libsanitizer merge from upstream r175733
[official-gcc.git] / libsanitizer / tsan / tsan_rtl_thread.cc
blobe30916dc6272a45128d98de102f560922e96dc4b
1 //===-- tsan_rtl_thread.cc ------------------------------------------------===//
2 //
3 // This file is distributed under the University of Illinois Open Source
4 // License. See LICENSE.TXT for details.
5 //
6 //===----------------------------------------------------------------------===//
7 //
8 // This file is a part of ThreadSanitizer (TSan), a race detector.
9 //
10 //===----------------------------------------------------------------------===//
12 #include "sanitizer_common/sanitizer_placement_new.h"
13 #include "tsan_rtl.h"
14 #include "tsan_mman.h"
15 #include "tsan_platform.h"
16 #include "tsan_report.h"
17 #include "tsan_sync.h"
19 namespace __tsan {
21 #ifndef TSAN_GO
22 const int kThreadQuarantineSize = 16;
23 #else
24 const int kThreadQuarantineSize = 64;
25 #endif
27 static void MaybeReportThreadLeak(ThreadContext *tctx) {
28 if (tctx->detached)
29 return;
30 if (tctx->status != ThreadStatusCreated
31 && tctx->status != ThreadStatusRunning
32 && tctx->status != ThreadStatusFinished)
33 return;
34 ScopedReport rep(ReportTypeThreadLeak);
35 rep.AddThread(tctx);
36 OutputReport(CTX(), rep);
39 void ThreadFinalize(ThreadState *thr) {
40 CHECK_GT(thr->in_rtl, 0);
41 if (!flags()->report_thread_leaks)
42 return;
43 Context *ctx = CTX();
44 Lock l(&ctx->thread_mtx);
45 for (unsigned i = 0; i < kMaxTid; i++) {
46 ThreadContext *tctx = ctx->threads[i];
47 if (tctx == 0)
48 continue;
49 MaybeReportThreadLeak(tctx);
53 int ThreadCount(ThreadState *thr) {
54 CHECK_GT(thr->in_rtl, 0);
55 Context *ctx = CTX();
56 Lock l(&ctx->thread_mtx);
57 int cnt = 0;
58 for (unsigned i = 0; i < kMaxTid; i++) {
59 ThreadContext *tctx = ctx->threads[i];
60 if (tctx == 0)
61 continue;
62 if (tctx->status != ThreadStatusCreated
63 && tctx->status != ThreadStatusRunning)
64 continue;
65 cnt++;
67 return cnt;
70 static void ThreadDead(ThreadState *thr, ThreadContext *tctx) {
71 Context *ctx = CTX();
72 CHECK_GT(thr->in_rtl, 0);
73 CHECK(tctx->status == ThreadStatusRunning
74 || tctx->status == ThreadStatusFinished);
75 DPrintf("#%d: ThreadDead uid=%zu\n", thr->tid, tctx->user_id);
76 tctx->status = ThreadStatusDead;
77 tctx->user_id = 0;
78 tctx->sync.Reset();
80 // Put to dead list.
81 tctx->dead_next = 0;
82 if (ctx->dead_list_size == 0)
83 ctx->dead_list_head = tctx;
84 else
85 ctx->dead_list_tail->dead_next = tctx;
86 ctx->dead_list_tail = tctx;
87 ctx->dead_list_size++;
90 int ThreadCreate(ThreadState *thr, uptr pc, uptr uid, bool detached) {
91 CHECK_GT(thr->in_rtl, 0);
92 Context *ctx = CTX();
93 Lock l(&ctx->thread_mtx);
94 StatInc(thr, StatThreadCreate);
95 int tid = -1;
96 ThreadContext *tctx = 0;
97 if (ctx->dead_list_size > kThreadQuarantineSize
98 || ctx->thread_seq >= kMaxTid) {
99 // Reusing old thread descriptor and tid.
