1 # Copyright
(C
) 1999-2016 Free Software Foundation
, Inc.
3 # This
program is free software
; you can redistribute it and
/or modify
4 # it under the terms of the GNU General Public License as published by
5 # the Free Software Foundation
; either version
3 of the License
, or
6 #
(at your option
) any later version.
8 # This
program is distributed in the hope that it will be useful
,
9 # but WITHOUT
ANY WARRANTY
; without even the implied warranty of
10 # MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the
11 # GNU General Public License
for more details.
13 # You should have received a copy of the GNU General Public License
14 # along with GCC
; see the file COPYING3.
If not see
15 #
<http
://www.gnu.org
/licenses
/>.
17 # Please email
any bugs
, comments
, and
/or additions to this file to
:
18 # gcc
-patches@gcc.gnu.org
20 # This file defines procs
for determining features supported by the target.
22 # Try to
compile the code given by CONTENTS into an output file of
23 # type TYPE
, where TYPE is as
for target_compile.
Return a list
24 # whose first element contains the compiler messages and whose
25 # second element is the
name of the output file.
27 # BASENAME is a prefix to use
for source and output files.
28 #
If ARGS is not empty
, its first element is a string that
29 # should be added to the command line.
31 # Assume by default that CONTENTS is C code.
32 # Otherwise
, code should contain
:
34 #
"! Fortran" for Fortran code,
36 #
"// ObjC++" for ObjC++
38 #
If the tool is ObjC
/ObjC
++ then we overide the extension to .m
/.mm to
39 # allow
for ObjC
/ObjC
++ specific flags.
40 proc check_compile
{basename type contents
args} {
42 verbose
"check_compile tool: $tool for $basename"
44 # Save additional_sources to avoid compiling testsuite
's sources
45 # against check_compile's source.
46 global additional_sources
47 if [info exists additional_sources
] {
48 set tmp_additional_sources
"$additional_sources"
49 set additional_sources
""
52 if { [llength $
args] > 0 } {
53 set options
[list
"additional_flags=[lindex $args 0]"]
57 switch -glob
-- $contents
{
58 "*! Fortran*" { set src ${basename}[pid].f90 }
59 "*// C++*" { set src ${basename}[pid].cc }
60 "*// ObjC++*" { set src ${basename}[pid].mm }
61 "*/* ObjC*" { set src ${basename}[pid].m }
62 "*// Go*" { set src ${basename}[pid].go }
65 "objc" { set src ${basename}[pid].m }
66 "obj-c++" { set src ${basename}[pid].mm }
67 default
{ set src $
{basename
}[pid
].c
}
72 set compile_type $type
74 assembly
{ set output $
{basename
}[pid
].s
}
75 object
{ set output $
{basename
}[pid
].o
}
76 executable
{ set output $
{basename
}[pid
].exe
}
78 set output $
{basename
}[pid
].s
79 lappend options
"additional_flags=-fdump-$type"
80 set compile_type assembly
86 set lines
[$
{tool
}_target_compile $src $output $compile_type
"$options"]
89 set scan_output $output
90 # Don
't try folding this into the switch above; calling "glob" before the
91 # file is created won't work.
92 if [regexp
"rtl-(.*)" $type dummy rtl_type] {
93 set scan_output
"[glob $src.\[0-9\]\[0-9\]\[0-9\]r.$rtl_type]"
97 # Restore additional_sources.
98 if [info exists additional_sources
] {
99 set additional_sources
"$tmp_additional_sources"
102 return [list $lines $scan_output
]
105 proc current_target_name
{ } {
107 if [info exists target_info
(target
,name)] {
108 set answer $target_info
(target
,name)
115 # Implement an effective
-target check
for property PROP by invoking
116 # the Tcl command
ARGS and seeing
if it returns true.
118 proc check_cached_effective_target
{ prop
args } {
122 set target
[current_target_name
]
123 if {![info exists et_cache
($prop
,target
)]
124 || $et_cache
($prop
,target
) != $target
} {
125 verbose
"check_cached_effective_target $prop: checking $target" 2
126 set et_cache
($prop
,target
) $target
127 set et_cache
($prop
,value
) [uplevel eval $
args]
128 if {![info exists et_prop_list
]
129 ||
[lsearch $et_prop_list $prop
] < 0} {
130 lappend et_prop_list $prop
132 verbose
"check_cached_effective_target cached list is now: $et_prop_list" 2
134 set value $et_cache
($prop
,value
)
135 verbose
"check_cached_effective_target $prop: returning $value for $target" 2
139 # Clear effective
-target
cache. This is useful after testing
140 # effective
-target features and overriding TEST_ALWAYS_FLAGS and
/or
142 #
If one changes ALWAYS_CXXFLAGS or TEST_ALWAYS_FLAGS
then they should
143 #
do a clear_effective_target_cache at the end as the target
cache can
144 # make decisions based upon the flags
, and those decisions need to be
145 # redone when the flags change. An example of this is the
146 # asan_init
/asan_finish pair.
148 proc clear_effective_target_cache
{ } {
152 if {[info exists et_prop_list
]} {
153 verbose
"clear_effective_target_cache: $et_prop_list" 2
154 foreach prop $et_prop_list
{
155 unset et_cache
($prop
,value
)
156 unset et_cache
($prop
,target
)
162 # Like check_compile
, but
delete the output file and
return true
if the
163 # compiler printed no messages.
164 proc check_no_compiler_messages_nocache
{args} {
165 set result
[eval check_compile $
args]
166 set lines
[lindex $result
0]
167 set output
[lindex $result
1]
168 remote_file build
delete $output
169 return [string match
"" $lines]
172 # Like check_no_compiler_messages_nocache
, but
cache the result.
173 # PROP is the
property we
're checking, and doubles as a prefix for
174 # temporary filenames.
175 proc check_no_compiler_messages {prop args} {
176 return [check_cached_effective_target $prop {
177 eval [list check_no_compiler_messages_nocache $prop] $args
181 # Like check_compile, but return true if the compiler printed no
182 # messages and if the contents of the output file satisfy PATTERN.
183 # If PATTERN has the form "!REGEXP", the contents satisfy it if they
184 # don't match regular expression REGEXP
, otherwise they satisfy it
185 #
if they
do match regular expression PATTERN.
(PATTERN can start
186 # with something like
"[!]" if the regular expression needs to match
187 #
"!" as the first character.)
189 #
Delete the output file before returning. The other arguments are
190 # as
for check_compile.
191 proc check_no_messages_and_pattern_nocache
{basename pattern
args} {
194 set result
[eval
[list check_compile $basename
] $
args]
195 set lines
[lindex $result
0]
196 set output
[lindex $result
1]
199 if { [string match
"" $lines] } {
200 set chan
[open
"$output"]
201 set invert
[regexp
{^
!(.
*)} $pattern dummy pattern
]
202 set ok
[expr
{ [regexp $pattern
[read $chan
]] != $invert
}]
206 remote_file build
delete $output
210 # Like check_no_messages_and_pattern_nocache
, but
cache the result.
211 # PROP is the
property we
're checking, and doubles as a prefix for
212 # temporary filenames.
213 proc check_no_messages_and_pattern {prop pattern args} {
214 return [check_cached_effective_target $prop {
215 eval [list check_no_messages_and_pattern_nocache $prop $pattern] $args
219 # Try to compile and run an executable from code CONTENTS. Return true
220 # if the compiler reports no messages and if execution "passes" in the
221 # usual DejaGNU sense. The arguments are as for check_compile, with
222 # TYPE implicitly being "executable".
223 proc check_runtime_nocache {basename contents args} {
226 set result [eval [list check_compile $basename executable $contents] $args]
227 set lines [lindex $result 0]
228 set output [lindex $result 1]
231 if { [string match "" $lines] } {
232 # No error messages, everything is OK.
233 set result [remote_load target "./$output" "" ""]
234 set status [lindex $result 0]
235 verbose "check_runtime_nocache $basename: status is <$status>" 2
236 if { $status == "pass" } {
240 remote_file build delete $output
244 # Like check_runtime_nocache, but cache the result. PROP is the
245 # property we're checking
, and doubles as a prefix
for temporary
247 proc check_runtime
{prop
args} {
250 return [check_cached_effective_target $prop
{
251 eval
[list check_runtime_nocache $prop
] $
args
255 ###############################
256 # proc check_weak_available
{ }
257 ###############################
259 # weak symbols are only supported in some configs
/object formats
260 # this proc returns
1 if they
're supported, 0 if they're not
, or
-1 if unsure
262 proc check_weak_available
{ } {
265 # All mips targets should support it
267 if { [ string first
"mips" $target_cpu ] >= 0 } {
271 # All AIX targets should support it
273 if { [istarget
*-*-aix
*] } {
277 # All solaris2 targets should support it
279 if { [istarget
*-*-solaris2
*] } {
283 # Windows targets Cygwin and MingW32 support it
285 if { [istarget
*-*-cygwin
*] ||
[istarget
*-*-mingw
*] } {
289 # HP
-UX
10.X doesn
't support it
291 if { [istarget hppa*-*-hpux10*] } {
295 # nvptx (nearly) supports it
297 if { [istarget nvptx-*-*] } {
301 # ELF and ECOFF support it. a.out does with gas/gld but may also with
302 # other linkers, so we should try it
304 set objformat [gcc_target_object_format]
312 unknown { return -1 }
317 ###############################
318 # proc check_weak_override_available { }
319 ###############################
321 # Like check_weak_available, but return 0 if weak symbol definitions
322 # cannot be overridden.
324 proc check_weak_override_available { } {
325 if { [istarget *-*-mingw*] } {
328 return [check_weak_available]
331 ###############################
332 # proc check_visibility_available { what_kind }
333 ###############################
335 # The visibility attribute is only support in some object formats
336 # This proc returns 1 if it is supported, 0 if not.
337 # The argument is the kind of visibility, default/protected/hidden/internal.
339 proc check_visibility_available { what_kind } {
340 if [string match "" $what_kind] { set what_kind "hidden" }
342 return [check_no_compiler_messages visibility_available_$what_kind object "
343 void f() __attribute__((visibility(\"$what_kind\")));
348 ###############################
349 # proc check_alias_available { }
350 ###############################
352 # Determine if the target toolchain supports the alias attribute.
354 # Returns 2 if the target supports aliases. Returns 1 if the target
355 # only supports weak aliased. Returns 0 if the target does not
356 # support aliases at all. Returns -1 if support for aliases could not
359 proc check_alias_available { } {
360 global alias_available_saved
363 if [info exists alias_available_saved] {
364 verbose "check_alias_available returning saved $alias_available_saved" 2
368 verbose "check_alias_available compiling testfile $src" 2
369 set f [open $src "w"]
370 # Compile a small test program. The definition of "g" is
371 # necessary to keep the Solaris assembler from complaining
373 puts $f "#ifdef __cplusplus\nextern \"C\"\n#endif\n"
374 puts $f "void g() {} void f() __attribute__((alias(\"g\")));"
376 set lines [${tool}_target_compile $src $obj object ""]
378 remote_file build delete $obj
380 if [string match "" $lines] then {
381 # No error messages, everything is OK.
382 set alias_available_saved 2
384 if [regexp "alias definitions not supported" $lines] {
385 verbose "check_alias_available target does not support aliases" 2
387 set objformat [gcc_target_object_format]
389 if { $objformat == "elf" } {
390 verbose "check_alias_available but target uses ELF format, so it ought to" 2
391 set alias_available_saved -1
393 set alias_available_saved 0
396 if [regexp "only weak aliases are supported" $lines] {
397 verbose "check_alias_available target supports only weak aliases" 2
398 set alias_available_saved 1
400 set alias_available_saved -1
405 verbose "check_alias_available returning $alias_available_saved" 2
408 return $alias_available_saved
411 # Returns 1 if the target toolchain supports strong aliases, 0 otherwise.
413 proc check_effective_target_alias { } {
414 if { [check_alias_available] < 2 } {
421 # Returns 1 if the target toolchain supports ifunc, 0 otherwise.
423 proc check_ifunc_available { } {
424 return [check_no_compiler_messages ifunc_available object {
429 void f() __attribute__((ifunc("g")));
433 # Returns true if --gc-sections is supported on the target.
435 proc check_gc_sections_available { } {
436 global gc_sections_available_saved
439 if {![info exists gc_sections_available_saved]} {
440 # Some targets don't support gc
-sections despite whatever
's
441 # advertised by ld's options.
442 if { [istarget alpha
*-*-*]
443 ||
[istarget ia64
-*-*] } {
444 set gc_sections_available_saved
0
448 # elf2flt uses
-q
(--emit
-relocs
), which is incompatible with
450 if { [board_info target
exists ldflags
]
451 && [regexp
" -elf2flt\[ =\]" " [board_info target ldflags] "] } {
452 set gc_sections_available_saved
0
456 # VxWorks kernel modules are relocatable objects linked with
-r
,
457 #
while RTP executables are linked with
-q
(--emit
-relocs
).
458 # Both of these options are incompatible with
--gc
-sections.
459 if { [istarget
*-*-vxworks
*] } {
460 set gc_sections_available_saved
0
464 # Check
if the
ld used by gcc supports
--gc
-sections.
465 set gcc_spec
[$
{tool
}_target_compile
"-dumpspecs" "" "none" ""]
466 regsub
".*\n\\*linker:\[ \t\]*\n(\[^ \t\n\]*).*" "$gcc_spec" {\1} linker
467 set gcc_ld
[lindex
[$
{tool
}_target_compile
"-print-prog-name=$linker" "" "none" ""] 0]
468 set ld_output
[remote_exec host
"$gcc_ld" "--help"]
469 if { [ string first
"--gc-sections" $ld_output ] >= 0 } {
470 set gc_sections_available_saved
1
472 set gc_sections_available_saved
0
475 return $gc_sections_available_saved
478 #
Return 1 if according to target_info struct and explicit target list
479 # target is supposed to support trampolines.
481 proc check_effective_target_trampolines
{ } {
482 if [target_info
exists no_trampolines
] {
485 if { [istarget avr
-*-*]
486 ||
[istarget msp430
-*-*]
487 ||
[istarget nvptx
-*-*]
488 ||
[istarget hppa2.0w
-hp
-hpux11.23
]
489 ||
[istarget hppa64
-hp
-hpux11.23
] } {
495 #
Return 1 if according to target_info struct and explicit target list
496 # target disables
-fdelete
-null
-pointer
-checks. Targets should
return 0
497 #
if they simply default to
-fno
-delete-null
-pointer
-checks but obey
498 #
-fdelete
-null
-pointer
-checks when passed explicitly
(and tests that
499 # depend
on this option should
do that
).
501 proc check_effective_target_keeps_null_pointer_checks
{ } {
502 if [target_info
exists keeps_null_pointer_checks
] {
505 if { [istarget avr
-*-*] } {
511 #
Return the autofdo profile wrapper
513 proc profopt
-perf
-wrapper
{ } {
515 return "$srcdir/../config/i386/gcc-auto-profile -o perf.data "
518 #
Return true
if profiling is supported
on the target.
520 proc check_profiling_available
{ test_what
} {
521 global profiling_available_saved
523 verbose
"Profiling argument is <$test_what>" 1
525 # These conditions depend
on the
argument so examine them before
526 # looking at the
cache variable.
528 # Tree profiling requires TLS runtime support.
529 if { $test_what
== "-fprofile-generate" } {
530 if { ![check_effective_target_tls_runtime
] } {
535 if { $test_what
== "-fauto-profile" } {
536 if { ! ([istarget x86_64
-*-linux
*] ||
[istarget i?
86-*-linux
*]) } {
537 verbose
"autofdo only supported on linux"
540 # not cross compiling?
542 verbose
"autofdo not supported for non native builds"
545 set event
[profopt
-perf
-wrapper
]
547 verbose
"autofdo not supported"
551 set status [remote_exec host
"$srcdir/../config/i386/gcc-auto-profile" "true -v >/dev/null"]
552 if { [lindex $
status 0] != 0 } {
553 verbose
"autofdo not supported because perf does not work"
557 # no good way to check this in advance
-- check later instead.
558 #
set status [remote_exec host
"create_gcov" "2>/dev/null"]
559 #
if { [lindex $
status 0] != 255 } {
560 # verbose
"autofdo not supported due to missing create_gcov"
565 # Support
for -p
on solaris2 relies
on mcrt1.o which comes with the
566 # vendor compiler. We cannot reliably predict the directory where the
567 # vendor compiler
(and thus mcrt1.o
) is installed so we can
't
568 # necessarily find mcrt1.o even if we have it.
569 if { [istarget *-*-solaris2*] && $test_what == "-p" } {
573 # We don't yet support profiling
for MIPS16.
574 if { [istarget mips
*-*-*]
575 && ![check_effective_target_nomips16
]
576 && ($test_what
== "-p" || $test_what == "-pg") } {
580 # MinGW does not support
-p.
581 if { [istarget
*-*-mingw
*] && $test_what
== "-p" } {
585 # cygwin does not support
-p.
586 if { [istarget
*-*-cygwin
*] && $test_what
== "-p" } {
590 # uClibc does not have gcrt1.o.
591 if { [check_effective_target_uclibc
]
592 && ($test_what
== "-p" || $test_what == "-pg") } {
596 # Now examine the
cache variable.
597 if {![info exists profiling_available_saved
]} {
598 # Some targets don
't have any implementation of __bb_init_func or are
599 # missing other needed machinery.
600 if {[istarget aarch64*-*-elf]
601 || [istarget am3*-*-linux*]
602 || [istarget arm*-*-eabi*]
603 || [istarget arm*-*-elf]
604 || [istarget arm*-*-symbianelf*]
605 || [istarget avr-*-*]
606 || [istarget bfin-*-*]
607 || [istarget cris-*-*]
608 || [istarget crisv32-*-*]
609 || [istarget fido-*-elf]
610 || [istarget h8300-*-*]
611 || [istarget lm32-*-*]
612 || [istarget m32c-*-elf]
613 || [istarget m68k-*-elf]
614 || [istarget m68k-*-uclinux*]
615 || [istarget mips*-*-elf*]
616 || [istarget mmix-*-*]
617 || [istarget mn10300-*-elf*]
618 || [istarget moxie-*-elf*]
619 || [istarget msp430-*-*]
620 || [istarget nds32*-*-elf]
621 || [istarget nios2-*-elf]
622 || [istarget nvptx-*-*]
623 || [istarget powerpc-*-eabi*]
624 || [istarget powerpc-*-elf]
626 || [istarget tic6x-*-elf]
627 || [istarget visium-*-*]
628 || [istarget xstormy16-*]
629 || [istarget xtensa*-*-elf]
630 || [istarget *-*-rtems*]
631 || [istarget *-*-vxworks*] } {
632 set profiling_available_saved 0
634 set profiling_available_saved 1
638 # -pg link test result can't be cached since it may change between
640 set profiling_working $profiling_available_saved
641 if { $profiling_available_saved
== 1
642 && ![check_no_compiler_messages_nocache profiling executable
{
643 int main
() { return 0; } } "-pg"] } {
644 set profiling_working
0
647 return $profiling_working
650 # Check to see
if a target is
"freestanding". This is as per the definition
651 # in Section
4 of C99 standard. Effectively
, it is a target which supports no
652 # extra headers or libraries other than what is considered essential.
653 proc check_effective_target_freestanding
{ } {
654 if { [istarget nvptx
-*-*] } {
660 #
Return 1 if target has packed layout of structure members by
661 # default
, 0 otherwise. Note that this is slightly different than
662 # whether the target has
"natural alignment": both attributes may be
665 proc check_effective_target_default_packed
{ } {
666 return [check_no_compiler_messages default_packed assembly
{
667 struct x
{ char a
; long b
; } c
;
668 int s
[sizeof
(c
) == sizeof
(char
) + sizeof
(long
) ?
1 : -1];
672 #
Return 1 if target has PCC_BITFIELD_TYPE_MATTERS defined. See
673 # documentation
, where the test also comes from.
675 proc check_effective_target_pcc_bitfield_type_matters
{ } {
676 # PCC_BITFIELD_TYPE_MATTERS isn
't just about unnamed or empty
677 # bitfields, but let's stick to the example code from the docs.
678 return [check_no_compiler_messages pcc_bitfield_type_matters assembly
{
679 struct foo1
{ char x
; char
:0; char y
; };
680 struct foo2
{ char x
; int :0; char y
; };
681 int s
[sizeof
(struct foo1
) != sizeof
(struct foo2
) ?
1 : -1];
685 # Add to FLAGS all the target
-specific flags needed to use thread
-local storage.
687 proc add_options_for_tls
{ flags
} {
688 #
On Solaris
9, __tls_get_addr
/___tls_get_addr only lives in
689 # libthread
, so always pass
-pthread
for native TLS. Same
for AIX.
690 # Need to duplicate native TLS check from
691 # check_effective_target_tls_native to avoid recursion.
692 if { ([istarget powerpc
-ibm
-aix
*]) &&
693 [check_no_messages_and_pattern tls_native
"!emutls" assembly {
695 int f
(void
) { return i
; }
696 void g
(int j
) { i
= j
; }
698 return "-pthread [g++_link_flags [get_multilibs "-pthread"] ] $flags "
703 #
Return 1 if indirect jumps are supported
, 0 otherwise.
705 proc check_effective_target_indirect_jumps
{} {
706 if { [istarget nvptx
-*-*] } {
712 #
Return 1 if nonlocal
goto is supported
, 0 otherwise.
714 proc check_effective_target_nonlocal_goto
{} {
715 if { [istarget nvptx
-*-*] } {
721 #
Return 1 if global constructors are supported
, 0 otherwise.
723 proc check_effective_target_global_constructor
{} {
724 if { [istarget nvptx
-*-*] } {
730 #
Return 1 if taking label
values is supported
, 0 otherwise.
732 proc check_effective_target_label_values
{} {
733 if { [istarget nvptx
-*-*] } {
736 return [check_no_compiler_messages label_values assembly
{
737 #ifdef NO_LABEL_VALUES
743 #
Return 1 if builtin_return_address and builtin_frame_address are
744 # supported
, 0 otherwise.
746 proc check_effective_target_return_address
{} {
747 if { [istarget nvptx
-*-*] } {
753 #
Return 1 if the assembler does not verify function types against
754 # calls
, 0 otherwise. Such verification will typically
show up problems
755 # with K
&R C function declarations.
757 proc check_effective_target_untyped_assembly
{} {
758 if { [istarget nvptx
-*-*] } {
764 #
Return 1 if alloca is supported
, 0 otherwise.
766 proc check_effective_target_alloca
{} {
767 if { [istarget nvptx
-*-*] } {
773 #
Return 1 if thread local storage
(TLS
) is supported
, 0 otherwise.
775 proc check_effective_target_tls
{} {
776 return [check_no_compiler_messages tls assembly
{
778 int f
(void
) { return i
; }
779 void g
(int j
) { i
= j
; }
783 #
Return 1 if *native
* thread local storage
(TLS
) is supported
, 0 otherwise.
785 proc check_effective_target_tls_native
{} {
786 # VxWorks uses emulated TLS machinery
, but with non
-standard helper
787 # functions
, so we fail to automatically detect it.
788 if { [istarget
*-*-vxworks
*] } {
792 return [check_no_messages_and_pattern tls_native
"!emutls" assembly {
794 int f
(void
) { return i
; }
795 void g
(int j
) { i
= j
; }
799 #
Return 1 if *emulated
* thread local storage
(TLS
) is supported
, 0 otherwise.
801 proc check_effective_target_tls_emulated
{} {
802 # VxWorks uses emulated TLS machinery
, but with non
-standard helper
803 # functions
, so we fail to automatically detect it.
804 if { [istarget
*-*-vxworks
*] } {
808 return [check_no_messages_and_pattern tls_emulated
"emutls" assembly {
810 int f
(void
) { return i
; }
811 void g
(int j
) { i
= j
; }
815 #
Return 1 if TLS executables can run correctly
, 0 otherwise.
817 proc check_effective_target_tls_runtime
{} {
818 # The runtime does not have TLS support
, but just
819 # running the test below is insufficient to
show this.
820 if { [istarget msp430
-*-*] ||
[istarget visium
-*-*] } {
823 return [check_runtime tls_runtime
{
824 __thread
int thr
= 0;
825 int main
(void
) { return thr
; }
826 } [add_options_for_tls
""]]
829 #
Return 1 if atomic compare
-and
-swap is supported
on 'int'
831 proc check_effective_target_cas_char
{} {
832 return [check_no_compiler_messages cas_char assembly
{
833 #ifndef __GCC_HAVE_SYNC_COMPARE_AND_SWAP_1
839 proc check_effective_target_cas_int
{} {
840 return [check_no_compiler_messages cas_int assembly
{
841 #
if __INT_MAX__
== 0x7fff && __GCC_HAVE_SYNC_COMPARE_AND_SWAP_2
843 #elif __INT_MAX__
== 0x7fffffff && __GCC_HAVE_SYNC_COMPARE_AND_SWAP_4
851 #
Return 1 if -ffunction
-sections is supported
, 0 otherwise.
853 proc check_effective_target_function_sections
{} {
854 # Darwin has its own scheme and silently accepts
-ffunction
-sections.
855 if { [istarget
*-*-darwin
*] } {
859 return [check_no_compiler_messages functionsections assembly
{
861 } "-ffunction-sections"]
864 #
Return 1 if instruction scheduling is available
, 0 otherwise.
866 proc check_effective_target_scheduling
{} {
867 return [check_no_compiler_messages scheduling object
{
869 } "-fschedule-insns"]
872 #
Return 1 if trapping arithmetic is available
, 0 otherwise.
874 proc check_effective_target_trapping
{} {
875 return [check_no_compiler_messages trapping object
{
876 int add
(int a
, int b
) { return a
+ b
; }
880 #
Return 1 if compilation with
-fgraphite is error
-free
for trivial
883 proc check_effective_target_fgraphite
{} {
884 return [check_no_compiler_messages fgraphite object
{
889 #
Return 1 if compilation with
-fopenacc is error
-free
for trivial
892 proc check_effective_target_fopenacc
{} {
893 # nvptx can be built with the device
-side bits of openacc
, but it
894 # does not make sense to test it as an openacc host.
895 if [istarget nvptx
-*-*] { return 0 }
897 return [check_no_compiler_messages fopenacc object
{
902 #
Return 1 if compilation with
-fopenmp is error
-free
for trivial
905 proc check_effective_target_fopenmp
{} {
906 # nvptx can be built with the device
-side bits of libgomp
, but it
907 # does not make sense to test it as an openmp host.
908 if [istarget nvptx
-*-*] { return 0 }
910 return [check_no_compiler_messages fopenmp object
{
915 #
Return 1 if compilation with
-fgnu
-tm is error
-free
for trivial
918 proc check_effective_target_fgnu_tm
{} {
919 return [check_no_compiler_messages fgnu_tm object
{
924 #
Return 1 if the target supports mmap
, 0 otherwise.
926 proc check_effective_target_mmap
{} {
927 return [check_function_available
"mmap"]
930 #
Return 1 if the target supports dlopen
, 0 otherwise.
931 proc check_effective_target_dlopen
{} {
932 return [check_no_compiler_messages dlopen executable
{
934 int main
(void
) { dlopen
("dummy.so", RTLD_NOW); }
935 } [add_options_for_dlopen
""]]
938 proc add_options_for_dlopen
{ flags
} {
942 #
Return 1 if the target supports clone
, 0 otherwise.
943 proc check_effective_target_clone
{} {
944 return [check_function_available
"clone"]
947 #
Return 1 if the target supports setrlimit
, 0 otherwise.
948 proc check_effective_target_setrlimit
{} {
949 # Darwin has non
-posix compliant RLIMIT_AS
950 if { [istarget
*-*-darwin
*] } {
953 return [check_function_available
"setrlimit"]
956 #
Return 1 if the target supports swapcontext
, 0 otherwise.
957 proc check_effective_target_swapcontext
{} {
958 return [check_no_compiler_messages swapcontext executable
{
959 #
include <ucontext.h
>
962 ucontext_t orig_context
,child_context
;
963 if (swapcontext
(&child_context
, &orig_context
) < 0) { }
968 #
Return 1 if compilation with
-pthread is error
-free
for trivial
971 proc check_effective_target_pthread
{} {
972 return [check_no_compiler_messages pthread object
{
977 #
Return 1 if compilation with
-gstabs is error
-free
for trivial
980 proc check_effective_target_stabs
{} {
981 return [check_no_compiler_messages stabs object
{
986 #
Return 1 if compilation with
-mpe
-aligned
-commons is error
-free
987 #
for trivial code
, 0 otherwise.
989 proc check_effective_target_pe_aligned_commons
{} {
990 if { [istarget
*-*-cygwin
*] ||
[istarget
*-*-mingw
*] } {
991 return [check_no_compiler_messages pe_aligned_commons object
{
993 } "-mpe-aligned-commons"]
998 #
Return 1 if the target supports
-static
999 proc check_effective_target_static
{} {
1000 return [check_no_compiler_messages static executable
{
1001 int main
(void
) { return 0; }
1005 #
Return 1 if the target supports
-fstack
-protector
1006 proc check_effective_target_fstack_protector
{} {
1007 return [check_runtime fstack_protector
{
1008 int main
(void
) { return 0; }
1009 } "-fstack-protector"]
1012 #
Return 1 if compilation with
-freorder
-blocks
-and
-partition is error
-free
1013 #
for trivial code
, 0 otherwise.
1015 proc check_effective_target_freorder
{} {
1016 return [check_no_compiler_messages freorder object
{
1018 } "-freorder-blocks-and-partition"]
1021 #
Return 1 if -fpic and
-fPIC are supported
, as in no warnings or errors
1022 # emitted
, 0 otherwise. Whether a shared library can actually be built is
1023 # out of scope
for this test.
1025 proc check_effective_target_fpic
{ } {
1026 # Note that M68K has a multilib that supports
-fpic but not
1027 #
-fPIC
, so we need to check both. We test with a
program that
1028 # requires GOT references.
1029 foreach
arg {fpic fPIC
} {
1030 if [check_no_compiler_messages $
arg object
{
1031 extern
int foo
(void
); extern
int bar
;
1032 int baz
(void
) { return foo
() + bar
; }
1040 #
On AArch64
, if -fpic is not supported
, then we will fall
back to
-fPIC
1041 # silently. So
, we can
't rely on above "check_effective_target_fpic" as it
1042 # assumes compiler will give warning if -fpic not supported. Here we check
1043 # whether binutils supports those new -fpic relocation modifiers, and assume
1044 # -fpic is supported if there is binutils support. GCC configuration will
1045 # enable -fpic for AArch64 in this case.
1047 # "check_effective_target_aarch64_small_fpic" is dedicated for checking small
1048 # memory model -fpic relocation types.
1050 proc check_effective_target_aarch64_small_fpic { } {
1051 if { [istarget aarch64*-*-*] } {
1052 return [check_no_compiler_messages aarch64_small_fpic object {
1053 void foo (void) { asm ("ldr x0, [x2, #:gotpage_lo15:globalsym]"); }
1060 # On AArch64, instruction sequence for TLS LE under -mtls-size=32 will utilize
1061 # the relocation modifier "tprel_g0_nc" together with MOVK, it's only supported
1062 # in binutils since
2015-03-04 as PR gas
/17843.
1064 # This test directive make sure binutils support all features needed by TLS LE
1065 # under
-mtls
-size
=32 on AArch64.
1067 proc check_effective_target_aarch64_tlsle32
{ } {
1068 if { [istarget aarch64
*-*-*] } {
1069 return [check_no_compiler_messages aarch64_tlsle32 object
{
1070 void foo
(void
) { asm
("movk x1,#:tprel_g0_nc:t1"); }
1077 #
Return 1 if -shared is supported
, as in no warnings or errors
1078 # emitted
, 0 otherwise.
1080 proc check_effective_target_shared
{ } {
1081 # Note that M68K has a multilib that supports
-fpic but not
1082 #
-fPIC
, so we need to check both. We test with a
program that
1083 # requires GOT references.
