT2_INFO. */
1465 static inline stmt_vec_info
1466 get_later_stmt (stmt_vec_info stmt1_info, stmt_vec_info stmt2_info)
1468 if (gimple_uid (vect_orig_stmt (stmt1_info)->stmt)
1469 > gimple_uid (vect_orig_stmt (stmt2_info)->stmt))
1470 return stmt1_info;
1471 else
1472 return stmt2_info;
1475 /* If STMT_INFO has been replaced by a pattern statement, return the
1476 replacement statement, otherwise return STMT_INFO itself. */
1478 inline stmt_vec_info
1479 vect_stmt_to_vectorize (stmt_vec_info stmt_info)
1481 if (STMT_VINFO_IN_PATTERN_P (stmt_info))
1482 return STMT_VINFO_RELATED_STMT (stmt_info);
1483 return stmt_info;
1486 /* Return true if BB is a loop header. */
1488 static inline bool
1489 is_loop_header_bb_p (basic_block bb)
1491 if (bb == (bb->loop_father)->header)
1492 return true;
1493 gcc_checking_assert (EDGE_COUNT (bb->preds) == 1);
1494 return false;
1497 /* Return pow2 (X). */
1499 static inline int
1500 vect_pow2 (int x)
1502 int i, res = 1;
1504 for (i = 0; i < x; i++)
1505 res *= 2;
1507 return res;
1510 /* Alias targetm.vectorize.builtin_vectorization_cost. */
1512 static inline int
1513 builtin_vectorization_cost (enum vect_cost_for_stmt type_of_cost,
1514 tree vectype, int misalign)
1516 return targetm.vectorize.builtin_vectorization_cost (type_of_cost,
1517 vectype, misalign);
1520 /* Get cost by calling cost target builtin. */
1522 static inline
1523 int vect_get_stmt_cost (enum vect_cost_for_stmt type_of_cost)
1525 return builtin_vectorization_cost (type_of_cost, NULL, 0);
1528 /* Alias targetm.vectorize.init_cost. */
1530 static inline void *
1531 init_cost (class loop *loop_info, bool costing_for_scalar)
1533 return targetm.vectorize.init_cost (loop_info, costing_for_scalar);
1536 extern void dump_stmt_cost (FILE *, void *, int, enum vect_cost_for_stmt,
1537 stmt_vec_info, tree, int, unsigned,
1538 enum vect_cost_model_location);
1540 /* Alias targetm.vectorize.add_stmt_cost. */
1542 static inline unsigned
1543 add_stmt_cost (vec_info *vinfo, void *data, int count,
1544 enum vect_cost_for_stmt kind,
1545 stmt_vec_info stmt_info, tree vectype, int misalign,
1546 enum vect_cost_model_location where)
1548 unsigned cost = targetm.vectorize.add_stmt_cost (vinfo, data, count, kind,
1549 stmt_info, vectype,
1550 misalign, where);
1551 if (dump_file && (dump_flags & TDF_DETAILS))
1552 dump_stmt_cost (dump_file, data, count, kind, stmt_info, vectype, misalign,
1553 cost, where);
1554 return cost;
1557 /* Alias targetm.vectorize.add_stmt_cost. */
1559 static inline unsigned
1560 add_stmt_cost (vec_info *vinfo, void *data, stmt_info_for_cost *i)
1562 return add_stmt_cost (vinfo, data, i->count, i->kind, i->stmt_info,
1563 i->vectype, i->misalign, i->where);
1566 /* Alias targetm.vectorize.finish_cost. */
1568 static inline void
1569 finish_cost (void *data, unsigned *prologue_cost,
1570 unsigned *body_cost, unsigned *epilogue_cost)
1572 targetm.vectorize.finish_cost (data, prologue_cost, body_cost, epilogue_cost);
1575 /* Alias targetm.vectorize.destroy_cost_data. */
1577 static inline void
1578 destroy_cost_data (void *data)
1580 targetm.vectorize.destroy_cost_data (data);
1583 inline void
1584 add_stmt_costs (vec_info *vinfo, void *data, stmt_vector_for_cost *cost_vec)
1586 stmt_info_for_cost *cost;
1587 unsigned i;
1588 FOR_EACH_VEC_ELT (*cost_vec, i, cost)
1589 add_stmt_cost (vinfo, data, cost->count, cost->kind, cost->stmt_info,
1590 cost->vectype, cost->misalign, cost->where);
1593 /*-----------------------------------------------------------------*/
1594 /* Info on data references alignment. */
1595 /*-----------------------------------------------------------------*/
1596 #define DR_MISALIGNMENT_UNKNOWN (-1)
1597 #define DR_MISALIGNMENT_UNINITIALIZED (-2)
1599 inline void
1600 set_dr_misalignment (dr_vec_info *dr_info, int val)
1602 dr_info->misalignment = val;
1605 inline int
1606 dr_misalignment (dr_vec_info *dr_info)
1608 int misalign = dr_info->misalignment;
1609 gcc_assert (misalign != DR_MISALIGNMENT_UNINITIALIZED);
1610 return misalign;
1613 /* Reflects actual alignment of first access in the vectorized loop,
1614 taking into account peeling/versioning if applied. */
1615 #define DR_MISALIGNMENT(DR) dr_misalignment (DR)
1616 #define SET_DR_MISALIGNMENT(DR, VAL) set_dr_misalignment (DR, VAL)
1618 /* Only defined once DR_MISALIGNMENT is defined. */
