PR target/12676
[official-gcc.git] / gcc / function.c
blob6531c022f9e0f8725c3df23fc7a334805cea20be
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register.
36 Call `put_var_into_stack' when you learn, belatedly, that a variable
37 previously given a pseudo-register must in fact go in the stack.
38 This function changes the DECL_RTL to be a stack slot instead of a reg
39 then scans all the RTL instructions so far generated to correct them. */
41 #include "config.h"
42 #include "system.h"
43 #include "coretypes.h"
44 #include "tm.h"
45 #include "rtl.h"
46 #include "tree.h"
47 #include "flags.h"
48 #include "except.h"
49 #include "function.h"
50 #include "expr.h"
51 #include "optabs.h"
52 #include "libfuncs.h"
53 #include "regs.h"
54 #include "hard-reg-set.h"
55 #include "insn-config.h"
56 #include "recog.h"
57 #include "output.h"
58 #include "basic-block.h"
59 #include "toplev.h"
60 #include "hashtab.h"
61 #include "ggc.h"
62 #include "tm_p.h"
63 #include "integrate.h"
64 #include "langhooks.h"
65 #include "target.h"
67 #ifndef TRAMPOLINE_ALIGNMENT
68 #define TRAMPOLINE_ALIGNMENT FUNCTION_BOUNDARY
69 #endif
71 #ifndef LOCAL_ALIGNMENT
72 #define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
73 #endif
75 #ifndef STACK_ALIGNMENT_NEEDED
76 #define STACK_ALIGNMENT_NEEDED 1
77 #endif
79 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
81 /* Some systems use __main in a way incompatible with its use in gcc, in these
82 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
83 give the same symbol without quotes for an alternative entry point. You
84 must define both, or neither. */
85 #ifndef NAME__MAIN
86 #define NAME__MAIN "__main"
87 #endif
89 /* Round a value to the lowest integer less than it that is a multiple of
90 the required alignment. Avoid using division in case the value is
91 negative. Assume the alignment is a power of two. */
92 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
94 /* Similar, but round to the next highest integer that meets the
95 alignment. */
96 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
98 /* NEED_SEPARATE_AP means that we cannot derive ap from the value of fp
99 during rtl generation. If they are different register numbers, this is
100 always true. It may also be true if
101 FIRST_PARM_OFFSET - STARTING_FRAME_OFFSET is not a constant during rtl
102 generation. See fix_lexical_addr for details. */
104 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
105 #define NEED_SEPARATE_AP
106 #endif
108 /* Nonzero if function being compiled doesn't contain any calls
109 (ignoring the prologue and epilogue). This is set prior to
110 local register allocation and is valid for the remaining
111 compiler passes. */
112 int current_function_is_leaf;
114 /* Nonzero if function being compiled doesn't contain any instructions
115 that can throw an exception. This is set prior to final. */
117 int current_function_nothrow;
119 /* Nonzero if function being compiled doesn't modify the stack pointer
120 (ignoring the prologue and epilogue). This is only valid after
121 life_analysis has run. */
122 int current_function_sp_is_unchanging;
124 /* Nonzero if the function being compiled is a leaf function which only
125 uses leaf registers. This is valid after reload (specifically after
126 sched2) and is useful only if the port defines LEAF_REGISTERS. */
127 int current_function_uses_only_leaf_regs;
129 /* Nonzero once virtual register instantiation has been done.
130 assign_stack_local uses frame_pointer_rtx when this is nonzero.
131 calls.c:emit_library_call_value_1 uses it to set up
132 post-instantiation libcalls. */
133 int virtuals_instantiated;
135 /* Nonzero if at least one trampoline has been created. */
136 int trampolines_created;
138 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
139 static GTY(()) int funcdef_no;
141 /* These variables hold pointers to functions to create and destroy
142 target specific, per-function data structures. */
143 struct machine_function * (*init_machine_status) (void);
145 /* The FUNCTION_DECL for an inline function currently being expanded. */
146 tree inline_function_decl;
148 /* The currently compiled function. */
149 struct function *cfun = 0;
151 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
152 static GTY(()) varray_type prologue;
153 static GTY(()) varray_type epilogue;
155 /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
156 in this function. */
157 static GTY(()) varray_type sibcall_epilogue;
159 /* In order to evaluate some expressions, such as function calls returning
160 structures in memory, we need to temporarily allocate stack locations.
161 We record each allocated temporary in the following structure.
163 Associated with each temporary slot is a nesting level. When we pop up
164 one level, all temporaries associated with the previous level are freed.
165 Normally, all temporaries are freed after the execution of the statement
166 in which they were created. However, if we are inside a ({...}) grouping,
167 the result may be in a temporary and hence must be preserved. If the
168 result could be in a temporary, we preserve it if we can determine which
169 one it is in. If we cannot determine which temporary may contain the
170 result, all temporaries are preserved. A temporary is preserved by
171 pretending it was allocated at the previous nesting level.
173 Automatic variables are also assigned temporary slots, at the nesting
174 level where they are defined. They are marked a "kept" so that
175 free_temp_slots will not free them. */
177 struct temp_slot GTY(())
179 /* Points to next temporary slot. */
180 struct temp_slot *next;
181 /* The rtx to used to reference the slot. */
182 rtx slot;
183 /* The rtx used to represent the address if not the address of the
184 slot above. May be an EXPR_LIST if multiple addresses exist. */
185 rtx address;
186 /* The alignment (in bits) of the slot. */
187 unsigned int align;
188 /* The size, in units, of the slot. */
189 HOST_WIDE_INT size;
190 /* The type of the object in the slot, or zero if it doesn't correspond
191 to a type. We use this to determine whether a slot can be reused.
192 It can be reused if objects of the type of the new slot will always
193 conflict with objects of the type of the old slot. */
194 tree type;
195 /* The value of `sequence_rtl_expr' when this temporary is allocated. */
196 tree rtl_expr;
197 /* Nonzero if this temporary is currently in use. */
198 char in_use;
199 /* Nonzero if this temporary has its address taken. */
200 char addr_taken;
201 /* Nesting level at which this slot is being used. */
202 int level;
203 /* Nonzero if this should survive a call to free_temp_slots. */
204 int keep;
205 /* The offset of the slot from the frame_pointer, including extra space
206 for alignment. This info is for combine_temp_slots. */
207 HOST_WIDE_INT base_offset;
208 /* The size of the slot, including extra space for alignment. This
209 info is for combine_temp_slots. */
210 HOST_WIDE_INT full_size;
213 /* This structure is used to record MEMs or pseudos used to replace VAR, any
214 SUBREGs of VAR, and any MEMs containing VAR as an address. We need to
215 maintain this list in case two operands of an insn were required to match;
216 in that case we must ensure we use the same replacement. */
218 struct fixup_replacement GTY(())
220 rtx old;
221 rtx new;
222 struct fixup_replacement *next;
225 struct insns_for_mem_entry
227 /* A MEM. */
228 rtx key;
229 /* These are the INSNs which reference the MEM. */
230 rtx insns;
233 /* Forward declarations. */
235 static rtx assign_stack_local_1 (enum machine_mode, HOST_WIDE_INT, int,
236 struct function *);
237 static struct temp_slot *find_temp_slot_from_address (rtx);
238 static void put_reg_into_stack (struct function *, rtx, tree, enum machine_mode,
239 enum machine_mode, int, unsigned int, int, htab_t);
240 static void schedule_fixup_var_refs (struct function *, rtx, tree, enum machine_mode,
241 htab_t);
242 static void fixup_var_refs (rtx, enum machine_mode, int, rtx, htab_t);
243 static struct fixup_replacement
244 *find_fixup_replacement (struct fixup_replacement **, rtx);
245 static void fixup_var_refs_insns (rtx, rtx, enum machine_mode, int, int, rtx);
246 static void fixup_var_refs_insns_with_hash (htab_t, rtx, enum machine_mode, int, rtx);
247 static void fixup_var_refs_insn (rtx, rtx, enum machine_mode, int, int, rtx);
248 static void fixup_var_refs_1 (rtx, enum machine_mode, rtx *, rtx,
249 struct fixup_replacement **, rtx);
250 static rtx fixup_memory_subreg (rtx, rtx, enum machine_mode, int);
251 static rtx walk_fixup_memory_subreg (rtx, rtx, enum machine_mode, int);
252 static rtx fixup_stack_1 (rtx, rtx);
253 static void optimize_bit_field (rtx, rtx, rtx *);
254 static void instantiate_decls (tree, int);
255 static void instantiate_decls_1 (tree, int);
256 static void instantiate_decl (rtx, HOST_WIDE_INT, int);
257 static rtx instantiate_new_reg (rtx, HOST_WIDE_INT *);
258 static int instantiate_virtual_regs_1 (rtx *, rtx, int);
259 static void delete_handlers (void);
260 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
261 static void pad_below (struct args_size *, enum machine_mode, tree);
262 static rtx round_trampoline_addr (rtx);
263 static rtx adjust_trampoline_addr (rtx);
264 static tree *identify_blocks_1 (rtx, tree *, tree *, tree *);
265 static void reorder_blocks_0 (tree);
266 static void reorder_blocks_1 (rtx, tree, varray_type *);
267 static void reorder_fix_fragments (tree);
268 static tree blocks_nreverse (tree);
269 static int all_blocks (tree, tree *);
270 static tree *get_block_vector (tree, int *);
271 extern tree debug_find_var_in_block_tree (tree, tree);
272 /* We always define `record_insns' even if its not used so that we
273 can always export `prologue_epilogue_contains'. */
274 static void record_insns (rtx, varray_type *) ATTRIBUTE_UNUSED;
275 static int contains (rtx, varray_type);
276 #ifdef HAVE_return
277 static void emit_return_into_block (basic_block, rtx);
278 #endif
279 static void put_addressof_into_stack (rtx, htab_t);
280 static bool purge_addressof_1 (rtx *, rtx, int, int, int, htab_t);
281 static void purge_single_hard_subreg_set (rtx);
282 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
283 static rtx keep_stack_depressed (rtx);
284 #endif
285 static int is_addressof (rtx *, void *);
286 static hashval_t insns_for_mem_hash (const void *);
287 static int insns_for_mem_comp (const void *, const void *);
288 static int insns_for_mem_walk (rtx *, void *);
289 static void compute_insns_for_mem (rtx, rtx, htab_t);
290 static void prepare_function_start (tree);
291 static void do_clobber_return_reg (rtx, void *);
292 static void do_use_return_reg (rtx, void *);
293 static void instantiate_virtual_regs_lossage (rtx);
294 static tree split_complex_args (tree);
295 static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
297 /* Pointer to chain of `struct function' for containing functions. */
298 static GTY(()) struct function *outer_function_chain;
300 /* List of insns that were postponed by purge_addressof_1. */
301 static rtx postponed_insns;
303 /* Given a function decl for a containing function,
304 return the `struct function' for it. */
306 struct function *
307 find_function_data (tree decl)
309 struct function *p;
311 for (p = outer_function_chain; p; p = p->outer)
312 if (p->decl == decl)
313 return p;
315 abort ();
318 /* Save the current context for compilation of a nested function.
319 This is called from language-specific code. The caller should use
320 the enter_nested langhook to save any language-specific state,
321 since this function knows only about language-independent
322 variables. */
324 void
325 push_function_context_to (tree context)
327 struct function *p;
329 if (context)
331 if (context == current_function_decl)
332 cfun->contains_functions = 1;
333 else
335 struct function *containing = find_function_data (context);
336 containing->contains_functions = 1;
340 if (cfun == 0)
341 init_dummy_function_start ();
342 p = cfun;
344 p->outer = outer_function_chain;
345 outer_function_chain = p;
346 p->fixup_var_refs_queue = 0;
348 (*lang_hooks.function.enter_nested) (p);
350 cfun = 0;
353 void
354 push_function_context (void)
356 push_function_context_to (current_function_decl);
359 /* Restore the last saved context, at the end of a nested function.
360 This function is called from language-specific code. */
362 void
363 pop_function_context_from (tree context ATTRIBUTE_UNUSED)
365 struct function *p = outer_function_chain;
366 struct var_refs_queue *queue;
368 cfun = p;
369 outer_function_chain = p->outer;
371 current_function_decl = p->decl;
372 reg_renumber = 0;
374 restore_emit_status (p);
376 (*lang_hooks.function.leave_nested) (p);
378 /* Finish doing put_var_into_stack for any of our variables which became
379 addressable during the nested function. If only one entry has to be
380 fixed up, just do that one. Otherwise, first make a list of MEMs that
381 are not to be unshared. */
382 if (p->fixup_var_refs_queue == 0)
384 else if (p->fixup_var_refs_queue->next == 0)
385 fixup_var_refs (p->fixup_var_refs_queue->modified,
386 p->fixup_var_refs_queue->promoted_mode,
387 p->fixup_var_refs_queue->unsignedp,
388 p->fixup_var_refs_queue->modified, 0);
389 else
391 rtx list = 0;
393 for (queue = p->fixup_var_refs_queue; queue; queue = queue->next)
394 list = gen_rtx_EXPR_LIST (VOIDmode, queue->modified, list);
396 for (queue = p->fixup_var_refs_queue; queue; queue = queue->next)
397 fixup_var_refs (queue->modified, queue->promoted_mode,
398 queue->unsignedp, list, 0);
402 p->fixup_var_refs_queue = 0;
404 /* Reset variables that have known state during rtx generation. */
405 rtx_equal_function_value_matters = 1;
406 virtuals_instantiated = 0;
407 generating_concat_p = 1;
410 void
411 pop_function_context (void)
413 pop_function_context_from (current_function_decl);
416 /* Clear out all parts of the state in F that can safely be discarded
417 after the function has been parsed, but not compiled, to let
418 garbage collection reclaim the memory. */
420 void
421 free_after_parsing (struct function *f)
423 /* f->expr->forced_labels is used by code generation. */
424 /* f->emit->regno_reg_rtx is used by code generation. */
425 /* f->varasm is used by code generation. */
426 /* f->eh->eh_return_stub_label is used by code generation. */
428 (*lang_hooks.function.final) (f);
429 f->stmt = NULL;
432 /* Clear out all parts of the state in F that can safely be discarded
433 after the function has been compiled, to let garbage collection
434 reclaim the memory. */
436 void
437 free_after_compilation (struct function *f)
439 f->eh = NULL;
440 f->expr = NULL;
441 f->emit = NULL;
442 f->varasm = NULL;
443 f->machine = NULL;
445 f->x_temp_slots = NULL;
446 f->arg_offset_rtx = NULL;
447 f->return_rtx = NULL;
448 f->internal_arg_pointer = NULL;
449 f->x_nonlocal_labels = NULL;
450 f->x_nonlocal_goto_handler_slots = NULL;
451 f->x_nonlocal_goto_handler_labels = NULL;
452 f->x_nonlocal_goto_stack_level = NULL;
453 f->x_cleanup_label = NULL;
454 f->x_return_label = NULL;
455 f->computed_goto_common_label = NULL;
456 f->computed_goto_common_reg = NULL;
457 f->x_save_expr_regs = NULL;
458 f->x_stack_slot_list = NULL;
459 f->x_rtl_expr_chain = NULL;
460 f->x_tail_recursion_label = NULL;
461 f->x_tail_recursion_reentry = NULL;
462 f->x_arg_pointer_save_area = NULL;
463 f->x_clobber_return_insn = NULL;
464 f->x_context_display = NULL;
465 f->x_trampoline_list = NULL;
466 f->x_parm_birth_insn = NULL;
467 f->x_last_parm_insn = NULL;
468 f->x_parm_reg_stack_loc = NULL;
469 f->fixup_var_refs_queue = NULL;
470 f->original_arg_vector = NULL;
471 f->original_decl_initial = NULL;
472 f->inl_last_parm_insn = NULL;
473 f->epilogue_delay_list = NULL;
476 /* Allocate fixed slots in the stack frame of the current function. */
478 /* Return size needed for stack frame based on slots so far allocated in
479 function F.
480 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
481 the caller may have to do that. */
483 HOST_WIDE_INT
484 get_func_frame_size (struct function *f)
486 #ifdef FRAME_GROWS_DOWNWARD
487 return -f->x_frame_offset;
488 #else
489 return f->x_frame_offset;
490 #endif
493 /* Return size needed for stack frame based on slots so far allocated.
494 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
495 the caller may have to do that. */
496 HOST_WIDE_INT
497 get_frame_size (void)
499 return get_func_frame_size (cfun);
502 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
503 with machine mode MODE.
505 ALIGN controls the amount of alignment for the address of the slot:
506 0 means according to MODE,
507 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
508 positive specifies alignment boundary in bits.
510 We do not round to stack_boundary here.
512 FUNCTION specifies the function to allocate in. */
514 static rtx
515 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size, int align,
516 struct function *function)
518 rtx x, addr;
519 int bigend_correction = 0;
520 int alignment;
521 int frame_off, frame_alignment, frame_phase;
523 if (align == 0)
525 tree type;
527 if (mode == BLKmode)
528 alignment = BIGGEST_ALIGNMENT;
529 else
530 alignment = GET_MODE_ALIGNMENT (mode);
532 /* Allow the target to (possibly) increase the alignment of this
533 stack slot. */
534 type = (*lang_hooks.types.type_for_mode) (mode, 0);
535 if (type)
536 alignment = LOCAL_ALIGNMENT (type, alignment);
538 alignment /= BITS_PER_UNIT;
540 else if (align == -1)
542 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
543 size = CEIL_ROUND (size, alignment);
545 else
546 alignment = align / BITS_PER_UNIT;
548 #ifdef FRAME_GROWS_DOWNWARD
549 function->x_frame_offset -= size;
550 #endif
552 /* Ignore alignment we can't do with expected alignment of the boundary. */
553 if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
554 alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
556 if (function->stack_alignment_needed < alignment * BITS_PER_UNIT)
557 function->stack_alignment_needed = alignment * BITS_PER_UNIT;
559 /* Calculate how many bytes the start of local variables is off from
560 stack alignment. */
561 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
562 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
563 frame_phase = frame_off ? frame_alignment - frame_off : 0;
565 /* Round the frame offset to the specified alignment. The default is
566 to always honor requests to align the stack but a port may choose to
567 do its own stack alignment by defining STACK_ALIGNMENT_NEEDED. */
568 if (STACK_ALIGNMENT_NEEDED
569 || mode != BLKmode
570 || size != 0)
572 /* We must be careful here, since FRAME_OFFSET might be negative and
573 division with a negative dividend isn't as well defined as we might
574 like. So we instead assume that ALIGNMENT is a power of two and
575 use logical operations which are unambiguous. */
576 #ifdef FRAME_GROWS_DOWNWARD
577 function->x_frame_offset
578 = (FLOOR_ROUND (function->x_frame_offset - frame_phase, alignment)
579 + frame_phase);
580 #else
581 function->x_frame_offset
582 = (CEIL_ROUND (function->x_frame_offset - frame_phase, alignment)
583 + frame_phase);
584 #endif
587 /* On a big-endian machine, if we are allocating more space than we will use,
588 use the least significant bytes of those that are allocated. */
589 if (BYTES_BIG_ENDIAN && mode != BLKmode)
590 bigend_correction = size - GET_MODE_SIZE (mode);
592 /* If we have already instantiated virtual registers, return the actual
593 address relative to the frame pointer. */
594 if (function == cfun && virtuals_instantiated)
595 addr = plus_constant (frame_pointer_rtx,
596 trunc_int_for_mode
597 (frame_offset + bigend_correction
598 + STARTING_FRAME_OFFSET, Pmode));
599 else
600 addr = plus_constant (virtual_stack_vars_rtx,
601 trunc_int_for_mode
602 (function->x_frame_offset + bigend_correction,
603 Pmode));
605 #ifndef FRAME_GROWS_DOWNWARD
606 function->x_frame_offset += size;
607 #endif
609 x = gen_rtx_MEM (mode, addr);
611 function->x_stack_slot_list
612 = gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list);
614 return x;
617 /* Wrapper around assign_stack_local_1; assign a local stack slot for the
618 current function. */
621 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
623 return assign_stack_local_1 (mode, size, align, cfun);
626 /* Allocate a temporary stack slot and record it for possible later
627 reuse.
629 MODE is the machine mode to be given to the returned rtx.
631 SIZE is the size in units of the space required. We do no rounding here
632 since assign_stack_local will do any required rounding.
634 KEEP is 1 if this slot is to be retained after a call to
635 free_temp_slots. Automatic variables for a block are allocated
636 with this flag. KEEP is 2 if we allocate a longer term temporary,
637 whose lifetime is controlled by CLEANUP_POINT_EXPRs. KEEP is 3
638 if we are to allocate something at an inner level to be treated as
639 a variable in the block (e.g., a SAVE_EXPR).
641 TYPE is the type that will be used for the stack slot. */
644 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size, int keep,
645 tree type)
647 unsigned int align;
648 struct temp_slot *p, *best_p = 0;
649 rtx slot;
651 /* If SIZE is -1 it means that somebody tried to allocate a temporary
652 of a variable size. */
653 if (size == -1)
654 abort ();
656 if (mode == BLKmode)
657 align = BIGGEST_ALIGNMENT;
658 else
659 align = GET_MODE_ALIGNMENT (mode);
661 if (! type)
662 type = (*lang_hooks.types.type_for_mode) (mode, 0);
664 if (type)
665 align = LOCAL_ALIGNMENT (type, align);
667 /* Try to find an available, already-allocated temporary of the proper
668 mode which meets the size and alignment requirements. Choose the
669 smallest one with the closest alignment. */
670 for (p = temp_slots; p; p = p->next)
671 if (p->align >= align && p->size >= size && GET_MODE (p->slot) == mode
672 && ! p->in_use
673 && objects_must_conflict_p (p->type, type)
674 && (best_p == 0 || best_p->size > p->size
675 || (best_p->size == p->size && best_p->align > p->align)))
677 if (p->align == align && p->size == size)
679 best_p = 0;
680 break;
682 best_p = p;
685 /* Make our best, if any, the one to use. */
686 if (best_p)
688 /* If there are enough aligned bytes left over, make them into a new
689 temp_slot so that the extra bytes don't get wasted. Do this only
690 for BLKmode slots, so that we can be sure of the alignment. */
691 if (GET_MODE (best_p->slot) == BLKmode)
693 int alignment = best_p->align / BITS_PER_UNIT;
694 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
696 if (best_p->size - rounded_size >= alignment)
698 p = ggc_alloc (sizeof (struct temp_slot));
699 p->in_use = p->addr_taken = 0;
700 p->size = best_p->size - rounded_size;
701 p->base_offset = best_p->base_offset + rounded_size;
702 p->full_size = best_p->full_size - rounded_size;
703 p->slot = gen_rtx_MEM (BLKmode,
704 plus_constant (XEXP (best_p->slot, 0),
705 rounded_size));
706 p->align = best_p->align;
707 p->address = 0;
708 p->rtl_expr = 0;
709 p->type = best_p->type;
710 p->next = temp_slots;
711 temp_slots = p;
713 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
714 stack_slot_list);
716 best_p->size = rounded_size;
717 best_p->full_size = rounded_size;
721 p = best_p;
724 /* If we still didn't find one, make a new temporary. */
725 if (p == 0)
727 HOST_WIDE_INT frame_offset_old = frame_offset;
729 p = ggc_alloc (sizeof (struct temp_slot));
731 /* We are passing an explicit alignment request to assign_stack_local.
732 One side effect of that is assign_stack_local will not round SIZE
733 to ensure the frame offset remains suitably aligned.
735 So for requests which depended on the rounding of SIZE, we go ahead
736 and round it now. We also make sure ALIGNMENT is at least
737 BIGGEST_ALIGNMENT. */
738 if (mode == BLKmode && align < BIGGEST_ALIGNMENT)
739 abort ();
740 p->slot = assign_stack_local (mode,
741 (mode == BLKmode
742 ? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
743 : size),
744 align);
746 p->align = align;
748 /* The following slot size computation is necessary because we don't
749 know the actual size of the temporary slot until assign_stack_local
750 has performed all the frame alignment and size rounding for the
751 requested temporary. Note that extra space added for alignment
752 can be either above or below this stack slot depending on which
753 way the frame grows. We include the extra space if and only if it
754 is above this slot. */
755 #ifdef FRAME_GROWS_DOWNWARD
756 p->size = frame_offset_old - frame_offset;
757 #else
758 p->size = size;
759 #endif
761 /* Now define the fields used by combine_temp_slots. */
762 #ifdef FRAME_GROWS_DOWNWARD
763 p->base_offset = frame_offset;
764 p->full_size = frame_offset_old - frame_offset;
765 #else
766 p->base_offset = frame_offset_old;
767 p->full_size = frame_offset - frame_offset_old;
768 #endif
769 p->address = 0;
770 p->next = temp_slots;
771 temp_slots = p;
774 p->in_use = 1;
775 p->addr_taken = 0;
776 p->rtl_expr = seq_rtl_expr;
777 p->type = type;
779 if (keep == 2)
781 p->level = target_temp_slot_level;
782 p->keep = 0;
784 else if (keep == 3)
786 p->level = var_temp_slot_level;
787 p->keep = 0;
789 else
791 p->level = temp_slot_level;
792 p->keep = keep;
796 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
797 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
798 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
800 /* If we know the alias set for the memory that will be used, use
801 it. If there's no TYPE, then we don't know anything about the
802 alias set for the memory. */
803 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
804 set_mem_align (slot, align);
806 /* If a type is specified, set the relevant flags. */
807 if (type != 0)
809 RTX_UNCHANGING_P (slot) = (lang_hooks.honor_readonly
810 && TYPE_READONLY (type));
811 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
812 MEM_SET_IN_STRUCT_P (slot, AGGREGATE_TYPE_P (type));
815 return slot;
818 /* Allocate a temporary stack slot and record it for possible later
819 reuse. First three arguments are same as in preceding function. */
822 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
824 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
827 /* Assign a temporary.
828 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
829 and so that should be used in error messages. In either case, we
830 allocate of the given type.
831 KEEP is as for assign_stack_temp.
832 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
833 it is 0 if a register is OK.
834 DONT_PROMOTE is 1 if we should not promote values in register
835 to wider modes. */
838 assign_temp (tree type_or_decl, int keep, int memory_required,
839 int dont_promote ATTRIBUTE_UNUSED)
841 tree type, decl;
842 enum machine_mode mode;
843 #ifndef PROMOTE_FOR_CALL_ONLY
844 int unsignedp;
845 #endif
847 if (DECL_P (type_or_decl))
848 decl = type_or_decl, type = TREE_TYPE (decl);
849 else
850 decl = NULL, type = type_or_decl;
852 mode = TYPE_MODE (type);
853 #ifndef PROMOTE_FOR_CALL_ONLY
854 unsignedp = TREE_UNSIGNED (type);
855 #endif
857 if (mode == BLKmode || memory_required)
859 HOST_WIDE_INT size = int_size_in_bytes (type);
860 rtx tmp;
862 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
863 problems with allocating the stack space. */
864 if (size == 0)
865 size = 1;
867 /* Unfortunately, we don't yet know how to allocate variable-sized
868 temporaries. However, sometimes we have a fixed upper limit on
869 the size (which is stored in TYPE_ARRAY_MAX_SIZE) and can use that
870 instead. This is the case for Chill variable-sized strings. */
871 if (size == -1 && TREE_CODE (type) == ARRAY_TYPE
872 && TYPE_ARRAY_MAX_SIZE (type) != NULL_TREE
873 && host_integerp (TYPE_ARRAY_MAX_SIZE (type), 1))
874 size = tree_low_cst (TYPE_ARRAY_MAX_SIZE (type), 1);
876 /* The size of the temporary may be too large to fit into an integer. */
877 /* ??? Not sure this should happen except for user silliness, so limit
878 this to things that aren't compiler-generated temporaries. The
879 rest of the time we'll abort in assign_stack_temp_for_type. */
880 if (decl && size == -1
881 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
883 error ("%Jsize of variable '%D' is too large", decl, decl);
884 size = 1;
887 tmp = assign_stack_temp_for_type (mode, size, keep, type);
888 return tmp;
891 #ifndef PROMOTE_FOR_CALL_ONLY
892 if (! dont_promote)
893 mode = promote_mode (type, mode, &unsignedp, 0);
894 #endif
896 return gen_reg_rtx (mode);
899 /* Combine temporary stack slots which are adjacent on the stack.
901 This allows for better use of already allocated stack space. This is only
902 done for BLKmode slots because we can be sure that we won't have alignment
903 problems in this case. */
905 void
906 combine_temp_slots (void)
908 struct temp_slot *p, *q;
909 struct temp_slot *prev_p, *prev_q;
910 int num_slots;
912 /* We can't combine slots, because the information about which slot
913 is in which alias set will be lost. */
914 if (flag_strict_aliasing)
915 return;
917 /* If there are a lot of temp slots, don't do anything unless
918 high levels of optimization. */
919 if (! flag_expensive_optimizations)
920 for (p = temp_slots, num_slots = 0; p; p = p->next, num_slots++)
921 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
922 return;
924 for (p = temp_slots, prev_p = 0; p; p = prev_p ? prev_p->next : temp_slots)
926 int delete_p = 0;
928 if (! p->in_use && GET_MODE (p->slot) == BLKmode)
929 for (q = p->next, prev_q = p; q; q = prev_q->next)
931 int delete_q = 0;
932 if (! q->in_use && GET_MODE (q->slot) == BLKmode)
934 if (p->base_offset + p->full_size == q->base_offset)
936 /* Q comes after P; combine Q into P. */
937 p->size += q->size;
938 p->full_size += q->full_size;
939 delete_q = 1;
941 else if (q->base_offset + q->full_size == p->base_offset)
943 /* P comes after Q; combine P into Q. */
944 q->size += p->size;
945 q->full_size += p->full_size;
946 delete_p = 1;
947 break;
950 /* Either delete Q or advance past it. */
951 if (delete_q)
952 prev_q->next = q->next;
953 else
954 prev_q = q;
956 /* Either delete P or advance past it. */
957 if (delete_p)
959 if (prev_p)
960 prev_p->next = p->next;
961 else
962 temp_slots = p->next;
964 else
965 prev_p = p;
969 /* Find the temp slot corresponding to the object at address X. */
971 static struct temp_slot *
972 find_temp_slot_from_address (rtx x)
974 struct temp_slot *p;
975 rtx next;
977 for (p = temp_slots; p; p = p->next)
979 if (! p->in_use)
980 continue;
982 else if (XEXP (p->slot, 0) == x
983 || p->address == x
984 || (GET_CODE (x) == PLUS
985 && XEXP (x, 0) == virtual_stack_vars_rtx
986 && GET_CODE (XEXP (x, 1)) == CONST_INT
987 && INTVAL (XEXP (x, 1)) >= p->base_offset
988 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
989 return p;
991 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
992 for (next = p->address; next; next = XEXP (next, 1))
993 if (XEXP (next, 0) == x)
994 return p;
997 /* If we have a sum involving a register, see if it points to a temp
998 slot. */
999 if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == REG
1000 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
1001 return p;
1002 else if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == REG
1003 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
1004 return p;
1006 return 0;
1009 /* Indicate that NEW is an alternate way of referring to the temp slot
1010 that previously was known by OLD. */
1012 void
1013 update_temp_slot_address (rtx old, rtx new)
1015 struct temp_slot *p;
1017 if (rtx_equal_p (old, new))
1018 return;
1020 p = find_temp_slot_from_address (old);
1022 /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
1023 is a register, see if one operand of the PLUS is a temporary
1024 location. If so, NEW points into it. Otherwise, if both OLD and
1025 NEW are a PLUS and if there is a register in common between them.
1026 If so, try a recursive call on those values. */
1027 if (p == 0)
1029 if (GET_CODE (old) != PLUS)
1030 return;
1032 if (GET_CODE (new) == REG)
1034 update_temp_slot_address (XEXP (old, 0), new);
1035 update_temp_slot_address (XEXP (old, 1), new);
1036 return;
1038 else if (GET_CODE (new) != PLUS)
1039 return;
1041 if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
1042 update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
1043 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
1044 update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
1045 else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
1046 update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
1047 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
1048 update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
1050 return;
1053 /* Otherwise add an alias for the temp's address. */
1054 else if (p->address == 0)
1055 p->address = new;
1056 else
1058 if (GET_CODE (p->address) != EXPR_LIST)
1059 p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
1061 p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
1065 /* If X could be a reference to a temporary slot, mark the fact that its
1066 address was taken. */
1068 void
1069 mark_temp_addr_taken (rtx x)
1071 struct temp_slot *p;
1073 if (x == 0)
1074 return;
1076 /* If X is not in memory or is at a constant address, it cannot be in
1077 a temporary slot. */
1078 if (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
1079 return;
1081 p = find_temp_slot_from_address (XEXP (x, 0));
1082 if (p != 0)
1083 p->addr_taken = 1;
1086 /* If X could be a reference to a temporary slot, mark that slot as
1087 belonging to the to one level higher than the current level. If X
1088 matched one of our slots, just mark that one. Otherwise, we can't
1089 easily predict which it is, so upgrade all of them. Kept slots
1090 need not be touched.