1084 return [check_no_compiler_messages shared executable
{
1085 extern
int foo
(void
); extern
int bar
;
1086 int baz
(void
) { return foo
() + bar
; }
1090 #
Return 1 if -pie
, -fpie and
-fPIE are supported
, 0 otherwise.
1092 proc check_effective_target_pie
{ } {
1093 if { [istarget
*-*-darwin\
[912\
]*]
1094 ||
[istarget
*-*-dragonfly
*]
1095 ||
[istarget
*-*-freebsd
*]
1096 ||
[istarget
*-*-linux
*]
1097 ||
[istarget
*-*-gnu
*] } {
1100 if { [istarget
*-*-solaris2.1\
[1-9\
]*] } {
1101 # Full PIE support was added in Solaris
11.x and Solaris
12, but gcc
1102 # errors out
if missing
, so check
for that.
1103 return [check_no_compiler_messages pie executable
{
1104 int main
(void
) { return 0; }
1110 #
Return true
if the target supports
-mpaired
-single
(as used
on MIPS
).
1112 proc check_effective_target_mpaired_single
{ } {
1113 return [check_no_compiler_messages mpaired_single object
{
1115 } "-mpaired-single"]
1118 #
Return true
if the target has access to FPU instructions.
1120 proc check_effective_target_hard_float
{ } {
1121 if { [istarget mips
*-*-*] } {
1122 return [check_no_compiler_messages hard_float assembly
{
1123 #
if (defined __mips_soft_float || defined __mips16
)
1124 #error __mips_soft_float || __mips16
1129 # This proc is actually checking the availabilty of FPU
1130 # support
for doubles
, so
on the RX we must fail
if the
1131 #
64-bit double multilib has been selected.
1132 if { [istarget rx
-*-*] } {
1134 #
return [check_no_compiler_messages hard_float assembly
{
1135 #
if defined __RX_64_BIT_DOUBLES__
1136 #error __RX_64_BIT_DOUBLES__
1141 # The generic test equates hard_float with
"no call for adding doubles".
1142 return [check_no_messages_and_pattern hard_float
"!\\(call" rtl-expand {
1143 double a
(double b
, double c
) { return b
+ c
; }
1147 #
Return true
if the target is a
64-bit MIPS target.
1149 proc check_effective_target_mips64
{ } {
1150 return [check_no_compiler_messages mips64 assembly
{
1157 #
Return true
if the target is a MIPS target that does not produce
1160 proc check_effective_target_nomips16
{ } {
1161 return [check_no_compiler_messages nomips16 object
{
1165 /* A cheap way of testing
for -mflip
-mips16.
*/
1166 void foo
(void
) { asm
("addiu $20,$20,1"); }
1167 void bar
(void
) { asm
("addiu $20,$20,1"); }
1172 # Add the options needed
for MIPS16 function attributes. At the moment
,
1173 # we don
't support MIPS16 PIC.
1175 proc add_options_for_mips16_attribute { flags } {
1176 return "$flags -mno-abicalls -fno-pic -DMIPS16=__attribute__((mips16))"
1179 # Return true if we can force a mode that allows MIPS16 code generation.
1180 # We don't support MIPS16 PIC
, and only support MIPS16
-mhard
-float
1183 proc check_effective_target_mips16_attribute
{ } {
1184 return [check_no_compiler_messages mips16_attribute assembly
{
1188 #
if defined __mips_hard_float \
1189 && (!defined _ABIO32 || _MIPS_SIM
!= _ABIO32
) \
1190 && (!defined _ABIO64 || _MIPS_SIM
!= _ABIO64
)
1191 #error __mips_hard_float
&& (!_ABIO32 ||
!_ABIO64
)
1193 } [add_options_for_mips16_attribute
""]]
1196 #
Return 1 if the target supports long double larger than double when
1197 # using the new ABI
, 0 otherwise.
1199 proc check_effective_target_mips_newabi_large_long_double
{ } {
1200 return [check_no_compiler_messages mips_newabi_large_long_double object
{
1201 int dummy
[sizeof
(long double
) > sizeof
(double
) ?
1 : -1];
1205 #
Return true
if the target is a MIPS target that has access
1206 # to the LL and SC instructions.
1208 proc check_effective_target_mips_llsc
{ } {
1209 if { ![istarget mips
*-*-*] } {
1212 # Assume that these instructions are always implemented
for
1213 # non
-elf
* targets
, via emulation
if necessary.
1214 if { ![istarget
*-*-elf
*] } {
1217 # Otherwise assume LL
/SC support
for everything but MIPS I.
1218 return [check_no_compiler_messages mips_llsc assembly
{
1225 #
Return true
if the target is a MIPS target that uses in
-place relocations.
1227 proc check_effective_target_mips_rel
{ } {
1228 if { ![istarget mips
*-*-*] } {
1231 return [check_no_compiler_messages mips_rel object
{
1232 #
if (defined _ABIN32
&& _MIPS_SIM
== _ABIN32
) \
1233 ||
(defined _ABI64
&& _MIPS_SIM
== _ABI64
)
1234 #error _ABIN32
&& (_ABIN32 || _ABI64
)
1239 #
Return true
if the target is a MIPS target that uses the EABI.
1241 proc check_effective_target_mips_eabi
{ } {
1242 if { ![istarget mips
*-*-*] } {
1245 return [check_no_compiler_messages mips_eabi object
{
1252 #
Return 1 if the current multilib does not generate PIC by default.
1254 proc check_effective_target_nonpic
{ } {
1255 return [check_no_compiler_messages nonpic assembly
{
1262 #
Return 1 if the current multilib generates PIE by default.
1264 proc check_effective_target_pie_enabled
{ } {
1265 return [check_no_compiler_messages pie_enabled assembly
{
1272 #
Return 1 if the target generates
-fstack
-protector by default.
1274 proc check_effective_target_fstack_protector_enabled
{} {
1275 return [ check_no_compiler_messages fstack_protector_enabled assembly
{
1276 #
if !defined
(__SSP__
) && !defined
(__SSP_ALL__
) && \
1277 !defined
(__SSP_STRONG__
) && !defined
(__SSP_EXPICIT__
)
1283 #
Return 1 if the target does not use a
status wrapper.
1285 proc check_effective_target_unwrapped
{ } {
1286 if { [target_info needs_status_wrapper
] != "" \
1287 && [target_info needs_status_wrapper
] != "0" } {
1293 #
Return true
if iconv is supported
on the target. In particular IBM1047.
1295 proc check_iconv_available
{ test_what
} {
1298 #
If the tool configuration file has not
set libiconv
, try
"-liconv"
1299 if { ![info exists libiconv
] } {
1300 set libiconv
"-liconv"
1302 set test_what
[lindex $test_what
1]
1303 return [check_runtime_nocache $test_what
[subst
{
1309 cd
= iconv_open
("$test_what", "UTF-8");
1310 if (cd
== (iconv_t
) -1)
1317 #
Return true
if Cilk Library is supported
on the target.
1318 proc check_effective_target_cilkplus_runtime
{ } {
1319 return [ check_no_compiler_messages_nocache cilkplus_runtime executable
{
1323 int __cilkrts_set_param
(const char
*, const char
*);
1325 int x
= __cilkrts_set_param
("nworkers", "0");
1328 } "-fcilkplus -lcilkrts" ]
1331 #
Return true
if the atomic library is supported
on the target.
1332 proc check_effective_target_libatomic_available
{ } {
1333 return [check_no_compiler_messages libatomic_available executable
{
1334 int main
(void
) { return 0; }
1338 #
Return 1 if an ASCII locale is supported
on this host
, 0 otherwise.
1340 proc check_ascii_locale_available
{ } {
1344 #
Return true
if named sections are supported
on this target.
1346 proc check_named_sections_available
{ } {
1347 return [check_no_compiler_messages named_sections assembly
{
1348 int __attribute__
((section
("whatever"))) foo;
1352 #
Return true
if the
"naked" function attribute is supported on this target.
1354 proc check_effective_target_naked_functions
{ } {
1355 return [check_no_compiler_messages naked_functions assembly
{
1356 void f
() __attribute__
((naked
));
1360 #
Return 1 if the target supports Fortran real kinds larger than real
(8),
1363 # When the target
name changes
, replace the cached result.
1365 proc check_effective_target_fortran_large_real
{ } {
1366 return [check_no_compiler_messages fortran_large_real executable
{
1368 integer,parameter
:: k
= selected_real_kind
(precision
(0.0_8
) + 1)
1375 #
Return 1 if the target supports Fortran real kind real
(16),
1376 #
0 otherwise. Contrary to check_effective_target_fortran_large_real
1377 # this checks
for Real
(16) only
; the other returned real
(10) if
1378 # both real
(10) and real
(16) are available.
1380 # When the target
name changes
, replace the cached result.
1382 proc check_effective_target_fortran_real_16
{ } {
1383 return [check_no_compiler_messages fortran_real_16 executable
{
1392 #
Return 1 if the target supports Fortran
's IEEE modules,
1395 # When the target name changes, replace the cached result.
1397 proc check_effective_target_fortran_ieee { flags } {
1398 return [check_no_compiler_messages fortran_ieee executable {
1400 use, intrinsic :: ieee_features
1406 # Return 1 if the target supports SQRT for the largest floating-point
1407 # type. (Some targets lack the libm support for this FP type.)
1408 # On most targets, this check effectively checks either whether sqrtl is
1409 # available or on __float128 systems whether libquadmath is installed,
1410 # which provides sqrtq.
1412 # When the target name changes, replace the cached result.
1414 proc check_effective_target_fortran_largest_fp_has_sqrt { } {
1415 return [check_no_compiler_messages fortran_largest_fp_has_sqrt executable {
1417 use iso_fortran_env, only: real_kinds
1418 integer,parameter:: maxFP = real_kinds(ubound(real_kinds,dim=1))
1419 real(kind=maxFP), volatile :: x
1427 # Return 1 if the target supports Fortran integer kinds larger than
1428 # integer(8), 0 otherwise.
1430 # When the target name changes, replace the cached result.
1432 proc check_effective_target_fortran_large_int { } {
1433 return [check_no_compiler_messages fortran_large_int executable {
1435 integer,parameter :: k = selected_int_kind (range (0_8) + 1)
1436 integer(kind=k) :: i
1441 # Return 1 if the target supports Fortran integer(16), 0 otherwise.
1443 # When the target name changes, replace the cached result.
1445 proc check_effective_target_fortran_integer_16 { } {
1446 return [check_no_compiler_messages fortran_integer_16 executable {
1453 # Return 1 if we can statically link libgfortran, 0 otherwise.
1455 # When the target name changes, replace the cached result.
1457 proc check_effective_target_static_libgfortran { } {
1458 return [check_no_compiler_messages static_libgfortran executable {
1465 # Return 1 if cilk-plus is supported by the target, 0 otherwise.
1467 proc check_effective_target_cilkplus { } {
1468 # Skip cilk-plus tests on int16 and size16 targets for now.
1469 # The cilk-plus tests are not generic enough to cover these
1470 # cases and would throw hundreds of FAILs.
1471 if { [check_effective_target_int16]
1472 || ![check_effective_target_size32plus] } {
1476 # Skip AVR, its RAM is too small and too many tests would fail.
1477 if { [istarget avr-*-*] } {
1481 if { ! [check_effective_target_pthread] } {
1488 proc check_linker_plugin_available { } {
1489 return [check_no_compiler_messages_nocache linker_plugin executable {
1490 int main() { return 0; }
1491 } "-flto -fuse-linker-plugin"]
1494 # Return 1 if the target supports executing 750CL paired-single instructions, 0
1495 # otherwise. Cache the result.
1497 proc check_750cl_hw_available { } {
1498 return [check_cached_effective_target 750cl_hw_available {
1499 # If this is not the right target then we can skip the test.
1500 if { ![istarget powerpc-*paired*] } {
1503 check_runtime_nocache 750cl_hw_available {
1507 asm volatile ("ps_mul v0,v0,v0");
1509 asm volatile ("ps_mul 0,0,0");
1518 # Return 1 if the target OS supports running SSE executables, 0
1519 # otherwise. Cache the result.
1521 proc check_sse_os_support_available { } {
1522 return [check_cached_effective_target sse_os_support_available {
1523 # If this is not the right target then we can skip the test.
1524 if { !([istarget x86_64-*-*] || [istarget i?86-*-*]) } {
1526 } elseif { [istarget i?86-*-solaris2*] } {
1527 # The Solaris 2 kernel doesn't save and restore SSE registers
1528 # before Solaris
9 4/04. Before that
, executables die with SIGILL.
1529 check_runtime_nocache sse_os_support_available
{
1532 asm volatile
("movaps %xmm0,%xmm0");
1542 #
Return 1 if the target OS supports running AVX executables
, 0
1543 # otherwise.
Cache the result.
1545 proc check_avx_os_support_available
{ } {
1546 return [check_cached_effective_target avx_os_support_available
{
1547 #
If this is not the right target
then we can skip the test.
1548 if { !([istarget x86_64
-*-*] ||
[istarget i?
86-*-*]) } {
1551 # Check that OS has AVX and SSE saving enabled.
1552 check_runtime_nocache avx_os_support_available
{
1555 unsigned
int eax
, edx
;
1557 asm
("xgetbv" : "=a" (eax), "=d" (edx) : "c" (0));
1558 return (eax
& 6) != 6;
1565 #
Return 1 if the target supports executing SSE instructions
, 0
1566 # otherwise.
Cache the result.
1568 proc check_sse_hw_available
{ } {
1569 return [check_cached_effective_target sse_hw_available
{
1570 #
If this is not the right target
then we can skip the test.
1571 if { !([istarget x86_64
-*-*] ||
[istarget i?
86-*-*]) } {
1574 check_runtime_nocache sse_hw_available
{
1578 unsigned
int eax
, ebx
, ecx
, edx
;
1579 if (__get_cpuid
(1, &eax
, &ebx
, &ecx
, &edx
))
1580 return !(edx
& bit_SSE
);
1588 #
Return 1 if the target supports executing MIPS Paired
-Single instructions
,
1589 #
0 otherwise.
Cache the result.
1591 proc check_mpaired_single_hw_available
{ } {
1592 return [check_cached_effective_target mpaired_single_hw_available
{
1593 #
If this is not the right target
then we can skip the test.
1594 if { !([istarget mips
*-*-*]) } {
1597 check_runtime_nocache mpaired_single_hw_available
{
1600 asm volatile
("pll.ps $f2,$f4,$f6");
1608 #
Return 1 if the target supports executing Loongson vector instructions
,
1609 #
0 otherwise.
Cache the result.
1611 proc check_mips_loongson_hw_available
{ } {
1612 return [check_cached_effective_target mips_loongson_hw_available
{
1613 #
If this is not the right target
then we can skip the test.
1614 if { !([istarget mips
*-*-*]) } {
1617 check_runtime_nocache mips_loongson_hw_available
{
1618 #
include <loongson.h
>
1621 asm volatile
("paddw $f2,$f4,$f6");
1629 #
Return 1 if the target supports executing MIPS MSA instructions
, 0
1630 # otherwise.
Cache the result.
1632 proc check_mips_msa_hw_available
{ } {
1633 return [check_cached_effective_target mips_msa_hw_available
{
1634 #
If this is not the right target
then we can skip the test.
1635 if { !([istarget mips
*-*-*]) } {
1638 check_runtime_nocache mips_msa_hw_available
{
1639 #
if !defined
(__mips_msa
)
1640 #error
"MSA NOT AVAIL"
1642 #
if !(((__mips
== 64) ||
(__mips
== 32)) && (__mips_isa_rev
>= 2))
1643 #error
"MSA NOT AVAIL FOR ISA REV < 2"
1645 #
if !defined
(__mips_hard_float
)
1646 #error
"MSA HARD_FLOAT REQUIRED"
1648 #
if __mips_fpr
!= 64
1649 #error
"MSA 64-bit FPR REQUIRED"
1655 v8i16 v
= __builtin_msa_ldi_h
(0);
1665 #
Return 1 if the target supports executing SSE2 instructions
, 0
1666 # otherwise.
Cache the result.
1668 proc check_sse2_hw_available
{ } {
1669 return [check_cached_effective_target sse2_hw_available
{
1670 #
If this is not the right target
then we can skip the test.
1671 if { !([istarget x86_64
-*-*] ||
[istarget i?
86-*-*]) } {
1674 check_runtime_nocache sse2_hw_available
{
1678 unsigned
int eax
, ebx
, ecx
, edx
;
1679 if (__get_cpuid
(1, &eax
, &ebx
, &ecx
, &edx
))
1680 return !(edx
& bit_SSE2
);
1688 #
Return 1 if the target supports executing SSE4 instructions
, 0
1689 # otherwise.
Cache the result.
1691 proc check_sse4_hw_available
{ } {
1692 return [check_cached_effective_target sse4_hw_available
{
1693 #
If this is not the right target
then we can skip the test.
1694 if { !([istarget x86_64
-*-*] ||
[istarget i?
86-*-*]) } {
1697 check_runtime_nocache sse4_hw_available
{
1701 unsigned
int eax
, ebx
, ecx
, edx
;
1702 if (__get_cpuid
(1, &eax
, &ebx
, &ecx
, &edx
))
1703 return !(ecx
& bit_SSE4_2
);
1711 #
Return 1 if the target supports executing AVX instructions
, 0
1712 # otherwise.
Cache the result.
1714 proc check_avx_hw_available
{ } {
1715 return [check_cached_effective_target avx_hw_available
{
1716 #
If this is not the right target
then we can skip the test.
1717 if { !([istarget x86_64
-*-*] ||
[istarget i?
86-*-*]) } {
1720 check_runtime_nocache avx_hw_available
{
1724 unsigned
int eax
, ebx
, ecx
, edx
;
1725 if (__get_cpuid
(1, &eax
, &ebx
, &ecx
, &edx
))
1726 return ((ecx
& (bit_AVX | bit_OSXSAVE
))
1727 != (bit_AVX | bit_OSXSAVE
));
1735 #
Return 1 if the target supports running SSE executables
, 0 otherwise.
1737 proc check_effective_target_sse_runtime
{ } {
1738 if { [check_effective_target_sse
]
1739 && [check_sse_hw_available
]
1740 && [check_sse_os_support_available
] } {
1746 #
Return 1 if the target supports running SSE2 executables
, 0 otherwise.
1748 proc check_effective_target_sse2_runtime
{ } {
1749 if { [check_effective_target_sse2
]
1750 && [check_sse2_hw_available
]
1751 && [check_sse_os_support_available
] } {
1757 #
Return 1 if the target supports running SSE4 executables
, 0 otherwise.
1759 proc check_effective_target_sse4_runtime
{ } {
1760 if { [check_effective_target_sse4
]
1761 && [check_sse4_hw_available
]
1762 && [check_sse_os_support_available
] } {
1768 #
Return 1 if the target supports running MIPS Paired
-Single
1769 # executables
, 0 otherwise.
1771 proc check_effective_target_mpaired_single_runtime
{ } {
1772 if { [check_effective_target_mpaired_single
]
1773 && [check_mpaired_single_hw_available
] } {
1779 #
Return 1 if the target supports running Loongson executables
, 0 otherwise.
1781 proc check_effective_target_mips_loongson_runtime
{ } {
1782 if { [check_effective_target_mips_loongson
]
1783 && [check_mips_loongson_hw_available
] } {
1789 #
Return 1 if the target supports running MIPS MSA executables
, 0 otherwise.
1791 proc check_effective_target_mips_msa_runtime
{ } {
1792 if { [check_effective_target_mips_msa
]
1793 && [check_mips_msa_hw_available
] } {
1799 #
Return 1 if the target supports running AVX executables
, 0 otherwise.
1801 proc check_effective_target_avx_runtime
{ } {
1802 if { [check_effective_target_avx
]
1803 && [check_avx_hw_available
]
1804 && [check_avx_os_support_available
] } {
1810 #
Return 1 if we are compiling
for 64-bit PowerPC but we
do not use direct
1811 #
move instructions
for moves from GPR to FPR.
1813 proc check_effective_target_powerpc64_no_dm
{ } {
1814 # The
"mulld" checks if we are generating PowerPC64 code. The "lfd"
1815 # checks
if we
do not use direct moves
, but use the old
-fashioned
1816 # slower
move-via
-the
-stack.
1817 return [check_no_messages_and_pattern powerpc64_no_dm \
1818 {\mmulld\M.
*\mlfd
} assembly
{
1819 double f
(long long x
) { return x
*x
; }
1823 #
Return 1 if the target supports executing power8 vector instructions
, 0
1824 # otherwise.
Cache the result.
1826 proc check_p8vector_hw_available
{ } {
1827 return [check_cached_effective_target p8vector_hw_available
{
1828 # Some simulators are known to not support VSX
/power8 instructions.
1829 #
For now
, disable
on Darwin
1830 if { [istarget powerpc
-*-eabi
]
1831 ||
[istarget powerpc
*-*-eabispe
]
1832 ||
[istarget
*-*-darwin
*]} {
1835 set options
"-mpower8-vector"
1836 check_runtime_nocache p8vector_hw_available
{
1840 asm volatile
("xxlorc vs0,vs0,vs0");
1842 asm volatile
("xxlorc 0,0,0");
1851 #
Return 1 if the target supports executing power9 vector instructions
, 0
1852 # otherwise.
Cache the result.
1854 proc check_p9vector_hw_available
{ } {
1855 return [check_cached_effective_target p9vector_hw_available
{
1856 # Some simulators are known to not support VSX
/power8
/power9
1857 # instructions.
For now
, disable
on Darwin.
1858 if { [istarget powerpc
-*-eabi
]
1859 ||
[istarget powerpc
*-*-eabispe
]
1860 ||
[istarget
*-*-darwin
*]} {
1863 set options
"-mpower9-vector"
1864 check_runtime_nocache p9vector_hw_available
{
1868 vector double v
= (vector double
) { 0.0, 0.0 };
1869 asm
("xsxexpdp %0,%1" : "+r" (e) : "wa" (v));
1877 #
Return 1 if the target supports executing power9 modulo instructions
, 0
1878 # otherwise.
Cache the result.
1880 proc check_p9modulo_hw_available
{ } {
1881 return [check_cached_effective_target p9modulo_hw_available
{
1882 # Some simulators are known to not support VSX
/power8
/power9
1883 # instructions.
For now
, disable
on Darwin.
1884 if { [istarget powerpc
-*-eabi
]
1885 ||
[istarget powerpc
*-*-eabispe
]
1886 ||
[istarget
*-*-darwin
*]} {
1889 set options
"-mmodulo"
1890 check_runtime_nocache p9modulo_hw_available
{
1893 int i
= 5, j
= 3, r
= -1;
1894 asm
("modsw %0,%1,%2" : "+r" (r) : "r" (i), "r" (j));
1902 #
Return 1 if the target supports executing __float128
on PowerPC via software
1903 # emulation
, 0 otherwise.
Cache the result.
1905 proc check_ppc_float128_sw_available
{ } {
1906 return [check_cached_effective_target ppc_float128_sw_available
{
1907 # Some simulators are known to not support VSX
/power8
/power9
1908 # instructions.
For now
, disable
on Darwin.
1909 if { [istarget powerpc
-*-eabi
]
1910 ||
[istarget powerpc
*-*-eabispe
]
1911 ||
[istarget
*-*-darwin
*]} {
1914 set options
"-mfloat128 -mvsx"
1915 check_runtime_nocache ppc_float128_sw_available
{
1916 volatile __float128 x
= 1.0q
;
1917 volatile __float128 y
= 2.0q
;
1920 __float128 z
= x
+ y
;
1928 #
Return 1 if the target supports executing __float128
on PowerPC via power9
1929 # hardware instructions
, 0 otherwise.
Cache the result.
1931 proc check_ppc_float128_hw_available
{ } {
1932 return [check_cached_effective_target ppc_float128_hw_available
{
1933 # Some simulators are known to not support VSX
/power8
/power9
1934 # instructions.
For now
, disable
on Darwin.
1935 if { [istarget powerpc
-*-eabi
]
1936 ||
[istarget powerpc
*-*-eabispe
]
1937 ||
[istarget
*-*-darwin
*]} {
1940 set options
"-mfloat128 -mvsx -mfloat128-hardware -mpower9-vector"
1941 check_runtime_nocache ppc_float128_hw_available
{
1942 volatile __float128 x
= 1.0q
;
1943 volatile __float128 y
= 2.0q
;
1946 __float128 z
= x
+ y
;
1947 __float128 w
= -1.0q
;
1949 __asm__
("xsaddqp %0,%1,%2" : "+v" (w) : "v" (x), "v" (y));
1950 return ((z
!= 3.0q
) ||
(z
!= w
);
1957 #
Return 1 if the target supports executing VSX instructions
, 0
1958 # otherwise.
Cache the result.
1960 proc check_vsx_hw_available
{ } {
1961 return [check_cached_effective_target vsx_hw_available
{
1962 # Some simulators are known to not support VSX instructions.
1963 #
For now
, disable
on Darwin
1964 if { [istarget powerpc
-*-eabi
]
1965 ||
[istarget powerpc
*-*-eabispe
]
1966 ||
[istarget
*-*-darwin
*]} {
1970 check_runtime_nocache vsx_hw_available
{
1974 asm volatile
("xxlor vs0,vs0,vs0");
1976 asm volatile
("xxlor 0,0,0");
1985 #
Return 1 if the target supports executing AltiVec instructions
, 0
1986 # otherwise.
Cache the result.
1988 proc check_vmx_hw_available
{ } {
1989 return [check_cached_effective_target vmx_hw_available
{
1990 # Some simulators are known to not support VMX instructions.
1991 if { [istarget powerpc
-*-eabi
] ||
[istarget powerpc
*-*-eabispe
] } {
1994 # Most targets don
't require special flags for this test case, but
1995 # Darwin does. Just to be sure, make sure VSX is not enabled for
1996 # the altivec tests.
1997 if { [istarget *-*-darwin*]
1998 || [istarget *-*-aix*] } {
1999 set options "-maltivec -mno-vsx"
2001 set options "-mno-vsx"
2003 check_runtime_nocache vmx_hw_available {
2007 asm volatile ("vor v0,v0,v0");
2009 asm volatile ("vor 0,0,0");
2018 proc check_ppc_recip_hw_available { } {
2019 return [check_cached_effective_target ppc_recip_hw_available {
2020 # Some simulators may not support FRE/FRES/FRSQRTE/FRSQRTES
2021 # For now, disable on Darwin
2022 if { [istarget powerpc-*-eabi] || [istarget powerpc*-*-eabispe] || [istarget *-*-darwin*]} {
2025 set options "-mpowerpc-gfxopt -mpowerpc-gpopt -mpopcntb"
2026 check_runtime_nocache ppc_recip_hw_available {
2027 volatile double d_recip, d_rsqrt, d_four = 4.0;
2028 volatile float f_recip, f_rsqrt, f_four = 4.0f;
2031 asm volatile ("fres %0,%1" : "=f" (f_recip) : "f" (f_four));
2032 asm volatile ("fre %0,%1" : "=d" (d_recip) : "d" (d_four));
2033 asm volatile ("frsqrtes %0,%1" : "=f" (f_rsqrt) : "f" (f_four));
2034 asm volatile ("frsqrte %0,%1" : "=f" (d_rsqrt) : "d" (d_four));
2042 # Return 1 if the target supports executing AltiVec and Cell PPU
2043 # instructions, 0 otherwise. Cache the result.
2045 proc check_effective_target_cell_hw { } {
2046 return [check_cached_effective_target cell_hw_available {
2047 # Some simulators are known to not support VMX and PPU instructions.
2048 if { [istarget powerpc-*-eabi*] } {
2051 # Most targets don't require special flags
for this test
2052 # case
, but Darwin and AIX
do.
2053 if { [istarget
*-*-darwin
*]
2054 ||
[istarget
*-*-aix
*] } {
2055 set options
"-maltivec -mcpu=cell"
2057 set options
"-mcpu=cell"
2059 check_runtime_nocache cell_hw_available
{
2063 asm volatile
("vor v0,v0,v0");
2064 asm volatile
("lvlx v0,r0,r0");
2066 asm volatile
("vor 0,0,0");
2067 asm volatile
("lvlx 0,0,0");
2076 #
Return 1 if the target supports executing
64-bit instructions
, 0
2077 # otherwise.
Cache the result.
2079 proc check_effective_target_powerpc64
{ } {
2080 global powerpc64_available_saved
2083 if [info exists powerpc64_available_saved
] {
2084 verbose
"check_effective_target_powerpc64 returning saved $powerpc64_available_saved" 2
2086 set powerpc64_available_saved
0
2088 # Some simulators are known to not support powerpc64 instructions.
2089 if { [istarget powerpc
-*-eabi
*] ||
[istarget powerpc
-ibm
-aix
*] } {
2090 verbose
"check_effective_target_powerpc64 returning 0" 2
2091 return $powerpc64_available_saved
2094 #
Set up
, compile, and
execute a test
program containing a
64-bit
2095 # instruction.
Include the current process ID in the file
2096 # names to prevent conflicts with invocations
for multiple
2101 set f
[open $src
"w"]
2102 puts $f
"int main() {"
2103 puts $f
"#ifdef __MACH__"
2104 puts $f
" asm volatile (\"extsw r0,r0\");"
2106 puts $f
" asm volatile (\"extsw 0,0\");"
2108 puts $f
" return 0; }"
2111 set opts
"additional_flags=-mcpu=G5"
2113 verbose
"check_effective_target_powerpc64 compiling testfile $src" 2
2114 set lines
[$
{tool
}_target_compile $src $exe executable
"$opts"]
2117 if [string match
"" $lines] then {
2118 # No error message
, compilation succeeded.
2119 set result
[$
{tool
}_load
"./$exe" "" ""]
2120 set status [lindex $result
0]
2121 remote_file build
delete $exe
2122 verbose
"check_effective_target_powerpc64 testfile status is <$status>" 2
2124 if { $
status == "pass" } then {
2125 set powerpc64_available_saved
1
2128 verbose
"check_effective_target_powerpc64 testfile compilation failed" 2
2132 return $powerpc64_available_saved
2135 # GCC
3.4.0 for powerpc64
-*-linux
* included an ABI fix
for passing
2136 # complex float arguments. This affects gfortran tests that
call cabsf
2137 # in libm built by an earlier compiler.
Return 1 if libm uses the same
2138 #
argument passing as the compiler under test
, 0 otherwise.
2140 # When the target
name changes
, replace the cached result.
2142 proc check_effective_target_broken_cplxf_arg
{ } {
2143 return [check_cached_effective_target broken_cplxf_arg
{
2144 # Skip the work
for targets known not to be affected.
2145 if { ![istarget powerpc64
-*-linux
*] } {
2147 } elseif
{ ![is
-effective
-target lp64
] } {
2150 check_runtime_nocache broken_cplxf_arg
{
2151 #
include <complex.h
>
2152 extern void abort
(void
);
2153 float fabsf
(float
);
2154 float cabsf
(_Complex float
);
2161 if (fabsf
(f
- 5.0) > 0.0001)
2170 #
Return 1 is this is a TI C6X target supporting C67X instructions
2171 proc check_effective_target_ti_c67x
{ } {
2172 return [check_no_compiler_messages ti_c67x assembly
{
2173 #
if !defined
(_TMS320C6700
)
2174 #error
!_TMS320C6700
2179 #
Return 1 is this is a TI C6X target supporting C64X
+ instructions
2180 proc check_effective_target_ti_c64xp
{ } {
2181 return [check_no_compiler_messages ti_c64xp assembly
{
2182 #
if !defined
(_TMS320C6400_PLUS
)
2183 #error
!_TMS320C6400_PLUS
2189 proc check_alpha_max_hw_available
{ } {
2190 return [check_runtime alpha_max_hw_available
{
2191 int main
() { return __builtin_alpha_amask
(1<<8) != 0; }
2195 # Returns true iff the FUNCTION is available
on the target
system.
