Daily bump.
[official-gcc.git] / gcc / recog.c
blobd7c69439683ea8b183069fc0d20ede1a1470831e
1 /* Subroutines used by or related to instruction recognition.
2 Copyright (C) 1987-2018 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "cfghooks.h"
29 #include "df.h"
30 #include "memmodel.h"
31 #include "tm_p.h"
32 #include "insn-config.h"
33 #include "regs.h"
34 #include "emit-rtl.h"
35 #include "recog.h"
36 #include "insn-attr.h"
37 #include "addresses.h"
38 #include "cfgrtl.h"
39 #include "cfgbuild.h"
40 #include "cfgcleanup.h"
41 #include "reload.h"
42 #include "tree-pass.h"
44 #ifndef STACK_POP_CODE
45 #if STACK_GROWS_DOWNWARD
46 #define STACK_POP_CODE POST_INC
47 #else
48 #define STACK_POP_CODE POST_DEC
49 #endif
50 #endif
52 static void validate_replace_rtx_1 (rtx *, rtx, rtx, rtx_insn *, bool);
53 static void validate_replace_src_1 (rtx *, void *);
54 static rtx_insn *split_insn (rtx_insn *);
56 struct target_recog default_target_recog;
57 #if SWITCHABLE_TARGET
58 struct target_recog *this_target_recog = &default_target_recog;
59 #endif
61 /* Nonzero means allow operands to be volatile.
62 This should be 0 if you are generating rtl, such as if you are calling
63 the functions in optabs.c and expmed.c (most of the time).
64 This should be 1 if all valid insns need to be recognized,
65 such as in reginfo.c and final.c and reload.c.
67 init_recog and init_recog_no_volatile are responsible for setting this. */
69 int volatile_ok;
71 struct recog_data_d recog_data;
73 /* Contains a vector of operand_alternative structures, such that
74 operand OP of alternative A is at index A * n_operands + OP.
75 Set up by preprocess_constraints. */
76 const operand_alternative *recog_op_alt;
78 /* Used to provide recog_op_alt for asms. */
79 static operand_alternative asm_op_alt[MAX_RECOG_OPERANDS
80 * MAX_RECOG_ALTERNATIVES];
82 /* On return from `constrain_operands', indicate which alternative
83 was satisfied. */
85 int which_alternative;
87 /* Nonzero after end of reload pass.
88 Set to 1 or 0 by toplev.c.
89 Controls the significance of (SUBREG (MEM)). */
91 int reload_completed;
93 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
94 int epilogue_completed;
96 /* Initialize data used by the function `recog'.
97 This must be called once in the compilation of a function
98 before any insn recognition may be done in the function. */
100 void
101 init_recog_no_volatile (void)
103 volatile_ok = 0;
106 void
107 init_recog (void)
109 volatile_ok = 1;
113 /* Return true if labels in asm operands BODY are LABEL_REFs. */
115 static bool
116 asm_labels_ok (rtx body)
118 rtx asmop;
119 int i;
121 asmop = extract_asm_operands (body);
122 if (asmop == NULL_RTX)
123 return true;
125 for (i = 0; i < ASM_OPERANDS_LABEL_LENGTH (asmop); i++)
126 if (GET_CODE (ASM_OPERANDS_LABEL (asmop, i)) != LABEL_REF)
127 return false;
129 return true;
132 /* Check that X is an insn-body for an `asm' with operands
133 and that the operands mentioned in it are legitimate. */
136 check_asm_operands (rtx x)
138 int noperands;
139 rtx *operands;
140 const char **constraints;
141 int i;
143 if (!asm_labels_ok (x))
144 return 0;
146 /* Post-reload, be more strict with things. */
147 if (reload_completed)
149 /* ??? Doh! We've not got the wrapping insn. Cook one up. */
150 rtx_insn *insn = make_insn_raw (x);
151 extract_insn (insn);
152 constrain_operands (1, get_enabled_alternatives (insn));
153 return which_alternative >= 0;
156 noperands = asm_noperands (x);
157 if (noperands < 0)
158 return 0;
159 if (noperands == 0)
160 return 1;
162 operands = XALLOCAVEC (rtx, noperands);
163 constraints = XALLOCAVEC (const char *, noperands);
165 decode_asm_operands (x, operands, NULL, constraints, NULL, NULL);
167 for (i = 0; i < noperands; i++)
169 const char *c = constraints[i];
170 if (c[0] == '%')
171 c++;
172 if (! asm_operand_ok (operands[i], c, constraints))
173 return 0;
176 return 1;
179 /* Static data for the next two routines. */
181 struct change_t
183 rtx object;
184 int old_code;
185 bool unshare;
186 rtx *loc;
187 rtx old;
190 static change_t *changes;
191 static int changes_allocated;
193 static int num_changes = 0;
195 /* Validate a proposed change to OBJECT. LOC is the location in the rtl
196 at which NEW_RTX will be placed. If OBJECT is zero, no validation is done,
197 the change is simply made.
199 Two types of objects are supported: If OBJECT is a MEM, memory_address_p
200 will be called with the address and mode as parameters. If OBJECT is
201 an INSN, CALL_INSN, or JUMP_INSN, the insn will be re-recognized with
202 the change in place.
204 IN_GROUP is nonzero if this is part of a group of changes that must be
205 performed as a group. In that case, the changes will be stored. The
206 function `apply_change_group' will validate and apply the changes.
208 If IN_GROUP is zero, this is a single change. Try to recognize the insn
209 or validate the memory reference with the change applied. If the result
210 is not valid for the machine, suppress the change and return zero.
211 Otherwise, perform the change and return 1. */
213 static bool
214 validate_change_1 (rtx object, rtx *loc, rtx new_rtx, bool in_group, bool unshare)
216 rtx old = *loc;
218 if (old == new_rtx || rtx_equal_p (old, new_rtx))
219 return 1;
221 gcc_assert (in_group != 0 || num_changes == 0);
223 *loc = new_rtx;
225 /* Save the information describing this change. */
226 if (num_changes >= changes_allocated)
228 if (changes_allocated == 0)
229 /* This value allows for repeated substitutions inside complex
230 indexed addresses, or changes in up to 5 insns. */
231 changes_allocated = MAX_RECOG_OPERANDS * 5;
232 else
233 changes_allocated *= 2;
235 changes = XRESIZEVEC (change_t, changes, changes_allocated);
238 changes[num_changes].object = object;
239 changes[num_changes].loc = loc;
240 changes[num_changes].old = old;
241 changes[num_changes].unshare = unshare;
243 if (object && !MEM_P (object))
245 /* Set INSN_CODE to force rerecognition of insn. Save old code in
246 case invalid. */
247 changes[num_changes].old_code = INSN_CODE (object);
248 INSN_CODE (object) = -1;
251 num_changes++;
253 /* If we are making a group of changes, return 1. Otherwise, validate the
254 change group we made. */
256 if (in_group)
257 return 1;
258 else
259 return apply_change_group ();
262 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
263 UNSHARE to false. */
265 bool
266 validate_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
268 return validate_change_1 (object, loc, new_rtx, in_group, false);
271 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
272 UNSHARE to true. */
274 bool
275 validate_unshare_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
277 return validate_change_1 (object, loc, new_rtx, in_group, true);
281 /* Keep X canonicalized if some changes have made it non-canonical; only
282 modifies the operands of X, not (for example) its code. Simplifications
283 are not the job of this routine.
285 Return true if anything was changed. */
286 bool
287 canonicalize_change_group (rtx_insn *insn, rtx x)
289 if (COMMUTATIVE_P (x)
290 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
292 /* Oops, the caller has made X no longer canonical.
293 Let's redo the changes in the correct order. */
294 rtx tem = XEXP (x, 0);
295 validate_unshare_change (insn, &XEXP (x, 0), XEXP (x, 1), 1);
296 validate_unshare_change (insn, &XEXP (x, 1), tem, 1);
297 return true;
299 else
300 return false;
304 /* This subroutine of apply_change_group verifies whether the changes to INSN
305 were valid; i.e. whether INSN can still be recognized.
307 If IN_GROUP is true clobbers which have to be added in order to
308 match the instructions will be added to the current change group.
309 Otherwise the changes will take effect immediately. */
312 insn_invalid_p (rtx_insn *insn, bool in_group)
314 rtx pat = PATTERN (insn);
315 int num_clobbers = 0;
316 /* If we are before reload and the pattern is a SET, see if we can add
317 clobbers. */
318 int icode = recog (pat, insn,
319 (GET_CODE (pat) == SET
320 && ! reload_completed
321 && ! reload_in_progress)
322 ? &num_clobbers : 0);
323 int is_asm = icode < 0 && asm_noperands (PATTERN (insn)) >= 0;
326 /* If this is an asm and the operand aren't legal, then fail. Likewise if
327 this is not an asm and the insn wasn't recognized. */
328 if ((is_asm && ! check_asm_operands (PATTERN (insn)))
329 || (!is_asm && icode < 0))
330 return 1;
332 /* If we have to add CLOBBERs, fail if we have to add ones that reference
333 hard registers since our callers can't know if they are live or not.
334 Otherwise, add them. */
335 if (num_clobbers > 0)
337 rtx newpat;
339 if (added_clobbers_hard_reg_p (icode))
340 return 1;
342 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (num_clobbers + 1));
343 XVECEXP (newpat, 0, 0) = pat;
344 add_clobbers (newpat, icode);
345 if (in_group)
346 validate_change (insn, &PATTERN (insn), newpat, 1);
347 else
348 PATTERN (insn) = pat = newpat;
351 /* After reload, verify that all constraints are satisfied. */
352 if (reload_completed)
354 extract_insn (insn);
356 if (! constrain_operands (1, get_preferred_alternatives (insn)))
357 return 1;
360 INSN_CODE (insn) = icode;
361 return 0;
364 /* Return number of changes made and not validated yet. */
366 num_changes_pending (void)
368 return num_changes;
371 /* Tentatively apply the changes numbered NUM and up.
372 Return 1 if all changes are valid, zero otherwise. */
375 verify_changes (int num)
377 int i;
378 rtx last_validated = NULL_RTX;
380 /* The changes have been applied and all INSN_CODEs have been reset to force
381 rerecognition.
383 The changes are valid if we aren't given an object, or if we are
384 given a MEM and it still is a valid address, or if this is in insn
385 and it is recognized. In the latter case, if reload has completed,
386 we also require that the operands meet the constraints for
387 the insn. */
389 for (i = num; i < num_changes; i++)
391 rtx object = changes[i].object;
393 /* If there is no object to test or if it is the same as the one we
394 already tested, ignore it. */
395 if (object == 0 || object == last_validated)
396 continue;
398 if (MEM_P (object))
400 if (! memory_address_addr_space_p (GET_MODE (object),
401 XEXP (object, 0),
402 MEM_ADDR_SPACE (object)))
403 break;
405 else if (/* changes[i].old might be zero, e.g. when putting a
406 REG_FRAME_RELATED_EXPR into a previously empty list. */
407 changes[i].old
408 && REG_P (changes[i].old)
409 && asm_noperands (PATTERN (object)) > 0
410 && REG_EXPR (changes[i].old) != NULL_TREE
411 && HAS_DECL_ASSEMBLER_NAME_P (REG_EXPR (changes[i].old))
412 && DECL_ASSEMBLER_NAME_SET_P (REG_EXPR (changes[i].old))
413 && DECL_REGISTER (REG_EXPR (changes[i].old)))
415 /* Don't allow changes of hard register operands to inline
416 assemblies if they have been defined as register asm ("x"). */
417 break;
419 else if (DEBUG_INSN_P (object))
420 continue;
421 else if (insn_invalid_p (as_a <rtx_insn *> (object), true))
423 rtx pat = PATTERN (object);
425 /* Perhaps we couldn't recognize the insn because there were
426 extra CLOBBERs at the end. If so, try to re-recognize
427 without the last CLOBBER (later iterations will cause each of
428 them to be eliminated, in turn). But don't do this if we
429 have an ASM_OPERAND. */
430 if (GET_CODE (pat) == PARALLEL
431 && GET_CODE (XVECEXP (pat, 0, XVECLEN (pat, 0) - 1)) == CLOBBER
432 && asm_noperands (PATTERN (object)) < 0)
434 rtx newpat;
436 if (XVECLEN (pat, 0) == 2)
437 newpat = XVECEXP (pat, 0, 0);
438 else
440 int j;
442 newpat
443 = gen_rtx_PARALLEL (VOIDmode,
444 rtvec_alloc (XVECLEN (pat, 0) - 1));
445 for (j = 0; j < XVECLEN (newpat, 0); j++)
446 XVECEXP (newpat, 0, j) = XVECEXP (pat, 0, j);
449 /* Add a new change to this group to replace the pattern
450 with this new pattern. Then consider this change
451 as having succeeded. The change we added will
452 cause the entire call to fail if things remain invalid.
454 Note that this can lose if a later change than the one
455 we are processing specified &XVECEXP (PATTERN (object), 0, X)
456 but this shouldn't occur. */
458 validate_change (object, &PATTERN (object), newpat, 1);
459 continue;
461 else if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER
462 || GET_CODE (pat) == VAR_LOCATION)
463 /* If this insn is a CLOBBER or USE, it is always valid, but is
464 never recognized. */
465 continue;
466 else
467 break;
469 last_validated = object;
472 return (i == num_changes);
475 /* A group of changes has previously been issued with validate_change
476 and verified with verify_changes. Call df_insn_rescan for each of
477 the insn changed and clear num_changes. */
479 void
480 confirm_change_group (void)
482 int i;
483 rtx last_object = NULL;
485 for (i = 0; i < num_changes; i++)
487 rtx object = changes[i].object;
489 if (changes[i].unshare)
490 *changes[i].loc = copy_rtx (*changes[i].loc);
492 /* Avoid unnecessary rescanning when multiple changes to same instruction
493 are made. */
494 if (object)
496 if (object != last_object && last_object && INSN_P (last_object))
497 df_insn_rescan (as_a <rtx_insn *> (last_object));
498 last_object = object;
502 if (last_object && INSN_P (last_object))
503 df_insn_rescan (as_a <rtx_insn *> (last_object));
504 num_changes = 0;
507 /* Apply a group of changes previously issued with `validate_change'.
508 If all changes are valid, call confirm_change_group and return 1,
509 otherwise, call cancel_changes and return 0. */
512 apply_change_group (void)
514 if (verify_changes (0))
516 confirm_change_group ();
517 return 1;
519 else
521 cancel_changes (0);
522 return 0;
527 /* Return the number of changes so far in the current group. */
530 num_validated_changes (void)
532 return num_changes;
535 /* Retract the changes numbered NUM and up. */
537 void
538 cancel_changes (int num)
540 int i;
542 /* Back out all the changes. Do this in the opposite order in which
543 they were made. */
544 for (i = num_changes - 1; i >= num; i--)
546 *changes[i].loc = changes[i].old;
547 if (changes[i].object && !MEM_P (changes[i].object))
548 INSN_CODE (changes[i].object) = changes[i].old_code;
550 num_changes = num;
553 /* Reduce conditional compilation elsewhere. */
554 /* A subroutine of validate_replace_rtx_1 that tries to simplify the resulting
555 rtx. */
557 static void
558 simplify_while_replacing (rtx *loc, rtx to, rtx_insn *object,
559 machine_mode op0_mode)
561 rtx x = *loc;
562 enum rtx_code code = GET_CODE (x);
563 rtx new_rtx = NULL_RTX;
564 scalar_int_mode is_mode;
566 if (SWAPPABLE_OPERANDS_P (x)
567 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
569 validate_unshare_change (object, loc,
570 gen_rtx_fmt_ee (COMMUTATIVE_ARITH_P (x) ? code
571 : swap_condition (code),
572 GET_MODE (x), XEXP (x, 1),
573 XEXP (x, 0)), 1);
574 x = *loc;
575 code = GET_CODE (x);
578 /* Canonicalize arithmetics with all constant operands. */
579 switch (GET_RTX_CLASS (code))
581 case RTX_UNARY:
582 if (CONSTANT_P (XEXP (x, 0)))
583 new_rtx = simplify_unary_operation (code, GET_MODE (x), XEXP (x, 0),
584 op0_mode);
585 break;
586 case RTX_COMM_ARITH:
587 case RTX_BIN_ARITH:
588 if (CONSTANT_P (XEXP (x, 0)) && CONSTANT_P (XEXP (x, 1)))
589 new_rtx = simplify_binary_operation (code, GET_MODE (x), XEXP (x, 0),
590 XEXP (x, 1));
591 break;
592 case RTX_COMPARE:
593 case RTX_COMM_COMPARE:
594 if (CONSTANT_P (XEXP (x, 0)) && CONSTANT_P (XEXP (x, 1)))
595 new_rtx = simplify_relational_operation (code, GET_MODE (x), op0_mode,
596 XEXP (x, 0), XEXP (x, 1));
597 break;
598 default:
599 break;
601 if (new_rtx)
603 validate_change (object, loc, new_rtx, 1);
604 return;
607 switch (code)
609 case PLUS:
610 /* If we have a PLUS whose second operand is now a CONST_INT, use
611 simplify_gen_binary to try to simplify it.