1619 #define DR_TARGET_ALIGNMENT(DR) ((DR)->target_alignment)
1621 /* Return true if data access DR_INFO is aligned to its target alignment
1622 (which may be less than a full vector). */
1624 static inline bool
1625 aligned_access_p (dr_vec_info *dr_info)
1627 return (DR_MISALIGNMENT (dr_info) == 0);
1630 /* Return TRUE if the alignment of the data access is known, and FALSE
1631 otherwise. */
1633 static inline bool
1634 known_alignment_for_access_p (dr_vec_info *dr_info)
1636 return (DR_MISALIGNMENT (dr_info) != DR_MISALIGNMENT_UNKNOWN);
1639 /* Return the minimum alignment in bytes that the vectorized version
1640 of DR_INFO is guaranteed to have. */
1642 static inline unsigned int
1643 vect_known_alignment_in_bytes (dr_vec_info *dr_info)
1645 if (DR_MISALIGNMENT (dr_info) == DR_MISALIGNMENT_UNKNOWN)
1646 return TYPE_ALIGN_UNIT (TREE_TYPE (DR_REF (dr_info->dr)));
1647 if (DR_MISALIGNMENT (dr_info) == 0)
1648 return known_alignment (DR_TARGET_ALIGNMENT (dr_info));
1649 return DR_MISALIGNMENT (dr_info) & -DR_MISALIGNMENT (dr_info);
1652 /* Return the behavior of DR_INFO with respect to the vectorization context
1653 (which for outer loop vectorization might not be the behavior recorded
1654 in DR_INFO itself). */
1656 static inline innermost_loop_behavior *
1657 vect_dr_behavior (vec_info *vinfo, dr_vec_info *dr_info)
1659 stmt_vec_info stmt_info = dr_info->stmt;
1660 loop_vec_info loop_vinfo = dyn_cast<loop_vec_info> (vinfo);
1661 if (loop_vinfo == NULL
1662 || !nested_in_vect_loop_p (LOOP_VINFO_LOOP (loop_vinfo), stmt_info))
1663 return &DR_INNERMOST (dr_info->dr);
1664 else
1665 return &STMT_VINFO_DR_WRT_VEC_LOOP (stmt_info);
1668 /* Return the offset calculated by adding the offset of this DR_INFO to the
1669 corresponding data_reference's offset. If CHECK_OUTER then use
1670 vect_dr_behavior to select the appropriate data_reference to use. */
1672 inline tree
1673 get_dr_vinfo_offset (vec_info *vinfo,
1674 dr_vec_info *dr_info, bool check_outer = false)
1676 innermost_loop_behavior *base;
1677 if (check_outer)
1678 base = vect_dr_behavior (vinfo, dr_info);
1679 else
1680 base = &dr_info->dr->innermost;
1682 tree offset = base->offset;
1684 if (!dr_info->offset)
1685 return offset;
1687 offset = fold_convert (sizetype, offset);
1688 return fold_build2 (PLUS_EXPR, TREE_TYPE (dr_info->offset), offset,
1689 dr_info->offset);
1693 /* Return true if the vect cost model is unlimited. */
1694 static inline bool
1695 unlimited_cost_model (loop_p loop)
1697 if (loop != NULL && loop->force_vectorize
1698 && flag_simd_cost_model != VECT_COST_MODEL_DEFAULT)
1699 return flag_simd_cost_model == VECT_COST_MODEL_UNLIMITED;
1700 return (flag_vect_cost_model == VECT_COST_MODEL_UNLIMITED);
1703 /* Return true if the loop described by LOOP_VINFO is fully-masked and
1704 if the first iteration should use a partial mask in order to achieve
1705 alignment. */
1707 static inline bool
1708 vect_use_loop_mask_for_alignment_p (loop_vec_info loop_vinfo)
1710 return (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo)
1711 && LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo));
1714 /* Return the number of vectors of type VECTYPE that are needed to get
1715 NUNITS elements. NUNITS should be based on the vectorization factor,
1716 so it is always a known multiple of the number of elements in VECTYPE. */
1718 static inline unsigned int
1719 vect_get_num_vectors (poly_uint64 nunits, tree vectype)
1721 return exact_div (nunits, TYPE_VECTOR_SUBPARTS (vectype)).to_constant ();
1724 /* Return the number of copies needed for loop vectorization when
1725 a statement operates on vectors of type VECTYPE. This is the
1726 vectorization factor divided by the number of elements in
1727 VECTYPE and is always known at compile time. */
1729 static inline unsigned int
1730 vect_get_num_copies (loop_vec_info loop_vinfo, tree vectype)
1732 return vect_get_num_vectors (LOOP_VINFO_VECT_FACTOR (loop_vinfo), vectype);
1735 /* Update maximum unit count *MAX_NUNITS so that it accounts for
1736 NUNITS. *MAX_NUNITS can be 1 if we haven't yet recorded anything. */
1738 static inline void
1739 vect_update_max_nunits (poly_uint64 *max_nunits, poly_uint64 nunits)
1741 /* All unit counts have the form vec_info::vector_size * X for some
1742 rational X, so two unit sizes must have a common multiple.
