2013-10-22 Paolo Carlini <paolo.carlini@oracle.com>
[official-gcc.git] / gcc / graphite-scop-detection.c
blobd7266f8c3f5caf46b94e807b4a4a982ac29bf35e
1 /* Detection of Static Control Parts (SCoP) for Graphite.
2 Copyright (C) 2009-2013 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <sebastian.pop@amd.com> and
4 Tobias Grosser <grosser@fim.uni-passau.de>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
24 #ifdef HAVE_cloog
25 #include <isl/set.h>
26 #include <isl/map.h>
27 #include <isl/union_map.h>
28 #include <cloog/cloog.h>
29 #include <cloog/isl/domain.h>
30 #endif
32 #include "system.h"
33 #include "coretypes.h"
34 #include "tree.h"
35 #include "tree-ssa.h"
36 #include "cfgloop.h"
37 #include "tree-chrec.h"
38 #include "tree-data-ref.h"
39 #include "tree-scalar-evolution.h"
40 #include "tree-pass.h"
41 #include "sese.h"
42 #include "tree-ssa-propagate.h"
44 #ifdef HAVE_cloog
45 #include "graphite-poly.h"
46 #include "graphite-scop-detection.h"
48 /* Forward declarations. */
49 static void make_close_phi_nodes_unique (basic_block);
51 /* The type of the analyzed basic block. */
53 typedef enum gbb_type {
54 GBB_UNKNOWN,
55 GBB_LOOP_SING_EXIT_HEADER,
56 GBB_LOOP_MULT_EXIT_HEADER,
57 GBB_LOOP_EXIT,
58 GBB_COND_HEADER,
59 GBB_SIMPLE,
60 GBB_LAST
61 } gbb_type;
63 /* Detect the type of BB. Loop headers are only marked, if they are
64 new. This means their loop_father is different to LAST_LOOP.
65 Otherwise they are treated like any other bb and their type can be
66 any other type. */
68 static gbb_type
69 get_bb_type (basic_block bb, struct loop *last_loop)
71 vec<basic_block> dom;
72 int nb_dom;
73 struct loop *loop = bb->loop_father;
75 /* Check, if we entry into a new loop. */
76 if (loop != last_loop)
78 if (single_exit (loop) != NULL)
79 return GBB_LOOP_SING_EXIT_HEADER;
80 else if (loop->num != 0)
81 return GBB_LOOP_MULT_EXIT_HEADER;
82 else
83 return GBB_COND_HEADER;
86 dom = get_dominated_by (CDI_DOMINATORS, bb);
87 nb_dom = dom.length ();
88 dom.release ();
90 if (nb_dom == 0)
91 return GBB_LAST;
93 if (nb_dom == 1 && single_succ_p (bb))
94 return GBB_SIMPLE;
96 return GBB_COND_HEADER;
99 /* A SCoP detection region, defined using bbs as borders.
101 All control flow touching this region, comes in passing basic_block
102 ENTRY and leaves passing basic_block EXIT. By using bbs instead of
103 edges for the borders we are able to represent also regions that do
104 not have a single entry or exit edge.
106 But as they have a single entry basic_block and a single exit
107 basic_block, we are able to generate for every sd_region a single
108 entry and exit edge.
112 3 <- entry
115 / \ This region contains: {3, 4, 5, 6, 7, 8}
120 9 <- exit */
123 typedef struct sd_region_p
125 /* The entry bb dominates all bbs in the sd_region. It is part of
126 the region. */
127 basic_block entry;
129 /* The exit bb postdominates all bbs in the sd_region, but is not
130 part of the region. */
131 basic_block exit;
132 } sd_region;
136 /* Moves the scops from SOURCE to TARGET and clean up SOURCE. */
138 static void
139 move_sd_regions (vec<sd_region> *source, vec<sd_region> *target)
141 sd_region *s;
142 int i;
144 FOR_EACH_VEC_ELT (*source, i, s)
145 target->safe_push (*s);
147 source->release ();
150 /* Something like "n * m" is not allowed. */
152 static bool
153 graphite_can_represent_init (tree e)
155 switch (TREE_CODE (e))
157 case POLYNOMIAL_CHREC:
158 return graphite_can_represent_init (CHREC_LEFT (e))
159 && graphite_can_represent_init (CHREC_RIGHT (e));
161 case MULT_EXPR:
162 if (chrec_contains_symbols (TREE_OPERAND (e, 0)))
163 return graphite_can_represent_init (TREE_OPERAND (e, 0))
164 && host_integerp (TREE_OPERAND (e, 1), 0);
165 else
166 return graphite_can_represent_init (TREE_OPERAND (e, 1))
167 && host_integerp (TREE_OPERAND (e, 0), 0);
169 case PLUS_EXPR:
170 case POINTER_PLUS_EXPR:
171 case MINUS_EXPR:
172 return graphite_can_represent_init (TREE_OPERAND (e, 0))
173 && graphite_can_represent_init (TREE_OPERAND (e, 1));
175 case NEGATE_EXPR:
176 case BIT_NOT_EXPR:
177 CASE_CONVERT:
178 case NON_LVALUE_EXPR:
179 return graphite_can_represent_init (TREE_OPERAND (e, 0));
181 default:
182 break;
185 return true;
188 /* Return true when SCEV can be represented in the polyhedral model.