1092 This is called when an ({...}) construct occurs and a statement
1093 returns a value in memory. */
1095 void
1096 preserve_temp_slots (rtx x)
1098 struct temp_slot *p = 0;
1100 /* If there is no result, we still might have some objects whose address
1101 were taken, so we need to make sure they stay around. */
1102 if (x == 0)
1104 for (p = temp_slots; p; p = p->next)
1105 if (p->in_use && p->level == temp_slot_level && p->addr_taken)
1106 p->level--;
1108 return;
1111 /* If X is a register that is being used as a pointer, see if we have
1112 a temporary slot we know it points to. To be consistent with
1113 the code below, we really should preserve all non-kept slots
1114 if we can't find a match, but that seems to be much too costly. */
1115 if (GET_CODE (x) == REG && REG_POINTER (x))
1116 p = find_temp_slot_from_address (x);
1118 /* If X is not in memory or is at a constant address, it cannot be in
1119 a temporary slot, but it can contain something whose address was
1120 taken. */
1121 if (p == 0 && (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0))))
1123 for (p = temp_slots; p; p = p->next)
1124 if (p->in_use && p->level == temp_slot_level && p->addr_taken)
1125 p->level--;
1127 return;
1130 /* First see if we can find a match. */
1131 if (p == 0)
1132 p = find_temp_slot_from_address (XEXP (x, 0));
1134 if (p != 0)
1136 /* Move everything at our level whose address was taken to our new
1137 level in case we used its address. */
1138 struct temp_slot *q;
1140 if (p->level == temp_slot_level)
1142 for (q = temp_slots; q; q = q->next)
1143 if (q != p && q->addr_taken && q->level == p->level)
1144 q->level--;
1146 p->level--;
1147 p->addr_taken = 0;
1149 return;
1152 /* Otherwise, preserve all non-kept slots at this level. */
1153 for (p = temp_slots; p; p = p->next)
1154 if (p->in_use && p->level == temp_slot_level && ! p->keep)
1155 p->level--;
1158 /* X is the result of an RTL_EXPR. If it is a temporary slot associated
1159 with that RTL_EXPR, promote it into a temporary slot at the present
1160 level so it will not be freed when we free slots made in the
1161 RTL_EXPR. */
1163 void
1164 preserve_rtl_expr_result (rtx x)
1166 struct temp_slot *p;
1168 /* If X is not in memory or is at a constant address, it cannot be in
1169 a temporary slot. */
1170 if (x == 0 || GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
1171 return;
1173 /* If we can find a match, move it to our level unless it is already at
1174 an upper level. */
1175 p = find_temp_slot_from_address (XEXP (x, 0));
1176 if (p != 0)
1178 p->level = MIN (p->level, temp_slot_level);
1179 p->rtl_expr = 0;
1182 return;
1185 /* Free all temporaries used so far. This is normally called at the end
1186 of generating code for a statement. Don't free any temporaries
1187 currently in use for an RTL_EXPR that hasn't yet been emitted.
1188 We could eventually do better than this since it can be reused while
1189 generating the same RTL_EXPR, but this is complex and probably not
1190 worthwhile. */
1192 void
1193 free_temp_slots (void)
1195 struct temp_slot *p;
1197 for (p = temp_slots; p; p = p->next)
1198 if (p->in_use && p->level == temp_slot_level && ! p->keep
1199 && p->rtl_expr == 0)
1200 p->in_use = 0;
1202 combine_temp_slots ();
1205 /* Free all temporary slots used in T, an RTL_EXPR node. */
1207 void
1208 free_temps_for_rtl_expr (tree t)
1210 struct temp_slot *p;
1212 for (p = temp_slots; p; p = p->next)
1213 if (p->rtl_expr == t)
1215 /* If this slot is below the current TEMP_SLOT_LEVEL, then it
1216 needs to be preserved. This can happen if a temporary in
1217 the RTL_EXPR was addressed; preserve_temp_slots will move
1218 the temporary into a higher level. */
1219 if (temp_slot_level <= p->level)
1220 p->in_use = 0;
1221 else
1222 p->rtl_expr = NULL_TREE;
1225 combine_temp_slots ();
1228 /* Mark all temporaries ever allocated in this function as not suitable
1229 for reuse until the current level is exited. */
1231 void
1232 mark_all_temps_used (void)
1234 struct temp_slot *p;
1236 for (p = temp_slots; p; p = p->next)
1238 p->in_use = p->keep = 1;
1239 p->level = MIN (p->level, temp_slot_level);
1243 /* Push deeper into the nesting level for stack temporaries. */
1245 void
1246 push_temp_slots (void)
1248 temp_slot_level++;
1251 /* Pop a temporary nesting level. All slots in use in the current level
1252 are freed. */
1254 void
1255 pop_temp_slots (void)
1257 struct temp_slot *p;
1259 for (p = temp_slots; p; p = p->next)
1260 if (p->in_use && p->level == temp_slot_level && p->rtl_expr == 0)
1261 p->in_use = 0;
1263 combine_temp_slots ();
1265 temp_slot_level--;
1268 /* Initialize temporary slots. */
1270 void
1271 init_temp_slots (void)
1273 /* We have not allocated any temporaries yet. */
1274 temp_slots = 0;
1275 temp_slot_level = 0;
1276 var_temp_slot_level = 0;
1277 target_temp_slot_level = 0;
1280 /* Retroactively move an auto variable from a register to a stack
1281 slot. This is done when an address-reference to the variable is
1282 seen. If RESCAN is true, all previously emitted instructions are
1283 examined and modified to handle the fact that DECL is now
1284 addressable. */
1286 void
1287 put_var_into_stack (tree decl, int rescan)
1289 rtx reg;
1290 enum machine_mode promoted_mode, decl_mode;
1291 struct function *function = 0;
1292 tree context;
1293 int can_use_addressof;
1294 int volatilep = TREE_CODE (decl) != SAVE_EXPR && TREE_THIS_VOLATILE (decl);
1295 int usedp = (TREE_USED (decl)
1296 || (TREE_CODE (decl) != SAVE_EXPR && DECL_INITIAL (decl) != 0));
1298 context = decl_function_context (decl);
1300 /* Get the current rtl used for this object and its original mode. */
1301 reg = (TREE_CODE (decl) == SAVE_EXPR
1302 ? SAVE_EXPR_RTL (decl)
1303 : DECL_RTL_IF_SET (decl));
1305 /* No need to do anything if decl has no rtx yet
1306 since in that case caller is setting TREE_ADDRESSABLE
1307 and a stack slot will be assigned when the rtl is made. */
1308 if (reg == 0)
1309 return;
1311 /* Get the declared mode for this object. */
1312 decl_mode = (TREE_CODE (decl) == SAVE_EXPR ? TYPE_MODE (TREE_TYPE (decl))
1313 : DECL_MODE (decl));
1314 /* Get the mode it's actually stored in. */
1315 promoted_mode = GET_MODE (reg);
1317 /* If this variable comes from an outer function, find that
1318 function's saved context. Don't use find_function_data here,
1319 because it might not be in any active function.
1320 FIXME: Is that really supposed to happen?
1321 It does in ObjC at least. */
1322 if (context != current_function_decl && context != inline_function_decl)
1323 for (function = outer_function_chain; function; function = function->outer)
1324 if (function->decl == context)
1325 break;
1327 /* If this is a variable-sized object or a structure passed by invisible
1328 reference, with a pseudo to address it, put that pseudo into the stack
1329 if the var is non-local. */
1330 if (TREE_CODE (decl) != SAVE_EXPR && DECL_NONLOCAL (decl)
1331 && GET_CODE (reg) == MEM
1332 && GET_CODE (XEXP (reg, 0)) == REG
1333 && REGNO (XEXP (reg, 0)) > LAST_VIRTUAL_REGISTER)
1335 reg = XEXP (reg, 0);
1336 decl_mode = promoted_mode = GET_MODE (reg);
1339 /* If this variable lives in the current function and we don't need to put it
1340 in the stack for the sake of setjmp or the non-locality, try to keep it in
1341 a register until we know we actually need the address. */
1342 can_use_addressof
1343 = (function == 0
1344 && ! (TREE_CODE (decl) != SAVE_EXPR && DECL_NONLOCAL (decl))
1345 && optimize > 0
1346 /* FIXME make it work for promoted modes too */
1347 && decl_mode == promoted_mode
1348 #ifdef NON_SAVING_SETJMP
1349 && ! (NON_SAVING_SETJMP && current_function_calls_setjmp)
1350 #endif
1353 /* If we can't use ADDRESSOF, make sure we see through one we already
1354 generated. */
1355 if (! can_use_addressof && GET_CODE (reg) == MEM
1356 && GET_CODE (XEXP (reg, 0)) == ADDRESSOF)
1357 reg = XEXP (XEXP (reg, 0), 0);
1359 /* Now we should have a value that resides in one or more pseudo regs. */
1361 if (GET_CODE (reg) == REG)
1363 if (can_use_addressof)
1364 gen_mem_addressof (reg, decl, rescan);
1365 else
1366 put_reg_into_stack (function, reg, TREE_TYPE (decl), promoted_mode,
1367 decl_mode, volatilep, 0, usedp, 0);
1369 else if (GET_CODE (reg) == CONCAT)
1371 /* A CONCAT contains two pseudos; put them both in the stack.
1372 We do it so they end up consecutive.
1373 We fixup references to the parts only after we fixup references
1374 to the whole CONCAT, lest we do double fixups for the latter
1375 references. */
1376 enum machine_mode part_mode = GET_MODE (XEXP (reg, 0));
1377 tree part_type = (*lang_hooks.types.type_for_mode) (part_mode, 0);
1378 rtx lopart = XEXP (reg, 0);
1379 rtx hipart = XEXP (reg, 1);
1380 #ifdef FRAME_GROWS_DOWNWARD
1381 /* Since part 0 should have a lower address, do it second. */
1382 put_reg_into_stack (function, hipart, part_type, part_mode,
1383 part_mode, volatilep, 0, 0, 0);
1384 put_reg_into_stack (function, lopart, part_type, part_mode,
1385 part_mode, volatilep, 0, 0, 0);
1386 #else
1387 put_reg_into_stack (function, lopart, part_type, part_mode,
1388 part_mode, volatilep, 0, 0, 0);
1389 put_reg_into_stack (function, hipart, part_type, part_mode,
1390 part_mode, volatilep, 0, 0, 0);
1391 #endif
1393 /* Change the CONCAT into a combined MEM for both parts. */
1394 PUT_CODE (reg, MEM);
1395 MEM_ATTRS (reg) = 0;
1397 /* set_mem_attributes uses DECL_RTL to avoid re-generating of
1398 already computed alias sets. Here we want to re-generate. */
1399 if (DECL_P (decl))
1400 SET_DECL_RTL (decl, NULL);
1401 set_mem_attributes (reg, decl, 1);
1402 if (DECL_P (decl))
1403 SET_DECL_RTL (decl, reg);
1405 /* The two parts are in memory order already.
1406 Use the lower parts address as ours. */
1407 XEXP (reg, 0) = XEXP (XEXP (reg, 0), 0);
1408 /* Prevent sharing of rtl that might lose. */
1409 if (GET_CODE (XEXP (reg, 0)) == PLUS)
1410 XEXP (reg, 0) = copy_rtx (XEXP (reg, 0));
1411 if (usedp && rescan)
1413 schedule_fixup_var_refs (function, reg, TREE_TYPE (decl),
1414 promoted_mode, 0);
1415 schedule_fixup_var_refs (function, lopart, part_type, part_mode, 0);
1416 schedule_fixup_var_refs (function, hipart, part_type, part_mode, 0);
1419 else
1420 return;
1423 /* Subroutine of put_var_into_stack. This puts a single pseudo reg REG
1424 into the stack frame of FUNCTION (0 means the current function).
1425 DECL_MODE is the machine mode of the user-level data type.
1426 PROMOTED_MODE is the machine mode of the register.
1427 VOLATILE_P is nonzero if this is for a "volatile" decl.
1428 USED_P is nonzero if this reg might have already been used in an insn. */
1430 static void
1431 put_reg_into_stack (struct function *function, rtx reg, tree type,
1432 enum machine_mode promoted_mode, enum machine_mode decl_mode,
1433 int volatile_p, unsigned int original_regno, int used_p, htab_t ht)
1435 struct function *func = function ? function : cfun;
1436 rtx new = 0;
1437 unsigned int regno = original_regno;
1439 if (regno == 0)
1440 regno = REGNO (reg);
1442 if (regno < func->x_max_parm_reg)
1443 new = func->x_parm_reg_stack_loc[regno];
1445 if (new == 0)
1446 new = assign_stack_local_1 (decl_mode, GET_MODE_SIZE (decl_mode), 0, func);
1448 PUT_CODE (reg, MEM);
1449 PUT_MODE (reg, decl_mode);
1450 XEXP (reg, 0) = XEXP (new, 0);
1451 MEM_ATTRS (reg) = 0;
1452 /* `volatil' bit means one thing for MEMs, another entirely for REGs. */
1453 MEM_VOLATILE_P (reg) = volatile_p;
1455 /* If this is a memory ref that contains aggregate components,
1456 mark it as such for cse and loop optimize. If we are reusing a
1457 previously generated stack slot, then we need to copy the bit in
1458 case it was set for other reasons. For instance, it is set for
1459 __builtin_va_alist. */
1460 if (type)
1462 MEM_SET_IN_STRUCT_P (reg,
1463 AGGREGATE_TYPE_P (type) || MEM_IN_STRUCT_P (new));
1464 set_mem_alias_set (reg, get_alias_set (type));
1467 if (used_p)
1468 schedule_fixup_var_refs (function, reg, type, promoted_mode, ht);
1471 /* Make sure that all refs to the variable, previously made
1472 when it was a register, are fixed up to be valid again.
1473 See function above for meaning of arguments. */
1475 static void
1476 schedule_fixup_var_refs (struct function *function, rtx reg, tree type,
1477 enum machine_mode promoted_mode, htab_t ht)
1479 int unsigned_p = type ? TREE_UNSIGNED (type) : 0;
1481 if (function != 0)
1483 struct var_refs_queue *temp;
1485 temp = ggc_alloc (sizeof (struct var_refs_queue));
1486 temp->modified = reg;
1487 temp->promoted_mode = promoted_mode;
1488 temp->unsignedp = unsigned_p;
1489 temp->next = function->fixup_var_refs_queue;
1490 function->fixup_var_refs_queue = temp;
1492 else
1493 /* Variable is local; fix it up now. */
1494 fixup_var_refs (reg, promoted_mode, unsigned_p, reg, ht);
1497 static void
1498 fixup_var_refs (rtx var, enum machine_mode promoted_mode, int unsignedp,
1499 rtx may_share, htab_t ht)
1501 tree pending;
1502 rtx first_insn = get_insns ();
1503 struct sequence_stack *stack = seq_stack;
1504 tree rtl_exps = rtl_expr_chain;
1506 /* If there's a hash table, it must record all uses of VAR. */
1507 if (ht)
1509 if (stack != 0)
1510 abort ();
1511 fixup_var_refs_insns_with_hash (ht, var, promoted_mode, unsignedp,
1512 may_share);
1513 return;
1516 fixup_var_refs_insns (first_insn, var, promoted_mode, unsignedp,
1517 stack == 0, may_share);
1519 /* Scan all pending sequences too. */
1520 for (; stack; stack = stack->next)
1522 push_to_full_sequence (stack->first, stack->last);
1523 fixup_var_refs_insns (stack->first, var, promoted_mode, unsignedp,
1524 stack->next != 0, may_share);
1525 /* Update remembered end of sequence
1526 in case we added an insn at the end. */
1527 stack->last = get_last_insn ();
1528 end_sequence ();
1531 /* Scan all waiting RTL_EXPRs too. */
1532 for (pending = rtl_exps; pending; pending = TREE_CHAIN (pending))
1534 rtx seq = RTL_EXPR_SEQUENCE (TREE_VALUE (pending));
1535 if (seq != const0_rtx && seq != 0)
1537 push_to_sequence (seq);
1538 fixup_var_refs_insns (seq, var, promoted_mode, unsignedp, 0,
1539 may_share);
1540 end_sequence ();
1545 /* REPLACEMENTS is a pointer to a list of the struct fixup_replacement and X is
1546 some part of an insn. Return a struct fixup_replacement whose OLD
1547 value is equal to X. Allocate a new structure if no such entry exists. */
1549 static struct fixup_replacement *
1550 find_fixup_replacement (struct fixup_replacement **replacements, rtx x)
1552 struct fixup_replacement *p;
1554 /* See if we have already replaced this. */
1555 for (p = *replacements; p != 0 && ! rtx_equal_p (p->old, x); p = p->next)
1558 if (p == 0)
1560 p = xmalloc (sizeof (struct fixup_replacement));
1561 p->old = x;
1562 p->new = 0;
1563 p->next = *replacements;
1564 *replacements = p;
1567 return p;
1570 /* Scan the insn-chain starting with INSN for refs to VAR and fix them
1571 up. TOPLEVEL is nonzero if this chain is the main chain of insns
1572 for the current function. MAY_SHARE is either a MEM that is not
1573 to be unshared or a list of them. */
1575 static void
1576 fixup_var_refs_insns (rtx insn, rtx var, enum machine_mode promoted_mode,
1577 int unsignedp, int toplevel, rtx may_share)
1579 while (insn)
1581 /* fixup_var_refs_insn might modify insn, so save its next
1582 pointer now. */
1583 rtx next = NEXT_INSN (insn);
1585 /* CALL_PLACEHOLDERs are special; we have to switch into each of
1586 the three sequences they (potentially) contain, and process
1587 them recursively. The CALL_INSN itself is not interesting. */
1589 if (GET_CODE (insn) == CALL_INSN
1590 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
1592 int i;
1594 /* Look at the Normal call, sibling call and tail recursion
1595 sequences attached to the CALL_PLACEHOLDER. */
1596 for (i = 0; i < 3; i++)
1598 rtx seq = XEXP (PATTERN (insn), i);
1599 if (seq)
1601 push_to_sequence (seq);
1602 fixup_var_refs_insns (seq, var, promoted_mode, unsignedp, 0,
1603 may_share);
1604 XEXP (PATTERN (insn), i) = get_insns ();
1605 end_sequence ();
1610 else if (INSN_P (insn))
1611 fixup_var_refs_insn (insn, var, promoted_mode, unsignedp, toplevel,
1612 may_share);
1614 insn = next;
1618 /* Look up the insns which reference VAR in HT and fix them up. Other
1619 arguments are the same as fixup_var_refs_insns.
1621 N.B. No need for special processing of CALL_PLACEHOLDERs here,
1622 because the hash table will point straight to the interesting insn
1623 (inside the CALL_PLACEHOLDER). */
1625 static void
1626 fixup_var_refs_insns_with_hash (htab_t ht, rtx var, enum machine_mode promoted_mode,
1627 int unsignedp, rtx may_share)
1629 struct insns_for_mem_entry tmp;
1630 struct insns_for_mem_entry *ime;
1631 rtx insn_list;
1633 tmp.key = var;
1634 ime = htab_find (ht, &tmp);
1635 for (insn_list = ime->insns; insn_list != 0; insn_list = XEXP (insn_list, 1))
1636 if (INSN_P (XEXP (insn_list, 0)))
1637 fixup_var_refs_insn (XEXP (insn_list, 0), var, promoted_mode,
1638 unsignedp, 1, may_share);
1642 /* Per-insn processing by fixup_var_refs_insns(_with_hash). INSN is
1643 the insn under examination, VAR is the variable to fix up
1644 references to, PROMOTED_MODE and UNSIGNEDP describe VAR, and
1645 TOPLEVEL is nonzero if this is the main insn chain for this
1646 function. */
1648 static void
1649 fixup_var_refs_insn (rtx insn, rtx var, enum machine_mode promoted_mode,
1650 int unsignedp, int toplevel, rtx no_share)
1652 rtx call_dest = 0;
1653 rtx set, prev, prev_set;
1654 rtx note;
1656 /* Remember the notes in case we delete the insn. */
1657 note = REG_NOTES (insn);
1659 /* If this is a CLOBBER of VAR, delete it.
1661 If it has a REG_LIBCALL note, delete the REG_LIBCALL
1662 and REG_RETVAL notes too. */
1663 if (GET_CODE (PATTERN (insn)) == CLOBBER
1664 && (XEXP (PATTERN (insn), 0) == var
1665 || (GET_CODE (XEXP (PATTERN (insn), 0)) == CONCAT
1666 && (XEXP (XEXP (PATTERN (insn), 0), 0) == var
1667 || XEXP (XEXP (PATTERN (insn), 0), 1) == var))))
1669 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0)
1670 /* The REG_LIBCALL note will go away since we are going to
1671 turn INSN into a NOTE, so just delete the
1672 corresponding REG_RETVAL note. */
1673 remove_note (XEXP (note, 0),
1674 find_reg_note (XEXP (note, 0), REG_RETVAL,
1675 NULL_RTX));
1677 delete_insn (insn);
1680 /* The insn to load VAR from a home in the arglist
1681 is now a no-op. When we see it, just delete it.
1682 Similarly if this is storing VAR from a register from which
1683 it was loaded in the previous insn. This will occur
1684 when an ADDRESSOF was made for an arglist slot. */
1685 else if (toplevel
1686 && (set = single_set (insn)) != 0
1687 && SET_DEST (set) == var
1688 /* If this represents the result of an insn group,
1689 don't delete the insn. */
1690 && find_reg_note (insn, REG_RETVAL, NULL_RTX) == 0
1691 && (rtx_equal_p (SET_SRC (set), var)
1692 || (GET_CODE (SET_SRC (set)) == REG
1693 && (prev = prev_nonnote_insn (insn)) != 0
1694 && (prev_set = single_set (prev)) != 0
1695 && SET_DEST (prev_set) == SET_SRC (set)
1696 && rtx_equal_p (SET_SRC (prev_set), var))))
1698 delete_insn (insn);
1700 else
1702 struct fixup_replacement *replacements = 0;
1703 rtx next_insn = NEXT_INSN (insn);
1705 if (SMALL_REGISTER_CLASSES)
1707 /* If the insn that copies the results of a CALL_INSN
1708 into a pseudo now references VAR, we have to use an
1709 intermediate pseudo since we want the life of the
1710 return value register to be only a single insn.
1712 If we don't use an intermediate pseudo, such things as
1713 address computations to make the address of VAR valid
1714 if it is not can be placed between the CALL_INSN and INSN.
1716 To make sure this doesn't happen, we record the destination
1717 of the CALL_INSN and see if the next insn uses both that
1718 and VAR. */
1720 if (call_dest != 0 && GET_CODE (insn) == INSN
1721 && reg_mentioned_p (var, PATTERN (insn))
1722 && reg_mentioned_p (call_dest, PATTERN (insn)))
1724 rtx temp = gen_reg_rtx (GET_MODE (call_dest));
1726 emit_insn_before (gen_move_insn (temp, call_dest), insn);
1728 PATTERN (insn) = replace_rtx (PATTERN (insn),
1729 call_dest, temp);
1732 if (GET_CODE (insn) == CALL_INSN
1733 && GET_CODE (PATTERN (insn)) == SET)
1734 call_dest = SET_DEST (PATTERN (insn));
1735 else if (GET_CODE (insn) == CALL_INSN
1736 && GET_CODE (PATTERN (insn)) == PARALLEL
1737 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1738 call_dest = SET_DEST (XVECEXP (PATTERN (insn), 0, 0));
1739 else
1740 call_dest = 0;
1743 /* See if we have to do anything to INSN now that VAR is in
1744 memory. If it needs to be loaded into a pseudo, use a single
1745 pseudo for the entire insn in case there is a MATCH_DUP
1746 between two operands. We pass a pointer to the head of
1747 a list of struct fixup_replacements. If fixup_var_refs_1
1748 needs to allocate pseudos or replacement MEMs (for SUBREGs),
1749 it will record them in this list.
1751 If it allocated a pseudo for any replacement, we copy into
1752 it here. */
1754 fixup_var_refs_1 (var, promoted_mode, &PATTERN (insn), insn,
1755 &replacements, no_share);
1757 /* If this is last_parm_insn, and any instructions were output
1758 after it to fix it up, then we must set last_parm_insn to
1759 the last such instruction emitted. */
1760 if (insn == last_parm_insn)
1761 last_parm_insn = PREV_INSN (next_insn);
1763 while (replacements)
1765 struct fixup_replacement *next;
1767 if (GET_CODE (replacements->new) == REG)
1769 rtx insert_before;
1770 rtx seq;
1772 /* OLD might be a (subreg (mem)). */
1773 if (GET_CODE (replacements->old) == SUBREG)
1774 replacements->old
1775 = fixup_memory_subreg (replacements->old, insn,
1776 promoted_mode, 0);
1777 else
1778 replacements->old
1779 = fixup_stack_1 (replacements->old, insn);
1781 insert_before = insn;
1783 /* If we are changing the mode, do a conversion.
1784 This might be wasteful, but combine.c will
1785 eliminate much of the waste. */
1787 if (GET_MODE (replacements->new)
1788 != GET_MODE (replacements->old))
1790 start_sequence ();
1791 convert_move (replacements->new,
1792 replacements->old, unsignedp);
1793 seq = get_insns ();
1794 end_sequence ();
1796 else
1797 seq = gen_move_insn (replacements->new,
1798 replacements->old);
1800 emit_insn_before (seq, insert_before);
1803 next = replacements->next;
1804 free (replacements);
1805 replacements = next;
1809 /* Also fix up any invalid exprs in the REG_NOTES of this insn.
1810 But don't touch other insns referred to by reg-notes;
1811 we will get them elsewhere. */
1812 while (note)
1814 if (GET_CODE (note) != INSN_LIST)
1815 XEXP (note, 0)
1816 = walk_fixup_memory_subreg (XEXP (note, 0), insn,
1817 promoted_mode, 1);
1818 note = XEXP (note, 1);
1822 /* VAR is a MEM that used to be a pseudo register with mode PROMOTED_MODE.
1823 See if the rtx expression at *LOC in INSN needs to be changed.
1825 REPLACEMENTS is a pointer to a list head that starts out zero, but may
1826 contain a list of original rtx's and replacements. If we find that we need
1827 to modify this insn by replacing a memory reference with a pseudo or by
1828 making a new MEM to implement a SUBREG, we consult that list to see if
1829 we have already chosen a replacement. If none has already been allocated,
1830 we allocate it and update the list. fixup_var_refs_insn will copy VAR
1831 or the SUBREG, as appropriate, to the pseudo. */
1833 static void
1834 fixup_var_refs_1 (rtx var, enum machine_mode promoted_mode, rtx *loc, rtx insn,
1835 struct fixup_replacement **replacements, rtx no_share)
1837 int i;
1838 rtx x = *loc;
1839 RTX_CODE code = GET_CODE (x);
1840 const char *fmt;
1841 rtx tem, tem1;
1842 struct fixup_replacement *replacement;
1844 switch (code)
1846 case ADDRESSOF:
1847 if (XEXP (x, 0) == var)
1849 /* Prevent sharing of rtl that might lose. */
1850 rtx sub = copy_rtx (XEXP (var, 0));
1852 if (! validate_change (insn, loc, sub, 0))
1854 rtx y = gen_reg_rtx (GET_MODE (sub));
1855 rtx seq, new_insn;
1857 /* We should be able to replace with a register or all is lost.
1858 Note that we can't use validate_change to verify this, since
1859 we're not caring for replacing all dups simultaneously. */
1860 if (! validate_replace_rtx (*loc, y, insn))
1861 abort ();
1863 /* Careful! First try to recognize a direct move of the
1864 value, mimicking how things are done in gen_reload wrt
1865 PLUS. Consider what happens when insn is a conditional
1866 move instruction and addsi3 clobbers flags. */
1868 start_sequence ();
1869 new_insn = emit_insn (gen_rtx_SET (VOIDmode, y, sub));
1870 seq = get_insns ();
1871 end_sequence ();
1873 if (recog_memoized (new_insn) < 0)
1875 /* That failed. Fall back on force_operand and hope. */
1877 start_sequence ();
1878 sub = force_operand (sub, y);
1879 if (sub != y)
1880 emit_insn (gen_move_insn (y, sub));
1881 seq = get_insns ();
1882 end_sequence ();
1885 #ifdef HAVE_cc0
1886 /* Don't separate setter from user. */
1887 if (PREV_INSN (insn) && sets_cc0_p (PREV_INSN (insn)))
1888 insn = PREV_INSN (insn);
1889 #endif
1891 emit_insn_before (seq, insn);
1894 return;
1896 case MEM:
1897 if (var == x)
1899 /* If we already have a replacement, use it. Otherwise,
1900 try to fix up this address in case it is invalid. */
1902 replacement = find_fixup_replacement (replacements, var);
1903 if (replacement->new)
1905 *loc = replacement->new;
1906 return;
1909 *loc = replacement->new = x = fixup_stack_1 (x, insn);
1911 /* Unless we are forcing memory to register or we changed the mode,
1912 we can leave things the way they are if the insn is valid. */
1914 INSN_CODE (insn) = -1;
1915 if (! flag_force_mem && GET_MODE (x) == promoted_mode
1916 && recog_memoized (insn) >= 0)
1917 return;
1919 *loc = replacement->new = gen_reg_rtx (promoted_mode);
1920 return;
1923 /* If X contains VAR, we need to unshare it here so that we update
1924 each occurrence separately. But all identical MEMs in one insn
1925 must be replaced with the same rtx because of the possibility of
1926 MATCH_DUPs. */
1928 if (reg_mentioned_p (var, x))
1930 replacement = find_fixup_replacement (replacements, x);
1931 if (replacement->new == 0)
1932 replacement->new = copy_most_rtx (x, no_share);
1934 *loc = x = replacement->new;
1935 code = GET_CODE (x);
1937 break;
1939 case REG:
1940 case CC0:
1941 case PC:
1942 case CONST_INT:
1943 case CONST:
1944 case SYMBOL_REF:
1945 case LABEL_REF:
1946 case CONST_DOUBLE:
1947 case CONST_VECTOR:
1948 return;
1950 case SIGN_EXTRACT:
1951 case ZERO_EXTRACT:
1952 /* Note that in some cases those types of expressions are altered
1953 by optimize_bit_field, and do not survive to get here. */
1954 if (XEXP (x, 0) == var
1955 || (GET_CODE (XEXP (x, 0)) == SUBREG
1956 && SUBREG_REG (XEXP (x, 0)) == var))
1958 /* Get TEM as a valid MEM in the mode presently in the insn.
1960 We don't worry about the possibility of MATCH_DUP here; it
1961 is highly unlikely and would be tricky to handle. */
1963 tem = XEXP (x, 0);
1964 if (GET_CODE (tem) == SUBREG)
1966 if (GET_MODE_BITSIZE (GET_MODE (tem))
1967 > GET_MODE_BITSIZE (GET_MODE (var)))
1969 replacement = find_fixup_replacement (replacements, var);
1970 if (replacement->new == 0)
1971 replacement->new = gen_reg_rtx (GET_MODE (var));
1972 SUBREG_REG (tem) = replacement->new;
1974 /* The following code works only if we have a MEM, so we
1975 need to handle the subreg here. We directly substitute
1976 it assuming that a subreg must be OK here. We already
1977 scheduled a replacement to copy the mem into the
1978 subreg. */
1979 XEXP (x, 0) = tem;
1980 return;
1982 else
1983 tem = fixup_memory_subreg (tem, insn, promoted_mode, 0);
1985 else
1986 tem = fixup_stack_1 (tem, insn);
1988 /* Unless we want to load from memory, get TEM into the proper mode
1989 for an extract from memory. This can only be done if the
1990 extract is at a constant position and length. */
1992 if (! flag_force_mem && GET_CODE (XEXP (x, 1)) == CONST_INT
1993 && GET_CODE (XEXP (x, 2)) == CONST_INT
1994 && ! mode_dependent_address_p (XEXP (tem, 0))
1995 && ! MEM_VOLATILE_P (tem))
1997 enum machine_mode wanted_mode = VOIDmode;
1998 enum machine_mode is_mode = GET_MODE (tem);
1999 HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
2001 if (GET_CODE (x) == ZERO_EXTRACT)
2003 enum machine_mode new_mode
2004 = mode_for_extraction (EP_extzv, 1);
2005 if (new_mode != MAX_MACHINE_MODE)
2006 wanted_mode = new_mode;
2008 else if (GET_CODE (x) == SIGN_EXTRACT)
2010 enum machine_mode new_mode
2011 = mode_for_extraction (EP_extv, 1);
2012 if (new_mode != MAX_MACHINE_MODE)
2013 wanted_mode = new_mode;
2016 /* If we have a narrower mode, we can do something. */
2017 if (wanted_mode != VOIDmode
2018 && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
2020 HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
2021 rtx old_pos = XEXP (x, 2);
2022 rtx newmem;
2024 /* If the bytes and bits are counted differently, we
2025 must adjust the offset. */
2026 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
2027 offset = (GET_MODE_SIZE (is_mode)
2028 - GET_MODE_SIZE (wanted_mode) - offset);
2030 pos %= GET_MODE_BITSIZE (wanted_mode);
2032 newmem = adjust_address_nv (tem, wanted_mode, offset);
2034 /* Make the change and see if the insn remains valid. */
2035 INSN_CODE (insn) = -1;
2036 XEXP (x, 0) = newmem;
2037 XEXP (x, 2) = GEN_INT (pos);
2039 if (recog_memoized (insn) >= 0)
2040 return;
2042 /* Otherwise, restore old position. XEXP (x, 0) will be
2043 restored later. */
2044 XEXP (x, 2) = old_pos;
2048 /* If we get here, the bitfield extract insn can't accept a memory
2049 reference. Copy the input into a register. */
2051 tem1 = gen_reg_rtx (GET_MODE (tem));
2052 emit_insn_before (gen_move_insn (tem1, tem), insn);
2053 XEXP (x, 0) = tem1;
2054 return;
2056 break;
2058 case SUBREG:
2059 if (SUBREG_REG (x) == var)
2061 /* If this is a special SUBREG made because VAR was promoted
2062 from a wider mode, replace it with VAR and call ourself
2063 recursively, this time saying that the object previously
2064 had its current mode (by virtue of the SUBREG). */
2066 if (SUBREG_PROMOTED_VAR_P (x))
2068 *loc = var;
2069 fixup_var_refs_1 (var, GET_MODE (var), loc, insn, replacements,
2070 no_share);
2071 return;
2074 /* If this SUBREG makes VAR wider, it has become a paradoxical
2075 SUBREG with VAR in memory, but these aren't allowed at this
2076 stage of the compilation. So load VAR into a pseudo and take
2077 a SUBREG of that pseudo. */
2078 if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (var)))
2080 replacement = find_fixup_replacement (replacements, var);
2081 if (replacement->new == 0)
2082 replacement->new = gen_reg_rtx (promoted_mode);
2083 SUBREG_REG (x) = replacement->new;
2084 return;
2087 /* See if we have already found a replacement for this SUBREG.