1743 Everything is a multiple of the initial value of 1. */
1744 *max_nunits = force_common_multiple (*max_nunits, nunits);
1747 /* Update maximum unit count *MAX_NUNITS so that it accounts for
1748 the number of units in vector type VECTYPE. *MAX_NUNITS can be 1
1749 if we haven't yet recorded any vector types. */
1751 static inline void
1752 vect_update_max_nunits (poly_uint64 *max_nunits, tree vectype)
1754 vect_update_max_nunits (max_nunits, TYPE_VECTOR_SUBPARTS (vectype));
1757 /* Return the vectorization factor that should be used for costing
1758 purposes while vectorizing the loop described by LOOP_VINFO.
1759 Pick a reasonable estimate if the vectorization factor isn't
1760 known at compile time. */
1762 static inline unsigned int
1763 vect_vf_for_cost (loop_vec_info loop_vinfo)
1765 return estimated_poly_value (LOOP_VINFO_VECT_FACTOR (loop_vinfo));
1768 /* Estimate the number of elements in VEC_TYPE for costing purposes.
1769 Pick a reasonable estimate if the exact number isn't known at
1770 compile time. */
1772 static inline unsigned int
1773 vect_nunits_for_cost (tree vec_type)
1775 return estimated_poly_value (TYPE_VECTOR_SUBPARTS (vec_type));
1778 /* Return the maximum possible vectorization factor for LOOP_VINFO. */
1780 static inline unsigned HOST_WIDE_INT
1781 vect_max_vf (loop_vec_info loop_vinfo)
1783 unsigned HOST_WIDE_INT vf;
1784 if (LOOP_VINFO_VECT_FACTOR (loop_vinfo).is_constant (&vf))
1785 return vf;
1786 return MAX_VECTORIZATION_FACTOR;
1789 /* Return the size of the value accessed by unvectorized data reference
1790 DR_INFO. This is only valid once STMT_VINFO_VECTYPE has been calculated
1791 for the associated gimple statement, since that guarantees that DR_INFO
1792 accesses either a scalar or a scalar equivalent. ("Scalar equivalent"
1793 here includes things like V1SI, which can be vectorized in the same way
1794 as a plain SI.) */
1796 inline unsigned int
1797 vect_get_scalar_dr_size (dr_vec_info *dr_info)
1799 return tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr_info->dr))));
1802 /* Return true if LOOP_VINFO requires a runtime check for whether the
1803 vector loop is profitable. */
1805 inline bool
1806 vect_apply_runtime_profitability_check_p (loop_vec_info loop_vinfo)
1808 unsigned int th = LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo);
1809 return (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1810 && th >= vect_vf_for_cost (loop_vinfo));
1813 /* Source location + hotness information. */
1814 extern dump_user_location_t vect_location;
1816 /* A macro for calling:
1817 dump_begin_scope (MSG, vect_location);
1818 via an RAII object, thus printing "=== MSG ===\n" to the dumpfile etc,
1819 and then calling
1820 dump_end_scope ();
1821 once the object goes out of scope, thus capturing the nesting of
1822 the scopes.
1824 These scopes affect dump messages within them: dump messages at the
1825 top level implicitly default to MSG_PRIORITY_USER_FACING, whereas those
1826 in a nested scope implicitly default to MSG_PRIORITY_INTERNALS. */
1828 #define DUMP_VECT_SCOPE(MSG) \
1829 AUTO_DUMP_SCOPE (MSG, vect_location)
1831 /* A sentinel class for ensuring that the "vect_location" global gets
1832 reset at the end of a scope.
1834 The "vect_location" global is used during dumping and contains a
1835 location_t, which could contain references to a tree block via the
1836 ad-hoc data. This data is used for tracking inlining information,
1837 but it's not a GC root; it's simply assumed that such locations never
1838 get accessed if the blocks are optimized away.