190 An expression can be represented, if it can be expressed as an
191 affine expression. For loops (i, j) and parameters (m, n) all
192 affine expressions are of the form:
194 x1 * i + x2 * j + x3 * m + x4 * n + x5 * 1 where x1..x5 element of Z
196 1 i + 20 j + (-2) m + 25
198 Something like "i * n" or "n * m" is not allowed. */
200 static bool
201 graphite_can_represent_scev (tree scev)
203 if (chrec_contains_undetermined (scev))
204 return false;
206 switch (TREE_CODE (scev))
208 case PLUS_EXPR:
209 case MINUS_EXPR:
210 return graphite_can_represent_scev (TREE_OPERAND (scev, 0))
211 && graphite_can_represent_scev (TREE_OPERAND (scev, 1));
213 case MULT_EXPR:
214 return !CONVERT_EXPR_CODE_P (TREE_CODE (TREE_OPERAND (scev, 0)))
215 && !CONVERT_EXPR_CODE_P (TREE_CODE (TREE_OPERAND (scev, 1)))
216 && !(chrec_contains_symbols (TREE_OPERAND (scev, 0))
217 && chrec_contains_symbols (TREE_OPERAND (scev, 1)))
218 && graphite_can_represent_init (scev)
219 && graphite_can_represent_scev (TREE_OPERAND (scev, 0))
220 && graphite_can_represent_scev (TREE_OPERAND (scev, 1));
222 case POLYNOMIAL_CHREC:
223 /* Check for constant strides. With a non constant stride of
224 'n' we would have a value of 'iv * n'. Also check that the
225 initial value can represented: for example 'n * m' cannot be
226 represented. */
227 if (!evolution_function_right_is_integer_cst (scev)
228 || !graphite_can_represent_init (scev))
229 return false;
231 default:
232 break;
235 /* Only affine functions can be represented. */
236 if (!scev_is_linear_expression (scev))
237 return false;
239 return true;
243 /* Return true when EXPR can be represented in the polyhedral model.
245 This means an expression can be represented, if it is linear with
246 respect to the loops and the strides are non parametric.
247 LOOP is the place where the expr will be evaluated. SCOP_ENTRY defines the
248 entry of the region we analyse. */
250 static bool
251 graphite_can_represent_expr (basic_block scop_entry, loop_p loop,
252 tree expr)
254 tree scev = analyze_scalar_evolution (loop, expr);
256 scev = instantiate_scev (scop_entry, loop, scev);
258 return graphite_can_represent_scev (scev);
261 /* Return true if the data references of STMT can be represented by
262 Graphite. */
264 static bool
265 stmt_has_simple_data_refs_p (loop_p outermost_loop ATTRIBUTE_UNUSED,
266 gimple stmt)
268 data_reference_p dr;
269 unsigned i;
270 int j;
271 bool res = true;
272 vec<data_reference_p> drs = vNULL;
273 loop_p outer;
275 for (outer = loop_containing_stmt (stmt); outer; outer = loop_outer (outer))
277 graphite_find_data_references_in_stmt (outer,
278 loop_containing_stmt (stmt),
279 stmt, &drs);
281 FOR_EACH_VEC_ELT (drs, j, dr)
282 for (i = 0; i < DR_NUM_DIMENSIONS (dr); i++)
283 if (!graphite_can_represent_scev (DR_ACCESS_FN (dr, i)))
285 res = false;
286 goto done;
289 free_data_refs (drs);
290 drs.create (0);
293 done:
294 free_data_refs (drs);
295 return res;
298 /* Return true only when STMT is simple enough for being handled by
299 Graphite. This depends on SCOP_ENTRY, as the parameters are
300 initialized relatively to this basic block, the linear functions
301 are initialized to OUTERMOST_LOOP and BB is the place where we try
302 to evaluate the STMT. */
304 static bool
305 stmt_simple_for_scop_p (basic_block scop_entry, loop_p outermost_loop,
306 gimple stmt, basic_block bb)
308 loop_p loop = bb->loop_father;
310 gcc_assert (scop_entry);
312 /* GIMPLE_ASM and GIMPLE_CALL may embed arbitrary side effects.
313 Calls have side-effects, except those to const or pure
314 functions. */
315 if (gimple_has_volatile_ops (stmt)
316 || (gimple_code (stmt) == GIMPLE_CALL
317 && !(gimple_call_flags (stmt) & (ECF_CONST | ECF_PURE)))
318 || (gimple_code (stmt) == GIMPLE_ASM))
319 return false;
321 if (is_gimple_debug (stmt))
322 return true;
324 if (!stmt_has_simple_data_refs_p (outermost_loop, stmt))
325 return false;
327 switch (gimple_code (stmt))
329 case GIMPLE_RETURN:
330 case GIMPLE_LABEL:
331 return true;
333 case GIMPLE_COND:
335 tree op;
336 ssa_op_iter op_iter;
337 enum tree_code code = gimple_cond_code (stmt);
339 /* We can handle all binary comparisons. Inequalities are
340 also supported as they can be represented with union of
341 polyhedra. */
342 if (!(code == LT_EXPR
343 || code == GT_EXPR
344 || code == LE_EXPR
345 || code == GE_EXPR
346 || code == EQ_EXPR
347 || code == NE_EXPR))
348 return false;
350 FOR_EACH_SSA_TREE_OPERAND (op, stmt, op_iter, SSA_OP_ALL_USES)
351 if (!graphite_can_represent_expr (scop_entry, loop, op)
352 /* We can not handle REAL_TYPE. Failed for pr39260. */
353 || TREE_CODE (TREE_TYPE (op)) == REAL_TYPE)
354 return false;
356 return true;
359 case GIMPLE_ASSIGN:
360 case GIMPLE_CALL:
361 return true;
363 default:
364 /* These nodes cut a new scope. */
365 return false;
368 return false;
371 /* Returns the statement of BB that contains a harmful operation: that
372 can be a function call with side effects, the induction variables