2088 If so, use it. Otherwise, make a MEM and see if the insn
2089 is recognized. If not, or if we should force MEM into a register,
2090 make a pseudo for this SUBREG. */
2091 replacement = find_fixup_replacement (replacements, x);
2092 if (replacement->new)
2094 *loc = replacement->new;
2095 return;
2098 replacement->new = *loc = fixup_memory_subreg (x, insn,
2099 promoted_mode, 0);
2101 INSN_CODE (insn) = -1;
2102 if (! flag_force_mem && recog_memoized (insn) >= 0)
2103 return;
2105 *loc = replacement->new = gen_reg_rtx (GET_MODE (x));
2106 return;
2108 break;
2110 case SET:
2111 /* First do special simplification of bit-field references. */
2112 if (GET_CODE (SET_DEST (x)) == SIGN_EXTRACT
2113 || GET_CODE (SET_DEST (x)) == ZERO_EXTRACT)
2114 optimize_bit_field (x, insn, 0);
2115 if (GET_CODE (SET_SRC (x)) == SIGN_EXTRACT
2116 || GET_CODE (SET_SRC (x)) == ZERO_EXTRACT)
2117 optimize_bit_field (x, insn, 0);
2119 /* For a paradoxical SUBREG inside a ZERO_EXTRACT, load the object
2120 into a register and then store it back out. */
2121 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
2122 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG
2123 && SUBREG_REG (XEXP (SET_DEST (x), 0)) == var
2124 && (GET_MODE_SIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
2125 > GET_MODE_SIZE (GET_MODE (var))))
2127 replacement = find_fixup_replacement (replacements, var);
2128 if (replacement->new == 0)
2129 replacement->new = gen_reg_rtx (GET_MODE (var));
2131 SUBREG_REG (XEXP (SET_DEST (x), 0)) = replacement->new;
2132 emit_insn_after (gen_move_insn (var, replacement->new), insn);
2135 /* If SET_DEST is now a paradoxical SUBREG, put the result of this
2136 insn into a pseudo and store the low part of the pseudo into VAR. */
2137 if (GET_CODE (SET_DEST (x)) == SUBREG
2138 && SUBREG_REG (SET_DEST (x)) == var
2139 && (GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
2140 > GET_MODE_SIZE (GET_MODE (var))))
2142 SET_DEST (x) = tem = gen_reg_rtx (GET_MODE (SET_DEST (x)));
2143 emit_insn_after (gen_move_insn (var, gen_lowpart (GET_MODE (var),
2144 tem)),
2145 insn);
2146 break;
2150 rtx dest = SET_DEST (x);
2151 rtx src = SET_SRC (x);
2152 rtx outerdest = dest;
2154 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2155 || GET_CODE (dest) == SIGN_EXTRACT
2156 || GET_CODE (dest) == ZERO_EXTRACT)
2157 dest = XEXP (dest, 0);
2159 if (GET_CODE (src) == SUBREG)
2160 src = SUBREG_REG (src);
2162 /* If VAR does not appear at the top level of the SET
2163 just scan the lower levels of the tree. */
2165 if (src != var && dest != var)
2166 break;
2168 /* We will need to rerecognize this insn. */
2169 INSN_CODE (insn) = -1;
2171 if (GET_CODE (outerdest) == ZERO_EXTRACT && dest == var
2172 && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
2174 /* Since this case will return, ensure we fixup all the
2175 operands here. */
2176 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 1),
2177 insn, replacements, no_share);
2178 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 2),
2179 insn, replacements, no_share);
2180 fixup_var_refs_1 (var, promoted_mode, &SET_SRC (x),
2181 insn, replacements, no_share);
2183 tem = XEXP (outerdest, 0);
2185 /* Clean up (SUBREG:SI (MEM:mode ...) 0)
2186 that may appear inside a ZERO_EXTRACT.
2187 This was legitimate when the MEM was a REG. */
2188 if (GET_CODE (tem) == SUBREG
2189 && SUBREG_REG (tem) == var)
2190 tem = fixup_memory_subreg (tem, insn, promoted_mode, 0);
2191 else
2192 tem = fixup_stack_1 (tem, insn);
2194 if (GET_CODE (XEXP (outerdest, 1)) == CONST_INT
2195 && GET_CODE (XEXP (outerdest, 2)) == CONST_INT
2196 && ! mode_dependent_address_p (XEXP (tem, 0))
2197 && ! MEM_VOLATILE_P (tem))
2199 enum machine_mode wanted_mode;
2200 enum machine_mode is_mode = GET_MODE (tem);
2201 HOST_WIDE_INT pos = INTVAL (XEXP (outerdest, 2));
2203 wanted_mode = mode_for_extraction (EP_insv, 0);
2205 /* If we have a narrower mode, we can do something. */
2206 if (GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
2208 HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
2209 rtx old_pos = XEXP (outerdest, 2);
2210 rtx newmem;
2212 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
2213 offset = (GET_MODE_SIZE (is_mode)
2214 - GET_MODE_SIZE (wanted_mode) - offset);
2216 pos %= GET_MODE_BITSIZE (wanted_mode);
2218 newmem = adjust_address_nv (tem, wanted_mode, offset);
2220 /* Make the change and see if the insn remains valid. */
2221 INSN_CODE (insn) = -1;
2222 XEXP (outerdest, 0) = newmem;
2223 XEXP (outerdest, 2) = GEN_INT (pos);
2225 if (recog_memoized (insn) >= 0)
2226 return;
2228 /* Otherwise, restore old position. XEXP (x, 0) will be
2229 restored later. */
2230 XEXP (outerdest, 2) = old_pos;
2234 /* If we get here, the bit-field store doesn't allow memory
2235 or isn't located at a constant position. Load the value into
2236 a register, do the store, and put it back into memory. */
2238 tem1 = gen_reg_rtx (GET_MODE (tem));
2239 emit_insn_before (gen_move_insn (tem1, tem), insn);
2240 emit_insn_after (gen_move_insn (tem, tem1), insn);
2241 XEXP (outerdest, 0) = tem1;
2242 return;
2245 /* STRICT_LOW_PART is a no-op on memory references
2246 and it can cause combinations to be unrecognizable,
2247 so eliminate it. */
2249 if (dest == var && GET_CODE (SET_DEST (x)) == STRICT_LOW_PART)
2250 SET_DEST (x) = XEXP (SET_DEST (x), 0);
2252 /* A valid insn to copy VAR into or out of a register
2253 must be left alone, to avoid an infinite loop here.
2254 If the reference to VAR is by a subreg, fix that up,
2255 since SUBREG is not valid for a memref.
2256 Also fix up the address of the stack slot.
2258 Note that we must not try to recognize the insn until
2259 after we know that we have valid addresses and no
2260 (subreg (mem ...) ...) constructs, since these interfere
2261 with determining the validity of the insn. */
2263 if ((SET_SRC (x) == var
2264 || (GET_CODE (SET_SRC (x)) == SUBREG
2265 && SUBREG_REG (SET_SRC (x)) == var))
2266 && (GET_CODE (SET_DEST (x)) == REG
2267 || (GET_CODE (SET_DEST (x)) == SUBREG
2268 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG))
2269 && GET_MODE (var) == promoted_mode
2270 && x == single_set (insn))
2272 rtx pat, last;
2274 if (GET_CODE (SET_SRC (x)) == SUBREG
2275 && (GET_MODE_SIZE (GET_MODE (SET_SRC (x)))
2276 > GET_MODE_SIZE (GET_MODE (var))))
2278 /* This (subreg VAR) is now a paradoxical subreg. We need
2279 to replace VAR instead of the subreg. */
2280 replacement = find_fixup_replacement (replacements, var);
2281 if (replacement->new == NULL_RTX)
2282 replacement->new = gen_reg_rtx (GET_MODE (var));
2283 SUBREG_REG (SET_SRC (x)) = replacement->new;
2285 else
2287 replacement = find_fixup_replacement (replacements, SET_SRC (x));
2288 if (replacement->new)
2289 SET_SRC (x) = replacement->new;
2290 else if (GET_CODE (SET_SRC (x)) == SUBREG)
2291 SET_SRC (x) = replacement->new
2292 = fixup_memory_subreg (SET_SRC (x), insn, promoted_mode,
2294 else
2295 SET_SRC (x) = replacement->new
2296 = fixup_stack_1 (SET_SRC (x), insn);
2299 if (recog_memoized (insn) >= 0)
2300 return;
2302 /* INSN is not valid, but we know that we want to
2303 copy SET_SRC (x) to SET_DEST (x) in some way. So
2304 we generate the move and see whether it requires more
2305 than one insn. If it does, we emit those insns and
2306 delete INSN. Otherwise, we can just replace the pattern
2307 of INSN; we have already verified above that INSN has
2308 no other function that to do X. */
2310 pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2311 if (NEXT_INSN (pat) != NULL_RTX)
2313 last = emit_insn_before (pat, insn);
2315 /* INSN might have REG_RETVAL or other important notes, so
2316 we need to store the pattern of the last insn in the
2317 sequence into INSN similarly to the normal case. LAST
2318 should not have REG_NOTES, but we allow them if INSN has
2319 no REG_NOTES. */
2320 if (REG_NOTES (last) && REG_NOTES (insn))
2321 abort ();
2322 if (REG_NOTES (last))
2323 REG_NOTES (insn) = REG_NOTES (last);
2324 PATTERN (insn) = PATTERN (last);
2326 delete_insn (last);
2328 else
2329 PATTERN (insn) = PATTERN (pat);
2331 return;
2334 if ((SET_DEST (x) == var
2335 || (GET_CODE (SET_DEST (x)) == SUBREG
2336 && SUBREG_REG (SET_DEST (x)) == var))
2337 && (GET_CODE (SET_SRC (x)) == REG
2338 || (GET_CODE (SET_SRC (x)) == SUBREG
2339 && GET_CODE (SUBREG_REG (SET_SRC (x))) == REG))
2340 && GET_MODE (var) == promoted_mode
2341 && x == single_set (insn))
2343 rtx pat, last;
2345 if (GET_CODE (SET_DEST (x)) == SUBREG)
2346 SET_DEST (x) = fixup_memory_subreg (SET_DEST (x), insn,
2347 promoted_mode, 0);
2348 else
2349 SET_DEST (x) = fixup_stack_1 (SET_DEST (x), insn);
2351 if (recog_memoized (insn) >= 0)
2352 return;
2354 pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2355 if (NEXT_INSN (pat) != NULL_RTX)
2357 last = emit_insn_before (pat, insn);
2359 /* INSN might have REG_RETVAL or other important notes, so
2360 we need to store the pattern of the last insn in the
2361 sequence into INSN similarly to the normal case. LAST
2362 should not have REG_NOTES, but we allow them if INSN has
2363 no REG_NOTES. */
2364 if (REG_NOTES (last) && REG_NOTES (insn))
2365 abort ();
2366 if (REG_NOTES (last))
2367 REG_NOTES (insn) = REG_NOTES (last);
2368 PATTERN (insn) = PATTERN (last);
2370 delete_insn (last);
2372 else
2373 PATTERN (insn) = PATTERN (pat);
2375 return;
2378 /* Otherwise, storing into VAR must be handled specially
2379 by storing into a temporary and copying that into VAR
2380 with a new insn after this one. Note that this case
2381 will be used when storing into a promoted scalar since
2382 the insn will now have different modes on the input
2383 and output and hence will be invalid (except for the case
2384 of setting it to a constant, which does not need any
2385 change if it is valid). We generate extra code in that case,
2386 but combine.c will eliminate it. */
2388 if (dest == var)
2390 rtx temp;
2391 rtx fixeddest = SET_DEST (x);
2392 enum machine_mode temp_mode;
2394 /* STRICT_LOW_PART can be discarded, around a MEM. */
2395 if (GET_CODE (fixeddest) == STRICT_LOW_PART)
2396 fixeddest = XEXP (fixeddest, 0);
2397 /* Convert (SUBREG (MEM)) to a MEM in a changed mode. */
2398 if (GET_CODE (fixeddest) == SUBREG)
2400 fixeddest = fixup_memory_subreg (fixeddest, insn,
2401 promoted_mode, 0);
2402 temp_mode = GET_MODE (fixeddest);
2404 else
2406 fixeddest = fixup_stack_1 (fixeddest, insn);
2407 temp_mode = promoted_mode;
2410 temp = gen_reg_rtx (temp_mode);
2412 emit_insn_after (gen_move_insn (fixeddest,
2413 gen_lowpart (GET_MODE (fixeddest),
2414 temp)),
2415 insn);
2417 SET_DEST (x) = temp;
2421 default:
2422 break;
2425 /* Nothing special about this RTX; fix its operands. */
2427 fmt = GET_RTX_FORMAT (code);
2428 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2430 if (fmt[i] == 'e')
2431 fixup_var_refs_1 (var, promoted_mode, &XEXP (x, i), insn, replacements,
2432 no_share);
2433 else if (fmt[i] == 'E')
2435 int j;
2436 for (j = 0; j < XVECLEN (x, i); j++)
2437 fixup_var_refs_1 (var, promoted_mode, &XVECEXP (x, i, j),
2438 insn, replacements, no_share);
2443 /* Previously, X had the form (SUBREG:m1 (REG:PROMOTED_MODE ...)).
2444 The REG was placed on the stack, so X now has the form (SUBREG:m1
2445 (MEM:m2 ...)).
2447 Return an rtx (MEM:m1 newaddr) which is equivalent. If any insns
2448 must be emitted to compute NEWADDR, put them before INSN.
2450 UNCRITICAL nonzero means accept paradoxical subregs.
2451 This is used for subregs found inside REG_NOTES. */
2453 static rtx
2454 fixup_memory_subreg (rtx x, rtx insn, enum machine_mode promoted_mode, int uncritical)
2456 int offset;
2457 rtx mem = SUBREG_REG (x);
2458 rtx addr = XEXP (mem, 0);
2459 enum machine_mode mode = GET_MODE (x);
2460 rtx result, seq;
2462 /* Paradoxical SUBREGs are usually invalid during RTL generation. */
2463 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (mem)) && ! uncritical)
2464 abort ();
2466 offset = SUBREG_BYTE (x);
2467 if (BYTES_BIG_ENDIAN)
2468 /* If the PROMOTED_MODE is wider than the mode of the MEM, adjust
2469 the offset so that it points to the right location within the
2470 MEM. */
2471 offset -= (GET_MODE_SIZE (promoted_mode) - GET_MODE_SIZE (GET_MODE (mem)));
2473 if (!flag_force_addr
2474 && memory_address_p (mode, plus_constant (addr, offset)))
2475 /* Shortcut if no insns need be emitted. */
2476 return adjust_address (mem, mode, offset);
2478 start_sequence ();
2479 result = adjust_address (mem, mode, offset);
2480 seq = get_insns ();
2481 end_sequence ();
2483 emit_insn_before (seq, insn);
2484 return result;
2487 /* Do fixup_memory_subreg on all (SUBREG (MEM ...) ...) contained in X.
2488 Replace subexpressions of X in place.
2489 If X itself is a (SUBREG (MEM ...) ...), return the replacement expression.
2490 Otherwise return X, with its contents possibly altered.
2492 INSN, PROMOTED_MODE and UNCRITICAL are as for
2493 fixup_memory_subreg. */
2495 static rtx
2496 walk_fixup_memory_subreg (rtx x, rtx insn, enum machine_mode promoted_mode,
2497 int uncritical)
2499 enum rtx_code code;
2500 const char *fmt;
2501 int i;
2503 if (x == 0)
2504 return 0;
2506 code = GET_CODE (x);
2508 if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
2509 return fixup_memory_subreg (x, insn, promoted_mode, uncritical);
2511 /* Nothing special about this RTX; fix its operands. */
2513 fmt = GET_RTX_FORMAT (code);
2514 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2516 if (fmt[i] == 'e')
2517 XEXP (x, i) = walk_fixup_memory_subreg (XEXP (x, i), insn,
2518 promoted_mode, uncritical);
2519 else if (fmt[i] == 'E')
2521 int j;
2522 for (j = 0; j < XVECLEN (x, i); j++)
2523 XVECEXP (x, i, j)
2524 = walk_fixup_memory_subreg (XVECEXP (x, i, j), insn,
2525 promoted_mode, uncritical);
2528 return x;
2531 /* For each memory ref within X, if it refers to a stack slot
2532 with an out of range displacement, put the address in a temp register
2533 (emitting new insns before INSN to load these registers)
2534 and alter the memory ref to use that register.
2535 Replace each such MEM rtx with a copy, to avoid clobberage. */
2537 static rtx
2538 fixup_stack_1 (rtx x, rtx insn)
2540 int i;
2541 RTX_CODE code = GET_CODE (x);
2542 const char *fmt;
2544 if (code == MEM)
2546 rtx ad = XEXP (x, 0);
2547 /* If we have address of a stack slot but it's not valid
2548 (displacement is too large), compute the sum in a register. */
2549 if (GET_CODE (ad) == PLUS
2550 && GET_CODE (XEXP (ad, 0)) == REG
2551 && ((REGNO (XEXP (ad, 0)) >= FIRST_VIRTUAL_REGISTER
2552 && REGNO (XEXP (ad, 0)) <= LAST_VIRTUAL_REGISTER)
2553 || REGNO (XEXP (ad, 0)) == FRAME_POINTER_REGNUM
2554 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2555 || REGNO (XEXP (ad, 0)) == HARD_FRAME_POINTER_REGNUM
2556 #endif
2557 || REGNO (XEXP (ad, 0)) == STACK_POINTER_REGNUM
2558 || REGNO (XEXP (ad, 0)) == ARG_POINTER_REGNUM
2559 || XEXP (ad, 0) == current_function_internal_arg_pointer)
2560 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
2562 rtx temp, seq;
2563 if (memory_address_p (GET_MODE (x), ad))
2564 return x;
2566 start_sequence ();
2567 temp = copy_to_reg (ad);
2568 seq = get_insns ();
2569 end_sequence ();
2570 emit_insn_before (seq, insn);
2571 return replace_equiv_address (x, temp);
2573 return x;
2576 fmt = GET_RTX_FORMAT (code);
2577 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2579 if (fmt[i] == 'e')
2580 XEXP (x, i) = fixup_stack_1 (XEXP (x, i), insn);
2581 else if (fmt[i] == 'E')
2583 int j;
2584 for (j = 0; j < XVECLEN (x, i); j++)
2585 XVECEXP (x, i, j) = fixup_stack_1 (XVECEXP (x, i, j), insn);
2588 return x;
2591 /* Optimization: a bit-field instruction whose field
2592 happens to be a byte or halfword in memory
2593 can be changed to a move instruction.
2595 We call here when INSN is an insn to examine or store into a bit-field.
2596 BODY is the SET-rtx to be altered.
2598 EQUIV_MEM is the table `reg_equiv_mem' if that is available; else 0.
2599 (Currently this is called only from function.c, and EQUIV_MEM
2600 is always 0.) */
2602 static void
2603 optimize_bit_field (rtx body, rtx insn, rtx *equiv_mem)
2605 rtx bitfield;
2606 int destflag;
2607 rtx seq = 0;
2608 enum machine_mode mode;
2610 if (GET_CODE (SET_DEST (body)) == SIGN_EXTRACT
2611 || GET_CODE (SET_DEST (body)) == ZERO_EXTRACT)
2612 bitfield = SET_DEST (body), destflag = 1;
2613 else
2614 bitfield = SET_SRC (body), destflag = 0;
2616 /* First check that the field being stored has constant size and position
2617 and is in fact a byte or halfword suitably aligned. */
2619 if (GET_CODE (XEXP (bitfield, 1)) == CONST_INT
2620 && GET_CODE (XEXP (bitfield, 2)) == CONST_INT
2621 && ((mode = mode_for_size (INTVAL (XEXP (bitfield, 1)), MODE_INT, 1))
2622 != BLKmode)
2623 && INTVAL (XEXP (bitfield, 2)) % INTVAL (XEXP (bitfield, 1)) == 0)
2625 rtx memref = 0;
2627 /* Now check that the containing word is memory, not a register,
2628 and that it is safe to change the machine mode. */
2630 if (GET_CODE (XEXP (bitfield, 0)) == MEM)
2631 memref = XEXP (bitfield, 0);
2632 else if (GET_CODE (XEXP (bitfield, 0)) == REG
2633 && equiv_mem != 0)
2634 memref = equiv_mem[REGNO (XEXP (bitfield, 0))];
2635 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
2636 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == MEM)
2637 memref = SUBREG_REG (XEXP (bitfield, 0));
2638 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
2639 && equiv_mem != 0
2640 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == REG)
2641 memref = equiv_mem[REGNO (SUBREG_REG (XEXP (bitfield, 0)))];
2643 if (memref
2644 && ! mode_dependent_address_p (XEXP (memref, 0))
2645 && ! MEM_VOLATILE_P (memref))
2647 /* Now adjust the address, first for any subreg'ing
2648 that we are now getting rid of,
2649 and then for which byte of the word is wanted. */
2651 HOST_WIDE_INT offset = INTVAL (XEXP (bitfield, 2));
2652 rtx insns;
2654 /* Adjust OFFSET to count bits from low-address byte. */
2655 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
2656 offset = (GET_MODE_BITSIZE (GET_MODE (XEXP (bitfield, 0)))
2657 - offset - INTVAL (XEXP (bitfield, 1)));
2659 /* Adjust OFFSET to count bytes from low-address byte. */
2660 offset /= BITS_PER_UNIT;
2661 if (GET_CODE (XEXP (bitfield, 0)) == SUBREG)
2663 offset += (SUBREG_BYTE (XEXP (bitfield, 0))
2664 / UNITS_PER_WORD) * UNITS_PER_WORD;
2665 if (BYTES_BIG_ENDIAN)
2666 offset -= (MIN (UNITS_PER_WORD,
2667 GET_MODE_SIZE (GET_MODE (XEXP (bitfield, 0))))
2668 - MIN (UNITS_PER_WORD,
2669 GET_MODE_SIZE (GET_MODE (memref))));
2672 start_sequence ();
2673 memref = adjust_address (memref, mode, offset);
2674 insns = get_insns ();
2675 end_sequence ();
2676 emit_insn_before (insns, insn);
2678 /* Store this memory reference where
2679 we found the bit field reference. */
2681 if (destflag)
2683 validate_change (insn, &SET_DEST (body), memref, 1);
2684 if (! CONSTANT_ADDRESS_P (SET_SRC (body)))
2686 rtx src = SET_SRC (body);
2687 while (GET_CODE (src) == SUBREG
2688 && SUBREG_BYTE (src) == 0)
2689 src = SUBREG_REG (src);
2690 if (GET_MODE (src) != GET_MODE (memref))
2691 src = gen_lowpart (GET_MODE (memref), SET_SRC (body));
2692 validate_change (insn, &SET_SRC (body), src, 1);
2694 else if (GET_MODE (SET_SRC (body)) != VOIDmode
2695 && GET_MODE (SET_SRC (body)) != GET_MODE (memref))
2696 /* This shouldn't happen because anything that didn't have
2697 one of these modes should have got converted explicitly
2698 and then referenced through a subreg.
2699 This is so because the original bit-field was
2700 handled by agg_mode and so its tree structure had
2701 the same mode that memref now has. */
2702 abort ();
2704 else
2706 rtx dest = SET_DEST (body);
2708 while (GET_CODE (dest) == SUBREG
2709 && SUBREG_BYTE (dest) == 0
2710 && (GET_MODE_CLASS (GET_MODE (dest))
2711 == GET_MODE_CLASS (GET_MODE (SUBREG_REG (dest))))
2712 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
2713 <= UNITS_PER_WORD))
2714 dest = SUBREG_REG (dest);
2716 validate_change (insn, &SET_DEST (body), dest, 1);
2718 if (GET_MODE (dest) == GET_MODE (memref))
2719 validate_change (insn, &SET_SRC (body), memref, 1);
2720 else
2722 /* Convert the mem ref to the destination mode. */
2723 rtx newreg = gen_reg_rtx (GET_MODE (dest));
2725 start_sequence ();
2726 convert_move (newreg, memref,
2727 GET_CODE (SET_SRC (body)) == ZERO_EXTRACT);
2728 seq = get_insns ();
2729 end_sequence ();
2731 validate_change (insn, &SET_SRC (body), newreg, 1);
2735 /* See if we can convert this extraction or insertion into
2736 a simple move insn. We might not be able to do so if this
2737 was, for example, part of a PARALLEL.
2739 If we succeed, write out any needed conversions. If we fail,
2740 it is hard to guess why we failed, so don't do anything
2741 special; just let the optimization be suppressed. */
2743 if (apply_change_group () && seq)
2744 emit_insn_before (seq, insn);
2749 /* These routines are responsible for converting virtual register references
2750 to the actual hard register references once RTL generation is complete.
2752 The following four variables are used for communication between the
2753 routines. They contain the offsets of the virtual registers from their
2754 respective hard registers. */
2756 static int in_arg_offset;
2757 static int var_offset;
2758 static int dynamic_offset;
2759 static int out_arg_offset;
2760 static int cfa_offset;
2762 /* In most machines, the stack pointer register is equivalent to the bottom
2763 of the stack. */
2765 #ifndef STACK_POINTER_OFFSET
2766 #define STACK_POINTER_OFFSET 0
2767 #endif
2769 /* If not defined, pick an appropriate default for the offset of dynamically
2770 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
2771 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
2773 #ifndef STACK_DYNAMIC_OFFSET
2775 /* The bottom of the stack points to the actual arguments. If
2776 REG_PARM_STACK_SPACE is defined, this includes the space for the register
2777 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
2778 stack space for register parameters is not pushed by the caller, but
2779 rather part of the fixed stack areas and hence not included in
2780 `current_function_outgoing_args_size'. Nevertheless, we must allow
2781 for it when allocating stack dynamic objects. */
2783 #if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
2784 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2785 ((ACCUMULATE_OUTGOING_ARGS \
2786 ? (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (FNDECL)) : 0)\
2787 + (STACK_POINTER_OFFSET)) \
2789 #else
2790 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2791 ((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0) \
2792 + (STACK_POINTER_OFFSET))
2793 #endif
2794 #endif
2796 /* On most machines, the CFA coincides with the first incoming parm. */
2798 #ifndef ARG_POINTER_CFA_OFFSET
2799 #define ARG_POINTER_CFA_OFFSET(FNDECL) FIRST_PARM_OFFSET (FNDECL)
2800 #endif
2802 /* Build up a (MEM (ADDRESSOF (REG))) rtx for a register REG that just
2803 had its address taken. DECL is the decl or SAVE_EXPR for the
2804 object stored in the register, for later use if we do need to force
2805 REG into the stack. REG is overwritten by the MEM like in
2806 put_reg_into_stack. RESCAN is true if previously emitted
2807 instructions must be rescanned and modified now that the REG has
2808 been transformed. */
2811 gen_mem_addressof (rtx reg, tree decl, int rescan)
2813 rtx r = gen_rtx_ADDRESSOF (Pmode, gen_reg_rtx (GET_MODE (reg)),
2814 REGNO (reg), decl);
2816 /* Calculate this before we start messing with decl's RTL. */
2817 HOST_WIDE_INT set = decl ? get_alias_set (decl) : 0;
2819 /* If the original REG was a user-variable, then so is the REG whose
2820 address is being taken. Likewise for unchanging. */
2821 REG_USERVAR_P (XEXP (r, 0)) = REG_USERVAR_P (reg);
2822 RTX_UNCHANGING_P (XEXP (r, 0)) = RTX_UNCHANGING_P (reg);
2824 PUT_CODE (reg, MEM);
2825 MEM_ATTRS (reg) = 0;
2826 XEXP (reg, 0) = r;
2828 if (decl)
2830 tree type = TREE_TYPE (decl);
2831 enum machine_mode decl_mode
2832 = (DECL_P (decl) ? DECL_MODE (decl) : TYPE_MODE (TREE_TYPE (decl)));
2833 rtx decl_rtl = (TREE_CODE (decl) == SAVE_EXPR ? SAVE_EXPR_RTL (decl)
2834 : DECL_RTL_IF_SET (decl));
2836 PUT_MODE (reg, decl_mode);
2838 /* Clear DECL_RTL momentarily so functions below will work
2839 properly, then set it again. */
2840 if (DECL_P (decl) && decl_rtl == reg)
2841 SET_DECL_RTL (decl, 0);
2843 set_mem_attributes (reg, decl, 1);
2844 set_mem_alias_set (reg, set);
2846 if (DECL_P (decl) && decl_rtl == reg)
2847 SET_DECL_RTL (decl, reg);
2849 if (rescan
2850 && (TREE_USED (decl) || (DECL_P (decl) && DECL_INITIAL (decl) != 0)))
2851 fixup_var_refs (reg, GET_MODE (reg), TREE_UNSIGNED (type), reg, 0);
2853 else if (rescan)
2854 fixup_var_refs (reg, GET_MODE (reg), 0, reg, 0);
2856 return reg;
2859 /* If DECL has an RTL that is an ADDRESSOF rtx, put it into the stack. */
2861 void
2862 flush_addressof (tree decl)
2864 if ((TREE_CODE (decl) == PARM_DECL || TREE_CODE (decl) == VAR_DECL)
2865 && DECL_RTL (decl) != 0
2866 && GET_CODE (DECL_RTL (decl)) == MEM
2867 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF
2868 && GET_CODE (XEXP (XEXP (DECL_RTL (decl), 0), 0)) == REG)
2869 put_addressof_into_stack (XEXP (DECL_RTL (decl), 0), 0);
2872 /* Force the register pointed to by R, an ADDRESSOF rtx, into the stack. */
2874 static void
2875 put_addressof_into_stack (rtx r, htab_t ht)
2877 tree decl, type;
2878 int volatile_p, used_p;
2880 rtx reg = XEXP (r, 0);
2882 if (GET_CODE (reg) != REG)
2883 abort ();
2885 decl = ADDRESSOF_DECL (r);
2886 if (decl)
2888 type = TREE_TYPE (decl);
2889 volatile_p = (TREE_CODE (decl) != SAVE_EXPR
2890 && TREE_THIS_VOLATILE (decl));
2891 used_p = (TREE_USED (decl)
2892 || (DECL_P (decl) && DECL_INITIAL (decl) != 0));
2894 else
2896 type = NULL_TREE;
2897 volatile_p = 0;
2898 used_p = 1;
2901 put_reg_into_stack (0, reg, type, GET_MODE (reg), GET_MODE (reg),
2902 volatile_p, ADDRESSOF_REGNO (r), used_p, ht);
2905 /* List of replacements made below in purge_addressof_1 when creating
2906 bitfield insertions. */
2907 static rtx purge_bitfield_addressof_replacements;
2909 /* List of replacements made below in purge_addressof_1 for patterns
2910 (MEM (ADDRESSOF (REG ...))). The key of the list entry is the
2911 corresponding (ADDRESSOF (REG ...)) and value is a substitution for
2912 the all pattern. List PURGE_BITFIELD_ADDRESSOF_REPLACEMENTS is not
2913 enough in complex cases, e.g. when some field values can be
2914 extracted by usage MEM with narrower mode. */
2915 static rtx purge_addressof_replacements;
2917 /* Helper function for purge_addressof. See if the rtx expression at *LOC
2918 in INSN needs to be changed. If FORCE, always put any ADDRESSOFs into
2919 the stack. If the function returns FALSE then the replacement could not
2920 be made. If MAY_POSTPONE is true and we would not put the addressof
2921 to stack, postpone processing of the insn. */
2923 static bool
2924 purge_addressof_1 (rtx *loc, rtx insn, int force, int store, int may_postpone,
2925 htab_t ht)
2927 rtx x;
2928 RTX_CODE code;
2929 int i, j;
2930 const char *fmt;
2931 bool result = true;
2933 /* Re-start here to avoid recursion in common cases. */
2934 restart:
2936 x = *loc;
2937 if (x == 0)
2938 return true;
2940 code = GET_CODE (x);
2942 /* If we don't return in any of the cases below, we will recurse inside
2943 the RTX, which will normally result in any ADDRESSOF being forced into
2944 memory. */
2945 if (code == SET)
2947 result = purge_addressof_1 (&SET_DEST (x), insn, force, 1,
2948 may_postpone, ht);
2949 result &= purge_addressof_1 (&SET_SRC (x), insn, force, 0,
2950 may_postpone, ht);
2951 return result;
2953 else if (code == ADDRESSOF)
2955 rtx sub, insns;
2957 if (GET_CODE (XEXP (x, 0)) != MEM)
2958 put_addressof_into_stack (x, ht);
2960 /* We must create a copy of the rtx because it was created by
2961 overwriting a REG rtx which is always shared. */
2962 sub = copy_rtx (XEXP (XEXP (x, 0), 0));
2963 if (validate_change (insn, loc, sub, 0)
2964 || validate_replace_rtx (x, sub, insn))
2965 return true;
2967 start_sequence ();
2969 /* If SUB is a hard or virtual register, try it as a pseudo-register.
