PR optimization/2903
[official-gcc.git] / gcc / reload1.c
blob2704dadab4d92a5b4c10dd4ba290b982b1cc4210
1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 #include "config.h"
23 #include "system.h"
25 #include "machmode.h"
26 #include "hard-reg-set.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "obstack.h"
30 #include "insn-config.h"
31 #include "flags.h"
32 #include "function.h"
33 #include "expr.h"
34 #include "optabs.h"
35 #include "regs.h"
36 #include "basic-block.h"
37 #include "reload.h"
38 #include "recog.h"
39 #include "output.h"
40 #include "cselib.h"
41 #include "real.h"
42 #include "toplev.h"
43 #include "except.h"
44 #include "tree.h"
46 /* This file contains the reload pass of the compiler, which is
47 run after register allocation has been done. It checks that
48 each insn is valid (operands required to be in registers really
49 are in registers of the proper class) and fixes up invalid ones
50 by copying values temporarily into registers for the insns
51 that need them.
53 The results of register allocation are described by the vector
54 reg_renumber; the insns still contain pseudo regs, but reg_renumber
55 can be used to find which hard reg, if any, a pseudo reg is in.
57 The technique we always use is to free up a few hard regs that are
58 called ``reload regs'', and for each place where a pseudo reg
59 must be in a hard reg, copy it temporarily into one of the reload regs.
61 Reload regs are allocated locally for every instruction that needs
62 reloads. When there are pseudos which are allocated to a register that
63 has been chosen as a reload reg, such pseudos must be ``spilled''.
64 This means that they go to other hard regs, or to stack slots if no other
65 available hard regs can be found. Spilling can invalidate more
66 insns, requiring additional need for reloads, so we must keep checking
67 until the process stabilizes.
69 For machines with different classes of registers, we must keep track
70 of the register class needed for each reload, and make sure that
71 we allocate enough reload registers of each class.
73 The file reload.c contains the code that checks one insn for
74 validity and reports the reloads that it needs. This file
75 is in charge of scanning the entire rtl code, accumulating the
76 reload needs, spilling, assigning reload registers to use for
77 fixing up each insn, and generating the new insns to copy values
78 into the reload registers. */
80 #ifndef REGISTER_MOVE_COST
81 #define REGISTER_MOVE_COST(m, x, y) 2
82 #endif
84 #ifndef LOCAL_REGNO
85 #define LOCAL_REGNO(REGNO) 0
86 #endif
88 /* During reload_as_needed, element N contains a REG rtx for the hard reg
89 into which reg N has been reloaded (perhaps for a previous insn). */
90 static rtx *reg_last_reload_reg;
92 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
93 for an output reload that stores into reg N. */
94 static char *reg_has_output_reload;
96 /* Indicates which hard regs are reload-registers for an output reload
97 in the current insn. */
98 static HARD_REG_SET reg_is_output_reload;
100 /* Element N is the constant value to which pseudo reg N is equivalent,
101 or zero if pseudo reg N is not equivalent to a constant.
102 find_reloads looks at this in order to replace pseudo reg N
103 with the constant it stands for. */
104 rtx *reg_equiv_constant;
106 /* Element N is a memory location to which pseudo reg N is equivalent,
107 prior to any register elimination (such as frame pointer to stack
108 pointer). Depending on whether or not it is a valid address, this value
109 is transferred to either reg_equiv_address or reg_equiv_mem. */
110 rtx *reg_equiv_memory_loc;
112 /* Element N is the address of stack slot to which pseudo reg N is equivalent.
113 This is used when the address is not valid as a memory address
114 (because its displacement is too big for the machine.) */
115 rtx *reg_equiv_address;
117 /* Element N is the memory slot to which pseudo reg N is equivalent,
118 or zero if pseudo reg N is not equivalent to a memory slot. */
119 rtx *reg_equiv_mem;
121 /* Widest width in which each pseudo reg is referred to (via subreg). */
122 static unsigned int *reg_max_ref_width;
124 /* Element N is the list of insns that initialized reg N from its equivalent
125 constant or memory slot. */
126 static rtx *reg_equiv_init;
128 /* Vector to remember old contents of reg_renumber before spilling. */
129 static short *reg_old_renumber;
131 /* During reload_as_needed, element N contains the last pseudo regno reloaded
132 into hard register N. If that pseudo reg occupied more than one register,
133 reg_reloaded_contents points to that pseudo for each spill register in
134 use; all of these must remain set for an inheritance to occur. */
135 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
137 /* During reload_as_needed, element N contains the insn for which
138 hard register N was last used. Its contents are significant only
139 when reg_reloaded_valid is set for this register. */
140 static rtx reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
142 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid. */
143 static HARD_REG_SET reg_reloaded_valid;
144 /* Indicate if the register was dead at the end of the reload.
145 This is only valid if reg_reloaded_contents is set and valid. */
146 static HARD_REG_SET reg_reloaded_dead;
148 /* Number of spill-regs so far; number of valid elements of spill_regs. */
149 static int n_spills;
151 /* In parallel with spill_regs, contains REG rtx's for those regs.
152 Holds the last rtx used for any given reg, or 0 if it has never
153 been used for spilling yet. This rtx is reused, provided it has
154 the proper mode. */
155 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
157 /* In parallel with spill_regs, contains nonzero for a spill reg
158 that was stored after the last time it was used.
159 The precise value is the insn generated to do the store. */
160 static rtx spill_reg_store[FIRST_PSEUDO_REGISTER];
162 /* This is the register that was stored with spill_reg_store. This is a
163 copy of reload_out / reload_out_reg when the value was stored; if
164 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
165 static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
167 /* This table is the inverse mapping of spill_regs:
168 indexed by hard reg number,
169 it contains the position of that reg in spill_regs,
170 or -1 for something that is not in spill_regs.
172 ?!? This is no longer accurate. */
173 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
175 /* This reg set indicates registers that can't be used as spill registers for
176 the currently processed insn. These are the hard registers which are live
177 during the insn, but not allocated to pseudos, as well as fixed
178 registers. */
179 static HARD_REG_SET bad_spill_regs;
181 /* These are the hard registers that can't be used as spill register for any
182 insn. This includes registers used for user variables and registers that
183 we can't eliminate. A register that appears in this set also can't be used
184 to retry register allocation. */
185 static HARD_REG_SET bad_spill_regs_global;
187 /* Describes order of use of registers for reloading
188 of spilled pseudo-registers. `n_spills' is the number of
189 elements that are actually valid; new ones are added at the end.
191 Both spill_regs and spill_reg_order are used on two occasions:
192 once during find_reload_regs, where they keep track of the spill registers
193 for a single insn, but also during reload_as_needed where they show all
194 the registers ever used by reload. For the latter case, the information
195 is calculated during finish_spills. */
196 static short spill_regs[FIRST_PSEUDO_REGISTER];
198 /* This vector of reg sets indicates, for each pseudo, which hard registers
199 may not be used for retrying global allocation because the register was
200 formerly spilled from one of them. If we allowed reallocating a pseudo to
201 a register that it was already allocated to, reload might not
202 terminate. */
203 static HARD_REG_SET *pseudo_previous_regs;
205 /* This vector of reg sets indicates, for each pseudo, which hard
206 registers may not be used for retrying global allocation because they
207 are used as spill registers during one of the insns in which the
208 pseudo is live. */
209 static HARD_REG_SET *pseudo_forbidden_regs;
211 /* All hard regs that have been used as spill registers for any insn are
212 marked in this set. */
213 static HARD_REG_SET used_spill_regs;
215 /* Index of last register assigned as a spill register. We allocate in
216 a round-robin fashion. */
217 static int last_spill_reg;
219 /* Nonzero if indirect addressing is supported on the machine; this means
220 that spilling (REG n) does not require reloading it into a register in
221 order to do (MEM (REG n)) or (MEM (PLUS (REG n) (CONST_INT c))). The
222 value indicates the level of indirect addressing supported, e.g., two
223 means that (MEM (MEM (REG n))) is also valid if (REG n) does not get
224 a hard register. */
225 static char spill_indirect_levels;
227 /* Nonzero if indirect addressing is supported when the innermost MEM is
228 of the form (MEM (SYMBOL_REF sym)). It is assumed that the level to
229 which these are valid is the same as spill_indirect_levels, above. */
230 char indirect_symref_ok;
232 /* Nonzero if an address (plus (reg frame_pointer) (reg ...)) is valid. */
233 char double_reg_address_ok;
235 /* Record the stack slot for each spilled hard register. */
236 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
238 /* Width allocated so far for that stack slot. */
239 static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
241 /* Record which pseudos needed to be spilled. */
242 static regset_head spilled_pseudos;
244 /* Used for communication between order_regs_for_reload and count_pseudo.
245 Used to avoid counting one pseudo twice. */
246 static regset_head pseudos_counted;
248 /* First uid used by insns created by reload in this function.
249 Used in find_equiv_reg. */
250 int reload_first_uid;
252 /* Flag set by local-alloc or global-alloc if anything is live in
253 a call-clobbered reg across calls. */
254 int caller_save_needed;
256 /* Set to 1 while reload_as_needed is operating.
257 Required by some machines to handle any generated moves differently. */
258 int reload_in_progress = 0;
260 /* These arrays record the insn_code of insns that may be needed to
261 perform input and output reloads of special objects. They provide a
262 place to pass a scratch register. */
263 enum insn_code reload_in_optab[NUM_MACHINE_MODES];
264 enum insn_code reload_out_optab[NUM_MACHINE_MODES];
266 /* This obstack is used for allocation of rtl during register elimination.
267 The allocated storage can be freed once find_reloads has processed the
268 insn. */
269 struct obstack reload_obstack;
271 /* Points to the beginning of the reload_obstack. All insn_chain structures
272 are allocated first. */
273 char *reload_startobj;
275 /* The point after all insn_chain structures. Used to quickly deallocate
276 memory allocated in copy_reloads during calculate_needs_all_insns. */
277 char *reload_firstobj;
279 /* This points before all local rtl generated by register elimination.
280 Used to quickly free all memory after processing one insn. */
281 static char *reload_insn_firstobj;
283 /* List of insn_chain instructions, one for every insn that reload needs to
284 examine. */
285 struct insn_chain *reload_insn_chain;
287 #ifdef TREE_CODE
288 extern tree current_function_decl;
289 #else
290 extern union tree_node *current_function_decl;
291 #endif
293 /* List of all insns needing reloads. */
294 static struct insn_chain *insns_need_reload;
296 /* This structure is used to record information about register eliminations.
297 Each array entry describes one possible way of eliminating a register
298 in favor of another. If there is more than one way of eliminating a
299 particular register, the most preferred should be specified first. */
301 struct elim_table
303 int from; /* Register number to be eliminated. */
304 int to; /* Register number used as replacement. */
305 int initial_offset; /* Initial difference between values. */
306 int can_eliminate; /* Non-zero if this elimination can be done. */
307 int can_eliminate_previous; /* Value of CAN_ELIMINATE in previous scan over
308 insns made by reload. */
309 int offset; /* Current offset between the two regs. */
310 int previous_offset; /* Offset at end of previous insn. */
311 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
312 rtx from_rtx; /* REG rtx for the register to be eliminated.
313 We cannot simply compare the number since
314 we might then spuriously replace a hard
315 register corresponding to a pseudo
316 assigned to the reg to be eliminated. */
317 rtx to_rtx; /* REG rtx for the replacement. */
320 static struct elim_table *reg_eliminate = 0;
322 /* This is an intermediate structure to initialize the table. It has
323 exactly the members provided by ELIMINABLE_REGS. */
324 static const struct elim_table_1
326 const int from;
327 const int to;
328 } reg_eliminate_1[] =
330 /* If a set of eliminable registers was specified, define the table from it.
331 Otherwise, default to the normal case of the frame pointer being
332 replaced by the stack pointer. */
334 #ifdef ELIMINABLE_REGS
335 ELIMINABLE_REGS;
336 #else
337 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
338 #endif
340 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
342 /* Record the number of pending eliminations that have an offset not equal
343 to their initial offset. If nonzero, we use a new copy of each
344 replacement result in any insns encountered. */
345 int num_not_at_initial_offset;
347 /* Count the number of registers that we may be able to eliminate. */
348 static int num_eliminable;
349 /* And the number of registers that are equivalent to a constant that
350 can be eliminated to frame_pointer / arg_pointer + constant. */
351 static int num_eliminable_invariants;
353 /* For each label, we record the offset of each elimination. If we reach
354 a label by more than one path and an offset differs, we cannot do the
355 elimination. This information is indexed by the number of the label.
356 The first table is an array of flags that records whether we have yet
357 encountered a label and the second table is an array of arrays, one
358 entry in the latter array for each elimination. */
360 static char *offsets_known_at;
361 static int (*offsets_at)[NUM_ELIMINABLE_REGS];
363 /* Number of labels in the current function. */
365 static int num_labels;
367 static void replace_pseudos_in_call_usage PARAMS ((rtx *,
368 enum machine_mode,
369 rtx));
370 static void maybe_fix_stack_asms PARAMS ((void));
371 static void copy_reloads PARAMS ((struct insn_chain *));
372 static void calculate_needs_all_insns PARAMS ((int));
373 static int find_reg PARAMS ((struct insn_chain *, int));
374 static void find_reload_regs PARAMS ((struct insn_chain *));
375 static void select_reload_regs PARAMS ((void));
376 static void delete_caller_save_insns PARAMS ((void));
378 static void spill_failure PARAMS ((rtx, enum reg_class));
379 static void count_spilled_pseudo PARAMS ((int, int, int));
380 static void delete_dead_insn PARAMS ((rtx));
381 static void alter_reg PARAMS ((int, int));
382 static void set_label_offsets PARAMS ((rtx, rtx, int));
383 static void check_eliminable_occurrences PARAMS ((rtx));
384 static void elimination_effects PARAMS ((rtx, enum machine_mode));
385 static int eliminate_regs_in_insn PARAMS ((rtx, int));
386 static void update_eliminable_offsets PARAMS ((void));
387 static void mark_not_eliminable PARAMS ((rtx, rtx, void *));
388 static void set_initial_elim_offsets PARAMS ((void));
389 static void verify_initial_elim_offsets PARAMS ((void));
390 static void set_initial_label_offsets PARAMS ((void));
391 static void set_offsets_for_label PARAMS ((rtx));
392 static void init_elim_table PARAMS ((void));
393 static void update_eliminables PARAMS ((HARD_REG_SET *));
394 static void spill_hard_reg PARAMS ((unsigned int, int));
395 static int finish_spills PARAMS ((int));
396 static void ior_hard_reg_set PARAMS ((HARD_REG_SET *, HARD_REG_SET *));
397 static void scan_paradoxical_subregs PARAMS ((rtx));
398 static void count_pseudo PARAMS ((int));
399 static void order_regs_for_reload PARAMS ((struct insn_chain *));
400 static void reload_as_needed PARAMS ((int));
401 static void forget_old_reloads_1 PARAMS ((rtx, rtx, void *));
402 static int reload_reg_class_lower PARAMS ((const PTR, const PTR));
403 static void mark_reload_reg_in_use PARAMS ((unsigned int, int,
404 enum reload_type,
405 enum machine_mode));
406 static void clear_reload_reg_in_use PARAMS ((unsigned int, int,
407 enum reload_type,
408 enum machine_mode));
409 static int reload_reg_free_p PARAMS ((unsigned int, int,
410 enum reload_type));
411 static int reload_reg_free_for_value_p PARAMS ((int, int, int,
412 enum reload_type,
413 rtx, rtx, int, int));
414 static int free_for_value_p PARAMS ((int, enum machine_mode, int,
415 enum reload_type, rtx, rtx,
416 int, int));
417 static int reload_reg_reaches_end_p PARAMS ((unsigned int, int,
418 enum reload_type));
419 static int allocate_reload_reg PARAMS ((struct insn_chain *, int,
420 int));
421 static int conflicts_with_override PARAMS ((rtx));
422 static void failed_reload PARAMS ((rtx, int));
423 static int set_reload_reg PARAMS ((int, int));
424 static void choose_reload_regs_init PARAMS ((struct insn_chain *, rtx *));
425 static void choose_reload_regs PARAMS ((struct insn_chain *));
426 static void merge_assigned_reloads PARAMS ((rtx));
427 static void emit_input_reload_insns PARAMS ((struct insn_chain *,
428 struct reload *, rtx, int));
429 static void emit_output_reload_insns PARAMS ((struct insn_chain *,
430 struct reload *, int));
431 static void do_input_reload PARAMS ((struct insn_chain *,
432 struct reload *, int));
433 static void do_output_reload PARAMS ((struct insn_chain *,
434 struct reload *, int));
435 static void emit_reload_insns PARAMS ((struct insn_chain *));
436 static void delete_output_reload PARAMS ((rtx, int, int));
437 static void delete_address_reloads PARAMS ((rtx, rtx));
438 static void delete_address_reloads_1 PARAMS ((rtx, rtx, rtx));
439 static rtx inc_for_reload PARAMS ((rtx, rtx, rtx, int));
440 static void reload_cse_regs_1 PARAMS ((rtx));
441 static int reload_cse_noop_set_p PARAMS ((rtx));
442 static int reload_cse_simplify_set PARAMS ((rtx, rtx));
443 static int reload_cse_simplify_operands PARAMS ((rtx, rtx));
444 static void reload_combine PARAMS ((void));
445 static void reload_combine_note_use PARAMS ((rtx *, rtx));
446 static void reload_combine_note_store PARAMS ((rtx, rtx, void *));
447 static void reload_cse_move2add PARAMS ((rtx));
448 static void move2add_note_store PARAMS ((rtx, rtx, void *));
449 #ifdef AUTO_INC_DEC
450 static void add_auto_inc_notes PARAMS ((rtx, rtx));
451 #endif
452 static void copy_eh_notes PARAMS ((rtx, rtx));
453 static HOST_WIDE_INT sext_for_mode PARAMS ((enum machine_mode,
454 HOST_WIDE_INT));
455 static void failed_reload PARAMS ((rtx, int));
456 static int set_reload_reg PARAMS ((int, int));
457 static void reload_cse_simplify PARAMS ((rtx, rtx));
458 void fixup_abnormal_edges PARAMS ((void));
459 extern void dump_needs PARAMS ((struct insn_chain *));
461 /* Initialize the reload pass once per compilation. */
463 void
464 init_reload ()
466 int i;
468 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
469 Set spill_indirect_levels to the number of levels such addressing is
470 permitted, zero if it is not permitted at all. */
472 rtx tem
473 = gen_rtx_MEM (Pmode,
474 gen_rtx_PLUS (Pmode,
475 gen_rtx_REG (Pmode,
476 LAST_VIRTUAL_REGISTER + 1),
477 GEN_INT (4)));
478 spill_indirect_levels = 0;
480 while (memory_address_p (QImode, tem))
482 spill_indirect_levels++;
483 tem = gen_rtx_MEM (Pmode, tem);
486 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
488 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
489 indirect_symref_ok = memory_address_p (QImode, tem);
491 /* See if reg+reg is a valid (and offsettable) address. */
493 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
495 tem = gen_rtx_PLUS (Pmode,
496 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
497 gen_rtx_REG (Pmode, i));
499 /* This way, we make sure that reg+reg is an offsettable address. */
500 tem = plus_constant (tem, 4);
502 if (memory_address_p (QImode, tem))
504 double_reg_address_ok = 1;
505 break;
509 /* Initialize obstack for our rtl allocation. */
510 gcc_obstack_init (&reload_obstack);
511 reload_startobj = (char *) obstack_alloc (&reload_obstack, 0);
513 INIT_REG_SET (&spilled_pseudos);
514 INIT_REG_SET (&pseudos_counted);
517 /* List of insn chains that are currently unused. */
518 static struct insn_chain *unused_insn_chains = 0;
520 /* Allocate an empty insn_chain structure. */
521 struct insn_chain *
522 new_insn_chain ()
524 struct insn_chain *c;
526 if (unused_insn_chains == 0)
528 c = (struct insn_chain *)
529 obstack_alloc (&reload_obstack, sizeof (struct insn_chain));
530 INIT_REG_SET (&c->live_throughout);
531 INIT_REG_SET (&c->dead_or_set);
533 else
535 c = unused_insn_chains;
536 unused_insn_chains = c->next;
538 c->is_caller_save_insn = 0;
539 c->need_operand_change = 0;
540 c->need_reload = 0;
541 c->need_elim = 0;
542 return c;
545 /* Small utility function to set all regs in hard reg set TO which are
546 allocated to pseudos in regset FROM. */
548 void
549 compute_use_by_pseudos (to, from)
550 HARD_REG_SET *to;
551 regset from;
553 unsigned int regno;
555 EXECUTE_IF_SET_IN_REG_SET
556 (from, FIRST_PSEUDO_REGISTER, regno,
558 int r = reg_renumber[regno];
559 int nregs;
561 if (r < 0)
563 /* reload_combine uses the information from
564 BASIC_BLOCK->global_live_at_start, which might still
565 contain registers that have not actually been allocated
566 since they have an equivalence. */
567 if (! reload_completed)
568 abort ();
570 else
572 nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (regno));
573 while (nregs-- > 0)
574 SET_HARD_REG_BIT (*to, r + nregs);
579 /* Replace all pseudos found in LOC with their corresponding
580 equivalences. */
582 static void
583 replace_pseudos_in_call_usage (loc, mem_mode, usage)
584 rtx *loc;
585 enum machine_mode mem_mode;
586 rtx usage;
588 rtx x = *loc;
589 enum rtx_code code;
590 const char *fmt;
591 int i, j;
593 if (! x)
594 return;
596 code = GET_CODE (x);
597 if (code == REG)
599 unsigned int regno = REGNO (x);
601 if (regno < FIRST_PSEUDO_REGISTER)
602 return;
604 x = eliminate_regs (x, mem_mode, usage);
605 if (x != *loc)
607 *loc = x;
608 replace_pseudos_in_call_usage (loc, mem_mode, usage);
609 return;
612 if (reg_equiv_constant[regno])
613 *loc = reg_equiv_constant[regno];
614 else if (reg_equiv_mem[regno])
615 *loc = reg_equiv_mem[regno];
616 else if (reg_equiv_address[regno])
617 *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address[regno]);
618 else if (GET_CODE (regno_reg_rtx[regno]) != REG
619 || REGNO (regno_reg_rtx[regno]) != regno)
620 *loc = regno_reg_rtx[regno];
621 else
622 abort ();
624 return;
626 else if (code == MEM)
628 replace_pseudos_in_call_usage (& XEXP (x, 0), GET_MODE (x), usage);
629 return;
632 /* Process each of our operands recursively. */
633 fmt = GET_RTX_FORMAT (code);
634 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
635 if (*fmt == 'e')
636 replace_pseudos_in_call_usage (&XEXP (x, i), mem_mode, usage);
637 else if (*fmt == 'E')
638 for (j = 0; j < XVECLEN (x, i); j++)
639 replace_pseudos_in_call_usage (& XVECEXP (x, i, j), mem_mode, usage);
643 /* Global variables used by reload and its subroutines. */
645 /* Set during calculate_needs if an insn needs register elimination. */
646 static int something_needs_elimination;
647 /* Set during calculate_needs if an insn needs an operand changed. */
648 int something_needs_operands_changed;
650 /* Nonzero means we couldn't get enough spill regs. */
651 static int failure;
653 /* Main entry point for the reload pass.
655 FIRST is the first insn of the function being compiled.
657 GLOBAL nonzero means we were called from global_alloc
658 and should attempt to reallocate any pseudoregs that we
659 displace from hard regs we will use for reloads.
660 If GLOBAL is zero, we do not have enough information to do that,
661 so any pseudo reg that is spilled must go to the stack.
663 Return value is nonzero if reload failed
664 and we must not do any more for this function. */
667 reload (first, global)
668 rtx first;
669 int global;
671 int i;
672 rtx insn;
673 struct elim_table *ep;
674 basic_block bb;
676 /* The two pointers used to track the true location of the memory used
677 for label offsets. */
678 char *real_known_ptr = NULL;
679 int (*real_at_ptr)[NUM_ELIMINABLE_REGS];
681 /* Make sure even insns with volatile mem refs are recognizable. */
682 init_recog ();
684 failure = 0;
686 reload_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
688 /* Make sure that the last insn in the chain
689 is not something that needs reloading. */
690 emit_note (NULL, NOTE_INSN_DELETED);
692 /* Enable find_equiv_reg to distinguish insns made by reload. */
693 reload_first_uid = get_max_uid ();
695 #ifdef SECONDARY_MEMORY_NEEDED
696 /* Initialize the secondary memory table. */
697 clear_secondary_mem ();
698 #endif
700 /* We don't have a stack slot for any spill reg yet. */
701 memset ((char *) spill_stack_slot, 0, sizeof spill_stack_slot);
702 memset ((char *) spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
704 /* Initialize the save area information for caller-save, in case some
705 are needed. */
706 init_save_areas ();
708 /* Compute which hard registers are now in use
709 as homes for pseudo registers.
710 This is done here rather than (eg) in global_alloc
711 because this point is reached even if not optimizing. */
712 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
713 mark_home_live (i);
715 /* A function that receives a nonlocal goto must save all call-saved
716 registers. */
717 if (current_function_has_nonlocal_label)
718 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
719 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
720 regs_ever_live[i] = 1;
722 /* Find all the pseudo registers that didn't get hard regs
723 but do have known equivalent constants or memory slots.
724 These include parameters (known equivalent to parameter slots)
725 and cse'd or loop-moved constant memory addresses.
727 Record constant equivalents in reg_equiv_constant
728 so they will be substituted by find_reloads.
729 Record memory equivalents in reg_mem_equiv so they can
730 be substituted eventually by altering the REG-rtx's. */
732 reg_equiv_constant = (rtx *) xcalloc (max_regno, sizeof (rtx));
733 reg_equiv_mem = (rtx *) xcalloc (max_regno, sizeof (rtx));
734 reg_equiv_init = (rtx *) xcalloc (max_regno, sizeof (rtx));
735 reg_equiv_address = (rtx *) xcalloc (max_regno, sizeof (rtx));
736 reg_max_ref_width = (unsigned int *) xcalloc (max_regno, sizeof (int));
737 reg_old_renumber = (short *) xcalloc (max_regno, sizeof (short));
738 memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
739 pseudo_forbidden_regs
740 = (HARD_REG_SET *) xmalloc (max_regno * sizeof (HARD_REG_SET));
741 pseudo_previous_regs
742 = (HARD_REG_SET *) xcalloc (max_regno, sizeof (HARD_REG_SET));
744 CLEAR_HARD_REG_SET (bad_spill_regs_global);
746 /* Look for REG_EQUIV notes; record what each pseudo is equivalent to.