373 are not linear with respect to SCOP_ENTRY, etc. The current open
374 scop should end before this statement. The evaluation is limited using
375 OUTERMOST_LOOP as outermost loop that may change. */
377 static gimple
378 harmful_stmt_in_bb (basic_block scop_entry, loop_p outer_loop, basic_block bb)
380 gimple_stmt_iterator gsi;
382 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
383 if (!stmt_simple_for_scop_p (scop_entry, outer_loop, gsi_stmt (gsi), bb))
384 return gsi_stmt (gsi);
386 return NULL;
389 /* Return true if LOOP can be represented in the polyhedral
390 representation. This is evaluated taking SCOP_ENTRY and
391 OUTERMOST_LOOP in mind. */
393 static bool
394 graphite_can_represent_loop (basic_block scop_entry, loop_p loop)
396 tree niter;
397 struct tree_niter_desc niter_desc;
399 /* FIXME: For the moment, graphite cannot be used on loops that
400 iterate using induction variables that wrap. */
402 return number_of_iterations_exit (loop, single_exit (loop), &niter_desc, false)
403 && niter_desc.control.no_overflow
404 && (niter = number_of_latch_executions (loop))
405 && !chrec_contains_undetermined (niter)
406 && graphite_can_represent_expr (scop_entry, loop, niter);
409 /* Store information needed by scopdet_* functions. */
411 struct scopdet_info
413 /* Exit of the open scop would stop if the current BB is harmful. */
414 basic_block exit;
416 /* Where the next scop would start if the current BB is harmful. */
417 basic_block next;
419 /* The bb or one of its children contains open loop exits. That means
420 loop exit nodes that are not surrounded by a loop dominated by bb. */
421 bool exits;
423 /* The bb or one of its children contains only structures we can handle. */
424 bool difficult;
427 static struct scopdet_info build_scops_1 (basic_block, loop_p,
428 vec<sd_region> *, loop_p);
430 /* Calculates BB infos. If bb is difficult we add valid SCoPs dominated by BB
431 to SCOPS. TYPE is the gbb_type of BB. */
433 static struct scopdet_info
434 scopdet_basic_block_info (basic_block bb, loop_p outermost_loop,
435 vec<sd_region> *scops, gbb_type type)
437 loop_p loop = bb->loop_father;
438 struct scopdet_info result;
439 gimple stmt;
441 /* XXX: ENTRY_BLOCK_PTR could be optimized in later steps. */
442 basic_block entry_block = ENTRY_BLOCK_PTR;
443 stmt = harmful_stmt_in_bb (entry_block, outermost_loop, bb);
444 result.difficult = (stmt != NULL);
445 result.exit = NULL;
447 switch (type)
449 case GBB_LAST:
450 result.next = NULL;
451 result.exits = false;
453 /* Mark bbs terminating a SESE region difficult, if they start
454 a condition. */
455 if (!single_succ_p (bb))
456 result.difficult = true;
457 else
458 result.exit = single_succ (bb);
460 break;
462 case GBB_SIMPLE:
463 result.next = single_succ (bb);
464 result.exits = false;
465 result.exit = single_succ (bb);
466 break;
468 case GBB_LOOP_SING_EXIT_HEADER:
470 vec<sd_region> regions;
471 regions.create (3);
472 struct scopdet_info sinfo;
473 edge exit_e = single_exit (loop);
475 sinfo = build_scops_1 (bb, outermost_loop, &regions, loop);
477 if (!graphite_can_represent_loop (entry_block, loop))
478 result.difficult = true;
480 result.difficult |= sinfo.difficult;
482 /* Try again with another loop level. */
483 if (result.difficult
484 && loop_depth (outermost_loop) + 1 == loop_depth (loop))
486 outermost_loop = loop;
488 regions.release ();
489 regions.create (3);
491 sinfo = scopdet_basic_block_info (bb, outermost_loop, scops, type);
493 result = sinfo;
494 result.difficult = true;
496 if (sinfo.difficult)
497 move_sd_regions (&regions, scops);
498 else
500 sd_region open_scop;
501 open_scop.entry = bb;
502 open_scop.exit = exit_e->dest;
503 scops->safe_push (open_scop);
504 regions.release ();
507 else
509 result.exit = exit_e->dest;
510 result.next = exit_e->dest;
512 /* If we do not dominate result.next, remove it. It's either
513 the EXIT_BLOCK_PTR, or another bb dominates it and will
514 call the scop detection for this bb. */
515 if (!dominated_by_p (CDI_DOMINATORS, result.next, bb))
516 result.next = NULL;
518 if (exit_e->src->loop_father != loop)
519 result.next = NULL;
521 result.exits = false;
523 if (result.difficult)
524 move_sd_regions (&regions, scops);
525 else
526 regions.release ();
529 break;
532 case GBB_LOOP_MULT_EXIT_HEADER:
534 /* XXX: For now we just do not join loops with multiple exits. If the
535 exits lead to the same bb it may be possible to join the loop. */
536 vec<sd_region> regions;
537 regions.create (3);
538 vec<edge> exits = get_loop_exit_edges (loop);
539 edge e;
540 int i;
541 build_scops_1 (bb, loop, &regions, loop);
543 /* Scan the code dominated by this loop. This means all bbs, that are
544 are dominated by a bb in this loop, but are not part of this loop.
546 The easiest case:
547 - The loop exit destination is dominated by the exit sources.
549 TODO: We miss here the more complex cases:
550 - The exit destinations are dominated by another bb inside
551 the loop.
