1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
5 -- S Y S T E M . F A T _ G E N --
9 -- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
27 -- GNAT was originally developed by the GNAT team at New York University. --
28 -- Extensive contributions were provided by Ada Core Technologies Inc. --
30 ------------------------------------------------------------------------------
32 -- The implementation here is portable to any IEEE implementation. It does
33 -- not handle nonbinary radix, and also assumes that model numbers and
34 -- machine numbers are basically identical, which is not true of all possible
35 -- floating-point implementations. On a non-IEEE machine, this body must be
36 -- specialized appropriately, or better still, its generic instantiations
37 -- should be replaced by efficient machine-specific code.
39 with Ada
.Unchecked_Conversion
;
41 package body System
.Fat_Gen
is
43 Float_Radix
: constant T
:= T
(T
'Machine_Radix);
44 Radix_To_M_Minus_1
: constant T
:= Float_Radix
** (T
'Machine_Mantissa - 1);
46 pragma Assert
(T
'Machine_Radix = 2);
47 -- This version does not handle radix 16
49 -- Constants for Decompose and Scaling
51 Rad
: constant T
:= T
(T
'Machine_Radix);
52 Invrad
: constant T
:= 1.0 / Rad
;
54 subtype Expbits
is Integer range 0 .. 6;
55 -- 2 ** (2 ** 7) might overflow. How big can radix-16 exponents get?
57 Log_Power
: constant array (Expbits
) of Integer := (1, 2, 4, 8, 16, 32, 64);
59 R_Power
: constant array (Expbits
) of T
:=
68 R_Neg_Power
: constant array (Expbits
) of T
:=
77 -----------------------
78 -- Local Subprograms --
79 -----------------------
81 procedure Decompose
(XX
: T
; Frac
: out T
; Expo
: out UI
);
82 -- Decomposes a floating-point number into fraction and exponent parts.
83 -- Both results are signed, with Frac having the sign of XX, and UI has
84 -- the sign of the exponent. The absolute value of Frac is in the range
85 -- 0.0 <= Frac < 1.0. If Frac = 0.0 or -0.0, then Expo is always zero.
87 function Gradual_Scaling
(Adjustment
: UI
) return T
;
88 -- Like Scaling with a first argument of 1.0, but returns the smallest
89 -- denormal rather than zero when the adjustment is smaller than
90 -- Machine_Emin. Used for Succ and Pred.
96 function Adjacent
(X
, Towards
: T
) return T
is
100 elsif Towards
> X
then
111 function Ceiling
(X
: T
) return T
is
112 XT
: constant T
:= Truncation
(X
);
127 function Compose
(Fraction
: T
; Exponent
: UI
) return T
is
130 pragma Unreferenced
(Arg_Exp
);
132 Decompose
(Fraction
, Arg_Frac
, Arg_Exp
);
133 return Scaling
(Arg_Frac
, Exponent
);
140 function Copy_Sign
(Value
, Sign
: T
) return T
is
143 function Is_Negative
(V
: T
) return Boolean;
144 pragma Import
(Intrinsic
, Is_Negative
);
149 if Is_Negative
(Sign
) then
160 procedure Decompose
(XX
: T
; Frac
: out T
; Expo
: out UI
) is
161 X
: constant T
:= T
'Machine (XX
);
166 -- The normalized exponent of zero is zero, see RM A.5.2(15)
171 -- Check for infinities, transfinites, whatnot
173 elsif X
> T
'Safe_Last then
175 Expo
:= T
'Machine_Emax + 1;
177 elsif X
< T
'Safe_First then
179 Expo
:= T
'Machine_Emax + 2; -- how many extra negative values?
182 -- Case of nonzero finite x. Essentially, we just multiply
183 -- by Rad ** (+-2**N) to reduce the range.