2196 #
(This is essentially a Tcl implementation of Autoconf
's
2199 proc check_function_available { function } {
2200 return [check_no_compiler_messages ${function}_available \
2206 int main () { $function (); }
2210 # Returns true iff "fork" is available on the target system.
2212 proc check_fork_available {} {
2213 return [check_function_available "fork"]
2216 # Returns true iff "mkfifo" is available on the target system.
2218 proc check_mkfifo_available {} {
2219 if { [istarget *-*-cygwin*] } {
2220 # Cygwin has mkfifo, but support is incomplete.
2224 return [check_function_available "mkfifo"]
2227 # Returns true iff "__cxa_atexit" is used on the target system.
2229 proc check_cxa_atexit_available { } {
2230 return [check_cached_effective_target cxa_atexit_available {
2231 if { [istarget hppa*-*-hpux10*] } {
2232 # HP-UX 10 doesn't have __cxa_atexit but subsequent test passes.
2234 } elseif
{ [istarget
*-*-vxworks
] } {
2235 # vxworks doesn
't have __cxa_atexit but subsequent test passes.
2238 check_runtime_nocache cxa_atexit_available {
2241 static unsigned int count;
2258 Y() { f(); count = 2; }
2267 int main() { return 0; }
2273 proc check_effective_target_objc2 { } {
2274 return [check_no_compiler_messages objc2 object {
2283 proc check_effective_target_next_runtime { } {
2284 return [check_no_compiler_messages objc2 object {
2285 #ifdef __NEXT_RUNTIME__
2288 #error !__NEXT_RUNTIME__
2293 # Return 1 if we're generating
32-bit code using default options
, 0
2296 proc check_effective_target_ilp32
{ } {
2297 return [check_no_compiler_messages ilp32 object
{
2298 int dummy
[sizeof
(int) == 4
2299 && sizeof
(void
*) == 4
2300 && sizeof
(long
) == 4 ?
1 : -1];
2304 #
Return 1 if we
're generating ia32 code using default options, 0
2307 proc check_effective_target_ia32 { } {
2308 return [check_no_compiler_messages ia32 object {
2309 int dummy[sizeof (int) == 4
2310 && sizeof (void *) == 4
2311 && sizeof (long) == 4 ? 1 : -1] = { __i386__ };
2315 # Return 1 if we're generating x32 code using default options
, 0
2318 proc check_effective_target_x32
{ } {
2319 return [check_no_compiler_messages x32 object
{
2320 int dummy
[sizeof
(int) == 4
2321 && sizeof
(void
*) == 4
2322 && sizeof
(long
) == 4 ?
1 : -1] = { __x86_64__
};
2326 #
Return 1 if we
're generating 32-bit integers using default
2327 # options, 0 otherwise.
2329 proc check_effective_target_int32 { } {
2330 return [check_no_compiler_messages int32 object {
2331 int dummy[sizeof (int) == 4 ? 1 : -1];
2335 # Return 1 if we're generating
32-bit or larger integers using default
2336 # options
, 0 otherwise.
2338 proc check_effective_target_int32plus
{ } {
2339 return [check_no_compiler_messages int32plus object
{
2340 int dummy
[sizeof
(int) >= 4 ?
1 : -1];
2344 #
Return 1 if we
're generating 32-bit or larger pointers using default
2345 # options, 0 otherwise.
2347 proc check_effective_target_ptr32plus { } {
2348 # The msp430 has 16-bit or 20-bit pointers. The 20-bit pointer is stored
2349 # in a 32-bit slot when in memory, so sizeof(void *) returns 4, but it
2350 # cannot really hold a 32-bit address, so we always return false here.
2351 if { [istarget msp430-*-*] } {
2355 return [check_no_compiler_messages ptr32plus object {
2356 int dummy[sizeof (void *) >= 4 ? 1 : -1];
2360 # Return 1 if we support 32-bit or larger array and structure sizes
2361 # using default options, 0 otherwise. Avoid false positive on
2362 # targets with 20 or 24 bit address spaces.
2364 proc check_effective_target_size32plus { } {
2365 return [check_no_compiler_messages size32plus object {
2366 char dummy[16777217L];
2370 # Returns 1 if we're generating
16-bit or smaller integers with the
2371 # default options
, 0 otherwise.
2373 proc check_effective_target_int16
{ } {
2374 return [check_no_compiler_messages int16 object
{
2375 int dummy
[sizeof
(int) < 4 ?
1 : -1];
2379 #
Return 1 if we
're generating 64-bit code using default options, 0
2382 proc check_effective_target_lp64 { } {
2383 return [check_no_compiler_messages lp64 object {
2384 int dummy[sizeof (int) == 4
2385 && sizeof (void *) == 8
2386 && sizeof (long) == 8 ? 1 : -1];
2390 # Return 1 if we're generating
64-bit code using default llp64 options
,
2393 proc check_effective_target_llp64
{ } {
2394 return [check_no_compiler_messages llp64 object
{
2395 int dummy
[sizeof
(int) == 4
2396 && sizeof
(void
*) == 8
2397 && sizeof
(long long
) == 8
2398 && sizeof
(long
) == 4 ?
1 : -1];
2402 #
Return 1 if long and
int have different sizes
,
2405 proc check_effective_target_long_neq_int
{ } {
2406 return [check_no_compiler_messages long_ne_int object
{
2407 int dummy
[sizeof
(int) != sizeof
(long
) ?
1 : -1];
2411 #
Return 1 if the target supports long double larger than double
,
2414 proc check_effective_target_large_long_double
{ } {
2415 return [check_no_compiler_messages large_long_double object
{
2416 int dummy
[sizeof
(long double
) > sizeof
(double
) ?
1 : -1];
2420 #
Return 1 if the target supports double larger than float
,
2423 proc check_effective_target_large_double
{ } {
2424 return [check_no_compiler_messages large_double object
{
2425 int dummy
[sizeof
(double
) > sizeof
(float
) ?
1 : -1];
2429 #
Return 1 if the target supports long double of
128 bits
,
2432 proc check_effective_target_longdouble128
{ } {
2433 return [check_no_compiler_messages longdouble128 object
{
2434 int dummy
[sizeof
(long double
) == 16 ?
1 : -1];
2438 #
Return 1 if the target supports double of
64 bits
,
2441 proc check_effective_target_double64
{ } {
2442 return [check_no_compiler_messages double64 object
{
2443 int dummy
[sizeof
(double
) == 8 ?
1 : -1];
2447 #
Return 1 if the target supports double of at least
64 bits
,
2450 proc check_effective_target_double64plus
{ } {
2451 return [check_no_compiler_messages double64plus object
{
2452 int dummy
[sizeof
(double
) >= 8 ?
1 : -1];
2456 #
Return 1 if the target supports
'w' suffix
on floating constant
2459 proc check_effective_target_has_w_floating_suffix
{ } {
2461 if [check_effective_target_c
++] {
2462 append opts
"-std=gnu++03"
2464 return [check_no_compiler_messages w_fp_suffix object
{
2469 #
Return 1 if the target supports
'q' suffix
on floating constant
2472 proc check_effective_target_has_q_floating_suffix
{ } {
2474 if [check_effective_target_c
++] {
2475 append opts
"-std=gnu++03"
2477 return [check_no_compiler_messages q_fp_suffix object
{
2482 #
Return 1 if the target supports the _FloatN
/ _FloatNx type
2483 # indicated in the function
name, 0 otherwise.
2485 proc check_effective_target_float16
{} {
2486 return [check_no_compiler_messages_nocache float16 object
{
2491 proc check_effective_target_float32
{} {
2492 return [check_no_compiler_messages_nocache float32 object
{
2497 proc check_effective_target_float64
{} {
2498 return [check_no_compiler_messages_nocache float64 object
{
2503 proc check_effective_target_float128
{} {
2504 return [check_no_compiler_messages_nocache float128 object
{
2509 proc check_effective_target_float32x
{} {
2510 return [check_no_compiler_messages_nocache float32x object
{
2515 proc check_effective_target_float64x
{} {
2516 return [check_no_compiler_messages_nocache float64x object
{
2521 proc check_effective_target_float128x
{} {
2522 return [check_no_compiler_messages_nocache float128x object
{
2527 # Likewise
, but runtime support
for any special options used as well
2528 # as
compile-time support is required.
2530 proc check_effective_target_float16_runtime
{} {
2531 return [check_effective_target_float16
]
2534 proc check_effective_target_float32_runtime
{} {
2535 return [check_effective_target_float32
]
2538 proc check_effective_target_float64_runtime
{} {
2539 return [check_effective_target_float64
]
2542 proc check_effective_target_float128_runtime
{} {
2543 if { ![check_effective_target_float128
] } {
2546 if { [istarget powerpc
*-*-*] } {
2547 return [check_effective_target_base_quadfloat_support
]
2552 proc check_effective_target_float32x_runtime
{} {
2553 return [check_effective_target_float32x
]
2556 proc check_effective_target_float64x_runtime
{} {
2557 if { ![check_effective_target_float64x
] } {
2560 if { [istarget powerpc
*-*-*] } {
2561 return [check_effective_target_base_quadfloat_support
]
2566 proc check_effective_target_float128x_runtime
{} {
2567 return [check_effective_target_float128x
]
2570 #
Return 1 if the target hardware supports
any options added
for
2571 # _FloatN and _FloatNx types
, 0 otherwise.
2573 proc check_effective_target_floatn_nx_runtime
{} {
2574 if { [istarget powerpc
*-*-aix
*] } {
2577 if { [istarget powerpc
*-*-*] } {
2578 return [check_effective_target_base_quadfloat_support
]
2583 # Add options needed to use the _FloatN
/ _FloatNx type indicated in
2584 # the function
name.
2586 proc add_options_for_float16
{ flags
} {
2590 proc add_options_for_float32
{ flags
} {
2594 proc add_options_for_float64
{ flags
} {
2598 proc add_options_for_float128
{ flags
} {
2599 return [add_options_for___float128
"$flags"]
2602 proc add_options_for_float32x
{ flags
} {
2606 proc add_options_for_float64x
{ flags
} {
2607 return [add_options_for___float128
"$flags"]
2610 proc add_options_for_float128x
{ flags
} {
2614 #
Return 1 if the target supports __float128
,
2617 proc check_effective_target___float128
{ } {
2618 if { [istarget powerpc
*-*-*] } {
2619 return [check_ppc_float128_sw_available
]
2621 if { [istarget ia64
-*-*]
2622 ||
[istarget i?
86-*-*]
2623 ||
[istarget x86_64
-*-*] } {
2629 proc add_options_for___float128
{ flags
} {
2630 if { [istarget powerpc
*-*-*] } {
2631 return "$flags -mfloat128 -mvsx"
2636 #
Return 1 if the target supports
any special run
-time requirements
2637 #
for __float128 or _Float128
,
2640 proc check_effective_target_base_quadfloat_support
{ } {
2641 if { [istarget powerpc
*-*-*] } {
2642 return [check_vsx_hw_available
]
2647 #
Return 1 if the target supports compiling fixed
-point
,
2650 proc check_effective_target_fixed_point
{ } {
2651 return [check_no_compiler_messages fixed_point object
{
2652 _Sat _Fract x
; _Sat _Accum y
;
2656 #
Return 1 if the target supports compiling decimal floating point
,
2659 proc check_effective_target_dfp_nocache
{ } {
2660 verbose
"check_effective_target_dfp_nocache: compiling source" 2
2661 set ret
[check_no_compiler_messages_nocache dfp object
{
2662 float x __attribute__
((mode(DD
)));
2664 verbose
"check_effective_target_dfp_nocache: returning $ret" 2
2668 proc check_effective_target_dfprt_nocache
{ } {
2669 return [check_runtime_nocache dfprt
{
2670 typedef float d64 __attribute__
((mode(DD
)));
2671 d64 x
= 1.2df
, y
= 2.3dd
, z
;
2672 int main
() { z
= x
+ y
; return 0; }
2676 #
Return 1 if the target supports compiling Decimal Floating Point
,
2679 # This won
't change for different subtargets so cache the result.
2681 proc check_effective_target_dfp { } {
2682 return [check_cached_effective_target dfp {
2683 check_effective_target_dfp_nocache
2687 # Return 1 if the target supports linking and executing Decimal Floating
2688 # Point, 0 otherwise.
2690 # This won't change
for different subtargets so
cache the result.
2692 proc check_effective_target_dfprt
{ } {
2693 return [check_cached_effective_target dfprt
{
2694 check_effective_target_dfprt_nocache
2698 #
Return 1 if the target supports executing DFP hardware instructions
,
2699 #
0 otherwise.
Cache the result.
2701 proc check_dfp_hw_available
{ } {
2702 return [check_cached_effective_target dfp_hw_available
{
2703 #
For now
, disable
on Darwin
2704 if { [istarget powerpc
-*-eabi
] ||
[istarget powerpc
*-*-eabispe
] ||
[istarget
*-*-darwin
*]} {
2707 check_runtime_nocache dfp_hw_available
{
2708 volatile _Decimal64 r
;
2709 volatile _Decimal64 a
= 4.0DD
;
2710 volatile _Decimal64 b
= 2.0DD
;
2713 asm volatile
("dadd %0,%1,%2" : "=d" (r) : "d" (a), "d" (b));
2714 asm volatile
("dsub %0,%1,%2" : "=d" (r) : "d" (a), "d" (b));
2715 asm volatile
("dmul %0,%1,%2" : "=d" (r) : "d" (a), "d" (b));
2716 asm volatile
("ddiv %0,%1,%2" : "=d" (r) : "d" (a), "d" (b));
2719 } "-mcpu=power6 -mhard-float"
2724 #
Return 1 if the target supports compiling and assembling UCN
, 0 otherwise.
2726 proc check_effective_target_ucn_nocache
{ } {
2727 #
-std
=c99 is only valid
for C
2728 if [check_effective_target_c
] {
2729 set ucnopts
"-std=c99"
2733 verbose
"check_effective_target_ucn_nocache: compiling source" 2
2734 set ret
[check_no_compiler_messages_nocache ucn object
{
2737 verbose
"check_effective_target_ucn_nocache: returning $ret" 2
2741 #
Return 1 if the target supports compiling and assembling UCN
, 0 otherwise.
2743 # This won
't change for different subtargets, so cache the result.
2745 proc check_effective_target_ucn { } {
2746 return [check_cached_effective_target ucn {
2747 check_effective_target_ucn_nocache
2751 # Return 1 if the target needs a command line argument to enable a SIMD
2754 proc check_effective_target_vect_cmdline_needed { } {
2755 global et_vect_cmdline_needed_saved
2756 global et_vect_cmdline_needed_target_name
2758 if { ![info exists et_vect_cmdline_needed_target_name] } {
2759 set et_vect_cmdline_needed_target_name ""
2762 # If the target has changed since we set the cached value, clear it.
2763 set current_target [current_target_name]
2764 if { $current_target != $et_vect_cmdline_needed_target_name } {
2765 verbose "check_effective_target_vect_cmdline_needed: `$et_vect_cmdline_needed_target_name' `$current_target
'" 2
2766 set et_vect_cmdline_needed_target_name $current_target
2767 if { [info exists et_vect_cmdline_needed_saved] } {
2768 verbose "check_effective_target_vect_cmdline_needed: removing cached result" 2
2769 unset et_vect_cmdline_needed_saved
2773 if [info exists et_vect_cmdline_needed_saved] {
2774 verbose "check_effective_target_vect_cmdline_needed: using cached result" 2
2776 set et_vect_cmdline_needed_saved 1
2777 if { [istarget alpha*-*-*]
2778 || [istarget ia64-*-*]
2779 || (([istarget x86_64-*-*] || [istarget i?86-*-*])
2780 && ([check_effective_target_x32]
2781 || [check_effective_target_lp64]))
2782 || ([istarget powerpc*-*-*]
2783 && ([check_effective_target_powerpc_spe]
2784 || [check_effective_target_powerpc_altivec]))
2785 || ([istarget sparc*-*-*] && [check_effective_target_sparc_vis])
2786 || [istarget spu-*-*]
2787 || ([istarget arm*-*-*] && [check_effective_target_arm_neon])
2788 || [istarget aarch64*-*-*] } {
2789 set et_vect_cmdline_needed_saved 0
2793 verbose "check_effective_target_vect_cmdline_needed: returning $et_vect_cmdline_needed_saved" 2
2794 return $et_vect_cmdline_needed_saved
2797 # Return 1 if the target supports hardware vectors of int, 0 otherwise.
2799 # This won't change
for different subtargets so
cache the result.
2801 proc check_effective_target_vect_int
{ } {
2802 global et_vect_int_saved
2805 if [info exists et_vect_int_saved
($et_index
)] {
2806 verbose
"check_effective_target_vect_int: using cached result" 2
2808 set et_vect_int_saved
($et_index
) 0
2809 if { [istarget i?
86-*-*] ||
[istarget x86_64
-*-*]
2810 ||
([istarget powerpc
*-*-*]
2811 && ![istarget powerpc
-*-linux
*paired
*])
2812 ||
[istarget spu
-*-*]
2813 ||
[istarget sparc
*-*-*]
2814 ||
[istarget alpha
*-*-*]
2815 ||
[istarget ia64
-*-*]
2816 ||
[istarget aarch64
*-*-*]
2817 ||
[check_effective_target_arm32
]
2818 ||
([istarget mips
*-*-*]
2819 && ([et
-is
-effective
-target mips_loongson
]
2820 ||
[et
-is
-effective
-target mips_msa
])) } {
2821 set et_vect_int_saved
($et_index
) 1
2825 verbose
"check_effective_target_vect_int:\
2826 returning $et_vect_int_saved
($et_index
)" 2
2827 return $et_vect_int_saved
($et_index
)
2830 #
Return 1 if the target supports signed
int->float conversion
2833 proc check_effective_target_vect_intfloat_cvt
{ } {
2834 global et_vect_intfloat_cvt_saved
2837 if [info exists et_vect_intfloat_cvt_saved
($et_index
)] {
2838 verbose
"check_effective_target_vect_intfloat_cvt:\
2839 using cached result
" 2
2841 set et_vect_intfloat_cvt_saved
($et_index
) 0
2842 if { [istarget i?
86-*-*] ||
[istarget x86_64
-*-*]
2843 ||
([istarget powerpc
*-*-*]
2844 && ![istarget powerpc
-*-linux
*paired
*])
2845 ||
([istarget arm
*-*-*]
2846 && [check_effective_target_arm_neon_ok
])
2847 ||
([istarget mips
*-*-*]
2848 && [et
-is
-effective
-target mips_msa
]) } {
2849 set et_vect_intfloat_cvt_saved
($et_index
) 1
2853 verbose
"check_effective_target_vect_intfloat_cvt:\
2854 returning $et_vect_intfloat_cvt_saved
($et_index
)" 2
2855 return $et_vect_intfloat_cvt_saved
($et_index
)
2858 #
Return 1 if we
're supporting __int128 for target, 0 otherwise.
2860 proc check_effective_target_int128 { } {
2861 return [check_no_compiler_messages int128 object {
2863 #ifndef __SIZEOF_INT128__
2872 # Return 1 if the target supports unsigned int->float conversion
2875 proc check_effective_target_vect_uintfloat_cvt { } {
2876 global et_vect_uintfloat_cvt_saved
2879 if [info exists et_vect_uintfloat_cvt_saved($et_index)] {
2880 verbose "check_effective_target_vect_uintfloat_cvt:\
2881 using cached result" 2
2883 set et_vect_uintfloat_cvt_saved($et_index) 0
2884 if { [istarget i?86-*-*] || [istarget x86_64-*-*]
2885 || ([istarget powerpc*-*-*]
2886 && ![istarget powerpc-*-linux*paired*])
2887 || [istarget aarch64*-*-*]
2888 || ([istarget arm*-*-*]
2889 && [check_effective_target_arm_neon_ok])
2890 || ([istarget mips*-*-*]
2891 && [et-is-effective-target mips_msa]) } {
2892 set et_vect_uintfloat_cvt_saved($et_index) 1
2896 verbose "check_effective_target_vect_uintfloat_cvt:\
2897 returning $et_vect_uintfloat_cvt_saved($et_index)" 2
2898 return $et_vect_uintfloat_cvt_saved($et_index)
2902 # Return 1 if the target supports signed float->int conversion
2905 proc check_effective_target_vect_floatint_cvt { } {
2906 global et_vect_floatint_cvt_saved
2909 if [info exists et_vect_floatint_cvt_saved($et_index)] {
2910 verbose "check_effective_target_vect_floatint_cvt:\
2911 using cached result" 2
2913 set et_vect_floatint_cvt_saved($et_index) 0
2914 if { [istarget i?86-*-*] || [istarget x86_64-*-*]
2915 || ([istarget powerpc*-*-*]
2916 && ![istarget powerpc-*-linux*paired*])
2917 || ([istarget arm*-*-*]
2918 && [check_effective_target_arm_neon_ok])
2919 || ([istarget mips*-*-*]
2920 && [et-is-effective-target mips_msa]) } {
2921 set et_vect_floatint_cvt_saved($et_index) 1
2925 verbose "check_effective_target_vect_floatint_cvt:\
2926 returning $et_vect_floatint_cvt_saved($et_index)" 2
2927 return $et_vect_floatint_cvt_saved($et_index)
2930 # Return 1 if the target supports unsigned float->int conversion
2933 proc check_effective_target_vect_floatuint_cvt { } {
2934 global et_vect_floatuint_cvt_saved
2937 if [info exists et_vect_floatuint_cvt_saved($et_index)] {
2938 verbose "check_effective_target_vect_floatuint_cvt:\
2939 using cached result" 2
2941 set et_vect_floatuint_cvt_saved($et_index) 0
2942 if { ([istarget powerpc*-*-*]
2943 && ![istarget powerpc-*-linux*paired*])
2944 || ([istarget arm*-*-*]
2945 && [check_effective_target_arm_neon_ok])
2946 || ([istarget mips*-*-*]
2947 && [et-is-effective-target mips_msa]) } {
2948 set et_vect_floatuint_cvt_saved($et_index) 1
2952 verbose "check_effective_target_vect_floatuint_cvt:\
2953 returning $et_vect_floatuint_cvt_saved($et_index)" 2
2954 return $et_vect_floatuint_cvt_saved($et_index)
2957 # Return 1 if the target supports #pragma omp declare simd, 0 otherwise.
2959 # This won't change
for different subtargets so
cache the result.
2961 proc check_effective_target_vect_simd_clones
{ } {
2962 global et_vect_simd_clones_saved
2965 if [info exists et_vect_simd_clones_saved
($et_index
)] {
2966 verbose
"check_effective_target_vect_simd_clones: using cached result" 2
2968 set et_vect_simd_clones_saved
($et_index
) 0
2969 if { [istarget i?
86-*-*] ||
[istarget x86_64
-*-*] } {
2970 #
On i?
86/x86_64 #pragma omp declare simd builds a sse2
, avx
, avx2
2971 # and avx512f clone. Only the right clone
for the specified arch
2972 # will be chosen
, but still we need to at least be able to assemble
2974 if { [check_effective_target_avx512f
] } {
2975 set et_vect_simd_clones_saved
($et_index
) 1
2980 verbose
"check_effective_target_vect_simd_clones:\
2981 returning $et_vect_simd_clones_saved
($et_index
)" 2
2982 return $et_vect_simd_clones_saved
($et_index
)
2985 #
Return 1 if this is a AArch64 target supporting big endian
2986 proc check_effective_target_aarch64_big_endian
{ } {
2987 return [check_no_compiler_messages aarch64_big_endian assembly
{
2988 #
if !defined
(__aarch64__
) ||
!defined
(__AARCH64EB__
)
2989 #error
!__aarch64__ ||
!__AARCH64EB__
2994 #
Return 1 if this is a AArch64 target supporting little endian
2995 proc check_effective_target_aarch64_little_endian
{ } {
2996 if { ![istarget aarch64
*-*-*] } {
3000 return [check_no_compiler_messages aarch64_little_endian assembly
{
3001 #
if !defined
(__aarch64__
) || defined
(__AARCH64EB__
)
3007 #
Return 1 if this is a compiler supporting ARC atomic operations
3008 proc check_effective_target_arc_atomic
{ } {
3009 return [check_no_compiler_messages arc_atomic assembly
{
3010 #
if !defined
(__ARC_ATOMIC__
)
3016 #
Return 1 if this is an arm target using
32-bit instructions
3017 proc check_effective_target_arm32
{ } {
3018 if { ![istarget arm
*-*-*] } {
3022 return [check_no_compiler_messages arm32 assembly
{
3023 #
if !defined
(__arm__
) ||
(defined
(__thumb__
) && !defined
(__thumb2__
))
3024 #error
!__arm || __thumb__
&& !__thumb2__
3029 #
Return 1 if this is an arm target not using Thumb
3030 proc check_effective_target_arm_nothumb
{ } {
3031 if { ![istarget arm
*-*-*] } {
3035 return [check_no_compiler_messages arm_nothumb assembly
{
3036 #
if !defined
(__arm__
) ||
(defined
(__thumb__
) || defined
(__thumb2__
))
3037 #error
!__arm__ || __thumb || __thumb2__
3042 #
Return 1 if this is a little
-endian ARM target
3043 proc check_effective_target_arm_little_endian
{ } {
3044 if { ![istarget arm
*-*-*] } {
3048 return [check_no_compiler_messages arm_little_endian assembly
{
3049 #
if !defined
(__arm__
) ||
!defined
(__ARMEL__
)
3050 #error
!__arm__ ||
!__ARMEL__
3055 #
Return 1 if this is an ARM target that only supports aligned vector accesses
3056 proc check_effective_target_arm_vect_no_misalign
{ } {
3057 if { ![istarget arm
*-*-*] } {
3061 return [check_no_compiler_messages arm_vect_no_misalign assembly
{
3062 #
if !defined
(__arm__
) \
3063 ||
(defined
(__ARM_FEATURE_UNALIGNED
) \
3064 && defined
(__ARMEL__
))
3065 #error
!__arm__ ||
(__ARMEL__
&& __ARM_FEATURE_UNALIGNED
)
3071 #
Return 1 if this is an ARM target supporting
-mfpu
=vfp
3072 #
-mfloat
-abi
=softfp. Some multilibs may be incompatible with these
3075 proc check_effective_target_arm_vfp_ok
{ } {
3076 if { [check_effective_target_arm32
] } {
3077 return [check_no_compiler_messages arm_vfp_ok object
{
3079 } "-mfpu=vfp -mfloat-abi=softfp"]
3085 #
Return 1 if this is an ARM target supporting
-mfpu
=vfp3
3086 #
-mfloat
-abi
=softfp.
3088 proc check_effective_target_arm_vfp3_ok
{ } {
3089 if { [check_effective_target_arm32
] } {
3090 return [check_no_compiler_messages arm_vfp3_ok object
{
3092 } "-mfpu=vfp3 -mfloat-abi=softfp"]
3098 #
Return 1 if this is an ARM target supporting
-mfpu
=fp
-armv8
3099 #
-mfloat
-abi
=softfp.
3100 proc check_effective_target_arm_v8_vfp_ok
{} {
3101 if { [check_effective_target_arm32
] } {
3102 return [check_no_compiler_messages arm_v8_vfp_ok object
{
3105 __asm__ volatile
("vrinta.f32.f32 s0, s0");
3108 } "-mfpu=fp-armv8 -mfloat-abi=softfp"]
3114 #
Return 1 if this is an ARM target supporting
-mfpu
=vfp
3115 #
-mfloat
-abi
=hard. Some multilibs may be incompatible with these
3118 proc check_effective_target_arm_hard_vfp_ok
{ } {
3119 if { [check_effective_target_arm32
]
3120 && ! [check
-flags
[list
"" { *-*-* } { "-mfloat-abi=*" } { "-mfloat-abi=hard" }]] } {
3121 return [check_no_compiler_messages arm_hard_vfp_ok executable
{
3122 int main
() { return 0;}
3123 } "-mfpu=vfp -mfloat-abi=hard"]
3129 #
Return 1 if this is an ARM target defining __ARM_FP. We may need
3130 #
-mfloat
-abi
=softfp or equivalent options. Some multilibs may be
3131 # incompatible with these options. Also
set et_arm_fp_flags to the
3132 # best options to add.
3134 proc check_effective_target_arm_fp_ok_nocache
{ } {
3135 global et_arm_fp_flags
3136 set et_arm_fp_flags
""
3137 if { [check_effective_target_arm32
] } {
3138 foreach flags
{"" "-mfloat-abi=softfp" "-mfloat-abi=hard"} {
3139 if { [check_no_compiler_messages_nocache arm_fp_ok object
{
3141 #error __ARM_FP not defined
3144 set et_arm_fp_flags $flags
3153 proc check_effective_target_arm_fp_ok
{ } {
3154 return [check_cached_effective_target arm_fp_ok \
3155 check_effective_target_arm_fp_ok_nocache
]
3158 # Add the options needed to
define __ARM_FP. We need either
3159 #
-mfloat
-abi
=softfp or
-mfloat
-abi
=hard
, but
if one is already
3160 # specified by the multilib
, use it.
3162 proc add_options_for_arm_fp
{ flags
} {
3163 if { ! [check_effective_target_arm_fp_ok
] } {
3166 global et_arm_fp_flags
3167 return "$flags $et_arm_fp_flags"
3170 #
Return 1 if this is an ARM target that supports DSP multiply with
3171 # current multilib flags.
3173 proc check_effective_target_arm_dsp
{ } {
3174 return [check_no_compiler_messages arm_dsp assembly
{
3175 #ifndef __ARM_FEATURE_DSP
3182 #
Return 1 if this is an ARM target that supports unaligned word
/halfword
3183 #
load/store instructions.
3185 proc check_effective_target_arm_unaligned
{ } {
3186 return [check_no_compiler_messages arm_unaligned assembly
{
3187 #ifndef __ARM_FEATURE_UNALIGNED
3188 #error no unaligned support
3194 #
Return 1 if this is an ARM target supporting
-mfpu
=crypto
-neon
-fp
-armv8
3195 #
-mfloat
-abi
=softfp or equivalent options. Some multilibs may be
3196 # incompatible with these options. Also
set et_arm_crypto_flags to the
3197 # best options to add.
3199 proc check_effective_target_arm_crypto_ok_nocache
{ } {
3200 global et_arm_crypto_flags
3201 set et_arm_crypto_flags
""
3202 if { [check_effective_target_arm_v8_neon_ok
] } {
3203 foreach flags
{"" "-mfloat-abi=softfp" "-mfpu=crypto-neon-fp-armv8" "-mfpu=crypto-neon-fp-armv8 -mfloat-abi=softfp"} {
3204 if { [check_no_compiler_messages_nocache arm_crypto_ok object
{
3205 #
include "arm_neon.h"
3207 foo
(uint8x16_t a
, uint8x16_t b
)
3209 return vaeseq_u8
(a
, b
);
3212 set et_arm_crypto_flags $flags
3221 #
Return 1 if this is an ARM target supporting
-mfpu
=crypto
-neon
-fp
-armv8
3223 proc check_effective_target_arm_crypto_ok
{ } {
3224 return [check_cached_effective_target arm_crypto_ok \
3225 check_effective_target_arm_crypto_ok_nocache
]
3228 # Add options
for crypto extensions.
3229 proc add_options_for_arm_crypto
{ flags
} {
3230 if { ! [check_effective_target_arm_crypto_ok
] } {
3233 global et_arm_crypto_flags
3234 return "$flags $et_arm_crypto_flags"
3237 # Add the options needed
for NEON. We need either
-mfloat
-abi
=softfp
3238 # or
-mfloat
-abi
=hard
, but
if one is already specified by the
3239 # multilib
, use it. Similarly
, if a
-mfpu option already enables
3240 # NEON
, do not add
-mfpu
=neon.