2970 Otherwise, perhaps SUB is an expression, so generate code to compute
2971 it. */
2972 if (GET_CODE (sub) == REG && REGNO (sub) <= LAST_VIRTUAL_REGISTER)
2973 sub = copy_to_reg (sub);
2974 else
2975 sub = force_operand (sub, NULL_RTX);
2977 if (! validate_change (insn, loc, sub, 0)
2978 && ! validate_replace_rtx (x, sub, insn))
2979 abort ();
2981 insns = get_insns ();
2982 end_sequence ();
2983 emit_insn_before (insns, insn);
2984 return true;
2987 else if (code == MEM && GET_CODE (XEXP (x, 0)) == ADDRESSOF && ! force)
2989 rtx sub = XEXP (XEXP (x, 0), 0);
2991 if (GET_CODE (sub) == MEM)
2992 sub = adjust_address_nv (sub, GET_MODE (x), 0);
2993 else if (GET_CODE (sub) == REG
2994 && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
2996 else if (GET_CODE (sub) == REG && GET_MODE (x) != GET_MODE (sub))
2998 int size_x, size_sub;
3000 if (may_postpone)
3002 /* Postpone for now, so that we do not emit bitfield arithmetics
3003 unless there is some benefit from it. */
3004 if (!postponed_insns || XEXP (postponed_insns, 0) != insn)
3005 postponed_insns = alloc_INSN_LIST (insn, postponed_insns);
3006 return true;
3009 if (!insn)
3011 /* When processing REG_NOTES look at the list of
3012 replacements done on the insn to find the register that X
3013 was replaced by. */
3014 rtx tem;
3016 for (tem = purge_bitfield_addressof_replacements;
3017 tem != NULL_RTX;
3018 tem = XEXP (XEXP (tem, 1), 1))
3019 if (rtx_equal_p (x, XEXP (tem, 0)))
3021 *loc = XEXP (XEXP (tem, 1), 0);
3022 return true;
3025 /* See comment for purge_addressof_replacements. */
3026 for (tem = purge_addressof_replacements;
3027 tem != NULL_RTX;
3028 tem = XEXP (XEXP (tem, 1), 1))
3029 if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0)))
3031 rtx z = XEXP (XEXP (tem, 1), 0);
3033 if (GET_MODE (x) == GET_MODE (z)
3034 || (GET_CODE (XEXP (XEXP (tem, 1), 0)) != REG
3035 && GET_CODE (XEXP (XEXP (tem, 1), 0)) != SUBREG))
3036 abort ();
3038 /* It can happen that the note may speak of things
3039 in a wider (or just different) mode than the
3040 code did. This is especially true of
3041 REG_RETVAL. */
3043 if (GET_CODE (z) == SUBREG && SUBREG_BYTE (z) == 0)
3044 z = SUBREG_REG (z);
3046 if (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
3047 && (GET_MODE_SIZE (GET_MODE (x))
3048 > GET_MODE_SIZE (GET_MODE (z))))
3050 /* This can occur as a result in invalid
3051 pointer casts, e.g. float f; ...
3052 *(long long int *)&f.
3053 ??? We could emit a warning here, but
3054 without a line number that wouldn't be
3055 very helpful. */
3056 z = gen_rtx_SUBREG (GET_MODE (x), z, 0);
3058 else
3059 z = gen_lowpart (GET_MODE (x), z);
3061 *loc = z;
3062 return true;
3065 /* When we are processing the REG_NOTES of the last instruction
3066 of a libcall, there will be typically no replacements
3067 for that insn; the replacements happened before, piecemeal
3068 fashion. OTOH we are not interested in the details of
3069 this for the REG_EQUAL note, we want to know the big picture,
3070 which can be succinctly described with a simple SUBREG.
3071 Note that removing the REG_EQUAL note is not an option
3072 on the last insn of a libcall, so we must do a replacement. */
3073 if (! purge_addressof_replacements
3074 && ! purge_bitfield_addressof_replacements)
3076 /* In compile/990107-1.c:7 compiled at -O1 -m1 for sh-elf,
3077 we got
3078 (mem:DI (addressof:SI (reg/v:DF 160) 159 0x401c8510)
3079 [0 S8 A32]), which can be expressed with a simple
3080 same-size subreg */
3081 if ((GET_MODE_SIZE (GET_MODE (x))
3082 == GET_MODE_SIZE (GET_MODE (sub)))
3083 /* Again, invalid pointer casts (as in
3084 compile/990203-1.c) can require paradoxical
3085 subregs. */
3086 || (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
3087 && (GET_MODE_SIZE (GET_MODE (x))
3088 > GET_MODE_SIZE (GET_MODE (sub)))))
3090 *loc = gen_rtx_SUBREG (GET_MODE (x), sub, 0);
3091 return true;
3093 /* ??? Are there other cases we should handle? */
3095 /* Sometimes we may not be able to find the replacement. For
3096 example when the original insn was a MEM in a wider mode,
3097 and the note is part of a sign extension of a narrowed
3098 version of that MEM. Gcc testcase compile/990829-1.c can
3099 generate an example of this situation. Rather than complain
3100 we return false, which will prompt our caller to remove the
3101 offending note. */
3102 return false;
3105 size_x = GET_MODE_BITSIZE (GET_MODE (x));
3106 size_sub = GET_MODE_BITSIZE (GET_MODE (sub));
3108 /* Do not frob unchanging MEMs. If a later reference forces the
3109 pseudo to the stack, we can wind up with multiple writes to
3110 an unchanging memory, which is invalid. */
3111 if (RTX_UNCHANGING_P (x) && size_x != size_sub)
3114 /* Don't even consider working with paradoxical subregs,
3115 or the moral equivalent seen here. */
3116 else if (size_x <= size_sub
3117 && int_mode_for_mode (GET_MODE (sub)) != BLKmode)
3119 /* Do a bitfield insertion to mirror what would happen
3120 in memory. */
3122 rtx val, seq;
3124 if (store)
3126 rtx p = PREV_INSN (insn);
3128 start_sequence ();
3129 val = gen_reg_rtx (GET_MODE (x));
3130 if (! validate_change (insn, loc, val, 0))
3132 /* Discard the current sequence and put the
3133 ADDRESSOF on stack. */
3134 end_sequence ();
3135 goto give_up;
3137 seq = get_insns ();
3138 end_sequence ();
3139 emit_insn_before (seq, insn);
3140 compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (),
3141 insn, ht);
3143 start_sequence ();
3144 store_bit_field (sub, size_x, 0, GET_MODE (x),
3145 val, GET_MODE_SIZE (GET_MODE (sub)));
3147 /* Make sure to unshare any shared rtl that store_bit_field
3148 might have created. */
3149 unshare_all_rtl_again (get_insns ());
3151 seq = get_insns ();
3152 end_sequence ();
3153 p = emit_insn_after (seq, insn);
3154 if (NEXT_INSN (insn))
3155 compute_insns_for_mem (NEXT_INSN (insn),
3156 p ? NEXT_INSN (p) : NULL_RTX,
3157 ht);
3159 else
3161 rtx p = PREV_INSN (insn);
3163 start_sequence ();
3164 val = extract_bit_field (sub, size_x, 0, 1, NULL_RTX,
3165 GET_MODE (x), GET_MODE (x),
3166 GET_MODE_SIZE (GET_MODE (sub)));
3168 if (! validate_change (insn, loc, val, 0))
3170 /* Discard the current sequence and put the
3171 ADDRESSOF on stack. */
3172 end_sequence ();
3173 goto give_up;
3176 seq = get_insns ();
3177 end_sequence ();
3178 emit_insn_before (seq, insn);
3179 compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (),
3180 insn, ht);
3183 /* Remember the replacement so that the same one can be done
3184 on the REG_NOTES. */
3185 purge_bitfield_addressof_replacements
3186 = gen_rtx_EXPR_LIST (VOIDmode, x,
3187 gen_rtx_EXPR_LIST
3188 (VOIDmode, val,
3189 purge_bitfield_addressof_replacements));
3191 /* We replaced with a reg -- all done. */
3192 return true;
3196 else if (validate_change (insn, loc, sub, 0))
3198 /* Remember the replacement so that the same one can be done
3199 on the REG_NOTES. */
3200 if (GET_CODE (sub) == REG || GET_CODE (sub) == SUBREG)
3202 rtx tem;
3204 for (tem = purge_addressof_replacements;
3205 tem != NULL_RTX;
3206 tem = XEXP (XEXP (tem, 1), 1))
3207 if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0)))
3209 XEXP (XEXP (tem, 1), 0) = sub;
3210 return true;
3212 purge_addressof_replacements
3213 = gen_rtx (EXPR_LIST, VOIDmode, XEXP (x, 0),
3214 gen_rtx_EXPR_LIST (VOIDmode, sub,
3215 purge_addressof_replacements));
3216 return true;
3218 goto restart;
3222 give_up:
3223 /* Scan all subexpressions. */
3224 fmt = GET_RTX_FORMAT (code);
3225 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3227 if (*fmt == 'e')
3228 result &= purge_addressof_1 (&XEXP (x, i), insn, force, 0,
3229 may_postpone, ht);
3230 else if (*fmt == 'E')
3231 for (j = 0; j < XVECLEN (x, i); j++)
3232 result &= purge_addressof_1 (&XVECEXP (x, i, j), insn, force, 0,
3233 may_postpone, ht);
3236 return result;
3239 /* Return a hash value for K, a REG. */
3241 static hashval_t
3242 insns_for_mem_hash (const void *k)
3244 /* Use the address of the key for the hash value. */
3245 struct insns_for_mem_entry *m = (struct insns_for_mem_entry *) k;
3246 return htab_hash_pointer (m->key);
3249 /* Return nonzero if K1 and K2 (two REGs) are the same. */
3251 static int
3252 insns_for_mem_comp (const void *k1, const void *k2)
3254 struct insns_for_mem_entry *m1 = (struct insns_for_mem_entry *) k1;
3255 struct insns_for_mem_entry *m2 = (struct insns_for_mem_entry *) k2;
3256 return m1->key == m2->key;
3259 struct insns_for_mem_walk_info
3261 /* The hash table that we are using to record which INSNs use which
3262 MEMs. */
3263 htab_t ht;
3265 /* The INSN we are currently processing. */
3266 rtx insn;
3268 /* Zero if we are walking to find ADDRESSOFs, one if we are walking
3269 to find the insns that use the REGs in the ADDRESSOFs. */
3270 int pass;
3273 /* Called from compute_insns_for_mem via for_each_rtx. If R is a REG
3274 that might be used in an ADDRESSOF expression, record this INSN in
3275 the hash table given by DATA (which is really a pointer to an
3276 insns_for_mem_walk_info structure). */
3278 static int
3279 insns_for_mem_walk (rtx *r, void *data)
3281 struct insns_for_mem_walk_info *ifmwi
3282 = (struct insns_for_mem_walk_info *) data;
3283 struct insns_for_mem_entry tmp;
3284 tmp.insns = NULL_RTX;
3286 if (ifmwi->pass == 0 && *r && GET_CODE (*r) == ADDRESSOF
3287 && GET_CODE (XEXP (*r, 0)) == REG)
3289 void **e;
3290 tmp.key = XEXP (*r, 0);
3291 e = htab_find_slot (ifmwi->ht, &tmp, INSERT);
3292 if (*e == NULL)
3294 *e = ggc_alloc (sizeof (tmp));
3295 memcpy (*e, &tmp, sizeof (tmp));
3298 else if (ifmwi->pass == 1 && *r && GET_CODE (*r) == REG)
3300 struct insns_for_mem_entry *ifme;
3301 tmp.key = *r;
3302 ifme = htab_find (ifmwi->ht, &tmp);
3304 /* If we have not already recorded this INSN, do so now. Since
3305 we process the INSNs in order, we know that if we have
3306 recorded it it must be at the front of the list. */
3307 if (ifme && (!ifme->insns || XEXP (ifme->insns, 0) != ifmwi->insn))
3308 ifme->insns = gen_rtx_EXPR_LIST (VOIDmode, ifmwi->insn,
3309 ifme->insns);
3312 return 0;
3315 /* Walk the INSNS, until we reach LAST_INSN, recording which INSNs use
3316 which REGs in HT. */
3318 static void
3319 compute_insns_for_mem (rtx insns, rtx last_insn, htab_t ht)
3321 rtx insn;
3322 struct insns_for_mem_walk_info ifmwi;
3323 ifmwi.ht = ht;
3325 for (ifmwi.pass = 0; ifmwi.pass < 2; ++ifmwi.pass)
3326 for (insn = insns; insn != last_insn; insn = NEXT_INSN (insn))
3327 if (INSN_P (insn))
3329 ifmwi.insn = insn;
3330 for_each_rtx (&insn, insns_for_mem_walk, &ifmwi);
3334 /* Helper function for purge_addressof called through for_each_rtx.
3335 Returns true iff the rtl is an ADDRESSOF. */
3337 static int
3338 is_addressof (rtx *rtl, void *data ATTRIBUTE_UNUSED)
3340 return GET_CODE (*rtl) == ADDRESSOF;
3343 /* Eliminate all occurrences of ADDRESSOF from INSNS. Elide any remaining
3344 (MEM (ADDRESSOF)) patterns, and force any needed registers into the
3345 stack. */
3347 void
3348 purge_addressof (rtx insns)
3350 rtx insn, tmp;
3351 htab_t ht;
3353 /* When we actually purge ADDRESSOFs, we turn REGs into MEMs. That
3354 requires a fixup pass over the instruction stream to correct
3355 INSNs that depended on the REG being a REG, and not a MEM. But,
3356 these fixup passes are slow. Furthermore, most MEMs are not
3357 mentioned in very many instructions. So, we speed up the process
3358 by pre-calculating which REGs occur in which INSNs; that allows
3359 us to perform the fixup passes much more quickly. */
3360 ht = htab_create_ggc (1000, insns_for_mem_hash, insns_for_mem_comp, NULL);
3361 compute_insns_for_mem (insns, NULL_RTX, ht);
3363 postponed_insns = NULL;
3365 for (insn = insns; insn; insn = NEXT_INSN (insn))
3366 if (INSN_P (insn))
3368 if (! purge_addressof_1 (&PATTERN (insn), insn,
3369 asm_noperands (PATTERN (insn)) > 0, 0, 1, ht))
3370 /* If we could not replace the ADDRESSOFs in the insn,
3371 something is wrong. */
3372 abort ();
3374 if (! purge_addressof_1 (&REG_NOTES (insn), NULL_RTX, 0, 0, 0, ht))
3376 /* If we could not replace the ADDRESSOFs in the insn's notes,
3377 we can just remove the offending notes instead. */
3378 rtx note;
3380 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3382 /* If we find a REG_RETVAL note then the insn is a libcall.
3383 Such insns must have REG_EQUAL notes as well, in order
3384 for later passes of the compiler to work. So it is not
3385 safe to delete the notes here, and instead we abort. */
3386 if (REG_NOTE_KIND (note) == REG_RETVAL)
3387 abort ();
3388 if (for_each_rtx (&note, is_addressof, NULL))
3389 remove_note (insn, note);
3394 /* Process the postponed insns. */
3395 while (postponed_insns)
3397 insn = XEXP (postponed_insns, 0);
3398 tmp = postponed_insns;
3399 postponed_insns = XEXP (postponed_insns, 1);
3400 free_INSN_LIST_node (tmp);
3402 if (! purge_addressof_1 (&PATTERN (insn), insn,
3403 asm_noperands (PATTERN (insn)) > 0, 0, 0, ht))
3404 abort ();
3407 /* Clean up. */
3408 purge_bitfield_addressof_replacements = 0;
3409 purge_addressof_replacements = 0;
3411 /* REGs are shared. purge_addressof will destructively replace a REG
3412 with a MEM, which creates shared MEMs.
3414 Unfortunately, the children of put_reg_into_stack assume that MEMs
3415 referring to the same stack slot are shared (fixup_var_refs and
3416 the associated hash table code).
3418 So, we have to do another unsharing pass after we have flushed any
3419 REGs that had their address taken into the stack.
3421 It may be worth tracking whether or not we converted any REGs into
3422 MEMs to avoid this overhead when it is not needed. */
3423 unshare_all_rtl_again (get_insns ());
3426 /* Convert a SET of a hard subreg to a set of the appropriate hard
3427 register. A subroutine of purge_hard_subreg_sets. */
3429 static void
3430 purge_single_hard_subreg_set (rtx pattern)
3432 rtx reg = SET_DEST (pattern);
3433 enum machine_mode mode = GET_MODE (SET_DEST (pattern));
3434 int offset = 0;
3436 if (GET_CODE (reg) == SUBREG && GET_CODE (SUBREG_REG (reg)) == REG
3437 && REGNO (SUBREG_REG (reg)) < FIRST_PSEUDO_REGISTER)
3439 offset = subreg_regno_offset (REGNO (SUBREG_REG (reg)),
3440 GET_MODE (SUBREG_REG (reg)),
3441 SUBREG_BYTE (reg),
3442 GET_MODE (reg));
3443 reg = SUBREG_REG (reg);
3447 if (GET_CODE (reg) == REG && REGNO (reg) < FIRST_PSEUDO_REGISTER)
3449 reg = gen_rtx_REG (mode, REGNO (reg) + offset);
3450 SET_DEST (pattern) = reg;
3454 /* Eliminate all occurrences of SETs of hard subregs from INSNS. The
3455 only such SETs that we expect to see are those left in because
3456 integrate can't handle sets of parts of a return value register.
3458 We don't use alter_subreg because we only want to eliminate subregs
3459 of hard registers. */
3461 void
3462 purge_hard_subreg_sets (rtx insn)
3464 for (; insn; insn = NEXT_INSN (insn))
3466 if (INSN_P (insn))
3468 rtx pattern = PATTERN (insn);
3469 switch (GET_CODE (pattern))
3471 case SET:
3472 if (GET_CODE (SET_DEST (pattern)) == SUBREG)
3473 purge_single_hard_subreg_set (pattern);
3474 break;
3475 case PARALLEL:
3477 int j;
3478 for (j = XVECLEN (pattern, 0) - 1; j >= 0; j--)
3480 rtx inner_pattern = XVECEXP (pattern, 0, j);
3481 if (GET_CODE (inner_pattern) == SET
3482 && GET_CODE (SET_DEST (inner_pattern)) == SUBREG)
3483 purge_single_hard_subreg_set (inner_pattern);
3486 break;
3487 default:
3488 break;
3494 /* Pass through the INSNS of function FNDECL and convert virtual register
3495 references to hard register references. */
3497 void
3498 instantiate_virtual_regs (tree fndecl, rtx insns)
3500 rtx insn;
3501 unsigned int i;
3503 /* Compute the offsets to use for this function. */
3504 in_arg_offset = FIRST_PARM_OFFSET (fndecl);
3505 var_offset = STARTING_FRAME_OFFSET;
3506 dynamic_offset = STACK_DYNAMIC_OFFSET (fndecl);
3507 out_arg_offset = STACK_POINTER_OFFSET;
3508 cfa_offset = ARG_POINTER_CFA_OFFSET (fndecl);
3510 /* Scan all variables and parameters of this function. For each that is
3511 in memory, instantiate all virtual registers if the result is a valid
3512 address. If not, we do it later. That will handle most uses of virtual
3513 regs on many machines. */
3514 instantiate_decls (fndecl, 1);
3516 /* Initialize recognition, indicating that volatile is OK. */
3517 init_recog ();
3519 /* Scan through all the insns, instantiating every virtual register still
3520 present. */
3521 for (insn = insns; insn; insn = NEXT_INSN (insn))
3522 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
3523 || GET_CODE (insn) == CALL_INSN)
3525 instantiate_virtual_regs_1 (&PATTERN (insn), insn, 1);
3526 if (INSN_DELETED_P (insn))
3527 continue;
3528 instantiate_virtual_regs_1 (&REG_NOTES (insn), NULL_RTX, 0);
3529 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
3530 if (GET_CODE (insn) == CALL_INSN)
3531 instantiate_virtual_regs_1 (&CALL_INSN_FUNCTION_USAGE (insn),
3532 NULL_RTX, 0);
3534 /* Past this point all ASM statements should match. Verify that
3535 to avoid failures later in the compilation process. */
3536 if (asm_noperands (PATTERN (insn)) >= 0
3537 && ! check_asm_operands (PATTERN (insn)))
3538 instantiate_virtual_regs_lossage (insn);
3541 /* Instantiate the stack slots for the parm registers, for later use in
3542 addressof elimination. */
3543 for (i = 0; i < max_parm_reg; ++i)
3544 if (parm_reg_stack_loc[i])
3545 instantiate_virtual_regs_1 (&parm_reg_stack_loc[i], NULL_RTX, 0);
3547 /* Now instantiate the remaining register equivalences for debugging info.
3548 These will not be valid addresses. */
3549 instantiate_decls (fndecl, 0);
3551 /* Indicate that, from now on, assign_stack_local should use
3552 frame_pointer_rtx. */
3553 virtuals_instantiated = 1;
3556 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
3557 all virtual registers in their DECL_RTL's.
3559 If VALID_ONLY, do this only if the resulting address is still valid.
3560 Otherwise, always do it. */
3562 static void
3563 instantiate_decls (tree fndecl, int valid_only)
3565 tree decl;
3567 /* Process all parameters of the function. */
3568 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
3570 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (decl));
3571 HOST_WIDE_INT size_rtl;
3573 instantiate_decl (DECL_RTL (decl), size, valid_only);
3575 /* If the parameter was promoted, then the incoming RTL mode may be
3576 larger than the declared type size. We must use the larger of
3577 the two sizes. */
3578 size_rtl = GET_MODE_SIZE (GET_MODE (DECL_INCOMING_RTL (decl)));
3579 size = MAX (size_rtl, size);
3580 instantiate_decl (DECL_INCOMING_RTL (decl), size, valid_only);
3583 /* Now process all variables defined in the function or its subblocks. */
3584 instantiate_decls_1 (DECL_INITIAL (fndecl), valid_only);
3587 /* Subroutine of instantiate_decls: Process all decls in the given
3588 BLOCK node and all its subblocks. */
3590 static void
3591 instantiate_decls_1 (tree let, int valid_only)
3593 tree t;
3595 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
3596 if (DECL_RTL_SET_P (t))
3597 instantiate_decl (DECL_RTL (t),
3598 int_size_in_bytes (TREE_TYPE (t)),
3599 valid_only);
3601 /* Process all subblocks. */
3602 for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
3603 instantiate_decls_1 (t, valid_only);
3606 /* Subroutine of the preceding procedures: Given RTL representing a
3607 decl and the size of the object, do any instantiation required.
3609 If VALID_ONLY is nonzero, it means that the RTL should only be
3610 changed if the new address is valid. */
3612 static void
3613 instantiate_decl (rtx x, HOST_WIDE_INT size, int valid_only)
3615 enum machine_mode mode;
3616 rtx addr;
3618 /* If this is not a MEM, no need to do anything. Similarly if the
3619 address is a constant or a register that is not a virtual register. */
3621 if (x == 0 || GET_CODE (x) != MEM)
3622 return;
3624 addr = XEXP (x, 0);
3625 if (CONSTANT_P (addr)
3626 || (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == REG)
3627 || (GET_CODE (addr) == REG
3628 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
3629 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
3630 return;
3632 /* If we should only do this if the address is valid, copy the address.
3633 We need to do this so we can undo any changes that might make the
3634 address invalid. This copy is unfortunate, but probably can't be
3635 avoided. */
3637 if (valid_only)
3638 addr = copy_rtx (addr);
3640 instantiate_virtual_regs_1 (&addr, NULL_RTX, 0);
3642 if (valid_only && size >= 0)
3644 unsigned HOST_WIDE_INT decl_size = size;
3646 /* Now verify that the resulting address is valid for every integer or
3647 floating-point mode up to and including SIZE bytes long. We do this
3648 since the object might be accessed in any mode and frame addresses
3649 are shared. */
3651 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
3652 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
3653 mode = GET_MODE_WIDER_MODE (mode))
3654 if (! memory_address_p (mode, addr))
3655 return;
3657 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
3658 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
3659 mode = GET_MODE_WIDER_MODE (mode))
3660 if (! memory_address_p (mode, addr))
3661 return;
3664 /* Put back the address now that we have updated it and we either know
3665 it is valid or we don't care whether it is valid. */
3667 XEXP (x, 0) = addr;
3670 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
3671 is a virtual register, return the equivalent hard register and set the
3672 offset indirectly through the pointer. Otherwise, return 0. */
3674 static rtx
3675 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
3677 rtx new;
3678 HOST_WIDE_INT offset;
3680 if (x == virtual_incoming_args_rtx)
3681 new = arg_pointer_rtx, offset = in_arg_offset;
3682 else if (x == virtual_stack_vars_rtx)
3683 new = frame_pointer_rtx, offset = var_offset;
3684 else if (x == virtual_stack_dynamic_rtx)
3685 new = stack_pointer_rtx, offset = dynamic_offset;
3686 else if (x == virtual_outgoing_args_rtx)
3687 new = stack_pointer_rtx, offset = out_arg_offset;
3688 else if (x == virtual_cfa_rtx)
3689 new = arg_pointer_rtx, offset = cfa_offset;
3690 else
3691 return 0;
3693 *poffset = offset;
3694 return new;
3698 /* Called when instantiate_virtual_regs has failed to update the instruction.
3699 Usually this means that non-matching instruction has been emit, however for
3700 asm statements it may be the problem in the constraints. */
3701 static void
3702 instantiate_virtual_regs_lossage (rtx insn)
3704 if (asm_noperands (PATTERN (insn)) >= 0)
3706 error_for_asm (insn, "impossible constraint in `asm'");
3707 delete_insn (insn);
3709 else
3710 abort ();
3712 /* Given a pointer to a piece of rtx and an optional pointer to the
3713 containing object, instantiate any virtual registers present in it.
3715 If EXTRA_INSNS, we always do the replacement and generate
3716 any extra insns before OBJECT. If it zero, we do nothing if replacement
3717 is not valid.
3719 Return 1 if we either had nothing to do or if we were able to do the
3720 needed replacement. Return 0 otherwise; we only return zero if
3721 EXTRA_INSNS is zero.
3723 We first try some simple transformations to avoid the creation of extra
3724 pseudos. */
3726 static int
3727 instantiate_virtual_regs_1 (rtx *loc, rtx object, int extra_insns)
3729 rtx x;
3730 RTX_CODE code;
3731 rtx new = 0;
3732 HOST_WIDE_INT offset = 0;
3733 rtx temp;
3734 rtx seq;
3735 int i, j;
3736 const char *fmt;
3738 /* Re-start here to avoid recursion in common cases. */
3739 restart:
3741 x = *loc;
3742 if (x == 0)
3743 return 1;
3745 /* We may have detected and deleted invalid asm statements. */
3746 if (object && INSN_P (object) && INSN_DELETED_P (object))
3747 return 1;
3749 code = GET_CODE (x);
3751 /* Check for some special cases. */
3752 switch (code)
3754 case CONST_INT:
3755 case CONST_DOUBLE:
3756 case CONST_VECTOR:
3757 case CONST:
3758 case SYMBOL_REF:
3759 case CODE_LABEL:
3760 case PC:
3761 case CC0:
3762 case ASM_INPUT:
3763 case ADDR_VEC:
3764 case ADDR_DIFF_VEC:
3765 case RETURN:
3766 return 1;
3768 case SET:
3769 /* We are allowed to set the virtual registers. This means that
3770 the actual register should receive the source minus the
3771 appropriate offset. This is used, for example, in the handling
3772 of non-local gotos. */
3773 if ((new = instantiate_new_reg (SET_DEST (x), &offset)) != 0)
3775 rtx src = SET_SRC (x);
3777 /* We are setting the register, not using it, so the relevant
3778 offset is the negative of the offset to use were we using
3779 the register. */
3780 offset = - offset;
3781 instantiate_virtual_regs_1 (&src, NULL_RTX, 0);
3783 /* The only valid sources here are PLUS or REG. Just do
3784 the simplest possible thing to handle them. */
3785 if (GET_CODE (src) != REG && GET_CODE (src) != PLUS)
3787 instantiate_virtual_regs_lossage (object);
3788 return 1;
3791 start_sequence ();
3792 if (GET_CODE (src) != REG)
3793 temp = force_operand (src, NULL_RTX);
3794 else
3795 temp = src;
3796 temp = force_operand (plus_constant (temp, offset), NULL_RTX);
3797 seq = get_insns ();
3798 end_sequence ();
3800 emit_insn_before (seq, object);
3801 SET_DEST (x) = new;
3803 if (! validate_change (object, &SET_SRC (x), temp, 0)
3804 || ! extra_insns)
3805 instantiate_virtual_regs_lossage (object);
3807 return 1;
3810 instantiate_virtual_regs_1 (&SET_DEST (x), object, extra_insns);
3811 loc = &SET_SRC (x);
3812 goto restart;
3814 case PLUS:
3815 /* Handle special case of virtual register plus constant. */
3816 if (CONSTANT_P (XEXP (x, 1)))
3818 rtx old, new_offset;
3820 /* Check for (plus (plus VIRT foo) (const_int)) first. */
3821 if (GET_CODE (XEXP (x, 0)) == PLUS)
3823 if ((new = instantiate_new_reg (XEXP (XEXP (x, 0), 0), &offset)))
3825 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 1), object,
3826 extra_insns);
3827 new = gen_rtx_PLUS (Pmode, new, XEXP (XEXP (x, 0), 1));
3829 else
3831 loc = &XEXP (x, 0);
3832 goto restart;
3836 #ifdef POINTERS_EXTEND_UNSIGNED
3837 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
3838 we can commute the PLUS and SUBREG because pointers into the
3839 frame are well-behaved. */
3840 else if (GET_CODE (XEXP (x, 0)) == SUBREG && GET_MODE (x) == ptr_mode
3841 && GET_CODE (XEXP (x, 1)) == CONST_INT
3842 && 0 != (new
3843 = instantiate_new_reg (SUBREG_REG (XEXP (x, 0)),
3844 &offset))
3845 && validate_change (object, loc,
3846 plus_constant (gen_lowpart (ptr_mode,
3847 new),
3848 offset
3849 + INTVAL (XEXP (x, 1))),
3851 return 1;
3852 #endif
3853 else if ((new = instantiate_new_reg (XEXP (x, 0), &offset)) == 0)
3855 /* We know the second operand is a constant. Unless the
3856 first operand is a REG (which has been already checked),
3857 it needs to be checked. */
3858 if (GET_CODE (XEXP (x, 0)) != REG)
3860 loc = &XEXP (x, 0);
3861 goto restart;
3863 return 1;
3866 new_offset = plus_constant (XEXP (x, 1), offset);
3868 /* If the new constant is zero, try to replace the sum with just
3869 the register. */
3870 if (new_offset == const0_rtx
3871 && validate_change (object, loc, new, 0))
3872 return 1;
3874 /* Next try to replace the register and new offset.
3875 There are two changes to validate here and we can't assume that
3876 in the case of old offset equals new just changing the register
3877 will yield a valid insn. In the interests of a little efficiency,
3878 however, we only call validate change once (we don't queue up the
3879 changes and then call apply_change_group). */
3881 old = XEXP (x, 0);
3882 if (offset == 0
3883 ? ! validate_change (object, &XEXP (x, 0), new, 0)
3884 : (XEXP (x, 0) = new,
3885 ! validate_change (object, &XEXP (x, 1), new_offset, 0)))
3887 if (! extra_insns)
3889 XEXP (x, 0) = old;
3890 return 0;
3893 /* Otherwise copy the new constant into a register and replace
3894 constant with that register. */
3895 temp = gen_reg_rtx (Pmode);
3896 XEXP (x, 0) = new;
3897 if (validate_change (object, &XEXP (x, 1), temp, 0))
3898 emit_insn_before (gen_move_insn (temp, new_offset), object);
3899 else
3901 /* If that didn't work, replace this expression with a
3902 register containing the sum. */
3904 XEXP (x, 0) = old;
3905 new = gen_rtx_PLUS (Pmode, new, new_offset);
3907 start_sequence ();
3908 temp = force_operand (new, NULL_RTX);
3909 seq = get_insns ();
3910 end_sequence ();
3912 emit_insn_before (seq, object);
3913 if (! validate_change (object, loc, temp, 0)
3914 && ! validate_replace_rtx (x, temp, object))
3916 instantiate_virtual_regs_lossage (object);
3917 return 1;
3922 return 1;
3925 /* Fall through to generic two-operand expression case. */
3926 case EXPR_LIST:
3927 case CALL:
3928 case COMPARE:
3929 case MINUS:
3930 case MULT:
3931 case DIV: case UDIV:
3932 case MOD: case UMOD:
3933 case AND: case IOR: case XOR:
3934 case ROTATERT: case ROTATE:
3935 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
3936 case NE: case EQ:
3937 case GE: case GT: case GEU: case GTU:
3938 case LE: case LT: case LEU: case LTU:
3939 if (XEXP (x, 1) && ! CONSTANT_P (XEXP (x, 1)))
3940 instantiate_virtual_regs_1 (&XEXP (x, 1), object, extra_insns);
3941 loc = &XEXP (x, 0);
3942 goto restart;
3944 case MEM:
3945 /* Most cases of MEM that convert to valid addresses have already been
3946 handled by our scan of decls. The only special handling we
3947 need here is to make a copy of the rtx to ensure it isn't being
3948 shared if we have to change it to a pseudo.