747 Also find all paradoxical subregs and find largest such for each pseudo.
748 On machines with small register classes, record hard registers that
749 are used for user variables. These can never be used for spills.
750 Also look for a "constant" REG_SETJMP. This means that all
751 caller-saved registers must be marked live. */
753 num_eliminable_invariants = 0;
754 for (insn = first; insn; insn = NEXT_INSN (insn))
756 rtx set = single_set (insn);
758 /* We may introduce USEs that we want to remove at the end, so
759 we'll mark them with QImode. Make sure there are no
760 previously-marked insns left by say regmove. */
761 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
762 && GET_MODE (insn) != VOIDmode)
763 PUT_MODE (insn, VOIDmode);
765 if (GET_CODE (insn) == CALL_INSN
766 && find_reg_note (insn, REG_SETJMP, NULL))
767 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
768 if (! call_used_regs[i])
769 regs_ever_live[i] = 1;
771 if (set != 0 && GET_CODE (SET_DEST (set)) == REG)
773 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
774 if (note
775 #ifdef LEGITIMATE_PIC_OPERAND_P
776 && (! function_invariant_p (XEXP (note, 0))
777 || ! flag_pic
778 /* A function invariant is often CONSTANT_P but may
779 include a register. We promise to only pass
780 CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P. */
781 || (CONSTANT_P (XEXP (note, 0))
782 && LEGITIMATE_PIC_OPERAND_P (XEXP (note, 0))))
783 #endif
786 rtx x = XEXP (note, 0);
787 i = REGNO (SET_DEST (set));
788 if (i > LAST_VIRTUAL_REGISTER)
790 /* It can happen that a REG_EQUIV note contains a MEM
791 that is not a legitimate memory operand. As later
792 stages of reload assume that all addresses found
793 in the reg_equiv_* arrays were originally legitimate,
794 we ignore such REG_EQUIV notes. */
795 if (memory_operand (x, VOIDmode))
797 /* Always unshare the equivalence, so we can
798 substitute into this insn without touching the
799 equivalence. */
800 reg_equiv_memory_loc[i] = copy_rtx (x);
802 else if (function_invariant_p (x))
804 if (GET_CODE (x) == PLUS)
806 /* This is PLUS of frame pointer and a constant,
807 and might be shared. Unshare it. */
808 reg_equiv_constant[i] = copy_rtx (x);
809 num_eliminable_invariants++;
811 else if (x == frame_pointer_rtx
812 || x == arg_pointer_rtx)
814 reg_equiv_constant[i] = x;
815 num_eliminable_invariants++;
817 else if (LEGITIMATE_CONSTANT_P (x))
818 reg_equiv_constant[i] = x;
819 else
820 reg_equiv_memory_loc[i]
821 = force_const_mem (GET_MODE (SET_DEST (set)), x);
823 else
824 continue;
826 /* If this register is being made equivalent to a MEM
827 and the MEM is not SET_SRC, the equivalencing insn
828 is one with the MEM as a SET_DEST and it occurs later.
829 So don't mark this insn now. */
830 if (GET_CODE (x) != MEM
831 || rtx_equal_p (SET_SRC (set), x))
832 reg_equiv_init[i]
833 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init[i]);
838 /* If this insn is setting a MEM from a register equivalent to it,
839 this is the equivalencing insn. */
840 else if (set && GET_CODE (SET_DEST (set)) == MEM
841 && GET_CODE (SET_SRC (set)) == REG
842 && reg_equiv_memory_loc[REGNO (SET_SRC (set))]
843 && rtx_equal_p (SET_DEST (set),
844 reg_equiv_memory_loc[REGNO (SET_SRC (set))]))
845 reg_equiv_init[REGNO (SET_SRC (set))]
846 = gen_rtx_INSN_LIST (VOIDmode, insn,
847 reg_equiv_init[REGNO (SET_SRC (set))]);
849 if (INSN_P (insn))
850 scan_paradoxical_subregs (PATTERN (insn));
853 init_elim_table ();
855 num_labels = max_label_num () - get_first_label_num ();
857 /* Allocate the tables used to store offset information at labels. */
858 /* We used to use alloca here, but the size of what it would try to
859 allocate would occasionally cause it to exceed the stack limit and
860 cause a core dump. */
861 real_known_ptr = xmalloc (num_labels);
862 real_at_ptr
863 = (int (*)[NUM_ELIMINABLE_REGS])
864 xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (int));
866 offsets_known_at = real_known_ptr - get_first_label_num ();
867 offsets_at
868 = (int (*)[NUM_ELIMINABLE_REGS]) (real_at_ptr - get_first_label_num ());
870 /* Alter each pseudo-reg rtx to contain its hard reg number.
871 Assign stack slots to the pseudos that lack hard regs or equivalents.
872 Do not touch virtual registers. */
874 for (i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
875 alter_reg (i, -1);
877 /* If we have some registers we think can be eliminated, scan all insns to
878 see if there is an insn that sets one of these registers to something
879 other than itself plus a constant. If so, the register cannot be
880 eliminated. Doing this scan here eliminates an extra pass through the
881 main reload loop in the most common case where register elimination
882 cannot be done. */
883 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
884 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
885 || GET_CODE (insn) == CALL_INSN)
886 note_stores (PATTERN (insn), mark_not_eliminable, NULL);
888 maybe_fix_stack_asms ();
890 insns_need_reload = 0;
891 something_needs_elimination = 0;
893 /* Initialize to -1, which means take the first spill register. */
894 last_spill_reg = -1;
896 /* Spill any hard regs that we know we can't eliminate. */
897 CLEAR_HARD_REG_SET (used_spill_regs);
898 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
899 if (! ep->can_eliminate)
900 spill_hard_reg (ep->from, 1);
902 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
903 if (frame_pointer_needed)
904 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
905 #endif
906 finish_spills (global);
908 /* From now on, we may need to generate moves differently. We may also
909 allow modifications of insns which cause them to not be recognized.
910 Any such modifications will be cleaned up during reload itself. */
911 reload_in_progress = 1;
913 /* This loop scans the entire function each go-round
914 and repeats until one repetition spills no additional hard regs. */
915 for (;;)
917 int something_changed;
918 int did_spill;
920 HOST_WIDE_INT starting_frame_size;
922 /* Round size of stack frame to stack_alignment_needed. This must be done
923 here because the stack size may be a part of the offset computation
924 for register elimination, and there might have been new stack slots
925 created in the last iteration of this loop. */
926 if (cfun->stack_alignment_needed)
927 assign_stack_local (BLKmode, 0, cfun->stack_alignment_needed);
929 starting_frame_size = get_frame_size ();
931 set_initial_elim_offsets ();
932 set_initial_label_offsets ();
934 /* For each pseudo register that has an equivalent location defined,
935 try to eliminate any eliminable registers (such as the frame pointer)
936 assuming initial offsets for the replacement register, which
937 is the normal case.
939 If the resulting location is directly addressable, substitute
940 the MEM we just got directly for the old REG.
942 If it is not addressable but is a constant or the sum of a hard reg
943 and constant, it is probably not addressable because the constant is
944 out of range, in that case record the address; we will generate
945 hairy code to compute the address in a register each time it is
946 needed. Similarly if it is a hard register, but one that is not
947 valid as an address register.
949 If the location is not addressable, but does not have one of the
950 above forms, assign a stack slot. We have to do this to avoid the
951 potential of producing lots of reloads if, e.g., a location involves
952 a pseudo that didn't get a hard register and has an equivalent memory
953 location that also involves a pseudo that didn't get a hard register.
955 Perhaps at some point we will improve reload_when_needed handling
956 so this problem goes away. But that's very hairy. */
958 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
959 if (reg_renumber[i] < 0 && reg_equiv_memory_loc[i])
961 rtx x = eliminate_regs (reg_equiv_memory_loc[i], 0, NULL_RTX);
963 if (strict_memory_address_p (GET_MODE (regno_reg_rtx[i]),
964 XEXP (x, 0)))
965 reg_equiv_mem[i] = x, reg_equiv_address[i] = 0;
966 else if (CONSTANT_P (XEXP (x, 0))
967 || (GET_CODE (XEXP (x, 0)) == REG
968 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
969 || (GET_CODE (XEXP (x, 0)) == PLUS
970 && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
971 && (REGNO (XEXP (XEXP (x, 0), 0))
972 < FIRST_PSEUDO_REGISTER)
973 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
974 reg_equiv_address[i] = XEXP (x, 0), reg_equiv_mem[i] = 0;
975 else
977 /* Make a new stack slot. Then indicate that something
978 changed so we go back and recompute offsets for
979 eliminable registers because the allocation of memory
980 below might change some offset. reg_equiv_{mem,address}
981 will be set up for this pseudo on the next pass around
982 the loop. */
983 reg_equiv_memory_loc[i] = 0;
984 reg_equiv_init[i] = 0;
985 alter_reg (i, -1);
989 if (caller_save_needed)
990 setup_save_areas ();
992 /* If we allocated another stack slot, redo elimination bookkeeping. */
993 if (starting_frame_size != get_frame_size ())
994 continue;
996 if (caller_save_needed)
998 save_call_clobbered_regs ();
999 /* That might have allocated new insn_chain structures. */
1000 reload_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
1003 calculate_needs_all_insns (global);
1005 CLEAR_REG_SET (&spilled_pseudos);
1006 did_spill = 0;
1008 something_changed = 0;
1010 /* If we allocated any new memory locations, make another pass
1011 since it might have changed elimination offsets. */
1012 if (starting_frame_size != get_frame_size ())
1013 something_changed = 1;
1016 HARD_REG_SET to_spill;
1017 CLEAR_HARD_REG_SET (to_spill);
1018 update_eliminables (&to_spill);
1019 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1020 if (TEST_HARD_REG_BIT (to_spill, i))
1022 spill_hard_reg (i, 1);
1023 did_spill = 1;
1025 /* Regardless of the state of spills, if we previously had
1026 a register that we thought we could eliminate, but now can
1027 not eliminate, we must run another pass.
1029 Consider pseudos which have an entry in reg_equiv_* which
1030 reference an eliminable register. We must make another pass
1031 to update reg_equiv_* so that we do not substitute in the
1032 old value from when we thought the elimination could be
1033 performed. */
1034 something_changed = 1;
1038 select_reload_regs ();
1039 if (failure)
1040 goto failed;
1042 if (insns_need_reload != 0 || did_spill)
1043 something_changed |= finish_spills (global);
1045 if (! something_changed)
1046 break;
1048 if (caller_save_needed)
1049 delete_caller_save_insns ();
1051 obstack_free (&reload_obstack, reload_firstobj);
1054 /* If global-alloc was run, notify it of any register eliminations we have
1055 done. */
1056 if (global)
1057 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1058 if (ep->can_eliminate)
1059 mark_elimination (ep->from, ep->to);
1061 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
1062 If that insn didn't set the register (i.e., it copied the register to
1063 memory), just delete that insn instead of the equivalencing insn plus
1064 anything now dead. If we call delete_dead_insn on that insn, we may
1065 delete the insn that actually sets the register if the register dies
1066 there and that is incorrect. */
1068 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1070 if (reg_renumber[i] < 0 && reg_equiv_init[i] != 0)
1072 rtx list;
1073 for (list = reg_equiv_init[i]; list; list = XEXP (list, 1))
1075 rtx equiv_insn = XEXP (list, 0);
1077 /* If we already deleted the insn or if it may trap, we can't
1078 delete it. The latter case shouldn't happen, but can
1079 if an insn has a variable address, gets a REG_EH_REGION
1080 note added to it, and then gets converted into an load
1081 from a constant address. */
1082 if (GET_CODE (equiv_insn) == NOTE
1083 || can_throw_internal (equiv_insn))
1085 else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
1086 delete_dead_insn (equiv_insn);
1087 else
1089 PUT_CODE (equiv_insn, NOTE);
1090 NOTE_SOURCE_FILE (equiv_insn) = 0;
1091 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
1097 /* Use the reload registers where necessary
1098 by generating move instructions to move the must-be-register
1099 values into or out of the reload registers. */
1101 if (insns_need_reload != 0 || something_needs_elimination
1102 || something_needs_operands_changed)
1104 HOST_WIDE_INT old_frame_size = get_frame_size ();
1106 reload_as_needed (global);
1108 if (old_frame_size != get_frame_size ())
1109 abort ();
1111 if (num_eliminable)
1112 verify_initial_elim_offsets ();
1115 /* If we were able to eliminate the frame pointer, show that it is no
1116 longer live at the start of any basic block. If it ls live by
1117 virtue of being in a pseudo, that pseudo will be marked live
1118 and hence the frame pointer will be known to be live via that
1119 pseudo. */
1121 if (! frame_pointer_needed)
1122 FOR_EACH_BB (bb)
1123 CLEAR_REGNO_REG_SET (bb->global_live_at_start,
1124 HARD_FRAME_POINTER_REGNUM);
1126 /* Come here (with failure set nonzero) if we can't get enough spill regs
1127 and we decide not to abort about it. */
1128 failed:
1130 CLEAR_REG_SET (&spilled_pseudos);
1131 reload_in_progress = 0;
1133 /* Now eliminate all pseudo regs by modifying them into
1134 their equivalent memory references.
1135 The REG-rtx's for the pseudos are modified in place,
1136 so all insns that used to refer to them now refer to memory.
1138 For a reg that has a reg_equiv_address, all those insns
1139 were changed by reloading so that no insns refer to it any longer;
1140 but the DECL_RTL of a variable decl may refer to it,
1141 and if so this causes the debugging info to mention the variable. */
1143 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1145 rtx addr = 0;
1147 if (reg_equiv_mem[i])
1148 addr = XEXP (reg_equiv_mem[i], 0);
1150 if (reg_equiv_address[i])
1151 addr = reg_equiv_address[i];
1153 if (addr)
1155 if (reg_renumber[i] < 0)
1157 rtx reg = regno_reg_rtx[i];
1159 REG_USERVAR_P (reg) = 0;
1160 PUT_CODE (reg, MEM);
1161 XEXP (reg, 0) = addr;
1162 if (reg_equiv_memory_loc[i])
1163 MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc[i]);
1164 else
1166 RTX_UNCHANGING_P (reg) = MEM_IN_STRUCT_P (reg)
1167 = MEM_SCALAR_P (reg) = 0;
1168 MEM_ATTRS (reg) = 0;
1171 else if (reg_equiv_mem[i])
1172 XEXP (reg_equiv_mem[i], 0) = addr;
1176 /* We must set reload_completed now since the cleanup_subreg_operands call
1177 below will re-recognize each insn and reload may have generated insns
1178 which are only valid during and after reload. */
1179 reload_completed = 1;
1181 /* Make a pass over all the insns and delete all USEs which we inserted
1182 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1183 notes. Delete all CLOBBER insns, except those that refer to the return
1184 value and the special mem:BLK CLOBBERs added to prevent the scheduler
1185 from misarranging variable-array code, and simplify (subreg (reg))
1186 operands. Also remove all REG_RETVAL and REG_LIBCALL notes since they
1187 are no longer useful or accurate. Strip and regenerate REG_INC notes
1188 that may have been moved around. */
1190 for (insn = first; insn; insn = NEXT_INSN (insn))
1191 if (INSN_P (insn))
1193 rtx *pnote;
1195 if (GET_CODE (insn) == CALL_INSN)
1196 replace_pseudos_in_call_usage (& CALL_INSN_FUNCTION_USAGE (insn),
1197 VOIDmode,
1198 CALL_INSN_FUNCTION_USAGE (insn));
1200 if ((GET_CODE (PATTERN (insn)) == USE
1201 /* We mark with QImode USEs introduced by reload itself. */
1202 && (GET_MODE (insn) == QImode
1203 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
1204 || (GET_CODE (PATTERN (insn)) == CLOBBER
1205 && (GET_CODE (XEXP (PATTERN (insn), 0)) != MEM
1206 || GET_MODE (XEXP (PATTERN (insn), 0)) != BLKmode
1207 || (GET_CODE (XEXP (XEXP (PATTERN (insn), 0), 0)) != SCRATCH
1208 && XEXP (XEXP (PATTERN (insn), 0), 0)
1209 != stack_pointer_rtx))
1210 && (GET_CODE (XEXP (PATTERN (insn), 0)) != REG
1211 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1213 delete_insn (insn);
1214 continue;
1217 pnote = &REG_NOTES (insn);
1218 while (*pnote != 0)
1220 if (REG_NOTE_KIND (*pnote) == REG_DEAD
1221 || REG_NOTE_KIND (*pnote) == REG_UNUSED
1222 || REG_NOTE_KIND (*pnote) == REG_INC
1223 || REG_NOTE_KIND (*pnote) == REG_RETVAL
1224 || REG_NOTE_KIND (*pnote) == REG_LIBCALL)
1225 *pnote = XEXP (*pnote, 1);
1226 else
1227 pnote = &XEXP (*pnote, 1);
1230 #ifdef AUTO_INC_DEC
1231 add_auto_inc_notes (insn, PATTERN (insn));
1232 #endif
1234 /* And simplify (subreg (reg)) if it appears as an operand. */
1235 cleanup_subreg_operands (insn);
1238 /* If we are doing stack checking, give a warning if this function's
1239 frame size is larger than we expect. */
1240 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1242 HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
1243 static int verbose_warned = 0;
1245 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1246 if (regs_ever_live[i] && ! fixed_regs[i] && call_used_regs[i])
1247 size += UNITS_PER_WORD;
1249 if (size > STACK_CHECK_MAX_FRAME_SIZE)
1251 warning ("frame size too large for reliable stack checking");
1252 if (! verbose_warned)
1254 warning ("try reducing the number of local variables");
1255 verbose_warned = 1;
1260 /* Indicate that we no longer have known memory locations or constants. */
1261 if (reg_equiv_constant)
1262 free (reg_equiv_constant);
1263 reg_equiv_constant = 0;
1264 if (reg_equiv_memory_loc)
1265 free (reg_equiv_memory_loc);
1266 reg_equiv_memory_loc = 0;
1268 if (real_known_ptr)
1269 free (real_known_ptr);
1270 if (real_at_ptr)
1271 free (real_at_ptr);
1273 free (reg_equiv_mem);
1274 free (reg_equiv_init);
1275 free (reg_equiv_address);
1276 free (reg_max_ref_width);
1277 free (reg_old_renumber);
1278 free (pseudo_previous_regs);
1279 free (pseudo_forbidden_regs);
1281 CLEAR_HARD_REG_SET (used_spill_regs);
1282 for (i = 0; i < n_spills; i++)
1283 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1285 /* Free all the insn_chain structures at once. */
1286 obstack_free (&reload_obstack, reload_startobj);
1287 unused_insn_chains = 0;
1288 fixup_abnormal_edges ();
1290 /* Replacing pseudos with their memory equivalents might have
1291 created shared rtx. Subsequent passes would get confused
1292 by this, so unshare everything here. */
1293 unshare_all_rtl_again (first);
1295 return failure;
1298 /* Yet another special case. Unfortunately, reg-stack forces people to
1299 write incorrect clobbers in asm statements. These clobbers must not
1300 cause the register to appear in bad_spill_regs, otherwise we'll call
1301 fatal_insn later. We clear the corresponding regnos in the live
1302 register sets to avoid this.
1303 The whole thing is rather sick, I'm afraid. */
1305 static void
1306 maybe_fix_stack_asms ()
1308 #ifdef STACK_REGS
1309 const char *constraints[MAX_RECOG_OPERANDS];
1310 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
1311 struct insn_chain *chain;
1313 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1315 int i, noperands;
1316 HARD_REG_SET clobbered, allowed;
1317 rtx pat;
1319 if (! INSN_P (chain->insn)
1320 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1321 continue;
1322 pat = PATTERN (chain->insn);
1323 if (GET_CODE (pat) != PARALLEL)
1324 continue;
1326 CLEAR_HARD_REG_SET (clobbered);
1327 CLEAR_HARD_REG_SET (allowed);
1329 /* First, make a mask of all stack regs that are clobbered. */
1330 for (i = 0; i < XVECLEN (pat, 0); i++)
1332 rtx t = XVECEXP (pat, 0, i);
1333 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1334 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1337 /* Get the operand values and constraints out of the insn. */
1338 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1339 constraints, operand_mode);
1341 /* For every operand, see what registers are allowed. */
1342 for (i = 0; i < noperands; i++)
1344 const char *p = constraints[i];
1345 /* For every alternative, we compute the class of registers allowed
1346 for reloading in CLS, and merge its contents into the reg set
1347 ALLOWED. */
1348 int cls = (int) NO_REGS;
1350 for (;;)
1352 char c = *p++;
1354 if (c == '\0' || c == ',' || c == '#')
1356 /* End of one alternative - mark the regs in the current
1357 class, and reset the class. */
1358 IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1359 cls = NO_REGS;
1360 if (c == '#')
1361 do {
1362 c = *p++;
1363 } while (c != '\0' && c != ',');
1364 if (c == '\0')
1365 break;
1366 continue;
1369 switch (c)
1371 case '=': case '+': case '*': case '%': case '?': case '!':
1372 case '0': case '1': case '2': case '3': case '4': case 'm':
1373 case '<': case '>': case 'V': case 'o': case '&': case 'E':
1374 case 'F': case 's': case 'i': case 'n': case 'X': case 'I':
1375 case 'J': case 'K': case 'L': case 'M': case 'N': case 'O':
1376 case 'P':
1377 break;
1379 case 'p':
1380 cls = (int) reg_class_subunion[cls]
1381 [(int) MODE_BASE_REG_CLASS (VOIDmode)];
1382 break;
1384 case 'g':
1385 case 'r':
1386 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1387 break;
1389 default:
1390 if (EXTRA_ADDRESS_CONSTRAINT (c))
1391 cls = (int) reg_class_subunion[cls]
1392 [(int) MODE_BASE_REG_CLASS (VOIDmode)];
1393 else
1394 cls = (int) reg_class_subunion[cls]
1395 [(int) REG_CLASS_FROM_LETTER (c)];
1399 /* Those of the registers which are clobbered, but allowed by the
1400 constraints, must be usable as reload registers. So clear them
1401 out of the life information. */
1402 AND_HARD_REG_SET (allowed, clobbered);
1403 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1404 if (TEST_HARD_REG_BIT (allowed, i))
1406 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1407 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1411 #endif
1414 /* Copy the global variables n_reloads and rld into the corresponding elts
1415 of CHAIN. */
1416 static void
1417 copy_reloads (chain)
1418 struct insn_chain *chain;
1420 chain->n_reloads = n_reloads;
1421 chain->rld
1422 = (struct reload *) obstack_alloc (&reload_obstack,
1423 n_reloads * sizeof (struct reload));
1424 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1425 reload_insn_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
1428 /* Walk the chain of insns, and determine for each whether it needs reloads
1429 and/or eliminations. Build the corresponding insns_need_reload list, and
1430 set something_needs_elimination as appropriate. */
1431 static void
1432 calculate_needs_all_insns (global)
1433 int global;
1435 struct insn_chain **pprev_reload = &insns_need_reload;
1436 struct insn_chain *chain, *next = 0;
1438 something_needs_elimination = 0;
1440 reload_insn_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
1441 for (chain = reload_insn_chain; chain != 0; chain = next)
1443 rtx insn = chain->insn;
1445 next = chain->next;
1447 /* Clear out the shortcuts. */
1448 chain->n_reloads = 0;
1449 chain->need_elim = 0;
1450 chain->need_reload = 0;
1451 chain->need_operand_change = 0;
1453 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1454 include REG_LABEL), we need to see what effects this has on the
1455 known offsets at labels. */
1457 if (GET_CODE (insn) == CODE_LABEL || GET_CODE (insn) == JUMP_INSN
1458 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1459 set_label_offsets (insn, insn, 0);
1461 if (INSN_P (insn))
1463 rtx old_body = PATTERN (insn);
1464 int old_code = INSN_CODE (insn);
1465 rtx old_notes = REG_NOTES (insn);
1466 int did_elimination = 0;
1467 int operands_changed = 0;
1468 rtx set = single_set (insn);
1470 /* Skip insns that only set an equivalence. */
1471 if (set && GET_CODE (SET_DEST (set)) == REG
1472 && reg_renumber[REGNO (SET_DEST (set))] < 0
1473 && reg_equiv_constant[REGNO (SET_DEST (set))])
1474 continue;
1476 /* If needed, eliminate any eliminable registers. */
1477 if (num_eliminable || num_eliminable_invariants)
1478 did_elimination = eliminate_regs_in_insn (insn, 0);
1480 /* Analyze the instruction. */
1481 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1482 global, spill_reg_order);
1484 /* If a no-op set needs more than one reload, this is likely
1485 to be something that needs input address reloads. We
1486 can't get rid of this cleanly later, and it is of no use
1487 anyway, so discard it now.