189 -- Ax * Rad ** Ex is invariant
193 while Ax
>= R_Power
(Expbits
'Last) loop
194 Ax
:= Ax
* R_Neg_Power
(Expbits
'Last);
195 Ex
:= Ex
+ Log_Power
(Expbits
'Last);
200 for N
in reverse Expbits
'First .. Expbits
'Last - 1 loop
201 if Ax
>= R_Power
(N
) then
202 Ax
:= Ax
* R_Neg_Power
(N
);
203 Ex
:= Ex
+ Log_Power
(N
);
218 while Ax
< R_Neg_Power
(Expbits
'Last) loop
219 Ax
:= Ax
* R_Power
(Expbits
'Last);
220 Ex
:= Ex
- Log_Power
(Expbits
'Last);
223 -- Rad ** -64 <= Ax < 1
225 for N
in reverse Expbits
'First .. Expbits
'Last - 1 loop
226 if Ax
< R_Neg_Power
(N
) then
227 Ax
:= Ax
* R_Power
(N
);
228 Ex
:= Ex
- Log_Power
(N
);
231 -- R_Neg_Power (N) <= Ax < 1
236 Frac
:= (if X
> 0.0 then Ax
else -Ax
);
246 function Exponent
(X
: T
) return UI
is
249 pragma Unreferenced
(X_Frac
);
251 Decompose
(X
, X_Frac
, X_Exp
);
259 function Floor
(X
: T
) return T
is
260 XT
: constant T
:= Truncation
(X
);
275 function Fraction
(X
: T
) return T
is
278 pragma Unreferenced
(X_Exp
);
280 Decompose
(X
, X_Frac
, X_Exp
);
284 ---------------------
285 -- Gradual_Scaling --
286 ---------------------
288 function Gradual_Scaling
(Adjustment
: UI
) return T
is
291 Ex
: UI
:= Adjustment
;
294 if Adjustment
< T
'Machine_Emin - 1 then
295 Y
:= 2.0 ** T
'Machine_Emin;
297 Ex
:= Ex
- T
'Machine_Emin;
299 Y
:= T
'Machine (Y
/ 2.0);
312 return Scaling
(1.0, Adjustment
);
320 function Leading_Part
(X
: T
; Radix_Digits
: UI
) return T
is
325 if Radix_Digits
>= T
'Machine_Mantissa then
328 elsif Radix_Digits
<= 0 then
329 raise Constraint_Error
;
332 L
:= Exponent
(X
) - Radix_Digits
;
333 Y
:= Truncation
(Scaling
(X
, -L
));
343 -- The trick with Machine is to force the compiler to store the result
344 -- in memory so that we do not have extra precision used. The compiler
345 -- is clever, so we have to outwit its possible optimizations. We do
346 -- this by using an intermediate pragma Volatile location.
348 function Machine
(X
: T
) return T
is
350 pragma Volatile
(Temp
);
356 ----------------------
357 -- Machine_Rounding --
358 ----------------------
360 -- For now, the implementation is identical to that of Rounding, which is
361 -- a permissible behavior, but is not the most efficient possible approach.
363 function Machine_Rounding
(X
: T
) return T
is
368 Result
:= Truncation
(abs X
);
369 Tail
:= abs X
- Result
;
372 Result
:= Result
+ 1.0;
381 -- For zero case, make sure sign of zero is preserved
386 end Machine_Rounding
;
392 -- We treat Model as identical to Machine. This is true of IEEE and other
393 -- nice floating-point systems, but not necessarily true of all systems.
395 function Model
(X
: T
) return T
is
404 function Pred
(X
: T
) return T
is
409 -- Zero has to be treated specially, since its exponent is zero
414 -- Special treatment for most negative number
416 elsif X
= T
'First then
418 -- If not generating infinities, we raise a constraint error
420 if T
'Machine_Overflows then
421 raise Constraint_Error
with "Pred of largest negative number";
423 -- Otherwise generate a negative infinity
429 -- For infinities, return unchanged
431 elsif X
< T
'First or else X
> T
'Last then
434 -- Subtract from the given number a number equivalent to the value
435 -- of its least significant bit. Given that the most significant bit
436 -- represents a value of 1.0 * radix ** (exp - 1), the value we want
437 -- is obtained by shifting this by (mantissa-1) bits to the right,
438 -- i.e. decreasing the exponent by that amount.