612 ??? We may want later to remove this, once simplification is
613 separated from this function. */
614 if (CONST_INT_P (XEXP (x, 1)) && XEXP (x, 1) == to)
615 validate_change (object, loc,
616 simplify_gen_binary
617 (PLUS, GET_MODE (x), XEXP (x, 0), XEXP (x, 1)), 1);
618 break;
619 case MINUS:
620 if (CONST_SCALAR_INT_P (XEXP (x, 1)))
621 validate_change (object, loc,
622 simplify_gen_binary
623 (PLUS, GET_MODE (x), XEXP (x, 0),
624 simplify_gen_unary (NEG,
625 GET_MODE (x), XEXP (x, 1),
626 GET_MODE (x))), 1);
627 break;
628 case ZERO_EXTEND:
629 case SIGN_EXTEND:
630 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
632 new_rtx = simplify_gen_unary (code, GET_MODE (x), XEXP (x, 0),
633 op0_mode);
634 /* If any of the above failed, substitute in something that
635 we know won't be recognized. */
636 if (!new_rtx)
637 new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
638 validate_change (object, loc, new_rtx, 1);
640 break;
641 case SUBREG:
642 /* All subregs possible to simplify should be simplified. */
643 new_rtx = simplify_subreg (GET_MODE (x), SUBREG_REG (x), op0_mode,
644 SUBREG_BYTE (x));
646 /* Subregs of VOIDmode operands are incorrect. */
647 if (!new_rtx && GET_MODE (SUBREG_REG (x)) == VOIDmode)
648 new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
649 if (new_rtx)
650 validate_change (object, loc, new_rtx, 1);
651 break;
652 case ZERO_EXTRACT:
653 case SIGN_EXTRACT:
654 /* If we are replacing a register with memory, try to change the memory
655 to be the mode required for memory in extract operations (this isn't
656 likely to be an insertion operation; if it was, nothing bad will
657 happen, we might just fail in some cases). */
659 if (MEM_P (XEXP (x, 0))
660 && is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &is_mode)
661 && CONST_INT_P (XEXP (x, 1))
662 && CONST_INT_P (XEXP (x, 2))
663 && !mode_dependent_address_p (XEXP (XEXP (x, 0), 0),
664 MEM_ADDR_SPACE (XEXP (x, 0)))
665 && !MEM_VOLATILE_P (XEXP (x, 0)))
667 int pos = INTVAL (XEXP (x, 2));
668 machine_mode new_mode = is_mode;
669 if (GET_CODE (x) == ZERO_EXTRACT && targetm.have_extzv ())
670 new_mode = insn_data[targetm.code_for_extzv].operand[1].mode;
671 else if (GET_CODE (x) == SIGN_EXTRACT && targetm.have_extv ())
672 new_mode = insn_data[targetm.code_for_extv].operand[1].mode;
673 scalar_int_mode wanted_mode = (new_mode == VOIDmode
674 ? word_mode
675 : as_a <scalar_int_mode> (new_mode));
677 /* If we have a narrower mode, we can do something. */
678 if (GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
680 int offset = pos / BITS_PER_UNIT;
681 rtx newmem;
683 /* If the bytes and bits are counted differently, we
684 must adjust the offset. */
685 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
686 offset =
687 (GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (wanted_mode) -
688 offset);
690 gcc_assert (GET_MODE_PRECISION (wanted_mode)
691 == GET_MODE_BITSIZE (wanted_mode));
692 pos %= GET_MODE_BITSIZE (wanted_mode);
694 newmem = adjust_address_nv (XEXP (x, 0), wanted_mode, offset);
696 validate_change (object, &XEXP (x, 2), GEN_INT (pos), 1);
697 validate_change (object, &XEXP (x, 0), newmem, 1);
701 break;
703 default:
704 break;
708 /* Replace every occurrence of FROM in X with TO. Mark each change with
709 validate_change passing OBJECT. */
711 static void
712 validate_replace_rtx_1 (rtx *loc, rtx from, rtx to, rtx_insn *object,
713 bool simplify)
715 int i, j;
716 const char *fmt;
717 rtx x = *loc;
718 enum rtx_code code;
719 machine_mode op0_mode = VOIDmode;
720 int prev_changes = num_changes;
722 if (!x)
723 return;
725 code = GET_CODE (x);
726 fmt = GET_RTX_FORMAT (code);
727 if (fmt[0] == 'e')
728 op0_mode = GET_MODE (XEXP (x, 0));
730 /* X matches FROM if it is the same rtx or they are both referring to the
731 same register in the same mode. Avoid calling rtx_equal_p unless the
732 operands look similar. */
734 if (x == from
735 || (REG_P (x) && REG_P (from)
736 && GET_MODE (x) == GET_MODE (from)
737 && REGNO (x) == REGNO (from))
738 || (GET_CODE (x) == GET_CODE (from) && GET_MODE (x) == GET_MODE (from)
739 && rtx_equal_p (x, from)))
741 validate_unshare_change (object, loc, to, 1);
742 return;
745 /* Call ourself recursively to perform the replacements.
746 We must not replace inside already replaced expression, otherwise we
747 get infinite recursion for replacements like (reg X)->(subreg (reg X))
748 so we must special case shared ASM_OPERANDS. */
750 if (GET_CODE (x) == PARALLEL)
752 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
754 if (j && GET_CODE (XVECEXP (x, 0, j)) == SET
755 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == ASM_OPERANDS)
757 /* Verify that operands are really shared. */
758 gcc_assert (ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (x, 0, 0)))
759 == ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP
760 (x, 0, j))));
761 validate_replace_rtx_1 (&SET_DEST (XVECEXP (x, 0, j)),
762 from, to, object, simplify);
764 else
765 validate_replace_rtx_1 (&XVECEXP (x, 0, j), from, to, object,
766 simplify);
769 else
770 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
772 if (fmt[i] == 'e')
773 validate_replace_rtx_1 (&XEXP (x, i), from, to, object, simplify);
774 else if (fmt[i] == 'E')
775 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
776 validate_replace_rtx_1 (&XVECEXP (x, i, j), from, to, object,
777 simplify);
780 /* If we didn't substitute, there is nothing more to do. */
781 if (num_changes == prev_changes)
782 return;
784 /* ??? The regmove is no more, so is this aberration still necessary? */
785 /* Allow substituted expression to have different mode. This is used by
786 regmove to change mode of pseudo register. */
787 if (fmt[0] == 'e' && GET_MODE (XEXP (x, 0)) != VOIDmode)
788 op0_mode = GET_MODE (XEXP (x, 0));
790 /* Do changes needed to keep rtx consistent. Don't do any other
791 simplifications, as it is not our job. */
792 if (simplify)
793 simplify_while_replacing (loc, to, object, op0_mode);
796 /* Try replacing every occurrence of FROM in subexpression LOC of INSN
797 with TO. After all changes have been made, validate by seeing
798 if INSN is still valid. */
801 validate_replace_rtx_subexp (rtx from, rtx to, rtx_insn *insn, rtx *loc)
803 validate_replace_rtx_1 (loc, from, to, insn, true);
804 return apply_change_group ();
807 /* Try replacing every occurrence of FROM in INSN with TO. After all
808 changes have been made, validate by seeing if INSN is still valid. */
811 validate_replace_rtx (rtx from, rtx to, rtx_insn *insn)
813 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
814 return apply_change_group ();
817 /* Try replacing every occurrence of FROM in WHERE with TO. Assume that WHERE
818 is a part of INSN. After all changes have been made, validate by seeing if
819 INSN is still valid.
820 validate_replace_rtx (from, to, insn) is equivalent to
821 validate_replace_rtx_part (from, to, &PATTERN (insn), insn). */
824 validate_replace_rtx_part (rtx from, rtx to, rtx *where, rtx_insn *insn)
826 validate_replace_rtx_1 (where, from, to, insn, true);
827 return apply_change_group ();
830 /* Same as above, but do not simplify rtx afterwards. */
832 validate_replace_rtx_part_nosimplify (rtx from, rtx to, rtx *where,
833 rtx_insn *insn)
835 validate_replace_rtx_1 (where, from, to, insn, false);
836 return apply_change_group ();
840 /* Try replacing every occurrence of FROM in INSN with TO. This also
841 will replace in REG_EQUAL and REG_EQUIV notes. */
843 void
844 validate_replace_rtx_group (rtx from, rtx to, rtx_insn *insn)
846 rtx note;
847 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
848 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
849 if (REG_NOTE_KIND (note) == REG_EQUAL
850 || REG_NOTE_KIND (note) == REG_EQUIV)
851 validate_replace_rtx_1 (&XEXP (note, 0), from, to, insn, true);
854 /* Function called by note_uses to replace used subexpressions. */
855 struct validate_replace_src_data
857 rtx from; /* Old RTX */
858 rtx to; /* New RTX */
859 rtx_insn *insn; /* Insn in which substitution is occurring. */
862 static void
863 validate_replace_src_1 (rtx *x, void *data)
865 struct validate_replace_src_data *d
866 = (struct validate_replace_src_data *) data;
868 validate_replace_rtx_1 (x, d->from, d->to, d->insn, true);
871 /* Try replacing every occurrence of FROM in INSN with TO, avoiding
872 SET_DESTs. */
874 void
875 validate_replace_src_group (rtx from, rtx to, rtx_insn *insn)
877 struct validate_replace_src_data d;
879 d.from = from;
880 d.to = to;
881 d.insn = insn;
882 note_uses (&PATTERN (insn), validate_replace_src_1, &d);
885 /* Try simplify INSN.
886 Invoke simplify_rtx () on every SET_SRC and SET_DEST inside the INSN's
887 pattern and return true if something was simplified. */
889 bool
890 validate_simplify_insn (rtx_insn *insn)
892 int i;
893 rtx pat = NULL;
894 rtx newpat = NULL;
896 pat = PATTERN (insn);
898 if (GET_CODE (pat) == SET)
900 newpat = simplify_rtx (SET_SRC (pat));
901 if (newpat && !rtx_equal_p (SET_SRC (pat), newpat))
902 validate_change (insn, &SET_SRC (pat), newpat, 1);
903 newpat = simplify_rtx (SET_DEST (pat));
904 if (newpat && !rtx_equal_p (SET_DEST (pat), newpat))
905 validate_change (insn, &SET_DEST (pat), newpat, 1);
907 else if (GET_CODE (pat) == PARALLEL)
908 for (i = 0; i < XVECLEN (pat, 0); i++)
910 rtx s = XVECEXP (pat, 0, i);
912 if (GET_CODE (XVECEXP (pat, 0, i)) == SET)
914 newpat = simplify_rtx (SET_SRC (s));
915 if (newpat && !rtx_equal_p (SET_SRC (s), newpat))
916 validate_change (insn, &SET_SRC (s), newpat, 1);
917 newpat = simplify_rtx (SET_DEST (s));
918 if (newpat && !rtx_equal_p (SET_DEST (s), newpat))
919 validate_change (insn, &SET_DEST (s), newpat, 1);
922 return ((num_changes_pending () > 0) && (apply_change_group () > 0));
925 /* Return 1 if the insn using CC0 set by INSN does not contain
926 any ordered tests applied to the condition codes.
927 EQ and NE tests do not count. */
930 next_insn_tests_no_inequality (rtx_insn *insn)
932 rtx_insn *next = next_cc0_user (insn);
934 /* If there is no next insn, we have to take the conservative choice. */
935 if (next == 0)
936 return 0;
938 return (INSN_P (next)
939 && ! inequality_comparisons_p (PATTERN (next)));
942 /* Return 1 if OP is a valid general operand for machine mode MODE.
943 This is either a register reference, a memory reference,
944 or a constant. In the case of a memory reference, the address
945 is checked for general validity for the target machine.
947 Register and memory references must have mode MODE in order to be valid,
948 but some constants have no machine mode and are valid for any mode.
950 If MODE is VOIDmode, OP is checked for validity for whatever mode
951 it has.
953 The main use of this function is as a predicate in match_operand
954 expressions in the machine description. */
957 general_operand (rtx op, machine_mode mode)
959 enum rtx_code code = GET_CODE (op);
961 if (mode == VOIDmode)
962 mode = GET_MODE (op);
964 /* Don't accept CONST_INT or anything similar
965 if the caller wants something floating. */
966 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
967 && GET_MODE_CLASS (mode) != MODE_INT
968 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
969 return 0;
971 if (CONST_INT_P (op)
972 && mode != VOIDmode
973 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
974 return 0;
976 if (CONSTANT_P (op))
977 return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode
978 || mode == VOIDmode)
979 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
980 && targetm.legitimate_constant_p (mode == VOIDmode
981 ? GET_MODE (op)
982 : mode, op));
984 /* Except for certain constants with VOIDmode, already checked for,
985 OP's mode must match MODE if MODE specifies a mode. */
987 if (GET_MODE (op) != mode)
988 return 0;
990 if (code == SUBREG)
992 rtx sub = SUBREG_REG (op);
994 #ifdef INSN_SCHEDULING
995 /* On machines that have insn scheduling, we want all memory
996 reference to be explicit, so outlaw paradoxical SUBREGs.
997 However, we must allow them after reload so that they can
998 get cleaned up by cleanup_subreg_operands. */
999 if (!reload_completed && MEM_P (sub)
1000 && paradoxical_subreg_p (op))
1001 return 0;
1002 #endif
1003 /* Avoid memories with nonzero SUBREG_BYTE, as offsetting the memory
1004 may result in incorrect reference. We should simplify all valid
1005 subregs of MEM anyway. But allow this after reload because we
1006 might be called from cleanup_subreg_operands.
1008 ??? This is a kludge. */
1009 if (!reload_completed
1010 && maybe_ne (SUBREG_BYTE (op), 0)
1011 && MEM_P (sub))
1012 return 0;
1014 if (REG_P (sub)
1015 && REGNO (sub) < FIRST_PSEUDO_REGISTER
1016 && !REG_CAN_CHANGE_MODE_P (REGNO (sub), GET_MODE (sub), mode)
1017 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_INT
1018 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_FLOAT
1019 /* LRA can generate some invalid SUBREGS just for matched
1020 operand reload presentation. LRA needs to treat them as
1021 valid. */
1022 && ! LRA_SUBREG_P (op))
1023 return 0;
1025 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
1026 create such rtl, and we must reject it. */
1027 if (SCALAR_FLOAT_MODE_P (GET_MODE (op))
1028 /* LRA can use subreg to store a floating point value in an
1029 integer mode. Although the floating point and the
1030 integer modes need the same number of hard registers, the
1031 size of floating point mode can be less than the integer
1032 mode. */
1033 && ! lra_in_progress
1034 && paradoxical_subreg_p (op))
1035 return 0;
1037 op = sub;
1038 code = GET_CODE (op);
1041 if (code == REG)
1042 return (REGNO (op) >= FIRST_PSEUDO_REGISTER
1043 || in_hard_reg_set_p (operand_reg_set, GET_MODE (op), REGNO (op)));
1045 if (code == MEM)
1047 rtx y = XEXP (op, 0);
1049 if (! volatile_ok && MEM_VOLATILE_P (op))
1050 return 0;
1052 /* Use the mem's mode, since it will be reloaded thus. LRA can
1053 generate move insn with invalid addresses which is made valid
1054 and efficiently calculated by LRA through further numerous
1055 transformations. */
1056 if (lra_in_progress
1057 || memory_address_addr_space_p (GET_MODE (op), y, MEM_ADDR_SPACE (op)))
1058 return 1;
1061 return 0;
1064 /* Return 1 if OP is a valid memory address for a memory reference
1065 of mode MODE.