3950 If the rtx is a simple reference to an address via a virtual register,
3951 it can potentially be shared. In such cases, first try to make it
3952 a valid address, which can also be shared. Otherwise, copy it and
3953 proceed normally.
3955 First check for common cases that need no processing. These are
3956 usually due to instantiation already being done on a previous instance
3957 of a shared rtx. */
3959 temp = XEXP (x, 0);
3960 if (CONSTANT_ADDRESS_P (temp)
3961 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3962 || temp == arg_pointer_rtx
3963 #endif
3964 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3965 || temp == hard_frame_pointer_rtx
3966 #endif
3967 || temp == frame_pointer_rtx)
3968 return 1;
3970 if (GET_CODE (temp) == PLUS
3971 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
3972 && (XEXP (temp, 0) == frame_pointer_rtx
3973 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3974 || XEXP (temp, 0) == hard_frame_pointer_rtx
3975 #endif
3976 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3977 || XEXP (temp, 0) == arg_pointer_rtx
3978 #endif
3980 return 1;
3982 if (temp == virtual_stack_vars_rtx
3983 || temp == virtual_incoming_args_rtx
3984 || (GET_CODE (temp) == PLUS
3985 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
3986 && (XEXP (temp, 0) == virtual_stack_vars_rtx
3987 || XEXP (temp, 0) == virtual_incoming_args_rtx)))
3989 /* This MEM may be shared. If the substitution can be done without
3990 the need to generate new pseudos, we want to do it in place
3991 so all copies of the shared rtx benefit. The call below will
3992 only make substitutions if the resulting address is still
3993 valid.
3995 Note that we cannot pass X as the object in the recursive call
3996 since the insn being processed may not allow all valid
3997 addresses. However, if we were not passed on object, we can
3998 only modify X without copying it if X will have a valid
3999 address.
4001 ??? Also note that this can still lose if OBJECT is an insn that
4002 has less restrictions on an address that some other insn.
4003 In that case, we will modify the shared address. This case
4004 doesn't seem very likely, though. One case where this could
4005 happen is in the case of a USE or CLOBBER reference, but we
4006 take care of that below. */
4008 if (instantiate_virtual_regs_1 (&XEXP (x, 0),
4009 object ? object : x, 0))
4010 return 1;
4012 /* Otherwise make a copy and process that copy. We copy the entire
4013 RTL expression since it might be a PLUS which could also be
4014 shared. */
4015 *loc = x = copy_rtx (x);
4018 /* Fall through to generic unary operation case. */
4019 case PREFETCH:
4020 case SUBREG:
4021 case STRICT_LOW_PART:
4022 case NEG: case NOT:
4023 case PRE_DEC: case PRE_INC: case POST_DEC: case POST_INC:
4024 case SIGN_EXTEND: case ZERO_EXTEND:
4025 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
4026 case FLOAT: case FIX:
4027 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
4028 case ABS:
4029 case SQRT:
4030 case FFS:
4031 case CLZ: case CTZ:
4032 case POPCOUNT: case PARITY:
4033 /* These case either have just one operand or we know that we need not
4034 check the rest of the operands. */
4035 loc = &XEXP (x, 0);
4036 goto restart;
4038 case USE:
4039 case CLOBBER:
4040 /* If the operand is a MEM, see if the change is a valid MEM. If not,
4041 go ahead and make the invalid one, but do it to a copy. For a REG,
4042 just make the recursive call, since there's no chance of a problem. */
4044 if ((GET_CODE (XEXP (x, 0)) == MEM
4045 && instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), XEXP (x, 0),
4047 || (GET_CODE (XEXP (x, 0)) == REG
4048 && instantiate_virtual_regs_1 (&XEXP (x, 0), object, 0)))
4049 return 1;
4051 XEXP (x, 0) = copy_rtx (XEXP (x, 0));
4052 loc = &XEXP (x, 0);
4053 goto restart;
4055 case REG:
4056 /* Try to replace with a PLUS. If that doesn't work, compute the sum
4057 in front of this insn and substitute the temporary. */
4058 if ((new = instantiate_new_reg (x, &offset)) != 0)
4060 temp = plus_constant (new, offset);
4061 if (!validate_change (object, loc, temp, 0))
4063 if (! extra_insns)
4064 return 0;
4066 start_sequence ();
4067 temp = force_operand (temp, NULL_RTX);
4068 seq = get_insns ();
4069 end_sequence ();
4071 emit_insn_before (seq, object);
4072 if (! validate_change (object, loc, temp, 0)
4073 && ! validate_replace_rtx (x, temp, object))
4074 instantiate_virtual_regs_lossage (object);
4078 return 1;
4080 case ADDRESSOF:
4081 if (GET_CODE (XEXP (x, 0)) == REG)
4082 return 1;
4084 else if (GET_CODE (XEXP (x, 0)) == MEM)
4086 /* If we have a (addressof (mem ..)), do any instantiation inside
4087 since we know we'll be making the inside valid when we finally
4088 remove the ADDRESSOF. */
4089 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), NULL_RTX, 0);
4090 return 1;
4092 break;
4094 default:
4095 break;
4098 /* Scan all subexpressions. */
4099 fmt = GET_RTX_FORMAT (code);
4100 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
4101 if (*fmt == 'e')
4103 if (!instantiate_virtual_regs_1 (&XEXP (x, i), object, extra_insns))
4104 return 0;
4106 else if (*fmt == 'E')
4107 for (j = 0; j < XVECLEN (x, i); j++)
4108 if (! instantiate_virtual_regs_1 (&XVECEXP (x, i, j), object,
4109 extra_insns))
4110 return 0;
4112 return 1;
4115 /* Optimization: assuming this function does not receive nonlocal gotos,
4116 delete the handlers for such, as well as the insns to establish
4117 and disestablish them. */
4119 static void
4120 delete_handlers (void)
4122 rtx insn;
4123 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4125 /* Delete the handler by turning off the flag that would
4126 prevent jump_optimize from deleting it.
4127 Also permit deletion of the nonlocal labels themselves
4128 if nothing local refers to them. */
4129 if (GET_CODE (insn) == CODE_LABEL)
4131 tree t, last_t;
4133 LABEL_PRESERVE_P (insn) = 0;
4135 /* Remove it from the nonlocal_label list, to avoid confusing
4136 flow. */
4137 for (t = nonlocal_labels, last_t = 0; t;
4138 last_t = t, t = TREE_CHAIN (t))
4139 if (DECL_RTL (TREE_VALUE (t)) == insn)
4140 break;
4141 if (t)
4143 if (! last_t)
4144 nonlocal_labels = TREE_CHAIN (nonlocal_labels);
4145 else
4146 TREE_CHAIN (last_t) = TREE_CHAIN (t);
4149 if (GET_CODE (insn) == INSN)
4151 int can_delete = 0;
4152 rtx t;
4153 for (t = nonlocal_goto_handler_slots; t != 0; t = XEXP (t, 1))
4154 if (reg_mentioned_p (t, PATTERN (insn)))
4156 can_delete = 1;
4157 break;
4159 if (can_delete
4160 || (nonlocal_goto_stack_level != 0
4161 && reg_mentioned_p (nonlocal_goto_stack_level,
4162 PATTERN (insn))))
4163 delete_related_insns (insn);
4168 /* Return the first insn following those generated by `assign_parms'. */
4171 get_first_nonparm_insn (void)
4173 if (last_parm_insn)
4174 return NEXT_INSN (last_parm_insn);
4175 return get_insns ();
4178 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
4179 This means a type for which function calls must pass an address to the
4180 function or get an address back from the function.
4181 EXP may be a type node or an expression (whose type is tested). */
4184 aggregate_value_p (tree exp, tree fntype)
4186 int i, regno, nregs;
4187 rtx reg;
4189 tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
4191 if (fntype)
4192 switch (TREE_CODE (fntype))
4194 case CALL_EXPR:
4195 fntype = get_callee_fndecl (fntype);
4196 fntype = fntype ? TREE_TYPE (fntype) : 0;
4197 break;
4198 case FUNCTION_DECL:
4199 fntype = TREE_TYPE (fntype);
4200 break;
4201 case FUNCTION_TYPE:
4202 case METHOD_TYPE:
4203 break;
4204 case IDENTIFIER_NODE:
4205 fntype = 0;
4206 break;
4207 default:
4208 /* We don't expect other rtl types here. */
4209 abort();
4212 if (TREE_CODE (type) == VOID_TYPE)
4213 return 0;
4214 if (targetm.calls.return_in_memory (type, fntype))
4215 return 1;
4216 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
4217 and thus can't be returned in registers. */
4218 if (TREE_ADDRESSABLE (type))
4219 return 1;
4220 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
4221 return 1;
4222 /* Make sure we have suitable call-clobbered regs to return
4223 the value in; if not, we must return it in memory. */
4224 reg = hard_function_value (type, 0, 0);
4226 /* If we have something other than a REG (e.g. a PARALLEL), then assume
4227 it is OK. */
4228 if (GET_CODE (reg) != REG)
4229 return 0;
4231 regno = REGNO (reg);
4232 nregs = HARD_REGNO_NREGS (regno, TYPE_MODE (type));
4233 for (i = 0; i < nregs; i++)
4234 if (! call_used_regs[regno + i])
4235 return 1;
4236 return 0;
4239 /* Assign RTL expressions to the function's parameters.
4240 This may involve copying them into registers and using
4241 those registers as the RTL for them. */
4243 void
4244 assign_parms (tree fndecl)
4246 tree parm;
4247 CUMULATIVE_ARGS args_so_far;
4248 /* Total space needed so far for args on the stack,
4249 given as a constant and a tree-expression. */
4250 struct args_size stack_args_size;
4251 tree fntype = TREE_TYPE (fndecl);
4252 tree fnargs = DECL_ARGUMENTS (fndecl), orig_fnargs;
4253 /* This is used for the arg pointer when referring to stack args. */
4254 rtx internal_arg_pointer;
4255 /* This is a dummy PARM_DECL that we used for the function result if
4256 the function returns a structure. */
4257 tree function_result_decl = 0;
4258 int varargs_setup = 0;
4259 int reg_parm_stack_space = 0;
4260 rtx conversion_insns = 0;
4262 /* Nonzero if function takes extra anonymous args.
4263 This means the last named arg must be on the stack
4264 right before the anonymous ones. */
4265 int stdarg
4266 = (TYPE_ARG_TYPES (fntype) != 0
4267 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
4268 != void_type_node));
4270 current_function_stdarg = stdarg;
4272 /* If the reg that the virtual arg pointer will be translated into is
4273 not a fixed reg or is the stack pointer, make a copy of the virtual
4274 arg pointer, and address parms via the copy. The frame pointer is
4275 considered fixed even though it is not marked as such.
4277 The second time through, simply use ap to avoid generating rtx. */
4279 if ((ARG_POINTER_REGNUM == STACK_POINTER_REGNUM
4280 || ! (fixed_regs[ARG_POINTER_REGNUM]
4281 || ARG_POINTER_REGNUM == FRAME_POINTER_REGNUM)))
4282 internal_arg_pointer = copy_to_reg (virtual_incoming_args_rtx);
4283 else
4284 internal_arg_pointer = virtual_incoming_args_rtx;
4285 current_function_internal_arg_pointer = internal_arg_pointer;
4287 stack_args_size.constant = 0;
4288 stack_args_size.var = 0;
4290 /* If struct value address is treated as the first argument, make it so. */
4291 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
4292 && ! current_function_returns_pcc_struct
4293 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
4295 tree type = build_pointer_type (TREE_TYPE (fntype));
4297 function_result_decl = build_decl (PARM_DECL, NULL_TREE, type);
4299 DECL_ARG_TYPE (function_result_decl) = type;
4300 TREE_CHAIN (function_result_decl) = fnargs;
4301 fnargs = function_result_decl;
4304 orig_fnargs = fnargs;
4306 max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
4307 parm_reg_stack_loc = ggc_alloc_cleared (max_parm_reg * sizeof (rtx));
4309 if (SPLIT_COMPLEX_ARGS)
4310 fnargs = split_complex_args (fnargs);
4312 #ifdef REG_PARM_STACK_SPACE
4313 #ifdef MAYBE_REG_PARM_STACK_SPACE
4314 reg_parm_stack_space = MAYBE_REG_PARM_STACK_SPACE;
4315 #else
4316 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
4317 #endif
4318 #endif
4320 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
4321 INIT_CUMULATIVE_INCOMING_ARGS (args_so_far, fntype, NULL_RTX);
4322 #else
4323 INIT_CUMULATIVE_ARGS (args_so_far, fntype, NULL_RTX, fndecl);
4324 #endif
4326 /* We haven't yet found an argument that we must push and pretend the
4327 caller did. */
4328 current_function_pretend_args_size = 0;
4330 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
4332 rtx entry_parm;
4333 rtx stack_parm;
4334 enum machine_mode promoted_mode, passed_mode;
4335 enum machine_mode nominal_mode, promoted_nominal_mode;
4336 int unsignedp;
4337 struct locate_and_pad_arg_data locate;
4338 int passed_pointer = 0;
4339 int did_conversion = 0;
4340 tree passed_type = DECL_ARG_TYPE (parm);
4341 tree nominal_type = TREE_TYPE (parm);
4342 int last_named = 0, named_arg;
4343 int in_regs;
4344 int partial = 0;
4345 int pretend_bytes = 0;
4347 /* Set LAST_NAMED if this is last named arg before last
4348 anonymous args. */
4349 if (stdarg)
4351 tree tem;
4353 for (tem = TREE_CHAIN (parm); tem; tem = TREE_CHAIN (tem))
4354 if (DECL_NAME (tem))
4355 break;
4357 if (tem == 0)
4358 last_named = 1;
4360 /* Set NAMED_ARG if this arg should be treated as a named arg. For
4361 most machines, if this is a varargs/stdarg function, then we treat
4362 the last named arg as if it were anonymous too. */
4363 named_arg = targetm.calls.strict_argument_naming (&args_so_far) ? 1 : ! last_named;
4365 if (TREE_TYPE (parm) == error_mark_node
4366 /* This can happen after weird syntax errors
4367 or if an enum type is defined among the parms. */
4368 || TREE_CODE (parm) != PARM_DECL
4369 || passed_type == NULL)
4371 SET_DECL_RTL (parm, gen_rtx_MEM (BLKmode, const0_rtx));
4372 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
4373 TREE_USED (parm) = 1;
4374 continue;
4377 /* Find mode of arg as it is passed, and mode of arg
4378 as it should be during execution of this function. */
4379 passed_mode = TYPE_MODE (passed_type);
4380 nominal_mode = TYPE_MODE (nominal_type);
4382 /* If the parm's mode is VOID, its value doesn't matter,
4383 and avoid the usual things like emit_move_insn that could crash. */
4384 if (nominal_mode == VOIDmode)
4386 SET_DECL_RTL (parm, const0_rtx);
4387 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
4388 continue;
4391 /* If the parm is to be passed as a transparent union, use the
4392 type of the first field for the tests below. We have already
4393 verified that the modes are the same. */
4394 if (DECL_TRANSPARENT_UNION (parm)
4395 || (TREE_CODE (passed_type) == UNION_TYPE
4396 && TYPE_TRANSPARENT_UNION (passed_type)))
4397 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
4399 /* See if this arg was passed by invisible reference. It is if
4400 it is an object whose size depends on the contents of the
4401 object itself or if the machine requires these objects be passed
4402 that way. */
4404 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (passed_type))
4405 || TREE_ADDRESSABLE (passed_type)
4406 #ifdef FUNCTION_ARG_PASS_BY_REFERENCE
4407 || FUNCTION_ARG_PASS_BY_REFERENCE (args_so_far, passed_mode,
4408 passed_type, named_arg)
4409 #endif
4412 passed_type = nominal_type = build_pointer_type (passed_type);
4413 passed_pointer = 1;
4414 passed_mode = nominal_mode = Pmode;
4416 /* See if the frontend wants to pass this by invisible reference. */
4417 else if (passed_type != nominal_type
4418 && POINTER_TYPE_P (passed_type)
4419 && TREE_TYPE (passed_type) == nominal_type)
4421 nominal_type = passed_type;
4422 passed_pointer = 1;
4423 passed_mode = nominal_mode = Pmode;
4426 promoted_mode = passed_mode;
4428 if (targetm.calls.promote_function_args (TREE_TYPE (fndecl)))
4430 /* Compute the mode in which the arg is actually extended to. */
4431 unsignedp = TREE_UNSIGNED (passed_type);
4432 promoted_mode = promote_mode (passed_type, promoted_mode, &unsignedp, 1);
4435 /* Let machine desc say which reg (if any) the parm arrives in.
4436 0 means it arrives on the stack. */
4437 #ifdef FUNCTION_INCOMING_ARG
4438 entry_parm = FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
4439 passed_type, named_arg);
4440 #else
4441 entry_parm = FUNCTION_ARG (args_so_far, promoted_mode,
4442 passed_type, named_arg);
4443 #endif
4445 if (entry_parm == 0)
4446 promoted_mode = passed_mode;
4448 /* If this is the last named parameter, do any required setup for
4449 varargs or stdargs. We need to know about the case of this being an
4450 addressable type, in which case we skip the registers it
4451 would have arrived in.
4453 For stdargs, LAST_NAMED will be set for two parameters, the one that
4454 is actually the last named, and the dummy parameter. We only
4455 want to do this action once.
4457 Also, indicate when RTL generation is to be suppressed. */
4458 if (last_named && !varargs_setup)
4460 int varargs_pretend_bytes = 0;
4461 targetm.calls.setup_incoming_varargs (&args_so_far, promoted_mode,
4462 passed_type,
4463 &varargs_pretend_bytes, 0);
4464 varargs_setup = 1;
4466 /* If the back-end has requested extra stack space, record how
4467 much is needed. Do not change pretend_args_size otherwise
4468 since it may be nonzero from an earlier partial argument. */
4469 if (varargs_pretend_bytes > 0)
4470 current_function_pretend_args_size = varargs_pretend_bytes;
4473 /* Determine parm's home in the stack,
4474 in case it arrives in the stack or we should pretend it did.
4476 Compute the stack position and rtx where the argument arrives
4477 and its size.
4479 There is one complexity here: If this was a parameter that would
4480 have been passed in registers, but wasn't only because it is
4481 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
4482 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
4483 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of
4484 0 as it was the previous time. */
4485 in_regs = entry_parm != 0;
4486 #ifdef STACK_PARMS_IN_REG_PARM_AREA
4487 in_regs = 1;
4488 #endif
4489 if (!in_regs && !named_arg)
4491 int pretend_named =
4492 targetm.calls.pretend_outgoing_varargs_named (&args_so_far);
4493 if (pretend_named)
4495 #ifdef FUNCTION_INCOMING_ARG
4496 in_regs = FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
4497 passed_type,
4498 pretend_named) != 0;
4499 #else
4500 in_regs = FUNCTION_ARG (args_so_far, promoted_mode,
4501 passed_type,
4502 pretend_named) != 0;
4503 #endif
4507 /* If this parameter was passed both in registers and in the stack,
4508 use the copy on the stack. */
4509 if (MUST_PASS_IN_STACK (promoted_mode, passed_type))
4510 entry_parm = 0;
4512 #ifdef FUNCTION_ARG_PARTIAL_NREGS
4513 if (entry_parm)
4515 partial = FUNCTION_ARG_PARTIAL_NREGS (args_so_far, promoted_mode,
4516 passed_type, named_arg);
4517 if (partial
4518 #ifndef MAYBE_REG_PARM_STACK_SPACE
4519 /* The caller might already have allocated stack space
4520 for the register parameters. */
4521 && reg_parm_stack_space == 0
4522 #endif
4525 /* Part of this argument is passed in registers and part
4526 is passed on the stack. Ask the prologue code to extend
4527 the stack part so that we can recreate the full value.
4529 PRETEND_BYTES is the size of the registers we need to store.
4530 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
4531 stack space that the prologue should allocate.
4533 Internally, gcc assumes that the argument pointer is
4534 aligned to STACK_BOUNDARY bits. This is used both for
4535 alignment optimizations (see init_emit) and to locate
4536 arguments that are aligned to more than PARM_BOUNDARY
4537 bits. We must preserve this invariant by rounding
4538 CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to a stack
4539 boundary. */
4540 pretend_bytes = partial * UNITS_PER_WORD;
4541 current_function_pretend_args_size
4542 = CEIL_ROUND (pretend_bytes, STACK_BYTES);
4544 /* If PRETEND_BYTES != CURRENT_FUNCTION_PRETEND_ARGS_SIZE,
4545 insert the padding before the start of the first pretend
4546 argument. */
4547 stack_args_size.constant
4548 = (current_function_pretend_args_size - pretend_bytes);
4551 #endif
4553 memset (&locate, 0, sizeof (locate));
4554 locate_and_pad_parm (promoted_mode, passed_type, in_regs,
4555 entry_parm ? partial : 0, fndecl,
4556 &stack_args_size, &locate);
4559 rtx offset_rtx;
4561 /* If we're passing this arg using a reg, make its stack home
4562 the aligned stack slot. */
4563 if (entry_parm)
4564 offset_rtx = ARGS_SIZE_RTX (locate.slot_offset);
4565 else
4566 offset_rtx = ARGS_SIZE_RTX (locate.offset);
4568 if (offset_rtx == const0_rtx)
4569 stack_parm = gen_rtx_MEM (promoted_mode, internal_arg_pointer);
4570 else
4571 stack_parm = gen_rtx_MEM (promoted_mode,
4572 gen_rtx_PLUS (Pmode,
4573 internal_arg_pointer,
4574 offset_rtx));
4576 set_mem_attributes (stack_parm, parm, 1);
4577 if (entry_parm && MEM_ATTRS (stack_parm)->align < PARM_BOUNDARY)
4578 set_mem_align (stack_parm, PARM_BOUNDARY);
4580 /* Set also REG_ATTRS if parameter was passed in a register. */
4581 if (entry_parm)
4582 set_reg_attrs_for_parm (entry_parm, stack_parm);
4585 /* If this parm was passed part in regs and part in memory,
4586 pretend it arrived entirely in memory
4587 by pushing the register-part onto the stack.
4589 In the special case of a DImode or DFmode that is split,
4590 we could put it together in a pseudoreg directly,
4591 but for now that's not worth bothering with. */
4593 if (partial)
4595 /* Handle calls that pass values in multiple non-contiguous
4596 locations. The Irix 6 ABI has examples of this. */
4597 if (GET_CODE (entry_parm) == PARALLEL)
4598 emit_group_store (validize_mem (stack_parm), entry_parm,
4599 TREE_TYPE (parm),
4600 int_size_in_bytes (TREE_TYPE (parm)));
4602 else
4603 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
4604 partial);
4606 entry_parm = stack_parm;
4609 /* If we didn't decide this parm came in a register,
4610 by default it came on the stack. */
4611 if (entry_parm == 0)
4612 entry_parm = stack_parm;
4614 /* Record permanently how this parm was passed. */
4615 DECL_INCOMING_RTL (parm) = entry_parm;
4617 /* If there is actually space on the stack for this parm,
4618 count it in stack_args_size; otherwise set stack_parm to 0
4619 to indicate there is no preallocated stack slot for the parm. */
4621 if (entry_parm == stack_parm
4622 || (GET_CODE (entry_parm) == PARALLEL
4623 && XEXP (XVECEXP (entry_parm, 0, 0), 0) == NULL_RTX)
4624 #if defined (REG_PARM_STACK_SPACE) && ! defined (MAYBE_REG_PARM_STACK_SPACE)
4625 /* On some machines, even if a parm value arrives in a register
4626 there is still an (uninitialized) stack slot allocated for it.
4628 ??? When MAYBE_REG_PARM_STACK_SPACE is defined, we can't tell
4629 whether this parameter already has a stack slot allocated,
4630 because an arg block exists only if current_function_args_size
4631 is larger than some threshold, and we haven't calculated that
4632 yet. So, for now, we just assume that stack slots never exist
4633 in this case. */
4634 || REG_PARM_STACK_SPACE (fndecl) > 0
4635 #endif
4638 stack_args_size.constant += pretend_bytes + locate.size.constant;
4639 if (locate.size.var)
4640 ADD_PARM_SIZE (stack_args_size, locate.size.var);
4642 else
4643 /* No stack slot was pushed for this parm. */
4644 stack_parm = 0;
4646 /* Update info on where next arg arrives in registers. */
4648 FUNCTION_ARG_ADVANCE (args_so_far, promoted_mode,
4649 passed_type, named_arg);
4651 /* If we can't trust the parm stack slot to be aligned enough
4652 for its ultimate type, don't use that slot after entry.
4653 We'll make another stack slot, if we need one. */
4655 unsigned int thisparm_boundary
4656 = FUNCTION_ARG_BOUNDARY (promoted_mode, passed_type);
4658 if (GET_MODE_ALIGNMENT (nominal_mode) > thisparm_boundary)
4659 stack_parm = 0;
4662 /* If parm was passed in memory, and we need to convert it on entry,
4663 don't store it back in that same slot. */
4664 if (entry_parm == stack_parm
4665 && nominal_mode != BLKmode && nominal_mode != passed_mode)
4666 stack_parm = 0;
4668 /* When an argument is passed in multiple locations, we can't
4669 make use of this information, but we can save some copying if
4670 the whole argument is passed in a single register. */
4671 if (GET_CODE (entry_parm) == PARALLEL
4672 && nominal_mode != BLKmode && passed_mode != BLKmode)
4674 int i, len = XVECLEN (entry_parm, 0);
4676 for (i = 0; i < len; i++)
4677 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
4678 && GET_CODE (XEXP (XVECEXP (entry_parm, 0, i), 0)) == REG
4679 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
4680 == passed_mode)
4681 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
4683 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
4684 DECL_INCOMING_RTL (parm) = entry_parm;
4685 break;
4689 /* ENTRY_PARM is an RTX for the parameter as it arrives,
4690 in the mode in which it arrives.
4691 STACK_PARM is an RTX for a stack slot where the parameter can live
4692 during the function (in case we want to put it there).
4693 STACK_PARM is 0 if no stack slot was pushed for it.
4695 Now output code if necessary to convert ENTRY_PARM to
4696 the type in which this function declares it,
4697 and store that result in an appropriate place,
4698 which may be a pseudo reg, may be STACK_PARM,
4699 or may be a local stack slot if STACK_PARM is 0.
4701 Set DECL_RTL to that place. */
4703 if (nominal_mode == BLKmode
4704 #ifdef BLOCK_REG_PADDING
4705 || (locate.where_pad == (BYTES_BIG_ENDIAN ? upward : downward)
4706 && GET_MODE_SIZE (promoted_mode) < UNITS_PER_WORD)
4707 #endif
4708 || GET_CODE (entry_parm) == PARALLEL)
4710 /* If a BLKmode arrives in registers, copy it to a stack slot.
4711 Handle calls that pass values in multiple non-contiguous
4712 locations. The Irix 6 ABI has examples of this. */
4713 if (GET_CODE (entry_parm) == REG
4714 || GET_CODE (entry_parm) == PARALLEL)
4716 int size = int_size_in_bytes (TREE_TYPE (parm));
4717 int size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
4718 rtx mem;
4720 /* Note that we will be storing an integral number of words.
4721 So we have to be careful to ensure that we allocate an
4722 integral number of words. We do this below in the
4723 assign_stack_local if space was not allocated in the argument
4724 list. If it was, this will not work if PARM_BOUNDARY is not
4725 a multiple of BITS_PER_WORD. It isn't clear how to fix this
4726 if it becomes a problem. */
4728 if (stack_parm == 0)
4730 stack_parm = assign_stack_local (BLKmode, size_stored, 0);
4731 PUT_MODE (stack_parm, GET_MODE (entry_parm));
4732 set_mem_attributes (stack_parm, parm, 1);
4735 else if (PARM_BOUNDARY % BITS_PER_WORD != 0)
4736 abort ();
4738 mem = validize_mem (stack_parm);
4740 /* Handle calls that pass values in multiple non-contiguous
4741 locations. The Irix 6 ABI has examples of this. */
4742 if (GET_CODE (entry_parm) == PARALLEL)
4743 emit_group_store (mem, entry_parm, TREE_TYPE (parm), size);
4745 else if (size == 0)
4748 /* If SIZE is that of a mode no bigger than a word, just use
4749 that mode's store operation. */
4750 else if (size <= UNITS_PER_WORD)
4752 enum machine_mode mode
4753 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
4755 if (mode != BLKmode
4756 #ifdef BLOCK_REG_PADDING
4757 && (size == UNITS_PER_WORD
4758 || (BLOCK_REG_PADDING (mode, TREE_TYPE (parm), 1)
4759 != (BYTES_BIG_ENDIAN ? upward : downward)))
4760 #endif
4763 rtx reg = gen_rtx_REG (mode, REGNO (entry_parm));
4764 emit_move_insn (change_address (mem, mode, 0), reg);
4767 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
4768 machine must be aligned to the left before storing
4769 to memory. Note that the previous test doesn't
4770 handle all cases (e.g. SIZE == 3). */
4771 else if (size != UNITS_PER_WORD
4772 #ifdef BLOCK_REG_PADDING
4773 && (BLOCK_REG_PADDING (mode, TREE_TYPE (parm), 1)
4774 == downward)
4775 #else
4776 && BYTES_BIG_ENDIAN
4777 #endif
4780 rtx tem, x;
4781 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
4782 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
4784 x = expand_binop (word_mode, ashl_optab, reg,
4785 GEN_INT (by), 0, 1, OPTAB_WIDEN);
4786 tem = change_address (mem, word_mode, 0);
4787 emit_move_insn (tem, x);
4789 else
4790 move_block_from_reg (REGNO (entry_parm), mem,
4791 size_stored / UNITS_PER_WORD);
4793 else
4794 move_block_from_reg (REGNO (entry_parm), mem,
4795 size_stored / UNITS_PER_WORD);
4797 SET_DECL_RTL (parm, stack_parm);
4799 else if (! ((! optimize
4800 && ! DECL_REGISTER (parm))
4801 || TREE_SIDE_EFFECTS (parm)
4802 /* If -ffloat-store specified, don't put explicit
4803 float variables into registers. */
4804 || (flag_float_store
4805 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE))
4806 /* Always assign pseudo to structure return or item passed
4807 by invisible reference. */
4808 || passed_pointer || parm == function_result_decl)
4810 /* Store the parm in a pseudoregister during the function, but we
4811 may need to do it in a wider mode. */
4813 rtx parmreg;
4814 unsigned int regno, regnoi = 0, regnor = 0;
4816 unsignedp = TREE_UNSIGNED (TREE_TYPE (parm));
4818 promoted_nominal_mode
4819 = promote_mode (TREE_TYPE (parm), nominal_mode, &unsignedp, 0);
4821 parmreg = gen_reg_rtx (promoted_nominal_mode);
4822 mark_user_reg (parmreg);
4824 /* If this was an item that we received a pointer to, set DECL_RTL
4825 appropriately. */
4826 if (passed_pointer)
4828 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (passed_type)),
4829 parmreg);
4830 set_mem_attributes (x, parm, 1);
4831 SET_DECL_RTL (parm, x);
4833 else
4835 SET_DECL_RTL (parm, parmreg);
4836 maybe_set_unchanging (DECL_RTL (parm), parm);
4839 /* Copy the value into the register. */
4840 if (nominal_mode != passed_mode
4841 || promoted_nominal_mode != promoted_mode)
4843 int save_tree_used;
4844 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
4845 mode, by the caller. We now have to convert it to
4846 NOMINAL_MODE, if different. However, PARMREG may be in
4847 a different mode than NOMINAL_MODE if it is being stored
4848 promoted.
4850 If ENTRY_PARM is a hard register, it might be in a register
4851 not valid for operating in its mode (e.g., an odd-numbered
4852 register for a DFmode). In that case, moves are the only
4853 thing valid, so we can't do a convert from there. This
4854 occurs when the calling sequence allow such misaligned
4855 usages.