552 - The loop dominates bbs, that are not exit destinations. */
553 FOR_EACH_VEC_ELT (exits, i, e)
554 if (e->src->loop_father == loop
555 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src))
557 if (loop_outer (outermost_loop))
558 outermost_loop = loop_outer (outermost_loop);
560 /* Pass loop_outer to recognize e->dest as loop header in
561 build_scops_1. */
562 if (e->dest->loop_father->header == e->dest)
563 build_scops_1 (e->dest, outermost_loop, &regions,
564 loop_outer (e->dest->loop_father));
565 else
566 build_scops_1 (e->dest, outermost_loop, &regions,
567 e->dest->loop_father);
570 result.next = NULL;
571 result.exit = NULL;
572 result.difficult = true;
573 result.exits = false;
574 move_sd_regions (&regions, scops);
575 exits.release ();
576 break;
578 case GBB_COND_HEADER:
580 vec<sd_region> regions;
581 regions.create (3);
582 struct scopdet_info sinfo;
583 vec<basic_block> dominated;
584 int i;
585 basic_block dom_bb;
586 basic_block last_exit = NULL;
587 edge e;
588 result.exits = false;
590 /* First check the successors of BB, and check if it is
591 possible to join the different branches. */
592 FOR_EACH_VEC_SAFE_ELT (bb->succs, i, e)
594 /* Ignore loop exits. They will be handled after the loop
595 body. */
596 if (loop_exits_to_bb_p (loop, e->dest))
598 result.exits = true;
599 continue;
602 /* Do not follow edges that lead to the end of the
603 conditions block. For example, in
606 | /|\
607 | 1 2 |
608 | | | |
609 | 3 4 |
610 | \|/
613 the edge from 0 => 6. Only check if all paths lead to
614 the same node 6. */
616 if (!single_pred_p (e->dest))
618 /* Check, if edge leads directly to the end of this
619 condition. */
620 if (!last_exit)
621 last_exit = e->dest;
623 if (e->dest != last_exit)
624 result.difficult = true;
626 continue;
629 if (!dominated_by_p (CDI_DOMINATORS, e->dest, bb))
631 result.difficult = true;
632 continue;
635 sinfo = build_scops_1 (e->dest, outermost_loop, &regions, loop);
637 result.exits |= sinfo.exits;
638 result.difficult |= sinfo.difficult;
640 /* Checks, if all branches end at the same point.
641 If that is true, the condition stays joinable.
642 Have a look at the example above. */
643 if (sinfo.exit)
645 if (!last_exit)
646 last_exit = sinfo.exit;
648 if (sinfo.exit != last_exit)
649 result.difficult = true;
651 else
652 result.difficult = true;
655 if (!last_exit)
656 result.difficult = true;
658 /* Join the branches of the condition if possible. */
659 if (!result.exits && !result.difficult)
661 /* Only return a next pointer if we dominate this pointer.
662 Otherwise it will be handled by the bb dominating it. */
663 if (dominated_by_p (CDI_DOMINATORS, last_exit, bb)
664 && last_exit != bb)
665 result.next = last_exit;
666 else
667 result.next = NULL;
669 result.exit = last_exit;
671 regions.release ();
672 break;
675 /* Scan remaining bbs dominated by BB. */
676 dominated = get_dominated_by (CDI_DOMINATORS, bb);
678 FOR_EACH_VEC_ELT (dominated, i, dom_bb)
680 /* Ignore loop exits: they will be handled after the loop body. */
681 if (loop_depth (find_common_loop (loop, dom_bb->loop_father))
682 < loop_depth (loop))
684 result.exits = true;
685 continue;
688 /* Ignore the bbs processed above. */
689 if (single_pred_p (dom_bb) && single_pred (dom_bb) == bb)
690 continue;
692 if (loop_depth (loop) > loop_depth (dom_bb->loop_father))
693 sinfo = build_scops_1 (dom_bb, outermost_loop, &regions,
694 loop_outer (loop));
695 else
696 sinfo = build_scops_1 (dom_bb, outermost_loop, &regions, loop);
698 result.exits |= sinfo.exits;
699 result.difficult = true;
700 result.exit = NULL;
703 dominated.release ();
705 result.next = NULL;
706 move_sd_regions (&regions, scops);
708 break;
711 default:
712 gcc_unreachable ();
715 return result;
718 /* Starting from CURRENT we walk the dominance tree and add new sd_regions to
719 SCOPS. The analyse if a sd_region can be handled is based on the value
720 of OUTERMOST_LOOP. Only loops inside OUTERMOST loops may change. LOOP
721 is the loop in which CURRENT is handled.
723 TODO: These functions got a little bit big. They definitely should be cleaned
724 up. */
726 static struct scopdet_info
727 build_scops_1 (basic_block current, loop_p outermost_loop,
728 vec<sd_region> *scops, loop_p loop)
730 bool in_scop = false;
731 sd_region open_scop;
732 struct scopdet_info sinfo;
734 /* Initialize result. */
735 struct scopdet_info result;
736 result.exits = false;
737 result.difficult = false;
738 result.next = NULL;
739 result.exit = NULL;
740 open_scop.entry = NULL;
741 open_scop.exit = NULL;
742 sinfo.exit = NULL;
744 /* Loop over the dominance tree. If we meet a difficult bb, close
745 the current SCoP. Loop and condition header start a new layer,
746 and can only be added if all bbs in deeper layers are simple. */
747 while (current != NULL)
749 sinfo = scopdet_basic_block_info (current, outermost_loop, scops,
750 get_bb_type (current, loop));
752 if (!in_scop && !(sinfo.exits || sinfo.difficult))
754 open_scop.entry = current;
755 open_scop.exit = NULL;
756 in_scop = true;
758 else if (in_scop && (sinfo.exits || sinfo.difficult))
760 open_scop.exit = current;
761 scops->safe_push (open_scop);
762 in_scop = false;
765 result.difficult |= sinfo.difficult;
766 result.exits |= sinfo.exits;
768 current = sinfo.next;
771 /* Try to close open_scop, if we are still in an open SCoP. */
772 if (in_scop)
774 open_scop.exit = sinfo.exit;
775 gcc_assert (open_scop.exit);
776 scops->safe_push (open_scop);
779 result.exit = sinfo.exit;
780 return result;
783 /* Checks if a bb is contained in REGION. */
785 static bool
786 bb_in_sd_region (basic_block bb, sd_region *region)
788 return bb_in_region (bb, region->entry, region->exit);
791 /* Returns the single entry edge of REGION, if it does not exits NULL. */
793 static edge
794 find_single_entry_edge (sd_region *region)
796 edge e;
797 edge_iterator ei;
798 edge entry = NULL;
800 FOR_EACH_EDGE (e, ei, region->entry->preds)
801 if (!bb_in_sd_region (e->src, region))
803 if (entry)
805 entry = NULL;
806 break;
809 else
810 entry = e;
813 return entry;
816 /* Returns the single exit edge of REGION, if it does not exits NULL. */
818 static edge
819 find_single_exit_edge (sd_region *region)
821 edge e;
822 edge_iterator ei;
823 edge exit = NULL;
825 FOR_EACH_EDGE (e, ei, region->exit->preds)
826 if (bb_in_sd_region (e->src, region))
828 if (exit)
830 exit = NULL;
831 break;
834 else
835 exit = e;
838 return exit;
841 /* Create a single entry edge for REGION. */
843 static void
844 create_single_entry_edge (sd_region *region)
846 if (find_single_entry_edge (region))
847 return;
849 /* There are multiple predecessors for bb_3
851 | 1 2
852 | | /
853 | |/
854 | 3 <- entry
855 | |\
856 | | |
857 | 4 ^
858 | | |
859 | |/
862 There are two edges (1->3, 2->3), that point from outside into the region,
863 and another one (5->3), a loop latch, lead to bb_3.