1067 The main use of this function is as a predicate in match_operand
1068 expressions in the machine description. */
1071 address_operand (rtx op, machine_mode mode)
1073 return memory_address_p (mode, op);
1076 /* Return 1 if OP is a register reference of mode MODE.
1077 If MODE is VOIDmode, accept a register in any mode.
1079 The main use of this function is as a predicate in match_operand
1080 expressions in the machine description. */
1083 register_operand (rtx op, machine_mode mode)
1085 if (GET_CODE (op) == SUBREG)
1087 rtx sub = SUBREG_REG (op);
1089 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1090 because it is guaranteed to be reloaded into one.
1091 Just make sure the MEM is valid in itself.
1092 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1093 but currently it does result from (SUBREG (REG)...) where the
1094 reg went on the stack.) */
1095 if (!REG_P (sub) && (reload_completed || !MEM_P (sub)))
1096 return 0;
1098 else if (!REG_P (op))
1099 return 0;
1100 return general_operand (op, mode);
1103 /* Return 1 for a register in Pmode; ignore the tested mode. */
1106 pmode_register_operand (rtx op, machine_mode mode ATTRIBUTE_UNUSED)
1108 return register_operand (op, Pmode);
1111 /* Return 1 if OP should match a MATCH_SCRATCH, i.e., if it is a SCRATCH
1112 or a hard register. */
1115 scratch_operand (rtx op, machine_mode mode)
1117 if (GET_MODE (op) != mode && mode != VOIDmode)
1118 return 0;
1120 return (GET_CODE (op) == SCRATCH
1121 || (REG_P (op)
1122 && (lra_in_progress
1123 || (REGNO (op) < FIRST_PSEUDO_REGISTER
1124 && REGNO_REG_CLASS (REGNO (op)) != NO_REGS))));
1127 /* Return 1 if OP is a valid immediate operand for mode MODE.
1129 The main use of this function is as a predicate in match_operand
1130 expressions in the machine description. */
1133 immediate_operand (rtx op, machine_mode mode)
1135 /* Don't accept CONST_INT or anything similar
1136 if the caller wants something floating. */
1137 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1138 && GET_MODE_CLASS (mode) != MODE_INT
1139 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1140 return 0;
1142 if (CONST_INT_P (op)
1143 && mode != VOIDmode
1144 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1145 return 0;
1147 return (CONSTANT_P (op)
1148 && (GET_MODE (op) == mode || mode == VOIDmode
1149 || GET_MODE (op) == VOIDmode)
1150 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1151 && targetm.legitimate_constant_p (mode == VOIDmode
1152 ? GET_MODE (op)
1153 : mode, op));
1156 /* Returns 1 if OP is an operand that is a CONST_INT of mode MODE. */
1159 const_int_operand (rtx op, machine_mode mode)
1161 if (!CONST_INT_P (op))
1162 return 0;
1164 if (mode != VOIDmode
1165 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1166 return 0;
1168 return 1;
1171 #if TARGET_SUPPORTS_WIDE_INT
1172 /* Returns 1 if OP is an operand that is a CONST_INT or CONST_WIDE_INT
1173 of mode MODE. */
1175 const_scalar_int_operand (rtx op, machine_mode mode)
1177 if (!CONST_SCALAR_INT_P (op))
1178 return 0;
1180 if (CONST_INT_P (op))
1181 return const_int_operand (op, mode);
1183 if (mode != VOIDmode)
1185 scalar_int_mode int_mode = as_a <scalar_int_mode> (mode);
1186 int prec = GET_MODE_PRECISION (int_mode);
1187 int bitsize = GET_MODE_BITSIZE (int_mode);
1189 if (CONST_WIDE_INT_NUNITS (op) * HOST_BITS_PER_WIDE_INT > bitsize)
1190 return 0;
1192 if (prec == bitsize)
1193 return 1;
1194 else
1196 /* Multiword partial int. */
1197 HOST_WIDE_INT x
1198 = CONST_WIDE_INT_ELT (op, CONST_WIDE_INT_NUNITS (op) - 1);
1199 return (sext_hwi (x, prec & (HOST_BITS_PER_WIDE_INT - 1)) == x);
1202 return 1;
1205 /* Returns 1 if OP is an operand that is a constant integer or constant
1206 floating-point number of MODE. */
1209 const_double_operand (rtx op, machine_mode mode)
1211 return (GET_CODE (op) == CONST_DOUBLE)
1212 && (GET_MODE (op) == mode || mode == VOIDmode);
1214 #else
1215 /* Returns 1 if OP is an operand that is a constant integer or constant
1216 floating-point number of MODE. */
1219 const_double_operand (rtx op, machine_mode mode)
1221 /* Don't accept CONST_INT or anything similar
1222 if the caller wants something floating. */
1223 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1224 && GET_MODE_CLASS (mode) != MODE_INT
1225 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1226 return 0;
1228 return ((CONST_DOUBLE_P (op) || CONST_INT_P (op))
1229 && (mode == VOIDmode || GET_MODE (op) == mode
1230 || GET_MODE (op) == VOIDmode));
1232 #endif
1233 /* Return 1 if OP is a general operand that is not an immediate
1234 operand of mode MODE. */
1237 nonimmediate_operand (rtx op, machine_mode mode)
1239 return (general_operand (op, mode) && ! CONSTANT_P (op));
1242 /* Return 1 if OP is a register reference or immediate value of mode MODE. */
1245 nonmemory_operand (rtx op, machine_mode mode)
1247 if (CONSTANT_P (op))
1248 return immediate_operand (op, mode);
1249 return register_operand (op, mode);
1252 /* Return 1 if OP is a valid operand that stands for pushing a
1253 value of mode MODE onto the stack.
1255 The main use of this function is as a predicate in match_operand
1256 expressions in the machine description. */
1259 push_operand (rtx op, machine_mode mode)
1261 if (!MEM_P (op))
1262 return 0;
1264 if (mode != VOIDmode && GET_MODE (op) != mode)
1265 return 0;
1267 poly_int64 rounded_size = GET_MODE_SIZE (mode);
1269 #ifdef PUSH_ROUNDING
1270 rounded_size = PUSH_ROUNDING (MACRO_INT (rounded_size));
1271 #endif
1273 op = XEXP (op, 0);
1275 if (known_eq (rounded_size, GET_MODE_SIZE (mode)))
1277 if (GET_CODE (op) != STACK_PUSH_CODE)
1278 return 0;
1280 else
1282 poly_int64 offset;
1283 if (GET_CODE (op) != PRE_MODIFY
1284 || GET_CODE (XEXP (op, 1)) != PLUS
1285 || XEXP (XEXP (op, 1), 0) != XEXP (op, 0)
1286 || !poly_int_rtx_p (XEXP (XEXP (op, 1), 1), &offset)
1287 || (STACK_GROWS_DOWNWARD
1288 ? maybe_ne (offset, -rounded_size)
1289 : maybe_ne (offset, rounded_size)))
1290 return 0;
1293 return XEXP (op, 0) == stack_pointer_rtx;
1296 /* Return 1 if OP is a valid operand that stands for popping a
1297 value of mode MODE off the stack.
1299 The main use of this function is as a predicate in match_operand
1300 expressions in the machine description. */
1303 pop_operand (rtx op, machine_mode mode)
1305 if (!MEM_P (op))
1306 return 0;
1308 if (mode != VOIDmode && GET_MODE (op) != mode)
1309 return 0;
1311 op = XEXP (op, 0);
1313 if (GET_CODE (op) != STACK_POP_CODE)
1314 return 0;
1316 return XEXP (op, 0) == stack_pointer_rtx;
1319 /* Return 1 if ADDR is a valid memory address
1320 for mode MODE in address space AS. */
1323 memory_address_addr_space_p (machine_mode mode ATTRIBUTE_UNUSED,
1324 rtx addr, addr_space_t as)
1326 #ifdef GO_IF_LEGITIMATE_ADDRESS
1327 gcc_assert (ADDR_SPACE_GENERIC_P (as));
1328 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
1329 return 0;
1331 win:
1332 return 1;
1333 #else
1334 return targetm.addr_space.legitimate_address_p (mode, addr, 0, as);
1335 #endif
1338 /* Return 1 if OP is a valid memory reference with mode MODE,
1339 including a valid address.
1341 The main use of this function is as a predicate in match_operand
1342 expressions in the machine description. */
1345 memory_operand (rtx op, machine_mode mode)
1347 rtx inner;
1349 if (! reload_completed)
1350 /* Note that no SUBREG is a memory operand before end of reload pass,
1351 because (SUBREG (MEM...)) forces reloading into a register. */
1352 return MEM_P (op) && general_operand (op, mode);
1354 if (mode != VOIDmode && GET_MODE (op) != mode)
1355 return 0;
1357 inner = op;
1358 if (GET_CODE (inner) == SUBREG)
1359 inner = SUBREG_REG (inner);
1361 return (MEM_P (inner) && general_operand (op, mode));
1364 /* Return 1 if OP is a valid indirect memory reference with mode MODE;
1365 that is, a memory reference whose address is a general_operand. */
1368 indirect_operand (rtx op, machine_mode mode)
1370 /* Before reload, a SUBREG isn't in memory (see memory_operand, above). */
1371 if (! reload_completed
1372 && GET_CODE (op) == SUBREG && MEM_P (SUBREG_REG (op)))
1374 if (mode != VOIDmode && GET_MODE (op) != mode)
1375 return 0;
1377 /* The only way that we can have a general_operand as the resulting
1378 address is if OFFSET is zero and the address already is an operand
1379 or if the address is (plus Y (const_int -OFFSET)) and Y is an
1380 operand. */
1381 poly_int64 offset;
1382 rtx addr = strip_offset (XEXP (SUBREG_REG (op), 0), &offset);
1383 return (known_eq (offset + SUBREG_BYTE (op), 0)
1384 && general_operand (addr, Pmode));
1387 return (MEM_P (op)
1388 && memory_operand (op, mode)
1389 && general_operand (XEXP (op, 0), Pmode));
1392 /* Return 1 if this is an ordered comparison operator (not including
1393 ORDERED and UNORDERED). */
1396 ordered_comparison_operator (rtx op, machine_mode mode)
1398 if (mode != VOIDmode && GET_MODE (op) != mode)
1399 return false;
1400 switch (GET_CODE (op))
1402 case EQ:
1403 case NE:
1404 case LT:
1405 case LTU:
1406 case LE:
1407 case LEU:
1408 case GT:
1409 case GTU:
1410 case GE:
1411 case GEU:
1412 return true;
1413 default:
1414 return false;
1418 /* Return 1 if this is a comparison operator. This allows the use of
1419 MATCH_OPERATOR to recognize all the branch insns. */
1422 comparison_operator (rtx op, machine_mode mode)
1424 return ((mode == VOIDmode || GET_MODE (op) == mode)
1425 && COMPARISON_P (op));
1428 /* If BODY is an insn body that uses ASM_OPERANDS, return it. */
1431 extract_asm_operands (rtx body)
1433 rtx tmp;
1434 switch (GET_CODE (body))
1436 case ASM_OPERANDS:
1437 return body;
1439 case SET:
1440 /* Single output operand: BODY is (set OUTPUT (asm_operands ...)). */
1441 tmp = SET_SRC (body);
1442 if (GET_CODE (tmp) == ASM_OPERANDS)
1443 return tmp;
1444 break;
1446 case PARALLEL:
1447 tmp = XVECEXP (body, 0, 0);
1448 if (GET_CODE (tmp) == ASM_OPERANDS)
1449 return tmp;
1450 if (GET_CODE (tmp) == SET)
1452 tmp = SET_SRC (tmp);
1453 if (GET_CODE (tmp) == ASM_OPERANDS)
1454 return tmp;
1456 break;
1458 default:
1459 break;
1461 return NULL;
1464 /* If BODY is an insn body that uses ASM_OPERANDS,
1465 return the number of operands (both input and output) in the insn.
1466 If BODY is an insn body that uses ASM_INPUT with CLOBBERS in PARALLEL,
1467 return 0.
1468 Otherwise return -1. */
1471 asm_noperands (const_rtx body)
1473 rtx asm_op = extract_asm_operands (CONST_CAST_RTX (body));
1474 int i, n_sets = 0;
1476 if (asm_op == NULL)
1478 if (GET_CODE (body) == PARALLEL && XVECLEN (body, 0) >= 2
1479 && GET_CODE (XVECEXP (body, 0, 0)) == ASM_INPUT)
1481 /* body is [(asm_input ...) (clobber (reg ...))...]. */
1482 for (i = XVECLEN (body, 0) - 1; i > 0; i--)
1483 if (GET_CODE (XVECEXP (body, 0, i)) != CLOBBER)
1484 return -1;
1485 return 0;
1487 return -1;
1490 if (GET_CODE (body) == SET)
1491 n_sets = 1;
1492 else if (GET_CODE (body) == PARALLEL)
1494 if (GET_CODE (XVECEXP (body, 0, 0)) == SET)
1496 /* Multiple output operands, or 1 output plus some clobbers:
1497 body is
1498 [(set OUTPUT (asm_operands ...))... (clobber (reg ...))...]. */
1499 /* Count backwards through CLOBBERs to determine number of SETs. */
1500 for (i = XVECLEN (body, 0); i > 0; i--)
1502 if (GET_CODE (XVECEXP (body, 0, i - 1)) == SET)
1503 break;
1504 if (GET_CODE (XVECEXP (body, 0, i - 1)) != CLOBBER)
1505 return -1;
1508 /* N_SETS is now number of output operands. */
1509 n_sets = i;
1511 /* Verify that all the SETs we have
1512 came from a single original asm_operands insn
1513 (so that invalid combinations are blocked). */
1514 for (i = 0; i < n_sets; i++)
1516 rtx elt = XVECEXP (body, 0, i);
1517 if (GET_CODE (elt) != SET)
1518 return -1;
1519 if (GET_CODE (SET_SRC (elt)) != ASM_OPERANDS)
1520 return -1;
1521 /* If these ASM_OPERANDS rtx's came from different original insns
1522 then they aren't allowed together. */
1523 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (elt))
1524 != ASM_OPERANDS_INPUT_VEC (asm_op))
1525 return -1;
1528 else
1530 /* 0 outputs, but some clobbers:
1531 body is [(asm_operands ...) (clobber (reg ...))...]. */
1532 /* Make sure all the other parallel things really are clobbers. */
1533 for (i = XVECLEN (body, 0) - 1; i > 0; i--)
1534 if (GET_CODE (XVECEXP (body, 0, i)) != CLOBBER)
1535 return -1;
1539 return (ASM_OPERANDS_INPUT_LENGTH (asm_op)
1540 + ASM_OPERANDS_LABEL_LENGTH (asm_op) + n_sets);
1543 /* Assuming BODY is an insn body that uses ASM_OPERANDS,
1544 copy its operands (both input and output) into the vector OPERANDS,
1545 the locations of the operands within the insn into the vector OPERAND_LOCS,
1546 and the constraints for the operands into CONSTRAINTS.
1547 Write the modes of the operands into MODES.
1548 Write the location info into LOC.
1549 Return the assembler-template.
1550 If BODY is an insn body that uses ASM_INPUT with CLOBBERS in PARALLEL,
1551 return the basic assembly string.
1553 If LOC, MODES, OPERAND_LOCS, CONSTRAINTS or OPERANDS is 0,
1554 we don't store that info. */
1556 const char *
1557 decode_asm_operands (rtx body, rtx *operands, rtx **operand_locs,
1558 const char **constraints, machine_mode *modes,
1559 location_t *loc)
1561 int nbase = 0, n, i;
1562 rtx asmop;
1564 switch (GET_CODE (body))
1566 case ASM_OPERANDS:
1567 /* Zero output asm: BODY is (asm_operands ...). */
1568 asmop = body;
1569 break;
1571 case SET:
1572 /* Single output asm: BODY is (set OUTPUT (asm_operands ...)). */
1573 asmop = SET_SRC (body);
1575 /* The output is in the SET.