4857 In addition, the conversion may involve a call, which could
4858 clobber parameters which haven't been copied to pseudo
4859 registers yet. Therefore, we must first copy the parm to
4860 a pseudo reg here, and save the conversion until after all
4861 parameters have been moved. */
4863 rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
4865 emit_move_insn (tempreg, validize_mem (entry_parm));
4867 push_to_sequence (conversion_insns);
4868 tempreg = convert_to_mode (nominal_mode, tempreg, unsignedp);
4870 if (GET_CODE (tempreg) == SUBREG
4871 && GET_MODE (tempreg) == nominal_mode
4872 && GET_CODE (SUBREG_REG (tempreg)) == REG
4873 && nominal_mode == passed_mode
4874 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (entry_parm)
4875 && GET_MODE_SIZE (GET_MODE (tempreg))
4876 < GET_MODE_SIZE (GET_MODE (entry_parm)))
4878 /* The argument is already sign/zero extended, so note it
4879 into the subreg. */
4880 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
4881 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
4884 /* TREE_USED gets set erroneously during expand_assignment. */
4885 save_tree_used = TREE_USED (parm);
4886 expand_assignment (parm,
4887 make_tree (nominal_type, tempreg), 0);
4888 TREE_USED (parm) = save_tree_used;
4889 conversion_insns = get_insns ();
4890 did_conversion = 1;
4891 end_sequence ();
4893 else
4894 emit_move_insn (parmreg, validize_mem (entry_parm));
4896 /* If we were passed a pointer but the actual value
4897 can safely live in a register, put it in one. */
4898 if (passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
4899 /* If by-reference argument was promoted, demote it. */
4900 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
4901 || ! ((! optimize
4902 && ! DECL_REGISTER (parm))
4903 || TREE_SIDE_EFFECTS (parm)
4904 /* If -ffloat-store specified, don't put explicit
4905 float variables into registers. */
4906 || (flag_float_store
4907 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE))))
4909 /* We can't use nominal_mode, because it will have been set to
4910 Pmode above. We must use the actual mode of the parm. */
4911 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
4912 mark_user_reg (parmreg);
4913 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
4915 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
4916 int unsigned_p = TREE_UNSIGNED (TREE_TYPE (parm));
4917 push_to_sequence (conversion_insns);
4918 emit_move_insn (tempreg, DECL_RTL (parm));
4919 SET_DECL_RTL (parm,
4920 convert_to_mode (GET_MODE (parmreg),
4921 tempreg,
4922 unsigned_p));
4923 emit_move_insn (parmreg, DECL_RTL (parm));
4924 conversion_insns = get_insns();
4925 did_conversion = 1;
4926 end_sequence ();
4928 else
4929 emit_move_insn (parmreg, DECL_RTL (parm));
4930 SET_DECL_RTL (parm, parmreg);
4931 /* STACK_PARM is the pointer, not the parm, and PARMREG is
4932 now the parm. */
4933 stack_parm = 0;
4935 #ifdef FUNCTION_ARG_CALLEE_COPIES
4936 /* If we are passed an arg by reference and it is our responsibility
4937 to make a copy, do it now.
4938 PASSED_TYPE and PASSED mode now refer to the pointer, not the
4939 original argument, so we must recreate them in the call to
4940 FUNCTION_ARG_CALLEE_COPIES. */
4941 /* ??? Later add code to handle the case that if the argument isn't
4942 modified, don't do the copy. */
4944 else if (passed_pointer
4945 && FUNCTION_ARG_CALLEE_COPIES (args_so_far,
4946 TYPE_MODE (DECL_ARG_TYPE (parm)),
4947 DECL_ARG_TYPE (parm),
4948 named_arg)
4949 && ! TREE_ADDRESSABLE (DECL_ARG_TYPE (parm)))
4951 rtx copy;
4952 tree type = DECL_ARG_TYPE (parm);
4954 /* This sequence may involve a library call perhaps clobbering
4955 registers that haven't been copied to pseudos yet. */
4957 push_to_sequence (conversion_insns);
4959 if (!COMPLETE_TYPE_P (type)
4960 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4961 /* This is a variable sized object. */
4962 copy = gen_rtx_MEM (BLKmode,
4963 allocate_dynamic_stack_space
4964 (expr_size (parm), NULL_RTX,
4965 TYPE_ALIGN (type)));
4966 else
4967 copy = assign_stack_temp (TYPE_MODE (type),
4968 int_size_in_bytes (type), 1);
4969 set_mem_attributes (copy, parm, 1);
4971 store_expr (parm, copy, 0);
4972 emit_move_insn (parmreg, XEXP (copy, 0));
4973 conversion_insns = get_insns ();
4974 did_conversion = 1;
4975 end_sequence ();
4977 #endif /* FUNCTION_ARG_CALLEE_COPIES */
4979 /* In any case, record the parm's desired stack location
4980 in case we later discover it must live in the stack.
4982 If it is a COMPLEX value, store the stack location for both
4983 halves. */
4985 if (GET_CODE (parmreg) == CONCAT)
4986 regno = MAX (REGNO (XEXP (parmreg, 0)), REGNO (XEXP (parmreg, 1)));
4987 else
4988 regno = REGNO (parmreg);
4990 if (regno >= max_parm_reg)
4992 rtx *new;
4993 int old_max_parm_reg = max_parm_reg;
4995 /* It's slow to expand this one register at a time,
4996 but it's also rare and we need max_parm_reg to be
4997 precisely correct. */
4998 max_parm_reg = regno + 1;
4999 new = ggc_realloc (parm_reg_stack_loc,
5000 max_parm_reg * sizeof (rtx));
5001 memset (new + old_max_parm_reg, 0,
5002 (max_parm_reg - old_max_parm_reg) * sizeof (rtx));
5003 parm_reg_stack_loc = new;
5006 if (GET_CODE (parmreg) == CONCAT)
5008 enum machine_mode submode = GET_MODE (XEXP (parmreg, 0));
5010 regnor = REGNO (gen_realpart (submode, parmreg));
5011 regnoi = REGNO (gen_imagpart (submode, parmreg));
5013 if (stack_parm != 0)
5015 parm_reg_stack_loc[regnor]
5016 = gen_realpart (submode, stack_parm);
5017 parm_reg_stack_loc[regnoi]
5018 = gen_imagpart (submode, stack_parm);
5020 else
5022 parm_reg_stack_loc[regnor] = 0;
5023 parm_reg_stack_loc[regnoi] = 0;
5026 else
5027 parm_reg_stack_loc[REGNO (parmreg)] = stack_parm;
5029 /* Mark the register as eliminable if we did no conversion
5030 and it was copied from memory at a fixed offset,
5031 and the arg pointer was not copied to a pseudo-reg.
5032 If the arg pointer is a pseudo reg or the offset formed
5033 an invalid address, such memory-equivalences
5034 as we make here would screw up life analysis for it. */
5035 if (nominal_mode == passed_mode
5036 && ! did_conversion
5037 && stack_parm != 0
5038 && GET_CODE (stack_parm) == MEM
5039 && locate.offset.var == 0
5040 && reg_mentioned_p (virtual_incoming_args_rtx,
5041 XEXP (stack_parm, 0)))
5043 rtx linsn = get_last_insn ();
5044 rtx sinsn, set;
5046 /* Mark complex types separately. */
5047 if (GET_CODE (parmreg) == CONCAT)
5048 /* Scan backwards for the set of the real and
5049 imaginary parts. */
5050 for (sinsn = linsn; sinsn != 0;
5051 sinsn = prev_nonnote_insn (sinsn))
5053 set = single_set (sinsn);
5054 if (set != 0
5055 && SET_DEST (set) == regno_reg_rtx [regnoi])
5056 REG_NOTES (sinsn)
5057 = gen_rtx_EXPR_LIST (REG_EQUIV,
5058 parm_reg_stack_loc[regnoi],
5059 REG_NOTES (sinsn));
5060 else if (set != 0
5061 && SET_DEST (set) == regno_reg_rtx [regnor])
5062 REG_NOTES (sinsn)
5063 = gen_rtx_EXPR_LIST (REG_EQUIV,
5064 parm_reg_stack_loc[regnor],
5065 REG_NOTES (sinsn));
5067 else if ((set = single_set (linsn)) != 0
5068 && SET_DEST (set) == parmreg)
5069 REG_NOTES (linsn)
5070 = gen_rtx_EXPR_LIST (REG_EQUIV,
5071 stack_parm, REG_NOTES (linsn));
5074 /* For pointer data type, suggest pointer register. */
5075 if (POINTER_TYPE_P (TREE_TYPE (parm)))
5076 mark_reg_pointer (parmreg,
5077 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
5079 /* If something wants our address, try to use ADDRESSOF. */
5080 if (TREE_ADDRESSABLE (parm))
5082 /* If we end up putting something into the stack,
5083 fixup_var_refs_insns will need to make a pass over
5084 all the instructions. It looks through the pending
5085 sequences -- but it can't see the ones in the
5086 CONVERSION_INSNS, if they're not on the sequence
5087 stack. So, we go back to that sequence, just so that
5088 the fixups will happen. */
5089 push_to_sequence (conversion_insns);
5090 put_var_into_stack (parm, /*rescan=*/true);
5091 conversion_insns = get_insns ();
5092 end_sequence ();
5095 else
5097 /* Value must be stored in the stack slot STACK_PARM
5098 during function execution. */
5100 if (promoted_mode != nominal_mode)
5102 /* Conversion is required. */
5103 rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
5105 emit_move_insn (tempreg, validize_mem (entry_parm));
5107 push_to_sequence (conversion_insns);
5108 entry_parm = convert_to_mode (nominal_mode, tempreg,
5109 TREE_UNSIGNED (TREE_TYPE (parm)));
5110 if (stack_parm)
5111 /* ??? This may need a big-endian conversion on sparc64. */
5112 stack_parm = adjust_address (stack_parm, nominal_mode, 0);
5114 conversion_insns = get_insns ();
5115 did_conversion = 1;
5116 end_sequence ();
5119 if (entry_parm != stack_parm)
5121 if (stack_parm == 0)
5123 stack_parm
5124 = assign_stack_local (GET_MODE (entry_parm),
5125 GET_MODE_SIZE (GET_MODE (entry_parm)),
5127 set_mem_attributes (stack_parm, parm, 1);
5130 if (promoted_mode != nominal_mode)
5132 push_to_sequence (conversion_insns);
5133 emit_move_insn (validize_mem (stack_parm),
5134 validize_mem (entry_parm));
5135 conversion_insns = get_insns ();
5136 end_sequence ();
5138 else
5139 emit_move_insn (validize_mem (stack_parm),
5140 validize_mem (entry_parm));
5143 SET_DECL_RTL (parm, stack_parm);
5147 if (SPLIT_COMPLEX_ARGS && fnargs != orig_fnargs)
5149 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm))
5151 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE)
5153 SET_DECL_RTL (parm,
5154 gen_rtx_CONCAT (DECL_MODE (parm),
5155 DECL_RTL (fnargs),
5156 DECL_RTL (TREE_CHAIN (fnargs))));
5157 DECL_INCOMING_RTL (parm)
5158 = gen_rtx_CONCAT (DECL_MODE (parm),
5159 DECL_INCOMING_RTL (fnargs),
5160 DECL_INCOMING_RTL (TREE_CHAIN (fnargs)));
5161 fnargs = TREE_CHAIN (fnargs);
5163 else
5165 SET_DECL_RTL (parm, DECL_RTL (fnargs));
5166 DECL_INCOMING_RTL (parm) = DECL_INCOMING_RTL (fnargs);
5168 fnargs = TREE_CHAIN (fnargs);
5172 /* Output all parameter conversion instructions (possibly including calls)
5173 now that all parameters have been copied out of hard registers. */
5174 emit_insn (conversion_insns);
5176 /* If we are receiving a struct value address as the first argument, set up
5177 the RTL for the function result. As this might require code to convert
5178 the transmitted address to Pmode, we do this here to ensure that possible
5179 preliminary conversions of the address have been emitted already. */
5180 if (function_result_decl)
5182 tree result = DECL_RESULT (fndecl);
5183 rtx addr = DECL_RTL (function_result_decl);
5184 rtx x;
5186 addr = convert_memory_address (Pmode, addr);
5187 x = gen_rtx_MEM (DECL_MODE (result), addr);
5188 set_mem_attributes (x, result, 1);
5189 SET_DECL_RTL (result, x);
5192 last_parm_insn = get_last_insn ();
5194 current_function_args_size = stack_args_size.constant;
5196 /* Adjust function incoming argument size for alignment and
5197 minimum length. */
5199 #ifdef REG_PARM_STACK_SPACE
5200 #ifndef MAYBE_REG_PARM_STACK_SPACE
5201 current_function_args_size = MAX (current_function_args_size,
5202 REG_PARM_STACK_SPACE (fndecl));
5203 #endif
5204 #endif
5206 current_function_args_size
5207 = ((current_function_args_size + STACK_BYTES - 1)
5208 / STACK_BYTES) * STACK_BYTES;
5210 #ifdef ARGS_GROW_DOWNWARD
5211 current_function_arg_offset_rtx
5212 = (stack_args_size.var == 0 ? GEN_INT (-stack_args_size.constant)
5213 : expand_expr (size_diffop (stack_args_size.var,
5214 size_int (-stack_args_size.constant)),
5215 NULL_RTX, VOIDmode, 0));
5216 #else
5217 current_function_arg_offset_rtx = ARGS_SIZE_RTX (stack_args_size);
5218 #endif
5220 /* See how many bytes, if any, of its args a function should try to pop
5221 on return. */
5223 current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
5224 current_function_args_size);
5226 /* For stdarg.h function, save info about
5227 regs and stack space used by the named args. */
5229 current_function_args_info = args_so_far;
5231 /* Set the rtx used for the function return value. Put this in its
5232 own variable so any optimizers that need this information don't have
5233 to include tree.h. Do this here so it gets done when an inlined
5234 function gets output. */
5236 current_function_return_rtx
5237 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
5238 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
5240 /* If scalar return value was computed in a pseudo-reg, or was a named
5241 return value that got dumped to the stack, copy that to the hard
5242 return register. */
5243 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
5245 tree decl_result = DECL_RESULT (fndecl);
5246 rtx decl_rtl = DECL_RTL (decl_result);
5248 if (REG_P (decl_rtl)
5249 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
5250 : DECL_REGISTER (decl_result))
5252 rtx real_decl_rtl;
5254 #ifdef FUNCTION_OUTGOING_VALUE
5255 real_decl_rtl = FUNCTION_OUTGOING_VALUE (TREE_TYPE (decl_result),
5256 fndecl);
5257 #else
5258 real_decl_rtl = FUNCTION_VALUE (TREE_TYPE (decl_result),
5259 fndecl);
5260 #endif
5261 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
5262 /* The delay slot scheduler assumes that current_function_return_rtx
5263 holds the hard register containing the return value, not a
5264 temporary pseudo. */
5265 current_function_return_rtx = real_decl_rtl;
5270 /* If ARGS contains entries with complex types, split the entry into two
5271 entries of the component type. Return a new list of substitutions are
5272 needed, else the old list. */
5274 static tree
5275 split_complex_args (tree args)
5277 tree p;
5279 /* Before allocating memory, check for the common case of no complex. */
5280 for (p = args; p; p = TREE_CHAIN (p))
5281 if (TREE_CODE (TREE_TYPE (p)) == COMPLEX_TYPE)
5282 goto found;
5283 return args;
5285 found:
5286 args = copy_list (args);
5288 for (p = args; p; p = TREE_CHAIN (p))
5290 tree type = TREE_TYPE (p);
5291 if (TREE_CODE (type) == COMPLEX_TYPE)
5293 tree decl;
5294 tree subtype = TREE_TYPE (type);
5296 /* Rewrite the PARM_DECL's type with its component. */
5297 TREE_TYPE (p) = subtype;
5298 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
5299 DECL_MODE (p) = VOIDmode;
5300 DECL_SIZE (p) = NULL;
5301 DECL_SIZE_UNIT (p) = NULL;
5302 layout_decl (p, 0);
5304 /* Build a second synthetic decl. */
5305 decl = build_decl (PARM_DECL, NULL_TREE, subtype);
5306 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
5307 layout_decl (decl, 0);
5309 /* Splice it in; skip the new decl. */
5310 TREE_CHAIN (decl) = TREE_CHAIN (p);
5311 TREE_CHAIN (p) = decl;
5312 p = decl;
5316 return args;
5319 /* Indicate whether REGNO is an incoming argument to the current function
5320 that was promoted to a wider mode. If so, return the RTX for the
5321 register (to get its mode). PMODE and PUNSIGNEDP are set to the mode
5322 that REGNO is promoted from and whether the promotion was signed or
5323 unsigned. */
5326 promoted_input_arg (unsigned int regno, enum machine_mode *pmode, int *punsignedp)
5328 tree arg;
5330 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
5331 arg = TREE_CHAIN (arg))
5332 if (GET_CODE (DECL_INCOMING_RTL (arg)) == REG
5333 && REGNO (DECL_INCOMING_RTL (arg)) == regno
5334 && TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg)))
5336 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
5337 int unsignedp = TREE_UNSIGNED (TREE_TYPE (arg));
5339 mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1);
5340 if (mode == GET_MODE (DECL_INCOMING_RTL (arg))
5341 && mode != DECL_MODE (arg))
5343 *pmode = DECL_MODE (arg);
5344 *punsignedp = unsignedp;
5345 return DECL_INCOMING_RTL (arg);
5349 return 0;
5353 /* Compute the size and offset from the start of the stacked arguments for a
5354 parm passed in mode PASSED_MODE and with type TYPE.
5356 INITIAL_OFFSET_PTR points to the current offset into the stacked
5357 arguments.
5359 The starting offset and size for this parm are returned in
5360 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
5361 nonzero, the offset is that of stack slot, which is returned in
5362 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
5363 padding required from the initial offset ptr to the stack slot.
5365 IN_REGS is nonzero if the argument will be passed in registers. It will
5366 never be set if REG_PARM_STACK_SPACE is not defined.
5368 FNDECL is the function in which the argument was defined.
5370 There are two types of rounding that are done. The first, controlled by
5371 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
5372 list to be aligned to the specific boundary (in bits). This rounding
5373 affects the initial and starting offsets, but not the argument size.
5375 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
5376 optionally rounds the size of the parm to PARM_BOUNDARY. The
5377 initial offset is not affected by this rounding, while the size always
5378 is and the starting offset may be. */
5380 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
5381 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
5382 callers pass in the total size of args so far as
5383 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
5385 void
5386 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
5387 int partial, tree fndecl ATTRIBUTE_UNUSED,
5388 struct args_size *initial_offset_ptr,
5389 struct locate_and_pad_arg_data *locate)
5391 tree sizetree;
5392 enum direction where_pad;
5393 int boundary;
5394 int reg_parm_stack_space = 0;
5395 int part_size_in_regs;
5397 #ifdef REG_PARM_STACK_SPACE
5398 #ifdef MAYBE_REG_PARM_STACK_SPACE
5399 reg_parm_stack_space = MAYBE_REG_PARM_STACK_SPACE;
5400 #else
5401 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
5402 #endif
5404 /* If we have found a stack parm before we reach the end of the
5405 area reserved for registers, skip that area. */
5406 if (! in_regs)
5408 if (reg_parm_stack_space > 0)
5410 if (initial_offset_ptr->var)
5412 initial_offset_ptr->var
5413 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
5414 ssize_int (reg_parm_stack_space));
5415 initial_offset_ptr->constant = 0;
5417 else if (initial_offset_ptr->constant < reg_parm_stack_space)
5418 initial_offset_ptr->constant = reg_parm_stack_space;
5421 #endif /* REG_PARM_STACK_SPACE */
5423 part_size_in_regs = 0;
5424 if (reg_parm_stack_space == 0)
5425 part_size_in_regs = ((partial * UNITS_PER_WORD)
5426 / (PARM_BOUNDARY / BITS_PER_UNIT)
5427 * (PARM_BOUNDARY / BITS_PER_UNIT));
5429 sizetree
5430 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
5431 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
5432 boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
5433 locate->where_pad = where_pad;
5435 #ifdef ARGS_GROW_DOWNWARD
5436 locate->slot_offset.constant = -initial_offset_ptr->constant;
5437 if (initial_offset_ptr->var)
5438 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
5439 initial_offset_ptr->var);
5442 tree s2 = sizetree;
5443 if (where_pad != none
5444 && (!host_integerp (sizetree, 1)
5445 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
5446 s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
5447 SUB_PARM_SIZE (locate->slot_offset, s2);
5450 locate->slot_offset.constant += part_size_in_regs;
5452 if (!in_regs
5453 #ifdef REG_PARM_STACK_SPACE
5454 || REG_PARM_STACK_SPACE (fndecl) > 0
5455 #endif
5457 pad_to_arg_alignment (&locate->slot_offset, boundary,
5458 &locate->alignment_pad);
5460 locate->size.constant = (-initial_offset_ptr->constant
5461 - locate->slot_offset.constant);
5462 if (initial_offset_ptr->var)
5463 locate->size.var = size_binop (MINUS_EXPR,
5464 size_binop (MINUS_EXPR,
5465 ssize_int (0),
5466 initial_offset_ptr->var),
5467 locate->slot_offset.var);
5469 /* Pad_below needs the pre-rounded size to know how much to pad
5470 below. */
5471 locate->offset = locate->slot_offset;
5472 if (where_pad == downward)
5473 pad_below (&locate->offset, passed_mode, sizetree);
5475 #else /* !ARGS_GROW_DOWNWARD */
5476 if (!in_regs
5477 #ifdef REG_PARM_STACK_SPACE
5478 || REG_PARM_STACK_SPACE (fndecl) > 0
5479 #endif
5481 pad_to_arg_alignment (initial_offset_ptr, boundary,
5482 &locate->alignment_pad);
5483 locate->slot_offset = *initial_offset_ptr;
5485 #ifdef PUSH_ROUNDING
5486 if (passed_mode != BLKmode)
5487 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
5488 #endif
5490 /* Pad_below needs the pre-rounded size to know how much to pad below
5491 so this must be done before rounding up. */
5492 locate->offset = locate->slot_offset;
5493 if (where_pad == downward)
5494 pad_below (&locate->offset, passed_mode, sizetree);
5496 if (where_pad != none
5497 && (!host_integerp (sizetree, 1)
5498 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
5499 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5501 ADD_PARM_SIZE (locate->size, sizetree);
5503 locate->size.constant -= part_size_in_regs;
5504 #endif /* ARGS_GROW_DOWNWARD */
5507 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
5508 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
5510 static void
5511 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
5512 struct args_size *alignment_pad)
5514 tree save_var = NULL_TREE;
5515 HOST_WIDE_INT save_constant = 0;
5516 int boundary_in_bytes = boundary / BITS_PER_UNIT;
5517 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
5519 #ifdef SPARC_STACK_BOUNDARY_HACK
5520 /* The sparc port has a bug. It sometimes claims a STACK_BOUNDARY
5521 higher than the real alignment of %sp. However, when it does this,
5522 the alignment of %sp+STACK_POINTER_OFFSET will be STACK_BOUNDARY.
5523 This is a temporary hack while the sparc port is fixed. */
5524 if (SPARC_STACK_BOUNDARY_HACK)
5525 sp_offset = 0;
5526 #endif
5528 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5530 save_var = offset_ptr->var;
5531 save_constant = offset_ptr->constant;
5534 alignment_pad->var = NULL_TREE;
5535 alignment_pad->constant = 0;
5537 if (boundary > BITS_PER_UNIT)
5539 if (offset_ptr->var)
5541 tree sp_offset_tree = ssize_int (sp_offset);
5542 tree offset = size_binop (PLUS_EXPR,
5543 ARGS_SIZE_TREE (*offset_ptr),
5544 sp_offset_tree);
5545 #ifdef ARGS_GROW_DOWNWARD
5546 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
5547 #else
5548 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
5549 #endif
5551 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
5552 /* ARGS_SIZE_TREE includes constant term. */
5553 offset_ptr->constant = 0;
5554 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5555 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
5556 save_var);
5558 else
5560 offset_ptr->constant = -sp_offset +
5561 #ifdef ARGS_GROW_DOWNWARD
5562 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
5563 #else
5564 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
5565 #endif
5566 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5567 alignment_pad->constant = offset_ptr->constant - save_constant;
5572 static void
5573 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
5575 if (passed_mode != BLKmode)
5577 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
5578 offset_ptr->constant
5579 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
5580 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
5581 - GET_MODE_SIZE (passed_mode));
5583 else
5585 if (TREE_CODE (sizetree) != INTEGER_CST
5586 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
5588 /* Round the size up to multiple of PARM_BOUNDARY bits. */
5589 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5590 /* Add it in. */
5591 ADD_PARM_SIZE (*offset_ptr, s2);
5592 SUB_PARM_SIZE (*offset_ptr, sizetree);
5597 /* Walk the tree of blocks describing the binding levels within a function
5598 and warn about uninitialized variables.
5599 This is done after calling flow_analysis and before global_alloc
5600 clobbers the pseudo-regs to hard regs. */
5602 void
5603 uninitialized_vars_warning (tree block)
5605 tree decl, sub;
5606 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
5608 if (warn_uninitialized
5609 && TREE_CODE (decl) == VAR_DECL
5610 /* These warnings are unreliable for and aggregates
5611 because assigning the fields one by one can fail to convince
5612 flow.c that the entire aggregate was initialized.
5613 Unions are troublesome because members may be shorter. */
5614 && ! AGGREGATE_TYPE_P (TREE_TYPE (decl))
5615 && DECL_RTL (decl) != 0
5616 && GET_CODE (DECL_RTL (decl)) == REG
5617 /* Global optimizations can make it difficult to determine if a
5618 particular variable has been initialized. However, a VAR_DECL
5619 with a nonzero DECL_INITIAL had an initializer, so do not
5620 claim it is potentially uninitialized.
5622 When the DECL_INITIAL is NULL call the language hook to tell us
5623 if we want to warn. */
5624 && (DECL_INITIAL (decl) == NULL_TREE || lang_hooks.decl_uninit (decl))
5625 && regno_uninitialized (REGNO (DECL_RTL (decl))))
5626 warning ("%J'%D' might be used uninitialized in this function",
5627 decl, decl);
5628 if (extra_warnings
5629 && TREE_CODE (decl) == VAR_DECL
5630 && DECL_RTL (decl) != 0
5631 && GET_CODE (DECL_RTL (decl)) == REG
5632 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
5633 warning ("%Jvariable '%D' might be clobbered by `longjmp' or `vfork'",
5634 decl, decl);
5636 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
5637 uninitialized_vars_warning (sub);
5640 /* Do the appropriate part of uninitialized_vars_warning
5641 but for arguments instead of local variables. */
5643 void
5644 setjmp_args_warning (void)
5646 tree decl;
5647 for (decl = DECL_ARGUMENTS (current_function_decl);
5648 decl; decl = TREE_CHAIN (decl))
5649 if (DECL_RTL (decl) != 0
5650 && GET_CODE (DECL_RTL (decl)) == REG
5651 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
5652 warning ("%Jargument '%D' might be clobbered by `longjmp' or `vfork'",
5653 decl, decl);
5656 /* If this function call setjmp, put all vars into the stack
5657 unless they were declared `register'. */
5659 void
5660 setjmp_protect (tree block)
5662 tree decl, sub;
5663 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
5664 if ((TREE_CODE (decl) == VAR_DECL
5665 || TREE_CODE (decl) == PARM_DECL)
5666 && DECL_RTL (decl) != 0
5667 && (GET_CODE (DECL_RTL (decl)) == REG
5668 || (GET_CODE (DECL_RTL (decl)) == MEM
5669 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
5670 /* If this variable came from an inline function, it must be
5671 that its life doesn't overlap the setjmp. If there was a
5672 setjmp in the function, it would already be in memory. We
5673 must exclude such variable because their DECL_RTL might be
5674 set to strange things such as virtual_stack_vars_rtx. */
5675 && ! DECL_FROM_INLINE (decl)
5676 && (
5677 #ifdef NON_SAVING_SETJMP
5678 /* If longjmp doesn't restore the registers,
5679 don't put anything in them. */
5680 NON_SAVING_SETJMP
5682 #endif
5683 ! DECL_REGISTER (decl)))
5684 put_var_into_stack (decl, /*rescan=*/true);
5685 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
5686 setjmp_protect (sub);
5689 /* Like the previous function, but for args instead of local variables. */
5691 void
5692 setjmp_protect_args (void)
5694 tree decl;
5695 for (decl = DECL_ARGUMENTS (current_function_decl);
5696 decl; decl = TREE_CHAIN (decl))
5697 if ((TREE_CODE (decl) == VAR_DECL
5698 || TREE_CODE (decl) == PARM_DECL)
5699 && DECL_RTL (decl) != 0
5700 && (GET_CODE (DECL_RTL (decl)) == REG
5701 || (GET_CODE (DECL_RTL (decl)) == MEM
5702 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
5703 && (
5704 /* If longjmp doesn't restore the registers,
5705 don't put anything in them. */
5706 #ifdef NON_SAVING_SETJMP
5707 NON_SAVING_SETJMP
5709 #endif
5710 ! DECL_REGISTER (decl)))
5711 put_var_into_stack (decl, /*rescan=*/true);
5714 /* Return the context-pointer register corresponding to DECL,
5715 or 0 if it does not need one. */
5718 lookup_static_chain (tree decl)
5720 tree context = decl_function_context (decl);
5721 tree link;
5723 if (context == 0
5724 || (TREE_CODE (decl) == FUNCTION_DECL && DECL_NO_STATIC_CHAIN (decl)))
5725 return 0;
5727 /* We treat inline_function_decl as an alias for the current function
5728 because that is the inline function whose vars, types, etc.
5729 are being merged into the current function.
5730 See expand_inline_function. */
5731 if (context == current_function_decl || context == inline_function_decl)
5732 return virtual_stack_vars_rtx;
5734 for (link = context_display; link; link = TREE_CHAIN (link))
5735 if (TREE_PURPOSE (link) == context)
5736 return RTL_EXPR_RTL (TREE_VALUE (link));
5738 abort ();
5741 /* Convert a stack slot address ADDR for variable VAR
5742 (from a containing function)
5743 into an address valid in this function (using a static chain). */
5746 fix_lexical_addr (rtx addr, tree var)
5748 rtx basereg;
5749 HOST_WIDE_INT displacement;
5750 tree context = decl_function_context (var);
5751 struct function *fp;
5752 rtx base = 0;
5754 /* If this is the present function, we need not do anything. */
5755 if (context == current_function_decl || context == inline_function_decl)
5756 return addr;
5758 fp = find_function_data (context);
5760 if (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == MEM)
5761 addr = XEXP (XEXP (addr, 0), 0);
5763 /* Decode given address as base reg plus displacement. */
5764 if (GET_CODE (addr) == REG)
5765 basereg = addr, displacement = 0;
5766 else if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
5767 basereg = XEXP (addr, 0), displacement = INTVAL (XEXP (addr, 1));
5768 else
5769 abort ();
5771 /* We accept vars reached via the containing function's
5772 incoming arg pointer and via its stack variables pointer. */
5773 if (basereg == fp->internal_arg_pointer)
5775 /* If reached via arg pointer, get the arg pointer value
5776 out of that function's stack frame.
5778 There are two cases: If a separate ap is needed, allocate a
5779 slot in the outer function for it and dereference it that way.
5780 This is correct even if the real ap is actually a pseudo.
5781 Otherwise, just adjust the offset from the frame pointer to
5782 compensate. */
5784 #ifdef NEED_SEPARATE_AP
5785 rtx addr;
5787 addr = get_arg_pointer_save_area (fp);
5788 addr = fix_lexical_addr (XEXP (addr, 0), var);
5789 addr = memory_address (Pmode, addr);
5791 base = gen_rtx_MEM (Pmode, addr);
5792 set_mem_alias_set (base, get_frame_alias_set ());
5793 base = copy_to_reg (base);
5794 #else
5795 displacement += (FIRST_PARM_OFFSET (context) - STARTING_FRAME_OFFSET);
5796 base = lookup_static_chain (var);
5797 #endif
5800 else if (basereg == virtual_stack_vars_rtx)
5802 /* This is the same code as lookup_static_chain, duplicated here to
5803 avoid an extra call to decl_function_context. */
5804 tree link;
5806 for (link = context_display; link; link = TREE_CHAIN (link))
5807 if (TREE_PURPOSE (link) == context)
5809 base = RTL_EXPR_RTL (TREE_VALUE (link));
5810 break;
5814 if (base == 0)
5815 abort ();
5817 /* Use same offset, relative to appropriate static chain or argument
5818 pointer. */
5819 return plus_constant (base, displacement);
5822 /* Return the address of the trampoline for entering nested fn FUNCTION.