100 if (ctx->dead_list_size == 0) {
101 Printf("ThreadSanitizer: %d thread limit exceeded. Dying.\n",
102 kMaxTid);
103 Die();
105 StatInc(thr, StatThreadReuse);
106 tctx = ctx->dead_list_head;
107 ctx->dead_list_head = tctx->dead_next;
108 ctx->dead_list_size--;
109 if (ctx->dead_list_size == 0) {
110 CHECK_EQ(tctx->dead_next, 0);
111 ctx->dead_list_head = 0;
113 CHECK_EQ(tctx->status, ThreadStatusDead);
114 tctx->status = ThreadStatusInvalid;
115 tctx->reuse_count++;
116 tctx->sync.Reset();
117 tid = tctx->tid;
118 DestroyAndFree(tctx->dead_info);
119 if (tctx->name) {
120 internal_free(tctx->name);
121 tctx->name = 0;
123 } else {
124 // Allocating new thread descriptor and tid.
125 StatInc(thr, StatThreadMaxTid);
126 tid = ctx->thread_seq++;
127 void *mem = internal_alloc(MBlockThreadContex, sizeof(ThreadContext));
128 tctx = new(mem) ThreadContext(tid);
129 ctx->threads[tid] = tctx;
130 MapThreadTrace(GetThreadTrace(tid), TraceSize() * sizeof(Event));
132 CHECK_NE(tctx, 0);
133 CHECK_GE(tid, 0);
134 CHECK_LT(tid, kMaxTid);
135 DPrintf("#%d: ThreadCreate tid=%d uid=%zu\n", thr->tid, tid, uid);
136 CHECK_EQ(tctx->status, ThreadStatusInvalid);
137 ctx->alive_threads++;
138 if (ctx->max_alive_threads < ctx->alive_threads) {
139 ctx->max_alive_threads++;
140 CHECK_EQ(ctx->max_alive_threads, ctx->alive_threads);
141 StatInc(thr, StatThreadMaxAlive);
143 tctx->status = ThreadStatusCreated;
144 tctx->thr = 0;
145 tctx->user_id = uid;
146 tctx->unique_id = ctx->unique_thread_seq++;
147 tctx->detached = detached;
148 if (tid) {
149 thr->fast_state.IncrementEpoch();
150 // Can't increment epoch w/o writing to the trace as well.
151 TraceAddEvent(thr, thr->fast_state, EventTypeMop, 0);
152 thr->clock.set(thr->tid, thr->fast_state.epoch());
153 thr->fast_synch_epoch = thr->fast_state.epoch();
154 thr->clock.release(&tctx->sync);
155 StatInc(thr, StatSyncRelease);
156 tctx->creation_stack.ObtainCurrent(thr, pc);
157 tctx->creation_tid = thr->tid;
159 return tid;
162 void ThreadStart(ThreadState *thr, int tid, uptr os_id) {
163 CHECK_GT(thr->in_rtl, 0);
164 uptr stk_addr = 0;
165 uptr stk_size = 0;
166 uptr tls_addr = 0;
167 uptr tls_size = 0;
168 GetThreadStackAndTls(tid == 0, &stk_addr, &stk_size, &tls_addr, &tls_size);
170 if (tid) {
171 if (stk_addr && stk_size) {
172 MemoryResetRange(thr, /*pc=*/ 1, stk_addr, stk_size);
175 if (tls_addr && tls_size) {
176 // Check that the thr object is in tls;
177 const uptr thr_beg = (uptr)thr;
178 const uptr thr_end = (uptr)thr + sizeof(*thr);
179 CHECK_GE(thr_beg, tls_addr);
180 CHECK_LE(thr_beg, tls_addr + tls_size);
181 CHECK_GE(thr_end, tls_addr);
182 CHECK_LE(thr_end, tls_addr + tls_size);
183 // Since the thr object is huge, skip it.