865 We split bb_3.
867 | 1 2
868 | | /
869 | |/
870 |3.0
871 | |\ (3.0 -> 3.1) = single entry edge
872 |3.1 | <- entry
873 | | |
874 | | |
875 | 4 ^
876 | | |
877 | |/
880 If the loop is part of the SCoP, we have to redirect the loop latches.
882 | 1 2
883 | | /
884 | |/
885 |3.0
886 | | (3.0 -> 3.1) = entry edge
887 |3.1 <- entry
888 | |\
889 | | |
890 | 4 ^
891 | | |
892 | |/
893 | 5 */
895 if (region->entry->loop_father->header != region->entry
896 || dominated_by_p (CDI_DOMINATORS,
897 loop_latch_edge (region->entry->loop_father)->src,
898 region->exit))
900 edge forwarder = split_block_after_labels (region->entry);
901 region->entry = forwarder->dest;
903 else
904 /* This case is never executed, as the loop headers seem always to have a
905 single edge pointing from outside into the loop. */
906 gcc_unreachable ();
908 gcc_checking_assert (find_single_entry_edge (region));
911 /* Check if the sd_region, mentioned in EDGE, has no exit bb. */
913 static bool
914 sd_region_without_exit (edge e)
916 sd_region *r = (sd_region *) e->aux;
918 if (r)
919 return r->exit == NULL;
920 else
921 return false;
924 /* Create a single exit edge for REGION. */
926 static void
927 create_single_exit_edge (sd_region *region)
929 edge e;
930 edge_iterator ei;
931 edge forwarder = NULL;
932 basic_block exit;
934 /* We create a forwarder bb (5) for all edges leaving this region
935 (3->5, 4->5). All other edges leading to the same bb, are moved
936 to a new bb (6). If these edges where part of another region (2->5)
937 we update the region->exit pointer, of this region.
939 To identify which edge belongs to which region we depend on the e->aux
940 pointer in every edge. It points to the region of the edge or to NULL,
941 if the edge is not part of any region.
943 1 2 3 4 1->5 no region, 2->5 region->exit = 5,
944 \| |/ 3->5 region->exit = NULL, 4->5 region->exit = NULL
945 5 <- exit
947 changes to
949 1 2 3 4 1->6 no region, 2->6 region->exit = 6,
950 | | \/ 3->5 no region, 4->5 no region,
951 | | 5
952 \| / 5->6 region->exit = 6
955 Now there is only a single exit edge (5->6). */
956 exit = region->exit;
957 region->exit = NULL;
958 forwarder = make_forwarder_block (exit, &sd_region_without_exit, NULL);
960 /* Unmark the edges, that are no longer exit edges. */
961 FOR_EACH_EDGE (e, ei, forwarder->src->preds)
962 if (e->aux)
963 e->aux = NULL;
965 /* Mark the new exit edge. */
966 single_succ_edge (forwarder->src)->aux = region;
968 /* Update the exit bb of all regions, where exit edges lead to
969 forwarder->dest. */
970 FOR_EACH_EDGE (e, ei, forwarder->dest->preds)
971 if (e->aux)
972 ((sd_region *) e->aux)->exit = forwarder->dest;
974 gcc_checking_assert (find_single_exit_edge (region));
977 /* Unmark the exit edges of all REGIONS.
978 See comment in "create_single_exit_edge". */
980 static void
981 unmark_exit_edges (vec<sd_region> regions)
983 int i;
984 sd_region *s;
985 edge e;
986 edge_iterator ei;
988 FOR_EACH_VEC_ELT (regions, i, s)
989 FOR_EACH_EDGE (e, ei, s->exit->preds)
990 e->aux = NULL;
994 /* Mark the exit edges of all REGIONS.