5823 If necessary, allocate a trampoline (in the stack frame)
5824 and emit rtl to initialize its contents (at entry to this function). */
5827 trampoline_address (tree function)
5829 tree link;
5830 tree rtlexp;
5831 rtx tramp;
5832 struct function *fp;
5833 tree fn_context;
5835 /* Find an existing trampoline and return it. */
5836 for (link = trampoline_list; link; link = TREE_CHAIN (link))
5837 if (TREE_PURPOSE (link) == function)
5838 return
5839 adjust_trampoline_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0));
5841 for (fp = outer_function_chain; fp; fp = fp->outer)
5842 for (link = fp->x_trampoline_list; link; link = TREE_CHAIN (link))
5843 if (TREE_PURPOSE (link) == function)
5845 tramp = fix_lexical_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0),
5846 function);
5847 return adjust_trampoline_addr (tramp);
5850 /* None exists; we must make one. */
5852 /* Find the `struct function' for the function containing FUNCTION. */
5853 fp = 0;
5854 fn_context = decl_function_context (function);
5855 if (fn_context != current_function_decl
5856 && fn_context != inline_function_decl)
5857 fp = find_function_data (fn_context);
5859 /* Allocate run-time space for this trampoline. */
5860 /* If rounding needed, allocate extra space
5861 to ensure we have TRAMPOLINE_SIZE bytes left after rounding up. */
5862 #define TRAMPOLINE_REAL_SIZE \
5863 (TRAMPOLINE_SIZE + (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT) - 1)
5864 tramp = assign_stack_local_1 (BLKmode, TRAMPOLINE_REAL_SIZE, 0,
5865 fp ? fp : cfun);
5866 /* Record the trampoline for reuse and note it for later initialization
5867 by expand_function_end. */
5868 if (fp != 0)
5870 rtlexp = make_node (RTL_EXPR);
5871 RTL_EXPR_RTL (rtlexp) = tramp;
5872 fp->x_trampoline_list = tree_cons (function, rtlexp,
5873 fp->x_trampoline_list);
5875 else
5877 /* Make the RTL_EXPR node temporary, not momentary, so that the
5878 trampoline_list doesn't become garbage. */
5879 rtlexp = make_node (RTL_EXPR);
5881 RTL_EXPR_RTL (rtlexp) = tramp;
5882 trampoline_list = tree_cons (function, rtlexp, trampoline_list);
5885 tramp = fix_lexical_addr (XEXP (tramp, 0), function);
5886 return adjust_trampoline_addr (tramp);
5889 /* Given a trampoline address,
5890 round it to multiple of TRAMPOLINE_ALIGNMENT. */
5892 static rtx
5893 round_trampoline_addr (rtx tramp)
5895 /* Round address up to desired boundary. */
5896 rtx temp = gen_reg_rtx (Pmode);
5897 rtx addend = GEN_INT (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT - 1);
5898 rtx mask = GEN_INT (-TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT);
5900 temp = expand_simple_binop (Pmode, PLUS, tramp, addend,
5901 temp, 0, OPTAB_LIB_WIDEN);
5902 tramp = expand_simple_binop (Pmode, AND, temp, mask,
5903 temp, 0, OPTAB_LIB_WIDEN);
5905 return tramp;
5908 /* Given a trampoline address, round it then apply any
5909 platform-specific adjustments so that the result can be used for a
5910 function call . */
5912 static rtx
5913 adjust_trampoline_addr (rtx tramp)
5915 tramp = round_trampoline_addr (tramp);
5916 #ifdef TRAMPOLINE_ADJUST_ADDRESS
5917 TRAMPOLINE_ADJUST_ADDRESS (tramp);
5918 #endif
5919 return tramp;
5922 /* Put all this function's BLOCK nodes including those that are chained
5923 onto the first block into a vector, and return it.
5924 Also store in each NOTE for the beginning or end of a block
5925 the index of that block in the vector.
5926 The arguments are BLOCK, the chain of top-level blocks of the function,
5927 and INSNS, the insn chain of the function. */
5929 void
5930 identify_blocks (void)
5932 int n_blocks;
5933 tree *block_vector, *last_block_vector;
5934 tree *block_stack;
5935 tree block = DECL_INITIAL (current_function_decl);
5937 if (block == 0)
5938 return;
5940 /* Fill the BLOCK_VECTOR with all of the BLOCKs in this function, in
5941 depth-first order. */
5942 block_vector = get_block_vector (block, &n_blocks);
5943 block_stack = xmalloc (n_blocks * sizeof (tree));
5945 last_block_vector = identify_blocks_1 (get_insns (),
5946 block_vector + 1,
5947 block_vector + n_blocks,
5948 block_stack);
5950 /* If we didn't use all of the subblocks, we've misplaced block notes. */
5951 /* ??? This appears to happen all the time. Latent bugs elsewhere? */
5952 if (0 && last_block_vector != block_vector + n_blocks)
5953 abort ();
5955 free (block_vector);
5956 free (block_stack);
5959 /* Subroutine of identify_blocks. Do the block substitution on the
5960 insn chain beginning with INSNS. Recurse for CALL_PLACEHOLDER chains.
5962 BLOCK_STACK is pushed and popped for each BLOCK_BEGIN/BLOCK_END pair.
5963 BLOCK_VECTOR is incremented for each block seen. */
5965 static tree *
5966 identify_blocks_1 (rtx insns, tree *block_vector, tree *end_block_vector,
5967 tree *orig_block_stack)
5969 rtx insn;
5970 tree *block_stack = orig_block_stack;
5972 for (insn = insns; insn; insn = NEXT_INSN (insn))
5974 if (GET_CODE (insn) == NOTE)
5976 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
5978 tree b;
5980 /* If there are more block notes than BLOCKs, something
5981 is badly wrong. */
5982 if (block_vector == end_block_vector)
5983 abort ();
5985 b = *block_vector++;
5986 NOTE_BLOCK (insn) = b;
5987 *block_stack++ = b;
5989 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
5991 /* If there are more NOTE_INSN_BLOCK_ENDs than
5992 NOTE_INSN_BLOCK_BEGs, something is badly wrong. */
5993 if (block_stack == orig_block_stack)
5994 abort ();
5996 NOTE_BLOCK (insn) = *--block_stack;
5999 else if (GET_CODE (insn) == CALL_INSN
6000 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
6002 rtx cp = PATTERN (insn);
6004 block_vector = identify_blocks_1 (XEXP (cp, 0), block_vector,
6005 end_block_vector, block_stack);
6006 if (XEXP (cp, 1))
6007 block_vector = identify_blocks_1 (XEXP (cp, 1), block_vector,
6008 end_block_vector, block_stack);
6009 if (XEXP (cp, 2))
6010 block_vector = identify_blocks_1 (XEXP (cp, 2), block_vector,
6011 end_block_vector, block_stack);
6015 /* If there are more NOTE_INSN_BLOCK_BEGINs than NOTE_INSN_BLOCK_ENDs,
6016 something is badly wrong. */
6017 if (block_stack != orig_block_stack)
6018 abort ();
6020 return block_vector;
6023 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
6024 and create duplicate blocks. */
6025 /* ??? Need an option to either create block fragments or to create
6026 abstract origin duplicates of a source block. It really depends
6027 on what optimization has been performed. */
6029 void
6030 reorder_blocks (void)
6032 tree block = DECL_INITIAL (current_function_decl);
6033 varray_type block_stack;
6035 if (block == NULL_TREE)
6036 return;
6038 VARRAY_TREE_INIT (block_stack, 10, "block_stack");
6040 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
6041 reorder_blocks_0 (block);
6043 /* Prune the old trees away, so that they don't get in the way. */
6044 BLOCK_SUBBLOCKS (block) = NULL_TREE;
6045 BLOCK_CHAIN (block) = NULL_TREE;
6047 /* Recreate the block tree from the note nesting. */
6048 reorder_blocks_1 (get_insns (), block, &block_stack);
6049 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
6051 /* Remove deleted blocks from the block fragment chains. */
6052 reorder_fix_fragments (block);
6055 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
6057 static void
6058 reorder_blocks_0 (tree block)
6060 while (block)
6062 TREE_ASM_WRITTEN (block) = 0;
6063 reorder_blocks_0 (BLOCK_SUBBLOCKS (block));
6064 block = BLOCK_CHAIN (block);
6068 static void
6069 reorder_blocks_1 (rtx insns, tree current_block, varray_type *p_block_stack)
6071 rtx insn;
6073 for (insn = insns; insn; insn = NEXT_INSN (insn))
6075 if (GET_CODE (insn) == NOTE)
6077 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
6079 tree block = NOTE_BLOCK (insn);
6081 /* If we have seen this block before, that means it now
6082 spans multiple address regions. Create a new fragment. */
6083 if (TREE_ASM_WRITTEN (block))
6085 tree new_block = copy_node (block);
6086 tree origin;
6088 origin = (BLOCK_FRAGMENT_ORIGIN (block)
6089 ? BLOCK_FRAGMENT_ORIGIN (block)
6090 : block);
6091 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
6092 BLOCK_FRAGMENT_CHAIN (new_block)
6093 = BLOCK_FRAGMENT_CHAIN (origin);
6094 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
6096 NOTE_BLOCK (insn) = new_block;
6097 block = new_block;
6100 BLOCK_SUBBLOCKS (block) = 0;
6101 TREE_ASM_WRITTEN (block) = 1;
6102 /* When there's only one block for the entire function,
6103 current_block == block and we mustn't do this, it
6104 will cause infinite recursion. */
6105 if (block != current_block)
6107 BLOCK_SUPERCONTEXT (block) = current_block;
6108 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
6109 BLOCK_SUBBLOCKS (current_block) = block;
6110 current_block = block;
6112 VARRAY_PUSH_TREE (*p_block_stack, block);
6114 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
6116 NOTE_BLOCK (insn) = VARRAY_TOP_TREE (*p_block_stack);
6117 VARRAY_POP (*p_block_stack);
6118 BLOCK_SUBBLOCKS (current_block)
6119 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
6120 current_block = BLOCK_SUPERCONTEXT (current_block);
6123 else if (GET_CODE (insn) == CALL_INSN
6124 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
6126 rtx cp = PATTERN (insn);
6127 reorder_blocks_1 (XEXP (cp, 0), current_block, p_block_stack);
6128 if (XEXP (cp, 1))
6129 reorder_blocks_1 (XEXP (cp, 1), current_block, p_block_stack);
6130 if (XEXP (cp, 2))
6131 reorder_blocks_1 (XEXP (cp, 2), current_block, p_block_stack);
6136 /* Rationalize BLOCK_FRAGMENT_ORIGIN. If an origin block no longer
6137 appears in the block tree, select one of the fragments to become
6138 the new origin block. */
6140 static void
6141 reorder_fix_fragments (tree block)
6143 while (block)
6145 tree dup_origin = BLOCK_FRAGMENT_ORIGIN (block);
6146 tree new_origin = NULL_TREE;
6148 if (dup_origin)
6150 if (! TREE_ASM_WRITTEN (dup_origin))
6152 new_origin = BLOCK_FRAGMENT_CHAIN (dup_origin);
6154 /* Find the first of the remaining fragments. There must
6155 be at least one -- the current block. */
6156 while (! TREE_ASM_WRITTEN (new_origin))
6157 new_origin = BLOCK_FRAGMENT_CHAIN (new_origin);
6158 BLOCK_FRAGMENT_ORIGIN (new_origin) = NULL_TREE;
6161 else if (! dup_origin)
6162 new_origin = block;
6164 /* Re-root the rest of the fragments to the new origin. In the
6165 case that DUP_ORIGIN was null, that means BLOCK was the origin
6166 of a chain of fragments and we want to remove those fragments
6167 that didn't make it to the output. */
6168 if (new_origin)
6170 tree *pp = &BLOCK_FRAGMENT_CHAIN (new_origin);
6171 tree chain = *pp;
6173 while (chain)
6175 if (TREE_ASM_WRITTEN (chain))
6177 BLOCK_FRAGMENT_ORIGIN (chain) = new_origin;
6178 *pp = chain;
6179 pp = &BLOCK_FRAGMENT_CHAIN (chain);
6181 chain = BLOCK_FRAGMENT_CHAIN (chain);
6183 *pp = NULL_TREE;
6186 reorder_fix_fragments (BLOCK_SUBBLOCKS (block));
6187 block = BLOCK_CHAIN (block);
6191 /* Reverse the order of elements in the chain T of blocks,
6192 and return the new head of the chain (old last element). */
6194 static tree
6195 blocks_nreverse (tree t)
6197 tree prev = 0, decl, next;
6198 for (decl = t; decl; decl = next)
6200 next = BLOCK_CHAIN (decl);
6201 BLOCK_CHAIN (decl) = prev;
6202 prev = decl;
6204 return prev;
6207 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
6208 non-NULL, list them all into VECTOR, in a depth-first preorder
6209 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
6210 blocks. */
6212 static int
6213 all_blocks (tree block, tree *vector)
6215 int n_blocks = 0;
6217 while (block)
6219 TREE_ASM_WRITTEN (block) = 0;
6221 /* Record this block. */
6222 if (vector)
6223 vector[n_blocks] = block;
6225 ++n_blocks;
6227 /* Record the subblocks, and their subblocks... */
6228 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
6229 vector ? vector + n_blocks : 0);
6230 block = BLOCK_CHAIN (block);
6233 return n_blocks;
6236 /* Return a vector containing all the blocks rooted at BLOCK. The
6237 number of elements in the vector is stored in N_BLOCKS_P. The
6238 vector is dynamically allocated; it is the caller's responsibility
6239 to call `free' on the pointer returned. */
6241 static tree *
6242 get_block_vector (tree block, int *n_blocks_p)
6244 tree *block_vector;
6246 *n_blocks_p = all_blocks (block, NULL);
6247 block_vector = xmalloc (*n_blocks_p * sizeof (tree));
6248 all_blocks (block, block_vector);
6250 return block_vector;
6253 static GTY(()) int next_block_index = 2;
6255 /* Set BLOCK_NUMBER for all the blocks in FN. */
6257 void
6258 number_blocks (tree fn)
6260 int i;
6261 int n_blocks;
6262 tree *block_vector;
6264 /* For SDB and XCOFF debugging output, we start numbering the blocks
6265 from 1 within each function, rather than keeping a running
6266 count. */
6267 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
6268 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
6269 next_block_index = 1;
6270 #endif
6272 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
6274 /* The top-level BLOCK isn't numbered at all. */
6275 for (i = 1; i < n_blocks; ++i)
6276 /* We number the blocks from two. */
6277 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
6279 free (block_vector);
6281 return;
6284 /* If VAR is present in a subblock of BLOCK, return the subblock. */
6286 tree
6287 debug_find_var_in_block_tree (tree var, tree block)
6289 tree t;
6291 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
6292 if (t == var)
6293 return block;
6295 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
6297 tree ret = debug_find_var_in_block_tree (var, t);
6298 if (ret)
6299 return ret;
6302 return NULL_TREE;
6305 /* Allocate a function structure for FNDECL and set its contents
6306 to the defaults. */
6308 void
6309 allocate_struct_function (tree fndecl)
6311 tree result;
6313 cfun = ggc_alloc_cleared (sizeof (struct function));
6315 max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
6317 cfun->stack_alignment_needed = STACK_BOUNDARY;
6318 cfun->preferred_stack_boundary = STACK_BOUNDARY;
6320 current_function_funcdef_no = funcdef_no++;
6322 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
6324 init_stmt_for_function ();
6325 init_eh_for_function ();
6326 init_emit ();
6327 init_expr ();
6328 init_varasm_status (cfun);
6330 (*lang_hooks.function.init) (cfun);
6331 if (init_machine_status)
6332 cfun->machine = (*init_machine_status) ();
6334 if (fndecl == NULL)
6335 return;
6337 DECL_SAVED_INSNS (fndecl) = cfun;
6338 cfun->decl = fndecl;
6340 current_function_name = (*lang_hooks.decl_printable_name) (fndecl, 2);
6342 result = DECL_RESULT (fndecl);
6343 if (aggregate_value_p (result, fndecl))
6345 #ifdef PCC_STATIC_STRUCT_RETURN
6346 current_function_returns_pcc_struct = 1;
6347 #endif
6348 current_function_returns_struct = 1;
6351 current_function_returns_pointer = POINTER_TYPE_P (TREE_TYPE (result));
6353 current_function_needs_context
6354 = (decl_function_context (current_function_decl) != 0
6355 && ! DECL_NO_STATIC_CHAIN (current_function_decl));
6358 /* Reset cfun, and other non-struct-function variables to defaults as
6359 appropriate for emitting rtl at the start of a function. */
6361 static void
6362 prepare_function_start (tree fndecl)
6364 if (fndecl && DECL_SAVED_INSNS (fndecl))
6365 cfun = DECL_SAVED_INSNS (fndecl);
6366 else
6367 allocate_struct_function (fndecl);
6369 cse_not_expected = ! optimize;
6371 /* Caller save not needed yet. */
6372 caller_save_needed = 0;
6374 /* We haven't done register allocation yet. */
6375 reg_renumber = 0;
6377 /* Indicate that we need to distinguish between the return value of the
6378 present function and the return value of a function being called. */
6379 rtx_equal_function_value_matters = 1;
6381 /* Indicate that we have not instantiated virtual registers yet. */
6382 virtuals_instantiated = 0;
6384 /* Indicate that we want CONCATs now. */
6385 generating_concat_p = 1;
6387 /* Indicate we have no need of a frame pointer yet. */
6388 frame_pointer_needed = 0;
6391 /* Initialize the rtl expansion mechanism so that we can do simple things
6392 like generate sequences. This is used to provide a context during global
6393 initialization of some passes. */
6394 void
6395 init_dummy_function_start (void)
6397 prepare_function_start (NULL);
6400 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
6401 and initialize static variables for generating RTL for the statements
6402 of the function. */
6404 void
6405 init_function_start (tree subr)
6407 prepare_function_start (subr);
6409 /* Within function body, compute a type's size as soon it is laid out. */
6410 immediate_size_expand++;
6412 /* Prevent ever trying to delete the first instruction of a
6413 function. Also tell final how to output a linenum before the
6414 function prologue. Note linenums could be missing, e.g. when
6415 compiling a Java .class file. */
6416 if (DECL_SOURCE_LINE (subr))
6417 emit_line_note (DECL_SOURCE_LOCATION (subr));
6419 /* Make sure first insn is a note even if we don't want linenums.
6420 This makes sure the first insn will never be deleted.
6421 Also, final expects a note to appear there. */
6422 emit_note (NOTE_INSN_DELETED);
6424 /* Warn if this value is an aggregate type,
6425 regardless of which calling convention we are using for it. */
6426 if (warn_aggregate_return
6427 && AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
6428 warning ("function returns an aggregate");
6431 /* Make sure all values used by the optimization passes have sane
6432 defaults. */
6433 void
6434 init_function_for_compilation (void)
6436 reg_renumber = 0;
6438 /* No prologue/epilogue insns yet. */
6439 VARRAY_GROW (prologue, 0);
6440 VARRAY_GROW (epilogue, 0);
6441 VARRAY_GROW (sibcall_epilogue, 0);
6444 /* Expand a call to __main at the beginning of a possible main function. */
6446 #if defined(INIT_SECTION_ASM_OP) && !defined(INVOKE__main)
6447 #undef HAS_INIT_SECTION
6448 #define HAS_INIT_SECTION
6449 #endif
6451 void
6452 expand_main_function (void)
6454 #ifdef FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN
6455 if (FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN)
6457 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
6458 rtx tmp, seq;
6460 start_sequence ();
6461 /* Forcibly align the stack. */
6462 #ifdef STACK_GROWS_DOWNWARD
6463 tmp = expand_simple_binop (Pmode, AND, stack_pointer_rtx, GEN_INT(-align),
6464 stack_pointer_rtx, 1, OPTAB_WIDEN);
6465 #else
6466 tmp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
6467 GEN_INT (align - 1), NULL_RTX, 1, OPTAB_WIDEN);
6468 tmp = expand_simple_binop (Pmode, AND, tmp, GEN_INT (-align),
6469 stack_pointer_rtx, 1, OPTAB_WIDEN);
6470 #endif
6471 if (tmp != stack_pointer_rtx)
6472 emit_move_insn (stack_pointer_rtx, tmp);
6474 /* Enlist allocate_dynamic_stack_space to pick up the pieces. */
6475 tmp = force_reg (Pmode, const0_rtx);
6476 allocate_dynamic_stack_space (tmp, NULL_RTX, BIGGEST_ALIGNMENT);
6477 seq = get_insns ();
6478 end_sequence ();
6480 for (tmp = get_last_insn (); tmp; tmp = PREV_INSN (tmp))
6481 if (NOTE_P (tmp) && NOTE_LINE_NUMBER (tmp) == NOTE_INSN_FUNCTION_BEG)
6482 break;
6483 if (tmp)
6484 emit_insn_before (seq, tmp);
6485 else
6486 emit_insn (seq);
6488 #endif
6490 #ifndef HAS_INIT_SECTION
6491 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
6492 #endif
6495 /* The PENDING_SIZES represent the sizes of variable-sized types.
6496 Create RTL for the various sizes now (using temporary variables),
6497 so that we can refer to the sizes from the RTL we are generating
6498 for the current function. The PENDING_SIZES are a TREE_LIST. The
6499 TREE_VALUE of each node is a SAVE_EXPR. */
6501 void
6502 expand_pending_sizes (tree pending_sizes)
6504 tree tem;
6506 /* Evaluate now the sizes of any types declared among the arguments. */
6507 for (tem = pending_sizes; tem; tem = TREE_CHAIN (tem))
6509 expand_expr (TREE_VALUE (tem), const0_rtx, VOIDmode, 0);
6510 /* Flush the queue in case this parameter declaration has
6511 side-effects. */
6512 emit_queue ();
6516 /* Start the RTL for a new function, and set variables used for
6517 emitting RTL.
6518 SUBR is the FUNCTION_DECL node.
6519 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
6520 the function's parameters, which must be run at any return statement. */
6522 void
6523 expand_function_start (tree subr, int parms_have_cleanups)
6525 tree tem;
6526 rtx last_ptr = NULL_RTX;
6528 /* Make sure volatile mem refs aren't considered
6529 valid operands of arithmetic insns. */
6530 init_recog_no_volatile ();
6532 current_function_instrument_entry_exit
6533 = (flag_instrument_function_entry_exit
6534 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
6536 current_function_profile
6537 = (profile_flag
6538 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
6540 current_function_limit_stack
6541 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
6543 /* If function gets a static chain arg, store it in the stack frame.
6544 Do this first, so it gets the first stack slot offset. */
6545 if (current_function_needs_context)
6547 last_ptr = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
6549 /* Delay copying static chain if it is not a register to avoid
6550 conflicts with regs used for parameters. */
6551 if (! SMALL_REGISTER_CLASSES
6552 || GET_CODE (static_chain_incoming_rtx) == REG)
6553 emit_move_insn (last_ptr, static_chain_incoming_rtx);
6556 /* If the parameters of this function need cleaning up, get a label
6557 for the beginning of the code which executes those cleanups. This must
6558 be done before doing anything with return_label. */
6559 if (parms_have_cleanups)
6560 cleanup_label = gen_label_rtx ();
6561 else
6562 cleanup_label = 0;
6564 /* Make the label for return statements to jump to. Do not special
6565 case machines with special return instructions -- they will be
6566 handled later during jump, ifcvt, or epilogue creation. */
6567 return_label = gen_label_rtx ();
6569 /* Initialize rtx used to return the value. */
6570 /* Do this before assign_parms so that we copy the struct value address
6571 before any library calls that assign parms might generate. */
6573 /* Decide whether to return the value in memory or in a register. */
6574 if (aggregate_value_p (DECL_RESULT (subr), subr))
6576 /* Returning something that won't go in a register. */
6577 rtx value_address = 0;
6579 #ifdef PCC_STATIC_STRUCT_RETURN
6580 if (current_function_returns_pcc_struct)
6582 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
6583 value_address = assemble_static_space (size);
6585 else
6586 #endif
6588 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 1);
6589 /* Expect to be passed the address of a place to store the value.
6590 If it is passed as an argument, assign_parms will take care of
6591 it. */
6592 if (sv)
6594 value_address = gen_reg_rtx (Pmode);
6595 emit_move_insn (value_address, sv);
6598 if (value_address)
6600 rtx x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), value_address);
6601 set_mem_attributes (x, DECL_RESULT (subr), 1);
6602 SET_DECL_RTL (DECL_RESULT (subr), x);
6605 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
6606 /* If return mode is void, this decl rtl should not be used. */
6607 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
6608 else
6610 /* Compute the return values into a pseudo reg, which we will copy
6611 into the true return register after the cleanups are done. */
6613 /* In order to figure out what mode to use for the pseudo, we
6614 figure out what the mode of the eventual return register will
6615 actually be, and use that. */
6616 rtx hard_reg
6617 = hard_function_value (TREE_TYPE (DECL_RESULT (subr)),
6618 subr, 1);
6620 /* Structures that are returned in registers are not aggregate_value_p,
6621 so we may see a PARALLEL or a REG. */
6622 if (REG_P (hard_reg))
6623 SET_DECL_RTL (DECL_RESULT (subr), gen_reg_rtx (GET_MODE (hard_reg)));
6624 else if (GET_CODE (hard_reg) == PARALLEL)
6625 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
6626 else
6627 abort ();
6629 /* Set DECL_REGISTER flag so that expand_function_end will copy the
6630 result to the real return register(s). */
6631 DECL_REGISTER (DECL_RESULT (subr)) = 1;
6634 /* Initialize rtx for parameters and local variables.
6635 In some cases this requires emitting insns. */
6637 assign_parms (subr);
6639 /* Copy the static chain now if it wasn't a register. The delay is to
6640 avoid conflicts with the parameter passing registers. */
6642 if (SMALL_REGISTER_CLASSES && current_function_needs_context)
6643 if (GET_CODE (static_chain_incoming_rtx) != REG)
6644 emit_move_insn (last_ptr, static_chain_incoming_rtx);
6646 /* The following was moved from init_function_start.
6647 The move is supposed to make sdb output more accurate. */
6648 /* Indicate the beginning of the function body,
6649 as opposed to parm setup. */
6650 emit_note (NOTE_INSN_FUNCTION_BEG);
6652 if (GET_CODE (get_last_insn ()) != NOTE)
6653 emit_note (NOTE_INSN_DELETED);
6654 parm_birth_insn = get_last_insn ();
6656 context_display = 0;
6657 if (current_function_needs_context)
6659 /* Fetch static chain values for containing functions. */
6660 tem = decl_function_context (current_function_decl);
6661 /* Copy the static chain pointer into a pseudo. If we have
6662 small register classes, copy the value from memory if
6663 static_chain_incoming_rtx is a REG. */
6664 if (tem)
6666 /* If the static chain originally came in a register, put it back
6667 there, then move it out in the next insn. The reason for
6668 this peculiar code is to satisfy function integration. */
6669 if (SMALL_REGISTER_CLASSES
6670 && GET_CODE (static_chain_incoming_rtx) == REG)
6671 emit_move_insn (static_chain_incoming_rtx, last_ptr);
6672 last_ptr = copy_to_reg (static_chain_incoming_rtx);
6675 while (tem)
6677 tree rtlexp = make_node (RTL_EXPR);
6679 RTL_EXPR_RTL (rtlexp) = last_ptr;
6680 context_display = tree_cons (tem, rtlexp, context_display);
6681 tem = decl_function_context (tem);
6682 if (tem == 0)
6683 break;
6684 /* Chain thru stack frames, assuming pointer to next lexical frame
6685 is found at the place we always store it. */
6686 #ifdef FRAME_GROWS_DOWNWARD
6687 last_ptr = plus_constant (last_ptr,
6688 -(HOST_WIDE_INT) GET_MODE_SIZE (Pmode));
6689 #endif
6690 last_ptr = gen_rtx_MEM (Pmode, memory_address (Pmode, last_ptr));
6691 set_mem_alias_set (last_ptr, get_frame_alias_set ());
6692 last_ptr = copy_to_reg (last_ptr);
6694 /* If we are not optimizing, ensure that we know that this
6695 piece of context is live over the entire function. */
6696 if (! optimize)
6697 save_expr_regs = gen_rtx_EXPR_LIST (VOIDmode, last_ptr,
6698 save_expr_regs);
6702 if (current_function_instrument_entry_exit)
6704 rtx fun = DECL_RTL (current_function_decl);
6705 if (GET_CODE (fun) == MEM)
6706 fun = XEXP (fun, 0);
6707 else
6708 abort ();
6709 emit_library_call (profile_function_entry_libfunc, LCT_NORMAL, VOIDmode,
6710 2, fun, Pmode,
6711 expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
6713 hard_frame_pointer_rtx),
6714 Pmode);
6717 if (current_function_profile)
6719 #ifdef PROFILE_HOOK
6720 PROFILE_HOOK (current_function_funcdef_no);
6721 #endif
6724 /* After the display initializations is where the tail-recursion label
6725 should go, if we end up needing one. Ensure we have a NOTE here
6726 since some things (like trampolines) get placed before this. */
6727 tail_recursion_reentry = emit_note (NOTE_INSN_DELETED);
6729 /* Evaluate now the sizes of any types declared among the arguments. */
6730 expand_pending_sizes (nreverse (get_pending_sizes ()));
6732 /* Make sure there is a line number after the function entry setup code. */
6733 force_next_line_note ();
6736 /* Undo the effects of init_dummy_function_start. */
6737 void
6738 expand_dummy_function_end (void)
6740 /* End any sequences that failed to be closed due to syntax errors. */
6741 while (in_sequence_p ())
6742 end_sequence ();
6744 /* Outside function body, can't compute type's actual size
6745 until next function's body starts. */
6747 free_after_parsing (cfun);
6748 free_after_compilation (cfun);
6749 cfun = 0;
6752 /* Call DOIT for each hard register used as a return value from
6753 the current function. */
6755 void
6756 diddle_return_value (void (*doit) (rtx, void *), void *arg)
6758 rtx outgoing = current_function_return_rtx;
6760 if (! outgoing)
6761 return;
6763 if (GET_CODE (outgoing) == REG)
6764 (*doit) (outgoing, arg);
6765 else if (GET_CODE (outgoing) == PARALLEL)
6767 int i;
6769 for (i = 0; i < XVECLEN (outgoing, 0); i++)
6771 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
6773 if (GET_CODE (x) == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
6774 (*doit) (x, arg);
6779 static void
6780 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
6782 emit_insn (gen_rtx_CLOBBER (VOIDmode, reg));
6785 void
6786 clobber_return_register (void)
6788 diddle_return_value (do_clobber_return_reg, NULL);
6790 /* In case we do use pseudo to return value, clobber it too. */
6791 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
6793 tree decl_result = DECL_RESULT (current_function_decl);
6794 rtx decl_rtl = DECL_RTL (decl_result);
6795 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
6797 do_clobber_return_reg (decl_rtl, NULL);
6802 static void
6803 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
6805 emit_insn (gen_rtx_USE (VOIDmode, reg));
6808 void
6809 use_return_register (void)
6811 diddle_return_value (do_use_return_reg, NULL);
6814 static GTY(()) rtx initial_trampoline;
6816 /* Generate RTL for the end of the current function. */
6818 void
6819 expand_function_end (void)
6821 tree link;
6822 rtx clobber_after;
6824 finish_expr_for_function ();
6826 /* If arg_pointer_save_area was referenced only from a nested
6827 function, we will not have initialized it yet. Do that now. */
6828 if (arg_pointer_save_area && ! cfun->arg_pointer_save_area_init)
6829 get_arg_pointer_save_area (cfun);
6831 #ifdef NON_SAVING_SETJMP
6832 /* Don't put any variables in registers if we call setjmp
6833 on a machine that fails to restore the registers. */
6834 if (NON_SAVING_SETJMP && current_function_calls_setjmp)
6836 if (DECL_INITIAL (current_function_decl) != error_mark_node)
6837 setjmp_protect (DECL_INITIAL (current_function_decl));
6839 setjmp_protect_args ();
6841 #endif
6843 /* Initialize any trampolines required by this function. */
6844 for (link = trampoline_list; link; link = TREE_CHAIN (link))
6846 tree function = TREE_PURPOSE (link);
6847 rtx context ATTRIBUTE_UNUSED = lookup_static_chain (function);
6848 rtx tramp = RTL_EXPR_RTL (TREE_VALUE (link));
6849 #ifdef TRAMPOLINE_TEMPLATE
6850 rtx blktramp;
6851 #endif
6852 rtx seq;
6854 #ifdef TRAMPOLINE_TEMPLATE
6855 /* First make sure this compilation has a template for
6856 initializing trampolines. */
6857 if (initial_trampoline == 0)
6859 initial_trampoline
6860 = gen_rtx_MEM (BLKmode, assemble_trampoline_template ());
6861 set_mem_align (initial_trampoline, TRAMPOLINE_ALIGNMENT);
6863 #endif
6865 /* Generate insns to initialize the trampoline. */
6866 start_sequence ();
6867 tramp = round_trampoline_addr (XEXP (tramp, 0));
6868 #ifdef TRAMPOLINE_TEMPLATE
6869 blktramp = replace_equiv_address (initial_trampoline, tramp);
6870 emit_block_move (blktramp, initial_trampoline,
6871 GEN_INT (TRAMPOLINE_SIZE), BLOCK_OP_NORMAL);
6872 #endif
6873 trampolines_created = 1;
6874 INITIALIZE_TRAMPOLINE (tramp, XEXP (DECL_RTL (function), 0), context);
6875 seq = get_insns ();
6876 end_sequence ();
6878 /* Put those insns at entry to the containing function (this one). */
6879 emit_insn_before (seq, tail_recursion_reentry);
6882 /* If we are doing stack checking and this function makes calls,
6883 do a stack probe at the start of the function to ensure we have enough
6884 space for another stack frame. */
6885 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
6887 rtx insn, seq;
6889 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6890 if (GET_CODE (insn) == CALL_INSN)
6892 start_sequence ();
6893 probe_stack_range (STACK_CHECK_PROTECT,
6894 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
6895 seq = get_insns ();
6896 end_sequence ();
6897 emit_insn_before (seq, tail_recursion_reentry);
6898 break;
6902 /* Possibly warn about unused parameters. */
6903 if (warn_unused_parameter)
6905 tree decl;
6907 for (decl = DECL_ARGUMENTS (current_function_decl);
6908 decl; decl = TREE_CHAIN (decl))
6909 if (! TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
6910 && DECL_NAME (decl) && ! DECL_ARTIFICIAL (decl))
6911 warning ("%Junused parameter '%D'", decl, decl);
6914 /* Delete handlers for nonlocal gotos if nothing uses them. */
6915 if (nonlocal_goto_handler_slots != 0
6916 && ! current_function_has_nonlocal_label)
6917 delete_handlers ();
6919 /* End any sequences that failed to be closed due to syntax errors. */
6920 while (in_sequence_p ())
6921 end_sequence ();
6923 /* Outside function body, can't compute type's actual size
6924 until next function's body starts. */
6925 immediate_size_expand--;
6927 clear_pending_stack_adjust ();
6928 do_pending_stack_adjust ();
6930 /* Mark the end of the function body.