441 Decompose
(X
, X_Frac
, X_Exp
);
443 -- A special case, if the number we had was a positive power of
444 -- two, then we want to subtract half of what we would otherwise
445 -- subtract, since the exponent is going to be reduced.
447 -- Note that X_Frac has the same sign as X, so if X_Frac is 0.5,
448 -- then we know that we have a positive number (and hence a
449 -- positive power of 2).
452 return X
- Gradual_Scaling
(X_Exp
- T
'Machine_Mantissa - 1);
454 -- Otherwise the exponent is unchanged
457 return X
- Gradual_Scaling
(X_Exp
- T
'Machine_Mantissa);
466 function Remainder
(X
, Y
: T
) return T
is
480 pragma Unreferenced
(Arg_Frac
);
484 raise Constraint_Error
;
500 P_Exp
:= Exponent
(P
);
503 Decompose
(Arg
, Arg_Frac
, Arg_Exp
);
504 Decompose
(P
, P_Frac
, P_Exp
);
506 P
:= Compose
(P_Frac
, Arg_Exp
);
507 K
:= Arg_Exp
- P_Exp
;
511 for Cnt
in reverse 0 .. K
loop
512 if IEEE_Rem
>= P
then
514 IEEE_Rem
:= IEEE_Rem
- P
;
523 -- That completes the calculation of modulus remainder. The final
524 -- step is get the IEEE remainder. Here we need to compare Rem with
525 -- (abs Y) / 2. We must be careful of unrepresentable Y/2 value
526 -- caused by subnormal numbers
537 if A
> B
or else (A
= B
and then not P_Even
) then
538 IEEE_Rem
:= IEEE_Rem
- abs Y
;
541 return Sign_X
* IEEE_Rem
;
548 function Rounding
(X
: T
) return T
is
553 Result
:= Truncation
(abs X
);
554 Tail
:= abs X
- Result
;
557 Result
:= Result
+ 1.0;
566 -- For zero case, make sure sign of zero is preserved
577 -- Return x * rad ** adjustment quickly, or quietly underflow to zero,
578 -- or overflow naturally.
580 function Scaling
(X
: T
; Adjustment
: UI
) return T
is
582 if X
= 0.0 or else Adjustment
= 0 then
586 -- Nonzero x essentially, just multiply repeatedly by Rad ** (+-2**n)
590 Ex
: UI
:= Adjustment
;
592 -- Y * Rad ** Ex is invariant
596 while Ex
<= -Log_Power
(Expbits
'Last) loop
597 Y
:= Y
* R_Neg_Power
(Expbits
'Last);
598 Ex
:= Ex
+ Log_Power
(Expbits
'Last);
603 for N
in reverse Expbits
'First .. Expbits
'Last - 1 loop
604 if Ex
<= -Log_Power
(N
) then
605 Y
:= Y
* R_Neg_Power
(N
);
606 Ex
:= Ex
+ Log_Power
(N
);
609 -- -Log_Power (N) < Ex <= 0
618 while Ex
>= Log_Power
(Expbits
'Last) loop
619 Y
:= Y
* R_Power
(Expbits
'Last);
620 Ex
:= Ex
- Log_Power
(Expbits
'Last);
625 for N
in reverse Expbits
'First .. Expbits
'Last - 1 loop
626 if Ex
>= Log_Power
(N
) then
627 Y
:= Y
* R_Power
(N
);
628 Ex
:= Ex
- Log_Power
(N
);
631 -- 0 <= Ex < Log_Power (N)
647 function Succ
(X
: T
) return T
is
653 -- Treat zero specially since it has a zero exponent
656 X1
:= 2.0 ** T
'Machine_Emin;
658 -- Following loop generates smallest denormal
661 X2
:= T
'Machine (X1
/ 2.0);
668 -- Special treatment for largest positive number
670 elsif X
= T
'Last then
672 -- If not generating infinities, we raise a constraint error
674 if T
'Machine_Overflows then
675 raise Constraint_Error
with "Succ of largest negative number";
677 -- Otherwise generate a positive infinity
683 -- For infinities, return unchanged
685 elsif X
< T
'First or else X
> T
'Last then
688 -- Add to the given number a number equivalent to the value
689 -- of its least significant bit. Given that the most significant bit
690 -- represents a value of 1.0 * radix ** (exp - 1), the value we want
691 -- is obtained by shifting this by (mantissa-1) bits to the right,
692 -- i.e. decreasing the exponent by that amount.