3242 proc add_options_for_arm_neon
{ flags
} {
3243 if { ! [check_effective_target_arm_neon_ok
] } {
3246 global et_arm_neon_flags
3247 return "$flags $et_arm_neon_flags"
3250 proc add_options_for_arm_v8_vfp
{ flags
} {
3251 if { ! [check_effective_target_arm_v8_vfp_ok
] } {
3254 return "$flags -mfpu=fp-armv8 -mfloat-abi=softfp"
3257 proc add_options_for_arm_v8_neon
{ flags
} {
3258 if { ! [check_effective_target_arm_v8_neon_ok
] } {
3261 global et_arm_v8_neon_flags
3262 return "$flags $et_arm_v8_neon_flags -march=armv8-a"
3265 # Add the options needed
for ARMv8.1 Adv.SIMD. Also adds the ARMv8 NEON
3266 # options
for AArch64 and
for ARM.
3268 proc add_options_for_arm_v8_1a_neon
{ flags
} {
3269 if { ! [check_effective_target_arm_v8_1a_neon_ok
] } {
3272 global et_arm_v8_1a_neon_flags
3273 return "$flags $et_arm_v8_1a_neon_flags -march=armv8.1-a"
3276 # Add the options needed
for ARMv8.2 with the scalar FP16 extension.
3277 # Also adds the ARMv8 FP options
for ARM and
for AArch64.
3279 proc add_options_for_arm_v8_2a_fp16_scalar
{ flags
} {
3280 if { ! [check_effective_target_arm_v8_2a_fp16_scalar_ok
] } {
3283 global et_arm_v8_2a_fp16_scalar_flags
3284 return "$flags $et_arm_v8_2a_fp16_scalar_flags"
3287 # Add the options needed
for ARMv8.2 with the FP16 extension. Also adds
3288 # the ARMv8 NEON options
for ARM and
for AArch64.
3290 proc add_options_for_arm_v8_2a_fp16_neon
{ flags
} {
3291 if { ! [check_effective_target_arm_v8_2a_fp16_neon_ok
] } {
3294 global et_arm_v8_2a_fp16_neon_flags
3295 return "$flags $et_arm_v8_2a_fp16_neon_flags"
3298 proc add_options_for_arm_crc
{ flags
} {
3299 if { ! [check_effective_target_arm_crc_ok
] } {
3302 global et_arm_crc_flags
3303 return "$flags $et_arm_crc_flags"
3306 # Add the options needed
for NEON. We need either
-mfloat
-abi
=softfp
3307 # or
-mfloat
-abi
=hard
, but
if one is already specified by the
3308 # multilib
, use it. Similarly
, if a
-mfpu option already enables
3309 # NEON
, do not add
-mfpu
=neon.
3311 proc add_options_for_arm_neonv2
{ flags
} {
3312 if { ! [check_effective_target_arm_neonv2_ok
] } {
3315 global et_arm_neonv2_flags
3316 return "$flags $et_arm_neonv2_flags"
3319 # Add the options needed
for vfp3.
3320 proc add_options_for_arm_vfp3
{ flags
} {
3321 if { ! [check_effective_target_arm_vfp3_ok
] } {
3324 return "$flags -mfpu=vfp3 -mfloat-abi=softfp"
3327 #
Return 1 if this is an ARM target supporting
-mfpu
=neon
3328 #
-mfloat
-abi
=softfp or equivalent options. Some multilibs may be
3329 # incompatible with these options. Also
set et_arm_neon_flags to the
3330 # best options to add.
3332 proc check_effective_target_arm_neon_ok_nocache
{ } {
3333 global et_arm_neon_flags
3334 set et_arm_neon_flags
""
3335 if { [check_effective_target_arm32
] } {
3336 foreach flags
{"" "-mfloat-abi=softfp" "-mfpu=neon" "-mfpu=neon -mfloat-abi=softfp" "-mfpu=neon -mfloat-abi=softfp -march=armv7-a"} {
3337 if { [check_no_compiler_messages_nocache arm_neon_ok object
{
3339 #ifndef __ARM_NEON__
3342 /* Avoid the case where a test adds
-mfpu
=neon
, but the toolchain is
3343 configured
for -mcpu
=arm926ej
-s
, for example.
*/
3344 #
if __ARM_ARCH
< 7 || __ARM_ARCH_PROFILE
== 'M'
3345 #error Architecture does not support NEON.
3348 set et_arm_neon_flags $flags
3357 proc check_effective_target_arm_neon_ok
{ } {
3358 return [check_cached_effective_target arm_neon_ok \
3359 check_effective_target_arm_neon_ok_nocache
]
3362 proc check_effective_target_arm_crc_ok_nocache
{ } {
3363 global et_arm_crc_flags
3364 set et_arm_crc_flags
"-march=armv8-a+crc"
3365 return [check_no_compiler_messages_nocache arm_crc_ok object
{
3366 #
if !defined
(__ARM_FEATURE_CRC32
)
3369 } "$et_arm_crc_flags"]
3372 proc check_effective_target_arm_crc_ok
{ } {
3373 return [check_cached_effective_target arm_crc_ok \
3374 check_effective_target_arm_crc_ok_nocache
]
3377 #
Return 1 if this is an ARM target supporting
-mfpu
=neon
-fp16
3378 #
-mfloat
-abi
=softfp or equivalent options. Some multilibs may be
3379 # incompatible with these options. Also
set et_arm_neon_fp16_flags to
3380 # the best options to add.
3382 proc check_effective_target_arm_neon_fp16_ok_nocache
{ } {
3383 global et_arm_neon_fp16_flags
3384 global et_arm_neon_flags
3385 set et_arm_neon_fp16_flags
""
3386 if { [check_effective_target_arm32
]
3387 && [check_effective_target_arm_neon_ok
] } {
3388 foreach flags
{"" "-mfloat-abi=softfp" "-mfpu=neon-fp16"
3389 "-mfpu=neon-fp16 -mfloat-abi=softfp"
3390 "-mfp16-format=ieee"
3391 "-mfloat-abi=softfp -mfp16-format=ieee"
3392 "-mfpu=neon-fp16 -mfp16-format=ieee"
3393 "-mfpu=neon-fp16 -mfloat-abi=softfp -mfp16-format=ieee"} {
3394 if { [check_no_compiler_messages_nocache arm_neon_fp16_ok object
{
3395 #
include "arm_neon.h"
3397 foo
(float32x4_t
arg)
3399 return vcvt_f16_f32
(arg);
3401 } "$et_arm_neon_flags $flags"] } {
3402 set et_arm_neon_fp16_flags
[concat $et_arm_neon_flags $flags
]
3411 proc check_effective_target_arm_neon_fp16_ok
{ } {
3412 return [check_cached_effective_target arm_neon_fp16_ok \
3413 check_effective_target_arm_neon_fp16_ok_nocache
]
3416 proc check_effective_target_arm_neon_fp16_hw
{ } {
3417 if {! [check_effective_target_arm_neon_fp16_ok
] } {
3420 global et_arm_neon_fp16_flags
3421 check_runtime_nocache arm_neon_fp16_hw
{
3423 main
(int argc
, char
**argv
)
3425 asm
("vcvt.f32.f16 q1, d0");
3428 } $et_arm_neon_fp16_flags
3431 proc add_options_for_arm_neon_fp16
{ flags
} {
3432 if { ! [check_effective_target_arm_neon_fp16_ok
] } {
3435 global et_arm_neon_fp16_flags
3436 return "$flags $et_arm_neon_fp16_flags"
3439 #
Return 1 if this is an ARM target supporting the FP16 alternative
3440 # format. Some multilibs may be incompatible with the options needed. Also
3441 #
set et_arm_neon_fp16_flags to the best options to add.
3443 proc check_effective_target_arm_fp16_alternative_ok_nocache
{ } {
3444 global et_arm_neon_fp16_flags
3445 set et_arm_neon_fp16_flags
""
3446 if { [check_effective_target_arm32
] } {
3447 foreach flags
{"" "-mfloat-abi=softfp" "-mfpu=neon-fp16"
3448 "-mfpu=neon-fp16 -mfloat-abi=softfp"} {
3449 if { [check_no_compiler_messages_nocache \
3450 arm_fp16_alternative_ok object
{
3451 #
if !defined
(__ARM_FP16_FORMAT_ALTERNATIVE
)
3452 #error __ARM_FP16_FORMAT_ALTERNATIVE not defined
3454 } "$flags -mfp16-format=alternative"] } {
3455 set et_arm_neon_fp16_flags
"$flags -mfp16-format=alternative"
3464 proc check_effective_target_arm_fp16_alternative_ok
{ } {
3465 return [check_cached_effective_target arm_fp16_alternative_ok \
3466 check_effective_target_arm_fp16_alternative_ok_nocache
]
3469 #
Return 1 if this is an ARM target supports specifying the FP16
none
3470 # format. Some multilibs may be incompatible with the options needed.
3472 proc check_effective_target_arm_fp16_none_ok_nocache
{ } {
3473 if { [check_effective_target_arm32
] } {
3474 foreach flags
{"" "-mfloat-abi=softfp" "-mfpu=neon-fp16"
3475 "-mfpu=neon-fp16 -mfloat-abi=softfp"} {
3476 if { [check_no_compiler_messages_nocache \
3477 arm_fp16_none_ok object
{
3478 #
if defined
(__ARM_FP16_FORMAT_ALTERNATIVE
)
3479 #error __ARM_FP16_FORMAT_ALTERNATIVE defined
3481 #
if defined
(__ARM_FP16_FORMAT_IEEE
)
3482 #error __ARM_FP16_FORMAT_IEEE defined
3484 } "$flags -mfp16-format=none"] } {
3493 proc check_effective_target_arm_fp16_none_ok
{ } {
3494 return [check_cached_effective_target arm_fp16_none_ok \
3495 check_effective_target_arm_fp16_none_ok_nocache
]
3498 #
Return 1 if this is an ARM target supporting
-mfpu
=neon
-fp
-armv8
3499 #
-mfloat
-abi
=softfp or equivalent options. Some multilibs may be
3500 # incompatible with these options. Also
set et_arm_v8_neon_flags to the
3501 # best options to add.
3503 proc check_effective_target_arm_v8_neon_ok_nocache
{ } {
3504 global et_arm_v8_neon_flags
3505 set et_arm_v8_neon_flags
""
3506 if { [check_effective_target_arm32
] } {
3507 foreach flags
{"" "-mfloat-abi=softfp" "-mfpu=neon-fp-armv8" "-mfpu=neon-fp-armv8 -mfloat-abi=softfp"} {
3508 if { [check_no_compiler_messages_nocache arm_v8_neon_ok object
{
3510 #error not armv8 or later
3512 #
include "arm_neon.h"
3516 __asm__ volatile
("vrintn.f32 q0, q0");
3518 } "$flags -march=armv8-a"] } {
3519 set et_arm_v8_neon_flags $flags
3528 proc check_effective_target_arm_v8_neon_ok
{ } {
3529 return [check_cached_effective_target arm_v8_neon_ok \
3530 check_effective_target_arm_v8_neon_ok_nocache
]
3533 #
Return 1 if this is an ARM target supporting
-mfpu
=neon
-vfpv4
3534 #
-mfloat
-abi
=softfp or equivalent options. Some multilibs may be
3535 # incompatible with these options. Also
set et_arm_neonv2_flags to the
3536 # best options to add.
3538 proc check_effective_target_arm_neonv2_ok_nocache
{ } {
3539 global et_arm_neonv2_flags
3540 global et_arm_neon_flags
3541 set et_arm_neonv2_flags
""
3542 if { [check_effective_target_arm32
]
3543 && [check_effective_target_arm_neon_ok
] } {
3544 foreach flags
{"" "-mfloat-abi=softfp" "-mfpu=neon-vfpv4" "-mfpu=neon-vfpv4 -mfloat-abi=softfp"} {
3545 if { [check_no_compiler_messages_nocache arm_neonv2_ok object
{
3546 #
include "arm_neon.h"
3548 foo
(float32x2_t a
, float32x2_t b
, float32x2_t c
)
3550 return vfma_f32
(a
, b
, c
);
3552 } "$et_arm_neon_flags $flags"] } {
3553 set et_arm_neonv2_flags
[concat $et_arm_neon_flags $flags
]
3562 proc check_effective_target_arm_neonv2_ok
{ } {
3563 return [check_cached_effective_target arm_neonv2_ok \
3564 check_effective_target_arm_neonv2_ok_nocache
]
3567 # Add the options needed
for VFP FP16 support. We need either
3568 #
-mfloat
-abi
=softfp or
-mfloat
-abi
=hard.
If one is already specified by
3569 # the multilib
, use it.
3571 proc add_options_for_arm_fp16
{ flags
} {
3572 if { ! [check_effective_target_arm_fp16_ok
] } {
3575 global et_arm_fp16_flags
3576 return "$flags $et_arm_fp16_flags"
3579 # Add the options needed to enable support
for IEEE format
3580 # half
-precision support. This is valid
for ARM targets.
3582 proc add_options_for_arm_fp16_ieee
{ flags
} {
3583 if { ! [check_effective_target_arm_fp16_ok
] } {
3586 global et_arm_fp16_flags
3587 return "$flags $et_arm_fp16_flags -mfp16-format=ieee"
3590 # Add the options needed to enable support
for ARM Alternative format
3591 # half
-precision support. This is valid
for ARM targets.
3593 proc add_options_for_arm_fp16_alternative
{ flags
} {
3594 if { ! [check_effective_target_arm_fp16_ok
] } {
3597 global et_arm_fp16_flags
3598 return "$flags $et_arm_fp16_flags -mfp16-format=alternative"
3601 #
Return 1 if this is an ARM target that can support a VFP fp16 variant.
3602 # Skip multilibs that are incompatible with these options and
set
3603 # et_arm_fp16_flags to the best options to add. This test is valid
for
3606 proc check_effective_target_arm_fp16_ok_nocache
{ } {
3607 global et_arm_fp16_flags
3608 set et_arm_fp16_flags
""
3609 if { ! [check_effective_target_arm32
] } {
3613 [list
"" { *-*-* } { "-mfpu=*" } \
3614 { "-mfpu=*fp16*" "-mfpu=*fpv[4-9]*" \
3615 "-mfpu=*fpv[1-9][0-9]*" "-mfpu=*fp-armv8*" } ]] {
3616 # Multilib flags would override
-mfpu.
3619 if [check
-flags
[list
"" { *-*-* } { "-mfloat-abi=soft" } { "" } ]] {
3620 # Must generate floating
-point instructions.
3623 if [check_effective_target_arm_hf_eabi
] {
3624 # Use existing float
-abi and force an fpu which supports fp16
3625 set et_arm_fp16_flags
"-mfpu=vfpv4"
3628 if [check
-flags
[list
"" { *-*-* } { "-mfpu=*" } { "" } ]] {
3629 # The existing
-mfpu value is OK
; use it
, but add softfp.
3630 set et_arm_fp16_flags
"-mfloat-abi=softfp"
3633 # Add
-mfpu
for a VFP fp16 variant since there is no preprocessor
3634 # macro to check
for this support.
3635 set flags
"-mfpu=vfpv4 -mfloat-abi=softfp"
3636 if { [check_no_compiler_messages_nocache arm_fp16_ok assembly
{
3639 set et_arm_fp16_flags
"$flags"
3646 proc check_effective_target_arm_fp16_ok
{ } {
3647 return [check_cached_effective_target arm_fp16_ok \
3648 check_effective_target_arm_fp16_ok_nocache
]
3651 #
Return 1 if the target supports executing VFP FP16 instructions
, 0
3652 # otherwise. This test is valid
for ARM only.
3654 proc check_effective_target_arm_fp16_hw
{ } {
3655 if {! [check_effective_target_arm_fp16_ok
] } {
3658 global et_arm_fp16_flags
3659 check_runtime_nocache arm_fp16_hw
{
3661 main
(int argc
, char
**argv
)
3665 asm
("vcvtb.f32.f16 %0, %1"
3666 : "=w" (r) : "w" (a)
3667 : /* No clobbers.
*/);
3668 return (r
== 1.0) ?
0 : 1;
3670 } "$et_arm_fp16_flags -mfp16-format=ieee"
3673 # Creates a series of routines that
return 1 if the given architecture
3674 # can be selected and a routine to give the flags to select that architecture
3675 # Note
: Extra flags may be added to disable options from newer compilers
3676 #
(Thumb in particular
- but others may be added in the future
).
3677 #
-march
=armv7ve is special and is handled explicitly after this loop because
3678 # it needs more than one predefine check to identify.
3679 # Usage
: /* { dg
-require
-effective
-target arm_arch_v5_ok
} */
3680 #
/* { dg
-add
-options arm_arch_v5
} */
3681 #
/* { dg
-require
-effective
-target arm_arch_v5_multilib
} */
3682 foreach
{ armfunc armflag armdef
} { v4
"-march=armv4 -marm" __ARM_ARCH_4__
3683 v4t
"-march=armv4t" __ARM_ARCH_4T__
3684 v5
"-march=armv5 -marm" __ARM_ARCH_5__
3685 v5t
"-march=armv5t" __ARM_ARCH_5T__
3686 v5te
"-march=armv5te" __ARM_ARCH_5TE__
3687 v6
"-march=armv6" __ARM_ARCH_6__
3688 v6k
"-march=armv6k" __ARM_ARCH_6K__
3689 v6t2
"-march=armv6t2" __ARM_ARCH_6T2__
3690 v6z
"-march=armv6z" __ARM_ARCH_6Z__
3691 v6m
"-march=armv6-m -mthumb" __ARM_ARCH_6M__
3692 v7a
"-march=armv7-a" __ARM_ARCH_7A__
3693 v7r
"-march=armv7-r" __ARM_ARCH_7R__
3694 v7m
"-march=armv7-m -mthumb" __ARM_ARCH_7M__
3695 v7em
"-march=armv7e-m -mthumb" __ARM_ARCH_7EM__
3696 v8a
"-march=armv8-a" __ARM_ARCH_8A__
3697 v8_1a
"-march=armv8.1a" __ARM_ARCH_8A__
3698 v8_2a
"-march=armv8.2a" __ARM_ARCH_8A__
3699 v8m_base
"-march=armv8-m.base -mthumb" __ARM_ARCH_8M_BASE__
3700 v8m_main
"-march=armv8-m.main -mthumb" __ARM_ARCH_8M_MAIN__ } {
3701 eval
[string map
[list FUNC $armfunc FLAG $armflag DEF $armdef
] {
3702 proc check_effective_target_arm_arch_FUNC_ok
{ } {
3703 if { [ string match
"*-marm*" "FLAG" ] &&
3704 ![check_effective_target_arm_arm_ok
] } {
3707 return [check_no_compiler_messages arm_arch_FUNC_ok assembly
{
3714 proc add_options_for_arm_arch_FUNC
{ flags
} {
3715 return "$flags FLAG"
3718 proc check_effective_target_arm_arch_FUNC_multilib
{ } {
3719 return [check_runtime arm_arch_FUNC_multilib
{
3725 } [add_options_for_arm_arch_FUNC
""]]
3730 # Same functions as above but
for -march
=armv7ve. To uniquely identify
3731 #
-march
=armv7ve we need to check
for __ARM_ARCH_7A__ as well as
3732 # __ARM_FEATURE_IDIV otherwise it aliases with armv7
-a.
3734 proc check_effective_target_arm_arch_v7ve_ok
{ } {
3735 if { [ string match
"*-marm*" "-march=armv7ve" ] &&
3736 ![check_effective_target_arm_arm_ok
] } {
3739 return [check_no_compiler_messages arm_arch_v7ve_ok assembly
{
3740 #
if !defined
(__ARM_ARCH_7A__
) ||
!defined
(__ARM_FEATURE_IDIV
)
3743 } "-march=armv7ve" ]
3746 proc add_options_for_arm_arch_v7ve
{ flags
} {
3747 return "$flags -march=armv7ve"
3750 #
Return 1 if this is an ARM target where
-marm causes ARM to be
3753 proc check_effective_target_arm_arm_ok
{ } {
3754 return [check_no_compiler_messages arm_arm_ok assembly
{
3755 #
if !defined
(__arm__
) || defined
(__thumb__
) || defined
(__thumb2__
)
3756 #error
!__arm__ || __thumb__ || __thumb2__
3762 #
Return 1 is this is an ARM target where
-mthumb causes Thumb
-1 to be
3765 proc check_effective_target_arm_thumb1_ok
{ } {
3766 return [check_no_compiler_messages arm_thumb1_ok assembly
{
3767 #
if !defined
(__arm__
) ||
!defined
(__thumb__
) || defined
(__thumb2__
)
3768 #error
!__arm__ ||
!__thumb__ || __thumb2__
3770 int foo
(int i
) { return i
; }
3774 #
Return 1 is this is an ARM target where
-mthumb causes Thumb
-2 to be
3777 proc check_effective_target_arm_thumb2_ok
{ } {
3778 return [check_no_compiler_messages arm_thumb2_ok assembly
{
3779 #
if !defined
(__thumb2__
)
3782 int foo
(int i
) { return i
; }
3786 #
Return 1 if this is an ARM target where Thumb
-1 is used without options
3787 # added by the test.
3789 proc check_effective_target_arm_thumb1
{ } {
3790 return [check_no_compiler_messages arm_thumb1 assembly
{
3791 #
if !defined
(__arm__
) ||
!defined
(__thumb__
) || defined
(__thumb2__
)
3792 #error
!__arm__ ||
!__thumb__ || __thumb2__
3798 #
Return 1 if this is an ARM target where Thumb
-2 is used without options
3799 # added by the test.
3801 proc check_effective_target_arm_thumb2
{ } {
3802 return [check_no_compiler_messages arm_thumb2 assembly
{
3803 #
if !defined
(__thumb2__
)
3810 #
Return 1 if this is an ARM target where conditional execution is available.
3812 proc check_effective_target_arm_cond_exec
{ } {
3813 return [check_no_compiler_messages arm_cond_exec assembly
{
3814 #
if defined
(__arm__
) && defined
(__thumb__
) && !defined
(__thumb2__
)
3821 #
Return 1 if this is an ARM cortex
-M profile cpu
3823 proc check_effective_target_arm_cortex_m
{ } {
3824 if { ![istarget arm
*-*-*] } {
3827 return [check_no_compiler_messages arm_cortex_m assembly
{
3828 #
if defined
(__ARM_ARCH_ISA_ARM
)
3829 #error __ARM_ARCH_ISA_ARM is defined
3835 #
Return 1 if this is an ARM target where
-mthumb causes Thumb
-1 to be
3836 # used and MOVT
/MOVW instructions to be available.
3838 proc check_effective_target_arm_thumb1_movt_ok
{} {
3839 if [check_effective_target_arm_thumb1_ok
] {
3840 return [check_no_compiler_messages arm_movt object
{
3844 asm
("movt r0, #42");
3852 #
Return 1 if this is an ARM target where
-mthumb causes Thumb
-1 to be
3853 # used and CBZ and CBNZ instructions are available.
3855 proc check_effective_target_arm_thumb1_cbz_ok
{} {
3856 if [check_effective_target_arm_thumb1_ok
] {
3857 return [check_no_compiler_messages arm_movt object
{
3861 asm
("cbz r0, 2f\n2:");
3869 #
Return 1 if this compilation turns
on string_ops_prefer_neon
on.
3871 proc check_effective_target_arm_tune_string_ops_prefer_neon
{ } {
3872 return [check_no_messages_and_pattern arm_tune_string_ops_prefer_neon
"@string_ops_prefer_neon:\t1" assembly {
3873 int foo
(void
) { return 0; }
3874 } "-O2 -mprint-tune-info" ]
3877 #
Return 1 if the target supports executing NEON instructions
, 0
3878 # otherwise.
Cache the result.
3880 proc check_effective_target_arm_neon_hw
{ } {
3881 return [check_runtime arm_neon_hw_available
{
3885 long long a
= 0, b
= 1;
3886 asm
("vorr %P0, %P1, %P2"
3888 : "0" (a), "w" (b));
3891 } [add_options_for_arm_neon
""]]
3894 proc check_effective_target_arm_neonv2_hw
{ } {
3895 return [check_runtime arm_neon_hwv2_available
{
3896 #
include "arm_neon.h"
3900 float32x2_t a
, b
, c
;
3901 asm
("vfma.f32 %P0, %P1, %P2"
3903 : "w" (b), "w" (c));
3906 } [add_options_for_arm_neonv2
""]]
3909 #
Return 1 if the target supports the ARMv8.1 Adv.SIMD extension
, 0
3910 # otherwise. The test is valid
for AArch64 and ARM. Record the command
3911 # line options needed.
3913 proc check_effective_target_arm_v8_1a_neon_ok_nocache
{ } {
3914 global et_arm_v8_1a_neon_flags
3915 set et_arm_v8_1a_neon_flags
""
3917 if { ![istarget arm
*-*-*] && ![istarget aarch64
*-*-*] } {
3921 # Iterate through sets of options to find the compiler flags that
3922 # need to be added to the
-march option. Start with the empty
set
3923 # since AArch64 only needs the
-march setting.
3924 foreach flags
{"" "-mfpu=neon-fp-armv8" "-mfloat-abi=softfp" \
3925 "-mfpu=neon-fp-armv8 -mfloat-abi=softfp"} {
3926 if { [check_no_compiler_messages_nocache arm_v8_1a_neon_ok object
{
3927 #
if !defined
(__ARM_FEATURE_QRDMX
)
3928 #error
"__ARM_FEATURE_QRDMX not defined"
3930 } "$flags -march=armv8.1-a"] } {
3931 set et_arm_v8_1a_neon_flags
"$flags -march=armv8.1-a"
3939 proc check_effective_target_arm_v8_1a_neon_ok
{ } {
3940 return [check_cached_effective_target arm_v8_1a_neon_ok \
3941 check_effective_target_arm_v8_1a_neon_ok_nocache
]
3944 #
Return 1 if the target supports ARMv8.2 scalar FP16 arithmetic
3945 # instructions
, 0 otherwise. The test is valid
for ARM and
for AArch64.
3946 # Record the command line options needed.
3948 proc check_effective_target_arm_v8_2a_fp16_scalar_ok_nocache
{ } {
3949 global et_arm_v8_2a_fp16_scalar_flags
3950 set et_arm_v8_2a_fp16_scalar_flags
""
3952 if { ![istarget arm
*-*-*] && ![istarget aarch64
*-*-*] } {
3956 # Iterate through sets of options to find the compiler flags that
3957 # need to be added to the
-march option.
3958 foreach flags
{"" "-mfpu=fp-armv8" "-mfloat-abi=softfp" \
3959 "-mfpu=fp-armv8 -mfloat-abi=softfp"} {
3960 if { [check_no_compiler_messages_nocache \
3961 arm_v8_2a_fp16_scalar_ok object
{
3962 #
if !defined
(__ARM_FEATURE_FP16_SCALAR_ARITHMETIC
)
3963 #error
"__ARM_FEATURE_FP16_SCALAR_ARITHMETIC not defined"
3965 } "$flags -march=armv8.2-a+fp16"] } {
3966 set et_arm_v8_2a_fp16_scalar_flags
"$flags -march=armv8.2-a+fp16"
3974 proc check_effective_target_arm_v8_2a_fp16_scalar_ok
{ } {
3975 return [check_cached_effective_target arm_v8_2a_fp16_scalar_ok \
3976 check_effective_target_arm_v8_2a_fp16_scalar_ok_nocache
]
3979 #
Return 1 if the target supports ARMv8.2 Adv.SIMD FP16 arithmetic
3980 # instructions
, 0 otherwise. The test is valid
for ARM and
for AArch64.
3981 # Record the command line options needed.
3983 proc check_effective_target_arm_v8_2a_fp16_neon_ok_nocache
{ } {
3984 global et_arm_v8_2a_fp16_neon_flags
3985 set et_arm_v8_2a_fp16_neon_flags
""
3987 if { ![istarget arm
*-*-*] && ![istarget aarch64
*-*-*] } {
3991 # Iterate through sets of options to find the compiler flags that
3992 # need to be added to the
-march option.
3993 foreach flags
{"" "-mfpu=neon-fp-armv8" "-mfloat-abi=softfp" \
3994 "-mfpu=neon-fp-armv8 -mfloat-abi=softfp"} {
3995 if { [check_no_compiler_messages_nocache \
3996 arm_v8_2a_fp16_neon_ok object
{
3997 #
if !defined
(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC
)
3998 #error
"__ARM_FEATURE_FP16_VECTOR_ARITHMETIC not defined"
4000 } "$flags -march=armv8.2-a+fp16"] } {
4001 set et_arm_v8_2a_fp16_neon_flags
"$flags -march=armv8.2-a+fp16"
4009 proc check_effective_target_arm_v8_2a_fp16_neon_ok
{ } {
4010 return [check_cached_effective_target arm_v8_2a_fp16_neon_ok \
4011 check_effective_target_arm_v8_2a_fp16_neon_ok_nocache
]
4014 #
Return 1 if the target supports executing ARMv8 NEON instructions
, 0
4017 proc check_effective_target_arm_v8_neon_hw
{ } {
4018 return [check_runtime arm_v8_neon_hw_available
{
4019 #
include "arm_neon.h"
4023 float32x2_t a
= { 1.0f
, 2.0f
};
4024 #ifdef __ARM_ARCH_ISA_A64
4025 asm
("frinta %0.2s, %1.2s"
4029 asm
("vrinta.f32 %P0, %P1"
4033 return a
[0] == 2.0f
;
4035 } [add_options_for_arm_v8_neon
""]]
4038 #
Return 1 if the target supports executing the ARMv8.1 Adv.SIMD extension
, 0
4039 # otherwise. The test is valid
for AArch64 and ARM.
4041 proc check_effective_target_arm_v8_1a_neon_hw
{ } {
4042 if { ![check_effective_target_arm_v8_1a_neon_ok
] } {
4045 return [check_runtime arm_v8_1a_neon_hw_available
{
4049 #ifdef __ARM_ARCH_ISA_A64
4050 __Int32x2_t a
= {0, 1};
4051 __Int32x2_t b
= {0, 2};
4054 asm
("sqrdmlah %0.2s, %1.2s, %2.2s"
4057 : /* No clobbers.
*/);
4061 __simd64_int32_t a
= {0, 1};
4062 __simd64_int32_t b
= {0, 2};
4063 __simd64_int32_t result
;
4065 asm
("vqrdmlah.s32 %P0, %P1, %P2"
4068 : /* No clobbers.
*/);
4073 } [add_options_for_arm_v8_1a_neon
""]]
4076 #
Return 1 if the target supports executing floating point instructions from
4077 # ARMv8.2 with the FP16 extension
, 0 otherwise. The test is valid
for ARM and
4080 proc check_effective_target_arm_v8_2a_fp16_scalar_hw
{ } {
4081 if { ![check_effective_target_arm_v8_2a_fp16_scalar_ok
] } {
4084 return [check_runtime arm_v8_2a_fp16_scalar_hw_available
{
4091 #ifdef __ARM_ARCH_ISA_A64
4093 asm
("fabs %h0, %h1"
4096 : /* No clobbers.
*/);
4100 asm
("vabs.f16 %0, %1"
4103 : /* No clobbers.
*/);
4107 return (result
== 1.0) ?
0 : 1;
4109 } [add_options_for_arm_v8_2a_fp16_scalar
""]]
4112 #
Return 1 if the target supports executing Adv.SIMD instructions from ARMv8.2
4113 # with the FP16 extension
, 0 otherwise. The test is valid
for ARM and
for
4116 proc check_effective_target_arm_v8_2a_fp16_neon_hw
{ } {
4117 if { ![check_effective_target_arm_v8_2a_fp16_neon_ok
] } {
4120 return [check_runtime arm_v8_2a_fp16_neon_hw_available
{
4124 #ifdef __ARM_ARCH_ISA_A64
4126 __Float16x4_t a
= {1.0, -1.0, 1.0, -1.0};
4127 __Float16x4_t result
;
4129 asm
("fabs %0.4h, %1.4h"
4132 : /* No clobbers.