1488 We only do this when expensive_optimizations is enabled,
1489 since this complements reload inheritance / output
1490 reload deletion, and it can make debugging harder. */
1491 if (flag_expensive_optimizations && n_reloads > 1)
1493 rtx set = single_set (insn);
1494 if (set
1495 && SET_SRC (set) == SET_DEST (set)
1496 && GET_CODE (SET_SRC (set)) == REG
1497 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1499 delete_insn (insn);
1500 /* Delete it from the reload chain. */
1501 if (chain->prev)
1502 chain->prev->next = next;
1503 else
1504 reload_insn_chain = next;
1505 if (next)
1506 next->prev = chain->prev;
1507 chain->next = unused_insn_chains;
1508 unused_insn_chains = chain;
1509 continue;
1512 if (num_eliminable)
1513 update_eliminable_offsets ();
1515 /* Remember for later shortcuts which insns had any reloads or
1516 register eliminations. */
1517 chain->need_elim = did_elimination;
1518 chain->need_reload = n_reloads > 0;
1519 chain->need_operand_change = operands_changed;
1521 /* Discard any register replacements done. */
1522 if (did_elimination)
1524 obstack_free (&reload_obstack, reload_insn_firstobj);
1525 PATTERN (insn) = old_body;
1526 INSN_CODE (insn) = old_code;
1527 REG_NOTES (insn) = old_notes;
1528 something_needs_elimination = 1;
1531 something_needs_operands_changed |= operands_changed;
1533 if (n_reloads != 0)
1535 copy_reloads (chain);
1536 *pprev_reload = chain;
1537 pprev_reload = &chain->next_need_reload;
1541 *pprev_reload = 0;
1544 /* Comparison function for qsort to decide which of two reloads
1545 should be handled first. *P1 and *P2 are the reload numbers. */
1547 static int
1548 reload_reg_class_lower (r1p, r2p)
1549 const PTR r1p;
1550 const PTR r2p;
1552 int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1553 int t;
1555 /* Consider required reloads before optional ones. */
1556 t = rld[r1].optional - rld[r2].optional;
1557 if (t != 0)
1558 return t;
1560 /* Count all solitary classes before non-solitary ones. */
1561 t = ((reg_class_size[(int) rld[r2].class] == 1)
1562 - (reg_class_size[(int) rld[r1].class] == 1));
1563 if (t != 0)
1564 return t;
1566 /* Aside from solitaires, consider all multi-reg groups first. */
1567 t = rld[r2].nregs - rld[r1].nregs;
1568 if (t != 0)
1569 return t;
1571 /* Consider reloads in order of increasing reg-class number. */
1572 t = (int) rld[r1].class - (int) rld[r2].class;
1573 if (t != 0)
1574 return t;
1576 /* If reloads are equally urgent, sort by reload number,
1577 so that the results of qsort leave nothing to chance. */
1578 return r1 - r2;
1581 /* The cost of spilling each hard reg. */
1582 static int spill_cost[FIRST_PSEUDO_REGISTER];
1584 /* When spilling multiple hard registers, we use SPILL_COST for the first
1585 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1586 only the first hard reg for a multi-reg pseudo. */
1587 static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1589 /* Update the spill cost arrays, considering that pseudo REG is live. */
1591 static void
1592 count_pseudo (reg)
1593 int reg;
1595 int freq = REG_FREQ (reg);
1596 int r = reg_renumber[reg];
1597 int nregs;
1599 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1600 || REGNO_REG_SET_P (&spilled_pseudos, reg))
1601 return;
1603 SET_REGNO_REG_SET (&pseudos_counted, reg);
1605 if (r < 0)
1606 abort ();
1608 spill_add_cost[r] += freq;
1610 nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (reg));
1611 while (nregs-- > 0)
1612 spill_cost[r + nregs] += freq;
1615 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1616 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
1618 static void
1619 order_regs_for_reload (chain)
1620 struct insn_chain *chain;
1622 int i;
1623 HARD_REG_SET used_by_pseudos;
1624 HARD_REG_SET used_by_pseudos2;
1626 COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1628 memset (spill_cost, 0, sizeof spill_cost);
1629 memset (spill_add_cost, 0, sizeof spill_add_cost);
1631 /* Count number of uses of each hard reg by pseudo regs allocated to it
1632 and then order them by decreasing use. First exclude hard registers
1633 that are live in or across this insn. */
1635 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1636 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1637 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1638 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1640 /* Now find out which pseudos are allocated to it, and update
1641 hard_reg_n_uses. */
1642 CLEAR_REG_SET (&pseudos_counted);
1644 EXECUTE_IF_SET_IN_REG_SET
1645 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i,
1647 count_pseudo (i);
1649 EXECUTE_IF_SET_IN_REG_SET
1650 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i,
1652 count_pseudo (i);
1654 CLEAR_REG_SET (&pseudos_counted);
1657 /* Vector of reload-numbers showing the order in which the reloads should
1658 be processed. */
1659 static short reload_order[MAX_RELOADS];
1661 /* This is used to keep track of the spill regs used in one insn. */
1662 static HARD_REG_SET used_spill_regs_local;
1664 /* We decided to spill hard register SPILLED, which has a size of
1665 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1666 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1667 update SPILL_COST/SPILL_ADD_COST. */
1669 static void
1670 count_spilled_pseudo (spilled, spilled_nregs, reg)
1671 int spilled, spilled_nregs, reg;
1673 int r = reg_renumber[reg];
1674 int nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (reg));
1676 if (REGNO_REG_SET_P (&spilled_pseudos, reg)
1677 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1678 return;
1680 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1682 spill_add_cost[r] -= REG_FREQ (reg);
1683 while (nregs-- > 0)
1684 spill_cost[r + nregs] -= REG_FREQ (reg);
1687 /* Find reload register to use for reload number ORDER. */
1689 static int
1690 find_reg (chain, order)
1691 struct insn_chain *chain;
1692 int order;
1694 int rnum = reload_order[order];
1695 struct reload *rl = rld + rnum;
1696 int best_cost = INT_MAX;
1697 int best_reg = -1;
1698 unsigned int i, j;
1699 int k;
1700 HARD_REG_SET not_usable;
1701 HARD_REG_SET used_by_other_reload;
1703 COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1704 IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1705 IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->class]);
1707 CLEAR_HARD_REG_SET (used_by_other_reload);
1708 for (k = 0; k < order; k++)
1710 int other = reload_order[k];
1712 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1713 for (j = 0; j < rld[other].nregs; j++)
1714 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1717 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1719 unsigned int regno = i;
1721 if (! TEST_HARD_REG_BIT (not_usable, regno)
1722 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1723 && HARD_REGNO_MODE_OK (regno, rl->mode))
1725 int this_cost = spill_cost[regno];
1726 int ok = 1;
1727 unsigned int this_nregs = HARD_REGNO_NREGS (regno, rl->mode);
1729 for (j = 1; j < this_nregs; j++)
1731 this_cost += spill_add_cost[regno + j];
1732 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1733 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1734 ok = 0;
1736 if (! ok)
1737 continue;
1738 if (rl->in && GET_CODE (rl->in) == REG && REGNO (rl->in) == regno)
1739 this_cost--;
1740 if (rl->out && GET_CODE (rl->out) == REG && REGNO (rl->out) == regno)
1741 this_cost--;
1742 if (this_cost < best_cost
1743 /* Among registers with equal cost, prefer caller-saved ones, or
1744 use REG_ALLOC_ORDER if it is defined. */
1745 || (this_cost == best_cost
1746 #ifdef REG_ALLOC_ORDER
1747 && (inv_reg_alloc_order[regno]
1748 < inv_reg_alloc_order[best_reg])
1749 #else
1750 && call_used_regs[regno]
1751 && ! call_used_regs[best_reg]
1752 #endif
1755 best_reg = regno;
1756 best_cost = this_cost;
1760 if (best_reg == -1)
1761 return 0;
1763 if (rtl_dump_file)
1764 fprintf (rtl_dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
1766 rl->nregs = HARD_REGNO_NREGS (best_reg, rl->mode);
1767 rl->regno = best_reg;
1769 EXECUTE_IF_SET_IN_REG_SET
1770 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j,
1772 count_spilled_pseudo (best_reg, rl->nregs, j);
1775 EXECUTE_IF_SET_IN_REG_SET
1776 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j,
1778 count_spilled_pseudo (best_reg, rl->nregs, j);
1781 for (i = 0; i < rl->nregs; i++)
1783 if (spill_cost[best_reg + i] != 0
1784 || spill_add_cost[best_reg + i] != 0)
1785 abort ();
1786 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1788 return 1;
1791 /* Find more reload regs to satisfy the remaining need of an insn, which
1792 is given by CHAIN.
1793 Do it by ascending class number, since otherwise a reg
1794 might be spilled for a big class and might fail to count
1795 for a smaller class even though it belongs to that class. */
1797 static void
1798 find_reload_regs (chain)
1799 struct insn_chain *chain;
1801 int i;
1803 /* In order to be certain of getting the registers we need,
1804 we must sort the reloads into order of increasing register class.
1805 Then our grabbing of reload registers will parallel the process
1806 that provided the reload registers. */
1807 for (i = 0; i < chain->n_reloads; i++)
1809 /* Show whether this reload already has a hard reg. */
1810 if (chain->rld[i].reg_rtx)
1812 int regno = REGNO (chain->rld[i].reg_rtx);
1813 chain->rld[i].regno = regno;
1814 chain->rld[i].nregs
1815 = HARD_REGNO_NREGS (regno, GET_MODE (chain->rld[i].reg_rtx));
1817 else
1818 chain->rld[i].regno = -1;
1819 reload_order[i] = i;
1822 n_reloads = chain->n_reloads;
1823 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
1825 CLEAR_HARD_REG_SET (used_spill_regs_local);
1827 if (rtl_dump_file)
1828 fprintf (rtl_dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
1830 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
1832 /* Compute the order of preference for hard registers to spill. */
1834 order_regs_for_reload (chain);
1836 for (i = 0; i < n_reloads; i++)
1838 int r = reload_order[i];
1840 /* Ignore reloads that got marked inoperative. */
1841 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
1842 && ! rld[r].optional
1843 && rld[r].regno == -1)
1844 if (! find_reg (chain, i))
1846 spill_failure (chain->insn, rld[r].class);
1847 failure = 1;
1848 return;
1852 COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
1853 IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
1855 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1858 static void
1859 select_reload_regs ()
1861 struct insn_chain *chain;
1863 /* Try to satisfy the needs for each insn. */
1864 for (chain = insns_need_reload; chain != 0;
1865 chain = chain->next_need_reload)
1866 find_reload_regs (chain);
1869 /* Delete all insns that were inserted by emit_caller_save_insns during
1870 this iteration. */
1871 static void
1872 delete_caller_save_insns ()
1874 struct insn_chain *c = reload_insn_chain;
1876 while (c != 0)
1878 while (c != 0 && c->is_caller_save_insn)
1880 struct insn_chain *next = c->next;
1881 rtx insn = c->insn;
1883 if (c == reload_insn_chain)
1884 reload_insn_chain = next;
1885 delete_insn (insn);
1887 if (next)
1888 next->prev = c->prev;
1889 if (c->prev)
1890 c->prev->next = next;
1891 c->next = unused_insn_chains;
1892 unused_insn_chains = c;
1893 c = next;
1895 if (c != 0)
1896 c = c->next;
1900 /* Handle the failure to find a register to spill.
1901 INSN should be one of the insns which needed this particular spill reg. */
1903 static void
1904 spill_failure (insn, class)
1905 rtx insn;
1906 enum reg_class class;
1908 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1909 if (asm_noperands (PATTERN (insn)) >= 0)
1910 error_for_asm (insn, "can't find a register in class `%s' while reloading `asm'",
1911 reg_class_names[class]);
1912 else
1914 error ("unable to find a register to spill in class `%s'",
1915 reg_class_names[class]);
1916 fatal_insn ("this is the insn:", insn);
1920 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
1921 data that is dead in INSN. */
1923 static void
1924 delete_dead_insn (insn)
1925 rtx insn;
1927 rtx prev = prev_real_insn (insn);
1928 rtx prev_dest;
1930 /* If the previous insn sets a register that dies in our insn, delete it
1931 too. */
1932 if (prev && GET_CODE (PATTERN (prev)) == SET
1933 && (prev_dest = SET_DEST (PATTERN (prev)), GET_CODE (prev_dest) == REG)
1934 && reg_mentioned_p (prev_dest, PATTERN (insn))
1935 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
1936 && ! side_effects_p (SET_SRC (PATTERN (prev))))
1937 delete_dead_insn (prev);
1939 PUT_CODE (insn, NOTE);
1940 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1941 NOTE_SOURCE_FILE (insn) = 0;
1944 /* Modify the home of pseudo-reg I.
1945 The new home is present in reg_renumber[I].
1947 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
1948 or it may be -1, meaning there is none or it is not relevant.
1949 This is used so that all pseudos spilled from a given hard reg
1950 can share one stack slot. */
1952 static void
1953 alter_reg (i, from_reg)
1954 int i;
1955 int from_reg;
1957 /* When outputting an inline function, this can happen
1958 for a reg that isn't actually used. */
1959 if (regno_reg_rtx[i] == 0)
1960 return;
1962 /* If the reg got changed to a MEM at rtl-generation time,
1963 ignore it. */
1964 if (GET_CODE (regno_reg_rtx[i]) != REG)
1965 return;
1967 /* Modify the reg-rtx to contain the new hard reg
1968 number or else to contain its pseudo reg number. */
1969 REGNO (regno_reg_rtx[i])
1970 = reg_renumber[i] >= 0 ? reg_renumber[i] : i;
1972 /* If we have a pseudo that is needed but has no hard reg or equivalent,
1973 allocate a stack slot for it. */
1975 if (reg_renumber[i] < 0
1976 && REG_N_REFS (i) > 0
1977 && reg_equiv_constant[i] == 0
1978 && reg_equiv_memory_loc[i] == 0)
1980 rtx x;
1981 unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
1982 unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
1983 int adjust = 0;
1985 /* Each pseudo reg has an inherent size which comes from its own mode,
1986 and a total size which provides room for paradoxical subregs
1987 which refer to the pseudo reg in wider modes.
1989 We can use a slot already allocated if it provides both
1990 enough inherent space and enough total space.
1991 Otherwise, we allocate a new slot, making sure that it has no less
1992 inherent space, and no less total space, then the previous slot. */
1993 if (from_reg == -1)
1995 /* No known place to spill from => no slot to reuse. */
1996 x = assign_stack_local (GET_MODE (regno_reg_rtx[i]), total_size,
1997 inherent_size == total_size ? 0 : -1);
1998 if (BYTES_BIG_ENDIAN)
1999 /* Cancel the big-endian correction done in assign_stack_local.
2000 Get the address of the beginning of the slot.
2001 This is so we can do a big-endian correction unconditionally
2002 below. */
2003 adjust = inherent_size - total_size;
2005 RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (regno_reg_rtx[i]);
2007 /* Nothing can alias this slot except this pseudo. */
2008 set_mem_alias_set (x, new_alias_set ());
2011 /* Reuse a stack slot if possible. */
2012 else if (spill_stack_slot[from_reg] != 0
2013 && spill_stack_slot_width[from_reg] >= total_size
2014 && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2015 >= inherent_size))
2016 x = spill_stack_slot[from_reg];
2018 /* Allocate a bigger slot. */
2019 else
2021 /* Compute maximum size needed, both for inherent size
2022 and for total size. */
2023 enum machine_mode mode = GET_MODE (regno_reg_rtx[i]);
2024 rtx stack_slot;
2026 if (spill_stack_slot[from_reg])
2028 if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2029 > inherent_size)
2030 mode = GET_MODE (spill_stack_slot[from_reg]);
2031 if (spill_stack_slot_width[from_reg] > total_size)
2032 total_size = spill_stack_slot_width[from_reg];
2035 /* Make a slot with that size. */
2036 x = assign_stack_local (mode, total_size,
2037 inherent_size == total_size ? 0 : -1);
2038 stack_slot = x;
2040 /* All pseudos mapped to this slot can alias each other. */
2041 if (spill_stack_slot[from_reg])
2042 set_mem_alias_set (x, MEM_ALIAS_SET (spill_stack_slot[from_reg]));
2043 else
2044 set_mem_alias_set (x, new_alias_set ());
2046 if (BYTES_BIG_ENDIAN)
2048 /* Cancel the big-endian correction done in assign_stack_local.
2049 Get the address of the beginning of the slot.
2050 This is so we can do a big-endian correction unconditionally
2051 below. */
2052 adjust = GET_MODE_SIZE (mode) - total_size;
2053 if (adjust)
2054 stack_slot
2055 = adjust_address_nv (x, mode_for_size (total_size
2056 * BITS_PER_UNIT,
2057 MODE_INT, 1),
2058 adjust);
2061 spill_stack_slot[from_reg] = stack_slot;
2062 spill_stack_slot_width[from_reg] = total_size;
2065 /* On a big endian machine, the "address" of the slot
2066 is the address of the low part that fits its inherent mode. */
2067 if (BYTES_BIG_ENDIAN && inherent_size < total_size)
2068 adjust += (total_size - inherent_size);
2070 /* If we have any adjustment to make, or if the stack slot is the
2071 wrong mode, make a new stack slot. */
2072 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
2074 /* If we have a decl for the original register, set it for the
2075 memory. If this is a shared MEM, make a copy. */
2076 if (REGNO_DECL (i))
2078 rtx decl = DECL_RTL_IF_SET (REGNO_DECL (i));
2080 /* We can do this only for the DECLs home pseudo, not for
2081 any copies of it, since otherwise when the stack slot
2082 is reused, nonoverlapping_memrefs_p might think they
2083 cannot overlap. */
2084 if (decl && GET_CODE (decl) == REG && REGNO (decl) == (unsigned) i)
2086 if (from_reg != -1 && spill_stack_slot[from_reg] == x)
2087 x = copy_rtx (x);
2089 set_mem_expr (x, REGNO_DECL (i));
2093 /* Save the stack slot for later. */
2094 reg_equiv_memory_loc[i] = x;
2098 /* Mark the slots in regs_ever_live for the hard regs
2099 used by pseudo-reg number REGNO. */
2101 void
2102 mark_home_live (regno)
2103 int regno;
2105 int i, lim;
2107 i = reg_renumber[regno];
2108 if (i < 0)
2109 return;
2110 lim = i + HARD_REGNO_NREGS (i, PSEUDO_REGNO_MODE (regno));
2111 while (i < lim)
2112 regs_ever_live[i++] = 1;
2115 /* This function handles the tracking of elimination offsets around branches.
2117 X is a piece of RTL being scanned.
2119 INSN is the insn that it came from, if any.
2121 INITIAL_P is nonzero if we are to set the offset to be the initial
2122 offset and zero if we are setting the offset of the label to be the
2123 current offset. */
2125 static void
2126 set_label_offsets (x, insn, initial_p)
2127 rtx x;
2128 rtx insn;
2129 int initial_p;
2131 enum rtx_code code = GET_CODE (x);
2132 rtx tem;
2133 unsigned int i;
2134 struct elim_table *p;
2136 switch (code)
2138 case LABEL_REF:
2139 if (LABEL_REF_NONLOCAL_P (x))
2140 return;
2142 x = XEXP (x, 0);
2144 /* ... fall through ... */
2146 case CODE_LABEL:
2147 /* If we know nothing about this label, set the desired offsets. Note
2148 that this sets the offset at a label to be the offset before a label
2149 if we don't know anything about the label. This is not correct for
2150 the label after a BARRIER, but is the best guess we can make. If
2151 we guessed wrong, we will suppress an elimination that might have
2152 been possible had we been able to guess correctly. */
2154 if (! offsets_known_at[CODE_LABEL_NUMBER (x)])
2156 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2157 offsets_at[CODE_LABEL_NUMBER (x)][i]
2158 = (initial_p ? reg_eliminate[i].initial_offset
2159 : reg_eliminate[i].offset);
2160 offsets_known_at[CODE_LABEL_NUMBER (x)] = 1;
2163 /* Otherwise, if this is the definition of a label and it is
2164 preceded by a BARRIER, set our offsets to the known offset of
2165 that label. */
2167 else if (x == insn
2168 && (tem = prev_nonnote_insn (insn)) != 0
2169 && GET_CODE (tem) == BARRIER)
2170 set_offsets_for_label (insn);
2171 else
2172 /* If neither of the above cases is true, compare each offset
2173 with those previously recorded and suppress any eliminations
2174 where the offsets disagree. */
2176 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2177 if (offsets_at[CODE_LABEL_NUMBER (x)][i]
2178 != (initial_p ? reg_eliminate[i].initial_offset
2179 : reg_eliminate[i].offset))
2180 reg_eliminate[i].can_eliminate = 0;
2182 return;
2184 case JUMP_INSN:
2185 set_label_offsets (PATTERN (insn), insn, initial_p);
2187 /* ... fall through ... */
2189 case INSN:
2190 case CALL_INSN:
2191 /* Any labels mentioned in REG_LABEL notes can be branched to indirectly
2192 and hence must have all eliminations at their initial offsets. */
2193 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2194 if (REG_NOTE_KIND (tem) == REG_LABEL)
2195 set_label_offsets (XEXP (tem, 0), insn, 1);
2196 return;
2198 case PARALLEL:
2199 case ADDR_VEC:
2200 case ADDR_DIFF_VEC:
2201 /* Each of the labels in the parallel or address vector must be
2202 at their initial offsets. We want the first field for PARALLEL
2203 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
2205 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2206 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2207 insn, initial_p);
2208 return;
2210 case SET:
2211 /* We only care about setting PC. If the source is not RETURN,
2212 IF_THEN_ELSE, or a label, disable any eliminations not at
2213 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2214 isn't one of those possibilities. For branches to a label,
2215 call ourselves recursively.
2217 Note that this can disable elimination unnecessarily when we have
2218 a non-local goto since it will look like a non-constant jump to
2219 someplace in the current function. This isn't a significant
2220 problem since such jumps will normally be when all elimination
2221 pairs are back to their initial offsets. */
2223 if (SET_DEST (x) != pc_rtx)
2224 return;
2226 switch (GET_CODE (SET_SRC (x)))
2228 case PC:
2229 case RETURN:
2230 return;
2232 case LABEL_REF:
2233 set_label_offsets (XEXP (SET_SRC (x), 0), insn, initial_p);
2234 return;
2236 case IF_THEN_ELSE:
2237 tem = XEXP (SET_SRC (x), 1);
2238 if (GET_CODE (tem) == LABEL_REF)
2239 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2240 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2241 break;
2243 tem = XEXP (SET_SRC (x), 2);
2244 if (GET_CODE (tem) == LABEL_REF)
2245 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2246 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2247 break;
2248 return;
2250 default:
2251 break;
2254 /* If we reach here, all eliminations must be at their initial
2255 offset because we are doing a jump to a variable address. */
2256 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2257 if (p->offset != p->initial_offset)
2258 p->can_eliminate = 0;
2259 break;
2261 default:
2262 break;
2266 /* Scan X and replace any eliminable registers (such as fp) with a
2267 replacement (such as sp), plus an offset.
2269 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2270 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2271 MEM, we are allowed to replace a sum of a register and the constant zero
2272 with the register, which we cannot do outside a MEM. In addition, we need
2273 to record the fact that a register is referenced outside a MEM.
2275 If INSN is an insn, it is the insn containing X. If we replace a REG
2276 in a SET_DEST with an equivalent MEM and INSN is nonzero, write a
2277 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2278 the REG is being modified.
2280 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2281 That's used when we eliminate in expressions stored in notes.
2282 This means, do not set ref_outside_mem even if the reference
2283 is outside of MEMs.
2285 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2286 replacements done assuming all offsets are at their initial values. If
2287 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2288 encounter, return the actual location so that find_reloads will do
2289 the proper thing. */
2292 eliminate_regs (x, mem_mode, insn)
2293 rtx x;
2294 enum machine_mode mem_mode;
2295 rtx insn;
2297 enum rtx_code code = GET_CODE (x);
2298 struct elim_table *ep;
2299 int regno;
2300 rtx new;
2301 int i, j;
2302 const char *fmt;
2303 int copied = 0;
2305 if (! current_function_decl)
2306 return x;
2308 switch (code)
2310 case CONST_INT:
2311 case CONST_DOUBLE:
2312 case CONST_VECTOR:
2313 case CONST:
2314 case SYMBOL_REF:
2315 case CODE_LABEL:
2316 case PC:
2317 case CC0:
2318 case ASM_INPUT:
2319 case ADDR_VEC:
2320 case ADDR_DIFF_VEC:
2321 case RETURN:
2322 return x;
2324 case ADDRESSOF:
2325 /* This is only for the benefit of the debugging backends, which call
2326 eliminate_regs on DECL_RTL; any ADDRESSOFs in the actual insns are
2327 removed after CSE. */
2328 new = eliminate_regs (XEXP (x, 0), 0, insn);
2329 if (GET_CODE (new) == MEM)
2330 return XEXP (new, 0);
2331 return x;
2333 case REG:
2334 regno = REGNO (x);
2336 /* First handle the case where we encounter a bare register that
2337 is eliminable. Replace it with a PLUS. */
2338 if (regno < FIRST_PSEUDO_REGISTER)
2340 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2341 ep++)
2342 if (ep->from_rtx == x && ep->can_eliminate)
2343 return plus_constant (ep->to_rtx, ep->previous_offset);
2346 else if (reg_renumber && reg_renumber[regno] < 0
2347 && reg_equiv_constant && reg_equiv_constant[regno]
2348 && ! CONSTANT_P (reg_equiv_constant[regno]))
2349 return eliminate_regs (copy_rtx (reg_equiv_constant[regno]),
2350 mem_mode, insn);
2351 return x;
2353 /* You might think handling MINUS in a manner similar to PLUS is a
2354 good idea. It is not. It has been tried multiple times and every
2355 time the change has had to have been reverted.
2357 Other parts of reload know a PLUS is special (gen_reload for example)
2358 and require special code to handle code a reloaded PLUS operand.
2360 Also consider backends where the flags register is clobbered by a
2361 MINUS, but we can emit a PLUS that does not clobber flags (ia32,
2362 lea instruction comes to mind). If we try to reload a MINUS, we
2363 may kill the flags register that was holding a useful value.
2365 So, please before trying to handle MINUS, consider reload as a
2366 whole instead of this little section as well as the backend issues. */
2367 case PLUS:
2368 /* If this is the sum of an eliminable register and a constant, rework
2369 the sum. */
2370 if (GET_CODE (XEXP (x, 0)) == REG
2371 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2372 && CONSTANT_P (XEXP (x, 1)))
2374 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2375 ep++)
2376 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2378 /* The only time we want to replace a PLUS with a REG (this
2379 occurs when the constant operand of the PLUS is the negative
2380 of the offset) is when we are inside a MEM. We won't want
2381 to do so at other times because that would change the
2382 structure of the insn in a way that reload can't handle.
2383 We special-case the commonest situation in
2384 eliminate_regs_in_insn, so just replace a PLUS with a
2385 PLUS here, unless inside a MEM. */
2386 if (mem_mode != 0 && GET_CODE (XEXP (x, 1)) == CONST_INT
2387 && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
2388 return ep->to_rtx;
2389 else
2390 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2391 plus_constant (XEXP (x, 1),
2392 ep->previous_offset));
2395 /* If the register is not eliminable, we are done since the other
2396 operand is a constant. */
2397 return x;
2400 /* If this is part of an address, we want to bring any constant to the
2401 outermost PLUS. We will do this by doing register replacement in
2402 our operands and seeing if a constant shows up in one of them.