1840 Hence we need to ensure that such locations are purged at the end
1841 of any operations using them (e.g. via this class). */
1843 class auto_purge_vect_location
1845 public:
1846 ~auto_purge_vect_location ();
1849 /*-----------------------------------------------------------------*/
1850 /* Function prototypes. */
1851 /*-----------------------------------------------------------------*/
1853 /* Simple loop peeling and versioning utilities for vectorizer's purposes -
1854 in tree-vect-loop-manip.c. */
1855 extern void vect_set_loop_condition (class loop *, loop_vec_info,
1856 tree, tree, tree, bool);
1857 extern bool slpeel_can_duplicate_loop_p (const class loop *, const_edge);
1858 class loop *slpeel_tree_duplicate_loop_to_edge_cfg (class loop *,
1859 class loop *, edge);
1860 class loop *vect_loop_versioning (loop_vec_info, gimple *);
1861 extern class loop *vect_do_peeling (loop_vec_info, tree, tree,
1862 tree *, tree *, tree *, int, bool, bool,
1863 tree *);
1864 extern tree vect_get_main_loop_result (loop_vec_info, tree, tree);
1865 extern void vect_prepare_for_masked_peels (loop_vec_info);
1866 extern dump_user_location_t find_loop_location (class loop *);
1867 extern bool vect_can_advance_ivs_p (loop_vec_info);
1868 extern void vect_update_inits_of_drs (loop_vec_info, tree, tree_code);
1870 /* In tree-vect-stmts.c. */
1871 extern tree get_related_vectype_for_scalar_type (machine_mode, tree,
1872 poly_uint64 = 0);
1873 extern tree get_vectype_for_scalar_type (vec_info *, tree, unsigned int = 0);
1874 extern tree get_vectype_for_scalar_type (vec_info *, tree, slp_tree);
1875 extern tree get_mask_type_for_scalar_type (vec_info *, tree, unsigned int = 0);
1876 extern tree get_same_sized_vectype (tree, tree);
1877 extern bool vect_chooses_same_modes_p (vec_info *, machine_mode);
1878 extern bool vect_get_loop_mask_type (loop_vec_info);
1879 extern bool vect_is_simple_use (tree, vec_info *, enum vect_def_type *,
1880 stmt_vec_info * = NULL, gimple ** = NULL);
1881 extern bool vect_is_simple_use (tree, vec_info *, enum vect_def_type *,
1882 tree *, stmt_vec_info * = NULL,
1883 gimple ** = NULL);
1884 extern bool vect_is_simple_use (vec_info *, stmt_vec_info, slp_tree,
1885 unsigned, tree *, slp_tree *,
1886 enum vect_def_type *,
1887 tree *, stmt_vec_info * = NULL);
1888 extern bool vect_maybe_update_slp_op_vectype (slp_tree, tree);
1889 extern bool supportable_widening_operation (vec_info *,
1890 enum tree_code, stmt_vec_info,
1891 tree, tree, enum tree_code *,
1892 enum tree_code *, int *,
1893 vec<tree> *);
1894 extern bool supportable_narrowing_operation (enum tree_code, tree, tree,
1895 enum tree_code *, int *,
1896 vec<tree> *);
1898 extern unsigned record_stmt_cost (stmt_vector_for_cost *, int,
1899 enum vect_cost_for_stmt, stmt_vec_info,
1900 tree, int, enum vect_cost_model_location);
1902 /* Overload of record_stmt_cost with VECTYPE derived from STMT_INFO. */
1904 static inline unsigned
1905 record_stmt_cost (stmt_vector_for_cost *body_cost_vec, int count,
1906 enum vect_cost_for_stmt kind, stmt_vec_info stmt_info,
1907 int misalign, enum vect_cost_model_location where)
1909 return record_stmt_cost (body_cost_vec, count, kind, stmt_info,
1910 STMT_VINFO_VECTYPE (stmt_info), misalign, where);
1913 extern void vect_finish_replace_stmt (vec_info *, stmt_vec_info, gimple *);
1914 extern void vect_finish_stmt_generation (vec_info *, stmt_vec_info, gimple *,
1915 gimple_stmt_iterator *);
1916 extern opt_result vect_mark_stmts_to_be_vectorized (loop_vec_info, bool *);
1917 extern tree vect_get_store_rhs (stmt_vec_info);
1918 void vect_get_vec_defs_for_operand (vec_info *vinfo, stmt_vec_info, unsigned,
1919 tree op, vec<tree> *, tree = NULL);
1920 void vect_get_vec_defs (vec_info *, stmt_vec_info, slp_tree, unsigned,
1921 tree, vec<tree> *,
1922 tree = NULL, vec<tree> * = NULL,
1923 tree = NULL, vec<tree> * = NULL,
1924 tree = NULL, vec<tree> * = NULL);
1925 void vect_get_vec_defs (vec_info *, stmt_vec_info, slp_tree, unsigned,
1926 tree, vec<tree> *, tree,