*/);
4136 __simd64_float16_t a
= {1.0, -1.0, 1.0, -1.0};
4137 __simd64_float16_t result
;
4139 asm
("vabs.f16 %P0, %P1"
4142 : /* No clobbers.
*/);
4146 return (result
[0] == 1.0) ?
0 : 1;
4148 } [add_options_for_arm_v8_2a_fp16_neon
""]]
4151 #
Return 1 if this is a ARM target with NEON enabled.
4153 proc check_effective_target_arm_neon
{ } {
4154 if { [check_effective_target_arm32
] } {
4155 return [check_no_compiler_messages arm_neon object
{
4156 #ifndef __ARM_NEON__
4167 proc check_effective_target_arm_neonv2
{ } {
4168 if { [check_effective_target_arm32
] } {
4169 return [check_no_compiler_messages arm_neon object
{
4170 #ifndef __ARM_NEON__
4173 #ifndef __ARM_FEATURE_FMA
4185 #
Return 1 if this is an ARM target with
load acquire and store release
4186 # instructions
for 8-, 16- and
32-bit types.
4188 proc check_effective_target_arm_acq_rel
{ } {
4189 return [check_no_compiler_messages arm_acq_rel object
{
4191 load_acquire_store_release
(void
)
4193 asm
("lda r0, [r1]\n\t"
4199 : : : "r0", "memory");
4204 # Add the options needed
for MIPS Paired
-Single.
4206 proc add_options_for_mpaired_single
{ flags
} {
4207 if { ! [check_effective_target_mpaired_single
] } {
4210 return "$flags -mpaired-single"
4213 # Add the options needed
for MIPS SIMD Architecture.
4215 proc add_options_for_mips_msa
{ flags
} {
4216 if { ! [check_effective_target_mips_msa
] } {
4219 return "$flags -mmsa"
4222 #
Return 1 if this a Loongson
-2E or
-2F target using an ABI that supports
4223 # the Loongson vector modes.
4225 proc check_effective_target_mips_loongson
{ } {
4226 return [check_no_compiler_messages loongson assembly
{
4227 #
if !defined
(__mips_loongson_vector_rev
)
4228 #error
!__mips_loongson_vector_rev
4233 #
Return 1 if this is a MIPS target that supports the legacy NAN.
4235 proc check_effective_target_mips_nanlegacy
{ } {
4236 return [check_no_compiler_messages nanlegacy assembly
{
4238 int main
() { return 0; }
4242 #
Return 1 if an MSA
program can be compiled to object
4244 proc check_effective_target_mips_msa
{ } {
4245 if ![check_effective_target_nomips16
] {
4248 return [check_no_compiler_messages msa object
{
4249 #
if !defined
(__mips_msa
)
4250 #error
"MSA NOT AVAIL"
4252 #
if !(((__mips
== 64) ||
(__mips
== 32)) && (__mips_isa_rev
>= 2))
4253 #error
"MSA NOT AVAIL FOR ISA REV < 2"
4255 #
if !defined
(__mips_hard_float
)
4256 #error
"MSA HARD_FLOAT REQUIRED"
4258 #
if __mips_fpr
!= 64
4259 #error
"MSA 64-bit FPR REQUIRED"
4265 v8i16 v
= __builtin_msa_ldi_h
(1);
4273 #
Return 1 if this is an ARM target that adheres to the ABI
for the ARM
4276 proc check_effective_target_arm_eabi
{ } {
4277 return [check_no_compiler_messages arm_eabi object
{
4278 #ifndef __ARM_EABI__
4286 #
Return 1 if this is an ARM target that adheres to the hard
-float variant of
4287 # the ABI
for the ARM Architecture
(e.g.
-mfloat
-abi
=hard
).
4289 proc check_effective_target_arm_hf_eabi
{ } {
4290 return [check_no_compiler_messages arm_hf_eabi object
{
4291 #
if !defined
(__ARM_EABI__
) ||
!defined
(__ARM_PCS_VFP
)
4292 #error not hard
-float EABI
4299 #
Return 1 if this is an ARM target supporting
-mcpu
=iwmmxt.
4300 # Some multilibs may be incompatible with this option.
4302 proc check_effective_target_arm_iwmmxt_ok
{ } {
4303 if { [check_effective_target_arm32
] } {
4304 return [check_no_compiler_messages arm_iwmmxt_ok object
{
4312 #
Return true
if LDRD
/STRD instructions are prefered over LDM
/STM instructions
4313 #
for an ARM target.
4314 proc check_effective_target_arm_prefer_ldrd_strd
{ } {
4315 if { ![check_effective_target_arm32
] } {
4319 return [check_no_messages_and_pattern arm_prefer_ldrd_strd
"strd\tr" assembly {
4320 void foo
(int *p
) { p
[0] = 1; p
[1] = 0;}
4324 #
Return 1 if this is a PowerPC target supporting
-meabi.
4326 proc check_effective_target_powerpc_eabi_ok
{ } {
4327 if { [istarget powerpc
*-*-*] } {
4328 return [check_no_compiler_messages powerpc_eabi_ok object
{
4336 #
Return 1 if this is a PowerPC target with floating
-point registers.
4338 proc check_effective_target_powerpc_fprs
{ } {
4339 if { [istarget powerpc
*-*-*]
4340 ||
[istarget rs6000
-*-*] } {
4341 return [check_no_compiler_messages powerpc_fprs object
{
4353 #
Return 1 if this is a PowerPC target with hardware double
-precision
4356 proc check_effective_target_powerpc_hard_double
{ } {
4357 if { [istarget powerpc
*-*-*]
4358 ||
[istarget rs6000
-*-*] } {
4359 return [check_no_compiler_messages powerpc_hard_double object
{
4371 #
Return 1 if this is a PowerPC target supporting
-maltivec.
4373 proc check_effective_target_powerpc_altivec_ok
{ } {
4374 if { ([istarget powerpc
*-*-*]
4375 && ![istarget powerpc
-*-linux
*paired
*])
4376 ||
[istarget rs6000
-*-*] } {
4377 # AltiVec is not supported
on AIX before
5.3.
4378 if { [istarget powerpc
*-*-aix4
*]
4379 ||
[istarget powerpc
*-*-aix5.1
*]
4380 ||
[istarget powerpc
*-*-aix5.2
*] } {
4383 return [check_no_compiler_messages powerpc_altivec_ok object
{
4391 #
Return 1 if this is a PowerPC target supporting
-mpower8
-vector
4393 proc check_effective_target_powerpc_p8vector_ok
{ } {
4394 if { ([istarget powerpc
*-*-*]
4395 && ![istarget powerpc
-*-linux
*paired
*])
4396 ||
[istarget rs6000
-*-*] } {
4397 # AltiVec is not supported
on AIX before
5.3.
4398 if { [istarget powerpc
*-*-aix4
*]
4399 ||
[istarget powerpc
*-*-aix5.1
*]
4400 ||
[istarget powerpc
*-*-aix5.2
*] } {
4403 return [check_no_compiler_messages powerpc_p8vector_ok object
{
4406 asm volatile
("xxlorc vs0,vs0,vs0");
4408 asm volatile
("xxlorc 0,0,0");
4412 } "-mpower8-vector"]
4418 #
Return 1 if this is a PowerPC target supporting
-mpower9
-vector
4420 proc check_effective_target_powerpc_p9vector_ok
{ } {
4421 if { ([istarget powerpc
*-*-*]
4422 && ![istarget powerpc
-*-linux
*paired
*])
4423 ||
[istarget rs6000
-*-*] } {
4424 # AltiVec is not supported
on AIX before
5.3.
4425 if { [istarget powerpc
*-*-aix4
*]
4426 ||
[istarget powerpc
*-*-aix5.1
*]
4427 ||
[istarget powerpc
*-*-aix5.2
*] } {
4430 return [check_no_compiler_messages powerpc_p9vector_ok object
{
4433 vector double v
= (vector double
) { 0.0, 0.0 };
4434 asm
("xsxexpdp %0,%1" : "+r" (e) : "wa" (v));
4437 } "-mpower9-vector"]
4443 #
Return 1 if this is a PowerPC target supporting
-mmodulo
4445 proc check_effective_target_powerpc_p9modulo_ok
{ } {
4446 if { ([istarget powerpc
*-*-*]
4447 && ![istarget powerpc
-*-linux
*paired
*])
4448 ||
[istarget rs6000
-*-*] } {
4449 # AltiVec is not supported
on AIX before
5.3.
4450 if { [istarget powerpc
*-*-aix4
*]
4451 ||
[istarget powerpc
*-*-aix5.1
*]
4452 ||
[istarget powerpc
*-*-aix5.2
*] } {
4455 return [check_no_compiler_messages powerpc_p9modulo_ok object
{
4457 int i
= 5, j
= 3, r
= -1;
4458 asm
("modsw %0,%1,%2" : "+r" (r) : "r" (i), "r" (j));
4467 #
Return 1 if this is a PowerPC target supporting
-mfloat128 via either
4468 # software emulation
on power7
/power8 systems or hardware support
on power9.
4470 proc check_effective_target_powerpc_float128_sw_ok
{ } {
4471 if { ([istarget powerpc
*-*-*]
4472 && ![istarget powerpc
-*-linux
*paired
*])
4473 ||
[istarget rs6000
-*-*] } {
4474 # AltiVec is not supported
on AIX before
5.3.
4475 if { [istarget powerpc
*-*-aix4
*]
4476 ||
[istarget powerpc
*-*-aix5.1
*]
4477 ||
[istarget powerpc
*-*-aix5.2
*] } {
4480 return [check_no_compiler_messages powerpc_float128_sw_ok object
{
4481 volatile __float128 x
= 1.0q
;
4482 volatile __float128 y
= 2.0q
;
4484 __float128 z
= x
+ y
;
4487 } "-mfloat128 -mvsx"]
4493 #
Return 1 if this is a PowerPC target supporting
-mfloat128 via hardware
4494 # support
on power9.
4496 proc check_effective_target_powerpc_float128_hw_ok
{ } {
4497 if { ([istarget powerpc
*-*-*]
4498 && ![istarget powerpc
-*-linux
*paired
*])
4499 ||
[istarget rs6000
-*-*] } {
4500 # AltiVec is not supported
on AIX before
5.3.
4501 if { [istarget powerpc
*-*-aix4
*]
4502 ||
[istarget powerpc
*-*-aix5.1
*]
4503 ||
[istarget powerpc
*-*-aix5.2
*] } {
4506 return [check_no_compiler_messages powerpc_float128_hw_ok object
{
4507 volatile __float128 x
= 1.0q
;
4508 volatile __float128 y
= 2.0q
;
4511 __asm__
("xsaddqp %0,%1,%2" : "=v" (z) : "v" (x), "v" (y));
4514 } "-mfloat128-hardware"]
4520 #
Return 1 if this is a PowerPC target supporting
-mvsx
4522 proc check_effective_target_powerpc_vsx_ok
{ } {
4523 if { ([istarget powerpc
*-*-*]
4524 && ![istarget powerpc
-*-linux
*paired
*])
4525 ||
[istarget rs6000
-*-*] } {
4526 # VSX is not supported
on AIX before
7.1.
4527 if { [istarget powerpc
*-*-aix4
*]
4528 ||
[istarget powerpc
*-*-aix5
*]
4529 ||
[istarget powerpc
*-*-aix6
*] } {
4532 return [check_no_compiler_messages powerpc_vsx_ok object
{
4535 asm volatile
("xxlor vs0,vs0,vs0");
4537 asm volatile
("xxlor 0,0,0");
4547 #
Return 1 if this is a PowerPC target supporting
-mhtm
4549 proc check_effective_target_powerpc_htm_ok
{ } {
4550 if { ([istarget powerpc
*-*-*]
4551 && ![istarget powerpc
-*-linux
*paired
*])
4552 ||
[istarget rs6000
-*-*] } {
4553 # HTM is not supported
on AIX yet.
4554 if { [istarget powerpc
*-*-aix
*] } {
4557 return [check_no_compiler_messages powerpc_htm_ok object
{
4559 asm volatile
("tbegin. 0");
4568 #
Return 1 if the target supports executing HTM hardware instructions
,
4569 #
0 otherwise.
Cache the result.
4571 proc check_htm_hw_available
{ } {
4572 return [check_cached_effective_target htm_hw_available
{
4573 #
For now
, disable
on Darwin
4574 if { [istarget powerpc
-*-eabi
] ||
[istarget powerpc
*-*-eabispe
] ||
[istarget
*-*-darwin
*]} {
4577 check_runtime_nocache htm_hw_available
{
4587 #
Return 1 if this is a PowerPC target supporting
-mcpu
=cell.
4589 proc check_effective_target_powerpc_ppu_ok
{ } {
4590 if [check_effective_target_powerpc_altivec_ok
] {
4591 return [check_no_compiler_messages cell_asm_available object
{
4594 asm volatile
("lvlx v0,v0,v0");
4596 asm volatile
("lvlx 0,0,0");
4606 #
Return 1 if this is a PowerPC target that supports SPU.
4608 proc check_effective_target_powerpc_spu
{ } {
4609 if { [istarget powerpc
*-*-linux
*] } {
4610 return [check_effective_target_powerpc_altivec_ok
]
4616 #
Return 1 if this is a PowerPC SPE target. The check includes options
4617 # specified by dg
-options
for this test
, so don
't cache the result.
4619 proc check_effective_target_powerpc_spe_nocache { } {
4620 if { [istarget powerpc*-*-*] } {
4621 return [check_no_compiler_messages_nocache powerpc_spe object {
4627 } [current_compiler_flags]]
4633 # Return 1 if this is a PowerPC target with SPE enabled.
4635 proc check_effective_target_powerpc_spe { } {
4636 if { [istarget powerpc*-*-*] } {
4637 return [check_no_compiler_messages powerpc_spe object {
4649 # Return 1 if this is a PowerPC target with Altivec enabled.
4651 proc check_effective_target_powerpc_altivec { } {
4652 if { [istarget powerpc*-*-*] } {
4653 return [check_no_compiler_messages powerpc_altivec object {
4665 # Return 1 if this is a PowerPC 405 target. The check includes options
4666 # specified by dg-options for this test, so don't
cache the result.
4668 proc check_effective_target_powerpc_405_nocache
{ } {
4669 if { [istarget powerpc
*-*-*] ||
[istarget rs6000
-*-*] } {
4670 return [check_no_compiler_messages_nocache powerpc_405 object
{
4676 } [current_compiler_flags
]]
4682 #
Return 1 if this is a PowerPC target using the ELFv2 ABI.
4684 proc check_effective_target_powerpc_elfv2
{ } {
4685 if { [istarget powerpc
*-*-*] } {
4686 return [check_no_compiler_messages powerpc_elfv2 object
{
4688 #error not ELF v2 ABI
4698 #
Return 1 if this is a SPU target with a toolchain that
4699 # supports automatic overlay generation.
4701 proc check_effective_target_spu_auto_overlay
{ } {
4702 if { [istarget spu
*-*-elf
*] } {
4703 return [check_no_compiler_messages spu_auto_overlay executable
{
4705 } "-Wl,--auto-overlay" ]
4711 # The VxWorks SPARC simulator accepts only EM_SPARC executables and
4712 # chokes
on EM_SPARC32PLUS or EM_SPARCV9 executables.
Return 1 if the
4713 # test environment appears to run executables
on such a simulator.
4715 proc check_effective_target_ultrasparc_hw
{ } {
4716 return [check_runtime ultrasparc_hw
{
4717 int main
() { return 0; }
4718 } "-mcpu=ultrasparc"]
4721 #
Return 1 if the test environment supports executing UltraSPARC VIS2
4722 # instructions. We check this by attempting
: "bmask %g0, %g0, %g0"
4724 proc check_effective_target_ultrasparc_vis2_hw
{ } {
4725 return [check_runtime ultrasparc_vis2_hw
{
4726 int main
() { __asm__
(".word 0x81b00320"); return 0; }
4727 } "-mcpu=ultrasparc3"]
4730 #
Return 1 if the test environment supports executing UltraSPARC VIS3
4731 # instructions. We check this by attempting
: "addxc %g0, %g0, %g0"
4733 proc check_effective_target_ultrasparc_vis3_hw
{ } {
4734 return [check_runtime ultrasparc_vis3_hw
{
4735 int main
() { __asm__
(".word 0x81b00220"); return 0; }
4739 #
Return 1 if this is a SPARC
-V9 target.
4741 proc check_effective_target_sparc_v9
{ } {
4742 if { [istarget sparc
*-*-*] } {
4743 return [check_no_compiler_messages sparc_v9 object
{
4745 asm volatile
("return %i7+8");
4754 #
Return 1 if this is a SPARC target with VIS enabled.
4756 proc check_effective_target_sparc_vis
{ } {
4757 if { [istarget sparc
*-*-*] } {
4758 return [check_no_compiler_messages sparc_vis object
{
4770 #
Return 1 if the target supports hardware vector shift operation.
4772 proc check_effective_target_vect_shift
{ } {
4773 global et_vect_shift_saved
4776 if [info exists et_vect_shift_saved
($et_index
)] {
4777 verbose
"check_effective_target_vect_shift: using cached result" 2
4779 set et_vect_shift_saved
($et_index
) 0
4780 if { ([istarget powerpc
*-*-*]
4781 && ![istarget powerpc
-*-linux
*paired
*])
4782 ||
[istarget ia64
-*-*]
4783 ||
[istarget i?
86-*-*] ||
[istarget x86_64
-*-*]
4784 ||
[istarget aarch64
*-*-*]
4785 ||
[check_effective_target_arm32
]
4786 ||
([istarget mips
*-*-*]
4787 && ([et
-is
-effective
-target mips_msa
]
4788 ||
[et
-is
-effective
-target mips_loongson
])) } {
4789 set et_vect_shift_saved
($et_index
) 1
4793 verbose
"check_effective_target_vect_shift:\
4794 returning $et_vect_shift_saved
($et_index
)" 2
4795 return $et_vect_shift_saved
($et_index
)
4798 proc check_effective_target_whole_vector_shift
{ } {
4799 if { [istarget i?
86-*-*] ||
[istarget x86_64
-*-*]
4800 ||
[istarget ia64
-*-*]
4801 ||
[istarget aarch64
*-*-*]
4802 ||
[istarget powerpc64
*-*-*]
4803 ||
([check_effective_target_arm32
]
4804 && [check_effective_target_arm_little_endian
])
4805 ||
([istarget mips
*-*-*]
4806 && [et
-is
-effective
-target mips_loongson
]) } {
4812 verbose
"check_effective_target_vect_long: returning $answer" 2
4816 #
Return 1 if the target supports vector bswap operations.
4818 proc check_effective_target_vect_bswap
{ } {
4819 global et_vect_bswap_saved
4822 if [info exists et_vect_bswap_saved
($et_index
)] {
4823 verbose
"check_effective_target_vect_bswap: using cached result" 2
4825 set et_vect_bswap_saved
($et_index
) 0
4826 if { [istarget aarch64
*-*-*]
4827 ||
([istarget arm
*-*-*]
4828 && [check_effective_target_arm_neon
])
4830 set et_vect_bswap_saved
($et_index
) 1
4834 verbose
"check_effective_target_vect_bswap:\
4835 returning $et_vect_bswap_saved
($et_index
)" 2
4836 return $et_vect_bswap_saved
($et_index
)
4839 #
Return 1 if the target supports hardware vector shift operation
for char.
4841 proc check_effective_target_vect_shift_char
{ } {
4842 global et_vect_shift_char_saved
4845 if [info exists et_vect_shift_char_saved
($et_index
)] {
4846 verbose
"check_effective_target_vect_shift_char: using cached result" 2
4848 set et_vect_shift_char_saved
($et_index
) 0
4849 if { ([istarget powerpc
*-*-*]
4850 && ![istarget powerpc
-*-linux
*paired
*])
4851 ||
[check_effective_target_arm32
]
4852 ||
([istarget mips
*-*-*]
4853 && [et
-is
-effective
-target mips_msa
]) } {
4854 set et_vect_shift_char_saved
($et_index
) 1
4858 verbose
"check_effective_target_vect_shift_char:\
4859 returning $et_vect_shift_char_saved
($et_index
)" 2
4860 return $et_vect_shift_char_saved
($et_index
)
4863 #
Return 1 if the target supports hardware vectors of long
, 0 otherwise.
4865 # This can change
for different subtargets so
do not
cache the result.
4867 proc check_effective_target_vect_long
{ } {
4868 if { [istarget i?
86-*-*] ||
[istarget x86_64
-*-*]
4869 ||
(([istarget powerpc
*-*-*]
4870 && ![istarget powerpc
-*-linux
*paired
*])
4871 && [check_effective_target_ilp32
])
4872 ||
[check_effective_target_arm32
]
4873 ||
([istarget sparc
*-*-*] && [check_effective_target_ilp32
])
4874 ||
[istarget aarch64
*-*-*]
4875 ||
([istarget mips
*-*-*]
4876 && [et
-is
-effective
-target mips_msa
]) } {
4882 verbose
"check_effective_target_vect_long: returning $answer" 2
4886 #
Return 1 if the target supports hardware vectors of float
, 0 otherwise.
4888 # This won
't change for different subtargets so cache the result.
4890 proc check_effective_target_vect_float { } {
4891 global et_vect_float_saved
4894 if [info exists et_vect_float_saved($et_index)] {
4895 verbose "check_effective_target_vect_float: using cached result" 2
4897 set et_vect_float_saved($et_index) 0
4898 if { [istarget i?86-*-*] || [istarget x86_64-*-*]
4899 || [istarget powerpc*-*-*]
4900 || [istarget spu-*-*]
4901 || [istarget mips-sde-elf]
4902 || [istarget mipsisa64*-*-*]
4903 || [istarget ia64-*-*]
4904 || [istarget aarch64*-*-*]
4905 || ([istarget mips*-*-*]
4906 && [et-is-effective-target mips_msa])
4907 || [check_effective_target_arm32] } {
4908 set et_vect_float_saved($et_index) 1
4912 verbose "check_effective_target_vect_float:\
4913 returning $et_vect_float_saved($et_index)" 2
4914 return $et_vect_float_saved($et_index)
4917 # Return 1 if the target supports hardware vectors of double, 0 otherwise.
4919 # This won't change
for different subtargets so
cache the result.
4921 proc check_effective_target_vect_double
{ } {
4922 global et_vect_double_saved
4925 if [info exists et_vect_double_saved
($et_index
)] {
4926 verbose
"check_effective_target_vect_double: using cached result" 2
4928 set et_vect_double_saved
($et_index
) 0
4929 if { [istarget i?
86-*-*] ||
[istarget x86_64
-*-*]
4930 ||
[istarget aarch64
*-*-*] } {
4931 if { [check_no_compiler_messages vect_double assembly
{
4932 #ifdef __tune_atom__
4933 # error No double vectorizer support.
4936 set et_vect_double_saved
($et_index
) 1
4938 set et_vect_double_saved
($et_index
) 0
4940 } elseif
{ [istarget spu
-*-*]
4941 ||
([istarget powerpc
*-*-*] && [check_vsx_hw_available
])
4942 ||
([istarget mips
*-*-*]
4943 && [et
-is
-effective
-target mips_msa
]) } {
4944 set et_vect_double_saved
($et_index
) 1
4948 verbose
"check_effective_target_vect_double:\
4949 returning $et_vect_double_saved
($et_index
)" 2
4950 return $et_vect_double_saved
($et_index
)
4953 #
Return 1 if the target supports hardware vectors of long long
, 0 otherwise.
4955 # This won
't change for different subtargets so cache the result.
4957 proc check_effective_target_vect_long_long { } {
4958 global et_vect_long_long_saved
4961 if [info exists et_vect_long_long_saved($et_index)] {
4962 verbose "check_effective_target_vect_long_long: using cached result" 2
4964 set et_vect_long_long_saved($et_index) 0
4965 if { [istarget i?86-*-*] || [istarget x86_64-*-*]
4966 || ([istarget mips*-*-*]
4967 && [et-is-effective-target mips_msa]) } {
4968 set et_vect_long_long_saved($et_index) 1
4972 verbose "check_effective_target_vect_long_long:\
4973 returning $et_vect_long_long_saved($et_index)" 2
4974 return $et_vect_long_long_saved($et_index)
4978 # Return 1 if the target plus current options does not support a vector
4979 # max instruction on "int", 0 otherwise.
4981 # This won't change
for different subtargets so
cache the result.
4983 proc check_effective_target_vect_no_int_min_max
{ } {
4984 global et_vect_no_int_min_max_saved
4987 if [info exists et_vect_no_int_min_max_saved
($et_index
)] {
4988 verbose
"check_effective_target_vect_no_int_min_max:\
4989 using cached result
" 2
4991 set et_vect_no_int_min_max_saved
($et_index
) 0
4992 if { [istarget sparc
*-*-*]
4993 ||
[istarget spu
-*-*]
4994 ||
[istarget alpha
*-*-*]
4995 ||
([istarget mips
*-*-*]
4996 && [et
-is
-effective
-target mips_loongson
]) } {
4997 set et_vect_no_int_min_max_saved
($et_index
) 1
5000 verbose
"check_effective_target_vect_no_int_min_max:\
5001 returning $et_vect_no_int_min_max_saved
($et_index
)" 2
5002 return $et_vect_no_int_min_max_saved
($et_index
)
5005 #
Return 1 if the target plus current options does not support a vector
5006 # add instruction
on "int", 0 otherwise.
5008 # This won
't change for different subtargets so cache the result.
5010 proc check_effective_target_vect_no_int_add { } {
5011 global et_vect_no_int_add_saved
5014 if [info exists et_vect_no_int_add_saved($et_index)] {
5015 verbose "check_effective_target_vect_no_int_add: using cached result" 2
5017 set et_vect_no_int_add_saved($et_index) 0
5018 # Alpha only supports vector add on V8QI and V4HI.
5019 if { [istarget alpha*-*-*] } {
5020 set et_vect_no_int_add_saved($et_index) 1
5023 verbose "check_effective_target_vect_no_int_add:\
5024 returning $et_vect_no_int_add_saved($et_index)" 2
5025 return $et_vect_no_int_add_saved($et_index)
5028 # Return 1 if the target plus current options does not support vector
5029 # bitwise instructions, 0 otherwise.
5031 # This won't change
for different subtargets so
cache the result.
5033 proc check_effective_target_vect_no_bitwise
{ } {
5034 global et_vect_no_bitwise_saved
5037 if [info exists et_vect_no_bitwise_saved
($et_index
)] {
5038 verbose
"check_effective_target_vect_no_bitwise: using cached result" 2
5040 set et_vect_no_bitwise_saved
($et_index
) 0
5042 verbose
"check_effective_target_vect_no_bitwise:\
5043 returning $et_vect_no_bitwise_saved
($et_index
)" 2
5044 return $et_vect_no_bitwise_saved
($et_index
)
5047 #
Return 1 if the target plus current options supports vector permutation
,
5050 # This won
't change for different subtargets so cache the result.
5052 proc check_effective_target_vect_perm { } {
5053 global et_vect_perm_saved
5056 if [info exists et_vect_perm_saved($et_index)] {
5057 verbose "check_effective_target_vect_perm: using cached result" 2
5059 set et_vect_perm_saved($et_index) 0
5060 if { [is-effective-target arm_neon_ok]
5061 || [istarget aarch64*-*-*]
5062 || [istarget powerpc*-*-*]
5063 || [istarget spu-*-*]
5064 || [istarget i?86-*-*] || [istarget x86_64-*-*]
5065 || ([istarget mips*-*-*]
5066 && ([et-is-effective-target mpaired_single]
5067 || [et-is-effective-target mips_msa])) } {
5068 set et_vect_perm_saved($et_index) 1
5071 verbose "check_effective_target_vect_perm:\
5072 returning $et_vect_perm_saved($et_index)" 2
5073 return $et_vect_perm_saved($et_index)
5076 # Return 1 if the target plus current options supports vector permutation
5077 # on byte-sized elements, 0 otherwise.
5079 # This won't change
for different subtargets so
cache the result.
5081 proc check_effective_target_vect_perm_byte
{ } {
5082 global et_vect_perm_byte_saved
5085 if [info exists et_vect_perm_byte_saved
($et_index
)] {
5086 verbose
"check_effective_target_vect_perm_byte: using cached result" 2
5088 set et_vect_perm_byte_saved
($et_index
) 0
5089 if { ([is
-effective
-target arm_neon_ok
]
5090 && [is
-effective
-target arm_little_endian
])
5091 ||
([istarget aarch64
*-*-*]
5092 && [is
-effective
-target aarch64_little_endian
])
5093 ||
[istarget powerpc
*-*-*]
5094 ||
[istarget spu
-*-*]
5095 ||
([istarget mips
-*.
*]
5096 && [et
-is
-effective
-target mips_msa
]) } {
5097 set et_vect_perm_byte_saved
($et_index
) 1
5100 verbose
"check_effective_target_vect_perm_byte:\
5101 returning $et_vect_perm_byte_saved
($et_index
)" 2
5102 return $et_vect_perm_byte_saved
($et_index
)
5105 #
Return 1 if the target plus current options supports vector permutation
5106 #
on short
-sized elements
, 0 otherwise.
5108 # This won
't change for different subtargets so cache the result.
5110 proc check_effective_target_vect_perm_short { } {
5111 global et_vect_perm_short_saved
5114 if [info exists et_vect_perm_short_saved($et_index)] {
5115 verbose "check_effective_target_vect_perm_short: using cached result" 2
5117 set et_vect_perm_short_saved($et_index) 0
5118 if { ([is-effective-target arm_neon_ok]
5119 && [is-effective-target arm_little_endian])
5120 || ([istarget aarch64*-*-*]
5121 && [is-effective-target aarch64_little_endian])
5122 || [istarget powerpc*-*-*]
5123 || [istarget spu-*-*]
5124 || ([istarget mips*-*-*]
5125 && [et-is-effective-target mips_msa]) } {
5126 set et_vect_perm_short_saved($et_index) 1
5129 verbose "check_effective_target_vect_perm_short:\
5130 returning $et_vect_perm_short_saved($et_index)" 2
5131 return $et_vect_perm_short_saved($et_index)
5134 # Return 1 if the target plus current options supports a vector
5135 # widening summation of *short* args into *int* result, 0 otherwise.
5137 # This won't change
for different subtargets so
cache the result.
5139 proc check_effective_target_vect_widen_sum_hi_to_si_pattern
{ } {
5140 global et_vect_widen_sum_hi_to_si_pattern_saved
5143 if [info exists et_vect_widen_sum_hi_to_si_pattern_saved
($et_index
)] {
5144 verbose
"check_effective_target_vect_widen_sum_hi_to_si_pattern:\
5145 using cached result
" 2
5147 set et_vect_widen_sum_hi_to_si_pattern_saved
($et_index
) 0
5148 if { [istarget powerpc
*-*-*]
5149 ||
[istarget aarch64
*-*-*]
5150 ||
([istarget arm
*-*-*] &&
5151 [check_effective_target_arm_neon_ok
])
5152 ||
[istarget ia64
-*-*] } {
5153 set et_vect_widen_sum_hi_to_si_pattern_saved
($et_index
) 1
5156 verbose
"check_effective_target_vect_widen_sum_hi_to_si_pattern:\
5157 returning $et_vect_widen_sum_hi_to_si_pattern_saved
($et_index
)" 2
5158 return $et_vect_widen_sum_hi_to_si_pattern_saved
($et_index
)
5161 #
Return 1 if the target plus current options supports a vector
5162 # widening summation of
*short
* args into
*int* result
, 0 otherwise.
5163 # A target can also support this widening summation
if it can support
5164 # promotion
(unpacking
) from shorts to ints.
5166 # This won
't change for different subtargets so cache the result.