6931 If control reaches this insn, the function can drop through
6932 without returning a value. */
6933 emit_note (NOTE_INSN_FUNCTION_END);
6935 /* Must mark the last line number note in the function, so that the test
6936 coverage code can avoid counting the last line twice. This just tells
6937 the code to ignore the immediately following line note, since there
6938 already exists a copy of this note somewhere above. This line number
6939 note is still needed for debugging though, so we can't delete it. */
6940 if (flag_test_coverage)
6941 emit_note (NOTE_INSN_REPEATED_LINE_NUMBER);
6943 /* Output a linenumber for the end of the function.
6944 SDB depends on this. */
6945 force_next_line_note ();
6946 emit_line_note (input_location);
6948 /* Before the return label (if any), clobber the return
6949 registers so that they are not propagated live to the rest of
6950 the function. This can only happen with functions that drop
6951 through; if there had been a return statement, there would
6952 have either been a return rtx, or a jump to the return label.
6954 We delay actual code generation after the current_function_value_rtx
6955 is computed. */
6956 clobber_after = get_last_insn ();
6958 /* Output the label for the actual return from the function,
6959 if one is expected. This happens either because a function epilogue
6960 is used instead of a return instruction, or because a return was done
6961 with a goto in order to run local cleanups, or because of pcc-style
6962 structure returning. */
6963 if (return_label)
6964 emit_label (return_label);
6966 if (current_function_instrument_entry_exit)
6968 rtx fun = DECL_RTL (current_function_decl);
6969 if (GET_CODE (fun) == MEM)
6970 fun = XEXP (fun, 0);
6971 else
6972 abort ();
6973 emit_library_call (profile_function_exit_libfunc, LCT_NORMAL, VOIDmode,
6974 2, fun, Pmode,
6975 expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
6977 hard_frame_pointer_rtx),
6978 Pmode);
6981 /* Let except.c know where it should emit the call to unregister
6982 the function context for sjlj exceptions. */
6983 if (flag_exceptions && USING_SJLJ_EXCEPTIONS)
6984 sjlj_emit_function_exit_after (get_last_insn ());
6986 /* If we had calls to alloca, and this machine needs
6987 an accurate stack pointer to exit the function,
6988 insert some code to save and restore the stack pointer. */
6989 #ifdef EXIT_IGNORE_STACK
6990 if (! EXIT_IGNORE_STACK)
6991 #endif
6992 if (current_function_calls_alloca)
6994 rtx tem = 0;
6996 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
6997 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
7000 /* If scalar return value was computed in a pseudo-reg, or was a named
7001 return value that got dumped to the stack, copy that to the hard
7002 return register. */
7003 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
7005 tree decl_result = DECL_RESULT (current_function_decl);
7006 rtx decl_rtl = DECL_RTL (decl_result);
7008 if (REG_P (decl_rtl)
7009 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
7010 : DECL_REGISTER (decl_result))
7012 rtx real_decl_rtl = current_function_return_rtx;
7014 /* This should be set in assign_parms. */
7015 if (! REG_FUNCTION_VALUE_P (real_decl_rtl))
7016 abort ();
7018 /* If this is a BLKmode structure being returned in registers,
7019 then use the mode computed in expand_return. Note that if
7020 decl_rtl is memory, then its mode may have been changed,
7021 but that current_function_return_rtx has not. */
7022 if (GET_MODE (real_decl_rtl) == BLKmode)
7023 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
7025 /* If a named return value dumped decl_return to memory, then
7026 we may need to re-do the PROMOTE_MODE signed/unsigned
7027 extension. */
7028 if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
7030 int unsignedp = TREE_UNSIGNED (TREE_TYPE (decl_result));
7032 if (targetm.calls.promote_function_return (TREE_TYPE (current_function_decl)))
7033 promote_mode (TREE_TYPE (decl_result), GET_MODE (decl_rtl),
7034 &unsignedp, 1);
7036 convert_move (real_decl_rtl, decl_rtl, unsignedp);
7038 else if (GET_CODE (real_decl_rtl) == PARALLEL)
7040 /* If expand_function_start has created a PARALLEL for decl_rtl,
7041 move the result to the real return registers. Otherwise, do
7042 a group load from decl_rtl for a named return. */
7043 if (GET_CODE (decl_rtl) == PARALLEL)
7044 emit_group_move (real_decl_rtl, decl_rtl);
7045 else
7046 emit_group_load (real_decl_rtl, decl_rtl,
7047 TREE_TYPE (decl_result),
7048 int_size_in_bytes (TREE_TYPE (decl_result)));
7050 else
7051 emit_move_insn (real_decl_rtl, decl_rtl);
7055 /* If returning a structure, arrange to return the address of the value
7056 in a place where debuggers expect to find it.
7058 If returning a structure PCC style,
7059 the caller also depends on this value.
7060 And current_function_returns_pcc_struct is not necessarily set. */
7061 if (current_function_returns_struct
7062 || current_function_returns_pcc_struct)
7064 rtx value_address
7065 = XEXP (DECL_RTL (DECL_RESULT (current_function_decl)), 0);
7066 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
7067 #ifdef FUNCTION_OUTGOING_VALUE
7068 rtx outgoing
7069 = FUNCTION_OUTGOING_VALUE (build_pointer_type (type),
7070 current_function_decl);
7071 #else
7072 rtx outgoing
7073 = FUNCTION_VALUE (build_pointer_type (type), current_function_decl);
7074 #endif
7076 /* Mark this as a function return value so integrate will delete the
7077 assignment and USE below when inlining this function. */
7078 REG_FUNCTION_VALUE_P (outgoing) = 1;
7080 /* The address may be ptr_mode and OUTGOING may be Pmode. */
7081 value_address = convert_memory_address (GET_MODE (outgoing),
7082 value_address);
7084 emit_move_insn (outgoing, value_address);
7086 /* Show return register used to hold result (in this case the address
7087 of the result. */
7088 current_function_return_rtx = outgoing;
7091 /* If this is an implementation of throw, do what's necessary to
7092 communicate between __builtin_eh_return and the epilogue. */
7093 expand_eh_return ();
7095 /* Emit the actual code to clobber return register. */
7097 rtx seq, after;
7099 start_sequence ();
7100 clobber_return_register ();
7101 seq = get_insns ();
7102 end_sequence ();
7104 after = emit_insn_after (seq, clobber_after);
7106 if (clobber_after != after)
7107 cfun->x_clobber_return_insn = after;
7110 /* ??? This should no longer be necessary since stupid is no longer with
7111 us, but there are some parts of the compiler (eg reload_combine, and
7112 sh mach_dep_reorg) that still try and compute their own lifetime info
7113 instead of using the general framework. */
7114 use_return_register ();
7116 /* Fix up any gotos that jumped out to the outermost
7117 binding level of the function.
7118 Must follow emitting RETURN_LABEL. */
7120 /* If you have any cleanups to do at this point,
7121 and they need to create temporary variables,
7122 then you will lose. */
7123 expand_fixups (get_insns ());
7127 get_arg_pointer_save_area (struct function *f)
7129 rtx ret = f->x_arg_pointer_save_area;
7131 if (! ret)
7133 ret = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, f);
7134 f->x_arg_pointer_save_area = ret;
7137 if (f == cfun && ! f->arg_pointer_save_area_init)
7139 rtx seq;
7141 /* Save the arg pointer at the beginning of the function. The
7142 generated stack slot may not be a valid memory address, so we
7143 have to check it and fix it if necessary. */
7144 start_sequence ();
7145 emit_move_insn (validize_mem (ret), virtual_incoming_args_rtx);
7146 seq = get_insns ();
7147 end_sequence ();
7149 push_topmost_sequence ();
7150 emit_insn_after (seq, get_insns ());
7151 pop_topmost_sequence ();
7154 return ret;
7157 /* Extend a vector that records the INSN_UIDs of INSNS
7158 (a list of one or more insns). */
7160 static void
7161 record_insns (rtx insns, varray_type *vecp)
7163 int i, len;
7164 rtx tmp;
7166 tmp = insns;
7167 len = 0;
7168 while (tmp != NULL_RTX)
7170 len++;
7171 tmp = NEXT_INSN (tmp);
7174 i = VARRAY_SIZE (*vecp);
7175 VARRAY_GROW (*vecp, i + len);
7176 tmp = insns;
7177 while (tmp != NULL_RTX)
7179 VARRAY_INT (*vecp, i) = INSN_UID (tmp);
7180 i++;
7181 tmp = NEXT_INSN (tmp);
7185 /* Set the specified locator to the insn chain. */
7186 static void
7187 set_insn_locators (rtx insn, int loc)
7189 while (insn != NULL_RTX)
7191 if (INSN_P (insn))
7192 INSN_LOCATOR (insn) = loc;
7193 insn = NEXT_INSN (insn);
7197 /* Determine how many INSN_UIDs in VEC are part of INSN. Because we can
7198 be running after reorg, SEQUENCE rtl is possible. */
7200 static int
7201 contains (rtx insn, varray_type vec)
7203 int i, j;
7205 if (GET_CODE (insn) == INSN
7206 && GET_CODE (PATTERN (insn)) == SEQUENCE)
7208 int count = 0;
7209 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
7210 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
7211 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i)) == VARRAY_INT (vec, j))
7212 count++;
7213 return count;
7215 else
7217 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
7218 if (INSN_UID (insn) == VARRAY_INT (vec, j))
7219 return 1;
7221 return 0;
7225 prologue_epilogue_contains (rtx insn)
7227 if (contains (insn, prologue))
7228 return 1;
7229 if (contains (insn, epilogue))
7230 return 1;
7231 return 0;
7235 sibcall_epilogue_contains (rtx insn)
7237 if (sibcall_epilogue)
7238 return contains (insn, sibcall_epilogue);
7239 return 0;
7242 #ifdef HAVE_return
7243 /* Insert gen_return at the end of block BB. This also means updating
7244 block_for_insn appropriately. */
7246 static void
7247 emit_return_into_block (basic_block bb, rtx line_note)
7249 emit_jump_insn_after (gen_return (), bb->end);
7250 if (line_note)
7251 emit_note_copy_after (line_note, PREV_INSN (bb->end));
7253 #endif /* HAVE_return */
7255 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
7257 /* These functions convert the epilogue into a variant that does not modify the
7258 stack pointer. This is used in cases where a function returns an object
7259 whose size is not known until it is computed. The called function leaves the
7260 object on the stack, leaves the stack depressed, and returns a pointer to
7261 the object.
7263 What we need to do is track all modifications and references to the stack
7264 pointer, deleting the modifications and changing the references to point to
7265 the location the stack pointer would have pointed to had the modifications
7266 taken place.
7268 These functions need to be portable so we need to make as few assumptions
7269 about the epilogue as we can. However, the epilogue basically contains
7270 three things: instructions to reset the stack pointer, instructions to
7271 reload registers, possibly including the frame pointer, and an
7272 instruction to return to the caller.
7274 If we can't be sure of what a relevant epilogue insn is doing, we abort.
7275 We also make no attempt to validate the insns we make since if they are
7276 invalid, we probably can't do anything valid. The intent is that these
7277 routines get "smarter" as more and more machines start to use them and
7278 they try operating on different epilogues.
7280 We use the following structure to track what the part of the epilogue that
7281 we've already processed has done. We keep two copies of the SP equivalence,
7282 one for use during the insn we are processing and one for use in the next
7283 insn. The difference is because one part of a PARALLEL may adjust SP
7284 and the other may use it. */
7286 struct epi_info
7288 rtx sp_equiv_reg; /* REG that SP is set from, perhaps SP. */
7289 HOST_WIDE_INT sp_offset; /* Offset from SP_EQUIV_REG of present SP. */
7290 rtx new_sp_equiv_reg; /* REG to be used at end of insn. */
7291 HOST_WIDE_INT new_sp_offset; /* Offset to be used at end of insn. */
7292 rtx equiv_reg_src; /* If nonzero, the value that SP_EQUIV_REG
7293 should be set to once we no longer need
7294 its value. */
7297 static void handle_epilogue_set (rtx, struct epi_info *);
7298 static void emit_equiv_load (struct epi_info *);
7300 /* Modify INSN, a list of one or more insns that is part of the epilogue, to
7301 no modifications to the stack pointer. Return the new list of insns. */
7303 static rtx
7304 keep_stack_depressed (rtx insns)
7306 int j;
7307 struct epi_info info;
7308 rtx insn, next;
7310 /* If the epilogue is just a single instruction, it ust be OK as is. */
7312 if (NEXT_INSN (insns) == NULL_RTX)
7313 return insns;
7315 /* Otherwise, start a sequence, initialize the information we have, and
7316 process all the insns we were given. */
7317 start_sequence ();
7319 info.sp_equiv_reg = stack_pointer_rtx;
7320 info.sp_offset = 0;
7321 info.equiv_reg_src = 0;
7323 insn = insns;
7324 next = NULL_RTX;
7325 while (insn != NULL_RTX)
7327 next = NEXT_INSN (insn);
7329 if (!INSN_P (insn))
7331 add_insn (insn);
7332 insn = next;
7333 continue;
7336 /* If this insn references the register that SP is equivalent to and
7337 we have a pending load to that register, we must force out the load
7338 first and then indicate we no longer know what SP's equivalent is. */
7339 if (info.equiv_reg_src != 0
7340 && reg_referenced_p (info.sp_equiv_reg, PATTERN (insn)))
7342 emit_equiv_load (&info);
7343 info.sp_equiv_reg = 0;
7346 info.new_sp_equiv_reg = info.sp_equiv_reg;
7347 info.new_sp_offset = info.sp_offset;
7349 /* If this is a (RETURN) and the return address is on the stack,
7350 update the address and change to an indirect jump. */
7351 if (GET_CODE (PATTERN (insn)) == RETURN
7352 || (GET_CODE (PATTERN (insn)) == PARALLEL
7353 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == RETURN))
7355 rtx retaddr = INCOMING_RETURN_ADDR_RTX;
7356 rtx base = 0;
7357 HOST_WIDE_INT offset = 0;
7358 rtx jump_insn, jump_set;
7360 /* If the return address is in a register, we can emit the insn
7361 unchanged. Otherwise, it must be a MEM and we see what the
7362 base register and offset are. In any case, we have to emit any
7363 pending load to the equivalent reg of SP, if any. */
7364 if (GET_CODE (retaddr) == REG)
7366 emit_equiv_load (&info);
7367 add_insn (insn);
7368 insn = next;
7369 continue;
7371 else if (GET_CODE (retaddr) == MEM
7372 && GET_CODE (XEXP (retaddr, 0)) == REG)
7373 base = gen_rtx_REG (Pmode, REGNO (XEXP (retaddr, 0))), offset = 0;
7374 else if (GET_CODE (retaddr) == MEM
7375 && GET_CODE (XEXP (retaddr, 0)) == PLUS
7376 && GET_CODE (XEXP (XEXP (retaddr, 0), 0)) == REG
7377 && GET_CODE (XEXP (XEXP (retaddr, 0), 1)) == CONST_INT)
7379 base = gen_rtx_REG (Pmode, REGNO (XEXP (XEXP (retaddr, 0), 0)));
7380 offset = INTVAL (XEXP (XEXP (retaddr, 0), 1));
7382 else
7383 abort ();
7385 /* If the base of the location containing the return pointer
7386 is SP, we must update it with the replacement address. Otherwise,
7387 just build the necessary MEM. */
7388 retaddr = plus_constant (base, offset);
7389 if (base == stack_pointer_rtx)
7390 retaddr = simplify_replace_rtx (retaddr, stack_pointer_rtx,
7391 plus_constant (info.sp_equiv_reg,
7392 info.sp_offset));
7394 retaddr = gen_rtx_MEM (Pmode, retaddr);
7396 /* If there is a pending load to the equivalent register for SP
7397 and we reference that register, we must load our address into
7398 a scratch register and then do that load. */
7399 if (info.equiv_reg_src
7400 && reg_overlap_mentioned_p (info.equiv_reg_src, retaddr))
7402 unsigned int regno;
7403 rtx reg;
7405 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
7406 if (HARD_REGNO_MODE_OK (regno, Pmode)
7407 && !fixed_regs[regno]
7408 && TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)
7409 && !REGNO_REG_SET_P (EXIT_BLOCK_PTR->global_live_at_start,
7410 regno)
7411 && !refers_to_regno_p (regno,
7412 regno + HARD_REGNO_NREGS (regno,
7413 Pmode),
7414 info.equiv_reg_src, NULL))
7415 break;
7417 if (regno == FIRST_PSEUDO_REGISTER)
7418 abort ();
7420 reg = gen_rtx_REG (Pmode, regno);
7421 emit_move_insn (reg, retaddr);
7422 retaddr = reg;
7425 emit_equiv_load (&info);
7426 jump_insn = emit_jump_insn (gen_indirect_jump (retaddr));
7428 /* Show the SET in the above insn is a RETURN. */
7429 jump_set = single_set (jump_insn);
7430 if (jump_set == 0)
7431 abort ();
7432 else
7433 SET_IS_RETURN_P (jump_set) = 1;
7436 /* If SP is not mentioned in the pattern and its equivalent register, if
7437 any, is not modified, just emit it. Otherwise, if neither is set,
7438 replace the reference to SP and emit the insn. If none of those are
7439 true, handle each SET individually. */
7440 else if (!reg_mentioned_p (stack_pointer_rtx, PATTERN (insn))
7441 && (info.sp_equiv_reg == stack_pointer_rtx
7442 || !reg_set_p (info.sp_equiv_reg, insn)))
7443 add_insn (insn);
7444 else if (! reg_set_p (stack_pointer_rtx, insn)
7445 && (info.sp_equiv_reg == stack_pointer_rtx
7446 || !reg_set_p (info.sp_equiv_reg, insn)))
7448 if (! validate_replace_rtx (stack_pointer_rtx,
7449 plus_constant (info.sp_equiv_reg,
7450 info.sp_offset),
7451 insn))
7452 abort ();
7454 add_insn (insn);
7456 else if (GET_CODE (PATTERN (insn)) == SET)
7457 handle_epilogue_set (PATTERN (insn), &info);
7458 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
7460 for (j = 0; j < XVECLEN (PATTERN (insn), 0); j++)
7461 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET)
7462 handle_epilogue_set (XVECEXP (PATTERN (insn), 0, j), &info);
7464 else
7465 add_insn (insn);
7467 info.sp_equiv_reg = info.new_sp_equiv_reg;
7468 info.sp_offset = info.new_sp_offset;
7470 insn = next;
7473 insns = get_insns ();
7474 end_sequence ();
7475 return insns;
7478 /* SET is a SET from an insn in the epilogue. P is a pointer to the epi_info
7479 structure that contains information about what we've seen so far. We
7480 process this SET by either updating that data or by emitting one or
7481 more insns. */
7483 static void
7484 handle_epilogue_set (rtx set, struct epi_info *p)
7486 /* First handle the case where we are setting SP. Record what it is being
7487 set from. If unknown, abort. */
7488 if (reg_set_p (stack_pointer_rtx, set))
7490 if (SET_DEST (set) != stack_pointer_rtx)
7491 abort ();
7493 if (GET_CODE (SET_SRC (set)) == PLUS
7494 && GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
7496 p->new_sp_equiv_reg = XEXP (SET_SRC (set), 0);
7497 p->new_sp_offset = INTVAL (XEXP (SET_SRC (set), 1));
7499 else
7500 p->new_sp_equiv_reg = SET_SRC (set), p->new_sp_offset = 0;
7502 /* If we are adjusting SP, we adjust from the old data. */
7503 if (p->new_sp_equiv_reg == stack_pointer_rtx)
7505 p->new_sp_equiv_reg = p->sp_equiv_reg;
7506 p->new_sp_offset += p->sp_offset;
7509 if (p->new_sp_equiv_reg == 0 || GET_CODE (p->new_sp_equiv_reg) != REG)
7510 abort ();
7512 return;
7515 /* Next handle the case where we are setting SP's equivalent register.
7516 If we already have a value to set it to, abort. We could update, but
7517 there seems little point in handling that case. Note that we have
7518 to allow for the case where we are setting the register set in
7519 the previous part of a PARALLEL inside a single insn. But use the
7520 old offset for any updates within this insn. */
7521 else if (p->new_sp_equiv_reg != 0 && reg_set_p (p->new_sp_equiv_reg, set))
7523 if (!rtx_equal_p (p->new_sp_equiv_reg, SET_DEST (set))
7524 || p->equiv_reg_src != 0)
7525 abort ();
7526 else
7527 p->equiv_reg_src
7528 = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
7529 plus_constant (p->sp_equiv_reg,
7530 p->sp_offset));
7533 /* Otherwise, replace any references to SP in the insn to its new value
7534 and emit the insn. */
7535 else
7537 SET_SRC (set) = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
7538 plus_constant (p->sp_equiv_reg,
7539 p->sp_offset));
7540 SET_DEST (set) = simplify_replace_rtx (SET_DEST (set), stack_pointer_rtx,
7541 plus_constant (p->sp_equiv_reg,
7542 p->sp_offset));
7543 emit_insn (set);
7547 /* Emit an insn to do the load shown in p->equiv_reg_src, if needed. */
7549 static void
7550 emit_equiv_load (struct epi_info *p)
7552 if (p->equiv_reg_src != 0)
7553 emit_move_insn (p->sp_equiv_reg, p->equiv_reg_src);
7555 p->equiv_reg_src = 0;
7557 #endif
7559 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
7560 this into place with notes indicating where the prologue ends and where
7561 the epilogue begins. Update the basic block information when possible. */
7563 void
7564 thread_prologue_and_epilogue_insns (rtx f ATTRIBUTE_UNUSED)
7566 int inserted = 0;
7567 edge e;
7568 #if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
7569 rtx seq;
7570 #endif
7571 #ifdef HAVE_prologue
7572 rtx prologue_end = NULL_RTX;
7573 #endif
7574 #if defined (HAVE_epilogue) || defined(HAVE_return)
7575 rtx epilogue_end = NULL_RTX;
7576 #endif
7578 #ifdef HAVE_prologue
7579 if (HAVE_prologue)
7581 start_sequence ();
7582 seq = gen_prologue ();
7583 emit_insn (seq);
7585 /* Retain a map of the prologue insns. */
7586 record_insns (seq, &prologue);
7587 prologue_end = emit_note (NOTE_INSN_PROLOGUE_END);
7589 seq = get_insns ();
7590 end_sequence ();
7591 set_insn_locators (seq, prologue_locator);
7593 /* Can't deal with multiple successors of the entry block
7594 at the moment. Function should always have at least one
7595 entry point. */
7596 if (!ENTRY_BLOCK_PTR->succ || ENTRY_BLOCK_PTR->succ->succ_next)
7597 abort ();
7599 insert_insn_on_edge (seq, ENTRY_BLOCK_PTR->succ);
7600 inserted = 1;
7602 #endif
7604 /* If the exit block has no non-fake predecessors, we don't need
7605 an epilogue. */
7606 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7607 if ((e->flags & EDGE_FAKE) == 0)
7608 break;
7609 if (e == NULL)
7610 goto epilogue_done;
7612 #ifdef HAVE_return
7613 if (optimize && HAVE_return)
7615 /* If we're allowed to generate a simple return instruction,
7616 then by definition we don't need a full epilogue. Examine
7617 the block that falls through to EXIT. If it does not
7618 contain any code, examine its predecessors and try to
7619 emit (conditional) return instructions. */
7621 basic_block last;
7622 edge e_next;
7623 rtx label;
7625 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7626 if (e->flags & EDGE_FALLTHRU)
7627 break;
7628 if (e == NULL)
7629 goto epilogue_done;
7630 last = e->src;
7632 /* Verify that there are no active instructions in the last block. */
7633 label = last->end;
7634 while (label && GET_CODE (label) != CODE_LABEL)
7636 if (active_insn_p (label))
7637 break;
7638 label = PREV_INSN (label);
7641 if (last->head == label && GET_CODE (label) == CODE_LABEL)
7643 rtx epilogue_line_note = NULL_RTX;
7645 /* Locate the line number associated with the closing brace,
7646 if we can find one. */
7647 for (seq = get_last_insn ();
7648 seq && ! active_insn_p (seq);
7649 seq = PREV_INSN (seq))
7650 if (GET_CODE (seq) == NOTE && NOTE_LINE_NUMBER (seq) > 0)
7652 epilogue_line_note = seq;
7653 break;
7656 for (e = last->pred; e; e = e_next)
7658 basic_block bb = e->src;
7659 rtx jump;
7661 e_next = e->pred_next;
7662 if (bb == ENTRY_BLOCK_PTR)
7663 continue;
7665 jump = bb->end;
7666 if ((GET_CODE (jump) != JUMP_INSN) || JUMP_LABEL (jump) != label)
7667 continue;
7669 /* If we have an unconditional jump, we can replace that
7670 with a simple return instruction. */
7671 if (simplejump_p (jump))
7673 emit_return_into_block (bb, epilogue_line_note);
7674 delete_insn (jump);
7677 /* If we have a conditional jump, we can try to replace
7678 that with a conditional return instruction. */
7679 else if (condjump_p (jump))
7681 if (! redirect_jump (jump, 0, 0))
7682 continue;
7684 /* If this block has only one successor, it both jumps
7685 and falls through to the fallthru block, so we can't
7686 delete the edge. */
7687 if (bb->succ->succ_next == NULL)
7688 continue;
7690 else
7691 continue;
7693 /* Fix up the CFG for the successful change we just made. */
7694 redirect_edge_succ (e, EXIT_BLOCK_PTR);
7697 /* Emit a return insn for the exit fallthru block. Whether
7698 this is still reachable will be determined later. */
7700 emit_barrier_after (last->end);
7701 emit_return_into_block (last, epilogue_line_note);
7702 epilogue_end = last->end;
7703 last->succ->flags &= ~EDGE_FALLTHRU;
7704 goto epilogue_done;
7707 #endif
7708 #ifdef HAVE_epilogue
7709 if (HAVE_epilogue)
7711 /* Find the edge that falls through to EXIT. Other edges may exist
7712 due to RETURN instructions, but those don't need epilogues.
7713 There really shouldn't be a mixture -- either all should have
7714 been converted or none, however... */
7716 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7717 if (e->flags & EDGE_FALLTHRU)
7718 break;
7719 if (e == NULL)
7720 goto epilogue_done;
7722 start_sequence ();
7723 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
7725 seq = gen_epilogue ();
7727 #ifdef INCOMING_RETURN_ADDR_RTX
7728 /* If this function returns with the stack depressed and we can support
7729 it, massage the epilogue to actually do that. */
7730 if (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
7731 && TYPE_RETURNS_STACK_DEPRESSED (TREE_TYPE (current_function_decl)))
7732 seq = keep_stack_depressed (seq);
7733 #endif
7735 emit_jump_insn (seq);
7737 /* Retain a map of the epilogue insns. */
7738 record_insns (seq, &epilogue);
7739 set_insn_locators (seq, epilogue_locator);
7741 seq = get_insns ();
7742 end_sequence ();
7744 insert_insn_on_edge (seq, e);
7745 inserted = 1;
7747 #endif
7748 epilogue_done:
7750 if (inserted)
7751 commit_edge_insertions ();
7753 #ifdef HAVE_sibcall_epilogue
7754 /* Emit sibling epilogues before any sibling call sites. */
7755 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7757 basic_block bb = e->src;
7758 rtx insn = bb->end;
7759 rtx i;
7760 rtx newinsn;
7762 if (GET_CODE (insn) != CALL_INSN
7763 || ! SIBLING_CALL_P (insn))
7764 continue;
7766 start_sequence ();
7767 emit_insn (gen_sibcall_epilogue ());
7768 seq = get_insns ();
7769 end_sequence ();
7771 /* Retain a map of the epilogue insns. Used in life analysis to
7772 avoid getting rid of sibcall epilogue insns. Do this before we
7773 actually emit the sequence. */
7774 record_insns (seq, &sibcall_epilogue);
7775 set_insn_locators (seq, epilogue_locator);
7777 i = PREV_INSN (insn);
7778 newinsn = emit_insn_before (seq, insn);
7780 #endif
7782 #ifdef HAVE_prologue
7783 if (prologue_end)
7785 rtx insn, prev;
7787 /* GDB handles `break f' by setting a breakpoint on the first
7788 line note after the prologue. Which means (1) that if
7789 there are line number notes before where we inserted the
7790 prologue we should move them, and (2) we should generate a
7791 note before the end of the first basic block, if there isn't
7792 one already there.
7794 ??? This behavior is completely broken when dealing with
7795 multiple entry functions. We simply place the note always
7796 into first basic block and let alternate entry points
7797 to be missed.
7800 for (insn = prologue_end; insn; insn = prev)
7802 prev = PREV_INSN (insn);
7803 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7805 /* Note that we cannot reorder the first insn in the
7806 chain, since rest_of_compilation relies on that
7807 remaining constant. */
7808 if (prev == NULL)
7809 break;
7810 reorder_insns (insn, insn, prologue_end);
7814 /* Find the last line number note in the first block. */
7815 for (insn = ENTRY_BLOCK_PTR->next_bb->end;
7816 insn != prologue_end && insn;
7817 insn = PREV_INSN (insn))
7818 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7819 break;
7821 /* If we didn't find one, make a copy of the first line number
7822 we run across. */
7823 if (! insn)
7825 for (insn = next_active_insn (prologue_end);
7826 insn;
7827 insn = PREV_INSN (insn))
7828 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7830 emit_note_copy_after (insn, prologue_end);
7831 break;
7835 #endif
7836 #ifdef HAVE_epilogue
7837 if (epilogue_end)
7839 rtx insn, next;
7841 /* Similarly, move any line notes that appear after the epilogue.
7842 There is no need, however, to be quite so anal about the existence
7843 of such a note. */
7844 for (insn = epilogue_end; insn; insn = next)
7846 next = NEXT_INSN (insn);
7847 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7848 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
7851 #endif
7854 /* Reposition the prologue-end and epilogue-begin notes after instruction
7855 scheduling and delayed branch scheduling. */
7857 void
7858 reposition_prologue_and_epilogue_notes (rtx f ATTRIBUTE_UNUSED)
7860 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
7861 rtx insn, last, note;
7862 int len;
7864 if ((len = VARRAY_SIZE (prologue)) > 0)
7866 last = 0, note = 0;
7868 /* Scan from the beginning until we reach the last prologue insn.
7869 We apparently can't depend on basic_block_{head,end} after
7870 reorg has run. */
7871 for (insn = f; insn; insn = NEXT_INSN (insn))
7873 if (GET_CODE (insn) == NOTE)
7875 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
7876 note = insn;
7878 else if (contains (insn, prologue))
7880 last = insn;
7881 if (--len == 0)
7882 break;
7886 if (last)
7888 /* Find the prologue-end note if we haven't already, and
7889 move it to just after the last prologue insn. */
7890 if (note == 0)
7892 for (note = last; (note = NEXT_INSN (note));)
7893 if (GET_CODE (note) == NOTE
7894 && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
7895 break;
7898 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
7899 if (GET_CODE (last) == CODE_LABEL)
7900 last = NEXT_INSN (last);
7901 reorder_insns (note, note, last);
7905 if ((len = VARRAY_SIZE (epilogue)) > 0)
7907 last = 0, note = 0;
7909 /* Scan from the end until we reach the first epilogue insn.
7910 We apparently can't depend on basic_block_{head,end} after
7911 reorg has run. */
7912 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
7914 if (GET_CODE (insn) == NOTE)
7916 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
7917 note = insn;
7919 else if (contains (insn, epilogue))
7921 last = insn;
7922 if (--len == 0)
7923 break;
7927 if (last)
7929 /* Find the epilogue-begin note if we haven't already, and
7930 move it to just before the first epilogue insn. */
7931 if (note == 0)
7933 for (note = insn; (note = PREV_INSN (note));)
7934 if (GET_CODE (note) == NOTE
7935 && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
7936 break;
7939 if (PREV_INSN (last) != note)
7940 reorder_insns (note, note, PREV_INSN (last));
7943 #endif /* HAVE_prologue or HAVE_epilogue */
7946 /* Called once, at initialization, to initialize function.c. */
7948 void
7949 init_function_once (void)
7951 VARRAY_INT_INIT (prologue, 0, "prologue");
7952 VARRAY_INT_INIT (epilogue, 0, "epilogue");
7953 VARRAY_INT_INIT (sibcall_epilogue, 0, "sibcall_epilogue");
7956 #include "gt-function.h"