1927 tree = NULL, vec<tree> * = NULL, tree = NULL,
1928 tree = NULL, vec<tree> * = NULL, tree = NULL,
1929 tree = NULL, vec<tree> * = NULL, tree = NULL);
1930 extern tree vect_init_vector (vec_info *, stmt_vec_info, tree, tree,
1931 gimple_stmt_iterator *);
1932 extern tree vect_get_slp_vect_def (slp_tree, unsigned);
1933 extern bool vect_transform_stmt (vec_info *, stmt_vec_info,
1934 gimple_stmt_iterator *,
1935 slp_tree, slp_instance);
1936 extern void vect_remove_stores (vec_info *, stmt_vec_info);
1937 extern bool vect_nop_conversion_p (stmt_vec_info);
1938 extern opt_result vect_analyze_stmt (vec_info *, stmt_vec_info, bool *,
1939 slp_tree,
1940 slp_instance, stmt_vector_for_cost *);
1941 extern void vect_get_load_cost (vec_info *, stmt_vec_info, int, bool,
1942 unsigned int *, unsigned int *,
1943 stmt_vector_for_cost *,
1944 stmt_vector_for_cost *, bool);
1945 extern void vect_get_store_cost (vec_info *, stmt_vec_info, int,
1946 unsigned int *, stmt_vector_for_cost *);
1947 extern bool vect_supportable_shift (vec_info *, enum tree_code, tree);
1948 extern tree vect_gen_perm_mask_any (tree, const vec_perm_indices &);
1949 extern tree vect_gen_perm_mask_checked (tree, const vec_perm_indices &);
1950 extern void optimize_mask_stores (class loop*);
1951 extern tree vect_gen_while (gimple_seq *, tree, tree, tree,
1952 const char * = nullptr);
1953 extern tree vect_gen_while_not (gimple_seq *, tree, tree, tree);
1954 extern opt_result vect_get_vector_types_for_stmt (vec_info *,
1955 stmt_vec_info, tree *,
1956 tree *, unsigned int = 0);
1957 extern opt_tree vect_get_mask_type_for_stmt (stmt_vec_info, unsigned int = 0);
1959 /* In tree-vect-data-refs.c. */
1960 extern bool vect_can_force_dr_alignment_p (const_tree, poly_uint64);
1961 extern enum dr_alignment_support vect_supportable_dr_alignment
1962 (vec_info *, dr_vec_info *, bool);
1963 extern tree vect_get_smallest_scalar_type (stmt_vec_info, tree);
1964 extern opt_result vect_analyze_data_ref_dependences (loop_vec_info, unsigned int *);
1965 extern bool vect_slp_analyze_instance_dependence (vec_info *, slp_instance);
1966 extern opt_result vect_enhance_data_refs_alignment (loop_vec_info);
1967 extern opt_result vect_analyze_data_refs_alignment (loop_vec_info);
1968 extern bool vect_slp_analyze_instance_alignment (vec_info *, slp_instance);
1969 extern opt_result vect_analyze_data_ref_accesses (vec_info *, vec<int> *);
1970 extern opt_result vect_prune_runtime_alias_test_list (loop_vec_info);
1971 extern bool vect_gather_scatter_fn_p (vec_info *, bool, bool, tree, tree,
1972 tree, int, internal_fn *, tree *);
1973 extern bool vect_check_gather_scatter (stmt_vec_info, loop_vec_info,
1974 gather_scatter_info *);
1975 extern opt_result vect_find_stmt_data_reference (loop_p, gimple *,
1976 vec<data_reference_p> *,
1977 vec<int> *, int);
1978 extern opt_result vect_analyze_data_refs (vec_info *, poly_uint64 *, bool *);
1979 extern void vect_record_base_alignments (vec_info *);
1980 extern tree vect_create_data_ref_ptr (vec_info *,
1981 stmt_vec_info, tree, class loop *, tree,
1982 tree *, gimple_stmt_iterator *,
1983 gimple **, bool,
1984 tree = NULL_TREE, tree = NULL_TREE);
1985 extern tree bump_vector_ptr (vec_info *, tree, gimple *, gimple_stmt_iterator *,
1986 stmt_vec_info, tree);
1987 extern void vect_copy_ref_info (tree, tree);
1988 extern tree vect_create_destination_var (tree, tree);
1989 extern bool vect_grouped_store_supported (tree, unsigned HOST_WIDE_INT);
1990 extern bool vect_store_lanes_supported (tree, unsigned HOST_WIDE_INT, bool);
1991 extern bool vect_grouped_load_supported (tree, bool, unsigned HOST_WIDE_INT);
1992 extern bool vect_load_lanes_supported (tree, unsigned HOST_WIDE_INT, bool);
1993 extern void vect_permute_store_chain (vec_info *, vec<tree> &,
1994 unsigned int, stmt_vec_info,
1995 gimple_stmt_iterator *, vec<tree> *);
1996 extern tree vect_setup_realignment (vec_info *,
1997 stmt_vec_info, gimple_stmt_iterator *,
1998 tree *, enum dr_alignment_support, tree,
1999 class loop **);