184 MemoryResetRange(thr, /*pc=*/ 2, tls_addr, thr_beg - tls_addr);
185 MemoryResetRange(thr, /*pc=*/ 2, thr_end, tls_addr + tls_size - thr_end);
189 Lock l(&CTX()->thread_mtx);
190 ThreadContext *tctx = CTX()->threads[tid];
191 CHECK_NE(tctx, 0);
192 CHECK_EQ(tctx->status, ThreadStatusCreated);
193 tctx->status = ThreadStatusRunning;
194 tctx->os_id = os_id;
195 // RoundUp so that one trace part does not contain events
196 // from different threads.
197 tctx->epoch0 = RoundUp(tctx->epoch1 + 1, kTracePartSize);
198 tctx->epoch1 = (u64)-1;
199 new(thr) ThreadState(CTX(), tid, tctx->unique_id,
200 tctx->epoch0, stk_addr, stk_size,
201 tls_addr, tls_size);
202 #ifdef TSAN_GO
203 // Setup dynamic shadow stack.
204 const int kInitStackSize = 8;
205 thr->shadow_stack = (uptr*)internal_alloc(MBlockShadowStack,
206 kInitStackSize * sizeof(uptr));
207 thr->shadow_stack_pos = thr->shadow_stack;
208 thr->shadow_stack_end = thr->shadow_stack + kInitStackSize;
209 #endif
210 #ifndef TSAN_GO
211 AllocatorThreadStart(thr);
212 #endif
213 tctx->thr = thr;
214 thr->fast_synch_epoch = tctx->epoch0;
215 thr->clock.set(tid, tctx->epoch0);
216 thr->clock.acquire(&tctx->sync);
217 thr->fast_state.SetHistorySize(flags()->history_size);
218 const uptr trace = (tctx->epoch0 / kTracePartSize) % TraceParts();
219 thr->trace.headers[trace].epoch0 = tctx->epoch0;
220 StatInc(thr, StatSyncAcquire);
221 DPrintf("#%d: ThreadStart epoch=%zu stk_addr=%zx stk_size=%zx "
222 "tls_addr=%zx tls_size=%zx\n",
223 tid, (uptr)tctx->epoch0, stk_addr, stk_size, tls_addr, tls_size);
224 thr->is_alive = true;
227 void ThreadFinish(ThreadState *thr) {
228 CHECK_GT(thr->in_rtl, 0);
229 StatInc(thr, StatThreadFinish);
230 // FIXME: Treat it as write.
231 if (thr->stk_addr && thr->stk_size)
232 MemoryResetRange(thr, /*pc=*/ 3, thr->stk_addr, thr->stk_size);
233 if (thr->tls_addr && thr->tls_size) {
234 const uptr thr_beg = (uptr)thr;
235 const uptr thr_end = (uptr)thr + sizeof(*thr);
236 // Since the thr object is huge, skip it.
237 MemoryResetRange(thr, /*pc=*/ 4, thr->tls_addr, thr_beg - thr->tls_addr);
238 MemoryResetRange(thr, /*pc=*/ 5,
239 thr_end, thr->tls_addr + thr->tls_size - thr_end);
241 thr->is_alive = false;
242 Context *ctx = CTX();
243 Lock l(&ctx->thread_mtx);
244 ThreadContext *tctx = ctx->threads[thr->tid];
245 CHECK_NE(tctx, 0);
246 CHECK_EQ(tctx->status, ThreadStatusRunning);
247 CHECK_GT(ctx->alive_threads, 0);
248 ctx->alive_threads--;
249 if (tctx->detached) {
250 ThreadDead(thr, tctx);
251 } else {
252 thr->fast_state.IncrementEpoch();
253 // Can't increment epoch w/o writing to the trace as well.
254 TraceAddEvent(thr, thr->fast_state, EventTypeMop, 0);
255 thr->clock.set(thr->tid, thr->fast_state.epoch());
256 thr->fast_synch_epoch = thr->fast_state.epoch();
257 thr->clock.release(&tctx->sync);
258 StatInc(thr, StatSyncRelease);
259 tctx->status = ThreadStatusFinished;
262 // Save from info about the thread.