995 See comment in "create_single_exit_edge". */
997 static void
998 mark_exit_edges (vec<sd_region> regions)
1000 int i;
1001 sd_region *s;
1002 edge e;
1003 edge_iterator ei;
1005 FOR_EACH_VEC_ELT (regions, i, s)
1006 FOR_EACH_EDGE (e, ei, s->exit->preds)
1007 if (bb_in_sd_region (e->src, s))
1008 e->aux = s;
1011 /* Create for all scop regions a single entry and a single exit edge. */
1013 static void
1014 create_sese_edges (vec<sd_region> regions)
1016 int i;
1017 sd_region *s;
1019 FOR_EACH_VEC_ELT (regions, i, s)
1020 create_single_entry_edge (s);
1022 mark_exit_edges (regions);
1024 FOR_EACH_VEC_ELT (regions, i, s)
1025 /* Don't handle multiple edges exiting the function. */
1026 if (!find_single_exit_edge (s)
1027 && s->exit != EXIT_BLOCK_PTR)
1028 create_single_exit_edge (s);
1030 unmark_exit_edges (regions);
1032 calculate_dominance_info (CDI_DOMINATORS);
1033 fix_loop_structure (NULL);
1035 #ifdef ENABLE_CHECKING
1036 verify_loop_structure ();
1037 verify_ssa (false);
1038 #endif
1041 /* Create graphite SCoPs from an array of scop detection REGIONS. */
1043 static void
1044 build_graphite_scops (vec<sd_region> regions,
1045 vec<scop_p> *scops)
1047 int i;
1048 sd_region *s;
1050 FOR_EACH_VEC_ELT (regions, i, s)
1052 edge entry = find_single_entry_edge (s);
1053 edge exit = find_single_exit_edge (s);
1054 scop_p scop;
1056 if (!exit)
1057 continue;
1059 scop = new_scop (new_sese (entry, exit));
1060 scops->safe_push (scop);
1062 /* Are there overlapping SCoPs? */
1063 #ifdef ENABLE_CHECKING
1065 int j;
1066 sd_region *s2;
1068 FOR_EACH_VEC_ELT (regions, j, s2)
1069 if (s != s2)
1070 gcc_assert (!bb_in_sd_region (s->entry, s2));
1072 #endif
1076 /* Returns true when BB contains only close phi nodes. */
1078 static bool
1079 contains_only_close_phi_nodes (basic_block bb)
1081 gimple_stmt_iterator gsi;
1083 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1084 if (gimple_code (gsi_stmt (gsi)) != GIMPLE_LABEL)
1085 return false;
1087 return true;
1090 /* Print statistics for SCOP to FILE. */
1092 static void
1093 print_graphite_scop_statistics (FILE* file, scop_p scop)
1095 long n_bbs = 0;
1096 long n_loops = 0;
1097 long n_stmts = 0;
1098 long n_conditions = 0;
1099 long n_p_bbs = 0;
1100 long n_p_loops = 0;
1101 long n_p_stmts = 0;
1102 long n_p_conditions = 0;
1104 basic_block bb;
1106 FOR_ALL_BB (bb)
1108 gimple_stmt_iterator psi;
1109 loop_p loop = bb->loop_father;
1111 if (!bb_in_sese_p (bb, SCOP_REGION (scop)))
1112 continue;
1114 n_bbs++;
1115 n_p_bbs += bb->count;
1117 if (EDGE_COUNT (bb->succs) > 1)
1119 n_conditions++;
1120 n_p_conditions += bb->count;
1123 for (psi = gsi_start_bb (bb); !gsi_end_p (psi); gsi_next (&psi))
1125 n_stmts++;
1126 n_p_stmts += bb->count;
1129 if (loop->header == bb && loop_in_sese_p (loop, SCOP_REGION (scop)))
1131 n_loops++;
1132 n_p_loops += bb->count;
1137 fprintf (file, "\nBefore limit_scops SCoP statistics (");
1138 fprintf (file, "BBS:%ld, ", n_bbs);
1139 fprintf (file, "LOOPS:%ld, ", n_loops);
1140 fprintf (file, "CONDITIONS:%ld, ", n_conditions);
1141 fprintf (file, "STMTS:%ld)\n", n_stmts);
1142 fprintf (file, "\nBefore limit_scops SCoP profiling statistics (");
1143 fprintf (file, "BBS:%ld, ", n_p_bbs);
1144 fprintf (file, "LOOPS:%ld, ", n_p_loops);
1145 fprintf (file, "CONDITIONS:%ld, ", n_p_conditions);
1146 fprintf (file, "STMTS:%ld)\n", n_p_stmts);
1149 /* Print statistics for SCOPS to FILE. */
1151 static void
1152 print_graphite_statistics (FILE* file, vec<scop_p> scops)
1154 int i;
1155 scop_p scop;
1157 FOR_EACH_VEC_ELT (scops, i, scop)
1158 print_graphite_scop_statistics (file, scop);
1161 /* We limit all SCoPs to SCoPs, that are completely surrounded by a loop.
1163 Example:
1165 for (i |
1167 for (j | SCoP 1
1168 for (k |
1171 * SCoP frontier, as this line is not surrounded by any loop. *
1173 for (l | SCoP 2
1175 This is necessary as scalar evolution and parameter detection need a
1176 outermost loop to initialize parameters correctly.