2000 extern void vect_transform_grouped_load (vec_info *, stmt_vec_info, vec<tree>,
2001 int, gimple_stmt_iterator *);
2002 extern void vect_record_grouped_load_vectors (vec_info *,
2003 stmt_vec_info, vec<tree>);
2004 extern tree vect_get_new_vect_var (tree, enum vect_var_kind, const char *);
2005 extern tree vect_get_new_ssa_name (tree, enum vect_var_kind,
2006 const char * = NULL);
2007 extern tree vect_create_addr_base_for_vector_ref (vec_info *,
2008 stmt_vec_info, gimple_seq *,
2009 tree, tree = NULL_TREE);
2011 /* In tree-vect-loop.c. */
2012 extern widest_int vect_iv_limit_for_partial_vectors (loop_vec_info loop_vinfo);
2013 bool vect_rgroup_iv_might_wrap_p (loop_vec_info, rgroup_controls *);
2014 /* Used in tree-vect-loop-manip.c */
2015 extern opt_result vect_determine_partial_vectors_and_peeling (loop_vec_info,
2016 bool);
2017 /* Used in gimple-loop-interchange.c and tree-parloops.c. */
2018 extern bool check_reduction_path (dump_user_location_t, loop_p, gphi *, tree,
2019 enum tree_code);
2020 extern bool needs_fold_left_reduction_p (tree, tree_code);
2021 /* Drive for loop analysis stage. */
2022 extern opt_loop_vec_info vect_analyze_loop (class loop *, vec_info_shared *);
2023 extern tree vect_build_loop_niters (loop_vec_info, bool * = NULL);
2024 extern void vect_gen_vector_loop_niters (loop_vec_info, tree, tree *,
2025 tree *, bool);
2026 extern tree vect_halve_mask_nunits (tree, machine_mode);
2027 extern tree vect_double_mask_nunits (tree, machine_mode);
2028 extern void vect_record_loop_mask (loop_vec_info, vec_loop_masks *,
2029 unsigned int, tree, tree);
2030 extern tree vect_get_loop_mask (gimple_stmt_iterator *, vec_loop_masks *,
2031 unsigned int, tree, unsigned int);
2032 extern void vect_record_loop_len (loop_vec_info, vec_loop_lens *, unsigned int,
2033 tree, unsigned int);
2034 extern tree vect_get_loop_len (loop_vec_info, vec_loop_lens *, unsigned int,
2035 unsigned int);
2036 extern gimple_seq vect_gen_len (tree, tree, tree, tree);
2037 extern stmt_vec_info info_for_reduction (vec_info *, stmt_vec_info);
2038 extern bool reduction_fn_for_scalar_code (enum tree_code, internal_fn *);
2040 /* Drive for loop transformation stage. */
2041 extern class loop *vect_transform_loop (loop_vec_info, gimple *);
2042 extern opt_loop_vec_info vect_analyze_loop_form (class loop *,
2043 vec_info_shared *);
2044 extern bool vectorizable_live_operation (vec_info *,
2045 stmt_vec_info, gimple_stmt_iterator *,
2046 slp_tree, slp_instance, int,
2047 bool, stmt_vector_for_cost *);
2048 extern bool vectorizable_reduction (loop_vec_info, stmt_vec_info,
2049 slp_tree, slp_instance,
2050 stmt_vector_for_cost *);
2051 extern bool vectorizable_induction (loop_vec_info, stmt_vec_info,
2052 gimple **, slp_tree,
2053 stmt_vector_for_cost *);
2054 extern bool vect_transform_reduction (loop_vec_info, stmt_vec_info,
2055 gimple_stmt_iterator *,
2056 gimple **, slp_tree);
2057 extern bool vect_transform_cycle_phi (loop_vec_info, stmt_vec_info,
2058 gimple **,
2059 slp_tree, slp_instance);
2060 extern bool vectorizable_lc_phi (loop_vec_info, stmt_vec_info,
2061 gimple **, slp_tree);
2062 extern bool vectorizable_phi (vec_info *, stmt_vec_info, gimple **, slp_tree,
2063 stmt_vector_for_cost *);
2064 extern bool vect_emulated_vector_p (tree);
2065 extern bool vect_can_vectorize_without_simd_p (tree_code);
2066 extern int vect_get_known_peeling_cost (loop_vec_info, int, int *,
2067 stmt_vector_for_cost *,
2068 stmt_vector_for_cost *,
2069 stmt_vector_for_cost *);
2070 extern tree cse_and_gimplify_to_preheader (loop_vec_info, tree);
2072 /* In tree-vect-slp.c. */
2073 extern void vect_slp_init (void);
2074 extern void vect_slp_fini (void);
2075 extern void vect_free_slp_instance (slp_instance);
2076 extern bool vect_transform_slp_perm_load (vec_info *, slp_tree, const vec<tree> &,
2077 gimple_stmt_iterator *, poly_uint64,
2078 bool, unsigned *,
2079 unsigned * = nullptr, bool = false);
2080 extern bool vect_slp_analyze_operations (vec_info *);
2081 extern void vect_schedule_slp (vec_info *, const vec<slp_instance> &);