1576 Its constraint is in the ASM_OPERANDS itself. */
1577 if (operands)
1578 operands[0] = SET_DEST (body);
1579 if (operand_locs)
1580 operand_locs[0] = &SET_DEST (body);
1581 if (constraints)
1582 constraints[0] = ASM_OPERANDS_OUTPUT_CONSTRAINT (asmop);
1583 if (modes)
1584 modes[0] = GET_MODE (SET_DEST (body));
1585 nbase = 1;
1586 break;
1588 case PARALLEL:
1590 int nparallel = XVECLEN (body, 0); /* Includes CLOBBERs. */
1592 asmop = XVECEXP (body, 0, 0);
1593 if (GET_CODE (asmop) == SET)
1595 asmop = SET_SRC (asmop);
1597 /* At least one output, plus some CLOBBERs. The outputs are in
1598 the SETs. Their constraints are in the ASM_OPERANDS itself. */
1599 for (i = 0; i < nparallel; i++)
1601 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
1602 break; /* Past last SET */
1603 gcc_assert (GET_CODE (XVECEXP (body, 0, i)) == SET);
1604 if (operands)
1605 operands[i] = SET_DEST (XVECEXP (body, 0, i));
1606 if (operand_locs)
1607 operand_locs[i] = &SET_DEST (XVECEXP (body, 0, i));
1608 if (constraints)
1609 constraints[i] = XSTR (SET_SRC (XVECEXP (body, 0, i)), 1);
1610 if (modes)
1611 modes[i] = GET_MODE (SET_DEST (XVECEXP (body, 0, i)));
1613 nbase = i;
1615 else if (GET_CODE (asmop) == ASM_INPUT)
1617 if (loc)
1618 *loc = ASM_INPUT_SOURCE_LOCATION (asmop);
1619 return XSTR (asmop, 0);
1621 break;
1624 default:
1625 gcc_unreachable ();
1628 n = ASM_OPERANDS_INPUT_LENGTH (asmop);
1629 for (i = 0; i < n; i++)
1631 if (operand_locs)
1632 operand_locs[nbase + i] = &ASM_OPERANDS_INPUT (asmop, i);
1633 if (operands)
1634 operands[nbase + i] = ASM_OPERANDS_INPUT (asmop, i);
1635 if (constraints)
1636 constraints[nbase + i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
1637 if (modes)
1638 modes[nbase + i] = ASM_OPERANDS_INPUT_MODE (asmop, i);
1640 nbase += n;
1642 n = ASM_OPERANDS_LABEL_LENGTH (asmop);
1643 for (i = 0; i < n; i++)
1645 if (operand_locs)
1646 operand_locs[nbase + i] = &ASM_OPERANDS_LABEL (asmop, i);
1647 if (operands)
1648 operands[nbase + i] = ASM_OPERANDS_LABEL (asmop, i);
1649 if (constraints)
1650 constraints[nbase + i] = "";
1651 if (modes)
1652 modes[nbase + i] = Pmode;
1655 if (loc)
1656 *loc = ASM_OPERANDS_SOURCE_LOCATION (asmop);
1658 return ASM_OPERANDS_TEMPLATE (asmop);
1661 /* Parse inline assembly string STRING and determine which operands are
1662 referenced by % markers. For the first NOPERANDS operands, set USED[I]
1663 to true if operand I is referenced.
1665 This is intended to distinguish barrier-like asms such as:
1667 asm ("" : "=m" (...));
1669 from real references such as:
1671 asm ("sw\t$0, %0" : "=m" (...)); */
1673 void
1674 get_referenced_operands (const char *string, bool *used,
1675 unsigned int noperands)
1677 memset (used, 0, sizeof (bool) * noperands);
1678 const char *p = string;
1679 while (*p)
1680 switch (*p)
1682 case '%':
1683 p += 1;
1684 /* A letter followed by a digit indicates an operand number. */
1685 if (ISALPHA (p[0]) && ISDIGIT (p[1]))
1686 p += 1;
1687 if (ISDIGIT (*p))
1689 char *endptr;
1690 unsigned long opnum = strtoul (p, &endptr, 10);
1691 if (endptr != p && opnum < noperands)
1692 used[opnum] = true;
1693 p = endptr;
1695 else
1696 p += 1;
1697 break;
1699 default:
1700 p++;
1701 break;
1705 /* Check if an asm_operand matches its constraints.
1706 Return > 0 if ok, = 0 if bad, < 0 if inconclusive. */
1709 asm_operand_ok (rtx op, const char *constraint, const char **constraints)
1711 int result = 0;
1712 bool incdec_ok = false;
1714 /* Use constrain_operands after reload. */
1715 gcc_assert (!reload_completed);
1717 /* Empty constraint string is the same as "X,...,X", i.e. X for as
1718 many alternatives as required to match the other operands. */
1719 if (*constraint == '\0')
1720 result = 1;
1722 while (*constraint)
1724 enum constraint_num cn;
1725 char c = *constraint;
1726 int len;
1727 switch (c)
1729 case ',':
1730 constraint++;
1731 continue;
1733 case '0': case '1': case '2': case '3': case '4':
1734 case '5': case '6': case '7': case '8': case '9':
1735 /* If caller provided constraints pointer, look up
1736 the matching constraint. Otherwise, our caller should have
1737 given us the proper matching constraint, but we can't
1738 actually fail the check if they didn't. Indicate that
1739 results are inconclusive. */
1740 if (constraints)
1742 char *end;
1743 unsigned long match;
1745 match = strtoul (constraint, &end, 10);
1746 if (!result)
1747 result = asm_operand_ok (op, constraints[match], NULL);
1748 constraint = (const char *) end;
1750 else
1753 constraint++;
1754 while (ISDIGIT (*constraint));
1755 if (! result)
1756 result = -1;
1758 continue;
1760 /* The rest of the compiler assumes that reloading the address
1761 of a MEM into a register will make it fit an 'o' constraint.
1762 That is, if it sees a MEM operand for an 'o' constraint,
1763 it assumes that (mem (base-reg)) will fit.
1765 That assumption fails on targets that don't have offsettable
1766 addresses at all. We therefore need to treat 'o' asm
1767 constraints as a special case and only accept operands that
1768 are already offsettable, thus proving that at least one
1769 offsettable address exists. */
1770 case 'o': /* offsettable */
1771 if (offsettable_nonstrict_memref_p (op))
1772 result = 1;
1773 break;
1775 case 'g':
1776 if (general_operand (op, VOIDmode))
1777 result = 1;
1778 break;
1780 case '<':
1781 case '>':
1782 /* ??? Before auto-inc-dec, auto inc/dec insns are not supposed
1783 to exist, excepting those that expand_call created. Further,
1784 on some machines which do not have generalized auto inc/dec,
1785 an inc/dec is not a memory_operand.
1787 Match any memory and hope things are resolved after reload. */
1788 incdec_ok = true;
1789 /* FALLTHRU */
1790 default:
1791 cn = lookup_constraint (constraint);
1792 switch (get_constraint_type (cn))
1794 case CT_REGISTER:
1795 if (!result
1796 && reg_class_for_constraint (cn) != NO_REGS
1797 && GET_MODE (op) != BLKmode
1798 && register_operand (op, VOIDmode))
1799 result = 1;
1800 break;
1802 case CT_CONST_INT:
1803 if (!result
1804 && CONST_INT_P (op)
1805 && insn_const_int_ok_for_constraint (INTVAL (op), cn))
1806 result = 1;
1807 break;
1809 case CT_MEMORY:
1810 case CT_SPECIAL_MEMORY:
1811 /* Every memory operand can be reloaded to fit. */
1812 result = result || memory_operand (op, VOIDmode);
1813 break;
1815 case CT_ADDRESS:
1816 /* Every address operand can be reloaded to fit. */
1817 result = result || address_operand (op, VOIDmode);
1818 break;
1820 case CT_FIXED_FORM:
1821 result = result || constraint_satisfied_p (op, cn);
1822 break;
1824 break;
1826 len = CONSTRAINT_LEN (c, constraint);
1828 constraint++;
1829 while (--len && *constraint && *constraint != ',');
1830 if (len)
1831 return 0;
1834 /* For operands without < or > constraints reject side-effects. */
1835 if (AUTO_INC_DEC && !incdec_ok && result && MEM_P (op))
1836 switch (GET_CODE (XEXP (op, 0)))
1838 case PRE_INC:
1839 case POST_INC:
1840 case PRE_DEC:
1841 case POST_DEC:
1842 case PRE_MODIFY:
1843 case POST_MODIFY:
1844 return 0;
1845 default:
1846 break;
1849 return result;
1852 /* Given an rtx *P, if it is a sum containing an integer constant term,
1853 return the location (type rtx *) of the pointer to that constant term.
1854 Otherwise, return a null pointer. */
1856 rtx *
1857 find_constant_term_loc (rtx *p)
1859 rtx *tem;
1860 enum rtx_code code = GET_CODE (*p);
1862 /* If *P IS such a constant term, P is its location. */
1864 if (code == CONST_INT || code == SYMBOL_REF || code == LABEL_REF
1865 || code == CONST)
1866 return p;
1868 /* Otherwise, if not a sum, it has no constant term. */
1870 if (GET_CODE (*p) != PLUS)
1871 return 0;
1873 /* If one of the summands is constant, return its location. */
1875 if (XEXP (*p, 0) && CONSTANT_P (XEXP (*p, 0))
1876 && XEXP (*p, 1) && CONSTANT_P (XEXP (*p, 1)))
1877 return p;
1879 /* Otherwise, check each summand for containing a constant term. */
1881 if (XEXP (*p, 0) != 0)
1883 tem = find_constant_term_loc (&XEXP (*p, 0));
1884 if (tem != 0)
1885 return tem;
1888 if (XEXP (*p, 1) != 0)
1890 tem = find_constant_term_loc (&XEXP (*p, 1));
1891 if (tem != 0)
1892 return tem;
1895 return 0;
1898 /* Return 1 if OP is a memory reference
1899 whose address contains no side effects
1900 and remains valid after the addition
1901 of a positive integer less than the
1902 size of the object being referenced.
1904 We assume that the original address is valid and do not check it.
1906 This uses strict_memory_address_p as a subroutine, so
1907 don't use it before reload. */
1910 offsettable_memref_p (rtx op)
1912 return ((MEM_P (op))
1913 && offsettable_address_addr_space_p (1, GET_MODE (op), XEXP (op, 0),
1914 MEM_ADDR_SPACE (op)));
1917 /* Similar, but don't require a strictly valid mem ref:
1918 consider pseudo-regs valid as index or base regs. */
1921 offsettable_nonstrict_memref_p (rtx op)
1923 return ((MEM_P (op))
1924 && offsettable_address_addr_space_p (0, GET_MODE (op), XEXP (op, 0),
1925 MEM_ADDR_SPACE (op)));
1928 /* Return 1 if Y is a memory address which contains no side effects
1929 and would remain valid for address space AS after the addition of
1930 a positive integer less than the size of that mode.
1932 We assume that the original address is valid and do not check it.
1933 We do check that it is valid for narrower modes.
1935 If STRICTP is nonzero, we require a strictly valid address,
1936 for the sake of use in reload.c. */
1939 offsettable_address_addr_space_p (int strictp, machine_mode mode, rtx y,
1940 addr_space_t as)
1942 enum rtx_code ycode = GET_CODE (y);
1943 rtx z;
1944 rtx y1 = y;
1945 rtx *y2;
1946 int (*addressp) (machine_mode, rtx, addr_space_t) =
1947 (strictp ? strict_memory_address_addr_space_p
1948 : memory_address_addr_space_p);
1949 poly_int64 mode_sz = GET_MODE_SIZE (mode);
1951 if (CONSTANT_ADDRESS_P (y))
1952 return 1;
1954 /* Adjusting an offsettable address involves changing to a narrower mode.
1955 Make sure that's OK. */
1957 if (mode_dependent_address_p (y, as))
1958 return 0;
1960 machine_mode address_mode = GET_MODE (y);
1961 if (address_mode == VOIDmode)
1962 address_mode = targetm.addr_space.address_mode (as);
1963 #ifdef POINTERS_EXTEND_UNSIGNED
1964 machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
1965 #endif
1967 /* ??? How much offset does an offsettable BLKmode reference need?
1968 Clearly that depends on the situation in which it's being used.
1969 However, the current situation in which we test 0xffffffff is
1970 less than ideal. Caveat user. */
1971 if (known_eq (mode_sz, 0))
1972 mode_sz = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
1974 /* If the expression contains a constant term,
1975 see if it remains valid when max possible offset is added. */
1977 if ((ycode == PLUS) && (y2 = find_constant_term_loc (&y1)))
1979 int good;
1981 y1 = *y2;
1982 *y2 = plus_constant (address_mode, *y2, mode_sz - 1);
1983 /* Use QImode because an odd displacement may be automatically invalid
1984 for any wider mode. But it should be valid for a single byte. */
1985 good = (*addressp) (QImode, y, as);
1987 /* In any case, restore old contents of memory. */
1988 *y2 = y1;
1989 return good;
1992 if (GET_RTX_CLASS (ycode) == RTX_AUTOINC)
1993 return 0;
1995 /* The offset added here is chosen as the maximum offset that
1996 any instruction could need to add when operating on something
1997 of the specified mode. We assume that if Y and Y+c are
1998 valid addresses then so is Y+d for all 0<d<c. adjust_address will
1999 go inside a LO_SUM here, so we do so as well. */
2000 if (GET_CODE (y) == LO_SUM
2001 && mode != BLKmode
2002 && known_le (mode_sz, GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT))
2003 z = gen_rtx_LO_SUM (address_mode, XEXP (y, 0),
2004 plus_constant (address_mode, XEXP (y, 1),
2005 mode_sz - 1));
2006 #ifdef POINTERS_EXTEND_UNSIGNED
2007 /* Likewise for a ZERO_EXTEND from pointer_mode. */
2008 else if (POINTERS_EXTEND_UNSIGNED > 0
2009 && GET_CODE (y) == ZERO_EXTEND
2010 && GET_MODE (XEXP (y, 0)) == pointer_mode)
2011 z = gen_rtx_ZERO_EXTEND (address_mode,
2012 plus_constant (pointer_mode, XEXP (y, 0),
2013 mode_sz - 1));
2014 #endif
2015 else
2016 z = plus_constant (address_mode, y, mode_sz - 1);
2018 /* Use QImode because an odd displacement may be automatically invalid
2019 for any wider mode. But it should be valid for a single byte. */
2020 return (*addressp) (QImode, z, as);
2023 /* Return 1 if ADDR is an address-expression whose effect depends
2024 on the mode of the memory reference it is used in.