1178 TODO: FIX scalar evolution and parameter detection to allow more flexible
1179 SCoP frontiers. */
1181 static void
1182 limit_scops (vec<scop_p> *scops)
1184 vec<sd_region> regions;
1185 regions.create (3);
1187 int i;
1188 scop_p scop;
1190 FOR_EACH_VEC_ELT (*scops, i, scop)
1192 int j;
1193 loop_p loop;
1194 sese region = SCOP_REGION (scop);
1195 build_sese_loop_nests (region);
1197 FOR_EACH_VEC_ELT (SESE_LOOP_NEST (region), j, loop)
1198 if (!loop_in_sese_p (loop_outer (loop), region)
1199 && single_exit (loop))
1201 sd_region open_scop;
1202 open_scop.entry = loop->header;
1203 open_scop.exit = single_exit (loop)->dest;
1205 /* This is a hack on top of the limit_scops hack. The
1206 limit_scops hack should disappear all together. */
1207 if (single_succ_p (open_scop.exit)
1208 && contains_only_close_phi_nodes (open_scop.exit))
1209 open_scop.exit = single_succ_edge (open_scop.exit)->dest;
1211 regions.safe_push (open_scop);
1215 free_scops (*scops);
1216 scops->create (3);
1218 create_sese_edges (regions);
1219 build_graphite_scops (regions, scops);
1220 regions.release ();
1223 /* Returns true when P1 and P2 are close phis with the same
1224 argument. */
1226 static inline bool
1227 same_close_phi_node (gimple p1, gimple p2)
1229 return operand_equal_p (gimple_phi_arg_def (p1, 0),
1230 gimple_phi_arg_def (p2, 0), 0);
1233 /* Remove the close phi node at GSI and replace its rhs with the rhs
1234 of PHI. */
1236 static void
1237 remove_duplicate_close_phi (gimple phi, gimple_stmt_iterator *gsi)
1239 gimple use_stmt;
1240 use_operand_p use_p;
1241 imm_use_iterator imm_iter;
1242 tree res = gimple_phi_result (phi);
1243 tree def = gimple_phi_result (gsi_stmt (*gsi));
1245 gcc_assert (same_close_phi_node (phi, gsi_stmt (*gsi)));
1247 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, def)
1249 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
1250 SET_USE (use_p, res);
1252 update_stmt (use_stmt);
1254 /* It is possible that we just created a duplicate close-phi
1255 for an already-processed containing loop. Check for this
1256 case and clean it up. */
1257 if (gimple_code (use_stmt) == GIMPLE_PHI
1258 && gimple_phi_num_args (use_stmt) == 1)
1259 make_close_phi_nodes_unique (gimple_bb (use_stmt));
1262 remove_phi_node (gsi, true);
1265 /* Removes all the close phi duplicates from BB. */
1267 static void
1268 make_close_phi_nodes_unique (basic_block bb)
1270 gimple_stmt_iterator psi;
1272 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
1274 gimple_stmt_iterator gsi = psi;
1275 gimple phi = gsi_stmt (psi);
1277 /* At this point, PHI should be a close phi in normal form. */
1278 gcc_assert (gimple_phi_num_args (phi) == 1);
1280 /* Iterate over the next phis and remove duplicates. */
1281 gsi_next (&gsi);
1282 while (!gsi_end_p (gsi))
1283 if (same_close_phi_node (phi, gsi_stmt (gsi)))
1284 remove_duplicate_close_phi (phi, &gsi);
1285 else
1286 gsi_next (&gsi);
1290 /* Transforms LOOP to the canonical loop closed SSA form. */
1292 static void
1293 canonicalize_loop_closed_ssa (loop_p loop)
1295 edge e = single_exit (loop);
1296 basic_block bb;
1298 if (!e || e->flags & EDGE_ABNORMAL)
1299 return;
1301 bb = e->dest;
1303 if (single_pred_p (bb))
1305 e = split_block_after_labels (bb);
1306 make_close_phi_nodes_unique (e->src);
1308 else
1310 gimple_stmt_iterator psi;
1311 basic_block close = split_edge (e);
1313 e = single_succ_edge (close);
1315 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
1317 gimple phi = gsi_stmt (psi);
1318 unsigned i;
1320 for (i = 0; i < gimple_phi_num_args (phi); i++)
1321 if (gimple_phi_arg_edge (phi, i) == e)
1323 tree res, arg = gimple_phi_arg_def (phi, i);
1324 use_operand_p use_p;
1325 gimple close_phi;
1327 if (TREE_CODE (arg) != SSA_NAME)
1328 continue;
1330 close_phi = create_phi_node (NULL_TREE, close);
1331 res = create_new_def_for (arg, close_phi,
1332 gimple_phi_result_ptr (close_phi));
1333 add_phi_arg (close_phi, arg,
1334 gimple_phi_arg_edge (close_phi, 0),
1335 UNKNOWN_LOCATION);
1336 use_p = gimple_phi_arg_imm_use_ptr (phi, i);
1337 replace_exp (use_p, res);
1338 update_stmt (phi);
1342 make_close_phi_nodes_unique (close);
1345 /* The code above does not properly handle changes in the post dominance
1346 information (yet). */
1347 free_dominance_info (CDI_POST_DOMINATORS);
1350 /* Converts the current loop closed SSA form to a canonical form
1351 expected by the Graphite code generation.
1353 The loop closed SSA form has the following invariant: a variable
1354 defined in a loop that is used outside the loop appears only in the
1355 phi nodes in the destination of the loop exit. These phi nodes are
1356 called close phi nodes.
1358 The canonical loop closed SSA form contains the extra invariants:
1360 - when the loop contains only one exit, the close phi nodes contain
1361 only one argument. That implies that the basic block that contains
1362 the close phi nodes has only one predecessor, that is a basic block
1363 in the loop.
1365 - the basic block containing the close phi nodes does not contain
1366 other statements.
1368 - there exist only one phi node per definition in the loop.
1371 static void
1372 canonicalize_loop_closed_ssa_form (void)
1374 loop_iterator li;
1375 loop_p loop;
1377 #ifdef ENABLE_CHECKING
1378 verify_loop_closed_ssa (true);
1379 #endif
1381 FOR_EACH_LOOP (li, loop, 0)
1382 canonicalize_loop_closed_ssa (loop);
1384 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
1385 update_ssa (TODO_update_ssa);
1387 #ifdef ENABLE_CHECKING
1388 verify_loop_closed_ssa (true);
1389 #endif
1392 /* Find Static Control Parts (SCoP) in the current function and pushes
1393 them to SCOPS. */
1395 void
1396 build_scops (vec<scop_p> *scops)
1398 struct loop *loop = current_loops->tree_root;
1399 vec<sd_region> regions;
1400 regions.create (3);
1402 canonicalize_loop_closed_ssa_form ();
1403 build_scops_1 (single_succ (ENTRY_BLOCK_PTR), ENTRY_BLOCK_PTR->loop_father,
1404 &regions, loop);
1405 create_sese_edges (regions);
1406 build_graphite_scops (regions, scops);
1408 if (dump_file && (dump_flags & TDF_DETAILS))
1409 print_graphite_statistics (dump_file, *scops);
1411 limit_scops (scops);
1412 regions.release ();
1414 if (dump_file && (dump_flags & TDF_DETAILS))
1415 fprintf (dump_file, "\nnumber of SCoPs: %d\n",
1416 scops ? scops->length () : 0);
1419 /* Pretty print to FILE all the SCoPs in DOT format and mark them with
1420 different colors. If there are not enough colors, paint the
1421 remaining SCoPs in gray.