2404 Note that there is no risk of modifying the structure of the insn,
2405 since we only get called for its operands, thus we are either
2406 modifying the address inside a MEM, or something like an address
2407 operand of a load-address insn. */
2410 rtx new0 = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2411 rtx new1 = eliminate_regs (XEXP (x, 1), mem_mode, insn);
2413 if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
2415 /* If one side is a PLUS and the other side is a pseudo that
2416 didn't get a hard register but has a reg_equiv_constant,
2417 we must replace the constant here since it may no longer
2418 be in the position of any operand. */
2419 if (GET_CODE (new0) == PLUS && GET_CODE (new1) == REG
2420 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2421 && reg_renumber[REGNO (new1)] < 0
2422 && reg_equiv_constant != 0
2423 && reg_equiv_constant[REGNO (new1)] != 0)
2424 new1 = reg_equiv_constant[REGNO (new1)];
2425 else if (GET_CODE (new1) == PLUS && GET_CODE (new0) == REG
2426 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2427 && reg_renumber[REGNO (new0)] < 0
2428 && reg_equiv_constant[REGNO (new0)] != 0)
2429 new0 = reg_equiv_constant[REGNO (new0)];
2431 new = form_sum (new0, new1);
2433 /* As above, if we are not inside a MEM we do not want to
2434 turn a PLUS into something else. We might try to do so here
2435 for an addition of 0 if we aren't optimizing. */
2436 if (! mem_mode && GET_CODE (new) != PLUS)
2437 return gen_rtx_PLUS (GET_MODE (x), new, const0_rtx);
2438 else
2439 return new;
2442 return x;
2444 case MULT:
2445 /* If this is the product of an eliminable register and a
2446 constant, apply the distribute law and move the constant out
2447 so that we have (plus (mult ..) ..). This is needed in order
2448 to keep load-address insns valid. This case is pathological.
2449 We ignore the possibility of overflow here. */
2450 if (GET_CODE (XEXP (x, 0)) == REG
2451 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2452 && GET_CODE (XEXP (x, 1)) == CONST_INT)
2453 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2454 ep++)
2455 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2457 if (! mem_mode
2458 /* Refs inside notes don't count for this purpose. */
2459 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2460 || GET_CODE (insn) == INSN_LIST)))
2461 ep->ref_outside_mem = 1;
2463 return
2464 plus_constant (gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2465 ep->previous_offset * INTVAL (XEXP (x, 1)));
2468 /* ... fall through ... */
2470 case CALL:
2471 case COMPARE:
2472 /* See comments before PLUS about handling MINUS. */
2473 case MINUS:
2474 case DIV: case UDIV:
2475 case MOD: case UMOD:
2476 case AND: case IOR: case XOR:
2477 case ROTATERT: case ROTATE:
2478 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2479 case NE: case EQ:
2480 case GE: case GT: case GEU: case GTU:
2481 case LE: case LT: case LEU: case LTU:
2483 rtx new0 = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2484 rtx new1
2485 = XEXP (x, 1) ? eliminate_regs (XEXP (x, 1), mem_mode, insn) : 0;
2487 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2488 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2490 return x;
2492 case EXPR_LIST:
2493 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2494 if (XEXP (x, 0))
2496 new = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2497 if (new != XEXP (x, 0))
2499 /* If this is a REG_DEAD note, it is not valid anymore.
2500 Using the eliminated version could result in creating a
2501 REG_DEAD note for the stack or frame pointer. */
2502 if (GET_MODE (x) == REG_DEAD)
2503 return (XEXP (x, 1)
2504 ? eliminate_regs (XEXP (x, 1), mem_mode, insn)
2505 : NULL_RTX);
2507 x = gen_rtx_EXPR_LIST (REG_NOTE_KIND (x), new, XEXP (x, 1));
2511 /* ... fall through ... */
2513 case INSN_LIST:
2514 /* Now do eliminations in the rest of the chain. If this was
2515 an EXPR_LIST, this might result in allocating more memory than is
2516 strictly needed, but it simplifies the code. */
2517 if (XEXP (x, 1))
2519 new = eliminate_regs (XEXP (x, 1), mem_mode, insn);
2520 if (new != XEXP (x, 1))
2521 return
2522 gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new);
2524 return x;
2526 case PRE_INC:
2527 case POST_INC:
2528 case PRE_DEC:
2529 case POST_DEC:
2530 case STRICT_LOW_PART:
2531 case NEG: case NOT:
2532 case SIGN_EXTEND: case ZERO_EXTEND:
2533 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2534 case FLOAT: case FIX:
2535 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2536 case ABS:
2537 case SQRT:
2538 case FFS:
2539 new = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2540 if (new != XEXP (x, 0))
2541 return gen_rtx_fmt_e (code, GET_MODE (x), new);
2542 return x;
2544 case SUBREG:
2545 /* Similar to above processing, but preserve SUBREG_BYTE.
2546 Convert (subreg (mem)) to (mem) if not paradoxical.
2547 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2548 pseudo didn't get a hard reg, we must replace this with the
2549 eliminated version of the memory location because push_reloads
2550 may do the replacement in certain circumstances. */
2551 if (GET_CODE (SUBREG_REG (x)) == REG
2552 && (GET_MODE_SIZE (GET_MODE (x))
2553 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2554 && reg_equiv_memory_loc != 0
2555 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2557 new = SUBREG_REG (x);
2559 else
2560 new = eliminate_regs (SUBREG_REG (x), mem_mode, insn);
2562 if (new != SUBREG_REG (x))
2564 int x_size = GET_MODE_SIZE (GET_MODE (x));
2565 int new_size = GET_MODE_SIZE (GET_MODE (new));
2567 if (GET_CODE (new) == MEM
2568 && ((x_size < new_size
2569 #ifdef WORD_REGISTER_OPERATIONS
2570 /* On these machines, combine can create rtl of the form
2571 (set (subreg:m1 (reg:m2 R) 0) ...)
2572 where m1 < m2, and expects something interesting to
2573 happen to the entire word. Moreover, it will use the
2574 (reg:m2 R) later, expecting all bits to be preserved.
2575 So if the number of words is the same, preserve the
2576 subreg so that push_reloads can see it. */
2577 && ! ((x_size - 1) / UNITS_PER_WORD
2578 == (new_size -1 ) / UNITS_PER_WORD)
2579 #endif
2581 || x_size == new_size)
2583 return adjust_address_nv (new, GET_MODE (x), SUBREG_BYTE (x));
2584 else
2585 return gen_rtx_SUBREG (GET_MODE (x), new, SUBREG_BYTE (x));
2588 return x;
2590 case MEM:
2591 /* This is only for the benefit of the debugging backends, which call
2592 eliminate_regs on DECL_RTL; any ADDRESSOFs in the actual insns are
2593 removed after CSE. */
2594 if (GET_CODE (XEXP (x, 0)) == ADDRESSOF)
2595 return eliminate_regs (XEXP (XEXP (x, 0), 0), 0, insn);
2597 /* Our only special processing is to pass the mode of the MEM to our
2598 recursive call and copy the flags. While we are here, handle this
2599 case more efficiently. */
2600 return
2601 replace_equiv_address_nv (x,
2602 eliminate_regs (XEXP (x, 0),
2603 GET_MODE (x), insn));
2605 case USE:
2606 /* Handle insn_list USE that a call to a pure function may generate. */
2607 new = eliminate_regs (XEXP (x, 0), 0, insn);
2608 if (new != XEXP (x, 0))
2609 return gen_rtx_USE (GET_MODE (x), new);
2610 return x;
2612 case CLOBBER:
2613 case ASM_OPERANDS:
2614 case SET:
2615 abort ();
2617 default:
2618 break;
2621 /* Process each of our operands recursively. If any have changed, make a
2622 copy of the rtx. */
2623 fmt = GET_RTX_FORMAT (code);
2624 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2626 if (*fmt == 'e')
2628 new = eliminate_regs (XEXP (x, i), mem_mode, insn);
2629 if (new != XEXP (x, i) && ! copied)
2631 rtx new_x = rtx_alloc (code);
2632 memcpy (new_x, x,
2633 (sizeof (*new_x) - sizeof (new_x->fld)
2634 + sizeof (new_x->fld[0]) * GET_RTX_LENGTH (code)));
2635 x = new_x;
2636 copied = 1;
2638 XEXP (x, i) = new;
2640 else if (*fmt == 'E')
2642 int copied_vec = 0;
2643 for (j = 0; j < XVECLEN (x, i); j++)
2645 new = eliminate_regs (XVECEXP (x, i, j), mem_mode, insn);
2646 if (new != XVECEXP (x, i, j) && ! copied_vec)
2648 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2649 XVEC (x, i)->elem);
2650 if (! copied)
2652 rtx new_x = rtx_alloc (code);
2653 memcpy (new_x, x,
2654 (sizeof (*new_x) - sizeof (new_x->fld)
2655 + (sizeof (new_x->fld[0])
2656 * GET_RTX_LENGTH (code))));
2657 x = new_x;
2658 copied = 1;
2660 XVEC (x, i) = new_v;
2661 copied_vec = 1;
2663 XVECEXP (x, i, j) = new;
2668 return x;
2671 /* Scan rtx X for modifications of elimination target registers. Update
2672 the table of eliminables to reflect the changed state. MEM_MODE is
2673 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2675 static void
2676 elimination_effects (x, mem_mode)
2677 rtx x;
2678 enum machine_mode mem_mode;
2681 enum rtx_code code = GET_CODE (x);
2682 struct elim_table *ep;
2683 int regno;
2684 int i, j;
2685 const char *fmt;
2687 switch (code)
2689 case CONST_INT:
2690 case CONST_DOUBLE:
2691 case CONST_VECTOR:
2692 case CONST:
2693 case SYMBOL_REF:
2694 case CODE_LABEL:
2695 case PC:
2696 case CC0:
2697 case ASM_INPUT:
2698 case ADDR_VEC:
2699 case ADDR_DIFF_VEC:
2700 case RETURN:
2701 return;
2703 case ADDRESSOF:
2704 abort ();
2706 case REG:
2707 regno = REGNO (x);
2709 /* First handle the case where we encounter a bare register that
2710 is eliminable. Replace it with a PLUS. */
2711 if (regno < FIRST_PSEUDO_REGISTER)
2713 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2714 ep++)
2715 if (ep->from_rtx == x && ep->can_eliminate)
2717 if (! mem_mode)
2718 ep->ref_outside_mem = 1;
2719 return;
2723 else if (reg_renumber[regno] < 0 && reg_equiv_constant
2724 && reg_equiv_constant[regno]
2725 && ! function_invariant_p (reg_equiv_constant[regno]))
2726 elimination_effects (reg_equiv_constant[regno], mem_mode);
2727 return;
2729 case PRE_INC:
2730 case POST_INC:
2731 case PRE_DEC:
2732 case POST_DEC:
2733 case POST_MODIFY:
2734 case PRE_MODIFY:
2735 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2736 if (ep->to_rtx == XEXP (x, 0))
2738 int size = GET_MODE_SIZE (mem_mode);
2740 /* If more bytes than MEM_MODE are pushed, account for them. */
2741 #ifdef PUSH_ROUNDING
2742 if (ep->to_rtx == stack_pointer_rtx)
2743 size = PUSH_ROUNDING (size);
2744 #endif
2745 if (code == PRE_DEC || code == POST_DEC)
2746 ep->offset += size;
2747 else if (code == PRE_INC || code == POST_INC)
2748 ep->offset -= size;
2749 else if ((code == PRE_MODIFY || code == POST_MODIFY)
2750 && GET_CODE (XEXP (x, 1)) == PLUS
2751 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
2752 && CONSTANT_P (XEXP (XEXP (x, 1), 1)))
2753 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
2756 /* These two aren't unary operators. */
2757 if (code == POST_MODIFY || code == PRE_MODIFY)
2758 break;
2760 /* Fall through to generic unary operation case. */
2761 case STRICT_LOW_PART:
2762 case NEG: case NOT:
2763 case SIGN_EXTEND: case ZERO_EXTEND:
2764 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2765 case FLOAT: case FIX:
2766 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2767 case ABS:
2768 case SQRT:
2769 case FFS:
2770 elimination_effects (XEXP (x, 0), mem_mode);
2771 return;
2773 case SUBREG:
2774 if (GET_CODE (SUBREG_REG (x)) == REG
2775 && (GET_MODE_SIZE (GET_MODE (x))
2776 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2777 && reg_equiv_memory_loc != 0
2778 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2779 return;
2781 elimination_effects (SUBREG_REG (x), mem_mode);
2782 return;
2784 case USE:
2785 /* If using a register that is the source of an eliminate we still
2786 think can be performed, note it cannot be performed since we don't
2787 know how this register is used. */
2788 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2789 if (ep->from_rtx == XEXP (x, 0))
2790 ep->can_eliminate = 0;
2792 elimination_effects (XEXP (x, 0), mem_mode);
2793 return;
2795 case CLOBBER:
2796 /* If clobbering a register that is the replacement register for an
2797 elimination we still think can be performed, note that it cannot
2798 be performed. Otherwise, we need not be concerned about it. */
2799 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2800 if (ep->to_rtx == XEXP (x, 0))
2801 ep->can_eliminate = 0;
2803 elimination_effects (XEXP (x, 0), mem_mode);
2804 return;
2806 case SET:
2807 /* Check for setting a register that we know about. */
2808 if (GET_CODE (SET_DEST (x)) == REG)
2810 /* See if this is setting the replacement register for an
2811 elimination.
2813 If DEST is the hard frame pointer, we do nothing because we
2814 assume that all assignments to the frame pointer are for
2815 non-local gotos and are being done at a time when they are valid
2816 and do not disturb anything else. Some machines want to
2817 eliminate a fake argument pointer (or even a fake frame pointer)
2818 with either the real frame or the stack pointer. Assignments to
2819 the hard frame pointer must not prevent this elimination. */
2821 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2822 ep++)
2823 if (ep->to_rtx == SET_DEST (x)
2824 && SET_DEST (x) != hard_frame_pointer_rtx)
2826 /* If it is being incremented, adjust the offset. Otherwise,
2827 this elimination can't be done. */
2828 rtx src = SET_SRC (x);
2830 if (GET_CODE (src) == PLUS
2831 && XEXP (src, 0) == SET_DEST (x)
2832 && GET_CODE (XEXP (src, 1)) == CONST_INT)
2833 ep->offset -= INTVAL (XEXP (src, 1));
2834 else
2835 ep->can_eliminate = 0;
2839 elimination_effects (SET_DEST (x), 0);
2840 elimination_effects (SET_SRC (x), 0);
2841 return;
2843 case MEM:
2844 if (GET_CODE (XEXP (x, 0)) == ADDRESSOF)
2845 abort ();
2847 /* Our only special processing is to pass the mode of the MEM to our
2848 recursive call. */
2849 elimination_effects (XEXP (x, 0), GET_MODE (x));
2850 return;
2852 default:
2853 break;
2856 fmt = GET_RTX_FORMAT (code);
2857 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2859 if (*fmt == 'e')
2860 elimination_effects (XEXP (x, i), mem_mode);
2861 else if (*fmt == 'E')
2862 for (j = 0; j < XVECLEN (x, i); j++)
2863 elimination_effects (XVECEXP (x, i, j), mem_mode);
2867 /* Descend through rtx X and verify that no references to eliminable registers
2868 remain. If any do remain, mark the involved register as not
2869 eliminable. */
2871 static void
2872 check_eliminable_occurrences (x)
2873 rtx x;
2875 const char *fmt;
2876 int i;
2877 enum rtx_code code;
2879 if (x == 0)
2880 return;
2882 code = GET_CODE (x);
2884 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
2886 struct elim_table *ep;
2888 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2889 if (ep->from_rtx == x && ep->can_eliminate)
2890 ep->can_eliminate = 0;
2891 return;
2894 fmt = GET_RTX_FORMAT (code);
2895 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2897 if (*fmt == 'e')
2898 check_eliminable_occurrences (XEXP (x, i));
2899 else if (*fmt == 'E')
2901 int j;
2902 for (j = 0; j < XVECLEN (x, i); j++)
2903 check_eliminable_occurrences (XVECEXP (x, i, j));
2908 /* Scan INSN and eliminate all eliminable registers in it.
2910 If REPLACE is nonzero, do the replacement destructively. Also
2911 delete the insn as dead it if it is setting an eliminable register.
2913 If REPLACE is zero, do all our allocations in reload_obstack.
2915 If no eliminations were done and this insn doesn't require any elimination
2916 processing (these are not identical conditions: it might be updating sp,
2917 but not referencing fp; this needs to be seen during reload_as_needed so
2918 that the offset between fp and sp can be taken into consideration), zero
2919 is returned. Otherwise, 1 is returned. */
2921 static int
2922 eliminate_regs_in_insn (insn, replace)
2923 rtx insn;
2924 int replace;
2926 int icode = recog_memoized (insn);
2927 rtx old_body = PATTERN (insn);
2928 int insn_is_asm = asm_noperands (old_body) >= 0;
2929 rtx old_set = single_set (insn);
2930 rtx new_body;
2931 int val = 0;
2932 int i, any_changes;
2933 rtx substed_operand[MAX_RECOG_OPERANDS];
2934 rtx orig_operand[MAX_RECOG_OPERANDS];
2935 struct elim_table *ep;
2937 if (! insn_is_asm && icode < 0)
2939 if (GET_CODE (PATTERN (insn)) == USE
2940 || GET_CODE (PATTERN (insn)) == CLOBBER
2941 || GET_CODE (PATTERN (insn)) == ADDR_VEC
2942 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
2943 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
2944 return 0;
2945 abort ();
2948 if (old_set != 0 && GET_CODE (SET_DEST (old_set)) == REG
2949 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
2951 /* Check for setting an eliminable register. */
2952 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2953 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
2955 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2956 /* If this is setting the frame pointer register to the
2957 hardware frame pointer register and this is an elimination
2958 that will be done (tested above), this insn is really
2959 adjusting the frame pointer downward to compensate for
2960 the adjustment done before a nonlocal goto. */
2961 if (ep->from == FRAME_POINTER_REGNUM
2962 && ep->to == HARD_FRAME_POINTER_REGNUM)
2964 rtx base = SET_SRC (old_set);
2965 rtx base_insn = insn;
2966 int offset = 0;
2968 while (base != ep->to_rtx)
2970 rtx prev_insn, prev_set;
2972 if (GET_CODE (base) == PLUS
2973 && GET_CODE (XEXP (base, 1)) == CONST_INT)
2975 offset += INTVAL (XEXP (base, 1));
2976 base = XEXP (base, 0);
2978 else if ((prev_insn = prev_nonnote_insn (base_insn)) != 0
2979 && (prev_set = single_set (prev_insn)) != 0
2980 && rtx_equal_p (SET_DEST (prev_set), base))
2982 base = SET_SRC (prev_set);
2983 base_insn = prev_insn;
2985 else
2986 break;
2989 if (base == ep->to_rtx)
2991 rtx src
2992 = plus_constant (ep->to_rtx, offset - ep->offset);
2994 new_body = old_body;
2995 if (! replace)
2997 new_body = copy_insn (old_body);
2998 if (REG_NOTES (insn))
2999 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3001 PATTERN (insn) = new_body;
3002 old_set = single_set (insn);
3004 /* First see if this insn remains valid when we
3005 make the change. If not, keep the INSN_CODE
3006 the same and let reload fit it up. */
3007 validate_change (insn, &SET_SRC (old_set), src, 1);
3008 validate_change (insn, &SET_DEST (old_set),
3009 ep->to_rtx, 1);
3010 if (! apply_change_group ())
3012 SET_SRC (old_set) = src;
3013 SET_DEST (old_set) = ep->to_rtx;
3016 val = 1;
3017 goto done;
3020 #endif
3022 /* In this case this insn isn't serving a useful purpose. We
3023 will delete it in reload_as_needed once we know that this
3024 elimination is, in fact, being done.
3026 If REPLACE isn't set, we can't delete this insn, but needn't
3027 process it since it won't be used unless something changes. */
3028 if (replace)
3030 delete_dead_insn (insn);
3031 return 1;
3033 val = 1;
3034 goto done;
3038 /* We allow one special case which happens to work on all machines we
3039 currently support: a single set with the source being a PLUS of an
3040 eliminable register and a constant. */
3041 if (old_set
3042 && GET_CODE (SET_DEST (old_set)) == REG
3043 && GET_CODE (SET_SRC (old_set)) == PLUS
3044 && GET_CODE (XEXP (SET_SRC (old_set), 0)) == REG
3045 && GET_CODE (XEXP (SET_SRC (old_set), 1)) == CONST_INT
3046 && REGNO (XEXP (SET_SRC (old_set), 0)) < FIRST_PSEUDO_REGISTER)
3048 rtx reg = XEXP (SET_SRC (old_set), 0);
3049 int offset = INTVAL (XEXP (SET_SRC (old_set), 1));
3051 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3052 if (ep->from_rtx == reg && ep->can_eliminate)
3054 offset += ep->offset;
3056 if (offset == 0)
3058 int num_clobbers;
3059 /* We assume here that if we need a PARALLEL with
3060 CLOBBERs for this assignment, we can do with the
3061 MATCH_SCRATCHes that add_clobbers allocates.
3062 There's not much we can do if that doesn't work. */
3063 PATTERN (insn) = gen_rtx_SET (VOIDmode,
3064 SET_DEST (old_set),
3065 ep->to_rtx);
3066 num_clobbers = 0;
3067 INSN_CODE (insn) = recog (PATTERN (insn), insn, &num_clobbers);
3068 if (num_clobbers)
3070 rtvec vec = rtvec_alloc (num_clobbers + 1);
3072 vec->elem[0] = PATTERN (insn);
3073 PATTERN (insn) = gen_rtx_PARALLEL (VOIDmode, vec);
3074 add_clobbers (PATTERN (insn), INSN_CODE (insn));
3076 if (INSN_CODE (insn) < 0)
3077 abort ();
3079 else
3081 new_body = old_body;
3082 if (! replace)
3084 new_body = copy_insn (old_body);
3085 if (REG_NOTES (insn))
3086 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3088 PATTERN (insn) = new_body;
3089 old_set = single_set (insn);
3091 XEXP (SET_SRC (old_set), 0) = ep->to_rtx;
3092 XEXP (SET_SRC (old_set), 1) = GEN_INT (offset);
3094 val = 1;
3095 /* This can't have an effect on elimination offsets, so skip right
3096 to the end. */
3097 goto done;
3101 /* Determine the effects of this insn on elimination offsets. */
3102 elimination_effects (old_body, 0);
3104 /* Eliminate all eliminable registers occurring in operands that
3105 can be handled by reload. */
3106 extract_insn (insn);
3107 any_changes = 0;
3108 for (i = 0; i < recog_data.n_operands; i++)
3110 orig_operand[i] = recog_data.operand[i];
3111 substed_operand[i] = recog_data.operand[i];
3113 /* For an asm statement, every operand is eliminable. */
3114 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3116 /* Check for setting a register that we know about. */
3117 if (recog_data.operand_type[i] != OP_IN
3118 && GET_CODE (orig_operand[i]) == REG)
3120 /* If we are assigning to a register that can be eliminated, it
3121 must be as part of a PARALLEL, since the code above handles
3122 single SETs. We must indicate that we can no longer
3123 eliminate this reg. */
3124 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3125 ep++)
3126 if (ep->from_rtx == orig_operand[i] && ep->can_eliminate)
3127 ep->can_eliminate = 0;
3130 substed_operand[i] = eliminate_regs (recog_data.operand[i], 0,
3131 replace ? insn : NULL_RTX);
3132 if (substed_operand[i] != orig_operand[i])
3133 val = any_changes = 1;
3134 /* Terminate the search in check_eliminable_occurrences at
3135 this point. */
3136 *recog_data.operand_loc[i] = 0;
3138 /* If an output operand changed from a REG to a MEM and INSN is an
3139 insn, write a CLOBBER insn. */
3140 if (recog_data.operand_type[i] != OP_IN
3141 && GET_CODE (orig_operand[i]) == REG
3142 && GET_CODE (substed_operand[i]) == MEM
3143 && replace)
3144 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, orig_operand[i]),
3145 insn);
3149 for (i = 0; i < recog_data.n_dups; i++)
3150 *recog_data.dup_loc[i]
3151 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3153 /* If any eliminable remain, they aren't eliminable anymore. */
3154 check_eliminable_occurrences (old_body);
3156 /* Substitute the operands; the new values are in the substed_operand
3157 array. */
3158 for (i = 0; i < recog_data.n_operands; i++)
3159 *recog_data.operand_loc[i] = substed_operand[i];
3160 for (i = 0; i < recog_data.n_dups; i++)
3161 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
3163 /* If we are replacing a body that was a (set X (plus Y Z)), try to
3164 re-recognize the insn. We do this in case we had a simple addition
3165 but now can do this as a load-address. This saves an insn in this
3166 common case.
3167 If re-recognition fails, the old insn code number will still be used,
3168 and some register operands may have changed into PLUS expressions.
3169 These will be handled by find_reloads by loading them into a register
3170 again. */
3172 if (val)
3174 /* If we aren't replacing things permanently and we changed something,
3175 make another copy to ensure that all the RTL is new. Otherwise
3176 things can go wrong if find_reload swaps commutative operands
3177 and one is inside RTL that has been copied while the other is not. */
3178 new_body = old_body;
3179 if (! replace)
3181 new_body = copy_insn (old_body);
3182 if (REG_NOTES (insn))
3183 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3185 PATTERN (insn) = new_body;
3187 /* If we had a move insn but now we don't, rerecognize it. This will
3188 cause spurious re-recognition if the old move had a PARALLEL since
3189 the new one still will, but we can't call single_set without
3190 having put NEW_BODY into the insn and the re-recognition won't
3191 hurt in this rare case. */
3192 /* ??? Why this huge if statement - why don't we just rerecognize the
3193 thing always? */
3194 if (! insn_is_asm
3195 && old_set != 0
3196 && ((GET_CODE (SET_SRC (old_set)) == REG
3197 && (GET_CODE (new_body) != SET
3198 || GET_CODE (SET_SRC (new_body)) != REG))
3199 /* If this was a load from or store to memory, compare
3200 the MEM in recog_data.operand to the one in the insn.
3201 If they are not equal, then rerecognize the insn. */
3202 || (old_set != 0
3203 && ((GET_CODE (SET_SRC (old_set)) == MEM
3204 && SET_SRC (old_set) != recog_data.operand[1])
3205 || (GET_CODE (SET_DEST (old_set)) == MEM
3206 && SET_DEST (old_set) != recog_data.operand[0])))
3207 /* If this was an add insn before, rerecognize. */
3208 || GET_CODE (SET_SRC (old_set)) == PLUS))
3210 int new_icode = recog (PATTERN (insn), insn, 0);
3211 if (new_icode < 0)
3212 INSN_CODE (insn) = icode;
3216 /* Restore the old body. If there were any changes to it, we made a copy
3217 of it while the changes were still in place, so we'll correctly return
3218 a modified insn below. */
3219 if (! replace)
3221 /* Restore the old body. */
3222 for (i = 0; i < recog_data.n_operands; i++)
3223 *recog_data.operand_loc[i] = orig_operand[i];
3224 for (i = 0; i < recog_data.n_dups; i++)
3225 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
3228 /* Update all elimination pairs to reflect the status after the current
3229 insn. The changes we make were determined by the earlier call to
3230 elimination_effects.