2026 ADDRSPACE is the address space associated with the address.
2028 Autoincrement addressing is a typical example of mode-dependence
2029 because the amount of the increment depends on the mode. */
2031 bool
2032 mode_dependent_address_p (rtx addr, addr_space_t addrspace)
2034 /* Auto-increment addressing with anything other than post_modify
2035 or pre_modify always introduces a mode dependency. Catch such
2036 cases now instead of deferring to the target. */
2037 if (GET_CODE (addr) == PRE_INC
2038 || GET_CODE (addr) == POST_INC
2039 || GET_CODE (addr) == PRE_DEC
2040 || GET_CODE (addr) == POST_DEC)
2041 return true;
2043 return targetm.mode_dependent_address_p (addr, addrspace);
2046 /* Return true if boolean attribute ATTR is supported. */
2048 static bool
2049 have_bool_attr (bool_attr attr)
2051 switch (attr)
2053 case BA_ENABLED:
2054 return HAVE_ATTR_enabled;
2055 case BA_PREFERRED_FOR_SIZE:
2056 return HAVE_ATTR_enabled || HAVE_ATTR_preferred_for_size;
2057 case BA_PREFERRED_FOR_SPEED:
2058 return HAVE_ATTR_enabled || HAVE_ATTR_preferred_for_speed;
2060 gcc_unreachable ();
2063 /* Return the value of ATTR for instruction INSN. */
2065 static bool
2066 get_bool_attr (rtx_insn *insn, bool_attr attr)
2068 switch (attr)
2070 case BA_ENABLED:
2071 return get_attr_enabled (insn);
2072 case BA_PREFERRED_FOR_SIZE:
2073 return get_attr_enabled (insn) && get_attr_preferred_for_size (insn);
2074 case BA_PREFERRED_FOR_SPEED:
2075 return get_attr_enabled (insn) && get_attr_preferred_for_speed (insn);
2077 gcc_unreachable ();
2080 /* Like get_bool_attr_mask, but don't use the cache. */
2082 static alternative_mask
2083 get_bool_attr_mask_uncached (rtx_insn *insn, bool_attr attr)
2085 /* Temporarily install enough information for get_attr_<foo> to assume
2086 that the insn operands are already cached. As above, the attribute
2087 mustn't depend on the values of operands, so we don't provide their
2088 real values here. */
2089 rtx_insn *old_insn = recog_data.insn;
2090 int old_alternative = which_alternative;
2092 recog_data.insn = insn;
2093 alternative_mask mask = ALL_ALTERNATIVES;
2094 int n_alternatives = insn_data[INSN_CODE (insn)].n_alternatives;
2095 for (int i = 0; i < n_alternatives; i++)
2097 which_alternative = i;
2098 if (!get_bool_attr (insn, attr))
2099 mask &= ~ALTERNATIVE_BIT (i);
2102 recog_data.insn = old_insn;
2103 which_alternative = old_alternative;
2104 return mask;
2107 /* Return the mask of operand alternatives that are allowed for INSN
2108 by boolean attribute ATTR. This mask depends only on INSN and on
2109 the current target; it does not depend on things like the values of
2110 operands. */
2112 static alternative_mask
2113 get_bool_attr_mask (rtx_insn *insn, bool_attr attr)
2115 /* Quick exit for asms and for targets that don't use these attributes. */
2116 int code = INSN_CODE (insn);
2117 if (code < 0 || !have_bool_attr (attr))
2118 return ALL_ALTERNATIVES;
2120 /* Calling get_attr_<foo> can be expensive, so cache the mask
2121 for speed. */
2122 if (!this_target_recog->x_bool_attr_masks[code][attr])
2123 this_target_recog->x_bool_attr_masks[code][attr]
2124 = get_bool_attr_mask_uncached (insn, attr);
2125 return this_target_recog->x_bool_attr_masks[code][attr];
2128 /* Return the set of alternatives of INSN that are allowed by the current
2129 target. */
2131 alternative_mask
2132 get_enabled_alternatives (rtx_insn *insn)
2134 return get_bool_attr_mask (insn, BA_ENABLED);
2137 /* Return the set of alternatives of INSN that are allowed by the current
2138 target and are preferred for the current size/speed optimization
2139 choice. */
2141 alternative_mask
2142 get_preferred_alternatives (rtx_insn *insn)
2144 if (optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn)))
2145 return get_bool_attr_mask (insn, BA_PREFERRED_FOR_SPEED);
2146 else
2147 return get_bool_attr_mask (insn, BA_PREFERRED_FOR_SIZE);
2150 /* Return the set of alternatives of INSN that are allowed by the current
2151 target and are preferred for the size/speed optimization choice
2152 associated with BB. Passing a separate BB is useful if INSN has not
2153 been emitted yet or if we are considering moving it to a different
2154 block. */
2156 alternative_mask
2157 get_preferred_alternatives (rtx_insn *insn, basic_block bb)
2159 if (optimize_bb_for_speed_p (bb))
2160 return get_bool_attr_mask (insn, BA_PREFERRED_FOR_SPEED);
2161 else
2162 return get_bool_attr_mask (insn, BA_PREFERRED_FOR_SIZE);
2165 /* Assert that the cached boolean attributes for INSN are still accurate.
2166 The backend is required to define these attributes in a way that only
2167 depends on the current target (rather than operands, compiler phase,
2168 etc.). */
2170 bool
2171 check_bool_attrs (rtx_insn *insn)
2173 int code = INSN_CODE (insn);
2174 if (code >= 0)
2175 for (int i = 0; i <= BA_LAST; ++i)
2177 enum bool_attr attr = (enum bool_attr) i;
2178 if (this_target_recog->x_bool_attr_masks[code][attr])
2179 gcc_assert (this_target_recog->x_bool_attr_masks[code][attr]
2180 == get_bool_attr_mask_uncached (insn, attr));
2182 return true;
2185 /* Like extract_insn, but save insn extracted and don't extract again, when
2186 called again for the same insn expecting that recog_data still contain the
2187 valid information. This is used primary by gen_attr infrastructure that
2188 often does extract insn again and again. */
2189 void
2190 extract_insn_cached (rtx_insn *insn)
2192 if (recog_data.insn == insn && INSN_CODE (insn) >= 0)
2193 return;
2194 extract_insn (insn);
2195 recog_data.insn = insn;
2198 /* Do uncached extract_insn, constrain_operands and complain about failures.
2199 This should be used when extracting a pre-existing constrained instruction
2200 if the caller wants to know which alternative was chosen. */
2201 void
2202 extract_constrain_insn (rtx_insn *insn)
2204 extract_insn (insn);
2205 if (!constrain_operands (reload_completed, get_enabled_alternatives (insn)))
2206 fatal_insn_not_found (insn);
2209 /* Do cached extract_insn, constrain_operands and complain about failures.
2210 Used by insn_attrtab. */
2211 void
2212 extract_constrain_insn_cached (rtx_insn *insn)
2214 extract_insn_cached (insn);
2215 if (which_alternative == -1
2216 && !constrain_operands (reload_completed,
2217 get_enabled_alternatives (insn)))
2218 fatal_insn_not_found (insn);
2221 /* Do cached constrain_operands on INSN and complain about failures. */
2223 constrain_operands_cached (rtx_insn *insn, int strict)
2225 if (which_alternative == -1)
2226 return constrain_operands (strict, get_enabled_alternatives (insn));
2227 else
2228 return 1;
2231 /* Analyze INSN and fill in recog_data. */
2233 void
2234 extract_insn (rtx_insn *insn)
2236 int i;
2237 int icode;
2238 int noperands;
2239 rtx body = PATTERN (insn);
2241 recog_data.n_operands = 0;
2242 recog_data.n_alternatives = 0;
2243 recog_data.n_dups = 0;
2244 recog_data.is_asm = false;
2246 switch (GET_CODE (body))
2248 case USE:
2249 case CLOBBER:
2250 case ASM_INPUT:
2251 case ADDR_VEC:
2252 case ADDR_DIFF_VEC:
2253 case VAR_LOCATION:
2254 case DEBUG_MARKER:
2255 return;
2257 case SET:
2258 if (GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
2259 goto asm_insn;
2260 else
2261 goto normal_insn;
2262 case PARALLEL:
2263 if ((GET_CODE (XVECEXP (body, 0, 0)) == SET
2264 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
2265 || GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS
2266 || GET_CODE (XVECEXP (body, 0, 0)) == ASM_INPUT)
2267 goto asm_insn;
2268 else
2269 goto normal_insn;
2270 case ASM_OPERANDS:
2271 asm_insn:
2272 recog_data.n_operands = noperands = asm_noperands (body);
2273 if (noperands >= 0)
2275 /* This insn is an `asm' with operands. */
2277 /* expand_asm_operands makes sure there aren't too many operands. */
2278 gcc_assert (noperands <= MAX_RECOG_OPERANDS);
2280 /* Now get the operand values and constraints out of the insn. */
2281 decode_asm_operands (body, recog_data.operand,
2282 recog_data.operand_loc,
2283 recog_data.constraints,
2284 recog_data.operand_mode, NULL);
2285 memset (recog_data.is_operator, 0, sizeof recog_data.is_operator);
2286 if (noperands > 0)
2288 const char *p = recog_data.constraints[0];
2289 recog_data.n_alternatives = 1;
2290 while (*p)
2291 recog_data.n_alternatives += (*p++ == ',');
2293 recog_data.is_asm = true;
2294 break;
2296 fatal_insn_not_found (insn);
2298 default:
2299 normal_insn:
2300 /* Ordinary insn: recognize it, get the operands via insn_extract
2301 and get the constraints. */
2303 icode = recog_memoized (insn);
2304 if (icode < 0)
2305 fatal_insn_not_found (insn);
2307 recog_data.n_operands = noperands = insn_data[icode].n_operands;
2308 recog_data.n_alternatives = insn_data[icode].n_alternatives;
2309 recog_data.n_dups = insn_data[icode].n_dups;
2311 insn_extract (insn);
2313 for (i = 0; i < noperands; i++)
2315 recog_data.constraints[i] = insn_data[icode].operand[i].constraint;
2316 recog_data.is_operator[i] = insn_data[icode].operand[i].is_operator;
2317 recog_data.operand_mode[i] = insn_data[icode].operand[i].mode;
2318 /* VOIDmode match_operands gets mode from their real operand. */
2319 if (recog_data.operand_mode[i] == VOIDmode)
2320 recog_data.operand_mode[i] = GET_MODE (recog_data.operand[i]);
2323 for (i = 0; i < noperands; i++)
2324 recog_data.operand_type[i]
2325 = (recog_data.constraints[i][0] == '=' ? OP_OUT
2326 : recog_data.constraints[i][0] == '+' ? OP_INOUT
2327 : OP_IN);
2329 gcc_assert (recog_data.n_alternatives <= MAX_RECOG_ALTERNATIVES);
2331 recog_data.insn = NULL;
2332 which_alternative = -1;
2335 /* Fill in OP_ALT_BASE for an instruction that has N_OPERANDS
2336 operands, N_ALTERNATIVES alternatives and constraint strings
2337 CONSTRAINTS. OP_ALT_BASE has N_ALTERNATIVES * N_OPERANDS entries
2338 and CONSTRAINTS has N_OPERANDS entries. OPLOC should be passed in
2339 if the insn is an asm statement and preprocessing should take the
2340 asm operands into account, e.g. to determine whether they could be
2341 addresses in constraints that require addresses; it should then
2342 point to an array of pointers to each operand. */
2344 void
2345 preprocess_constraints (int n_operands, int n_alternatives,
2346 const char **constraints,
2347 operand_alternative *op_alt_base,
2348 rtx **oploc)
2350 for (int i = 0; i < n_operands; i++)
2352 int j;
2353 struct operand_alternative *op_alt;
2354 const char *p = constraints[i];
2356 op_alt = op_alt_base;
2358 for (j = 0; j < n_alternatives; j++, op_alt += n_operands)
2360 op_alt[i].cl = NO_REGS;
2361 op_alt[i].constraint = p;
2362 op_alt[i].matches = -1;
2363 op_alt[i].matched = -1;
2365 if (*p == '\0' || *p == ',')
2367 op_alt[i].anything_ok = 1;
2368 continue;
2371 for (;;)
2373 char c = *p;
2374 if (c == '#')
2376 c = *++p;
2377 while (c != ',' && c != '\0');
2378 if (c == ',' || c == '\0')
2380 p++;
2381 break;
2384 switch (c)
2386 case '?':
2387 op_alt[i].reject += 6;
2388 break;
2389 case '!':
2390 op_alt[i].reject += 600;
2391 break;
2392 case '&':
2393 op_alt[i].earlyclobber = 1;
2394 break;
2396 case '0': case '1': case '2': case '3': case '4':
2397 case '5': case '6': case '7': case '8': case '9':
2399 char *end;
2400 op_alt[i].matches = strtoul (p, &end, 10);
2401 op_alt[op_alt[i].matches].matched = i;
2402 p = end;
2404 continue;
2406 case 'X':
2407 op_alt[i].anything_ok = 1;
2408 break;
2410 case 'g':
2411 op_alt[i].cl =
2412 reg_class_subunion[(int) op_alt[i].cl][(int) GENERAL_REGS];
2413 break;
2415 default:
2416 enum constraint_num cn = lookup_constraint (p);
2417 enum reg_class cl;
2418 switch (get_constraint_type (cn))
2420 case CT_REGISTER:
2421 cl = reg_class_for_constraint (cn);
2422 if (cl != NO_REGS)
2423 op_alt[i].cl = reg_class_subunion[op_alt[i].cl][cl];
2424 break;
2426 case CT_CONST_INT:
2427 break;
2429 case CT_MEMORY:
2430 case CT_SPECIAL_MEMORY:
2431 op_alt[i].memory_ok = 1;
2432 break;
2434 case CT_ADDRESS:
2435 if (oploc && !address_operand (*oploc[i], VOIDmode))
2436 break;
2438 op_alt[i].is_address = 1;
2439 op_alt[i].cl
2440 = (reg_class_subunion
2441 [(int) op_alt[i].cl]
2442 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
2443 ADDRESS, SCRATCH)]);
2444 break;
2446 case CT_FIXED_FORM:
2447 break;
2449 break;
2451 p += CONSTRAINT_LEN (c, p);
2457 /* Return an array of operand_alternative instructions for
2458 instruction ICODE. */
2460 const operand_alternative *
2461 preprocess_insn_constraints (unsigned int icode)
2463 gcc_checking_assert (IN_RANGE (icode, 0, NUM_INSN_CODES - 1));
2464 if (this_target_recog->x_op_alt[icode])
2465 return this_target_recog->x_op_alt[icode];
2467 int n_operands = insn_data[icode].n_operands;
2468 if (n_operands == 0)
2469 return 0;
2470 /* Always provide at least one alternative so that which_op_alt ()
2471 works correctly. If the instruction has 0 alternatives (i.e. all
2472 constraint strings are empty) then each operand in this alternative
2473 will have anything_ok set. */
2474 int n_alternatives = MAX (insn_data[icode].n_alternatives, 1);
2475 int n_entries = n_operands * n_alternatives;
2477 operand_alternative *op_alt = XCNEWVEC (operand_alternative, n_entries);
2478 const char **constraints = XALLOCAVEC (const char *, n_operands);
2480 for (int i = 0; i < n_operands; ++i)
2481 constraints[i] = insn_data[icode].operand[i].constraint;
2482 preprocess_constraints (n_operands, n_alternatives, constraints, op_alt,
2483 NULL);
2485 this_target_recog->x_op_alt[icode] = op_alt;
2486 return op_alt;
2489 /* After calling extract_insn, you can use this function to extract some
2490 information from the constraint strings into a more usable form.
2491 The collected data is stored in recog_op_alt. */
2493 void
2494 preprocess_constraints (rtx_insn *insn)
2496 int icode = INSN_CODE (insn);
2497 if (icode >= 0)
2498 recog_op_alt = preprocess_insn_constraints (icode);
2499 else
2501 int n_operands = recog_data.n_operands;
2502 int n_alternatives = recog_data.n_alternatives;
2503 int n_entries = n_operands * n_alternatives;
2504 memset (asm_op_alt, 0, n_entries * sizeof (operand_alternative));
2505 preprocess_constraints (n_operands, n_alternatives,
2506 recog_data.constraints, asm_op_alt,
2507 NULL);
2508 recog_op_alt = asm_op_alt;
2512 /* Check the operands of an insn against the insn's operand constraints
2513 and return 1 if they match any of the alternatives in ALTERNATIVES.
2515 The information about the insn's operands, constraints, operand modes
2516 etc. is obtained from the global variables set up by extract_insn.
2518 WHICH_ALTERNATIVE is set to a number which indicates which
2519 alternative of constraints was matched: 0 for the first alternative,
2520 1 for the next, etc.
2522 In addition, when two operands are required to match
2523 and it happens that the output operand is (reg) while the
2524 input operand is --(reg) or ++(reg) (a pre-inc or pre-dec),
2525 make the output operand look like the input.
2526 This is because the output operand is the one the template will print.
2528 This is used in final, just before printing the assembler code and by
2529 the routines that determine an insn's attribute.