1423 Special nodes:
1424 - "*" after the node number denotes the entry of a SCoP,
1425 - "#" after the node number denotes the exit of a SCoP,
1426 - "()" around the node number denotes the entry or the
1427 exit nodes of the SCOP. These are not part of SCoP. */
1429 static void
1430 dot_all_scops_1 (FILE *file, vec<scop_p> scops)
1432 basic_block bb;
1433 edge e;
1434 edge_iterator ei;
1435 scop_p scop;
1436 const char* color;
1437 int i;
1439 /* Disable debugging while printing graph. */
1440 int tmp_dump_flags = dump_flags;
1441 dump_flags = 0;
1443 fprintf (file, "digraph all {\n");
1445 FOR_ALL_BB (bb)
1447 int part_of_scop = false;
1449 /* Use HTML for every bb label. So we are able to print bbs
1450 which are part of two different SCoPs, with two different
1451 background colors. */
1452 fprintf (file, "%d [label=<\n <TABLE BORDER=\"0\" CELLBORDER=\"1\" ",
1453 bb->index);
1454 fprintf (file, "CELLSPACING=\"0\">\n");
1456 /* Select color for SCoP. */
1457 FOR_EACH_VEC_ELT (scops, i, scop)
1459 sese region = SCOP_REGION (scop);
1460 if (bb_in_sese_p (bb, region)
1461 || (SESE_EXIT_BB (region) == bb)
1462 || (SESE_ENTRY_BB (region) == bb))
1464 switch (i % 17)
1466 case 0: /* red */
1467 color = "#e41a1c";
1468 break;
1469 case 1: /* blue */
1470 color = "#377eb8";
1471 break;
1472 case 2: /* green */
1473 color = "#4daf4a";
1474 break;
1475 case 3: /* purple */
1476 color = "#984ea3";
1477 break;
1478 case 4: /* orange */
1479 color = "#ff7f00";
1480 break;
1481 case 5: /* yellow */
1482 color = "#ffff33";
1483 break;
1484 case 6: /* brown */
1485 color = "#a65628";
1486 break;
1487 case 7: /* rose */
1488 color = "#f781bf";
1489 break;
1490 case 8:
1491 color = "#8dd3c7";
1492 break;
1493 case 9:
1494 color = "#ffffb3";
1495 break;
1496 case 10:
1497 color = "#bebada";
1498 break;
1499 case 11:
1500 color = "#fb8072";
1501 break;
1502 case 12:
1503 color = "#80b1d3";
1504 break;
1505 case 13:
1506 color = "#fdb462";
1507 break;
1508 case 14:
1509 color = "#b3de69";
1510 break;
1511 case 15:
1512 color = "#fccde5";
1513 break;
1514 case 16:
1515 color = "#bc80bd";
1516 break;
1517 default: /* gray */
1518 color = "#999999";
1521 fprintf (file, " <TR><TD WIDTH=\"50\" BGCOLOR=\"%s\">", color);
1523 if (!bb_in_sese_p (bb, region))
1524 fprintf (file, " (");
1526 if (bb == SESE_ENTRY_BB (region)
1527 && bb == SESE_EXIT_BB (region))
1528 fprintf (file, " %d*# ", bb->index);
1529 else if (bb == SESE_ENTRY_BB (region))
1530 fprintf (file, " %d* ", bb->index);
1531 else if (bb == SESE_EXIT_BB (region))
1532 fprintf (file, " %d# ", bb->index);
1533 else
1534 fprintf (file, " %d ", bb->index);
1536 if (!bb_in_sese_p (bb,region))
1537 fprintf (file, ")");
1539 fprintf (file, "</TD></TR>\n");
1540 part_of_scop = true;
1544 if (!part_of_scop)
1546 fprintf (file, " <TR><TD WIDTH=\"50\" BGCOLOR=\"#ffffff\">");
1547 fprintf (file, " %d </TD></TR>\n", bb->index);
1549 fprintf (file, " </TABLE>>, shape=box, style=\"setlinewidth(0)\"]\n");
1552 FOR_ALL_BB (bb)
1554 FOR_EACH_EDGE (e, ei, bb->succs)
1555 fprintf (file, "%d -> %d;\n", bb->index, e->dest->index);
1558 fputs ("}\n\n", file);
1560 /* Enable debugging again. */
1561 dump_flags = tmp_dump_flags;
1564 /* Display all SCoPs using dotty. */
1566 DEBUG_FUNCTION void
1567 dot_all_scops (vec<scop_p> scops)
1569 /* When debugging, enable the following code. This cannot be used
1570 in production compilers because it calls "system". */
1571 #if 0
1572 int x;
1573 FILE *stream = fopen ("/tmp/allscops.dot", "w");
1574 gcc_assert (stream);
1576 dot_all_scops_1 (stream, scops);
1577 fclose (stream);
1579 x = system ("dotty /tmp/allscops.dot &");
1580 #else
1581 dot_all_scops_1 (stderr, scops);
1582 #endif
1585 /* Display all SCoPs using dotty. */
1587 DEBUG_FUNCTION void
1588 dot_scop (scop_p scop)
1590 vec<scop_p> scops = vNULL;
1592 if (scop)
1593 scops.safe_push (scop);
1595 /* When debugging, enable the following code. This cannot be used
1596 in production compilers because it calls "system". */
1597 #if 0
1599 int x;
1600 FILE *stream = fopen ("/tmp/allscops.dot", "w");
1601 gcc_assert (stream);
1603 dot_all_scops_1 (stream, scops);
1604 fclose (stream);
1605 x = system ("dotty /tmp/allscops.dot &");
1607 #else
1608 dot_all_scops_1 (stderr, scops);
1609 #endif
1611 scops.release ();
1614 #endif