3232 We also detect cases where register elimination cannot be done,
3233 namely, if a register would be both changed and referenced outside a MEM
3234 in the resulting insn since such an insn is often undefined and, even if
3235 not, we cannot know what meaning will be given to it. Note that it is
3236 valid to have a register used in an address in an insn that changes it
3237 (presumably with a pre- or post-increment or decrement).
3239 If anything changes, return nonzero. */
3241 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3243 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3244 ep->can_eliminate = 0;
3246 ep->ref_outside_mem = 0;
3248 if (ep->previous_offset != ep->offset)
3249 val = 1;
3252 done:
3253 /* If we changed something, perform elimination in REG_NOTES. This is
3254 needed even when REPLACE is zero because a REG_DEAD note might refer
3255 to a register that we eliminate and could cause a different number
3256 of spill registers to be needed in the final reload pass than in
3257 the pre-passes. */
3258 if (val && REG_NOTES (insn) != 0)
3259 REG_NOTES (insn) = eliminate_regs (REG_NOTES (insn), 0, REG_NOTES (insn));
3261 return val;
3264 /* Loop through all elimination pairs.
3265 Recalculate the number not at initial offset.
3267 Compute the maximum offset (minimum offset if the stack does not
3268 grow downward) for each elimination pair. */
3270 static void
3271 update_eliminable_offsets ()
3273 struct elim_table *ep;
3275 num_not_at_initial_offset = 0;
3276 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3278 ep->previous_offset = ep->offset;
3279 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3280 num_not_at_initial_offset++;
3284 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3285 replacement we currently believe is valid, mark it as not eliminable if X
3286 modifies DEST in any way other than by adding a constant integer to it.
3288 If DEST is the frame pointer, we do nothing because we assume that
3289 all assignments to the hard frame pointer are nonlocal gotos and are being
3290 done at a time when they are valid and do not disturb anything else.
3291 Some machines want to eliminate a fake argument pointer with either the
3292 frame or stack pointer. Assignments to the hard frame pointer must not
3293 prevent this elimination.
3295 Called via note_stores from reload before starting its passes to scan
3296 the insns of the function. */
3298 static void
3299 mark_not_eliminable (dest, x, data)
3300 rtx dest;
3301 rtx x;
3302 void *data ATTRIBUTE_UNUSED;
3304 unsigned int i;
3306 /* A SUBREG of a hard register here is just changing its mode. We should
3307 not see a SUBREG of an eliminable hard register, but check just in
3308 case. */
3309 if (GET_CODE (dest) == SUBREG)
3310 dest = SUBREG_REG (dest);
3312 if (dest == hard_frame_pointer_rtx)
3313 return;
3315 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3316 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3317 && (GET_CODE (x) != SET
3318 || GET_CODE (SET_SRC (x)) != PLUS
3319 || XEXP (SET_SRC (x), 0) != dest
3320 || GET_CODE (XEXP (SET_SRC (x), 1)) != CONST_INT))
3322 reg_eliminate[i].can_eliminate_previous
3323 = reg_eliminate[i].can_eliminate = 0;
3324 num_eliminable--;
3328 /* Verify that the initial elimination offsets did not change since the
3329 last call to set_initial_elim_offsets. This is used to catch cases
3330 where something illegal happened during reload_as_needed that could
3331 cause incorrect code to be generated if we did not check for it. */
3333 static void
3334 verify_initial_elim_offsets ()
3336 int t;
3338 #ifdef ELIMINABLE_REGS
3339 struct elim_table *ep;
3341 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3343 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3344 if (t != ep->initial_offset)
3345 abort ();
3347 #else
3348 INITIAL_FRAME_POINTER_OFFSET (t);
3349 if (t != reg_eliminate[0].initial_offset)
3350 abort ();
3351 #endif
3354 /* Reset all offsets on eliminable registers to their initial values. */
3356 static void
3357 set_initial_elim_offsets ()
3359 struct elim_table *ep = reg_eliminate;
3361 #ifdef ELIMINABLE_REGS
3362 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3364 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3365 ep->previous_offset = ep->offset = ep->initial_offset;
3367 #else
3368 INITIAL_FRAME_POINTER_OFFSET (ep->initial_offset);
3369 ep->previous_offset = ep->offset = ep->initial_offset;
3370 #endif
3372 num_not_at_initial_offset = 0;
3375 /* Initialize the known label offsets.
3376 Set a known offset for each forced label to be at the initial offset
3377 of each elimination. We do this because we assume that all
3378 computed jumps occur from a location where each elimination is
3379 at its initial offset.
3380 For all other labels, show that we don't know the offsets. */
3382 static void
3383 set_initial_label_offsets ()
3385 rtx x;
3386 memset ((char *) &offsets_known_at[get_first_label_num ()], 0, num_labels);
3388 for (x = forced_labels; x; x = XEXP (x, 1))
3389 if (XEXP (x, 0))
3390 set_label_offsets (XEXP (x, 0), NULL_RTX, 1);
3393 /* Set all elimination offsets to the known values for the code label given
3394 by INSN. */
3396 static void
3397 set_offsets_for_label (insn)
3398 rtx insn;
3400 unsigned int i;
3401 int label_nr = CODE_LABEL_NUMBER (insn);
3402 struct elim_table *ep;
3404 num_not_at_initial_offset = 0;
3405 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3407 ep->offset = ep->previous_offset = offsets_at[label_nr][i];
3408 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3409 num_not_at_initial_offset++;
3413 /* See if anything that happened changes which eliminations are valid.
3414 For example, on the SPARC, whether or not the frame pointer can
3415 be eliminated can depend on what registers have been used. We need
3416 not check some conditions again (such as flag_omit_frame_pointer)
3417 since they can't have changed. */
3419 static void
3420 update_eliminables (pset)
3421 HARD_REG_SET *pset;
3423 int previous_frame_pointer_needed = frame_pointer_needed;
3424 struct elim_table *ep;
3426 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3427 if ((ep->from == HARD_FRAME_POINTER_REGNUM && FRAME_POINTER_REQUIRED)
3428 #ifdef ELIMINABLE_REGS
3429 || ! CAN_ELIMINATE (ep->from, ep->to)
3430 #endif
3432 ep->can_eliminate = 0;
3434 /* Look for the case where we have discovered that we can't replace
3435 register A with register B and that means that we will now be
3436 trying to replace register A with register C. This means we can
3437 no longer replace register C with register B and we need to disable
3438 such an elimination, if it exists. This occurs often with A == ap,
3439 B == sp, and C == fp. */
3441 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3443 struct elim_table *op;
3444 int new_to = -1;
3446 if (! ep->can_eliminate && ep->can_eliminate_previous)
3448 /* Find the current elimination for ep->from, if there is a
3449 new one. */
3450 for (op = reg_eliminate;
3451 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3452 if (op->from == ep->from && op->can_eliminate)
3454 new_to = op->to;
3455 break;
3458 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
3459 disable it. */
3460 for (op = reg_eliminate;
3461 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3462 if (op->from == new_to && op->to == ep->to)
3463 op->can_eliminate = 0;
3467 /* See if any registers that we thought we could eliminate the previous
3468 time are no longer eliminable. If so, something has changed and we
3469 must spill the register. Also, recompute the number of eliminable
3470 registers and see if the frame pointer is needed; it is if there is
3471 no elimination of the frame pointer that we can perform. */
3473 frame_pointer_needed = 1;
3474 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3476 if (ep->can_eliminate && ep->from == FRAME_POINTER_REGNUM
3477 && ep->to != HARD_FRAME_POINTER_REGNUM)
3478 frame_pointer_needed = 0;
3480 if (! ep->can_eliminate && ep->can_eliminate_previous)
3482 ep->can_eliminate_previous = 0;
3483 SET_HARD_REG_BIT (*pset, ep->from);
3484 num_eliminable--;
3488 /* If we didn't need a frame pointer last time, but we do now, spill
3489 the hard frame pointer. */
3490 if (frame_pointer_needed && ! previous_frame_pointer_needed)
3491 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
3494 /* Initialize the table of registers to eliminate. */
3496 static void
3497 init_elim_table ()
3499 struct elim_table *ep;
3500 #ifdef ELIMINABLE_REGS
3501 const struct elim_table_1 *ep1;
3502 #endif
3504 if (!reg_eliminate)
3505 reg_eliminate = (struct elim_table *)
3506 xcalloc (sizeof (struct elim_table), NUM_ELIMINABLE_REGS);
3508 /* Does this function require a frame pointer? */
3510 frame_pointer_needed = (! flag_omit_frame_pointer
3511 #ifdef EXIT_IGNORE_STACK
3512 /* ?? If EXIT_IGNORE_STACK is set, we will not save
3513 and restore sp for alloca. So we can't eliminate
3514 the frame pointer in that case. At some point,
3515 we should improve this by emitting the
3516 sp-adjusting insns for this case. */
3517 || (current_function_calls_alloca
3518 && EXIT_IGNORE_STACK)
3519 #endif
3520 || FRAME_POINTER_REQUIRED);
3522 num_eliminable = 0;
3524 #ifdef ELIMINABLE_REGS
3525 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
3526 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
3528 ep->from = ep1->from;
3529 ep->to = ep1->to;
3530 ep->can_eliminate = ep->can_eliminate_previous
3531 = (CAN_ELIMINATE (ep->from, ep->to)
3532 && ! (ep->to == STACK_POINTER_REGNUM && frame_pointer_needed));
3534 #else
3535 reg_eliminate[0].from = reg_eliminate_1[0].from;
3536 reg_eliminate[0].to = reg_eliminate_1[0].to;
3537 reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
3538 = ! frame_pointer_needed;
3539 #endif
3541 /* Count the number of eliminable registers and build the FROM and TO
3542 REG rtx's. Note that code in gen_rtx will cause, e.g.,
3543 gen_rtx (REG, Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
3544 We depend on this. */
3545 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3547 num_eliminable += ep->can_eliminate;
3548 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
3549 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
3553 /* Kick all pseudos out of hard register REGNO.
3555 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
3556 because we found we can't eliminate some register. In the case, no pseudos
3557 are allowed to be in the register, even if they are only in a block that
3558 doesn't require spill registers, unlike the case when we are spilling this
3559 hard reg to produce another spill register.
3561 Return nonzero if any pseudos needed to be kicked out. */
3563 static void
3564 spill_hard_reg (regno, cant_eliminate)
3565 unsigned int regno;
3566 int cant_eliminate;
3568 int i;
3570 if (cant_eliminate)
3572 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
3573 regs_ever_live[regno] = 1;
3576 /* Spill every pseudo reg that was allocated to this reg
3577 or to something that overlaps this reg. */
3579 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3580 if (reg_renumber[i] >= 0
3581 && (unsigned int) reg_renumber[i] <= regno
3582 && ((unsigned int) reg_renumber[i]
3583 + HARD_REGNO_NREGS ((unsigned int) reg_renumber[i],
3584 PSEUDO_REGNO_MODE (i))
3585 > regno))
3586 SET_REGNO_REG_SET (&spilled_pseudos, i);
3589 /* I'm getting weird preprocessor errors if I use IOR_HARD_REG_SET
3590 from within EXECUTE_IF_SET_IN_REG_SET. Hence this awkwardness. */
3592 static void
3593 ior_hard_reg_set (set1, set2)
3594 HARD_REG_SET *set1, *set2;
3596 IOR_HARD_REG_SET (*set1, *set2);
3599 /* After find_reload_regs has been run for all insn that need reloads,
3600 and/or spill_hard_regs was called, this function is used to actually
3601 spill pseudo registers and try to reallocate them. It also sets up the
3602 spill_regs array for use by choose_reload_regs. */
3604 static int
3605 finish_spills (global)
3606 int global;
3608 struct insn_chain *chain;
3609 int something_changed = 0;
3610 int i;
3612 /* Build the spill_regs array for the function. */
3613 /* If there are some registers still to eliminate and one of the spill regs
3614 wasn't ever used before, additional stack space may have to be
3615 allocated to store this register. Thus, we may have changed the offset
3616 between the stack and frame pointers, so mark that something has changed.
3618 One might think that we need only set VAL to 1 if this is a call-used
3619 register. However, the set of registers that must be saved by the
3620 prologue is not identical to the call-used set. For example, the
3621 register used by the call insn for the return PC is a call-used register,
3622 but must be saved by the prologue. */
3624 n_spills = 0;
3625 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3626 if (TEST_HARD_REG_BIT (used_spill_regs, i))
3628 spill_reg_order[i] = n_spills;
3629 spill_regs[n_spills++] = i;
3630 if (num_eliminable && ! regs_ever_live[i])
3631 something_changed = 1;
3632 regs_ever_live[i] = 1;
3634 else
3635 spill_reg_order[i] = -1;
3637 EXECUTE_IF_SET_IN_REG_SET
3638 (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i,
3640 /* Record the current hard register the pseudo is allocated to in
3641 pseudo_previous_regs so we avoid reallocating it to the same
3642 hard reg in a later pass. */
3643 if (reg_renumber[i] < 0)
3644 abort ();
3646 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
3647 /* Mark it as no longer having a hard register home. */
3648 reg_renumber[i] = -1;
3649 /* We will need to scan everything again. */
3650 something_changed = 1;
3653 /* Retry global register allocation if possible. */
3654 if (global)
3656 memset ((char *) pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
3657 /* For every insn that needs reloads, set the registers used as spill
3658 regs in pseudo_forbidden_regs for every pseudo live across the
3659 insn. */
3660 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
3662 EXECUTE_IF_SET_IN_REG_SET
3663 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i,
3665 ior_hard_reg_set (pseudo_forbidden_regs + i,
3666 &chain->used_spill_regs);
3668 EXECUTE_IF_SET_IN_REG_SET
3669 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i,
3671 ior_hard_reg_set (pseudo_forbidden_regs + i,
3672 &chain->used_spill_regs);
3676 /* Retry allocating the spilled pseudos. For each reg, merge the
3677 various reg sets that indicate which hard regs can't be used,
3678 and call retry_global_alloc.
3679 We change spill_pseudos here to only contain pseudos that did not
3680 get a new hard register. */
3681 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3682 if (reg_old_renumber[i] != reg_renumber[i])
3684 HARD_REG_SET forbidden;
3685 COPY_HARD_REG_SET (forbidden, bad_spill_regs_global);
3686 IOR_HARD_REG_SET (forbidden, pseudo_forbidden_regs[i]);
3687 IOR_HARD_REG_SET (forbidden, pseudo_previous_regs[i]);
3688 retry_global_alloc (i, forbidden);
3689 if (reg_renumber[i] >= 0)
3690 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
3694 /* Fix up the register information in the insn chain.
3695 This involves deleting those of the spilled pseudos which did not get
3696 a new hard register home from the live_{before,after} sets. */
3697 for (chain = reload_insn_chain; chain; chain = chain->next)
3699 HARD_REG_SET used_by_pseudos;
3700 HARD_REG_SET used_by_pseudos2;
3702 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
3703 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
3705 /* Mark any unallocated hard regs as available for spills. That
3706 makes inheritance work somewhat better. */
3707 if (chain->need_reload)
3709 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
3710 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
3711 IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
3713 /* Save the old value for the sanity test below. */
3714 COPY_HARD_REG_SET (used_by_pseudos2, chain->used_spill_regs);
3716 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
3717 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
3718 COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
3719 AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
3721 /* Make sure we only enlarge the set. */
3722 GO_IF_HARD_REG_SUBSET (used_by_pseudos2, chain->used_spill_regs, ok);
3723 abort ();
3724 ok:;
3728 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
3729 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3731 int regno = reg_renumber[i];
3732 if (reg_old_renumber[i] == regno)
3733 continue;
3735 alter_reg (i, reg_old_renumber[i]);
3736 reg_old_renumber[i] = regno;
3737 if (rtl_dump_file)
3739 if (regno == -1)
3740 fprintf (rtl_dump_file, " Register %d now on stack.\n\n", i);
3741 else
3742 fprintf (rtl_dump_file, " Register %d now in %d.\n\n",
3743 i, reg_renumber[i]);
3747 return something_changed;
3750 /* Find all paradoxical subregs within X and update reg_max_ref_width.
3751 Also mark any hard registers used to store user variables as
3752 forbidden from being used for spill registers. */
3754 static void
3755 scan_paradoxical_subregs (x)
3756 rtx x;
3758 int i;
3759 const char *fmt;
3760 enum rtx_code code = GET_CODE (x);
3762 switch (code)
3764 case REG:
3765 #if 0
3766 if (SMALL_REGISTER_CLASSES && REGNO (x) < FIRST_PSEUDO_REGISTER
3767 && REG_USERVAR_P (x))
3768 SET_HARD_REG_BIT (bad_spill_regs_global, REGNO (x));
3769 #endif
3770 return;
3772 case CONST_INT:
3773 case CONST:
3774 case SYMBOL_REF:
3775 case LABEL_REF:
3776 case CONST_DOUBLE:
3777 case CONST_VECTOR: /* shouldn't happen, but just in case. */
3778 case CC0:
3779 case PC:
3780 case USE:
3781 case CLOBBER:
3782 return;
3784 case SUBREG:
3785 if (GET_CODE (SUBREG_REG (x)) == REG
3786 && GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3787 reg_max_ref_width[REGNO (SUBREG_REG (x))]
3788 = GET_MODE_SIZE (GET_MODE (x));
3789 return;
3791 default:
3792 break;
3795 fmt = GET_RTX_FORMAT (code);
3796 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3798 if (fmt[i] == 'e')
3799 scan_paradoxical_subregs (XEXP (x, i));
3800 else if (fmt[i] == 'E')
3802 int j;
3803 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3804 scan_paradoxical_subregs (XVECEXP (x, i, j));
3809 /* Reload pseudo-registers into hard regs around each insn as needed.
3810 Additional register load insns are output before the insn that needs it
3811 and perhaps store insns after insns that modify the reloaded pseudo reg.
3813 reg_last_reload_reg and reg_reloaded_contents keep track of
3814 which registers are already available in reload registers.
3815 We update these for the reloads that we perform,
3816 as the insns are scanned. */
3818 static void
3819 reload_as_needed (live_known)
3820 int live_known;
3822 struct insn_chain *chain;
3823 #if defined (AUTO_INC_DEC)
3824 int i;
3825 #endif
3826 rtx x;
3828 memset ((char *) spill_reg_rtx, 0, sizeof spill_reg_rtx);
3829 memset ((char *) spill_reg_store, 0, sizeof spill_reg_store);
3830 reg_last_reload_reg = (rtx *) xcalloc (max_regno, sizeof (rtx));
3831 reg_has_output_reload = (char *) xmalloc (max_regno);
3832 CLEAR_HARD_REG_SET (reg_reloaded_valid);
3834 set_initial_elim_offsets ();
3836 for (chain = reload_insn_chain; chain; chain = chain->next)
3838 rtx prev;
3839 rtx insn = chain->insn;
3840 rtx old_next = NEXT_INSN (insn);
3842 /* If we pass a label, copy the offsets from the label information
3843 into the current offsets of each elimination. */
3844 if (GET_CODE (insn) == CODE_LABEL)
3845 set_offsets_for_label (insn);
3847 else if (INSN_P (insn))
3849 rtx oldpat = copy_rtx (PATTERN (insn));
3851 /* If this is a USE and CLOBBER of a MEM, ensure that any
3852 references to eliminable registers have been removed. */
3854 if ((GET_CODE (PATTERN (insn)) == USE
3855 || GET_CODE (PATTERN (insn)) == CLOBBER)
3856 && GET_CODE (XEXP (PATTERN (insn), 0)) == MEM)
3857 XEXP (XEXP (PATTERN (insn), 0), 0)
3858 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
3859 GET_MODE (XEXP (PATTERN (insn), 0)),
3860 NULL_RTX);
3862 /* If we need to do register elimination processing, do so.
3863 This might delete the insn, in which case we are done. */
3864 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
3866 eliminate_regs_in_insn (insn, 1);
3867 if (GET_CODE (insn) == NOTE)
3869 update_eliminable_offsets ();
3870 continue;
3874 /* If need_elim is nonzero but need_reload is zero, one might think
3875 that we could simply set n_reloads to 0. However, find_reloads
3876 could have done some manipulation of the insn (such as swapping
3877 commutative operands), and these manipulations are lost during
3878 the first pass for every insn that needs register elimination.
3879 So the actions of find_reloads must be redone here. */
3881 if (! chain->need_elim && ! chain->need_reload
3882 && ! chain->need_operand_change)
3883 n_reloads = 0;
3884 /* First find the pseudo regs that must be reloaded for this insn.
3885 This info is returned in the tables reload_... (see reload.h).
3886 Also modify the body of INSN by substituting RELOAD
3887 rtx's for those pseudo regs. */
3888 else
3890 memset (reg_has_output_reload, 0, max_regno);
3891 CLEAR_HARD_REG_SET (reg_is_output_reload);
3893 find_reloads (insn, 1, spill_indirect_levels, live_known,
3894 spill_reg_order);
3897 if (n_reloads > 0)
3899 rtx next = NEXT_INSN (insn);
3900 rtx p;
3902 prev = PREV_INSN (insn);
3904 /* Now compute which reload regs to reload them into. Perhaps
3905 reusing reload regs from previous insns, or else output
3906 load insns to reload them. Maybe output store insns too.
3907 Record the choices of reload reg in reload_reg_rtx. */
3908 choose_reload_regs (chain);
3910 /* Merge any reloads that we didn't combine for fear of
3911 increasing the number of spill registers needed but now
3912 discover can be safely merged. */
3913 if (SMALL_REGISTER_CLASSES)
3914 merge_assigned_reloads (insn);
3916 /* Generate the insns to reload operands into or out of
3917 their reload regs. */
3918 emit_reload_insns (chain);
3920 /* Substitute the chosen reload regs from reload_reg_rtx
3921 into the insn's body (or perhaps into the bodies of other
3922 load and store insn that we just made for reloading
3923 and that we moved the structure into). */
3924 subst_reloads (insn);
3926 /* If this was an ASM, make sure that all the reload insns
3927 we have generated are valid. If not, give an error
3928 and delete them. */
3930 if (asm_noperands (PATTERN (insn)) >= 0)
3931 for (p = NEXT_INSN (prev); p != next; p = NEXT_INSN (p))
3932 if (p != insn && INSN_P (p)
3933 && (recog_memoized (p) < 0
3934 || (extract_insn (p), ! constrain_operands (1))))
3936 error_for_asm (insn,
3937 "`asm' operand requires impossible reload");
3938 delete_insn (p);
3942 if (num_eliminable && chain->need_elim)
3943 update_eliminable_offsets ();
3945 /* Any previously reloaded spilled pseudo reg, stored in this insn,
3946 is no longer validly lying around to save a future reload.
3947 Note that this does not detect pseudos that were reloaded
3948 for this insn in order to be stored in
3949 (obeying register constraints). That is correct; such reload
3950 registers ARE still valid. */
3951 note_stores (oldpat, forget_old_reloads_1, NULL);
3953 /* There may have been CLOBBER insns placed after INSN. So scan
3954 between INSN and NEXT and use them to forget old reloads. */
3955 for (x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
3956 if (GET_CODE (x) == INSN && GET_CODE (PATTERN (x)) == CLOBBER)
3957 note_stores (PATTERN (x), forget_old_reloads_1, NULL);
3959 #ifdef AUTO_INC_DEC
3960 /* Likewise for regs altered by auto-increment in this insn.
3961 REG_INC notes have been changed by reloading:
3962 find_reloads_address_1 records substitutions for them,
3963 which have been performed by subst_reloads above. */
3964 for (i = n_reloads - 1; i >= 0; i--)
3966 rtx in_reg = rld[i].in_reg;
3967 if (in_reg)
3969 enum rtx_code code = GET_CODE (in_reg);
3970 /* PRE_INC / PRE_DEC will have the reload register ending up
3971 with the same value as the stack slot, but that doesn't
3972 hold true for POST_INC / POST_DEC. Either we have to
3973 convert the memory access to a true POST_INC / POST_DEC,
3974 or we can't use the reload register for inheritance. */
3975 if ((code == POST_INC || code == POST_DEC)
3976 && TEST_HARD_REG_BIT (reg_reloaded_valid,
3977 REGNO (rld[i].reg_rtx))
3978 /* Make sure it is the inc/dec pseudo, and not
3979 some other (e.g. output operand) pseudo. */
3980 && (reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
3981 == REGNO (XEXP (in_reg, 0))))
3984 rtx reload_reg = rld[i].reg_rtx;
3985 enum machine_mode mode = GET_MODE (reload_reg);
3986 int n = 0;
3987 rtx p;
3989 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
3991 /* We really want to ignore REG_INC notes here, so
3992 use PATTERN (p) as argument to reg_set_p . */
3993 if (reg_set_p (reload_reg, PATTERN (p)))
3994 break;
3995 n = count_occurrences (PATTERN (p), reload_reg, 0);
3996 if (! n)
3997 continue;
3998 if (n == 1)
4000 n = validate_replace_rtx (reload_reg,
4001 gen_rtx (code, mode,
4002 reload_reg),
4005 /* We must also verify that the constraints
4006 are met after the replacement. */
4007 extract_insn (p);
4008 if (n)
4009 n = constrain_operands (1);
4010 else
4011 break;
4013 /* If the constraints were not met, then
4014 undo the replacement. */
4015 if (!n)
4017 validate_replace_rtx (gen_rtx (code, mode,
4018 reload_reg),
4019 reload_reg, p);
4020 break;
4024 break;
4026 if (n == 1)
4028 REG_NOTES (p)
4029 = gen_rtx_EXPR_LIST (REG_INC, reload_reg,
4030 REG_NOTES (p));
4031 /* Mark this as having an output reload so that the
4032 REG_INC processing code below won't invalidate
4033 the reload for inheritance. */
4034 SET_HARD_REG_BIT (reg_is_output_reload,
4035 REGNO (reload_reg));
4036 reg_has_output_reload[REGNO (XEXP (in_reg, 0))] = 1;
4038 else
4039 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
4040 NULL);
4042 else if ((code == PRE_INC || code == PRE_DEC)
4043 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4044 REGNO (rld[i].reg_rtx))
4045 /* Make sure it is the inc/dec pseudo, and not
4046 some other (e.g. output operand) pseudo. */
4047 && (reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4048 == REGNO (XEXP (in_reg, 0))))
4050 SET_HARD_REG_BIT (reg_is_output_reload,
4051 REGNO (rld[i].reg_rtx));
4052 reg_has_output_reload[REGNO (XEXP (in_reg, 0))] = 1;
4056 /* If a pseudo that got a hard register is auto-incremented,
4057 we must purge records of copying it into pseudos without
4058 hard registers. */
4059 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
4060 if (REG_NOTE_KIND (x) == REG_INC)
4062 /* See if this pseudo reg was reloaded in this insn.