5168 proc check_effective_target_vect_widen_sum_hi_to_si { } {
5169 global et_vect_widen_sum_hi_to_si_saved
5172 if [info exists et_vect_widen_sum_hi_to_si_saved($et_index)] {
5173 verbose "check_effective_target_vect_widen_sum_hi_to_si:\
5174 using cached result" 2
5176 set et_vect_widen_sum_hi_to_si_saved($et_index) \
5177 [check_effective_target_vect_unpack]
5178 if { [istarget powerpc*-*-*]
5179 || [istarget ia64-*-*] } {
5180 set et_vect_widen_sum_hi_to_si_saved($et_index) 1
5183 verbose "check_effective_target_vect_widen_sum_hi_to_si:\
5184 returning $et_vect_widen_sum_hi_to_si_saved($et_index)" 2
5185 return $et_vect_widen_sum_hi_to_si_saved($et_index)
5188 # Return 1 if the target plus current options supports a vector
5189 # widening summation of *char* args into *short* result, 0 otherwise.
5190 # A target can also support this widening summation if it can support
5191 # promotion (unpacking) from chars to shorts.
5193 # This won't change
for different subtargets so
cache the result.
5195 proc check_effective_target_vect_widen_sum_qi_to_hi
{ } {
5196 global et_vect_widen_sum_qi_to_hi_saved
5199 if [info exists et_vect_widen_sum_qi_to_hi_saved
($et_index
)] {
5200 verbose
"check_effective_target_vect_widen_sum_qi_to_hi:\
5201 using cached result
" 2
5203 set et_vect_widen_sum_qi_to_hi_saved
($et_index
) 0
5204 if { [check_effective_target_vect_unpack
]
5205 ||
[check_effective_target_arm_neon_ok
]
5206 ||
[istarget ia64
-*-*] } {
5207 set et_vect_widen_sum_qi_to_hi_saved
($et_index
) 1
5210 verbose
"check_effective_target_vect_widen_sum_qi_to_hi:\
5211 returning $et_vect_widen_sum_qi_to_hi_saved
($et_index
)" 2
5212 return $et_vect_widen_sum_qi_to_hi_saved
($et_index
)
5215 #
Return 1 if the target plus current options supports a vector
5216 # widening summation of
*char
* args into
*int* result
, 0 otherwise.
5218 # This won
't change for different subtargets so cache the result.
5220 proc check_effective_target_vect_widen_sum_qi_to_si { } {
5221 global et_vect_widen_sum_qi_to_si_saved
5224 if [info exists et_vect_widen_sum_qi_to_si_saved($et_index)] {
5225 verbose "check_effective_target_vect_widen_sum_qi_to_si:\
5226 using cached result" 2
5228 set et_vect_widen_sum_qi_to_si_saved($et_index) 0
5229 if { [istarget powerpc*-*-*] } {
5230 set et_vect_widen_sum_qi_to_si_saved($et_index) 1
5233 verbose "check_effective_target_vect_widen_sum_qi_to_si:\
5234 returning $et_vect_widen_sum_qi_to_si_saved($et_index)" 2
5235 return $et_vect_widen_sum_qi_to_si_saved($et_index)
5238 # Return 1 if the target plus current options supports a vector
5239 # widening multiplication of *char* args into *short* result, 0 otherwise.
5240 # A target can also support this widening multplication if it can support
5241 # promotion (unpacking) from chars to shorts, and vect_short_mult (non-widening
5242 # multiplication of shorts).
5244 # This won't change
for different subtargets so
cache the result.
5247 proc check_effective_target_vect_widen_mult_qi_to_hi
{ } {
5248 global et_vect_widen_mult_qi_to_hi_saved
5251 if [info exists et_vect_widen_mult_qi_to_hi_saved
($et_index
)] {
5252 verbose
"check_effective_target_vect_widen_mult_qi_to_hi:\
5253 using cached result
" 2
5255 if { [check_effective_target_vect_unpack
]
5256 && [check_effective_target_vect_short_mult
] } {
5257 set et_vect_widen_mult_qi_to_hi_saved
($et_index
) 1
5259 set et_vect_widen_mult_qi_to_hi_saved
($et_index
) 0
5261 if { [istarget powerpc
*-*-*]
5262 ||
[istarget aarch64
*-*-*]
5263 ||
([istarget arm
*-*-*] && [check_effective_target_arm_neon_ok
]) } {
5264 set et_vect_widen_mult_qi_to_hi_saved
($et_index
) 1
5267 verbose
"check_effective_target_vect_widen_mult_qi_to_hi:\
5268 returning $et_vect_widen_mult_qi_to_hi_saved
($et_index
)" 2
5269 return $et_vect_widen_mult_qi_to_hi_saved
($et_index
)
5272 #
Return 1 if the target plus current options supports a vector
5273 # widening multiplication of
*short
* args into
*int* result
, 0 otherwise.
5274 # A target can also support this widening multplication
if it can support
5275 # promotion
(unpacking
) from shorts to ints
, and vect_int_mult
(non
-widening
5276 # multiplication of ints
).
5278 # This won
't change for different subtargets so cache the result.
5281 proc check_effective_target_vect_widen_mult_hi_to_si { } {
5282 global et_vect_widen_mult_hi_to_si_saved
5285 if [info exists et_vect_widen_mult_hi_to_si_saved($et_index)] {
5286 verbose "check_effective_target_vect_widen_mult_hi_to_si:\
5287 using cached result" 2
5289 if { [check_effective_target_vect_unpack]
5290 && [check_effective_target_vect_int_mult] } {
5291 set et_vect_widen_mult_hi_to_si_saved($et_index) 1
5293 set et_vect_widen_mult_hi_to_si_saved($et_index) 0
5295 if { [istarget powerpc*-*-*]
5296 || [istarget spu-*-*]
5297 || [istarget ia64-*-*]
5298 || [istarget aarch64*-*-*]
5299 || [istarget i?86-*-*] || [istarget x86_64-*-*]
5300 || ([istarget arm*-*-*]
5301 && [check_effective_target_arm_neon_ok]) } {
5302 set et_vect_widen_mult_hi_to_si_saved($et_index) 1
5305 verbose "check_effective_target_vect_widen_mult_hi_to_si:\
5306 returning $et_vect_widen_mult_hi_to_si_saved($et_index)" 2
5307 return $et_vect_widen_mult_hi_to_si_saved($et_index)
5310 # Return 1 if the target plus current options supports a vector
5311 # widening multiplication of *char* args into *short* result, 0 otherwise.
5313 # This won't change
for different subtargets so
cache the result.
5315 proc check_effective_target_vect_widen_mult_qi_to_hi_pattern
{ } {
5316 global et_vect_widen_mult_qi_to_hi_pattern_saved
5319 if [info exists et_vect_widen_mult_qi_to_hi_pattern_saved
($et_index
)] {
5320 verbose
"check_effective_target_vect_widen_mult_qi_to_hi_pattern:\
5321 using cached result
" 2
5323 set et_vect_widen_mult_qi_to_hi_pattern_saved
($et_index
) 0
5324 if { [istarget powerpc
*-*-*]
5325 ||
([istarget arm
*-*-*]
5326 && [check_effective_target_arm_neon_ok
]
5327 && [check_effective_target_arm_little_endian
]) } {
5328 set et_vect_widen_mult_qi_to_hi_pattern_saved
($et_index
) 1
5331 verbose
"check_effective_target_vect_widen_mult_qi_to_hi_pattern:\
5332 returning $et_vect_widen_mult_qi_to_hi_pattern_saved
($et_index
)" 2
5333 return $et_vect_widen_mult_qi_to_hi_pattern_saved
($et_index
)
5336 #
Return 1 if the target plus current options supports a vector
5337 # widening multiplication of
*short
* args into
*int* result
, 0 otherwise.
5339 # This won
't change for different subtargets so cache the result.
5341 proc check_effective_target_vect_widen_mult_hi_to_si_pattern { } {
5342 global et_vect_widen_mult_hi_to_si_pattern_saved
5345 if [info exists et_vect_widen_mult_hi_to_si_pattern_saved($et_index)] {
5346 verbose "check_effective_target_vect_widen_mult_hi_to_si_pattern:\
5347 using cached result" 2
5349 set et_vect_widen_mult_hi_to_si_pattern_saved($et_index) 0
5350 if { [istarget powerpc*-*-*]
5351 || [istarget spu-*-*]
5352 || [istarget ia64-*-*]
5353 || [istarget i?86-*-*] || [istarget x86_64-*-*]
5354 || ([istarget arm*-*-*]
5355 && [check_effective_target_arm_neon_ok]
5356 && [check_effective_target_arm_little_endian]) } {
5357 set et_vect_widen_mult_hi_to_si_pattern_saved($et_index) 1
5360 verbose "check_effective_target_vect_widen_mult_hi_to_si_pattern:\
5361 returning $et_vect_widen_mult_hi_to_si_pattern_saved($et_index)" 2
5362 return $et_vect_widen_mult_hi_to_si_pattern_saved($et_index)
5365 # Return 1 if the target plus current options supports a vector
5366 # widening multiplication of *int* args into *long* result, 0 otherwise.
5368 # This won't change
for different subtargets so
cache the result.
5370 proc check_effective_target_vect_widen_mult_si_to_di_pattern
{ } {
5371 global et_vect_widen_mult_si_to_di_pattern_saved
5374 if [info exists et_vect_widen_mult_si_to_di_pattern_saved
($et_index
)] {
5375 verbose
"check_effective_target_vect_widen_mult_si_to_di_pattern:\
5376 using cached result
" 2
5378 set et_vect_widen_mult_si_to_di_pattern_saved
($et_index
) 0
5379 if {[istarget ia64
-*-*]
5380 ||
[istarget i?
86-*-*] ||
[istarget x86_64
-*-*] } {
5381 set et_vect_widen_mult_si_to_di_pattern_saved
($et_index
) 1
5384 verbose
"check_effective_target_vect_widen_mult_si_to_di_pattern:\
5385 returning $et_vect_widen_mult_si_to_di_pattern_saved
($et_index
)" 2
5386 return $et_vect_widen_mult_si_to_di_pattern_saved
($et_index
)
5389 #
Return 1 if the target plus current options supports a vector
5390 # widening shift
, 0 otherwise.
5392 # This won
't change for different subtargets so cache the result.
5394 proc check_effective_target_vect_widen_shift { } {
5395 global et_vect_widen_shift_saved
5398 if [info exists et_vect_shift_saved($et_index)] {
5399 verbose "check_effective_target_vect_widen_shift: using cached result" 2
5401 set et_vect_widen_shift_saved($et_index) 0
5402 if { ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok]) } {
5403 set et_vect_widen_shift_saved($et_index) 1
5406 verbose "check_effective_target_vect_widen_shift:\
5407 returning $et_vect_widen_shift_saved($et_index)" 2
5408 return $et_vect_widen_shift_saved($et_index)
5411 # Return 1 if the target plus current options supports a vector
5412 # dot-product of signed chars, 0 otherwise.
5414 # This won't change
for different subtargets so
cache the result.
5416 proc check_effective_target_vect_sdot_qi
{ } {
5417 global et_vect_sdot_qi_saved
5420 if [info exists et_vect_sdot_qi_saved
($et_index
)] {
5421 verbose
"check_effective_target_vect_sdot_qi: using cached result" 2
5423 set et_vect_sdot_qi_saved
($et_index
) 0
5424 if { [istarget ia64
-*-*]
5425 ||
([istarget mips
*-*-*]
5426 && [et
-is
-effective
-target mips_msa
]) } {
5427 set et_vect_udot_qi_saved
1
5430 verbose
"check_effective_target_vect_sdot_qi:\
5431 returning $et_vect_sdot_qi_saved
($et_index
)" 2
5432 return $et_vect_sdot_qi_saved
($et_index
)
5435 #
Return 1 if the target plus current options supports a vector
5436 # dot
-product of unsigned chars
, 0 otherwise.
5438 # This won
't change for different subtargets so cache the result.
5440 proc check_effective_target_vect_udot_qi { } {
5441 global et_vect_udot_qi_saved
5444 if [info exists et_vect_udot_qi_saved($et_index)] {
5445 verbose "check_effective_target_vect_udot_qi: using cached result" 2
5447 set et_vect_udot_qi_saved($et_index) 0
5448 if { [istarget powerpc*-*-*]
5449 || [istarget ia64-*-*]
5450 || ([istarget mips*-*-*]
5451 && [et-is-effective-target mips_msa]) } {
5452 set et_vect_udot_qi_saved($et_index) 1
5455 verbose "check_effective_target_vect_udot_qi:\
5456 returning $et_vect_udot_qi_saved($et_index)" 2
5457 return $et_vect_udot_qi_saved($et_index)
5460 # Return 1 if the target plus current options supports a vector
5461 # dot-product of signed shorts, 0 otherwise.
5463 # This won't change
for different subtargets so
cache the result.
5465 proc check_effective_target_vect_sdot_hi
{ } {
5466 global et_vect_sdot_hi_saved
5469 if [info exists et_vect_sdot_hi_saved
($et_index
)] {
5470 verbose
"check_effective_target_vect_sdot_hi: using cached result" 2
5472 set et_vect_sdot_hi_saved
($et_index
) 0
5473 if { ([istarget powerpc
*-*-*] && ![istarget powerpc
-*-linux
*paired
*])
5474 ||
[istarget ia64
-*-*]
5475 ||
[istarget i?
86-*-*] ||
[istarget x86_64
-*-*]
5476 ||
([istarget mips
*-*-*]
5477 && [et
-is
-effective
-target mips_msa
]) } {
5478 set et_vect_sdot_hi_saved
($et_index
) 1
5481 verbose
"check_effective_target_vect_sdot_hi:\
5482 returning $et_vect_sdot_hi_saved
($et_index
)" 2
5483 return $et_vect_sdot_hi_saved
($et_index
)
5486 #
Return 1 if the target plus current options supports a vector
5487 # dot
-product of unsigned shorts
, 0 otherwise.
5489 # This won
't change for different subtargets so cache the result.
5491 proc check_effective_target_vect_udot_hi { } {
5492 global et_vect_udot_hi_saved
5495 if [info exists et_vect_udot_hi_saved($et_index)] {
5496 verbose "check_effective_target_vect_udot_hi: using cached result" 2
5498 set et_vect_udot_hi_saved($et_index) 0
5499 if { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*])
5500 || ([istarget mips*-*-*]
5501 && [et-is-effective-target mips_msa]) } {
5502 set et_vect_udot_hi_saved($et_index) 1
5505 verbose "check_effective_target_vect_udot_hi:\
5506 returning $et_vect_udot_hi_saved($et_index)" 2
5507 return $et_vect_udot_hi_saved($et_index)
5510 # Return 1 if the target plus current options supports a vector
5511 # sad operation of unsigned chars, 0 otherwise.
5513 # This won't change
for different subtargets so
cache the result.
5515 proc check_effective_target_vect_usad_char
{ } {
5516 global et_vect_usad_char_saved
5519 if [info exists et_vect_usad_char_saved
($et_index
)] {
5520 verbose
"check_effective_target_vect_usad_char: using cached result" 2
5522 set et_vect_usad_char_saved
($et_index
) 0
5523 if { ([istarget i?
86-*-*] ||
[istarget x86_64
-*-*]) } {
5524 set et_vect_usad_char_saved
($et_index
) 1
5527 verbose
"check_effective_target_vect_usad_char:\
5528 returning $et_vect_usad_char_saved
($et_index
)" 2
5529 return $et_vect_usad_char_saved
($et_index
)
5532 #
Return 1 if the target plus current options supports a vector
5533 # demotion
(packing
) of shorts
(to chars
) and ints
(to shorts
)
5534 # using modulo arithmetic
, 0 otherwise.
5536 # This won
't change for different subtargets so cache the result.
5538 proc check_effective_target_vect_pack_trunc { } {
5539 global et_vect_pack_trunc_saved
5542 if [info exists et_vect_pack_trunc_saved($et_index)] {
5543 verbose "check_effective_target_vect_pack_trunc: using cached result" 2
5545 set et_vect_pack_trunc_saved($et_index) 0
5546 if { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*])
5547 || [istarget i?86-*-*] || [istarget x86_64-*-*]
5548 || [istarget aarch64*-*-*]
5549 || [istarget spu-*-*]
5550 || ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok]
5551 && [check_effective_target_arm_little_endian])
5552 || ([istarget mips*-*-*]
5553 && [et-is-effective-target mips_msa]) } {
5554 set et_vect_pack_trunc_saved($et_index) 1
5557 verbose "check_effective_target_vect_pack_trunc:\
5558 returning $et_vect_pack_trunc_saved($et_index)" 2
5559 return $et_vect_pack_trunc_saved($et_index)
5562 # Return 1 if the target plus current options supports a vector
5563 # promotion (unpacking) of chars (to shorts) and shorts (to ints), 0 otherwise.
5565 # This won't change
for different subtargets so
cache the result.
5567 proc check_effective_target_vect_unpack
{ } {
5568 global et_vect_unpack_saved
5571 if [info exists et_vect_unpack_saved
($et_index
)] {
5572 verbose
"check_effective_target_vect_unpack: using cached result" 2
5574 set et_vect_unpack_saved
($et_index
) 0
5575 if { ([istarget powerpc
*-*-*] && ![istarget powerpc
-*paired
*])
5576 ||
[istarget i?
86-*-*] ||
[istarget x86_64
-*-*]
5577 ||
[istarget spu
-*-*]
5578 ||
[istarget ia64
-*-*]
5579 ||
[istarget aarch64
*-*-*]
5580 ||
([istarget mips
*-*-*]
5581 && [et
-is
-effective
-target mips_msa
])
5582 ||
([istarget arm
*-*-*] && [check_effective_target_arm_neon_ok
]
5583 && [check_effective_target_arm_little_endian
]) } {
5584 set et_vect_unpack_saved
($et_index
) 1
5587 verbose
"check_effective_target_vect_unpack:\
5588 returning $et_vect_unpack_saved
($et_index
)" 2
5589 return $et_vect_unpack_saved
($et_index
)
5592 #
Return 1 if the target plus current options does not guarantee
5593 # that its STACK_BOUNDARY is
>= the reguired vector alignment.
5595 # This won
't change for different subtargets so cache the result.
5597 proc check_effective_target_unaligned_stack { } {
5598 global et_unaligned_stack_saved
5600 if [info exists et_unaligned_stack_saved] {
5601 verbose "check_effective_target_unaligned_stack: using cached result" 2
5603 set et_unaligned_stack_saved 0
5605 verbose "check_effective_target_unaligned_stack: returning $et_unaligned_stack_saved" 2
5606 return $et_unaligned_stack_saved
5609 # Return 1 if the target plus current options does not support a vector
5610 # alignment mechanism, 0 otherwise.
5612 # This won't change
for different subtargets so
cache the result.
5614 proc check_effective_target_vect_no_align
{ } {
5615 global et_vect_no_align_saved
5618 if [info exists et_vect_no_align_saved
($et_index
)] {
5619 verbose
"check_effective_target_vect_no_align: using cached result" 2
5621 set et_vect_no_align_saved
($et_index
) 0
5622 if { [istarget mipsisa64
*-*-*]
5623 ||
[istarget mips
-sde
-elf
]
5624 ||
[istarget sparc
*-*-*]
5625 ||
[istarget ia64
-*-*]
5626 ||
[check_effective_target_arm_vect_no_misalign
]
5627 ||
([istarget powerpc
*-*-*] && [check_p8vector_hw_available
])
5628 ||
([istarget mips
*-*-*]
5629 && [et
-is
-effective
-target mips_loongson
]) } {
5630 set et_vect_no_align_saved
($et_index
) 1
5633 verbose
"check_effective_target_vect_no_align:\
5634 returning $et_vect_no_align_saved
($et_index
)" 2
5635 return $et_vect_no_align_saved
($et_index
)
5638 #
Return 1 if the target supports a vector misalign access
, 0 otherwise.
5640 # This won
't change for different subtargets so cache the result.
5642 proc check_effective_target_vect_hw_misalign { } {
5643 global et_vect_hw_misalign_saved
5646 if [info exists et_vect_hw_misalign_saved($et_index)] {
5647 verbose "check_effective_target_vect_hw_misalign: using cached result" 2
5649 set et_vect_hw_misalign_saved($et_index) 0
5650 if { [istarget i?86-*-*] || [istarget x86_64-*-*]
5651 || ([istarget powerpc*-*-*] && [check_p8vector_hw_available])
5652 || [istarget aarch64*-*-*]
5653 || ([istarget mips*-*-*] && [et-is-effective-target mips_msa]) } {
5654 set et_vect_hw_misalign_saved($et_index) 1
5657 verbose "check_effective_target_vect_hw_misalign:\
5658 returning $et_vect_hw_misalign_saved($et_index)" 2
5659 return $et_vect_hw_misalign_saved($et_index)
5663 # Return 1 if arrays are aligned to the vector alignment
5664 # boundary, 0 otherwise.
5666 proc check_effective_target_vect_aligned_arrays { } {
5667 set et_vect_aligned_arrays 0
5668 if { ([istarget x86_64-*-*] || [istarget i?86-*-*]) } {
5669 if { ([is-effective-target lp64]
5670 && ( ![check_avx_available]
5671 || [check_prefer_avx128])) } {
5672 set et_vect_aligned_arrays 1
5675 if [istarget spu-*-*] {
5676 set et_vect_aligned_arrays 1
5678 verbose "check_effective_target_vect_aligned_arrays:\
5679 returning $et_vect_aligned_arrays" 2
5680 return $et_vect_aligned_arrays
5683 # Return 1 if types of size 32 bit or less are naturally aligned
5684 # (aligned to their type-size), 0 otherwise.
5686 # This won't change
for different subtargets so
cache the result.
5688 proc check_effective_target_natural_alignment_32
{ } {
5689 global et_natural_alignment_32
5691 if [info exists et_natural_alignment_32_saved
] {
5692 verbose
"check_effective_target_natural_alignment_32: using cached result" 2
5694 # FIXME
: 32bit powerpc
: guaranteed only
if MASK_ALIGN_NATURAL
/POWER.
5695 set et_natural_alignment_32_saved
1
5696 if { ([istarget
*-*-darwin
*] && [is
-effective
-target lp64
])
5697 ||
[istarget avr
-*-*] } {
5698 set et_natural_alignment_32_saved
0
5701 verbose
"check_effective_target_natural_alignment_32: returning $et_natural_alignment_32_saved" 2
5702 return $et_natural_alignment_32_saved
5705 #
Return 1 if types of size
64 bit or less are naturally aligned
(aligned to their
5706 # type
-size
), 0 otherwise.
5708 # This won
't change for different subtargets so cache the result.
5710 proc check_effective_target_natural_alignment_64 { } {
5711 global et_natural_alignment_64
5713 if [info exists et_natural_alignment_64_saved] {
5714 verbose "check_effective_target_natural_alignment_64: using cached result" 2
5716 set et_natural_alignment_64_saved 0
5717 if { ([is-effective-target lp64] && ![istarget *-*-darwin*])
5718 || [istarget spu-*-*] } {
5719 set et_natural_alignment_64_saved 1
5722 verbose "check_effective_target_natural_alignment_64: returning $et_natural_alignment_64_saved" 2
5723 return $et_natural_alignment_64_saved
5726 # Return 1 if all vector types are naturally aligned (aligned to their
5727 # type-size), 0 otherwise.
5729 proc check_effective_target_vect_natural_alignment { } {
5730 set et_vect_natural_alignment 1
5731 if { [check_effective_target_arm_eabi]
5732 || [istarget nvptx-*-*]
5733 || [istarget s390*-*-*] } {
5734 set et_vect_natural_alignment 0
5736 verbose "check_effective_target_vect_natural_alignment:\
5737 returning $et_vect_natural_alignment" 2
5738 return $et_vect_natural_alignment
5741 # Return 1 if vector alignment (for types of size 32 bit or less) is reachable, 0 otherwise.
5743 proc check_effective_target_vector_alignment_reachable { } {
5744 set et_vector_alignment_reachable 0
5745 if { [check_effective_target_vect_aligned_arrays]
5746 || [check_effective_target_natural_alignment_32] } {
5747 set et_vector_alignment_reachable 1
5749 verbose "check_effective_target_vector_alignment_reachable:\
5750 returning $et_vector_alignment_reachable" 2
5751 return $et_vector_alignment_reachable
5754 # Return 1 if vector alignment for 64 bit is reachable, 0 otherwise.
5756 proc check_effective_target_vector_alignment_reachable_for_64bit { } {
5757 set et_vector_alignment_reachable_for_64bit 0
5758 if { [check_effective_target_vect_aligned_arrays]
5759 || [check_effective_target_natural_alignment_64] } {
5760 set et_vector_alignment_reachable_for_64bit 1
5762 verbose "check_effective_target_vector_alignment_reachable_for_64bit:\
5763 returning $et_vector_alignment_reachable_for_64bit" 2
5764 return $et_vector_alignment_reachable_for_64bit
5767 # Return 1 if the target only requires element alignment for vector accesses
5769 proc check_effective_target_vect_element_align { } {
5770 global et_vect_element_align
5773 if [info exists et_vect_element_align($et_index)] {
5774 verbose "check_effective_target_vect_element_align:\
5775 using cached result" 2
5777 set et_vect_element_align($et_index) 0
5778 if { ([istarget arm*-*-*]
5779 && ![check_effective_target_arm_vect_no_misalign])
5780 || [check_effective_target_vect_hw_misalign] } {
5781 set et_vect_element_align($et_index) 1
5785 verbose "check_effective_target_vect_element_align:\
5786 returning $et_vect_element_align($et_index)" 2
5787 return $et_vect_element_align($et_index)
5790 # Return 1 if the target supports vector LOAD_LANES operations, 0 otherwise.
5792 proc check_effective_target_vect_load_lanes { } {
5793 global et_vect_load_lanes
5795 if [info exists et_vect_load_lanes] {
5796 verbose "check_effective_target_vect_load_lanes: using cached result" 2
5798 set et_vect_load_lanes 0
5799 if { ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok])
5800 || [istarget aarch64*-*-*] } {
5801 set et_vect_load_lanes 1
5805 verbose "check_effective_target_vect_load_lanes: returning $et_vect_load_lanes" 2
5806 return $et_vect_load_lanes
5809 # Return 1 if the target supports vector conditional operations, 0 otherwise.
5811 proc check_effective_target_vect_condition { } {
5812 global et_vect_cond_saved
5815 if [info exists et_vect_cond_saved($et_index)] {
5816 verbose "check_effective_target_vect_cond: using cached result" 2
5818 set et_vect_cond_saved($et_index) 0
5819 if { [istarget aarch64*-*-*]
5820 || [istarget powerpc*-*-*]
5821 || [istarget ia64-*-*]
5822 || [istarget i?86-*-*] || [istarget x86_64-*-*]
5823 || [istarget spu-*-*]
5824 || ([istarget mips*-*-*]
5825 && [et-is-effective-target mips_msa])
5826 || ([istarget arm*-*-*]
5827 && [check_effective_target_arm_neon_ok]) } {
5828 set et_vect_cond_saved($et_index) 1
5832 verbose "check_effective_target_vect_cond:\
5833 returning $et_vect_cond_saved($et_index)" 2
5834 return $et_vect_cond_saved($et_index)
5837 # Return 1 if the target supports vector conditional operations where
5838 # the comparison has different type from the lhs, 0 otherwise.
5840 proc check_effective_target_vect_cond_mixed { } {
5841 global et_vect_cond_mixed_saved
5844 if [info exists et_vect_cond_mixed_saved($et_index)] {
5845 verbose "check_effective_target_vect_cond_mixed: using cached result" 2
5847 set et_vect_cond_mixed_saved($et_index) 0
5848 if { [istarget i?86-*-*] || [istarget x86_64-*-*]
5849 || [istarget aarch64*-*-*]
5850 || [istarget powerpc*-*-*]
5851 || ([istarget mips*-*-*]
5852 && [et-is-effective-target mips_msa]) } {
5853 set et_vect_cond_mixed_saved($et_index) 1
5857 verbose "check_effective_target_vect_cond_mixed:\
5858 returning $et_vect_cond_mixed_saved($et_index)" 2
5859 return $et_vect_cond_mixed_saved($et_index)
5862 # Return 1 if the target supports vector char multiplication, 0 otherwise.
5864 proc check_effective_target_vect_char_mult { } {
5865 global et_vect_char_mult_saved
5868 if [info exists et_vect_char_mult_saved($et_index)] {
5869 verbose "check_effective_target_vect_char_mult: using cached result" 2
5871 set et_vect_char_mult_saved($et_index) 0
5872 if { [istarget aarch64*-*-*]
5873 || [istarget ia64-*-*]
5874 || [istarget i?86-*-*] || [istarget x86_64-*-*]
5875 || [check_effective_target_arm32]
5876 || [check_effective_target_powerpc_altivec]
5877 || ([istarget mips*-*-*]
5878 && [et-is-effective-target mips_msa]) } {
5879 set et_vect_char_mult_saved($et_index) 1
5883 verbose "check_effective_target_vect_char_mult:\
5884 returning $et_vect_char_mult_saved($et_index)" 2
5885 return $et_vect_char_mult_saved($et_index)
5888 # Return 1 if the target supports vector short multiplication, 0 otherwise.
5890 proc check_effective_target_vect_short_mult { } {
5891 global et_vect_short_mult_saved
5894 if [info exists et_vect_short_mult_saved($et_index)] {
5895 verbose "check_effective_target_vect_short_mult: using cached result" 2
5897 set et_vect_short_mult_saved($et_index) 0
5898 if { [istarget ia64-*-*]
5899 || [istarget spu-*-*]
5900 || [istarget i?86-*-*] || [istarget x86_64-*-*]
5901 || [istarget powerpc*-*-*]
5902 || [istarget aarch64*-*-*]
5903 || [check_effective_target_arm32]
5904 || ([istarget mips*-*-*]
5905 && ([et-is-effective-target mips_msa]
5906 || [et-is-effective-target mips_loongson])) } {
5907 set et_vect_short_mult_saved($et_index) 1
5911 verbose "check_effective_target_vect_short_mult:\
5912 returning $et_vect_short_mult_saved($et_index)" 2
5913 return $et_vect_short_mult_saved($et_index)
5916 # Return 1 if the target supports vector int multiplication, 0 otherwise.
5918 proc check_effective_target_vect_int_mult { } {
5919 global et_vect_int_mult_saved
5922 if [info exists et_vect_int_mult_saved($et_index)] {
5923 verbose "check_effective_target_vect_int_mult: using cached result" 2
5925 set et_vect_int_mult_saved($et_index) 0
5926 if { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*])
5927 || [istarget spu-*-*]
5928 || [istarget i?86-*-*] || [istarget x86_64-*-*]
5929 || [istarget ia64-*-*]
5930 || [istarget aarch64*-*-*]
5931 || ([istarget mips*-*-*]
5932 && [et-is-effective-target mips_msa])
5933 || [check_effective_target_arm32] } {
5934 set et_vect_int_mult_saved($et_index) 1
5938 verbose "check_effective_target_vect_int_mult:\
5939 returning $et_vect_int_mult_saved($et_index)" 2
5940 return $et_vect_int_mult_saved($et_index)
5943 # Return 1 if the target supports vector even/odd elements extraction, 0 otherwise.
5945 proc check_effective_target_vect_extract_even_odd { } {
5946 global et_vect_extract_even_odd_saved
5949 if [info exists et_vect_extract_even_odd_saved($et_index)] {
5950 verbose "check_effective_target_vect_extract_even_odd:\
5951 using cached result" 2
5953 set et_vect_extract_even_odd_saved($et_index) 0
5954 if { [istarget aarch64*-*-*]
5955 || [istarget powerpc*-*-*]
5956 || [is-effective-target arm_neon_ok]
5957 || [istarget i?86-*-*] || [istarget x86_64-*-*]
5958 || [istarget ia64-*-*]
5959 || [istarget spu-*-*]
5960 || ([istarget mips*-*-*]
5961 && ([et-is-effective-target mips_msa]
5962 || [et-is-effective-target mpaired_single])) } {
5963 set et_vect_extract_even_odd_saved($et_index) 1
5967 verbose "check_effective_target_vect_extract_even_odd:\
5968 returning $et_vect_extract_even_odd_saved($et_index)" 2
5969 return $et_vect_extract_even_odd_saved($et_index)
5972 # Return 1 if the target supports vector interleaving, 0 otherwise.