695 Decompose
(X
, X_Frac
, X_Exp
);
697 -- A special case, if the number we had was a negative power of two,
698 -- then we want to add half of what we would otherwise add, since the
699 -- exponent is going to be reduced.
701 -- Note that X_Frac has the same sign as X, so if X_Frac is -0.5,
702 -- then we know that we have a negative number (and hence a negative
705 if X_Frac
= -0.5 then
706 return X
+ Gradual_Scaling
(X_Exp
- T
'Machine_Mantissa - 1);
708 -- Otherwise the exponent is unchanged
711 return X
+ Gradual_Scaling
(X_Exp
- T
'Machine_Mantissa);
720 -- The basic approach is to compute
722 -- T'Machine (RM1 + N) - RM1
724 -- where N >= 0.0 and RM1 = radix ** (mantissa - 1)
726 -- This works provided that the intermediate result (RM1 + N) does not
727 -- have extra precision (which is why we call Machine). When we compute
728 -- RM1 + N, the exponent of N will be normalized and the mantissa shifted
729 -- shifted appropriately so the lower order bits, which cannot contribute
730 -- to the integer part of N, fall off on the right. When we subtract RM1
731 -- again, the significant bits of N are shifted to the left, and what we
732 -- have is an integer, because only the first e bits are different from
733 -- zero (assuming binary radix here).
735 function Truncation
(X
: T
) return T
is
741 if Result
>= Radix_To_M_Minus_1
then
745 Result
:= Machine
(Radix_To_M_Minus_1
+ Result
) - Radix_To_M_Minus_1
;
747 if Result
> abs X
then
748 Result
:= Result
- 1.0;
757 -- For zero case, make sure sign of zero is preserved
765 -----------------------
766 -- Unbiased_Rounding --
767 -----------------------
769 function Unbiased_Rounding
(X
: T
) return T
is
770 Abs_X
: constant T
:= abs X
;
775 Result
:= Truncation
(Abs_X
);
776 Tail
:= Abs_X
- Result
;
779 Result
:= Result
+ 1.0;
781 elsif Tail
= 0.5 then
782 Result
:= 2.0 * Truncation
((Result
/ 2.0) + 0.5);
791 -- For zero case, make sure sign of zero is preserved
796 end Unbiased_Rounding
;
802 function Valid
(X
: not null access T
) return Boolean is
803 IEEE_Emin
: constant Integer := T
'Machine_Emin - 1;
804 IEEE_Emax
: constant Integer := T
'Machine_Emax - 1;
806 IEEE_Bias
: constant Integer := -(IEEE_Emin
- 1);
808 subtype IEEE_Exponent_Range
is
809 Integer range IEEE_Emin
- 1 .. IEEE_Emax
+ 1;
811 -- The implementation of this floating point attribute uses a
812 -- representation type Float_Rep that allows direct access to the
813 -- exponent and mantissa parts of a floating point number.
815 -- The Float_Rep type is an array of Float_Word elements. This
816 -- representation is chosen to make it possible to size the type based
817 -- on a generic parameter. Since the array size is known at compile
818 -- time, efficient code can still be generated. The size of Float_Word
819 -- elements should be large enough to allow accessing the exponent in
820 -- one read, but small enough so that all floating point object sizes
821 -- are a multiple of the Float_Word'Size.
823 -- The following conditions must be met for all possible instantiations
824 -- of the attributes package:
826 -- - T'Size is an integral multiple of Float_Word'Size
828 -- - The exponent and sign are completely contained in a single
829 -- component of Float_Rep, named Most_Significant_Word (MSW).
831 -- - The sign occupies the most significant bit of the MSW and the
832 -- exponent is in the following bits. Unused bits (if any) are in
833 -- the least significant part.