4063 If so, its last-reload info is still valid
4064 because it is based on this insn's reload. */
4065 for (i = 0; i < n_reloads; i++)
4066 if (rld[i].out == XEXP (x, 0))
4067 break;
4069 if (i == n_reloads)
4070 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
4072 #endif
4074 /* A reload reg's contents are unknown after a label. */
4075 if (GET_CODE (insn) == CODE_LABEL)
4076 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4078 /* Don't assume a reload reg is still good after a call insn
4079 if it is a call-used reg. */
4080 else if (GET_CODE (insn) == CALL_INSN)
4081 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, call_used_reg_set);
4084 /* Clean up. */
4085 free (reg_last_reload_reg);
4086 free (reg_has_output_reload);
4089 /* Discard all record of any value reloaded from X,
4090 or reloaded in X from someplace else;
4091 unless X is an output reload reg of the current insn.
4093 X may be a hard reg (the reload reg)
4094 or it may be a pseudo reg that was reloaded from. */
4096 static void
4097 forget_old_reloads_1 (x, ignored, data)
4098 rtx x;
4099 rtx ignored ATTRIBUTE_UNUSED;
4100 void *data ATTRIBUTE_UNUSED;
4102 unsigned int regno;
4103 unsigned int nr;
4105 /* note_stores does give us subregs of hard regs,
4106 subreg_regno_offset will abort if it is not a hard reg. */
4107 while (GET_CODE (x) == SUBREG)
4109 /* We ignore the subreg offset when calculating the regno,
4110 because we are using the entire underlying hard register
4111 below. */
4112 x = SUBREG_REG (x);
4115 if (GET_CODE (x) != REG)
4116 return;
4118 regno = REGNO (x);
4120 if (regno >= FIRST_PSEUDO_REGISTER)
4121 nr = 1;
4122 else
4124 unsigned int i;
4126 nr = HARD_REGNO_NREGS (regno, GET_MODE (x));
4127 /* Storing into a spilled-reg invalidates its contents.
4128 This can happen if a block-local pseudo is allocated to that reg
4129 and it wasn't spilled because this block's total need is 0.
4130 Then some insn might have an optional reload and use this reg. */
4131 for (i = 0; i < nr; i++)
4132 /* But don't do this if the reg actually serves as an output
4133 reload reg in the current instruction. */
4134 if (n_reloads == 0
4135 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4137 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4138 spill_reg_store[regno + i] = 0;
4142 /* Since value of X has changed,
4143 forget any value previously copied from it. */
4145 while (nr-- > 0)
4146 /* But don't forget a copy if this is the output reload
4147 that establishes the copy's validity. */
4148 if (n_reloads == 0 || reg_has_output_reload[regno + nr] == 0)
4149 reg_last_reload_reg[regno + nr] = 0;
4152 /* The following HARD_REG_SETs indicate when each hard register is
4153 used for a reload of various parts of the current insn. */
4155 /* If reg is unavailable for all reloads. */
4156 static HARD_REG_SET reload_reg_unavailable;
4157 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
4158 static HARD_REG_SET reload_reg_used;
4159 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
4160 static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
4161 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
4162 static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
4163 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
4164 static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
4165 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
4166 static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
4167 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
4168 static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
4169 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
4170 static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
4171 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
4172 static HARD_REG_SET reload_reg_used_in_op_addr;
4173 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
4174 static HARD_REG_SET reload_reg_used_in_op_addr_reload;
4175 /* If reg is in use for a RELOAD_FOR_INSN reload. */
4176 static HARD_REG_SET reload_reg_used_in_insn;
4177 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
4178 static HARD_REG_SET reload_reg_used_in_other_addr;
4180 /* If reg is in use as a reload reg for any sort of reload. */
4181 static HARD_REG_SET reload_reg_used_at_all;
4183 /* If reg is use as an inherited reload. We just mark the first register
4184 in the group. */
4185 static HARD_REG_SET reload_reg_used_for_inherit;
4187 /* Records which hard regs are used in any way, either as explicit use or
4188 by being allocated to a pseudo during any point of the current insn. */
4189 static HARD_REG_SET reg_used_in_insn;
4191 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
4192 TYPE. MODE is used to indicate how many consecutive regs are
4193 actually used. */
4195 static void
4196 mark_reload_reg_in_use (regno, opnum, type, mode)
4197 unsigned int regno;
4198 int opnum;
4199 enum reload_type type;
4200 enum machine_mode mode;
4202 unsigned int nregs = HARD_REGNO_NREGS (regno, mode);
4203 unsigned int i;
4205 for (i = regno; i < nregs + regno; i++)
4207 switch (type)
4209 case RELOAD_OTHER:
4210 SET_HARD_REG_BIT (reload_reg_used, i);
4211 break;
4213 case RELOAD_FOR_INPUT_ADDRESS:
4214 SET_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], i);
4215 break;
4217 case RELOAD_FOR_INPADDR_ADDRESS:
4218 SET_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], i);
4219 break;
4221 case RELOAD_FOR_OUTPUT_ADDRESS:
4222 SET_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], i);
4223 break;
4225 case RELOAD_FOR_OUTADDR_ADDRESS:
4226 SET_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], i);
4227 break;
4229 case RELOAD_FOR_OPERAND_ADDRESS:
4230 SET_HARD_REG_BIT (reload_reg_used_in_op_addr, i);
4231 break;
4233 case RELOAD_FOR_OPADDR_ADDR:
4234 SET_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, i);
4235 break;
4237 case RELOAD_FOR_OTHER_ADDRESS:
4238 SET_HARD_REG_BIT (reload_reg_used_in_other_addr, i);
4239 break;
4241 case RELOAD_FOR_INPUT:
4242 SET_HARD_REG_BIT (reload_reg_used_in_input[opnum], i);
4243 break;
4245 case RELOAD_FOR_OUTPUT:
4246 SET_HARD_REG_BIT (reload_reg_used_in_output[opnum], i);
4247 break;
4249 case RELOAD_FOR_INSN:
4250 SET_HARD_REG_BIT (reload_reg_used_in_insn, i);
4251 break;
4254 SET_HARD_REG_BIT (reload_reg_used_at_all, i);
4258 /* Similarly, but show REGNO is no longer in use for a reload. */
4260 static void
4261 clear_reload_reg_in_use (regno, opnum, type, mode)
4262 unsigned int regno;
4263 int opnum;
4264 enum reload_type type;
4265 enum machine_mode mode;
4267 unsigned int nregs = HARD_REGNO_NREGS (regno, mode);
4268 unsigned int start_regno, end_regno, r;
4269 int i;
4270 /* A complication is that for some reload types, inheritance might
4271 allow multiple reloads of the same types to share a reload register.
4272 We set check_opnum if we have to check only reloads with the same
4273 operand number, and check_any if we have to check all reloads. */
4274 int check_opnum = 0;
4275 int check_any = 0;
4276 HARD_REG_SET *used_in_set;
4278 switch (type)
4280 case RELOAD_OTHER:
4281 used_in_set = &reload_reg_used;
4282 break;
4284 case RELOAD_FOR_INPUT_ADDRESS:
4285 used_in_set = &reload_reg_used_in_input_addr[opnum];
4286 break;
4288 case RELOAD_FOR_INPADDR_ADDRESS:
4289 check_opnum = 1;
4290 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
4291 break;
4293 case RELOAD_FOR_OUTPUT_ADDRESS:
4294 used_in_set = &reload_reg_used_in_output_addr[opnum];
4295 break;
4297 case RELOAD_FOR_OUTADDR_ADDRESS:
4298 check_opnum = 1;
4299 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
4300 break;
4302 case RELOAD_FOR_OPERAND_ADDRESS:
4303 used_in_set = &reload_reg_used_in_op_addr;
4304 break;
4306 case RELOAD_FOR_OPADDR_ADDR:
4307 check_any = 1;
4308 used_in_set = &reload_reg_used_in_op_addr_reload;
4309 break;
4311 case RELOAD_FOR_OTHER_ADDRESS:
4312 used_in_set = &reload_reg_used_in_other_addr;
4313 check_any = 1;
4314 break;
4316 case RELOAD_FOR_INPUT:
4317 used_in_set = &reload_reg_used_in_input[opnum];
4318 break;
4320 case RELOAD_FOR_OUTPUT:
4321 used_in_set = &reload_reg_used_in_output[opnum];
4322 break;
4324 case RELOAD_FOR_INSN:
4325 used_in_set = &reload_reg_used_in_insn;
4326 break;
4327 default:
4328 abort ();
4330 /* We resolve conflicts with remaining reloads of the same type by
4331 excluding the intervals of reload registers by them from the
4332 interval of freed reload registers. Since we only keep track of
4333 one set of interval bounds, we might have to exclude somewhat
4334 more than what would be necessary if we used a HARD_REG_SET here.
4335 But this should only happen very infrequently, so there should
4336 be no reason to worry about it. */
4338 start_regno = regno;
4339 end_regno = regno + nregs;
4340 if (check_opnum || check_any)
4342 for (i = n_reloads - 1; i >= 0; i--)
4344 if (rld[i].when_needed == type
4345 && (check_any || rld[i].opnum == opnum)
4346 && rld[i].reg_rtx)
4348 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
4349 unsigned int conflict_end
4350 = (conflict_start
4351 + HARD_REGNO_NREGS (conflict_start, rld[i].mode));
4353 /* If there is an overlap with the first to-be-freed register,
4354 adjust the interval start. */
4355 if (conflict_start <= start_regno && conflict_end > start_regno)
4356 start_regno = conflict_end;
4357 /* Otherwise, if there is a conflict with one of the other
4358 to-be-freed registers, adjust the interval end. */
4359 if (conflict_start > start_regno && conflict_start < end_regno)
4360 end_regno = conflict_start;
4365 for (r = start_regno; r < end_regno; r++)
4366 CLEAR_HARD_REG_BIT (*used_in_set, r);
4369 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
4370 specified by OPNUM and TYPE. */
4372 static int
4373 reload_reg_free_p (regno, opnum, type)
4374 unsigned int regno;
4375 int opnum;
4376 enum reload_type type;
4378 int i;
4380 /* In use for a RELOAD_OTHER means it's not available for anything. */
4381 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
4382 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
4383 return 0;
4385 switch (type)
4387 case RELOAD_OTHER:
4388 /* In use for anything means we can't use it for RELOAD_OTHER. */
4389 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
4390 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4391 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4392 return 0;
4394 for (i = 0; i < reload_n_operands; i++)
4395 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4396 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4397 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4398 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4399 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4400 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4401 return 0;
4403 return 1;
4405 case RELOAD_FOR_INPUT:
4406 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4407 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
4408 return 0;
4410 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4411 return 0;
4413 /* If it is used for some other input, can't use it. */
4414 for (i = 0; i < reload_n_operands; i++)
4415 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4416 return 0;
4418 /* If it is used in a later operand's address, can't use it. */
4419 for (i = opnum + 1; i < reload_n_operands; i++)
4420 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4421 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
4422 return 0;
4424 return 1;
4426 case RELOAD_FOR_INPUT_ADDRESS:
4427 /* Can't use a register if it is used for an input address for this
4428 operand or used as an input in an earlier one. */
4429 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
4430 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4431 return 0;
4433 for (i = 0; i < opnum; i++)
4434 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4435 return 0;
4437 return 1;
4439 case RELOAD_FOR_INPADDR_ADDRESS:
4440 /* Can't use a register if it is used for an input address
4441 for this operand or used as an input in an earlier
4442 one. */
4443 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4444 return 0;
4446 for (i = 0; i < opnum; i++)
4447 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4448 return 0;
4450 return 1;
4452 case RELOAD_FOR_OUTPUT_ADDRESS:
4453 /* Can't use a register if it is used for an output address for this
4454 operand or used as an output in this or a later operand. Note
4455 that multiple output operands are emitted in reverse order, so
4456 the conflicting ones are those with lower indices. */
4457 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
4458 return 0;
4460 for (i = 0; i <= opnum; i++)
4461 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4462 return 0;
4464 return 1;
4466 case RELOAD_FOR_OUTADDR_ADDRESS:
4467 /* Can't use a register if it is used for an output address
4468 for this operand or used as an output in this or a
4469 later operand. Note that multiple output operands are
4470 emitted in reverse order, so the conflicting ones are
4471 those with lower indices. */
4472 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
4473 return 0;
4475 for (i = 0; i <= opnum; i++)
4476 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4477 return 0;
4479 return 1;
4481 case RELOAD_FOR_OPERAND_ADDRESS:
4482 for (i = 0; i < reload_n_operands; i++)
4483 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4484 return 0;
4486 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4487 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4489 case RELOAD_FOR_OPADDR_ADDR:
4490 for (i = 0; i < reload_n_operands; i++)
4491 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4492 return 0;
4494 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
4496 case RELOAD_FOR_OUTPUT:
4497 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
4498 outputs, or an operand address for this or an earlier output.
4499 Note that multiple output operands are emitted in reverse order,
4500 so the conflicting ones are those with higher indices. */
4501 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4502 return 0;
4504 for (i = 0; i < reload_n_operands; i++)
4505 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4506 return 0;
4508 for (i = opnum; i < reload_n_operands; i++)
4509 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4510 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
4511 return 0;
4513 return 1;
4515 case RELOAD_FOR_INSN:
4516 for (i = 0; i < reload_n_operands; i++)
4517 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4518 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4519 return 0;
4521 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4522 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4524 case RELOAD_FOR_OTHER_ADDRESS:
4525 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
4527 abort ();
4530 /* Return 1 if the value in reload reg REGNO, as used by a reload
4531 needed for the part of the insn specified by OPNUM and TYPE,
4532 is still available in REGNO at the end of the insn.
4534 We can assume that the reload reg was already tested for availability
4535 at the time it is needed, and we should not check this again,
4536 in case the reg has already been marked in use. */
4538 static int
4539 reload_reg_reaches_end_p (regno, opnum, type)
4540 unsigned int regno;
4541 int opnum;
4542 enum reload_type type;
4544 int i;
4546 switch (type)
4548 case RELOAD_OTHER:
4549 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
4550 its value must reach the end. */
4551 return 1;
4553 /* If this use is for part of the insn,
4554 its value reaches if no subsequent part uses the same register.
4555 Just like the above function, don't try to do this with lots
4556 of fallthroughs. */
4558 case RELOAD_FOR_OTHER_ADDRESS:
4559 /* Here we check for everything else, since these don't conflict
4560 with anything else and everything comes later. */
4562 for (i = 0; i < reload_n_operands; i++)
4563 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4564 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4565 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
4566 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4567 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4568 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4569 return 0;
4571 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4572 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4573 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
4575 case RELOAD_FOR_INPUT_ADDRESS:
4576 case RELOAD_FOR_INPADDR_ADDRESS:
4577 /* Similar, except that we check only for this and subsequent inputs
4578 and the address of only subsequent inputs and we do not need
4579 to check for RELOAD_OTHER objects since they are known not to
4580 conflict. */
4582 for (i = opnum; i < reload_n_operands; i++)
4583 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4584 return 0;
4586 for (i = opnum + 1; i < reload_n_operands; i++)
4587 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4588 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
4589 return 0;
4591 for (i = 0; i < reload_n_operands; i++)
4592 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4593 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4594 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4595 return 0;
4597 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4598 return 0;
4600 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4601 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4602 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
4604 case RELOAD_FOR_INPUT:
4605 /* Similar to input address, except we start at the next operand for
4606 both input and input address and we do not check for
4607 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
4608 would conflict. */
4610 for (i = opnum + 1; i < reload_n_operands; i++)
4611 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4612 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4613 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4614 return 0;
4616 /* ... fall through ... */
4618 case RELOAD_FOR_OPERAND_ADDRESS:
4619 /* Check outputs and their addresses. */
4621 for (i = 0; i < reload_n_operands; i++)
4622 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4623 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4624 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4625 return 0;
4627 return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
4629 case RELOAD_FOR_OPADDR_ADDR:
4630 for (i = 0; i < reload_n_operands; i++)
4631 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4632 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4633 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4634 return 0;
4636 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4637 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4638 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
4640 case RELOAD_FOR_INSN:
4641 /* These conflict with other outputs with RELOAD_OTHER. So
4642 we need only check for output addresses. */
4644 opnum = reload_n_operands;
4646 /* ... fall through ... */
4648 case RELOAD_FOR_OUTPUT:
4649 case RELOAD_FOR_OUTPUT_ADDRESS:
4650 case RELOAD_FOR_OUTADDR_ADDRESS:
4651 /* We already know these can't conflict with a later output. So the
4652 only thing to check are later output addresses.
4653 Note that multiple output operands are emitted in reverse order,
4654 so the conflicting ones are those with lower indices. */
4655 for (i = 0; i < opnum; i++)
4656 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4657 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
4658 return 0;
4660 return 1;
4663 abort ();
4666 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
4667 Return 0 otherwise.
4669 This function uses the same algorithm as reload_reg_free_p above. */
4672 reloads_conflict (r1, r2)
4673 int r1, r2;
4675 enum reload_type r1_type = rld[r1].when_needed;
4676 enum reload_type r2_type = rld[r2].when_needed;
4677 int r1_opnum = rld[r1].opnum;
4678 int r2_opnum = rld[r2].opnum;
4680 /* RELOAD_OTHER conflicts with everything. */
4681 if (r2_type == RELOAD_OTHER)
4682 return 1;
4684 /* Otherwise, check conflicts differently for each type. */
4686 switch (r1_type)
4688 case RELOAD_FOR_INPUT:
4689 return (r2_type == RELOAD_FOR_INSN
4690 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
4691 || r2_type == RELOAD_FOR_OPADDR_ADDR
4692 || r2_type == RELOAD_FOR_INPUT
4693 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
4694 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
4695 && r2_opnum > r1_opnum));
4697 case RELOAD_FOR_INPUT_ADDRESS:
4698 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
4699 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
4701 case RELOAD_FOR_INPADDR_ADDRESS:
4702 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
4703 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
4705 case RELOAD_FOR_OUTPUT_ADDRESS:
4706 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
4707 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
4709 case RELOAD_FOR_OUTADDR_ADDRESS:
4710 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
4711 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
4713 case RELOAD_FOR_OPERAND_ADDRESS:
4714 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
4715 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
4717 case RELOAD_FOR_OPADDR_ADDR:
4718 return (r2_type == RELOAD_FOR_INPUT
4719 || r2_type == RELOAD_FOR_OPADDR_ADDR);
4721 case RELOAD_FOR_OUTPUT:
4722 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
4723 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
4724 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
4725 && r2_opnum >= r1_opnum));
4727 case RELOAD_FOR_INSN:
4728 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
4729 || r2_type == RELOAD_FOR_INSN
4730 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
4732 case RELOAD_FOR_OTHER_ADDRESS:
4733 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
4735 case RELOAD_OTHER:
4736 return 1;
4738 default:
4739 abort ();
4743 /* Indexed by reload number, 1 if incoming value
4744 inherited from previous insns. */
4745 char reload_inherited[MAX_RELOADS];
4747 /* For an inherited reload, this is the insn the reload was inherited from,
4748 if we know it. Otherwise, this is 0. */
4749 rtx reload_inheritance_insn[MAX_RELOADS];
4751 /* If nonzero, this is a place to get the value of the reload,
4752 rather than using reload_in. */
4753 rtx reload_override_in[MAX_RELOADS];
4755 /* For each reload, the hard register number of the register used,
4756 or -1 if we did not need a register for this reload. */
4757 int reload_spill_index[MAX_RELOADS];
4759 /* Subroutine of free_for_value_p, used to check a single register.
4760 START_REGNO is the starting regno of the full reload register
4761 (possibly comprising multiple hard registers) that we are considering. */
4763 static int
4764 reload_reg_free_for_value_p (start_regno, regno, opnum, type, value, out,
4765 reloadnum, ignore_address_reloads)
4766 int start_regno, regno;
4767 int opnum;
4768 enum reload_type type;
4769 rtx value, out;
4770 int reloadnum;
4771 int ignore_address_reloads;
4773 int time1;
4774 /* Set if we see an input reload that must not share its reload register
4775 with any new earlyclobber, but might otherwise share the reload
4776 register with an output or input-output reload. */
4777 int check_earlyclobber = 0;
4778 int i;
4779 int copy = 0;
4781 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
4782 return 0;
4784 if (out == const0_rtx)
4786 copy = 1;
4787 out = NULL_RTX;
4790 /* We use some pseudo 'time' value to check if the lifetimes of the
4791 new register use would overlap with the one of a previous reload
4792 that is not read-only or uses a different value.
4793 The 'time' used doesn't have to be linear in any shape or form, just
4794 monotonic.
4795 Some reload types use different 'buckets' for each operand.
4796 So there are MAX_RECOG_OPERANDS different time values for each
4797 such reload type.
4798 We compute TIME1 as the time when the register for the prospective
4799 new reload ceases to be live, and TIME2 for each existing
4800 reload as the time when that the reload register of that reload
4801 becomes live.
4802 Where there is little to be gained by exact lifetime calculations,
4803 we just make conservative assumptions, i.e. a longer lifetime;
4804 this is done in the 'default:' cases. */
4805 switch (type)
4807 case RELOAD_FOR_OTHER_ADDRESS:
4808 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
4809 time1 = copy ? 0 : 1;
4810 break;
4811 case RELOAD_OTHER:
4812 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
4813 break;
4814 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
4815 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
4816 respectively, to the time values for these, we get distinct time
4817 values. To get distinct time values for each operand, we have to
4818 multiply opnum by at least three. We round that up to four because
4819 multiply by four is often cheaper. */
4820 case RELOAD_FOR_INPADDR_ADDRESS:
4821 time1 = opnum * 4 + 2;
4822 break;
4823 case RELOAD_FOR_INPUT_ADDRESS:
4824 time1 = opnum * 4 + 3;
4825 break;
4826 case RELOAD_FOR_INPUT:
4827 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
4828 executes (inclusive). */
4829 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
4830 break;
4831 case RELOAD_FOR_OPADDR_ADDR:
4832 /* opnum * 4 + 4
4833 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
4834 time1 = MAX_RECOG_OPERANDS * 4 + 1;
4835 break;
4836 case RELOAD_FOR_OPERAND_ADDRESS:
4837 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
4838 is executed. */
4839 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
4840 break;
4841 case RELOAD_FOR_OUTADDR_ADDRESS:
4842 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
4843 break;
4844 case RELOAD_FOR_OUTPUT_ADDRESS:
4845 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
4846 break;
4847 default:
4848 time1 = MAX_RECOG_OPERANDS * 5 + 5;
4851 for (i = 0; i < n_reloads; i++)
4853 rtx reg = rld[i].reg_rtx;
4854 if (reg && GET_CODE (reg) == REG
4855 && ((unsigned) regno - true_regnum (reg)
4856 <= HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg)) - (unsigned) 1)
4857 && i != reloadnum)
4859 rtx other_input = rld[i].in;
4861 /* If the other reload loads the same input value, that
4862 will not cause a conflict only if it's loading it into
4863 the same register. */
4864 if (true_regnum (reg) != start_regno)
4865 other_input = NULL_RTX;
4866 if (! other_input || ! rtx_equal_p (other_input, value)
4867 || rld[i].out || out)
4869 int time2;
4870 switch (rld[i].when_needed)
4872 case RELOAD_FOR_OTHER_ADDRESS:
4873 time2 = 0;
4874 break;
4875 case RELOAD_FOR_INPADDR_ADDRESS:
4876 /* find_reloads makes sure that a
4877 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
4878 by at most one - the first -
4879 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
4880 address reload is inherited, the address address reload
4881 goes away, so we can ignore this conflict. */
4882 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
4883 && ignore_address_reloads
4884 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
4885 Then the address address is still needed to store
4886 back the new address. */
4887 && ! rld[reloadnum].out)
4888 continue;
4889 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
4890 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
4891 reloads go away. */
4892 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
4893 && ignore_address_reloads
4894 /* Unless we are reloading an auto_inc expression. */
4895 && ! rld[reloadnum].out)
4896 continue;
4897 time2 = rld[i].opnum * 4 + 2;
4898 break;
4899 case RELOAD_FOR_INPUT_ADDRESS:
4900 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
4901 && ignore_address_reloads
4902 && ! rld[reloadnum].out)
4903 continue;
4904 time2 = rld[i].opnum * 4 + 3;
4905 break;
4906 case RELOAD_FOR_INPUT:
4907 time2 = rld[i].opnum * 4 + 4;
4908 check_earlyclobber = 1;
4909 break;
4910 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
4911 == MAX_RECOG_OPERAND * 4 */
4912 case RELOAD_FOR_OPADDR_ADDR:
4913 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
4914 && ignore_address_reloads
4915 && ! rld[reloadnum].out)
4916 continue;
4917 time2 = MAX_RECOG_OPERANDS * 4 + 1;
4918 break;
4919 case RELOAD_FOR_OPERAND_ADDRESS:
4920 time2 = MAX_RECOG_OPERANDS * 4 + 2;
4921 check_earlyclobber = 1;
4922 break;
4923 case RELOAD_FOR_INSN:
4924 time2 = MAX_RECOG_OPERANDS * 4 + 3;
4925 break;
4926 case RELOAD_FOR_OUTPUT:
4927 /* All RELOAD_FOR_OUTPUT reloads become live just after the
4928 instruction is executed. */
4929 time2 = MAX_RECOG_OPERANDS * 4 + 4;
4930 break;
4931 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
4932 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
4933 value. */
4934 case RELOAD_FOR_OUTADDR_ADDRESS:
4935 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
4936 && ignore_address_reloads
4937 && ! rld[reloadnum].out)
4938 continue;
4939 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
4940 break;
4941 case RELOAD_FOR_OUTPUT_ADDRESS:
4942 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
4943 break;
4944 case RELOAD_OTHER:
4945 /* If there is no conflict in the input part, handle this
4946 like an output reload. */
4947 if (! rld[i].in || rtx_equal_p (other_input, value))
4949 time2 = MAX_RECOG_OPERANDS * 4 + 4;
4950 /* Earlyclobbered outputs must conflict with inputs. */
4951 if (earlyclobber_operand_p (rld[i].out))
4952 time2 = MAX_RECOG_OPERANDS * 4 + 3;
4954 break;
4956 time2 = 1;
4957 /* RELOAD_OTHER might be live beyond instruction execution,
4958 but this is not obvious when we set time2 = 1. So check
4959 here if there might be a problem with the new reload
4960 clobbering the register used by the RELOAD_OTHER. */
4961 if (out)
4962 return 0;
4963 break;
4964 default:
4965 return 0;
4967 if ((time1 >= time2
4968 && (! rld[i].in || rld[i].out
4969 || ! rtx_equal_p (other_input, value)))
4970 || (out && rld[reloadnum].out_reg
4971 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
4972 return 0;
4977 /* Earlyclobbered outputs must conflict with inputs. */
4978 if (check_earlyclobber && out && earlyclobber_operand_p (out))
4979 return 0;
4981 return 1;
4984 /* Return 1 if the value in reload reg REGNO, as used by a reload
4985 needed for the part of the insn specified by OPNUM and TYPE,
4986 may be used to load VALUE into it.