2531 If STRICT is a positive nonzero value, it means that we have been
2532 called after reload has been completed. In that case, we must
2533 do all checks strictly. If it is zero, it means that we have been called
2534 before reload has completed. In that case, we first try to see if we can
2535 find an alternative that matches strictly. If not, we try again, this
2536 time assuming that reload will fix up the insn. This provides a "best
2537 guess" for the alternative and is used to compute attributes of insns prior
2538 to reload. A negative value of STRICT is used for this internal call. */
2540 struct funny_match
2542 int this_op, other;
2546 constrain_operands (int strict, alternative_mask alternatives)
2548 const char *constraints[MAX_RECOG_OPERANDS];
2549 int matching_operands[MAX_RECOG_OPERANDS];
2550 int earlyclobber[MAX_RECOG_OPERANDS];
2551 int c;
2553 struct funny_match funny_match[MAX_RECOG_OPERANDS];
2554 int funny_match_index;
2556 which_alternative = 0;
2557 if (recog_data.n_operands == 0 || recog_data.n_alternatives == 0)
2558 return 1;
2560 for (c = 0; c < recog_data.n_operands; c++)
2562 constraints[c] = recog_data.constraints[c];
2563 matching_operands[c] = -1;
2568 int seen_earlyclobber_at = -1;
2569 int opno;
2570 int lose = 0;
2571 funny_match_index = 0;
2573 if (!TEST_BIT (alternatives, which_alternative))
2575 int i;
2577 for (i = 0; i < recog_data.n_operands; i++)
2578 constraints[i] = skip_alternative (constraints[i]);
2580 which_alternative++;
2581 continue;
2584 for (opno = 0; opno < recog_data.n_operands; opno++)
2586 rtx op = recog_data.operand[opno];
2587 machine_mode mode = GET_MODE (op);
2588 const char *p = constraints[opno];
2589 int offset = 0;
2590 int win = 0;
2591 int val;
2592 int len;
2594 earlyclobber[opno] = 0;
2596 /* A unary operator may be accepted by the predicate, but it
2597 is irrelevant for matching constraints. */
2598 if (UNARY_P (op))
2599 op = XEXP (op, 0);
2601 if (GET_CODE (op) == SUBREG)
2603 if (REG_P (SUBREG_REG (op))
2604 && REGNO (SUBREG_REG (op)) < FIRST_PSEUDO_REGISTER)
2605 offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
2606 GET_MODE (SUBREG_REG (op)),
2607 SUBREG_BYTE (op),
2608 GET_MODE (op));
2609 op = SUBREG_REG (op);
2612 /* An empty constraint or empty alternative
2613 allows anything which matched the pattern. */
2614 if (*p == 0 || *p == ',')
2615 win = 1;
2618 switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
2620 case '\0':
2621 len = 0;
2622 break;
2623 case ',':
2624 c = '\0';
2625 break;
2627 case '#':
2628 /* Ignore rest of this alternative as far as
2629 constraint checking is concerned. */
2631 p++;
2632 while (*p && *p != ',');
2633 len = 0;
2634 break;
2636 case '&':
2637 earlyclobber[opno] = 1;
2638 if (seen_earlyclobber_at < 0)
2639 seen_earlyclobber_at = opno;
2640 break;
2642 case '0': case '1': case '2': case '3': case '4':
2643 case '5': case '6': case '7': case '8': case '9':
2645 /* This operand must be the same as a previous one.
2646 This kind of constraint is used for instructions such
2647 as add when they take only two operands.
2649 Note that the lower-numbered operand is passed first.
2651 If we are not testing strictly, assume that this
2652 constraint will be satisfied. */
2654 char *end;
2655 int match;
2657 match = strtoul (p, &end, 10);
2658 p = end;
2660 if (strict < 0)
2661 val = 1;
2662 else
2664 rtx op1 = recog_data.operand[match];
2665 rtx op2 = recog_data.operand[opno];
2667 /* A unary operator may be accepted by the predicate,
2668 but it is irrelevant for matching constraints. */
2669 if (UNARY_P (op1))
2670 op1 = XEXP (op1, 0);
2671 if (UNARY_P (op2))
2672 op2 = XEXP (op2, 0);
2674 val = operands_match_p (op1, op2);
2677 matching_operands[opno] = match;
2678 matching_operands[match] = opno;
2680 if (val != 0)
2681 win = 1;
2683 /* If output is *x and input is *--x, arrange later
2684 to change the output to *--x as well, since the
2685 output op is the one that will be printed. */
2686 if (val == 2 && strict > 0)
2688 funny_match[funny_match_index].this_op = opno;
2689 funny_match[funny_match_index++].other = match;
2692 len = 0;
2693 break;
2695 case 'p':
2696 /* p is used for address_operands. When we are called by
2697 gen_reload, no one will have checked that the address is
2698 strictly valid, i.e., that all pseudos requiring hard regs
2699 have gotten them. */
2700 if (strict <= 0
2701 || (strict_memory_address_p (recog_data.operand_mode[opno],
2702 op)))
2703 win = 1;
2704 break;
2706 /* No need to check general_operand again;
2707 it was done in insn-recog.c. Well, except that reload
2708 doesn't check the validity of its replacements, but
2709 that should only matter when there's a bug. */
2710 case 'g':
2711 /* Anything goes unless it is a REG and really has a hard reg
2712 but the hard reg is not in the class GENERAL_REGS. */
2713 if (REG_P (op))
2715 if (strict < 0
2716 || GENERAL_REGS == ALL_REGS
2717 || (reload_in_progress
2718 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2719 || reg_fits_class_p (op, GENERAL_REGS, offset, mode))
2720 win = 1;
2722 else if (strict < 0 || general_operand (op, mode))
2723 win = 1;
2724 break;
2726 default:
2728 enum constraint_num cn = lookup_constraint (p);
2729 enum reg_class cl = reg_class_for_constraint (cn);
2730 if (cl != NO_REGS)
2732 if (strict < 0
2733 || (strict == 0
2734 && REG_P (op)
2735 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2736 || (strict == 0 && GET_CODE (op) == SCRATCH)
2737 || (REG_P (op)
2738 && reg_fits_class_p (op, cl, offset, mode)))
2739 win = 1;
2742 else if (constraint_satisfied_p (op, cn))
2743 win = 1;
2745 else if (insn_extra_memory_constraint (cn)
2746 /* Every memory operand can be reloaded to fit. */
2747 && ((strict < 0 && MEM_P (op))
2748 /* Before reload, accept what reload can turn
2749 into a mem. */
2750 || (strict < 0 && CONSTANT_P (op))
2751 /* Before reload, accept a pseudo,
2752 since LRA can turn it into a mem. */
2753 || (strict < 0 && targetm.lra_p () && REG_P (op)
2754 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2755 /* During reload, accept a pseudo */
2756 || (reload_in_progress && REG_P (op)
2757 && REGNO (op) >= FIRST_PSEUDO_REGISTER)))
2758 win = 1;
2759 else if (insn_extra_address_constraint (cn)
2760 /* Every address operand can be reloaded to fit. */
2761 && strict < 0)
2762 win = 1;
2763 /* Cater to architectures like IA-64 that define extra memory
2764 constraints without using define_memory_constraint. */
2765 else if (reload_in_progress
2766 && REG_P (op)
2767 && REGNO (op) >= FIRST_PSEUDO_REGISTER
2768 && reg_renumber[REGNO (op)] < 0
2769 && reg_equiv_mem (REGNO (op)) != 0
2770 && constraint_satisfied_p
2771 (reg_equiv_mem (REGNO (op)), cn))
2772 win = 1;
2773 break;
2776 while (p += len, c);
2778 constraints[opno] = p;
2779 /* If this operand did not win somehow,
2780 this alternative loses. */
2781 if (! win)
2782 lose = 1;
2784 /* This alternative won; the operands are ok.
2785 Change whichever operands this alternative says to change. */
2786 if (! lose)
2788 int opno, eopno;
2790 /* See if any earlyclobber operand conflicts with some other
2791 operand. */
2793 if (strict > 0 && seen_earlyclobber_at >= 0)
2794 for (eopno = seen_earlyclobber_at;
2795 eopno < recog_data.n_operands;
2796 eopno++)
2797 /* Ignore earlyclobber operands now in memory,
2798 because we would often report failure when we have
2799 two memory operands, one of which was formerly a REG. */
2800 if (earlyclobber[eopno]
2801 && REG_P (recog_data.operand[eopno]))
2802 for (opno = 0; opno < recog_data.n_operands; opno++)
2803 if ((MEM_P (recog_data.operand[opno])
2804 || recog_data.operand_type[opno] != OP_OUT)
2805 && opno != eopno
2806 /* Ignore things like match_operator operands. */
2807 && *recog_data.constraints[opno] != 0
2808 && ! (matching_operands[opno] == eopno
2809 && operands_match_p (recog_data.operand[opno],
2810 recog_data.operand[eopno]))
2811 && ! safe_from_earlyclobber (recog_data.operand[opno],
2812 recog_data.operand[eopno]))
2813 lose = 1;
2815 if (! lose)
2817 while (--funny_match_index >= 0)
2819 recog_data.operand[funny_match[funny_match_index].other]
2820 = recog_data.operand[funny_match[funny_match_index].this_op];
2823 /* For operands without < or > constraints reject side-effects. */
2824 if (AUTO_INC_DEC && recog_data.is_asm)
2826 for (opno = 0; opno < recog_data.n_operands; opno++)
2827 if (MEM_P (recog_data.operand[opno]))
2828 switch (GET_CODE (XEXP (recog_data.operand[opno], 0)))
2830 case PRE_INC:
2831 case POST_INC:
2832 case PRE_DEC:
2833 case POST_DEC:
2834 case PRE_MODIFY:
2835 case POST_MODIFY:
2836 if (strchr (recog_data.constraints[opno], '<') == NULL
2837 && strchr (recog_data.constraints[opno], '>')
2838 == NULL)
2839 return 0;
2840 break;
2841 default:
2842 break;
2846 return 1;
2850 which_alternative++;
2852 while (which_alternative < recog_data.n_alternatives);
2854 which_alternative = -1;
2855 /* If we are about to reject this, but we are not to test strictly,
2856 try a very loose test. Only return failure if it fails also. */
2857 if (strict == 0)
2858 return constrain_operands (-1, alternatives);
2859 else
2860 return 0;
2863 /* Return true iff OPERAND (assumed to be a REG rtx)
2864 is a hard reg in class CLASS when its regno is offset by OFFSET
2865 and changed to mode MODE.
2866 If REG occupies multiple hard regs, all of them must be in CLASS. */
2868 bool
2869 reg_fits_class_p (const_rtx operand, reg_class_t cl, int offset,
2870 machine_mode mode)
2872 unsigned int regno = REGNO (operand);
2874 if (cl == NO_REGS)
2875 return false;
2877 /* Regno must not be a pseudo register. Offset may be negative. */
2878 return (HARD_REGISTER_NUM_P (regno)
2879 && HARD_REGISTER_NUM_P (regno + offset)
2880 && in_hard_reg_set_p (reg_class_contents[(int) cl], mode,
2881 regno + offset));
2884 /* Split single instruction. Helper function for split_all_insns and
2885 split_all_insns_noflow. Return last insn in the sequence if successful,
2886 or NULL if unsuccessful. */
2888 static rtx_insn *
2889 split_insn (rtx_insn *insn)
2891 /* Split insns here to get max fine-grain parallelism. */
2892 rtx_insn *first = PREV_INSN (insn);
2893 rtx_insn *last = try_split (PATTERN (insn), insn, 1);
2894 rtx insn_set, last_set, note;
2896 if (last == insn)
2897 return NULL;
2899 /* If the original instruction was a single set that was known to be
2900 equivalent to a constant, see if we can say the same about the last
2901 instruction in the split sequence. The two instructions must set
2902 the same destination. */
2903 insn_set = single_set (insn);
2904 if (insn_set)
2906 last_set = single_set (last);
2907 if (last_set && rtx_equal_p (SET_DEST (last_set), SET_DEST (insn_set)))
2909 note = find_reg_equal_equiv_note (insn);
2910 if (note && CONSTANT_P (XEXP (note, 0)))
2911 set_unique_reg_note (last, REG_EQUAL, XEXP (note, 0));
2912 else if (CONSTANT_P (SET_SRC (insn_set)))
2913 set_unique_reg_note (last, REG_EQUAL,
2914 copy_rtx (SET_SRC (insn_set)));
2918 /* try_split returns the NOTE that INSN became. */
2919 SET_INSN_DELETED (insn);
2921 /* ??? Coddle to md files that generate subregs in post-reload
2922 splitters instead of computing the proper hard register. */
2923 if (reload_completed && first != last)
2925 first = NEXT_INSN (first);
2926 for (;;)
2928 if (INSN_P (first))
2929 cleanup_subreg_operands (first);
2930 if (first == last)
2931 break;
2932 first = NEXT_INSN (first);
2936 return last;
2939 /* Split all insns in the function. If UPD_LIFE, update life info after. */
2941 void
2942 split_all_insns (void)
2944 bool changed;
2945 bool need_cfg_cleanup = false;
2946 basic_block bb;
2948 auto_sbitmap blocks (last_basic_block_for_fn (cfun));
2949 bitmap_clear (blocks);
2950 changed = false;
2952 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2954 rtx_insn *insn, *next;
2955 bool finish = false;
2957 rtl_profile_for_bb (bb);
2958 for (insn = BB_HEAD (bb); !finish ; insn = next)
2960 /* Can't use `next_real_insn' because that might go across
2961 CODE_LABELS and short-out basic blocks. */
2962 next = NEXT_INSN (insn);
2963 finish = (insn == BB_END (bb));
2965 /* If INSN has a REG_EH_REGION note and we split INSN, the
2966 resulting split may not have/need REG_EH_REGION notes.
2968 If that happens and INSN was the last reference to the
2969 given EH region, then the EH region will become unreachable.
2970 We can not leave the unreachable blocks in the CFG as that
2971 will trigger a checking failure.
2973 So track if INSN has a REG_EH_REGION note. If so and we
2974 split INSN, then trigger a CFG cleanup. */
2975 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
2976 if (INSN_P (insn))
2978 rtx set = single_set (insn);
2980 /* Don't split no-op move insns. These should silently
2981 disappear later in final. Splitting such insns would
2982 break the code that handles LIBCALL blocks. */
2983 if (set && set_noop_p (set))
2985 /* Nops get in the way while scheduling, so delete them
2986 now if register allocation has already been done. It
2987 is too risky to try to do this before register
2988 allocation, and there are unlikely to be very many
2989 nops then anyways. */
2990 if (reload_completed)
2991 delete_insn_and_edges (insn);
2992 if (note)
2993 need_cfg_cleanup = true;
2995 else
2997 if (split_insn (insn))
2999 bitmap_set_bit (blocks, bb->index);
3000 changed = true;
3001 if (note)
3002 need_cfg_cleanup = true;
3009 default_rtl_profile ();
3010 if (changed)
3012 find_many_sub_basic_blocks (blocks);
3014 /* Splitting could drop an REG_EH_REGION if it potentially
3015 trapped in its original form, but does not in its split
3016 form. Consider a FLOAT_TRUNCATE which splits into a memory
3017 store/load pair and -fnon-call-exceptions. */
3018 if (need_cfg_cleanup)
3019 cleanup_cfg (0);
3022 checking_verify_flow_info ();
3025 /* Same as split_all_insns, but do not expect CFG to be available.
3026 Used by machine dependent reorg passes. */
3028 unsigned int
3029 split_all_insns_noflow (void)
3031 rtx_insn *next, *insn;
3033 for (insn = get_insns (); insn; insn = next)
3035 next = NEXT_INSN (insn);
3036 if (INSN_P (insn))
3038 /* Don't split no-op move insns. These should silently
3039 disappear later in final. Splitting such insns would
3040 break the code that handles LIBCALL blocks. */
3041 rtx set = single_set (insn);
3042 if (set && set_noop_p (set))
3044 /* Nops get in the way while scheduling, so delete them
3045 now if register allocation has already been done. It
3046 is too risky to try to do this before register
3047 allocation, and there are unlikely to be very many
3048 nops then anyways.