5974 proc check_effective_target_vect_interleave { } {
5975 global et_vect_interleave_saved
5978 if [info exists et_vect_interleave_saved($et_index)] {
5979 verbose "check_effective_target_vect_interleave: using cached result" 2
5981 set et_vect_interleave_saved($et_index) 0
5982 if { [istarget aarch64*-*-*]
5983 || [istarget powerpc*-*-*]
5984 || [is-effective-target arm_neon_ok]
5985 || [istarget i?86-*-*] || [istarget x86_64-*-*]
5986 || [istarget ia64-*-*]
5987 || [istarget spu-*-*]
5988 || ([istarget mips*-*-*]
5989 && ([et-is-effective-target mpaired_single]
5990 || [et-is-effective-target mips_msa])) } {
5991 set et_vect_interleave_saved($et_index) 1
5995 verbose "check_effective_target_vect_interleave:\
5996 returning $et_vect_interleave_saved($et_index)" 2
5997 return $et_vect_interleave_saved($et_index)
6000 foreach N {2 3 4 8} {
6001 eval [string map [list N $N] {
6002 # Return 1 if the target supports 2-vector interleaving
6003 proc check_effective_target_vect_stridedN { } {
6004 global et_vect_stridedN_saved
6007 if [info exists et_vect_stridedN_saved($et_index)] {
6008 verbose "check_effective_target_vect_stridedN:\
6009 using cached result" 2
6011 set et_vect_stridedN_saved($et_index) 0
6013 && [check_effective_target_vect_interleave]
6014 && [check_effective_target_vect_extract_even_odd] } {
6015 set et_vect_stridedN_saved($et_index) 1
6017 if { ([istarget arm*-*-*]
6018 || [istarget aarch64*-*-*]) && N >= 2 && N <= 4 } {
6019 set et_vect_stridedN_saved($et_index) 1
6023 verbose "check_effective_target_vect_stridedN:\
6024 returning $et_vect_stridedN_saved($et_index)" 2
6025 return $et_vect_stridedN_saved($et_index)
6030 # Return 1 if the target supports multiple vector sizes
6032 proc check_effective_target_vect_multiple_sizes { } {
6033 global et_vect_multiple_sizes_saved
6036 set et_vect_multiple_sizes_saved($et_index) 0
6037 if { ([istarget aarch64*-*-*]
6038 || ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok])) } {
6039 set et_vect_multiple_sizes_saved($et_index) 1
6041 if { ([istarget x86_64-*-*] || [istarget i?86-*-*]) } {
6042 if { ([check_avx_available] && ![check_prefer_avx128]) } {
6043 set et_vect_multiple_sizes_saved($et_index) 1
6047 verbose "check_effective_target_vect_multiple_sizes:\
6048 returning $et_vect_multiple_sizes_saved($et_index)" 2
6049 return $et_vect_multiple_sizes_saved($et_index)
6052 # Return 1 if the target supports vectors of 64 bits.
6054 proc check_effective_target_vect64 { } {
6055 global et_vect64_saved
6058 if [info exists et_vect64_saved($et_index)] {
6059 verbose "check_effective_target_vect64: using cached result" 2
6061 set et_vect64_saved($et_index) 0
6062 if { ([istarget arm*-*-*]
6063 && [check_effective_target_arm_neon_ok]
6064 && [check_effective_target_arm_little_endian])
6065 || [istarget aarch64*-*-*]
6066 || [istarget sparc*-*-*] } {
6067 set et_vect64_saved($et_index) 1
6071 verbose "check_effective_target_vect64:\
6072 returning $et_vect64_saved($et_index)" 2
6073 return $et_vect64_saved($et_index)
6076 # Return 1 if the target supports vector copysignf calls.
6078 proc check_effective_target_vect_call_copysignf { } {
6079 global et_vect_call_copysignf_saved
6082 if [info exists et_vect_call_copysignf_saved($et_index)] {
6083 verbose "check_effective_target_vect_call_copysignf:\
6084 using cached result" 2
6086 set et_vect_call_copysignf_saved($et_index) 0
6087 if { [istarget i?86-*-*] || [istarget x86_64-*-*]
6088 || [istarget powerpc*-*-*] } {
6089 set et_vect_call_copysignf_saved($et_index) 1
6093 verbose "check_effective_target_vect_call_copysignf:\
6094 returning $et_vect_call_copysignf_saved($et_index)" 2
6095 return $et_vect_call_copysignf_saved($et_index)
6098 # Return 1 if the target supports hardware square root instructions.
6100 proc check_effective_target_sqrt_insn { } {
6101 global et_sqrt_insn_saved
6103 if [info exists et_sqrt_insn_saved] {
6104 verbose "check_effective_target_hw_sqrt: using cached result" 2
6106 set et_sqrt_insn_saved 0
6107 if { [istarget x86_64-*-*]
6108 || [istarget powerpc*-*-*]
6109 || [istarget aarch64*-*-*]
6110 || ([istarget arm*-*-*] && [check_effective_target_arm_vfp_ok]) } {
6111 set et_sqrt_insn_saved 1
6115 verbose "check_effective_target_hw_sqrt: returning et_sqrt_insn_saved" 2
6116 return $et_sqrt_insn_saved
6119 # Return 1 if the target supports vector sqrtf calls.
6121 proc check_effective_target_vect_call_sqrtf { } {
6122 global et_vect_call_sqrtf_saved
6125 if [info exists et_vect_call_sqrtf_saved($et_index)] {
6126 verbose "check_effective_target_vect_call_sqrtf: using cached result" 2
6128 set et_vect_call_sqrtf_saved($et_index) 0
6129 if { [istarget aarch64*-*-*]
6130 || [istarget i?86-*-*] || [istarget x86_64-*-*]
6131 || ([istarget powerpc*-*-*] && [check_vsx_hw_available]) } {
6132 set et_vect_call_sqrtf_saved($et_index) 1
6136 verbose "check_effective_target_vect_call_sqrtf:\
6137 returning $et_vect_call_sqrtf_saved($et_index)" 2
6138 return $et_vect_call_sqrtf_saved($et_index)
6141 # Return 1 if the target supports vector lrint calls.
6143 proc check_effective_target_vect_call_lrint { } {
6144 set et_vect_call_lrint 0
6145 if { ([istarget i?86-*-*] || [istarget x86_64-*-*])
6146 && [check_effective_target_ilp32] } {
6147 set et_vect_call_lrint 1
6150 verbose "check_effective_target_vect_call_lrint: returning $et_vect_call_lrint" 2
6151 return $et_vect_call_lrint
6154 # Return 1 if the target supports vector btrunc calls.
6156 proc check_effective_target_vect_call_btrunc { } {
6157 global et_vect_call_btrunc_saved
6160 if [info exists et_vect_call_btrunc_saved($et_index)] {
6161 verbose "check_effective_target_vect_call_btrunc:\
6162 using cached result" 2
6164 set et_vect_call_btrunc_saved($et_index) 0
6165 if { [istarget aarch64*-*-*] } {
6166 set et_vect_call_btrunc_saved($et_index) 1
6170 verbose "check_effective_target_vect_call_btrunc:\
6171 returning $et_vect_call_btrunc_saved($et_index)" 2
6172 return $et_vect_call_btrunc_saved($et_index)
6175 # Return 1 if the target supports vector btruncf calls.
6177 proc check_effective_target_vect_call_btruncf { } {
6178 global et_vect_call_btruncf_saved
6181 if [info exists et_vect_call_btruncf_saved($et_index)] {
6182 verbose "check_effective_target_vect_call_btruncf:\
6183 using cached result" 2
6185 set et_vect_call_btruncf_saved($et_index) 0
6186 if { [istarget aarch64*-*-*] } {
6187 set et_vect_call_btruncf_saved($et_index) 1
6191 verbose "check_effective_target_vect_call_btruncf:\
6192 returning $et_vect_call_btruncf_saved($et_index)" 2
6193 return $et_vect_call_btruncf_saved($et_index)
6196 # Return 1 if the target supports vector ceil calls.
6198 proc check_effective_target_vect_call_ceil { } {
6199 global et_vect_call_ceil_saved
6202 if [info exists et_vect_call_ceil_saved($et_index)] {
6203 verbose "check_effective_target_vect_call_ceil: using cached result" 2
6205 set et_vect_call_ceil_saved($et_index) 0
6206 if { [istarget aarch64*-*-*] } {
6207 set et_vect_call_ceil_saved($et_index) 1
6211 verbose "check_effective_target_vect_call_ceil:\
6212 returning $et_vect_call_ceil_saved($et_index)" 2
6213 return $et_vect_call_ceil_saved($et_index)
6216 # Return 1 if the target supports vector ceilf calls.
6218 proc check_effective_target_vect_call_ceilf { } {
6219 global et_vect_call_ceilf_saved
6222 if [info exists et_vect_call_ceilf_saved($et_index)] {
6223 verbose "check_effective_target_vect_call_ceilf: using cached result" 2
6225 set et_vect_call_ceilf_saved($et_index) 0
6226 if { [istarget aarch64*-*-*] } {
6227 set et_vect_call_ceilf_saved($et_index) 1
6231 verbose "check_effective_target_vect_call_ceilf:\
6232 returning $et_vect_call_ceilf_saved($et_index)" 2
6233 return $et_vect_call_ceilf_saved($et_index)
6236 # Return 1 if the target supports vector floor calls.
6238 proc check_effective_target_vect_call_floor { } {
6239 global et_vect_call_floor_saved
6242 if [info exists et_vect_call_floor_saved($et_index)] {
6243 verbose "check_effective_target_vect_call_floor: using cached result" 2
6245 set et_vect_call_floor_saved($et_index) 0
6246 if { [istarget aarch64*-*-*] } {
6247 set et_vect_call_floor_saved($et_index) 1
6251 verbose "check_effective_target_vect_call_floor:\
6252 returning $et_vect_call_floor_saved($et_index)" 2
6253 return $et_vect_call_floor_saved($et_index)
6256 # Return 1 if the target supports vector floorf calls.
6258 proc check_effective_target_vect_call_floorf { } {
6259 global et_vect_call_floorf_saved
6262 if [info exists et_vect_call_floorf_saved($et_index)] {
6263 verbose "check_effective_target_vect_call_floorf: using cached result" 2
6265 set et_vect_call_floorf_saved($et_index) 0
6266 if { [istarget aarch64*-*-*] } {
6267 set et_vect_call_floorf_saved($et_index) 1
6271 verbose "check_effective_target_vect_call_floorf:\
6272 returning $et_vect_call_floorf_saved($et_index)" 2
6273 return $et_vect_call_floorf_saved($et_index)
6276 # Return 1 if the target supports vector lceil calls.
6278 proc check_effective_target_vect_call_lceil { } {
6279 global et_vect_call_lceil_saved
6282 if [info exists et_vect_call_lceil_saved($et_index)] {
6283 verbose "check_effective_target_vect_call_lceil: using cached result" 2
6285 set et_vect_call_lceil_saved($et_index) 0
6286 if { [istarget aarch64*-*-*] } {
6287 set et_vect_call_lceil_saved($et_index) 1
6291 verbose "check_effective_target_vect_call_lceil:\
6292 returning $et_vect_call_lceil_saved($et_index)" 2
6293 return $et_vect_call_lceil_saved($et_index)
6296 # Return 1 if the target supports vector lfloor calls.
6298 proc check_effective_target_vect_call_lfloor { } {
6299 global et_vect_call_lfloor_saved
6302 if [info exists et_vect_call_lfloor_saved($et_index)] {
6303 verbose "check_effective_target_vect_call_lfloor: using cached result" 2
6305 set et_vect_call_lfloor_saved($et_index) 0
6306 if { [istarget aarch64*-*-*] } {
6307 set et_vect_call_lfloor_saved($et_index) 1
6311 verbose "check_effective_target_vect_call_lfloor:\
6312 returning $et_vect_call_lfloor_saved($et_index)" 2
6313 return $et_vect_call_lfloor_saved($et_index)
6316 # Return 1 if the target supports vector nearbyint calls.
6318 proc check_effective_target_vect_call_nearbyint { } {
6319 global et_vect_call_nearbyint_saved
6322 if [info exists et_vect_call_nearbyint_saved($et_index)] {
6323 verbose "check_effective_target_vect_call_nearbyint: using cached result" 2
6325 set et_vect_call_nearbyint_saved($et_index) 0
6326 if { [istarget aarch64*-*-*] } {
6327 set et_vect_call_nearbyint_saved($et_index) 1
6331 verbose "check_effective_target_vect_call_nearbyint:\
6332 returning $et_vect_call_nearbyint_saved($et_index)" 2
6333 return $et_vect_call_nearbyint_saved($et_index)
6336 # Return 1 if the target supports vector nearbyintf calls.
6338 proc check_effective_target_vect_call_nearbyintf { } {
6339 global et_vect_call_nearbyintf_saved
6342 if [info exists et_vect_call_nearbyintf_saved($et_index)] {
6343 verbose "check_effective_target_vect_call_nearbyintf:\
6344 using cached result" 2
6346 set et_vect_call_nearbyintf_saved($et_index) 0
6347 if { [istarget aarch64*-*-*] } {
6348 set et_vect_call_nearbyintf_saved($et_index) 1
6352 verbose "check_effective_target_vect_call_nearbyintf:\
6353 returning $et_vect_call_nearbyintf_saved($et_index)" 2
6354 return $et_vect_call_nearbyintf_saved($et_index)
6357 # Return 1 if the target supports vector round calls.
6359 proc check_effective_target_vect_call_round { } {
6360 global et_vect_call_round_saved
6363 if [info exists et_vect_call_round_saved($et_index)] {
6364 verbose "check_effective_target_vect_call_round: using cached result" 2
6366 set et_vect_call_round_saved($et_index) 0
6367 if { [istarget aarch64*-*-*] } {
6368 set et_vect_call_round_saved($et_index) 1
6372 verbose "check_effective_target_vect_call_round:\
6373 returning $et_vect_call_round_saved($et_index)" 2
6374 return $et_vect_call_round_saved($et_index)
6377 # Return 1 if the target supports vector roundf calls.
6379 proc check_effective_target_vect_call_roundf { } {
6380 global et_vect_call_roundf_saved
6383 if [info exists et_vect_call_roundf_saved($et_index)] {
6384 verbose "check_effective_target_vect_call_roundf: using cached result" 2
6386 set et_vect_call_roundf_saved($et_index) 0
6387 if { [istarget aarch64*-*-*] } {
6388 set et_vect_call_roundf_saved($et_index) 1
6392 verbose "check_effective_target_vect_call_roundf:\
6393 returning $et_vect_call_roundf_saved($et_index)" 2
6394 return $et_vect_call_roundf_saved($et_index)
6397 # Return 1 if the target supports section-anchors
6399 proc check_effective_target_section_anchors { } {
6400 global et_section_anchors_saved
6402 if [info exists et_section_anchors_saved] {
6403 verbose "check_effective_target_section_anchors: using cached result" 2
6405 set et_section_anchors_saved 0
6406 if { [istarget powerpc*-*-*]
6407 || [istarget arm*-*-*]
6408 || [istarget aarch64*-*-*] } {
6409 set et_section_anchors_saved 1
6413 verbose "check_effective_target_section_anchors: returning $et_section_anchors_saved" 2
6414 return $et_section_anchors_saved
6417 # Return 1 if the target supports atomic operations on "int_128" values.
6419 proc check_effective_target_sync_int_128 { } {
6420 if { ([istarget x86_64-*-*] || [istarget i?86-*-*])
6421 && ![is-effective-target ia32] } {
6423 } elseif { [istarget spu-*-*] } {
6430 # Return 1 if the target supports atomic operations on "int_128" values
6431 # and can execute them.
6433 proc check_effective_target_sync_int_128_runtime { } {
6434 if { ([istarget x86_64-*-*] || [istarget i?86-*-*])
6435 && ![is-effective-target ia32] } {
6436 return [check_cached_effective_target sync_int_128_available {
6437 check_runtime_nocache sync_int_128_available {
6441 unsigned int eax, ebx, ecx, edx;
6442 if (__get_cpuid (1, &eax, &ebx, &ecx, &edx))
6443 return !(ecx & bit_CMPXCHG16B);
6448 } elseif { [istarget spu-*-*] } {
6455 # Return 1 if the target supports atomic operations on "long long".
6457 # Note: 32bit x86 targets require -march=pentium in dg-options.
6458 # Note: 32bit s390 targets require -mzarch in dg-options.
6460 proc check_effective_target_sync_long_long { } {
6461 if { [istarget x86_64-*-*] || [istarget i?86-*-*])
6462 || [istarget aarch64*-*-*]
6463 || [istarget arm*-*-*]
6464 || [istarget alpha*-*-*]
6465 || ([istarget sparc*-*-*] && [check_effective_target_lp64])
6466 || [istarget s390*-*-*]
6467 || [istarget spu-*-*] } {
6474 # Return 1 if the target supports atomic operations on "long long"
6475 # and can execute them.
6477 # Note: 32bit x86 targets require -march=pentium in dg-options.
6479 proc check_effective_target_sync_long_long_runtime { } {
6480 if { [istarget x86_64-*-*] || [istarget i?86-*-*] } {
6481 return [check_cached_effective_target sync_long_long_available {
6482 check_runtime_nocache sync_long_long_available {
6486 unsigned int eax, ebx, ecx, edx;
6487 if (__get_cpuid (1, &eax, &ebx, &ecx, &edx))
6488 return !(edx & bit_CMPXCHG8B);
6493 } elseif { [istarget aarch64*-*-*] } {
6495 } elseif { [istarget arm*-*-linux-*] } {
6496 return [check_runtime sync_longlong_runtime {
6502 if (sizeof (long long) != 8)
6505 /* Just check for native; checking for kernel fallback is tricky. */
6506 asm volatile ("ldrexd r0,r1, [%0]" : : "r" (&l1) : "r0", "r1");
6511 } elseif { [istarget alpha*-*-*] } {
6513 } elseif { ([istarget sparc*-*-*]
6514 && [check_effective_target_lp64]
6515 && [check_effective_target_ultrasparc_hw]) } {
6517 } elseif { [istarget spu-*-*] } {
6519 } elseif { [istarget powerpc*-*-*] && [check_effective_target_lp64] } {
6526 # Return 1 if the target supports byte swap instructions.
6528 proc check_effective_target_bswap { } {
6529 global et_bswap_saved
6531 if [info exists et_bswap_saved] {
6532 verbose "check_effective_target_bswap: using cached result" 2
6534 set et_bswap_saved 0
6535 if { [istarget aarch64*-*-*]
6536 || [istarget alpha*-*-*]
6537 || [istarget i?86-*-*] || [istarget x86_64-*-*]
6538 || [istarget m68k-*-*]
6539 || [istarget powerpc*-*-*]
6540 || [istarget rs6000-*-*]
6541 || [istarget s390*-*-*] } {
6542 set et_bswap_saved 1
6544 if { [istarget arm*-*-*]
6545 && [check_no_compiler_messages_nocache arm_v6_or_later object {
6547 #error not armv6 or later
6551 set et_bswap_saved 1
6556 verbose "check_effective_target_bswap: returning $et_bswap_saved" 2
6557 return $et_bswap_saved
6560 # Return 1 if the target supports 16-bit byte swap instructions.
6562 proc check_effective_target_bswap16 { } {
6563 global et_bswap16_saved
6565 if [info exists et_bswap16_saved] {
6566 verbose "check_effective_target_bswap16: using cached result" 2
6568 set et_bswap16_saved 0
6569 if { [is-effective-target bswap]
6570 && ![istarget alpha*-*-*]
6571 && !([istarget i?86-*-*] || [istarget x86_64-*-*]) } {
6572 set et_bswap16_saved 1
6576 verbose "check_effective_target_bswap16: returning $et_bswap16_saved" 2
6577 return $et_bswap16_saved
6580 # Return 1 if the target supports 32-bit byte swap instructions.
6582 proc check_effective_target_bswap32 { } {
6583 global et_bswap32_saved
6585 if [info exists et_bswap32_saved] {
6586 verbose "check_effective_target_bswap32: using cached result" 2
6588 set et_bswap32_saved 0
6589 if { [is-effective-target bswap] } {
6590 set et_bswap32_saved 1
6594 verbose "check_effective_target_bswap32: returning $et_bswap32_saved" 2
6595 return $et_bswap32_saved
6598 # Return 1 if the target supports 64-bit byte swap instructions.
6600 # Note: 32bit s390 targets require -mzarch in dg-options.
6602 proc check_effective_target_bswap64 { } {
6603 global et_bswap64_saved
6605 # expand_unop can expand 64-bit byte swap on 32-bit targets
6606 if { [is-effective-target bswap] && [is-effective-target int32plus] } {
6612 # Return 1 if the target supports atomic operations on "int" and "long".
6614 proc check_effective_target_sync_int_long { } {
6615 global et_sync_int_long_saved
6617 if [info exists et_sync_int_long_saved] {
6618 verbose "check_effective_target_sync_int_long: using cached result" 2
6620 set et_sync_int_long_saved 0
6621 # This is intentionally powerpc but not rs6000, rs6000 doesn't have the
6622 #
load-reserved/store
-conditional instructions.
6623 if { [istarget ia64
-*-*]
6624 ||
[istarget i?
86-*-*] ||
[istarget x86_64
-*-*]
6625 ||
[istarget aarch64
*-*-*]
6626 ||
[istarget alpha
*-*-*]
6627 ||
[istarget arm
*-*-linux
-*]
6628 ||
([istarget arm
*-*-*]
6629 && [check_effective_target_arm_acq_rel
])
6630 ||
[istarget bfin
*-*linux
*]
6631 ||
[istarget hppa
*-*linux
*]
6632 ||
[istarget s390
*-*-*]
6633 ||
[istarget powerpc
*-*-*]
6634 ||
[istarget crisv32
-*-*] ||
[istarget cris
-*-*]
6635 ||
([istarget sparc
*-*-*] && [check_effective_target_sparc_v9
])
6636 ||
[istarget spu
-*-*]
6637 ||
([istarget arc
*-*-*] && [check_effective_target_arc_atomic
])
6638 ||
[check_effective_target_mips_llsc
] } {
6639 set et_sync_int_long_saved
1
6643 verbose
"check_effective_target_sync_int_long: returning $et_sync_int_long_saved" 2
6644 return $et_sync_int_long_saved
6647 #
Return 1 if the target supports atomic operations
on "char" and "short".
6649 proc check_effective_target_sync_char_short
{ } {
6650 global et_sync_char_short_saved
6652 if [info exists et_sync_char_short_saved
] {
6653 verbose
"check_effective_target_sync_char_short: using cached result" 2
6655 set et_sync_char_short_saved
0
6656 # This is intentionally powerpc but not rs6000
, rs6000 doesn
't have the
6657 # load-reserved/store-conditional instructions.
6658 if { [istarget aarch64*-*-*]
6659 || [istarget ia64-*-*]
6660 || [istarget i?86-*-*] || [istarget x86_64-*-*]
6661 || [istarget alpha*-*-*]
6662 || [istarget arm*-*-linux-*]
6663 || ([istarget arm*-*-*]
6664 && [check_effective_target_arm_acq_rel])
6665 || [istarget hppa*-*linux*]
6666 || [istarget s390*-*-*]
6667 || [istarget powerpc*-*-*]
6668 || [istarget crisv32-*-*] || [istarget cris-*-*]
6669 || ([istarget sparc*-*-*] && [check_effective_target_sparc_v9])
6670 || [istarget spu-*-*]
6671 || ([istarget arc*-*-*] && [check_effective_target_arc_atomic])
6672 || [check_effective_target_mips_llsc] } {
6673 set et_sync_char_short_saved 1
6677 verbose "check_effective_target_sync_char_short: returning $et_sync_char_short_saved" 2
6678 return $et_sync_char_short_saved
6681 # Return 1 if the target uses a ColdFire FPU.
6683 proc check_effective_target_coldfire_fpu { } {
6684 return [check_no_compiler_messages coldfire_fpu assembly {
6691 # Return true if this is a uClibc target.
6693 proc check_effective_target_uclibc {} {
6694 return [check_no_compiler_messages uclibc object {
6695 #include <features.h>
6696 #if !defined (__UCLIBC__)
6702 # Return true if this is a uclibc target and if the uclibc feature
6703 # described by __$feature__ is not present.
6705 proc check_missing_uclibc_feature {feature} {
6706 return [check_no_compiler_messages $feature object "
6707 #include <features.h>
6708 #if !defined (__UCLIBC) || defined (__${feature}__)
6714 # Return true if this is a Newlib target.
6716 proc check_effective_target_newlib {} {
6717 return [check_no_compiler_messages newlib object {
6722 # Return true if this is NOT a Bionic target.
6724 proc check_effective_target_non_bionic {} {
6725 return [check_no_compiler_messages non_bionic object {
6727 #if defined (__BIONIC__)
6733 # Return true if this target has error.h header.
6735 proc check_effective_target_error_h {} {
6736 return [check_no_compiler_messages error_h object {
6741 # Return true if this target has tgmath.h header.
6743 proc check_effective_target_tgmath_h {} {
6744 return [check_no_compiler_messages tgmath_h object {
6749 # Return true if target's libc supports complex functions.
6751 proc check_effective_target_libc_has_complex_functions
{} {
6752 return [check_no_compiler_messages libc_has_complex_functions object
{
6753 #
include <complex.h
>
6758 #
(a
) an error of a few ULP is expected in string to floating
-point
6759 # conversion functions
; and
6760 #
(b
) overflow is not always detected correctly by those functions.
6762 proc check_effective_target_lax_strtofp
{} {
6763 # By default
, assume that all uClibc targets suffer from this.
6764 return [check_effective_target_uclibc
]
6767 #
Return 1 if this is a target
for which wcsftime is a dummy
6768 # function that always returns
0.
6770 proc check_effective_target_dummy_wcsftime
{} {
6771 # By default
, assume that all uClibc targets suffer from this.
6772 return [check_effective_target_uclibc
]
6775 #
Return 1 if constructors with initialization priority arguments are
6776 # supposed
on this target.
6778 proc check_effective_target_init_priority
{} {
6779 return [check_no_compiler_messages init_priority assembly
"
6780 void f
() __attribute__
((constructor
(1000)));
6785 #
Return 1 if the target matches the effective target
'arg', 0 otherwise.
6786 # This can be used with
any check_
* proc that takes no
argument and
6787 # returns only
1 or
0. It could be used with check_
* procs that take
6788 # arguments with keywords that pass particular arguments.
6790 proc is
-effective
-target
{ arg } {
6793 if { ![info exists et_index
] } {
6794 # Initialize the effective target index that is used in some
6795 # check_effective_target_
* procs.
6798 if { [info procs check_effective_target_$
{arg}] != [list
] } {
6799 set selected
[check_effective_target_$
{arg}]
6802 "vmx_hw" { set selected [check_vmx_hw_available] }
6803 "vsx_hw" { set selected [check_vsx_hw_available] }
6804 "p8vector_hw" { set selected [check_p8vector_hw_available] }
6805 "p9vector_hw" { set selected [check_p9vector_hw_available] }
6806 "p9modulo_hw" { set selected [check_p9modulo_hw_available] }
6807 "ppc_float128_sw" { set selected [check_ppc_float128_sw_available] }
6808 "ppc_float128_hw" { set selected [check_ppc_float128_hw_available] }
6809 "ppc_recip_hw" { set selected [check_ppc_recip_hw_available] }
6810 "dfp_hw" { set selected [check_dfp_hw_available] }
6811 "htm_hw" { set selected [check_htm_hw_available] }
6812 "named_sections" { set selected [check_named_sections_available] }
6813 "gc_sections" { set selected [check_gc_sections_available] }
6814 "cxa_atexit" { set selected [check_cxa_atexit_available] }
6815 default
{ error
"unknown effective target keyword `$arg'" }
6818 verbose
"is-effective-target: $arg $selected" 2
6822 #
Return 1 if the
argument is an effective
-target keyword
, 0 otherwise.
6824 proc is
-effective
-target
-keyword
{ arg } {
6825 if { [info procs check_effective_target_$
{arg}] != [list
] } {
6828 # These have different names
for their check_
* procs.
6830 "vmx_hw" { return 1 }
6831 "vsx_hw" { return 1 }
6832 "p8vector_hw" { return 1 }
6833 "p9vector_hw" { return 1 }
6834 "p9modulo_hw" { return 1 }
6835 "ppc_float128_sw" { return 1 }
6836 "ppc_float128_hw" { return 1 }
6837 "ppc_recip_hw" { return 1 }
6838 "dfp_hw" { return 1 }
6839 "htm_hw" { return 1 }
6840 "named_sections" { return 1 }
6841 "gc_sections" { return 1 }
6842 "cxa_atexit" { return 1 }
6843 default
{ return 0 }
6848 #
Execute tests
for all targets in EFFECTIVE_TARGETS list.
Set et_index to
6849 # indicate what target is currently being processed. This is
for
6850 # the vectorizer tests
, e.g. vect_int
, to keep track what target supports
6853 proc et
-dg
-runtest
{ runtest testcases flags default
-extra
-flags
} {
6854 global dg
-do-what
-default
6855 global EFFECTIVE_TARGETS
6858 if { [llength $EFFECTIVE_TARGETS
] > 0 } {
6859 foreach target $EFFECTIVE_TARGETS
{
6860 set target_flags $flags
6861 set dg
-do-what
-default
compile
6862 set et_index
[lsearch
-exact $EFFECTIVE_TARGETS $target
]
6863 if { [info procs add_options_for_$
{target
}] != [list
] } {
6864 set target_flags
[add_options_for_$
{target
} "$flags"]
6866 if { [info procs check_effective_target_$
{target
}_runtime
]
6867 != [list
] && [check_effective_target_$
{target
}_runtime
] } {
6868 set dg
-do-what
-default run
6870 $runtest $testcases $target_flags $
{default
-extra
-flags
}
6874 $runtest $testcases $flags $
{default
-extra
-flags
}
6878 #
Return 1 if a target matches the target in EFFECTIVE_TARGETS at index
6879 # et_index
, 0 otherwise.
6881 proc et
-is
-effective
-target
{ target
} {
6882 global EFFECTIVE_TARGETS
6885 if { [llength $EFFECTIVE_TARGETS
] > $et_index
6886 && [lindex $EFFECTIVE_TARGETS $et_index
] == $target
} {
6892 #
Return 1 if target default to short enums
6894 proc check_effective_target_short_enums
{ } {
6895 return [check_no_compiler_messages short_enums assembly
{
6897 int s
[sizeof
(enum foo
) == 1 ?
1 : -1];
6901 #
Return 1 if target supports merging string constants at link time.
6903 proc check_effective_target_string_merging
{ } {
6904 return [check_no_messages_and_pattern string_merging \
6905 "rodata\\.str" assembly {
6906 const char
*var
= "String";
6910 #
Return 1 if target has the basic signed and unsigned types in
6911 #
<stdint.h
>, 0 otherwise. This will be obsolete when GCC ensures a
6912 # working
<stdint.h
> for all targets.
6914 proc check_effective_target_stdint_types
{ } {
6915 return [check_no_compiler_messages stdint_types assembly
{
6917 int8_t a
; int16_t b
; int32_t c
; int64_t d
;
6918 uint8_t e
; uint16_t f
; uint32_t g
; uint64_t h
;
6922 #
Return 1 if target has the basic signed and unsigned types in
6923 #
<inttypes.h
>, 0 otherwise. This is
for tests that GCC
's notions of
6924 # these types agree with those in the header, as some systems have
6925 # only <inttypes.h>.