835 type Float_Word
is mod 2**Positive'Min (System
.Word_Size
, 32);
836 type Rep_Index
is range 0 .. 7;
838 Rep_Words
: constant Positive :=
839 (T
'Size + Float_Word
'Size - 1) / Float_Word
'Size;
840 Rep_Last
: constant Rep_Index
:=
842 (Rep_Index
(Rep_Words
- 1),
843 (T
'Mantissa + 16) / Float_Word
'Size);
844 -- Determine the number of Float_Words needed for representing the
845 -- entire floating-point value. Do not take into account excessive
846 -- padding, as occurs on IA-64 where 80 bits floats get padded to 128
847 -- bits. In general, the exponent field cannot be larger than 15 bits,
848 -- even for 128-bit floating-point types, so the final format size
849 -- won't be larger than T'Mantissa + 16.
852 array (Rep_Index
range 0 .. Rep_Index
(Rep_Words
- 1)) of Float_Word
;
854 pragma Suppress_Initialization
(Float_Rep
);
855 -- This pragma suppresses the generation of an initialization procedure
856 -- for type Float_Rep when operating in Initialize/Normalize_Scalars
857 -- mode. This is not just a matter of efficiency, but of functionality,
858 -- since Valid has a pragma Inline_Always, which is not permitted if
859 -- there are nested subprograms present.
861 Most_Significant_Word
: constant Rep_Index
:=
862 Rep_Last
* Standard
'Default_Bit_Order;
863 -- Finding the location of the Exponent_Word is a bit tricky. In general
864 -- we assume Word_Order = Bit_Order.
866 Exponent_Factor
: constant Float_Word
:=
867 2**(Float_Word
'Size - 1) /
868 Float_Word
(IEEE_Emax
- IEEE_Emin
+ 3) *
869 Boolean'Pos (Most_Significant_Word
/= 2) +
870 Boolean'Pos (Most_Significant_Word
= 2);
871 -- Factor that the extracted exponent needs to be divided by to be in
872 -- range 0 .. IEEE_Emax - IEEE_Emin + 2. Special case: Exponent_Factor
873 -- is 1 for x86/IA64 double extended (GCC adds unused bits to the type).
875 Exponent_Mask
: constant Float_Word
:=
876 Float_Word
(IEEE_Emax
- IEEE_Emin
+ 2) *
878 -- Value needed to mask out the exponent field. This assumes that the
879 -- range IEEE_Emin - 1 .. IEEE_Emax + contains 2**N values, for some N
882 function To_Float
is new Ada
.Unchecked_Conversion
(Float_Rep
, T
);
884 type Float_Access
is access all T
;
885 function To_Address
is
886 new Ada
.Unchecked_Conversion
(Float_Access
, System
.Address
);
888 XA
: constant System
.Address
:= To_Address
(Float_Access
(X
));
891 pragma Import
(Ada
, R
);
892 for R
'Address use XA
;
893 -- R is a view of the input floating-point parameter. Note that we
894 -- must avoid copying the actual bits of this parameter in float
895 -- form (since it may be a signalling NaN).
897 E
: constant IEEE_Exponent_Range
:=
898 Integer ((R
(Most_Significant_Word
) and Exponent_Mask
) /
901 -- Mask/Shift T to only get bits from the exponent. Then convert biased
902 -- value to integer value.
905 -- Float_Rep representation of significant of X.all
910 -- All denormalized numbers are valid, so the only invalid numbers
911 -- are overflows and NaNs, both with exponent = Emax + 1.
913 return E
/= IEEE_Emax
+ 1;
917 -- All denormalized numbers except 0.0 are invalid
919 -- Set exponent of X to zero, so we end up with the significand, which
920 -- definitely is a valid number and can be converted back to a float.
923 SR
(Most_Significant_Word
) :=
924 (SR
(Most_Significant_Word
)
925 and not Exponent_Mask
) + Float_Word
(IEEE_Bias
) * Exponent_Factor
;
927 return (E
in IEEE_Emin
.. IEEE_Emax
) or else
928 ((E
= IEEE_Emin
- 1) and then abs To_Float
(SR
) = 1.0);