3050 ??? Should we use delete_insn when the CFG isn't valid? */
3051 if (reload_completed)
3052 delete_insn_and_edges (insn);
3054 else
3055 split_insn (insn);
3058 return 0;
3061 struct peep2_insn_data
3063 rtx_insn *insn;
3064 regset live_before;
3067 static struct peep2_insn_data peep2_insn_data[MAX_INSNS_PER_PEEP2 + 1];
3068 static int peep2_current;
3070 static bool peep2_do_rebuild_jump_labels;
3071 static bool peep2_do_cleanup_cfg;
3073 /* The number of instructions available to match a peep2. */
3074 int peep2_current_count;
3076 /* A marker indicating the last insn of the block. The live_before regset
3077 for this element is correct, indicating DF_LIVE_OUT for the block. */
3078 #define PEEP2_EOB invalid_insn_rtx
3080 /* Wrap N to fit into the peep2_insn_data buffer. */
3082 static int
3083 peep2_buf_position (int n)
3085 if (n >= MAX_INSNS_PER_PEEP2 + 1)
3086 n -= MAX_INSNS_PER_PEEP2 + 1;
3087 return n;
3090 /* Return the Nth non-note insn after `current', or return NULL_RTX if it
3091 does not exist. Used by the recognizer to find the next insn to match
3092 in a multi-insn pattern. */
3094 rtx_insn *
3095 peep2_next_insn (int n)
3097 gcc_assert (n <= peep2_current_count);
3099 n = peep2_buf_position (peep2_current + n);
3101 return peep2_insn_data[n].insn;
3104 /* Return true if REGNO is dead before the Nth non-note insn
3105 after `current'. */
3108 peep2_regno_dead_p (int ofs, int regno)
3110 gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
3112 ofs = peep2_buf_position (peep2_current + ofs);
3114 gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
3116 return ! REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno);
3119 /* Similarly for a REG. */
3122 peep2_reg_dead_p (int ofs, rtx reg)
3124 gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
3126 ofs = peep2_buf_position (peep2_current + ofs);
3128 gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
3130 unsigned int end_regno = END_REGNO (reg);
3131 for (unsigned int regno = REGNO (reg); regno < end_regno; ++regno)
3132 if (REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno))
3133 return 0;
3134 return 1;
3137 /* Regno offset to be used in the register search. */
3138 static int search_ofs;
3140 /* Try to find a hard register of mode MODE, matching the register class in
3141 CLASS_STR, which is available at the beginning of insn CURRENT_INSN and
3142 remains available until the end of LAST_INSN. LAST_INSN may be NULL_RTX,
3143 in which case the only condition is that the register must be available
3144 before CURRENT_INSN.
3145 Registers that already have bits set in REG_SET will not be considered.
3147 If an appropriate register is available, it will be returned and the
3148 corresponding bit(s) in REG_SET will be set; otherwise, NULL_RTX is
3149 returned. */
3152 peep2_find_free_register (int from, int to, const char *class_str,
3153 machine_mode mode, HARD_REG_SET *reg_set)
3155 enum reg_class cl;
3156 HARD_REG_SET live;
3157 df_ref def;
3158 int i;
3160 gcc_assert (from < MAX_INSNS_PER_PEEP2 + 1);
3161 gcc_assert (to < MAX_INSNS_PER_PEEP2 + 1);
3163 from = peep2_buf_position (peep2_current + from);
3164 to = peep2_buf_position (peep2_current + to);
3166 gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
3167 REG_SET_TO_HARD_REG_SET (live, peep2_insn_data[from].live_before);
3169 while (from != to)
3171 gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
3173 /* Don't use registers set or clobbered by the insn. */
3174 FOR_EACH_INSN_DEF (def, peep2_insn_data[from].insn)
3175 SET_HARD_REG_BIT (live, DF_REF_REGNO (def));
3177 from = peep2_buf_position (from + 1);
3180 cl = reg_class_for_constraint (lookup_constraint (class_str));
3182 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3184 int raw_regno, regno, success, j;
3186 /* Distribute the free registers as much as possible. */
3187 raw_regno = search_ofs + i;
3188 if (raw_regno >= FIRST_PSEUDO_REGISTER)
3189 raw_regno -= FIRST_PSEUDO_REGISTER;
3190 #ifdef REG_ALLOC_ORDER
3191 regno = reg_alloc_order[raw_regno];
3192 #else
3193 regno = raw_regno;
3194 #endif
3196 /* Can it support the mode we need? */
3197 if (!targetm.hard_regno_mode_ok (regno, mode))
3198 continue;
3200 success = 1;
3201 for (j = 0; success && j < hard_regno_nregs (regno, mode); j++)
3203 /* Don't allocate fixed registers. */
3204 if (fixed_regs[regno + j])
3206 success = 0;
3207 break;
3209 /* Don't allocate global registers. */
3210 if (global_regs[regno + j])
3212 success = 0;
3213 break;
3215 /* Make sure the register is of the right class. */
3216 if (! TEST_HARD_REG_BIT (reg_class_contents[cl], regno + j))
3218 success = 0;
3219 break;
3221 /* And that we don't create an extra save/restore. */
3222 if (! call_used_regs[regno + j] && ! df_regs_ever_live_p (regno + j))
3224 success = 0;
3225 break;
3228 if (! targetm.hard_regno_scratch_ok (regno + j))
3230 success = 0;
3231 break;
3234 /* And we don't clobber traceback for noreturn functions. */
3235 if ((regno + j == FRAME_POINTER_REGNUM
3236 || regno + j == HARD_FRAME_POINTER_REGNUM)
3237 && (! reload_completed || frame_pointer_needed))
3239 success = 0;
3240 break;
3243 if (TEST_HARD_REG_BIT (*reg_set, regno + j)
3244 || TEST_HARD_REG_BIT (live, regno + j))
3246 success = 0;
3247 break;
3251 if (success)
3253 add_to_hard_reg_set (reg_set, mode, regno);
3255 /* Start the next search with the next register. */
3256 if (++raw_regno >= FIRST_PSEUDO_REGISTER)
3257 raw_regno = 0;
3258 search_ofs = raw_regno;
3260 return gen_rtx_REG (mode, regno);
3264 search_ofs = 0;
3265 return NULL_RTX;
3268 /* Forget all currently tracked instructions, only remember current
3269 LIVE regset. */
3271 static void
3272 peep2_reinit_state (regset live)
3274 int i;
3276 /* Indicate that all slots except the last holds invalid data. */
3277 for (i = 0; i < MAX_INSNS_PER_PEEP2; ++i)
3278 peep2_insn_data[i].insn = NULL;
3279 peep2_current_count = 0;
3281 /* Indicate that the last slot contains live_after data. */
3282 peep2_insn_data[MAX_INSNS_PER_PEEP2].insn = PEEP2_EOB;
3283 peep2_current = MAX_INSNS_PER_PEEP2;
3285 COPY_REG_SET (peep2_insn_data[MAX_INSNS_PER_PEEP2].live_before, live);
3288 /* While scanning basic block BB, we found a match of length MATCH_LEN,
3289 starting at INSN. Perform the replacement, removing the old insns and
3290 replacing them with ATTEMPT. Returns the last insn emitted, or NULL
3291 if the replacement is rejected. */
3293 static rtx_insn *
3294 peep2_attempt (basic_block bb, rtx_insn *insn, int match_len, rtx_insn *attempt)
3296 int i;
3297 rtx_insn *last, *before_try, *x;
3298 rtx eh_note, as_note;
3299 rtx_insn *old_insn;
3300 rtx_insn *new_insn;
3301 bool was_call = false;
3303 /* If we are splitting an RTX_FRAME_RELATED_P insn, do not allow it to
3304 match more than one insn, or to be split into more than one insn. */
3305 old_insn = peep2_insn_data[peep2_current].insn;
3306 if (RTX_FRAME_RELATED_P (old_insn))
3308 bool any_note = false;
3309 rtx note;
3311 if (match_len != 0)
3312 return NULL;
3314 /* Look for one "active" insn. I.e. ignore any "clobber" insns that
3315 may be in the stream for the purpose of register allocation. */
3316 if (active_insn_p (attempt))
3317 new_insn = attempt;
3318 else
3319 new_insn = next_active_insn (attempt);
3320 if (next_active_insn (new_insn))
3321 return NULL;
3323 /* We have a 1-1 replacement. Copy over any frame-related info. */
3324 RTX_FRAME_RELATED_P (new_insn) = 1;
3326 /* Allow the backend to fill in a note during the split. */
3327 for (note = REG_NOTES (new_insn); note ; note = XEXP (note, 1))
3328 switch (REG_NOTE_KIND (note))
3330 case REG_FRAME_RELATED_EXPR:
3331 case REG_CFA_DEF_CFA:
3332 case REG_CFA_ADJUST_CFA:
3333 case REG_CFA_OFFSET:
3334 case REG_CFA_REGISTER:
3335 case REG_CFA_EXPRESSION:
3336 case REG_CFA_RESTORE:
3337 case REG_CFA_SET_VDRAP:
3338 any_note = true;
3339 break;
3340 default:
3341 break;
3344 /* If the backend didn't supply a note, copy one over. */
3345 if (!any_note)
3346 for (note = REG_NOTES (old_insn); note ; note = XEXP (note, 1))
3347 switch (REG_NOTE_KIND (note))
3349 case REG_FRAME_RELATED_EXPR:
3350 case REG_CFA_DEF_CFA:
3351 case REG_CFA_ADJUST_CFA:
3352 case REG_CFA_OFFSET:
3353 case REG_CFA_REGISTER:
3354 case REG_CFA_EXPRESSION:
3355 case REG_CFA_RESTORE:
3356 case REG_CFA_SET_VDRAP:
3357 add_reg_note (new_insn, REG_NOTE_KIND (note), XEXP (note, 0));
3358 any_note = true;
3359 break;
3360 default:
3361 break;
3364 /* If there still isn't a note, make sure the unwind info sees the
3365 same expression as before the split. */
3366 if (!any_note)
3368 rtx old_set, new_set;
3370 /* The old insn had better have been simple, or annotated. */
3371 old_set = single_set (old_insn);
3372 gcc_assert (old_set != NULL);
3374 new_set = single_set (new_insn);
3375 if (!new_set || !rtx_equal_p (new_set, old_set))
3376 add_reg_note (new_insn, REG_FRAME_RELATED_EXPR, old_set);
3379 /* Copy prologue/epilogue status. This is required in order to keep
3380 proper placement of EPILOGUE_BEG and the DW_CFA_remember_state. */
3381 maybe_copy_prologue_epilogue_insn (old_insn, new_insn);
3384 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3385 in SEQ and copy our CALL_INSN_FUNCTION_USAGE and other
3386 cfg-related call notes. */
3387 for (i = 0; i <= match_len; ++i)
3389 int j;
3390 rtx note;
3392 j = peep2_buf_position (peep2_current + i);
3393 old_insn = peep2_insn_data[j].insn;
3394 if (!CALL_P (old_insn))
3395 continue;
3396 was_call = true;
3398 new_insn = attempt;
3399 while (new_insn != NULL_RTX)
3401 if (CALL_P (new_insn))
3402 break;
3403 new_insn = NEXT_INSN (new_insn);
3406 gcc_assert (new_insn != NULL_RTX);
3408 CALL_INSN_FUNCTION_USAGE (new_insn)
3409 = CALL_INSN_FUNCTION_USAGE (old_insn);
3410 SIBLING_CALL_P (new_insn) = SIBLING_CALL_P (old_insn);
3412 for (note = REG_NOTES (old_insn);
3413 note;
3414 note = XEXP (note, 1))
3415 switch (REG_NOTE_KIND (note))
3417 case REG_NORETURN:
3418 case REG_SETJMP:
3419 case REG_TM:
3420 case REG_CALL_NOCF_CHECK:
3421 add_reg_note (new_insn, REG_NOTE_KIND (note),
3422 XEXP (note, 0));
3423 break;
3424 default:
3425 /* Discard all other reg notes. */
3426 break;
3429 /* Croak if there is another call in the sequence. */
3430 while (++i <= match_len)
3432 j = peep2_buf_position (peep2_current + i);
3433 old_insn = peep2_insn_data[j].insn;
3434 gcc_assert (!CALL_P (old_insn));
3436 break;
3439 /* If we matched any instruction that had a REG_ARGS_SIZE, then
3440 move those notes over to the new sequence. */
3441 as_note = NULL;
3442 for (i = match_len; i >= 0; --i)
3444 int j = peep2_buf_position (peep2_current + i);
3445 old_insn = peep2_insn_data[j].insn;
3447 as_note = find_reg_note (old_insn, REG_ARGS_SIZE, NULL);
3448 if (as_note)
3449 break;
3452 i = peep2_buf_position (peep2_current + match_len);
3453 eh_note = find_reg_note (peep2_insn_data[i].insn, REG_EH_REGION, NULL_RTX);
3455 /* Replace the old sequence with the new. */
3456 rtx_insn *peepinsn = peep2_insn_data[i].insn;
3457 last = emit_insn_after_setloc (attempt,
3458 peep2_insn_data[i].insn,
3459 INSN_LOCATION (peepinsn));
3460 if (JUMP_P (peepinsn) && JUMP_P (last))
3461 CROSSING_JUMP_P (last) = CROSSING_JUMP_P (peepinsn);
3462 before_try = PREV_INSN (insn);
3463 delete_insn_chain (insn, peep2_insn_data[i].insn, false);
3465 /* Re-insert the EH_REGION notes. */
3466 if (eh_note || (was_call && nonlocal_goto_handler_labels))
3468 edge eh_edge;
3469 edge_iterator ei;
3471 FOR_EACH_EDGE (eh_edge, ei, bb->succs)
3472 if (eh_edge->flags & (EDGE_EH | EDGE_ABNORMAL_CALL))
3473 break;
3475 if (eh_note)
3476 copy_reg_eh_region_note_backward (eh_note, last, before_try);
3478 if (eh_edge)
3479 for (x = last; x != before_try; x = PREV_INSN (x))
3480 if (x != BB_END (bb)
3481 && (can_throw_internal (x)
3482 || can_nonlocal_goto (x)))
3484 edge nfte, nehe;
3485 int flags;
3487 nfte = split_block (bb, x);
3488 flags = (eh_edge->flags
3489 & (EDGE_EH | EDGE_ABNORMAL));
3490 if (CALL_P (x))
3491 flags |= EDGE_ABNORMAL_CALL;
3492 nehe = make_edge (nfte->src, eh_edge->dest,
3493 flags);
3495 nehe->probability = eh_edge->probability;
3496 nfte->probability = nehe->probability.invert ();
3498 peep2_do_cleanup_cfg |= purge_dead_edges (nfte->dest);
3499 bb = nfte->src;
3500 eh_edge = nehe;
3503 /* Converting possibly trapping insn to non-trapping is
3504 possible. Zap dummy outgoing edges. */
3505 peep2_do_cleanup_cfg |= purge_dead_edges (bb);
3508 /* Re-insert the ARGS_SIZE notes. */
3509 if (as_note)
3510 fixup_args_size_notes (before_try, last, get_args_size (as_note));
3512 /* If we generated a jump instruction, it won't have
3513 JUMP_LABEL set. Recompute after we're done. */
3514 for (x = last; x != before_try; x = PREV_INSN (x))
3515 if (JUMP_P (x))
3517 peep2_do_rebuild_jump_labels = true;
3518 break;
3521 return last;
3524 /* After performing a replacement in basic block BB, fix up the life
3525 information in our buffer. LAST is the last of the insns that we
3526 emitted as a replacement. PREV is the insn before the start of
3527 the replacement. MATCH_LEN is the number of instructions that were
3528 matched, and which now need to be replaced in the buffer. */
3530 static void
3531 peep2_update_life (basic_block bb, int match_len, rtx_insn *last,
3532 rtx_insn *prev)
3534 int i = peep2_buf_position (peep2_current + match_len + 1);
3535 rtx_insn *x;
3536 regset_head live;
3538 INIT_REG_SET (&live);
3539 COPY_REG_SET (&live, peep2_insn_data[i].live_before);
3541 gcc_assert (peep2_current_count >= match_len + 1);
3542 peep2_current_count -= match_len + 1;
3544 x = last;
3547 if (INSN_P (x))
3549 df_insn_rescan (x);
3550 if (peep2_current_count < MAX_INSNS_PER_PEEP2)
3552 peep2_current_count++;
3553 if (--i < 0)
3554 i = MAX_INSNS_PER_PEEP2;
3555 peep2_insn_data[i].insn = x;
3556 df_simulate_one_insn_backwards (bb, x, &live);
3557 COPY_REG_SET (peep2_insn_data[i].live_before, &live);
3560 x = PREV_INSN (x);
3562 while (x != prev);
3563 CLEAR_REG_SET (&live);
3565 peep2_current = i;
3568 /* Add INSN, which is in BB, at the end of the peep2 insn buffer if possible.