2082 extern opt_result vect_analyze_slp (vec_info *, unsigned);
2083 extern bool vect_make_slp_decision (loop_vec_info);
2084 extern void vect_detect_hybrid_slp (loop_vec_info);
2085 extern void vect_optimize_slp (vec_info *);
2086 extern void vect_gather_slp_loads (vec_info *);
2087 extern void vect_get_slp_defs (slp_tree, vec<tree> *);
2088 extern void vect_get_slp_defs (vec_info *, slp_tree, vec<vec<tree> > *,
2089 unsigned n = -1U);
2090 extern bool vect_slp_bb (basic_block);
2091 extern bool vect_slp_function (function *);
2092 extern stmt_vec_info vect_find_last_scalar_stmt_in_slp (slp_tree);
2093 extern stmt_vec_info vect_find_first_scalar_stmt_in_slp (slp_tree);
2094 extern bool is_simple_and_all_uses_invariant (stmt_vec_info, loop_vec_info);
2095 extern bool can_duplicate_and_interleave_p (vec_info *, unsigned int, tree,
2096 unsigned int * = NULL,
2097 tree * = NULL, tree * = NULL);
2098 extern void duplicate_and_interleave (vec_info *, gimple_seq *, tree,
2099 const vec<tree> &, unsigned int, vec<tree> &);
2100 extern int vect_get_place_in_interleaving_chain (stmt_vec_info, stmt_vec_info);
2101 extern bool vect_update_shared_vectype (stmt_vec_info, tree);
2102 extern slp_tree vect_create_new_slp_node (unsigned, tree_code);
2103 extern void vect_free_slp_tree (slp_tree);
2105 /* In tree-vect-patterns.c. */
2106 extern void
2107 vect_mark_pattern_stmts (vec_info *, stmt_vec_info, gimple *, tree);
2109 /* Pattern recognition functions.
2110 Additional pattern recognition functions can (and will) be added
2111 in the future. */
2112 void vect_pattern_recog (vec_info *);
2114 /* In tree-vectorizer.c. */
2115 unsigned vectorize_loops (void);
2116 void vect_free_loop_info_assumptions (class loop *);
2117 gimple *vect_loop_vectorized_call (class loop *, gcond **cond = NULL);
2118 bool vect_stmt_dominates_stmt_p (gimple *, gimple *);
2120 /* SLP Pattern matcher types, tree-vect-slp-patterns.c. */
2122 /* Forward declaration of possible two operands operation that can be matched
2123 by the complex numbers pattern matchers. */
2124 enum _complex_operation : unsigned;
2126 /* All possible load permute values that could result from the partial data-flow
2127 analysis. */
2128 typedef enum _complex_perm_kinds {
2129 PERM_UNKNOWN,
2130 PERM_EVENODD,
2131 PERM_ODDEVEN,
2132 PERM_ODDODD,
2133 PERM_EVENEVEN,
2134 /* Can be combined with any other PERM values. */
2135 PERM_TOP
2136 } complex_perm_kinds_t;
2138 /* Cache from nodes to the load permutation they represent. */
2139 typedef hash_map <slp_tree, complex_perm_kinds_t>
2140 slp_tree_to_load_perm_map_t;
2142 /* Vector pattern matcher base class. All SLP pattern matchers must inherit
2143 from this type. */
2145 class vect_pattern
2147 protected:
2148 /* The number of arguments that the IFN requires. */
2149 unsigned m_num_args;
2151 /* The internal function that will be used when a pattern is created. */
2152 internal_fn m_ifn;
2154 /* The current node being inspected. */
2155 slp_tree *m_node;
2157 /* The list of operands to be the children for the node produced when the
2158 internal function is created. */
2159 vec<slp_tree> m_ops;
2161 /* Default constructor where NODE is the root of the tree to inspect. */
2162 vect_pattern (slp_tree *node, vec<slp_tree> *m_ops, internal_fn ifn)
2164 this->m_ifn = ifn;
2165 this->m_node = node;
2166 this->m_ops.create (0);
2167 if (m_ops)
2168 this->m_ops.safe_splice (*m_ops);
2171 public:
2173 /* Create a new instance of the pattern matcher class of the given type. */
2174 static vect_pattern* recognize (slp_tree_to_load_perm_map_t *, slp_tree *);
2176 /* Build the pattern from the data collected so far. */
2177 virtual void build (vec_info *) = 0;
2179 /* Default destructor. */
2180 virtual ~vect_pattern ()
2182 this->m_ops.release ();
2186 /* Function pointer to create a new pattern matcher from a generic type. */
2187 typedef vect_pattern* (*vect_pattern_decl_t) (slp_tree_to_load_perm_map_t *,
2188 slp_tree *);
2190 /* List of supported pattern matchers. */
2191 extern vect_pattern_decl_t slp_patterns[];