263 tctx->dead_info = new(internal_alloc(MBlockDeadInfo, sizeof(ThreadDeadInfo)))
264 ThreadDeadInfo();
265 for (uptr i = 0; i < TraceParts(); i++) {
266 tctx->dead_info->trace.headers[i].epoch0 = thr->trace.headers[i].epoch0;
267 tctx->dead_info->trace.headers[i].stack0.CopyFrom(
268 thr->trace.headers[i].stack0);
270 tctx->epoch1 = thr->fast_state.epoch();
272 #ifndef TSAN_GO
273 AllocatorThreadFinish(thr);
274 #endif
275 thr->~ThreadState();
276 StatAggregate(ctx->stat, thr->stat);
277 tctx->thr = 0;
280 int ThreadTid(ThreadState *thr, uptr pc, uptr uid) {
281 CHECK_GT(thr->in_rtl, 0);
282 Context *ctx = CTX();
283 Lock l(&ctx->thread_mtx);
284 int res = -1;
285 for (unsigned tid = 0; tid < kMaxTid; tid++) {
286 ThreadContext *tctx = ctx->threads[tid];
287 if (tctx != 0 && tctx->user_id == uid
288 && tctx->status != ThreadStatusInvalid) {
289 tctx->user_id = 0;
290 res = tid;
291 break;
294 DPrintf("#%d: ThreadTid uid=%zu tid=%d\n", thr->tid, uid, res);
295 return res;
298 void ThreadJoin(ThreadState *thr, uptr pc, int tid) {
299 CHECK_GT(thr->in_rtl, 0);
300 CHECK_GT(tid, 0);
301 CHECK_LT(tid, kMaxTid);
302 DPrintf("#%d: ThreadJoin tid=%d\n", thr->tid, tid);
303 Context *ctx = CTX();
304 Lock l(&ctx->thread_mtx);
305 ThreadContext *tctx = ctx->threads[tid];
306 if (tctx->status == ThreadStatusInvalid) {
307 Printf("ThreadSanitizer: join of non-existent thread\n");
308 return;
310 // FIXME(dvyukov): print message and continue (it's user error).
311 CHECK_EQ(tctx->detached, false);
312 CHECK_EQ(tctx->status, ThreadStatusFinished);
313 thr->clock.acquire(&tctx->sync);
314 StatInc(thr, StatSyncAcquire);
315 ThreadDead(thr, tctx);
318 void ThreadDetach(ThreadState *thr, uptr pc, int tid) {
319 CHECK_GT(thr->in_rtl, 0);
320 CHECK_GT(tid, 0);
321 CHECK_LT(tid, kMaxTid);
322 Context *ctx = CTX();
323 Lock l(&ctx->thread_mtx);
324 ThreadContext *tctx = ctx->threads[tid];
325 if (tctx->status == ThreadStatusInvalid) {
326 Printf("ThreadSanitizer: detach of non-existent thread\n");
327 return;
329 if (tctx->status == ThreadStatusFinished) {
330 ThreadDead(thr, tctx);
331 } else {
332 tctx->detached = true;
336 void ThreadSetName(ThreadState *thr, const char *name) {
337 Context *ctx = CTX();
338 Lock l(&ctx->thread_mtx);
339 ThreadContext *tctx = ctx->threads[thr->tid];
340 CHECK_NE(tctx, 0);
341 CHECK_EQ(tctx->status, ThreadStatusRunning);
342 if (tctx->name) {
343 internal_free(tctx->name);
344 tctx->name = 0;
346 if (name)
347 tctx->name = internal_strdup(name);
350 void MemoryAccessRange(ThreadState *thr, uptr pc, uptr addr,
351 uptr size, bool is_write) {
352 if (size == 0)
353 return;
355 u64 *shadow_mem = (u64*)MemToShadow(addr);
356 DPrintf2("#%d: MemoryAccessRange: @%p %p size=%d is_write=%d\n",
357 thr->tid, (void*)pc, (void*)addr,