4988 MODE is the mode in which the register is used, this is needed to
4989 determine how many hard regs to test.
4991 Other read-only reloads with the same value do not conflict
4992 unless OUT is nonzero and these other reloads have to live while
4993 output reloads live.
4994 If OUT is CONST0_RTX, this is a special case: it means that the
4995 test should not be for using register REGNO as reload register, but
4996 for copying from register REGNO into the reload register.
4998 RELOADNUM is the number of the reload we want to load this value for;
4999 a reload does not conflict with itself.
5001 When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
5002 reloads that load an address for the very reload we are considering.
5004 The caller has to make sure that there is no conflict with the return
5005 register. */
5007 static int
5008 free_for_value_p (regno, mode, opnum, type, value, out, reloadnum,
5009 ignore_address_reloads)
5010 int regno;
5011 enum machine_mode mode;
5012 int opnum;
5013 enum reload_type type;
5014 rtx value, out;
5015 int reloadnum;
5016 int ignore_address_reloads;
5018 int nregs = HARD_REGNO_NREGS (regno, mode);
5019 while (nregs-- > 0)
5020 if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
5021 value, out, reloadnum,
5022 ignore_address_reloads))
5023 return 0;
5024 return 1;
5027 /* Determine whether the reload reg X overlaps any rtx'es used for
5028 overriding inheritance. Return nonzero if so. */
5030 static int
5031 conflicts_with_override (x)
5032 rtx x;
5034 int i;
5035 for (i = 0; i < n_reloads; i++)
5036 if (reload_override_in[i]
5037 && reg_overlap_mentioned_p (x, reload_override_in[i]))
5038 return 1;
5039 return 0;
5042 /* Give an error message saying we failed to find a reload for INSN,
5043 and clear out reload R. */
5044 static void
5045 failed_reload (insn, r)
5046 rtx insn;
5047 int r;
5049 if (asm_noperands (PATTERN (insn)) < 0)
5050 /* It's the compiler's fault. */
5051 fatal_insn ("could not find a spill register", insn);
5053 /* It's the user's fault; the operand's mode and constraint
5054 don't match. Disable this reload so we don't crash in final. */
5055 error_for_asm (insn,
5056 "`asm' operand constraint incompatible with operand size");
5057 rld[r].in = 0;
5058 rld[r].out = 0;
5059 rld[r].reg_rtx = 0;
5060 rld[r].optional = 1;
5061 rld[r].secondary_p = 1;
5064 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
5065 for reload R. If it's valid, get an rtx for it. Return nonzero if
5066 successful. */
5067 static int
5068 set_reload_reg (i, r)
5069 int i, r;
5071 int regno;
5072 rtx reg = spill_reg_rtx[i];
5074 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
5075 spill_reg_rtx[i] = reg
5076 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
5078 regno = true_regnum (reg);
5080 /* Detect when the reload reg can't hold the reload mode.
5081 This used to be one `if', but Sequent compiler can't handle that. */
5082 if (HARD_REGNO_MODE_OK (regno, rld[r].mode))
5084 enum machine_mode test_mode = VOIDmode;
5085 if (rld[r].in)
5086 test_mode = GET_MODE (rld[r].in);
5087 /* If rld[r].in has VOIDmode, it means we will load it
5088 in whatever mode the reload reg has: to wit, rld[r].mode.
5089 We have already tested that for validity. */
5090 /* Aside from that, we need to test that the expressions
5091 to reload from or into have modes which are valid for this
5092 reload register. Otherwise the reload insns would be invalid. */
5093 if (! (rld[r].in != 0 && test_mode != VOIDmode
5094 && ! HARD_REGNO_MODE_OK (regno, test_mode)))
5095 if (! (rld[r].out != 0
5096 && ! HARD_REGNO_MODE_OK (regno, GET_MODE (rld[r].out))))
5098 /* The reg is OK. */
5099 last_spill_reg = i;
5101 /* Mark as in use for this insn the reload regs we use
5102 for this. */
5103 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
5104 rld[r].when_needed, rld[r].mode);
5106 rld[r].reg_rtx = reg;
5107 reload_spill_index[r] = spill_regs[i];
5108 return 1;
5111 return 0;
5114 /* Find a spill register to use as a reload register for reload R.
5115 LAST_RELOAD is nonzero if this is the last reload for the insn being
5116 processed.
5118 Set rld[R].reg_rtx to the register allocated.
5120 We return 1 if successful, or 0 if we couldn't find a spill reg and
5121 we didn't change anything. */
5123 static int
5124 allocate_reload_reg (chain, r, last_reload)
5125 struct insn_chain *chain ATTRIBUTE_UNUSED;
5126 int r;
5127 int last_reload;
5129 int i, pass, count;
5131 /* If we put this reload ahead, thinking it is a group,
5132 then insist on finding a group. Otherwise we can grab a
5133 reg that some other reload needs.
5134 (That can happen when we have a 68000 DATA_OR_FP_REG
5135 which is a group of data regs or one fp reg.)
5136 We need not be so restrictive if there are no more reloads
5137 for this insn.
5139 ??? Really it would be nicer to have smarter handling
5140 for that kind of reg class, where a problem like this is normal.
5141 Perhaps those classes should be avoided for reloading
5142 by use of more alternatives. */
5144 int force_group = rld[r].nregs > 1 && ! last_reload;
5146 /* If we want a single register and haven't yet found one,
5147 take any reg in the right class and not in use.
5148 If we want a consecutive group, here is where we look for it.
5150 We use two passes so we can first look for reload regs to
5151 reuse, which are already in use for other reloads in this insn,
5152 and only then use additional registers.
5153 I think that maximizing reuse is needed to make sure we don't
5154 run out of reload regs. Suppose we have three reloads, and
5155 reloads A and B can share regs. These need two regs.
5156 Suppose A and B are given different regs.
5157 That leaves none for C. */
5158 for (pass = 0; pass < 2; pass++)
5160 /* I is the index in spill_regs.
5161 We advance it round-robin between insns to use all spill regs
5162 equally, so that inherited reloads have a chance
5163 of leapfrogging each other. */
5165 i = last_spill_reg;
5167 for (count = 0; count < n_spills; count++)
5169 int class = (int) rld[r].class;
5170 int regnum;
5172 i++;
5173 if (i >= n_spills)
5174 i -= n_spills;
5175 regnum = spill_regs[i];
5177 if ((reload_reg_free_p (regnum, rld[r].opnum,
5178 rld[r].when_needed)
5179 || (rld[r].in
5180 /* We check reload_reg_used to make sure we
5181 don't clobber the return register. */
5182 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
5183 && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
5184 rld[r].when_needed, rld[r].in,
5185 rld[r].out, r, 1)))
5186 && TEST_HARD_REG_BIT (reg_class_contents[class], regnum)
5187 && HARD_REGNO_MODE_OK (regnum, rld[r].mode)
5188 /* Look first for regs to share, then for unshared. But
5189 don't share regs used for inherited reloads; they are
5190 the ones we want to preserve. */
5191 && (pass
5192 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
5193 regnum)
5194 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
5195 regnum))))
5197 int nr = HARD_REGNO_NREGS (regnum, rld[r].mode);
5198 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
5199 (on 68000) got us two FP regs. If NR is 1,
5200 we would reject both of them. */
5201 if (force_group)
5202 nr = rld[r].nregs;
5203 /* If we need only one reg, we have already won. */
5204 if (nr == 1)
5206 /* But reject a single reg if we demand a group. */
5207 if (force_group)
5208 continue;
5209 break;
5211 /* Otherwise check that as many consecutive regs as we need
5212 are available here. */
5213 while (nr > 1)
5215 int regno = regnum + nr - 1;
5216 if (!(TEST_HARD_REG_BIT (reg_class_contents[class], regno)
5217 && spill_reg_order[regno] >= 0
5218 && reload_reg_free_p (regno, rld[r].opnum,
5219 rld[r].when_needed)))
5220 break;
5221 nr--;
5223 if (nr == 1)
5224 break;
5228 /* If we found something on pass 1, omit pass 2. */
5229 if (count < n_spills)
5230 break;
5233 /* We should have found a spill register by now. */
5234 if (count >= n_spills)
5235 return 0;
5237 /* I is the index in SPILL_REG_RTX of the reload register we are to
5238 allocate. Get an rtx for it and find its register number. */
5240 return set_reload_reg (i, r);
5243 /* Initialize all the tables needed to allocate reload registers.
5244 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
5245 is the array we use to restore the reg_rtx field for every reload. */
5247 static void
5248 choose_reload_regs_init (chain, save_reload_reg_rtx)
5249 struct insn_chain *chain;
5250 rtx *save_reload_reg_rtx;
5252 int i;
5254 for (i = 0; i < n_reloads; i++)
5255 rld[i].reg_rtx = save_reload_reg_rtx[i];
5257 memset (reload_inherited, 0, MAX_RELOADS);
5258 memset ((char *) reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
5259 memset ((char *) reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
5261 CLEAR_HARD_REG_SET (reload_reg_used);
5262 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
5263 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
5264 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
5265 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
5266 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
5268 CLEAR_HARD_REG_SET (reg_used_in_insn);
5270 HARD_REG_SET tmp;
5271 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
5272 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
5273 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
5274 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
5275 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
5276 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
5279 for (i = 0; i < reload_n_operands; i++)
5281 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
5282 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
5283 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
5284 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
5285 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
5286 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
5289 COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
5291 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
5293 for (i = 0; i < n_reloads; i++)
5294 /* If we have already decided to use a certain register,
5295 don't use it in another way. */
5296 if (rld[i].reg_rtx)
5297 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
5298 rld[i].when_needed, rld[i].mode);
5301 /* Assign hard reg targets for the pseudo-registers we must reload
5302 into hard regs for this insn.
5303 Also output the instructions to copy them in and out of the hard regs.
5305 For machines with register classes, we are responsible for
5306 finding a reload reg in the proper class. */
5308 static void
5309 choose_reload_regs (chain)
5310 struct insn_chain *chain;
5312 rtx insn = chain->insn;
5313 int i, j;
5314 unsigned int max_group_size = 1;
5315 enum reg_class group_class = NO_REGS;
5316 int pass, win, inheritance;
5318 rtx save_reload_reg_rtx[MAX_RELOADS];
5320 /* In order to be certain of getting the registers we need,
5321 we must sort the reloads into order of increasing register class.
5322 Then our grabbing of reload registers will parallel the process
5323 that provided the reload registers.
5325 Also note whether any of the reloads wants a consecutive group of regs.
5326 If so, record the maximum size of the group desired and what
5327 register class contains all the groups needed by this insn. */
5329 for (j = 0; j < n_reloads; j++)
5331 reload_order[j] = j;
5332 reload_spill_index[j] = -1;
5334 if (rld[j].nregs > 1)
5336 max_group_size = MAX (rld[j].nregs, max_group_size);
5337 group_class
5338 = reg_class_superunion[(int) rld[j].class][(int) group_class];
5341 save_reload_reg_rtx[j] = rld[j].reg_rtx;
5344 if (n_reloads > 1)
5345 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
5347 /* If -O, try first with inheritance, then turning it off.
5348 If not -O, don't do inheritance.
5349 Using inheritance when not optimizing leads to paradoxes
5350 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
5351 because one side of the comparison might be inherited. */
5352 win = 0;
5353 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
5355 choose_reload_regs_init (chain, save_reload_reg_rtx);
5357 /* Process the reloads in order of preference just found.
5358 Beyond this point, subregs can be found in reload_reg_rtx.
5360 This used to look for an existing reloaded home for all of the
5361 reloads, and only then perform any new reloads. But that could lose
5362 if the reloads were done out of reg-class order because a later
5363 reload with a looser constraint might have an old home in a register
5364 needed by an earlier reload with a tighter constraint.
5366 To solve this, we make two passes over the reloads, in the order
5367 described above. In the first pass we try to inherit a reload
5368 from a previous insn. If there is a later reload that needs a
5369 class that is a proper subset of the class being processed, we must
5370 also allocate a spill register during the first pass.
5372 Then make a second pass over the reloads to allocate any reloads
5373 that haven't been given registers yet. */
5375 for (j = 0; j < n_reloads; j++)
5377 int r = reload_order[j];
5378 rtx search_equiv = NULL_RTX;
5380 /* Ignore reloads that got marked inoperative. */
5381 if (rld[r].out == 0 && rld[r].in == 0
5382 && ! rld[r].secondary_p)
5383 continue;
5385 /* If find_reloads chose to use reload_in or reload_out as a reload
5386 register, we don't need to chose one. Otherwise, try even if it
5387 found one since we might save an insn if we find the value lying
5388 around.
5389 Try also when reload_in is a pseudo without a hard reg. */
5390 if (rld[r].in != 0 && rld[r].reg_rtx != 0
5391 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
5392 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
5393 && GET_CODE (rld[r].in) != MEM
5394 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
5395 continue;
5397 #if 0 /* No longer needed for correct operation.
5398 It might give better code, or might not; worth an experiment? */
5399 /* If this is an optional reload, we can't inherit from earlier insns
5400 until we are sure that any non-optional reloads have been allocated.
5401 The following code takes advantage of the fact that optional reloads
5402 are at the end of reload_order. */
5403 if (rld[r].optional != 0)
5404 for (i = 0; i < j; i++)
5405 if ((rld[reload_order[i]].out != 0
5406 || rld[reload_order[i]].in != 0
5407 || rld[reload_order[i]].secondary_p)
5408 && ! rld[reload_order[i]].optional
5409 && rld[reload_order[i]].reg_rtx == 0)
5410 allocate_reload_reg (chain, reload_order[i], 0);
5411 #endif
5413 /* First see if this pseudo is already available as reloaded
5414 for a previous insn. We cannot try to inherit for reloads
5415 that are smaller than the maximum number of registers needed
5416 for groups unless the register we would allocate cannot be used
5417 for the groups.
5419 We could check here to see if this is a secondary reload for
5420 an object that is already in a register of the desired class.
5421 This would avoid the need for the secondary reload register.
5422 But this is complex because we can't easily determine what
5423 objects might want to be loaded via this reload. So let a
5424 register be allocated here. In `emit_reload_insns' we suppress
5425 one of the loads in the case described above. */
5427 if (inheritance)
5429 int byte = 0;
5430 int regno = -1;
5431 enum machine_mode mode = VOIDmode;
5433 if (rld[r].in == 0)
5435 else if (GET_CODE (rld[r].in) == REG)
5437 regno = REGNO (rld[r].in);
5438 mode = GET_MODE (rld[r].in);
5440 else if (GET_CODE (rld[r].in_reg) == REG)
5442 regno = REGNO (rld[r].in_reg);
5443 mode = GET_MODE (rld[r].in_reg);
5445 else if (GET_CODE (rld[r].in_reg) == SUBREG
5446 && GET_CODE (SUBREG_REG (rld[r].in_reg)) == REG)
5448 byte = SUBREG_BYTE (rld[r].in_reg);
5449 regno = REGNO (SUBREG_REG (rld[r].in_reg));
5450 if (regno < FIRST_PSEUDO_REGISTER)
5451 regno = subreg_regno (rld[r].in_reg);
5452 mode = GET_MODE (rld[r].in_reg);
5454 #ifdef AUTO_INC_DEC
5455 else if ((GET_CODE (rld[r].in_reg) == PRE_INC
5456 || GET_CODE (rld[r].in_reg) == PRE_DEC
5457 || GET_CODE (rld[r].in_reg) == POST_INC
5458 || GET_CODE (rld[r].in_reg) == POST_DEC)
5459 && GET_CODE (XEXP (rld[r].in_reg, 0)) == REG)
5461 regno = REGNO (XEXP (rld[r].in_reg, 0));
5462 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
5463 rld[r].out = rld[r].in;
5465 #endif
5466 #if 0
5467 /* This won't work, since REGNO can be a pseudo reg number.
5468 Also, it takes much more hair to keep track of all the things
5469 that can invalidate an inherited reload of part of a pseudoreg. */
5470 else if (GET_CODE (rld[r].in) == SUBREG
5471 && GET_CODE (SUBREG_REG (rld[r].in)) == REG)
5472 regno = subreg_regno (rld[r].in);
5473 #endif
5475 if (regno >= 0 && reg_last_reload_reg[regno] != 0)
5477 enum reg_class class = rld[r].class, last_class;
5478 rtx last_reg = reg_last_reload_reg[regno];
5479 enum machine_mode need_mode;
5481 i = REGNO (last_reg);
5482 i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
5483 last_class = REGNO_REG_CLASS (i);
5485 if (byte == 0)
5486 need_mode = mode;
5487 else
5488 need_mode
5489 = smallest_mode_for_size (GET_MODE_SIZE (mode) + byte,
5490 GET_MODE_CLASS (mode));
5492 if (
5493 #ifdef CANNOT_CHANGE_MODE_CLASS
5494 (!REG_CANNOT_CHANGE_MODE_P (i, GET_MODE (last_reg),
5495 need_mode)
5497 #endif
5498 (GET_MODE_SIZE (GET_MODE (last_reg))
5499 >= GET_MODE_SIZE (need_mode))
5500 #ifdef CANNOT_CHANGE_MODE_CLASS
5502 #endif
5503 && reg_reloaded_contents[i] == regno
5504 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
5505 && HARD_REGNO_MODE_OK (i, rld[r].mode)
5506 && (TEST_HARD_REG_BIT (reg_class_contents[(int) class], i)
5507 /* Even if we can't use this register as a reload
5508 register, we might use it for reload_override_in,
5509 if copying it to the desired class is cheap
5510 enough. */
5511 || ((REGISTER_MOVE_COST (mode, last_class, class)
5512 < MEMORY_MOVE_COST (mode, class, 1))
5513 #ifdef SECONDARY_INPUT_RELOAD_CLASS
5514 && (SECONDARY_INPUT_RELOAD_CLASS (class, mode,
5515 last_reg)
5516 == NO_REGS)
5517 #endif
5518 #ifdef SECONDARY_MEMORY_NEEDED
5519 && ! SECONDARY_MEMORY_NEEDED (last_class, class,
5520 mode)
5521 #endif
5524 && (rld[r].nregs == max_group_size
5525 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
5527 && free_for_value_p (i, rld[r].mode, rld[r].opnum,
5528 rld[r].when_needed, rld[r].in,
5529 const0_rtx, r, 1))
5531 /* If a group is needed, verify that all the subsequent
5532 registers still have their values intact. */
5533 int nr = HARD_REGNO_NREGS (i, rld[r].mode);
5534 int k;
5536 for (k = 1; k < nr; k++)
5537 if (reg_reloaded_contents[i + k] != regno
5538 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
5539 break;
5541 if (k == nr)
5543 int i1;
5544 int bad_for_class;
5546 last_reg = (GET_MODE (last_reg) == mode
5547 ? last_reg : gen_rtx_REG (mode, i));
5549 bad_for_class = 0;
5550 for (k = 0; k < nr; k++)
5551 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
5552 i+k);
5554 /* We found a register that contains the
5555 value we need. If this register is the
5556 same as an `earlyclobber' operand of the
5557 current insn, just mark it as a place to
5558 reload from since we can't use it as the
5559 reload register itself. */
5561 for (i1 = 0; i1 < n_earlyclobbers; i1++)
5562 if (reg_overlap_mentioned_for_reload_p
5563 (reg_last_reload_reg[regno],
5564 reload_earlyclobbers[i1]))
5565 break;
5567 if (i1 != n_earlyclobbers
5568 || ! (free_for_value_p (i, rld[r].mode,
5569 rld[r].opnum,
5570 rld[r].when_needed, rld[r].in,
5571 rld[r].out, r, 1))
5572 /* Don't use it if we'd clobber a pseudo reg. */
5573 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
5574 && rld[r].out
5575 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
5576 /* Don't clobber the frame pointer. */
5577 || (i == HARD_FRAME_POINTER_REGNUM
5578 && frame_pointer_needed
5579 && rld[r].out)
5580 /* Don't really use the inherited spill reg
5581 if we need it wider than we've got it. */
5582 || (GET_MODE_SIZE (rld[r].mode)
5583 > GET_MODE_SIZE (mode))
5584 || bad_for_class
5586 /* If find_reloads chose reload_out as reload
5587 register, stay with it - that leaves the
5588 inherited register for subsequent reloads. */
5589 || (rld[r].out && rld[r].reg_rtx
5590 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
5592 if (! rld[r].optional)
5594 reload_override_in[r] = last_reg;
5595 reload_inheritance_insn[r]
5596 = reg_reloaded_insn[i];
5599 else
5601 int k;
5602 /* We can use this as a reload reg. */
5603 /* Mark the register as in use for this part of
5604 the insn. */
5605 mark_reload_reg_in_use (i,
5606 rld[r].opnum,
5607 rld[r].when_needed,
5608 rld[r].mode);
5609 rld[r].reg_rtx = last_reg;
5610 reload_inherited[r] = 1;
5611 reload_inheritance_insn[r]
5612 = reg_reloaded_insn[i];
5613 reload_spill_index[r] = i;
5614 for (k = 0; k < nr; k++)
5615 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
5616 i + k);
5623 /* Here's another way to see if the value is already lying around. */
5624 if (inheritance
5625 && rld[r].in != 0
5626 && ! reload_inherited[r]
5627 && rld[r].out == 0
5628 && (CONSTANT_P (rld[r].in)
5629 || GET_CODE (rld[r].in) == PLUS
5630 || GET_CODE (rld[r].in) == REG
5631 || GET_CODE (rld[r].in) == MEM)
5632 && (rld[r].nregs == max_group_size
5633 || ! reg_classes_intersect_p (rld[r].class, group_class)))
5634 search_equiv = rld[r].in;
5635 /* If this is an output reload from a simple move insn, look
5636 if an equivalence for the input is available. */
5637 else if (inheritance && rld[r].in == 0 && rld[r].out != 0)
5639 rtx set = single_set (insn);
5641 if (set
5642 && rtx_equal_p (rld[r].out, SET_DEST (set))
5643 && CONSTANT_P (SET_SRC (set)))
5644 search_equiv = SET_SRC (set);
5647 if (search_equiv)
5649 rtx equiv
5650 = find_equiv_reg (search_equiv, insn, rld[r].class,
5651 -1, NULL, 0, rld[r].mode);
5652 int regno = 0;
5654 if (equiv != 0)
5656 if (GET_CODE (equiv) == REG)
5657 regno = REGNO (equiv);
5658 else if (GET_CODE (equiv) == SUBREG)
5660 /* This must be a SUBREG of a hard register.
5661 Make a new REG since this might be used in an
5662 address and not all machines support SUBREGs
5663 there. */
5664 regno = subreg_regno (equiv);
5665 equiv = gen_rtx_REG (rld[r].mode, regno);
5667 else
5668 abort ();
5671 /* If we found a spill reg, reject it unless it is free
5672 and of the desired class. */
5673 if (equiv != 0
5674 && ((TEST_HARD_REG_BIT (reload_reg_used_at_all, regno)
5675 && ! free_for_value_p (regno, rld[r].mode,
5676 rld[r].opnum, rld[r].when_needed,
5677 rld[r].in, rld[r].out, r, 1))
5678 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
5679 regno)))
5680 equiv = 0;
5682 if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, rld[r].mode))
5683 equiv = 0;
5685 /* We found a register that contains the value we need.
5686 If this register is the same as an `earlyclobber' operand
5687 of the current insn, just mark it as a place to reload from
5688 since we can't use it as the reload register itself. */
5690 if (equiv != 0)
5691 for (i = 0; i < n_earlyclobbers; i++)
5692 if (reg_overlap_mentioned_for_reload_p (equiv,
5693 reload_earlyclobbers[i]))
5695 if (! rld[r].optional)
5696 reload_override_in[r] = equiv;
5697 equiv = 0;
5698 break;
5701 /* If the equiv register we have found is explicitly clobbered
5702 in the current insn, it depends on the reload type if we
5703 can use it, use it for reload_override_in, or not at all.
5704 In particular, we then can't use EQUIV for a
5705 RELOAD_FOR_OUTPUT_ADDRESS reload. */
5707 if (equiv != 0)
5709 if (regno_clobbered_p (regno, insn, rld[r].mode, 0))
5710 switch (rld[r].when_needed)
5712 case RELOAD_FOR_OTHER_ADDRESS:
5713 case RELOAD_FOR_INPADDR_ADDRESS:
5714 case RELOAD_FOR_INPUT_ADDRESS:
5715 case RELOAD_FOR_OPADDR_ADDR:
5716 break;
5717 case RELOAD_OTHER:
5718 case RELOAD_FOR_INPUT:
5719 case RELOAD_FOR_OPERAND_ADDRESS:
5720 if (! rld[r].optional)
5721 reload_override_in[r] = equiv;
5722 /* Fall through. */
5723 default:
5724 equiv = 0;
5725 break;
5727 else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
5728 switch (rld[r].when_needed)
5730 case RELOAD_FOR_OTHER_ADDRESS:
5731 case RELOAD_FOR_INPADDR_ADDRESS:
5732 case RELOAD_FOR_INPUT_ADDRESS:
5733 case RELOAD_FOR_OPADDR_ADDR:
5734 case RELOAD_FOR_OPERAND_ADDRESS:
5735 case RELOAD_FOR_INPUT:
5736 break;
5737 case RELOAD_OTHER:
5738 if (! rld[r].optional)
5739 reload_override_in[r] = equiv;
5740 /* Fall through. */
5741 default:
5742 equiv = 0;
5743 break;
5747 /* If we found an equivalent reg, say no code need be generated
5748 to load it, and use it as our reload reg. */
5749 if (equiv != 0
5750 && (regno != HARD_FRAME_POINTER_REGNUM
5751 || !frame_pointer_needed))
5753 int nr = HARD_REGNO_NREGS (regno, rld[r].mode);
5754 int k;
5755 rld[r].reg_rtx = equiv;
5756 reload_inherited[r] = 1;
5758 /* If reg_reloaded_valid is not set for this register,
5759 there might be a stale spill_reg_store lying around.