3569 Return true if we added it, false otherwise. The caller will try to match
3570 peepholes against the buffer if we return false; otherwise it will try to
3571 add more instructions to the buffer. */
3573 static bool
3574 peep2_fill_buffer (basic_block bb, rtx_insn *insn, regset live)
3576 int pos;
3578 /* Once we have filled the maximum number of insns the buffer can hold,
3579 allow the caller to match the insns against peepholes. We wait until
3580 the buffer is full in case the target has similar peepholes of different
3581 length; we always want to match the longest if possible. */
3582 if (peep2_current_count == MAX_INSNS_PER_PEEP2)
3583 return false;
3585 /* If an insn has RTX_FRAME_RELATED_P set, do not allow it to be matched with
3586 any other pattern, lest it change the semantics of the frame info. */
3587 if (RTX_FRAME_RELATED_P (insn))
3589 /* Let the buffer drain first. */
3590 if (peep2_current_count > 0)
3591 return false;
3592 /* Now the insn will be the only thing in the buffer. */
3595 pos = peep2_buf_position (peep2_current + peep2_current_count);
3596 peep2_insn_data[pos].insn = insn;
3597 COPY_REG_SET (peep2_insn_data[pos].live_before, live);
3598 peep2_current_count++;
3600 df_simulate_one_insn_forwards (bb, insn, live);
3601 return true;
3604 /* Perform the peephole2 optimization pass. */
3606 static void
3607 peephole2_optimize (void)
3609 rtx_insn *insn;
3610 bitmap live;
3611 int i;
3612 basic_block bb;
3614 peep2_do_cleanup_cfg = false;
3615 peep2_do_rebuild_jump_labels = false;
3617 df_set_flags (DF_LR_RUN_DCE);
3618 df_note_add_problem ();
3619 df_analyze ();
3621 /* Initialize the regsets we're going to use. */
3622 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3623 peep2_insn_data[i].live_before = BITMAP_ALLOC (&reg_obstack);
3624 search_ofs = 0;
3625 live = BITMAP_ALLOC (&reg_obstack);
3627 FOR_EACH_BB_REVERSE_FN (bb, cfun)
3629 bool past_end = false;
3630 int pos;
3632 rtl_profile_for_bb (bb);
3634 /* Start up propagation. */
3635 bitmap_copy (live, DF_LR_IN (bb));
3636 df_simulate_initialize_forwards (bb, live);
3637 peep2_reinit_state (live);
3639 insn = BB_HEAD (bb);
3640 for (;;)
3642 rtx_insn *attempt, *head;
3643 int match_len;
3645 if (!past_end && !NONDEBUG_INSN_P (insn))
3647 next_insn:
3648 insn = NEXT_INSN (insn);
3649 if (insn == NEXT_INSN (BB_END (bb)))
3650 past_end = true;
3651 continue;
3653 if (!past_end && peep2_fill_buffer (bb, insn, live))
3654 goto next_insn;
3656 /* If we did not fill an empty buffer, it signals the end of the
3657 block. */
3658 if (peep2_current_count == 0)
3659 break;
3661 /* The buffer filled to the current maximum, so try to match. */
3663 pos = peep2_buf_position (peep2_current + peep2_current_count);
3664 peep2_insn_data[pos].insn = PEEP2_EOB;
3665 COPY_REG_SET (peep2_insn_data[pos].live_before, live);
3667 /* Match the peephole. */
3668 head = peep2_insn_data[peep2_current].insn;
3669 attempt = peephole2_insns (PATTERN (head), head, &match_len);
3670 if (attempt != NULL)
3672 rtx_insn *last = peep2_attempt (bb, head, match_len, attempt);
3673 if (last)
3675 peep2_update_life (bb, match_len, last, PREV_INSN (attempt));
3676 continue;
3680 /* No match: advance the buffer by one insn. */
3681 peep2_current = peep2_buf_position (peep2_current + 1);
3682 peep2_current_count--;
3686 default_rtl_profile ();
3687 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3688 BITMAP_FREE (peep2_insn_data[i].live_before);
3689 BITMAP_FREE (live);
3690 if (peep2_do_rebuild_jump_labels)
3691 rebuild_jump_labels (get_insns ());
3692 if (peep2_do_cleanup_cfg)
3693 cleanup_cfg (CLEANUP_CFG_CHANGED);
3696 /* Common predicates for use with define_bypass. */
3698 /* Helper function for store_data_bypass_p, handle just a single SET
3699 IN_SET. */
3701 static bool
3702 store_data_bypass_p_1 (rtx_insn *out_insn, rtx in_set)
3704 if (!MEM_P (SET_DEST (in_set)))
3705 return false;
3707 rtx out_set = single_set (out_insn);
3708 if (out_set)
3709 return !reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_set));
3711 rtx out_pat = PATTERN (out_insn);
3712 if (GET_CODE (out_pat) != PARALLEL)
3713 return false;
3715 for (int i = 0; i < XVECLEN (out_pat, 0); i++)
3717 rtx out_exp = XVECEXP (out_pat, 0, i);
3719 if (GET_CODE (out_exp) == CLOBBER || GET_CODE (out_exp) == USE
3720 || GET_CODE (out_exp) == CLOBBER_HIGH)
3721 continue;
3723 gcc_assert (GET_CODE (out_exp) == SET);
3725 if (reg_mentioned_p (SET_DEST (out_exp), SET_DEST (in_set)))
3726 return false;
3729 return true;
3732 /* True if the dependency between OUT_INSN and IN_INSN is on the store
3733 data not the address operand(s) of the store. IN_INSN and OUT_INSN
3734 must be either a single_set or a PARALLEL with SETs inside. */
3737 store_data_bypass_p (rtx_insn *out_insn, rtx_insn *in_insn)
3739 rtx in_set = single_set (in_insn);
3740 if (in_set)
3741 return store_data_bypass_p_1 (out_insn, in_set);
3743 rtx in_pat = PATTERN (in_insn);
3744 if (GET_CODE (in_pat) != PARALLEL)
3745 return false;
3747 for (int i = 0; i < XVECLEN (in_pat, 0); i++)
3749 rtx in_exp = XVECEXP (in_pat, 0, i);
3751 if (GET_CODE (in_exp) == CLOBBER || GET_CODE (in_exp) == USE
3752 || GET_CODE (in_exp) == CLOBBER_HIGH)
3753 continue;
3755 gcc_assert (GET_CODE (in_exp) == SET);
3757 if (!store_data_bypass_p_1 (out_insn, in_exp))
3758 return false;
3761 return true;
3764 /* True if the dependency between OUT_INSN and IN_INSN is in the IF_THEN_ELSE
3765 condition, and not the THEN or ELSE branch. OUT_INSN may be either a single
3766 or multiple set; IN_INSN should be single_set for truth, but for convenience
3767 of insn categorization may be any JUMP or CALL insn. */
3770 if_test_bypass_p (rtx_insn *out_insn, rtx_insn *in_insn)
3772 rtx out_set, in_set;
3774 in_set = single_set (in_insn);
3775 if (! in_set)
3777 gcc_assert (JUMP_P (in_insn) || CALL_P (in_insn));
3778 return false;
3781 if (GET_CODE (SET_SRC (in_set)) != IF_THEN_ELSE)
3782 return false;
3783 in_set = SET_SRC (in_set);
3785 out_set = single_set (out_insn);
3786 if (out_set)
3788 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3789 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3790 return false;
3792 else
3794 rtx out_pat;
3795 int i;
3797 out_pat = PATTERN (out_insn);
3798 gcc_assert (GET_CODE (out_pat) == PARALLEL);
3800 for (i = 0; i < XVECLEN (out_pat, 0); i++)
3802 rtx exp = XVECEXP (out_pat, 0, i);
3804 if (GET_CODE (exp) == CLOBBER || GET_CODE (exp) == CLOBBER_HIGH)
3805 continue;
3807 gcc_assert (GET_CODE (exp) == SET);
3809 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3810 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3811 return false;
3815 return true;
3818 static unsigned int
3819 rest_of_handle_peephole2 (void)
3821 if (HAVE_peephole2)
3822 peephole2_optimize ();
3824 return 0;
3827 namespace {
3829 const pass_data pass_data_peephole2 =
3831 RTL_PASS, /* type */
3832 "peephole2", /* name */
3833 OPTGROUP_NONE, /* optinfo_flags */
3834 TV_PEEPHOLE2, /* tv_id */
3835 0, /* properties_required */
3836 0, /* properties_provided */
3837 0, /* properties_destroyed */
3838 0, /* todo_flags_start */
3839 TODO_df_finish, /* todo_flags_finish */
3842 class pass_peephole2 : public rtl_opt_pass
3844 public:
3845 pass_peephole2 (gcc::context *ctxt)
3846 : rtl_opt_pass (pass_data_peephole2, ctxt)
3849 /* opt_pass methods: */
3850 /* The epiphany backend creates a second instance of this pass, so we need
3851 a clone method. */
3852 opt_pass * clone () { return new pass_peephole2 (m_ctxt); }
3853 virtual bool gate (function *) { return (optimize > 0 && flag_peephole2); }
3854 virtual unsigned int execute (function *)
3856 return rest_of_handle_peephole2 ();
3859 }; // class pass_peephole2
3861 } // anon namespace
3863 rtl_opt_pass *
3864 make_pass_peephole2 (gcc::context *ctxt)
3866 return new pass_peephole2 (ctxt);
3869 namespace {
3871 const pass_data pass_data_split_all_insns =
3873 RTL_PASS, /* type */
3874 "split1", /* name */
3875 OPTGROUP_NONE, /* optinfo_flags */
3876 TV_NONE, /* tv_id */
3877 0, /* properties_required */
3878 PROP_rtl_split_insns, /* properties_provided */
3879 0, /* properties_destroyed */
3880 0, /* todo_flags_start */
3881 0, /* todo_flags_finish */
3884 class pass_split_all_insns : public rtl_opt_pass
3886 public:
3887 pass_split_all_insns (gcc::context *ctxt)
3888 : rtl_opt_pass (pass_data_split_all_insns, ctxt)
3891 /* opt_pass methods: */
3892 /* The epiphany backend creates a second instance of this pass, so
3893 we need a clone method. */
3894 opt_pass * clone () { return new pass_split_all_insns (m_ctxt); }
3895 virtual unsigned int execute (function *)
3897 split_all_insns ();
3898 return 0;
3901 }; // class pass_split_all_insns
3903 } // anon namespace
3905 rtl_opt_pass *
3906 make_pass_split_all_insns (gcc::context *ctxt)
3908 return new pass_split_all_insns (ctxt);
3911 namespace {
3913 const pass_data pass_data_split_after_reload =
3915 RTL_PASS, /* type */
3916 "split2", /* name */
3917 OPTGROUP_NONE, /* optinfo_flags */
3918 TV_NONE, /* tv_id */
3919 0, /* properties_required */
3920 0, /* properties_provided */
3921 0, /* properties_destroyed */
3922 0, /* todo_flags_start */
3923 0, /* todo_flags_finish */
3926 class pass_split_after_reload : public rtl_opt_pass
3928 public:
3929 pass_split_after_reload (gcc::context *ctxt)
3930 : rtl_opt_pass (pass_data_split_after_reload, ctxt)
3933 /* opt_pass methods: */
3934 virtual bool gate (function *)
3936 /* If optimizing, then go ahead and split insns now. */
3937 if (optimize > 0)
3938 return true;
3940 #ifdef STACK_REGS
3941 return true;
3942 #else
3943 return false;
3944 #endif
3947 virtual unsigned int execute (function *)
3949 split_all_insns ();
3950 return 0;
3953 }; // class pass_split_after_reload
3955 } // anon namespace
3957 rtl_opt_pass *
3958 make_pass_split_after_reload (gcc::context *ctxt)
3960 return new pass_split_after_reload (ctxt);
3963 namespace {
3965 const pass_data pass_data_split_before_regstack =
3967 RTL_PASS, /* type */
3968 "split3", /* name */
3969 OPTGROUP_NONE, /* optinfo_flags */
3970 TV_NONE, /* tv_id */
3971 0, /* properties_required */
3972 0, /* properties_provided */
3973 0, /* properties_destroyed */
3974 0, /* todo_flags_start */
3975 0, /* todo_flags_finish */
3978 class pass_split_before_regstack : public rtl_opt_pass
3980 public:
3981 pass_split_before_regstack (gcc::context *ctxt)
3982 : rtl_opt_pass (pass_data_split_before_regstack, ctxt)
3985 /* opt_pass methods: */
3986 virtual bool gate (function *);
3987 virtual unsigned int execute (function *)
3989 split_all_insns ();
3990 return 0;
3993 }; // class pass_split_before_regstack
3995 bool
3996 pass_split_before_regstack::gate (function *)
3998 #if HAVE_ATTR_length && defined (STACK_REGS)
3999 /* If flow2 creates new instructions which need splitting
4000 and scheduling after reload is not done, they might not be
4001 split until final which doesn't allow splitting
4002 if HAVE_ATTR_length. */
4003 # ifdef INSN_SCHEDULING
4004 return (optimize && !flag_schedule_insns_after_reload);
4005 # else
4006 return (optimize);
4007 # endif
4008 #else
4009 return 0;
4010 #endif
4013 } // anon namespace
4015 rtl_opt_pass *
4016 make_pass_split_before_regstack (gcc::context *ctxt)
4018 return new pass_split_before_regstack (ctxt);
4021 static unsigned int
4022 rest_of_handle_split_before_sched2 (void)
4024 #ifdef INSN_SCHEDULING
4025 split_all_insns ();
4026 #endif
4027 return 0;
4030 namespace {
4032 const pass_data pass_data_split_before_sched2 =
4034 RTL_PASS, /* type */
4035 "split4", /* name */
4036 OPTGROUP_NONE, /* optinfo_flags */
4037 TV_NONE, /* tv_id */
4038 0, /* properties_required */
4039 0, /* properties_provided */
4040 0, /* properties_destroyed */
4041 0, /* todo_flags_start */
4042 0, /* todo_flags_finish */
4045 class pass_split_before_sched2 : public rtl_opt_pass
4047 public:
4048 pass_split_before_sched2 (gcc::context *ctxt)
4049 : rtl_opt_pass (pass_data_split_before_sched2, ctxt)
4052 /* opt_pass methods: */
4053 virtual bool gate (function *)
4055 #ifdef INSN_SCHEDULING
4056 return optimize > 0 && flag_schedule_insns_after_reload;
4057 #else
4058 return false;
4059 #endif
4062 virtual unsigned int execute (function *)
4064 return rest_of_handle_split_before_sched2 ();
4067 }; // class pass_split_before_sched2
4069 } // anon namespace
4071 rtl_opt_pass *
4072 make_pass_split_before_sched2 (gcc::context *ctxt)
4074 return new pass_split_before_sched2 (ctxt);
4077 namespace {
4079 const pass_data pass_data_split_for_shorten_branches =
4081 RTL_PASS, /* type */
4082 "split5", /* name */
4083 OPTGROUP_NONE, /* optinfo_flags */
4084 TV_NONE, /* tv_id */
4085 0, /* properties_required */
4086 0, /* properties_provided */
4087 0, /* properties_destroyed */
4088 0, /* todo_flags_start */
4089 0, /* todo_flags_finish */
4092 class pass_split_for_shorten_branches : public rtl_opt_pass
4094 public:
4095 pass_split_for_shorten_branches (gcc::context *ctxt)
4096 : rtl_opt_pass (pass_data_split_for_shorten_branches, ctxt)
4099 /* opt_pass methods: */
4100 virtual bool gate (function *)
4102 /* The placement of the splitting that we do for shorten_branches
4103 depends on whether regstack is used by the target or not. */
4104 #if HAVE_ATTR_length && !defined (STACK_REGS)
4105 return true;
4106 #else
4107 return false;
4108 #endif
4111 virtual unsigned int execute (function *)
4113 return split_all_insns_noflow ();
4116 }; // class pass_split_for_shorten_branches
4118 } // anon namespace
4120 rtl_opt_pass *
4121 make_pass_split_for_shorten_branches (gcc::context *ctxt)
4123 return new pass_split_for_shorten_branches (ctxt);
4126 /* (Re)initialize the target information after a change in target. */
4128 void
4129 recog_init ()
4131 /* The information is zero-initialized, so we don't need to do anything
4132 first time round. */
4133 if (!this_target_recog->x_initialized)
4135 this_target_recog->x_initialized = true;
4136 return;
4138 memset (this_target_recog->x_bool_attr_masks, 0,
4139 sizeof (this_target_recog->x_bool_attr_masks));
4140 for (unsigned int i = 0; i < NUM_INSN_CODES; ++i)
4141 if (this_target_recog->x_op_alt[i])
4143 free (this_target_recog->x_op_alt[i]);
4144 this_target_recog->x_op_alt[i] = 0;