358 (int)size, is_write);
360 #if TSAN_DEBUG
361 if (!IsAppMem(addr)) {
362 Printf("Access to non app mem %zx\n", addr);
363 DCHECK(IsAppMem(addr));
365 if (!IsAppMem(addr + size - 1)) {
366 Printf("Access to non app mem %zx\n", addr + size - 1);
367 DCHECK(IsAppMem(addr + size - 1));
369 if (!IsShadowMem((uptr)shadow_mem)) {
370 Printf("Bad shadow addr %p (%zx)\n", shadow_mem, addr);
371 DCHECK(IsShadowMem((uptr)shadow_mem));
373 if (!IsShadowMem((uptr)(shadow_mem + size * kShadowCnt / 8 - 1))) {
374 Printf("Bad shadow addr %p (%zx)\n",
375 shadow_mem + size * kShadowCnt / 8 - 1, addr + size - 1);
376 DCHECK(IsShadowMem((uptr)(shadow_mem + size * kShadowCnt / 8 - 1)));
378 #endif
380 StatInc(thr, StatMopRange);
382 FastState fast_state = thr->fast_state;
383 if (fast_state.GetIgnoreBit())
384 return;
386 fast_state.IncrementEpoch();
387 thr->fast_state = fast_state;
388 TraceAddEvent(thr, fast_state, EventTypeMop, pc);
390 bool unaligned = (addr % kShadowCell) != 0;
392 // Handle unaligned beginning, if any.
393 for (; addr % kShadowCell && size; addr++, size--) {
394 int const kAccessSizeLog = 0;
395 Shadow cur(fast_state);
396 cur.SetWrite(is_write);
397 cur.SetAddr0AndSizeLog(addr & (kShadowCell - 1), kAccessSizeLog);
398 MemoryAccessImpl(thr, addr, kAccessSizeLog, is_write, false,
399 shadow_mem, cur);
401 if (unaligned)
402 shadow_mem += kShadowCnt;
403 // Handle middle part, if any.
404 for (; size >= kShadowCell; addr += kShadowCell, size -= kShadowCell) {
405 int const kAccessSizeLog = 3;
406 Shadow cur(fast_state);
407 cur.SetWrite(is_write);
408 cur.SetAddr0AndSizeLog(0, kAccessSizeLog);
409 MemoryAccessImpl(thr, addr, kAccessSizeLog, is_write, false,
410 shadow_mem, cur);
411 shadow_mem += kShadowCnt;
413 // Handle ending, if any.
414 for (; size; addr++, size--) {
415 int const kAccessSizeLog = 0;
416 Shadow cur(fast_state);
417 cur.SetWrite(is_write);
418 cur.SetAddr0AndSizeLog(addr & (kShadowCell - 1), kAccessSizeLog);
419 MemoryAccessImpl(thr, addr, kAccessSizeLog, is_write, false,
420 shadow_mem, cur);
424 void MemoryAccessRangeStep(ThreadState *thr, uptr pc, uptr addr,
425 uptr size, uptr step, bool is_write) {
426 if (size == 0)
427 return;
428 FastState fast_state = thr->fast_state;
429 if (fast_state.GetIgnoreBit())
430 return;
431 StatInc(thr, StatMopRange);
432 fast_state.IncrementEpoch();
433 thr->fast_state = fast_state;
434 TraceAddEvent(thr, fast_state, EventTypeMop, pc);
436 for (uptr addr_end = addr + size; addr < addr_end; addr += step) {
437 u64 *shadow_mem = (u64*)MemToShadow(addr);
438 Shadow cur(fast_state);
439 cur.SetWrite(is_write);
440 cur.SetAddr0AndSizeLog(addr & (kShadowCell - 1), kSizeLog1);
441 MemoryAccessImpl(thr, addr, kSizeLog1, is_write, false,
442 shadow_mem, cur);
445 } // namespace __tsan