6927 proc check_effective_target_inttypes_types { } {
6928 return [check_no_compiler_messages inttypes_types assembly {
6929 #include <inttypes.h>
6930 int8_t a; int16_t b; int32_t c; int64_t d;
6931 uint8_t e; uint16_t f; uint32_t g; uint64_t h;
6935 # Return 1 if programs are intended to be run on a simulator
6936 # (i.e. slowly) rather than hardware (i.e. fast).
6938 proc check_effective_target_simulator { } {
6940 # All "src/sim" simulators set this one.
6941 if [board_info target exists is_simulator] {
6942 return [board_info target is_simulator]
6945 # The "sid" simulators don't
set that one
, but at least they
set
6947 if [board_info target
exists slow_simulator
] {
6948 return [board_info target slow_simulator
]
6954 #
Return 1 if programs are intended to be run
on hardware rather than
6957 proc check_effective_target_hw
{ } {
6959 # All
"src/sim" simulators set this one.
6960 if [board_info target
exists is_simulator
] {
6961 if [board_info target is_simulator
] {
6968 # The
"sid" simulators don't set that one, but at least they set
6970 if [board_info target
exists slow_simulator
] {
6971 if [board_info target slow_simulator
] {
6981 #
Return 1 if the target is a VxWorks kernel.
6983 proc check_effective_target_vxworks_kernel
{ } {
6984 return [check_no_compiler_messages vxworks_kernel assembly
{
6985 #
if !defined __vxworks || defined __RTP__
6991 #
Return 1 if the target is a VxWorks RTP.
6993 proc check_effective_target_vxworks_rtp
{ } {
6994 return [check_no_compiler_messages vxworks_rtp assembly
{
6995 #
if !defined __vxworks ||
!defined __RTP__
7001 #
Return 1 if the target is expected to provide wide character support.
7003 proc check_effective_target_wchar
{ } {
7004 if {[check_missing_uclibc_feature UCLIBC_HAS_WCHAR
]} {
7007 return [check_no_compiler_messages wchar assembly
{
7012 #
Return 1 if the target has
<pthread.h
>.
7014 proc check_effective_target_pthread_h
{ } {
7015 return [check_no_compiler_messages pthread_h assembly
{
7016 #
include <pthread.h
>
7020 #
Return 1 if the target can truncate a file from a file
-descriptor
,
7021 # as used by libgfortran
/io
/unix.c
:fd_truncate
; i.e. ftruncate or
7022 # chsize. We test
for a trivially functional truncation
; no stubs.
7023 # As libgfortran uses _FILE_OFFSET_BITS
64, we
do too
; it
'll cause a
7024 # different function to be used.
7026 proc check_effective_target_fd_truncate { } {
7028 #define _FILE_OFFSET_BITS 64
7035 FILE *f = fopen ("tst.tmp", "wb");
7037 const char t[] = "test writing more than ten characters";
7041 write (fd, t, sizeof (t) - 1);
7043 if (ftruncate (fd, 10) != 0)
7052 f = fopen ("tst.tmp", "rb");
7053 if (fread (s, 1, sizeof (s), f) != 10 || strncmp (s, t, 10) != 0)
7061 if { [check_runtime ftruncate $prog] } {
7065 regsub "ftruncate" $prog "chsize" prog
7066 return [check_runtime chsize $prog]
7069 # Add to FLAGS all the target-specific flags needed to access the c99 runtime.
7071 proc add_options_for_c99_runtime { flags } {
7072 if { [istarget *-*-solaris2*] } {
7073 return "$flags -std=c99"
7075 if { [istarget powerpc-*-darwin*] } {
7076 return "$flags -mmacosx-version-min=10.3"
7081 # Add to FLAGS all the target-specific flags needed to enable
7082 # full IEEE compliance mode.
7084 proc add_options_for_ieee { flags } {
7085 if { [istarget alpha*-*-*]
7086 || [istarget sh*-*-*] } {
7087 return "$flags -mieee"
7089 if { [istarget rx-*-*] } {
7090 return "$flags -mnofpu"
7095 if {![info exists flags_to_postpone]} {
7096 set flags_to_postpone ""
7099 # Add to FLAGS the flags needed to enable functions to bind locally
7100 # when using pic/PIC passes in the testsuite.
7101 proc add_options_for_bind_pic_locally { flags } {
7102 global flags_to_postpone
7104 # Instead of returning 'flags
' with the -fPIE or -fpie appended, we save it
7105 # in 'flags_to_postpone
' and append it later in gcc_target_compile procedure in
7106 # order to make sure that the multilib_flags doesn't override this.
7108 if {[check_no_compiler_messages using_pic2 assembly
{
7113 set flags_to_postpone
"-fPIE"
7116 if {[check_no_compiler_messages using_pic1 assembly
{
7121 set flags_to_postpone
"-fpie"
7127 # Add to FLAGS the flags needed to enable
64-bit vectors.
7129 proc add_options_for_double_vectors
{ flags
} {
7130 if [is
-effective
-target arm_neon_ok
] {
7131 return "$flags -mvectorize-with-neon-double"
7137 #
Return 1 if the target provides a full C99 runtime.
7139 proc check_effective_target_c99_runtime
{ } {
7140 return [check_cached_effective_target c99_runtime
{
7143 set file
[open
"$srcdir/gcc.dg/builtins-config.h"]
7144 set contents
[read $file
]
7147 #ifndef HAVE_C99_RUNTIME
7148 #error
!HAVE_C99_RUNTIME
7151 check_no_compiler_messages_nocache c99_runtime assembly \
7152 $contents
[add_options_for_c99_runtime
""]
7156 #
Return 1 if target wchar_t is at least
4 bytes.
7158 proc check_effective_target_4byte_wchar_t
{ } {
7159 return [check_no_compiler_messages
4byte_wchar_t object
{
7160 int dummy
[sizeof
(__WCHAR_TYPE__
) >= 4 ?
1 : -1];
7164 #
Return 1 if the target supports automatic stack alignment.
7166 proc check_effective_target_automatic_stack_alignment
{ } {
7167 # Ordinarily x86 supports automatic stack alignment ...
7168 if { [istarget i?
86*-*-*] ||
[istarget x86_64
-*-*] } then {
7169 if { [istarget
*-*-mingw
*] ||
[istarget
*-*-cygwin
*] } {
7170 # ... except Win64 SEH doesn
't. Succeed for Win32 though.
7171 return [check_effective_target_ilp32];
7178 # Return true if we are compiling for AVX target.
7180 proc check_avx_available { } {
7181 if { [check_no_compiler_messages avx_available assembly {
7191 # Return true if 32- and 16-bytes vectors are available.
7193 proc check_effective_target_vect_sizes_32B_16B { } {
7194 if { [check_avx_available] && ![check_prefer_avx128] } {
7201 # Return true if 128-bits vectors are preferred even if 256-bits vectors
7204 proc check_prefer_avx128 { } {
7205 if ![check_avx_available] {
7208 return [check_no_messages_and_pattern avx_explicit "xmm" assembly {
7209 float a[1024],b[1024],c[1024];
7210 void foo (void) { int i; for (i = 0; i < 1024; i++) a[i]=b[i]+c[i];}
7211 } "-O2 -ftree-vectorize"]
7215 # Return 1 if avx512f instructions can be compiled.
7217 proc check_effective_target_avx512f { } {
7218 return [check_no_compiler_messages avx512f object {
7219 typedef double __m512d __attribute__ ((__vector_size__ (64)));
7221 __m512d _mm512_add (__m512d a)
7223 return __builtin_ia32_addpd512_mask (a, a, a, 1, 4);
7228 # Return 1 if avx instructions can be compiled.
7230 proc check_effective_target_avx { } {
7231 if { !([istarget x86_64-*-*] || [istarget i?86-*-*]) } {
7234 return [check_no_compiler_messages avx object {
7235 void _mm256_zeroall (void)
7237 __builtin_ia32_vzeroall ();
7242 # Return 1 if avx2 instructions can be compiled.
7243 proc check_effective_target_avx2 { } {
7244 return [check_no_compiler_messages avx2 object {
7245 typedef long long __v4di __attribute__ ((__vector_size__ (32)));
7247 mm256_is32_andnotsi256 (__v4di __X, __v4di __Y)
7249 return __builtin_ia32_andnotsi256 (__X, __Y);
7254 # Return 1 if sse instructions can be compiled.
7255 proc check_effective_target_sse { } {
7256 return [check_no_compiler_messages sse object {
7259 __builtin_ia32_stmxcsr ();
7265 # Return 1 if sse2 instructions can be compiled.
7266 proc check_effective_target_sse2 { } {
7267 return [check_no_compiler_messages sse2 object {
7268 typedef long long __m128i __attribute__ ((__vector_size__ (16)));
7270 __m128i _mm_srli_si128 (__m128i __A, int __N)
7272 return (__m128i)__builtin_ia32_psrldqi128 (__A, 8);
7277 # Return 1 if sse4.1 instructions can be compiled.
7278 proc check_effective_target_sse4 { } {
7279 return [check_no_compiler_messages sse4.1 object {
7280 typedef long long __m128i __attribute__ ((__vector_size__ (16)));
7281 typedef int __v4si __attribute__ ((__vector_size__ (16)));
7283 __m128i _mm_mullo_epi32 (__m128i __X, __m128i __Y)
7285 return (__m128i) __builtin_ia32_pmulld128 ((__v4si)__X,
7291 # Return 1 if F16C instructions can be compiled.
7293 proc check_effective_target_f16c { } {
7294 return [check_no_compiler_messages f16c object {
7295 #include "immintrin.h"
7297 foo (unsigned short val)
7299 return _cvtsh_ss (val);
7304 # Return 1 if C wchar_t type is compatible with char16_t.
7306 proc check_effective_target_wchar_t_char16_t_compatible { } {
7307 return [check_no_compiler_messages wchar_t_char16_t object {
7309 __CHAR16_TYPE__ *p16 = &wc;
7310 char t[(((__CHAR16_TYPE__) -1) < 0 == ((__WCHAR_TYPE__) -1) < 0) ? 1 : -1];
7314 # Return 1 if C wchar_t type is compatible with char32_t.
7316 proc check_effective_target_wchar_t_char32_t_compatible { } {
7317 return [check_no_compiler_messages wchar_t_char32_t object {
7319 __CHAR32_TYPE__ *p32 = &wc;
7320 char t[(((__CHAR32_TYPE__) -1) < 0 == ((__WCHAR_TYPE__) -1) < 0) ? 1 : -1];
7324 # Return 1 if pow10 function exists.
7326 proc check_effective_target_pow10 { } {
7327 return [check_runtime pow10 {
7337 # Return 1 if issignaling function exists.
7338 proc check_effective_target_issignaling {} {
7339 return [check_runtime issignaling {
7344 return issignaling (0.0);
7349 # Return 1 if current options generate DFP instructions, 0 otherwise.
7350 proc check_effective_target_hard_dfp {} {
7351 return [check_no_messages_and_pattern hard_dfp "!adddd3" assembly {
7352 typedef float d64 __attribute__((mode(DD)));
7354 void foo (void) { z = x + y; }
7358 # Return 1 if string.h and wchar.h headers provide C++ requires overloads
7359 # for strchr etc. functions.
7361 proc check_effective_target_correct_iso_cpp_string_wchar_protos { } {
7362 return [check_no_compiler_messages correct_iso_cpp_string_wchar_protos assembly {
7365 #if !defined(__cplusplus) \
7366 || !defined(__CORRECT_ISO_CPP_STRING_H_PROTO) \
7367 || !defined(__CORRECT_ISO_CPP_WCHAR_H_PROTO)
7368 ISO C++ correct string.h and wchar.h protos not supported.
7375 # Return 1 if GNU as is used.
7377 proc check_effective_target_gas { } {
7378 global use_gas_saved
7381 if {![info exists use_gas_saved]} {
7382 # Check if the as used by gcc is GNU as.
7383 set gcc_as [lindex [${tool}_target_compile "-print-prog-name=as" "" "none" ""] 0]
7384 # Provide /dev/null as input, otherwise gas times out reading from
7386 set status [remote_exec host "$gcc_as" "-v /dev/null"]
7387 set as_output [lindex $status 1]
7388 if { [ string first "GNU" $as_output ] >= 0 } {
7394 return $use_gas_saved
7397 # Return 1 if GNU ld is used.
7399 proc check_effective_target_gld { } {
7400 global use_gld_saved
7403 if {![info exists use_gld_saved]} {
7404 # Check if the ld used by gcc is GNU ld.
7405 set gcc_ld [lindex [${tool}_target_compile "-print-prog-name=ld" "" "none" ""] 0]
7406 set status [remote_exec host "$gcc_ld" "--version"]
7407 set ld_output [lindex $status 1]
7408 if { [ string first "GNU" $ld_output ] >= 0 } {
7414 return $use_gld_saved
7417 # Return 1 if the compiler has been configure with link-time optimization
7420 proc check_effective_target_lto { } {
7421 if { [istarget nvptx-*-*] } {
7424 return [check_no_compiler_messages lto object {
7429 # Return 1 if -mx32 -maddress-mode=short can compile, 0 otherwise.
7431 proc check_effective_target_maybe_x32 { } {
7432 return [check_no_compiler_messages maybe_x32 object {
7434 } "-mx32 -maddress-mode=short"]
7437 # Return 1 if this target supports the -fsplit-stack option, 0
7440 proc check_effective_target_split_stack {} {
7441 return [check_no_compiler_messages split_stack object {
7446 # Return 1 if this target supports the -masm=intel option, 0
7449 proc check_effective_target_masm_intel {} {
7450 return [check_no_compiler_messages masm_intel object {
7451 extern void abort (void);
7455 # Return 1 if the language for the compiler under test is C.
7457 proc check_effective_target_c { } {
7459 if [string match $tool "gcc"] {
7465 # Return 1 if the language for the compiler under test is C++.
7467 proc check_effective_target_c++ { } {
7469 if { [string match $tool "g++"] || [string match $tool "libstdc++"] } {
7475 set cxx_default "c++14"
7476 # Check whether the current active language standard supports the features
7477 # of C++11/C++14 by checking for the presence of one of the -std flags.
7478 # This assumes that the default for the compiler is $cxx_default, and that
7479 # there will never be multiple -std= arguments on the command line.
7480 proc check_effective_target_c++11_only { } {
7482 if ![check_effective_target_c++] {
7485 if [check-flags { { } { } { -std=c++0x -std=gnu++0x -std=c++11 -std=gnu++11 } }] {
7488 if { $cxx_default == "c++11" && [check-flags { { } { } { } { -std=* } }] } {
7493 proc check_effective_target_c++11 { } {
7494 if [check_effective_target_c++11_only] {
7497 return [check_effective_target_c++14]
7499 proc check_effective_target_c++11_down { } {
7500 if ![check_effective_target_c++] {
7503 return [expr ![check_effective_target_c++14] ]
7506 proc check_effective_target_c++14_only { } {
7508 if ![check_effective_target_c++] {
7511 if [check-flags { { } { } { -std=c++14 -std=gnu++14 -std=c++14 -std=gnu++14 } }] {
7514 if { $cxx_default == "c++14" && [check-flags { { } { } { } { -std=* } }] } {
7520 proc check_effective_target_c++14 { } {
7521 if [check_effective_target_c++14_only] {
7524 return [check_effective_target_c++1z]
7526 proc check_effective_target_c++14_down { } {
7527 if ![check_effective_target_c++] {
7530 return [expr ![check_effective_target_c++1z] ]
7533 proc check_effective_target_c++98_only { } {
7535 if ![check_effective_target_c++] {
7538 if [check-flags { { } { } { -std=c++98 -std=gnu++98 -std=c++03 -std=gnu++03 } }] {
7541 if { $cxx_default == "c++98" && [check-flags { { } { } { } { -std=* } }] } {
7547 proc check_effective_target_c++1z_only { } {
7549 if ![check_effective_target_c++] {
7552 if [check-flags { { } { } { -std=c++17 -std=gnu++17 -std=c++1z -std=gnu++1z } }] {
7555 if { $cxx_default == "c++17" && [check-flags { { } { } { } { -std=* } }] } {
7560 proc check_effective_target_c++1z { } {
7561 return [check_effective_target_c++1z_only]
7564 # Check for C++ Concepts TS support, i.e. -fconcepts flag.
7565 proc check_effective_target_concepts { } {
7566 return [check-flags { "" { } { -fconcepts } }]
7569 # Return 1 if expensive testcases should be run.
7571 proc check_effective_target_run_expensive_tests { } {
7572 if { [getenv GCC_TEST_RUN_EXPENSIVE] != "" } {
7578 # Returns 1 if "mempcpy" is available on the target system.
7580 proc check_effective_target_mempcpy {} {
7581 return [check_function_available "mempcpy"]
7584 # Returns 1 if "stpcpy" is available on the target system.
7586 proc check_effective_target_stpcpy {} {
7587 return [check_function_available "stpcpy"]
7590 # Check whether the vectorizer tests are supported by the target and
7591 # append additional target-dependent compile flags to DEFAULT_VECTCFLAGS.
7592 # If a port wants to execute the tests more than once it should append
7593 # the supported target to EFFECTIVE_TARGETS instead, and the compile flags
7594 # will be added by a call to add_options_for_<target>.
7595 # Set dg-do-what-default to either compile or run, depending on target
7596 # capabilities. Do not set this if the supported target is appended to
7597 # EFFECTIVE_TARGETS. Flags and this variable will be set by et-dg-runtest
7598 # automatically. Return the number of effective targets if vectorizer tests
7599 # are supported, 0 otherwise.
7601 proc check_vect_support_and_set_flags { } {
7602 global DEFAULT_VECTCFLAGS
7603 global dg-do-what-default
7604 global EFFECTIVE_TARGETS
7606 if [istarget powerpc-*paired*] {
7607 lappend DEFAULT_VECTCFLAGS "-mpaired"
7608 if [check_750cl_hw_available] {
7609 set dg-do-what-default run
7611 set dg-do-what-default compile
7613 } elseif [istarget powerpc*-*-*] {
7614 # Skip targets not supporting -maltivec.
7615 if ![is-effective-target powerpc_altivec_ok] {
7619 lappend DEFAULT_VECTCFLAGS "-maltivec"
7620 if [check_p9vector_hw_available] {
7621 lappend DEFAULT_VECTCFLAGS "-mpower9-vector"
7622 } elseif [check_p8vector_hw_available] {
7623 lappend DEFAULT_VECTCFLAGS "-mpower8-vector"
7624 } elseif [check_vsx_hw_available] {
7625 lappend DEFAULT_VECTCFLAGS "-mvsx" "-mno-allow-movmisalign"
7628 if [check_vmx_hw_available] {
7629 set dg-do-what-default run
7631 if [is-effective-target ilp32] {
7632 # Specify a cpu that supports VMX for compile-only tests.
7633 lappend DEFAULT_VECTCFLAGS "-mcpu=970"
7635 set dg-do-what-default compile
7637 } elseif { [istarget spu-*-*] } {
7638 set dg-do-what-default run
7639 } elseif { [istarget i?86-*-*] || [istarget x86_64-*-*] } {
7640 lappend DEFAULT_VECTCFLAGS "-msse2"
7641 if { [check_effective_target_sse2_runtime] } {
7642 set dg-do-what-default run
7644 set dg-do-what-default compile
7646 } elseif { [istarget mips*-*-*]
7647 && [check_effective_target_nomips16] } {
7648 if { [check_effective_target_mpaired_single] } {
7649 lappend EFFECTIVE_TARGETS mpaired_single
7651 if { [check_effective_target_mips_loongson] } {
7652 lappend EFFECTIVE_TARGETS mips_loongson
7654 if { [check_effective_target_mips_msa] } {
7655 lappend EFFECTIVE_TARGETS mips_msa
7657 return [llength $EFFECTIVE_TARGETS]
7658 } elseif [istarget sparc*-*-*] {
7659 lappend DEFAULT_VECTCFLAGS "-mcpu=ultrasparc" "-mvis"
7660 if [check_effective_target_ultrasparc_hw] {
7661 set dg-do-what-default run
7663 set dg-do-what-default compile
7665 } elseif [istarget alpha*-*-*] {
7666 # Alpha's vectorization capabilities are extremely limited.
7667 # It
's more effort than its worth disabling all of the tests
7668 # that it cannot pass. But if you actually want to see what
7669 # does work, command out the return.
7672 lappend DEFAULT_VECTCFLAGS "-mmax"
7673 if [check_alpha_max_hw_available] {
7674 set dg-do-what-default run
7676 set dg-do-what-default compile
7678 } elseif [istarget ia64-*-*] {
7679 set dg-do-what-default run
7680 } elseif [is-effective-target arm_neon_ok] {
7681 eval lappend DEFAULT_VECTCFLAGS [add_options_for_arm_neon ""]
7682 # NEON does not support denormals, so is not used for vectorization by
7683 # default to avoid loss of precision. We must pass -ffast-math to test
7684 # vectorization of float operations.
7685 lappend DEFAULT_VECTCFLAGS "-ffast-math"
7686 if [is-effective-target arm_neon_hw] {
7687 set dg-do-what-default run
7689 set dg-do-what-default compile
7691 } elseif [istarget "aarch64*-*-*"] {
7692 set dg-do-what-default run
7700 # Return 1 if the target does *not* require strict alignment.
7702 proc check_effective_target_non_strict_align {} {
7704 # On ARM, the default is to use STRICT_ALIGNMENT, but there
7705 # are interfaces defined for misaligned access and thus
7706 # depending on the architecture levels unaligned access is
7708 if [istarget "arm*-*-*"] {
7709 return [check_effective_target_arm_unaligned]
7712 return [check_no_compiler_messages non_strict_align assembly {
7714 typedef char __attribute__ ((__aligned__(__BIGGEST_ALIGNMENT__))) c;
7716 void foo(void) { z = (c *) y; }
7720 # Return 1 if the target has <ucontext.h>.
7722 proc check_effective_target_ucontext_h { } {
7723 return [check_no_compiler_messages ucontext_h assembly {
7724 #include <ucontext.h>
7728 proc check_effective_target_aarch64_tiny { } {
7729 if { [istarget aarch64*-*-*] } {
7730 return [check_no_compiler_messages aarch64_tiny object {
7731 #ifdef __AARCH64_CMODEL_TINY__
7734 #error target not AArch64 tiny code model
7742 # Create functions to check that the AArch64 assembler supports the
7743 # various architecture extensions via the .arch_extension pseudo-op.
7745 foreach { aarch64_ext } { "fp" "simd" "crypto" "crc" "lse"} {
7746 eval [string map [list FUNC $aarch64_ext] {
7747 proc check_effective_target_aarch64_asm_FUNC_ok { } {
7748 if { [istarget aarch64*-*-*] } {
7749 return [check_no_compiler_messages aarch64_FUNC_assembler object {
7750 __asm__ (".arch_extension FUNC");
7751 } "-march=armv8-a+FUNC"]
7759 proc check_effective_target_aarch64_small { } {
7760 if { [istarget aarch64*-*-*] } {
7761 return [check_no_compiler_messages aarch64_small object {
7762 #ifdef __AARCH64_CMODEL_SMALL__
7765 #error target not AArch64 small code model
7773 proc check_effective_target_aarch64_large { } {
7774 if { [istarget aarch64*-*-*] } {
7775 return [check_no_compiler_messages aarch64_large object {
7776 #ifdef __AARCH64_CMODEL_LARGE__
7779 #error target not AArch64 large code model
7788 # Return 1 if this is a reduced AVR Tiny core. Such cores have different
7789 # register set, instruction set, addressing capabilities and ABI.
7791 proc check_effective_target_avr_tiny { } {
7792 if { [istarget avr*-*-*] } {
7793 return [check_no_compiler_messages avr_tiny object {
7797 #error target not a reduced AVR Tiny core
7805 # Return 1 if <fenv.h> is available with all the standard IEEE
7806 # exceptions and floating-point exceptions are raised by arithmetic
7807 # operations. (If the target requires special options for "inexact"
7808 # exceptions, those need to be specified in the testcases.)
7810 proc check_effective_target_fenv_exceptions {} {
7811 return [check_runtime fenv_exceptions {
7814 #ifndef FE_DIVBYZERO
7815 # error Missing FE_DIVBYZERO
7818 # error Missing FE_INEXACT
7821 # error Missing FE_INVALID
7824 # error Missing FE_OVERFLOW
7826 #ifndef FE_UNDERFLOW
7827 # error Missing FE_UNDERFLOW
7829 volatile float a = 0.0f, r;
7834 if (fetestexcept (FE_INVALID))
7839 } [add_options_for_ieee "-std=gnu99"]]
7842 proc check_effective_target_tiny {} {
7843 global et_target_tiny_saved
7845 if [info exists et_target_tine_saved] {
7846 verbose "check_effective_target_tiny: using cached result" 2
7848 set et_target_tiny_saved 0
7849 if { [istarget aarch64*-*-*]
7850 && [check_effective_target_aarch64_tiny] } {
7851 set et_target_tiny_saved 1
7855 return $et_target_tiny_saved
7858 # Return 1 if LOGICAL_OP_NON_SHORT_CIRCUIT is set to 0 for the current target.
7860 proc check_effective_target_logical_op_short_circuit {} {
7861 if { [istarget mips*-*-*]
7862 || [istarget arc*-*-*]
7863 || [istarget avr*-*-*]
7864 || [istarget crisv32-*-*] || [istarget cris-*-*]
7865 || [istarget mmix-*-*]
7866 || [istarget s390*-*-*]
7867 || [istarget powerpc*-*-*]
7868 || [istarget nios2*-*-*]
7869 || [istarget visium-*-*]
7870 || [check_effective_target_arm_cortex_m] } {
7876 # Record that dg-final test TEST requires convential compilation.
7878 proc force_conventional_output_for { test } {
7879 if { [info proc $test] == "" } {
7880 perror "$test does not exist"
7883 proc ${test}_required_options {} {
7884 global gcc_force_conventional_output
7885 return $gcc_force_conventional_output
7889 # Return 1 if the x86-64 target supports PIE with copy reloc, 0
7890 # otherwise. Cache the result.
7892 proc check_effective_target_pie_copyreloc { } {
7893 global pie_copyreloc_available_saved
7895 global GCC_UNDER_TEST
7897 if { !([istarget x86_64-*-*] || [istarget i?86-*-*]) } {
7901 # Need auto-host.h to check linker support.
7902 if { ![file exists ../../auto-host.h ] } {
7906 if [info exists pie_copyreloc_available_saved] {
7907 verbose "check_effective_target_pie_copyreloc returning saved $pie_copyreloc_available_saved" 2
7909 # Set up and compile to see if linker supports PIE with copy
7910 # reloc. Include the current process ID in the file names to
7911 # prevent conflicts with invocations for multiple testsuites.
7916 set f [open $src "w"]
7917 puts $f "#include \"../../auto-host.h\""
7918 puts $f "#if HAVE_LD_PIE_COPYRELOC == 0"
7919 puts $f "# error Linker does not support PIE with copy reloc."
7923 verbose "check_effective_target_pie_copyreloc compiling testfile $src" 2
7924 set lines [${tool}_target_compile $src $obj object ""]
7929 if [string match "" $lines] then {
7930 verbose "check_effective_target_pie_copyreloc testfile compilation passed" 2
7931 set pie_copyreloc_available_saved 1
7933 verbose "check_effective_target_pie_copyreloc testfile compilation failed" 2
7934 set pie_copyreloc_available_saved 0
7938 return $pie_copyreloc_available_saved
7941 # Return 1 if the x86 target supports R_386_GOT32X relocation, 0
7942 # otherwise. Cache the result.
7944 proc check_effective_target_got32x_reloc { } {
7945 global got32x_reloc_available_saved
7947 global GCC_UNDER_TEST
7949 if { !([istarget x86_64-*-*] || [istarget i?86-*-*]) } {
7953 # Need auto-host.h to check linker support.
7954 if { ![file exists ../../auto-host.h ] } {
7958 if [info exists got32x_reloc_available_saved] {
7959 verbose "check_effective_target_got32x_reloc returning saved $got32x_reloc_available_saved" 2
7961 # Include the current process ID in the file names to prevent
7962 # conflicts with invocations for multiple testsuites.
7964 set src got32x[pid].c
7965 set obj got32x[pid].o
7967 set f [open $src "w"]
7968 puts $f "#include \"../../auto-host.h\""
7969 puts $f "#if HAVE_AS_IX86_GOT32X == 0"
7970 puts $f "# error Assembler does not support R_386_GOT32X."
7974 verbose "check_effective_target_got32x_reloc compiling testfile $src" 2
7975 set lines [${tool}_target_compile $src $obj object ""]
7980 if [string match "" $lines] then {
7981 verbose "check_effective_target_got32x_reloc testfile compilation passed" 2
7982 set got32x_reloc_available_saved 1
7984 verbose "check_effective_target_got32x_reloc testfile compilation failed" 2
7985 set got32x_reloc_available_saved 0
7989 return $got32x_reloc_available_saved
7992 # Return 1 if the x86 target supports calling ___tls_get_addr via GOT,
7993 # 0 otherwise. Cache the result.
7995 proc check_effective_target_tls_get_addr_via_got { } {
7996 global tls_get_addr_via_got_available_saved
7998 global GCC_UNDER_TEST
8000 if { !([istarget x86_64-*-*] || [istarget i?86-*-*]) } {
8004 # Need auto-host.h to check linker support.
8005 if { ![file exists ../../auto-host.h ] } {
8009 if [info exists tls_get_addr_via_got_available_saved] {
8010 verbose "check_effective_target_tls_get_addr_via_got returning saved $tls_get_addr_via_got_available_saved" 2
8012 # Include the current process ID in the file names to prevent
8013 # conflicts with invocations for multiple testsuites.
8015 set src tls_get_addr_via_got[pid].c
8016 set obj tls_get_addr_via_got[pid].o
8018 set f [open $src "w"]
8019 puts $f "#include \"../../auto-host.h\""
8020 puts $f "#if HAVE_AS_IX86_TLS_GET_ADDR_GOT == 0"
8021 puts $f "# error Assembler/linker do not support calling ___tls_get_addr via GOT."
8025 verbose "check_effective_target_tls_get_addr_via_got compiling testfile $src" 2
8026 set lines [${tool}_target_compile $src $obj object ""]
8031 if [string match "" $lines] then {
8032 verbose "check_effective_target_tls_get_addr_via_got testfile compilation passed" 2
8033 set tls_get_addr_via_got_available_saved 1
8035 verbose "check_effective_target_tls_get_addr_via_got testfile compilation failed" 2
8036 set tls_get_addr_via_got_available_saved 0
8040 return $tls_get_addr_via_got_available_saved
8043 # Return 1 if the target uses comdat groups.
8045 proc check_effective_target_comdat_group {} {
8046 return [check_no_messages_and_pattern comdat_group "\.section\[^\n\r]*,comdat" assembly {
8048 inline int foo () { return 1; }
8053 # Return 1 if target supports __builtin_eh_return
8054 proc check_effective_target_builtin_eh_return { } {
8055 return [check_no_compiler_messages builtin_eh_return object {
8056 void test (long l, void *p)
8058 __builtin_eh_return (l, p);
8063 # Return 1 if the target supports max reduction for vectors.
8065 proc check_effective_target_vect_max_reduc { } {
8066 if { [istarget aarch64*-*-*] || [istarget arm*-*-*] } {
8072 # Return 1 if there is an nvptx offload compiler.
8074 proc check_effective_target_offload_nvptx { } {
8075 return [check_no_compiler_messages offload_nvptx object {
8076 int main () {return 0;}
8077 } "-foffload=nvptx-none" ]
8080 # Return 1 if the compiler has been configured with hsa offloading.
8082 proc check_effective_target_offload_hsa { } {
8083 return [check_no_compiler_messages offload_hsa assembly {
8084 int main () {return 0;}
8088 # Return 1 if the target support -fprofile-update=atomic
8089 proc check_effective_target_profile_update_atomic {} {
8090 return [check_no_compiler_messages profile_update_atomic assembly {
8091 int main (void) { return 0; }
8092 } "-fprofile-update=atomic -fprofile-generate"]