2193 /* Number of supported pattern matchers. */
2194 extern size_t num__slp_patterns;
2196 /* ----------------------------------------------------------------------
2197 Target support routines
2198 -----------------------------------------------------------------------
2199 The following routines are provided to simplify costing decisions in
2200 target code. Please add more as needed. */
2202 /* Return true if an operaton of kind KIND for STMT_INFO represents
2203 the extraction of an element from a vector in preparation for
2204 storing the element to memory. */
2205 inline bool
2206 vect_is_store_elt_extraction (vect_cost_for_stmt kind, stmt_vec_info stmt_info)
2208 return (kind == vec_to_scalar
2209 && STMT_VINFO_DATA_REF (stmt_info)
2210 && DR_IS_WRITE (STMT_VINFO_DATA_REF (stmt_info)));
2213 /* Return true if STMT_INFO represents part of a reduction. */
2214 inline bool
2215 vect_is_reduction (stmt_vec_info stmt_info)
2217 return (STMT_VINFO_REDUC_DEF (stmt_info)
2218 || VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_info)));
2221 /* If STMT_INFO describes a reduction, return the vect_reduction_type
2222 of the reduction it describes, otherwise return -1. */
2223 inline int
2224 vect_reduc_type (vec_info *vinfo, stmt_vec_info stmt_info)
2226 if (loop_vec_info loop_vinfo = dyn_cast<loop_vec_info> (vinfo))
2227 if (STMT_VINFO_REDUC_DEF (stmt_info))
2229 stmt_vec_info reduc_info = info_for_reduction (loop_vinfo, stmt_info);
2230 return int (STMT_VINFO_REDUC_TYPE (reduc_info));
2232 return -1;
2235 /* If STMT_INFO is a COND_EXPR that includes an embedded comparison, return the
2236 scalar type of the values being compared. Return null otherwise. */
2237 inline tree
2238 vect_embedded_comparison_type (stmt_vec_info stmt_info)
2240 if (auto *assign = dyn_cast<gassign *> (stmt_info->stmt))
2241 if (gimple_assign_rhs_code (assign) == COND_EXPR)
2243 tree cond = gimple_assign_rhs1 (assign);
2244 if (COMPARISON_CLASS_P (cond))
2245 return TREE_TYPE (TREE_OPERAND (cond, 0));
2247 return NULL_TREE;
2250 /* If STMT_INFO is a comparison or contains an embedded comparison, return the
2251 scalar type of the values being compared. Return null otherwise. */
2252 inline tree
2253 vect_comparison_type (stmt_vec_info stmt_info)
2255 if (auto *assign = dyn_cast<gassign *> (stmt_info->stmt))
2256 if (TREE_CODE_CLASS (gimple_assign_rhs_code (assign)) == tcc_comparison)
2257 return TREE_TYPE (gimple_assign_rhs1 (assign));
2258 return vect_embedded_comparison_type (stmt_info);
2261 /* Return true if STMT_INFO extends the result of a load. */
2262 inline bool
2263 vect_is_extending_load (class vec_info *vinfo, stmt_vec_info stmt_info)
2265 /* Although this is quite large for an inline function, this part
2266 at least should be inline. */
2267 gassign *assign = dyn_cast <gassign *> (stmt_info->stmt);
2268 if (!assign || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (assign)))
2269 return false;
2271 tree rhs = gimple_assign_rhs1 (stmt_info->stmt);
2272 tree lhs_type = TREE_TYPE (gimple_assign_lhs (assign));
2273 tree rhs_type = TREE_TYPE (rhs);
2274 if (!INTEGRAL_TYPE_P (lhs_type)
2275 || !INTEGRAL_TYPE_P (rhs_type)
2276 || TYPE_PRECISION (lhs_type) <= TYPE_PRECISION (rhs_type))
2277 return false;
2279 stmt_vec_info def_stmt_info = vinfo->lookup_def (rhs);
2280 return (def_stmt_info
2281 && STMT_VINFO_DATA_REF (def_stmt_info)
2282 && DR_IS_READ (STMT_VINFO_DATA_REF (def_stmt_info)));
2285 /* Return true if STMT_INFO is an integer truncation. */
2286 inline bool
2287 vect_is_integer_truncation (stmt_vec_info stmt_info)
2289 gassign *assign = dyn_cast <gassign *> (stmt_info->stmt);
2290 if (!assign || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (assign)))
2291 return false;
2293 tree lhs_type = TREE_TYPE (gimple_assign_lhs (assign));
2294 tree rhs_type = TREE_TYPE (gimple_assign_rhs1 (assign));
2295 return (INTEGRAL_TYPE_P (lhs_type)
2296 && INTEGRAL_TYPE_P (rhs_type)
2297 && TYPE_PRECISION (lhs_type) < TYPE_PRECISION (rhs_type));
2300 #endif /* GCC_TREE_VECTORIZER_H */