5760 We must clear it, since otherwise emit_reload_insns
5761 might delete the store. */
5762 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
5763 spill_reg_store[regno] = NULL_RTX;
5764 /* If any of the hard registers in EQUIV are spill
5765 registers, mark them as in use for this insn. */
5766 for (k = 0; k < nr; k++)
5768 i = spill_reg_order[regno + k];
5769 if (i >= 0)
5771 mark_reload_reg_in_use (regno, rld[r].opnum,
5772 rld[r].when_needed,
5773 rld[r].mode);
5774 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
5775 regno + k);
5781 /* If we found a register to use already, or if this is an optional
5782 reload, we are done. */
5783 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
5784 continue;
5786 #if 0
5787 /* No longer needed for correct operation. Might or might
5788 not give better code on the average. Want to experiment? */
5790 /* See if there is a later reload that has a class different from our
5791 class that intersects our class or that requires less register
5792 than our reload. If so, we must allocate a register to this
5793 reload now, since that reload might inherit a previous reload
5794 and take the only available register in our class. Don't do this
5795 for optional reloads since they will force all previous reloads
5796 to be allocated. Also don't do this for reloads that have been
5797 turned off. */
5799 for (i = j + 1; i < n_reloads; i++)
5801 int s = reload_order[i];
5803 if ((rld[s].in == 0 && rld[s].out == 0
5804 && ! rld[s].secondary_p)
5805 || rld[s].optional)
5806 continue;
5808 if ((rld[s].class != rld[r].class
5809 && reg_classes_intersect_p (rld[r].class,
5810 rld[s].class))
5811 || rld[s].nregs < rld[r].nregs)
5812 break;
5815 if (i == n_reloads)
5816 continue;
5818 allocate_reload_reg (chain, r, j == n_reloads - 1);
5819 #endif
5822 /* Now allocate reload registers for anything non-optional that
5823 didn't get one yet. */
5824 for (j = 0; j < n_reloads; j++)
5826 int r = reload_order[j];
5828 /* Ignore reloads that got marked inoperative. */
5829 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
5830 continue;
5832 /* Skip reloads that already have a register allocated or are
5833 optional. */
5834 if (rld[r].reg_rtx != 0 || rld[r].optional)
5835 continue;
5837 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
5838 break;
5841 /* If that loop got all the way, we have won. */
5842 if (j == n_reloads)
5844 win = 1;
5845 break;
5848 /* Loop around and try without any inheritance. */
5851 if (! win)
5853 /* First undo everything done by the failed attempt
5854 to allocate with inheritance. */
5855 choose_reload_regs_init (chain, save_reload_reg_rtx);
5857 /* Some sanity tests to verify that the reloads found in the first
5858 pass are identical to the ones we have now. */
5859 if (chain->n_reloads != n_reloads)
5860 abort ();
5862 for (i = 0; i < n_reloads; i++)
5864 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
5865 continue;
5866 if (chain->rld[i].when_needed != rld[i].when_needed)
5867 abort ();
5868 for (j = 0; j < n_spills; j++)
5869 if (spill_regs[j] == chain->rld[i].regno)
5870 if (! set_reload_reg (j, i))
5871 failed_reload (chain->insn, i);
5875 /* If we thought we could inherit a reload, because it seemed that
5876 nothing else wanted the same reload register earlier in the insn,
5877 verify that assumption, now that all reloads have been assigned.
5878 Likewise for reloads where reload_override_in has been set. */
5880 /* If doing expensive optimizations, do one preliminary pass that doesn't
5881 cancel any inheritance, but removes reloads that have been needed only
5882 for reloads that we know can be inherited. */
5883 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
5885 for (j = 0; j < n_reloads; j++)
5887 int r = reload_order[j];
5888 rtx check_reg;
5889 if (reload_inherited[r] && rld[r].reg_rtx)
5890 check_reg = rld[r].reg_rtx;
5891 else if (reload_override_in[r]
5892 && (GET_CODE (reload_override_in[r]) == REG
5893 || GET_CODE (reload_override_in[r]) == SUBREG))
5894 check_reg = reload_override_in[r];
5895 else
5896 continue;
5897 if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
5898 rld[r].opnum, rld[r].when_needed, rld[r].in,
5899 (reload_inherited[r]
5900 ? rld[r].out : const0_rtx),
5901 r, 1))
5903 if (pass)
5904 continue;
5905 reload_inherited[r] = 0;
5906 reload_override_in[r] = 0;
5908 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
5909 reload_override_in, then we do not need its related
5910 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
5911 likewise for other reload types.
5912 We handle this by removing a reload when its only replacement
5913 is mentioned in reload_in of the reload we are going to inherit.
5914 A special case are auto_inc expressions; even if the input is
5915 inherited, we still need the address for the output. We can
5916 recognize them because they have RELOAD_OUT set to RELOAD_IN.
5917 If we succeeded removing some reload and we are doing a preliminary
5918 pass just to remove such reloads, make another pass, since the
5919 removal of one reload might allow us to inherit another one. */
5920 else if (rld[r].in
5921 && rld[r].out != rld[r].in
5922 && remove_address_replacements (rld[r].in) && pass)
5923 pass = 2;
5927 /* Now that reload_override_in is known valid,
5928 actually override reload_in. */
5929 for (j = 0; j < n_reloads; j++)
5930 if (reload_override_in[j])
5931 rld[j].in = reload_override_in[j];
5933 /* If this reload won't be done because it has been cancelled or is
5934 optional and not inherited, clear reload_reg_rtx so other
5935 routines (such as subst_reloads) don't get confused. */
5936 for (j = 0; j < n_reloads; j++)
5937 if (rld[j].reg_rtx != 0
5938 && ((rld[j].optional && ! reload_inherited[j])
5939 || (rld[j].in == 0 && rld[j].out == 0
5940 && ! rld[j].secondary_p)))
5942 int regno = true_regnum (rld[j].reg_rtx);
5944 if (spill_reg_order[regno] >= 0)
5945 clear_reload_reg_in_use (regno, rld[j].opnum,
5946 rld[j].when_needed, rld[j].mode);
5947 rld[j].reg_rtx = 0;
5948 reload_spill_index[j] = -1;
5951 /* Record which pseudos and which spill regs have output reloads. */
5952 for (j = 0; j < n_reloads; j++)
5954 int r = reload_order[j];
5956 i = reload_spill_index[r];
5958 /* I is nonneg if this reload uses a register.
5959 If rld[r].reg_rtx is 0, this is an optional reload
5960 that we opted to ignore. */
5961 if (rld[r].out_reg != 0 && GET_CODE (rld[r].out_reg) == REG
5962 && rld[r].reg_rtx != 0)
5964 int nregno = REGNO (rld[r].out_reg);
5965 int nr = 1;
5967 if (nregno < FIRST_PSEUDO_REGISTER)
5968 nr = HARD_REGNO_NREGS (nregno, rld[r].mode);
5970 while (--nr >= 0)
5971 reg_has_output_reload[nregno + nr] = 1;
5973 if (i >= 0)
5975 nr = HARD_REGNO_NREGS (i, rld[r].mode);
5976 while (--nr >= 0)
5977 SET_HARD_REG_BIT (reg_is_output_reload, i + nr);
5980 if (rld[r].when_needed != RELOAD_OTHER
5981 && rld[r].when_needed != RELOAD_FOR_OUTPUT
5982 && rld[r].when_needed != RELOAD_FOR_INSN)
5983 abort ();
5988 /* Deallocate the reload register for reload R. This is called from
5989 remove_address_replacements. */
5991 void
5992 deallocate_reload_reg (r)
5993 int r;
5995 int regno;
5997 if (! rld[r].reg_rtx)
5998 return;
5999 regno = true_regnum (rld[r].reg_rtx);
6000 rld[r].reg_rtx = 0;
6001 if (spill_reg_order[regno] >= 0)
6002 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
6003 rld[r].mode);
6004 reload_spill_index[r] = -1;
6007 /* If SMALL_REGISTER_CLASSES is nonzero, we may not have merged two
6008 reloads of the same item for fear that we might not have enough reload
6009 registers. However, normally they will get the same reload register
6010 and hence actually need not be loaded twice.
6012 Here we check for the most common case of this phenomenon: when we have
6013 a number of reloads for the same object, each of which were allocated
6014 the same reload_reg_rtx, that reload_reg_rtx is not used for any other
6015 reload, and is not modified in the insn itself. If we find such,
6016 merge all the reloads and set the resulting reload to RELOAD_OTHER.
6017 This will not increase the number of spill registers needed and will
6018 prevent redundant code. */
6020 static void
6021 merge_assigned_reloads (insn)
6022 rtx insn;
6024 int i, j;
6026 /* Scan all the reloads looking for ones that only load values and
6027 are not already RELOAD_OTHER and ones whose reload_reg_rtx are
6028 assigned and not modified by INSN. */
6030 for (i = 0; i < n_reloads; i++)
6032 int conflicting_input = 0;
6033 int max_input_address_opnum = -1;
6034 int min_conflicting_input_opnum = MAX_RECOG_OPERANDS;
6036 if (rld[i].in == 0 || rld[i].when_needed == RELOAD_OTHER
6037 || rld[i].out != 0 || rld[i].reg_rtx == 0
6038 || reg_set_p (rld[i].reg_rtx, insn))
6039 continue;
6041 /* Look at all other reloads. Ensure that the only use of this
6042 reload_reg_rtx is in a reload that just loads the same value
6043 as we do. Note that any secondary reloads must be of the identical
6044 class since the values, modes, and result registers are the
6045 same, so we need not do anything with any secondary reloads. */
6047 for (j = 0; j < n_reloads; j++)
6049 if (i == j || rld[j].reg_rtx == 0
6050 || ! reg_overlap_mentioned_p (rld[j].reg_rtx,
6051 rld[i].reg_rtx))
6052 continue;
6054 if (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6055 && rld[j].opnum > max_input_address_opnum)
6056 max_input_address_opnum = rld[j].opnum;
6058 /* If the reload regs aren't exactly the same (e.g, different modes)
6059 or if the values are different, we can't merge this reload.
6060 But if it is an input reload, we might still merge
6061 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_OTHER_ADDRESS reloads. */
6063 if (! rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
6064 || rld[j].out != 0 || rld[j].in == 0
6065 || ! rtx_equal_p (rld[i].in, rld[j].in))
6067 if (rld[j].when_needed != RELOAD_FOR_INPUT
6068 || ((rld[i].when_needed != RELOAD_FOR_INPUT_ADDRESS
6069 || rld[i].opnum > rld[j].opnum)
6070 && rld[i].when_needed != RELOAD_FOR_OTHER_ADDRESS))
6071 break;
6072 conflicting_input = 1;
6073 if (min_conflicting_input_opnum > rld[j].opnum)
6074 min_conflicting_input_opnum = rld[j].opnum;
6078 /* If all is OK, merge the reloads. Only set this to RELOAD_OTHER if
6079 we, in fact, found any matching reloads. */
6081 if (j == n_reloads
6082 && max_input_address_opnum <= min_conflicting_input_opnum)
6084 for (j = 0; j < n_reloads; j++)
6085 if (i != j && rld[j].reg_rtx != 0
6086 && rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
6087 && (! conflicting_input
6088 || rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6089 || rld[j].when_needed == RELOAD_FOR_OTHER_ADDRESS))
6091 rld[i].when_needed = RELOAD_OTHER;
6092 rld[j].in = 0;
6093 reload_spill_index[j] = -1;
6094 transfer_replacements (i, j);
6097 /* If this is now RELOAD_OTHER, look for any reloads that load
6098 parts of this operand and set them to RELOAD_FOR_OTHER_ADDRESS
6099 if they were for inputs, RELOAD_OTHER for outputs. Note that
6100 this test is equivalent to looking for reloads for this operand
6101 number. */
6102 /* We must take special care when there are two or more reloads to
6103 be merged and a RELOAD_FOR_OUTPUT_ADDRESS reload that loads the
6104 same value or a part of it; we must not change its type if there
6105 is a conflicting input. */
6107 if (rld[i].when_needed == RELOAD_OTHER)
6108 for (j = 0; j < n_reloads; j++)
6109 if (rld[j].in != 0
6110 && rld[j].when_needed != RELOAD_OTHER
6111 && rld[j].when_needed != RELOAD_FOR_OTHER_ADDRESS
6112 && (! conflicting_input
6113 || rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6114 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
6115 && reg_overlap_mentioned_for_reload_p (rld[j].in,
6116 rld[i].in))
6118 int k;
6120 rld[j].when_needed
6121 = ((rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6122 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
6123 ? RELOAD_FOR_OTHER_ADDRESS : RELOAD_OTHER);
6125 /* Check to see if we accidentally converted two reloads
6126 that use the same reload register to the same type.
6127 If so, the resulting code won't work, so abort. */
6128 if (rld[j].reg_rtx)
6129 for (k = 0; k < j; k++)
6130 if (rld[k].in != 0 && rld[k].reg_rtx != 0
6131 && rld[k].when_needed == rld[j].when_needed
6132 && rtx_equal_p (rld[k].reg_rtx, rld[j].reg_rtx))
6133 abort ();
6139 /* These arrays are filled by emit_reload_insns and its subroutines. */
6140 static rtx input_reload_insns[MAX_RECOG_OPERANDS];
6141 static rtx other_input_address_reload_insns = 0;
6142 static rtx other_input_reload_insns = 0;
6143 static rtx input_address_reload_insns[MAX_RECOG_OPERANDS];
6144 static rtx inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
6145 static rtx output_reload_insns[MAX_RECOG_OPERANDS];
6146 static rtx output_address_reload_insns[MAX_RECOG_OPERANDS];
6147 static rtx outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
6148 static rtx operand_reload_insns = 0;
6149 static rtx other_operand_reload_insns = 0;
6150 static rtx other_output_reload_insns[MAX_RECOG_OPERANDS];
6152 /* Values to be put in spill_reg_store are put here first. */
6153 static rtx new_spill_reg_store[FIRST_PSEUDO_REGISTER];
6154 static HARD_REG_SET reg_reloaded_died;
6156 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
6157 has the number J. OLD contains the value to be used as input. */
6159 static void
6160 emit_input_reload_insns (chain, rl, old, j)
6161 struct insn_chain *chain;
6162 struct reload *rl;
6163 rtx old;
6164 int j;
6166 rtx insn = chain->insn;
6167 rtx reloadreg = rl->reg_rtx;
6168 rtx oldequiv_reg = 0;
6169 rtx oldequiv = 0;
6170 int special = 0;
6171 enum machine_mode mode;
6172 rtx *where;
6174 /* Determine the mode to reload in.
6175 This is very tricky because we have three to choose from.
6176 There is the mode the insn operand wants (rl->inmode).
6177 There is the mode of the reload register RELOADREG.
6178 There is the intrinsic mode of the operand, which we could find
6179 by stripping some SUBREGs.
6180 It turns out that RELOADREG's mode is irrelevant:
6181 we can change that arbitrarily.
6183 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
6184 then the reload reg may not support QImode moves, so use SImode.
6185 If foo is in memory due to spilling a pseudo reg, this is safe,
6186 because the QImode value is in the least significant part of a
6187 slot big enough for a SImode. If foo is some other sort of
6188 memory reference, then it is impossible to reload this case,
6189 so previous passes had better make sure this never happens.
6191 Then consider a one-word union which has SImode and one of its
6192 members is a float, being fetched as (SUBREG:SF union:SI).
6193 We must fetch that as SFmode because we could be loading into
6194 a float-only register. In this case OLD's mode is correct.
6196 Consider an immediate integer: it has VOIDmode. Here we need
6197 to get a mode from something else.
6199 In some cases, there is a fourth mode, the operand's
6200 containing mode. If the insn specifies a containing mode for
6201 this operand, it overrides all others.
6203 I am not sure whether the algorithm here is always right,
6204 but it does the right things in those cases. */
6206 mode = GET_MODE (old);
6207 if (mode == VOIDmode)
6208 mode = rl->inmode;
6210 #ifdef SECONDARY_INPUT_RELOAD_CLASS
6211 /* If we need a secondary register for this operation, see if
6212 the value is already in a register in that class. Don't
6213 do this if the secondary register will be used as a scratch
6214 register. */
6216 if (rl->secondary_in_reload >= 0
6217 && rl->secondary_in_icode == CODE_FOR_nothing
6218 && optimize)
6219 oldequiv
6220 = find_equiv_reg (old, insn,
6221 rld[rl->secondary_in_reload].class,
6222 -1, NULL, 0, mode);
6223 #endif
6225 /* If reloading from memory, see if there is a register
6226 that already holds the same value. If so, reload from there.
6227 We can pass 0 as the reload_reg_p argument because
6228 any other reload has either already been emitted,
6229 in which case find_equiv_reg will see the reload-insn,
6230 or has yet to be emitted, in which case it doesn't matter
6231 because we will use this equiv reg right away. */
6233 if (oldequiv == 0 && optimize
6234 && (GET_CODE (old) == MEM
6235 || (GET_CODE (old) == REG
6236 && REGNO (old) >= FIRST_PSEUDO_REGISTER
6237 && reg_renumber[REGNO (old)] < 0)))
6238 oldequiv = find_equiv_reg (old, insn, ALL_REGS, -1, NULL, 0, mode);
6240 if (oldequiv)
6242 unsigned int regno = true_regnum (oldequiv);
6244 /* Don't use OLDEQUIV if any other reload changes it at an
6245 earlier stage of this insn or at this stage. */
6246 if (! free_for_value_p (regno, rl->mode, rl->opnum, rl->when_needed,
6247 rl->in, const0_rtx, j, 0))
6248 oldequiv = 0;
6250 /* If it is no cheaper to copy from OLDEQUIV into the
6251 reload register than it would be to move from memory,
6252 don't use it. Likewise, if we need a secondary register
6253 or memory. */
6255 if (oldequiv != 0
6256 && ((REGNO_REG_CLASS (regno) != rl->class
6257 && (REGISTER_MOVE_COST (mode, REGNO_REG_CLASS (regno),
6258 rl->class)
6259 >= MEMORY_MOVE_COST (mode, rl->class, 1)))
6260 #ifdef SECONDARY_INPUT_RELOAD_CLASS
6261 || (SECONDARY_INPUT_RELOAD_CLASS (rl->class,
6262 mode, oldequiv)
6263 != NO_REGS)
6264 #endif
6265 #ifdef SECONDARY_MEMORY_NEEDED
6266 || SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (regno),
6267 rl->class,
6268 mode)
6269 #endif
6271 oldequiv = 0;
6274 /* delete_output_reload is only invoked properly if old contains
6275 the original pseudo register. Since this is replaced with a
6276 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
6277 find the pseudo in RELOAD_IN_REG. */
6278 if (oldequiv == 0
6279 && reload_override_in[j]
6280 && GET_CODE (rl->in_reg) == REG)
6282 oldequiv = old;
6283 old = rl->in_reg;
6285 if (oldequiv == 0)
6286 oldequiv = old;
6287 else if (GET_CODE (oldequiv) == REG)
6288 oldequiv_reg = oldequiv;
6289 else if (GET_CODE (oldequiv) == SUBREG)
6290 oldequiv_reg = SUBREG_REG (oldequiv);
6292 /* If we are reloading from a register that was recently stored in
6293 with an output-reload, see if we can prove there was
6294 actually no need to store the old value in it. */
6296 if (optimize && GET_CODE (oldequiv) == REG
6297 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6298 && spill_reg_store[REGNO (oldequiv)]
6299 && GET_CODE (old) == REG
6300 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
6301 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6302 rl->out_reg)))
6303 delete_output_reload (insn, j, REGNO (oldequiv));
6305 /* Encapsulate both RELOADREG and OLDEQUIV into that mode,
6306 then load RELOADREG from OLDEQUIV. Note that we cannot use
6307 gen_lowpart_common since it can do the wrong thing when
6308 RELOADREG has a multi-word mode. Note that RELOADREG
6309 must always be a REG here. */
6311 if (GET_MODE (reloadreg) != mode)
6312 reloadreg = gen_rtx_REG (mode, REGNO (reloadreg));
6313 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
6314 oldequiv = SUBREG_REG (oldequiv);
6315 if (GET_MODE (oldequiv) != VOIDmode
6316 && mode != GET_MODE (oldequiv))
6317 oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
6319 /* Switch to the right place to emit the reload insns. */
6320 switch (rl->when_needed)
6322 case RELOAD_OTHER:
6323 where = &other_input_reload_insns;
6324 break;
6325 case RELOAD_FOR_INPUT:
6326 where = &input_reload_insns[rl->opnum];
6327 break;
6328 case RELOAD_FOR_INPUT_ADDRESS:
6329 where = &input_address_reload_insns[rl->opnum];
6330 break;
6331 case RELOAD_FOR_INPADDR_ADDRESS:
6332 where = &inpaddr_address_reload_insns[rl->opnum];
6333 break;
6334 case RELOAD_FOR_OUTPUT_ADDRESS:
6335 where = &output_address_reload_insns[rl->opnum];
6336 break;
6337 case RELOAD_FOR_OUTADDR_ADDRESS:
6338 where = &outaddr_address_reload_insns[rl->opnum];
6339 break;
6340 case RELOAD_FOR_OPERAND_ADDRESS:
6341 where = &operand_reload_insns;
6342 break;
6343 case RELOAD_FOR_OPADDR_ADDR:
6344 where = &other_operand_reload_insns;
6345 break;
6346 case RELOAD_FOR_OTHER_ADDRESS:
6347 where = &other_input_address_reload_insns;
6348 break;
6349 default:
6350 abort ();
6353 push_to_sequence (*where);
6355 /* Auto-increment addresses must be reloaded in a special way. */
6356 if (rl->out && ! rl->out_reg)
6358 /* We are not going to bother supporting the case where a
6359 incremented register can't be copied directly from
6360 OLDEQUIV since this seems highly unlikely. */
6361 if (rl->secondary_in_reload >= 0)
6362 abort ();
6364 if (reload_inherited[j])
6365 oldequiv = reloadreg;
6367 old = XEXP (rl->in_reg, 0);
6369 if (optimize && GET_CODE (oldequiv) == REG
6370 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6371 && spill_reg_store[REGNO (oldequiv)]
6372 && GET_CODE (old) == REG
6373 && (dead_or_set_p (insn,
6374 spill_reg_stored_to[REGNO (oldequiv)])
6375 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6376 old)))
6377 delete_output_reload (insn, j, REGNO (oldequiv));
6379 /* Prevent normal processing of this reload. */
6380 special = 1;
6381 /* Output a special code sequence for this case. */
6382 new_spill_reg_store[REGNO (reloadreg)]
6383 = inc_for_reload (reloadreg, oldequiv, rl->out,
6384 rl->inc);
6387 /* If we are reloading a pseudo-register that was set by the previous
6388 insn, see if we can get rid of that pseudo-register entirely
6389 by redirecting the previous insn into our reload register. */
6391 else if (optimize && GET_CODE (old) == REG
6392 && REGNO (old) >= FIRST_PSEUDO_REGISTER
6393 && dead_or_set_p (insn, old)
6394 /* This is unsafe if some other reload
6395 uses the same reg first. */
6396 && ! conflicts_with_override (reloadreg)
6397 && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
6398 rl->when_needed, old, rl->out, j, 0))
6400 rtx temp = PREV_INSN (insn);
6401 while (temp && GET_CODE (temp) == NOTE)
6402 temp = PREV_INSN (temp);
6403 if (temp
6404 && GET_CODE (temp) == INSN
6405 && GET_CODE (PATTERN (temp)) == SET
6406 && SET_DEST (PATTERN (temp)) == old
6407 /* Make sure we can access insn_operand_constraint. */
6408 && asm_noperands (PATTERN (temp)) < 0
6409 /* This is unsafe if operand occurs more than once in current
6410 insn. Perhaps some occurrences aren't reloaded. */
6411 && count_occurrences (PATTERN (insn), old, 0) == 1)
6413 rtx old = SET_DEST (PATTERN (temp));
6414 /* Store into the reload register instead of the pseudo. */
6415 SET_DEST (PATTERN (temp)) = reloadreg;
6417 /* Verify that resulting insn is valid. */
6418 extract_insn (temp);
6419 if (constrain_operands (1))
6421 /* If the previous insn is an output reload, the source is
6422 a reload register, and its spill_reg_store entry will
6423 contain the previous destination. This is now
6424 invalid. */
6425 if (GET_CODE (SET_SRC (PATTERN (temp))) == REG
6426 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
6428 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6429 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6432 /* If these are the only uses of the pseudo reg,
6433 pretend for GDB it lives in the reload reg we used. */
6434 if (REG_N_DEATHS (REGNO (old)) == 1
6435 && REG_N_SETS (REGNO (old)) == 1)
6437 reg_renumber[REGNO (old)] = REGNO (rl->reg_rtx);
6438 alter_reg (REGNO (old), -1);
6440 special = 1;
6442 else
6444 SET_DEST (PATTERN (temp)) = old;
6449 /* We can't do that, so output an insn to load RELOADREG. */
6451 #ifdef SECONDARY_INPUT_RELOAD_CLASS
6452 /* If we have a secondary reload, pick up the secondary register
6453 and icode, if any. If OLDEQUIV and OLD are different or
6454 if this is an in-out reload, recompute whether or not we
6455 still need a secondary register and what the icode should
6456 be. If we still need a secondary register and the class or
6457 icode is different, go back to reloading from OLD if using
6458 OLDEQUIV means that we got the wrong type of register. We
6459 cannot have different class or icode due to an in-out reload
6460 because we don't make such reloads when both the input and
6461 output need secondary reload registers. */
6463 if (! special && rl->secondary_in_reload >= 0)
6465 rtx second_reload_reg = 0;
6466 int secondary_reload = rl->secondary_in_reload;
6467 rtx real_oldequiv = oldequiv;
6468 rtx real_old = old;
6469 rtx tmp;
6470 enum insn_code icode;
6472 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
6473 and similarly for OLD.
6474 See comments in get_secondary_reload in reload.c. */
6475 /* If it is a pseudo that cannot be replaced with its
6476 equivalent MEM, we must fall back to reload_in, which
6477 will have all the necessary substitutions registered.
6478 Likewise for a pseudo that can't be replaced with its
6479 equivalent constant.
6481 Take extra care for subregs of such pseudos. Note that
6482 we cannot use reg_equiv_mem in this case because it is
6483 not in the right mode. */
6485 tmp = oldequiv;
6486 if (GET_CODE (tmp) == SUBREG)
6487 tmp = SUBREG_REG (tmp);
6488 if (GET_CODE (tmp) == REG
6489 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
6490 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
6491 || reg_equiv_constant[REGNO (tmp)] != 0))
6493 if (! reg_equiv_mem[REGNO (tmp)]
6494 || num_not_at_initial_offset
6495 || GET_CODE (oldequiv) == SUBREG)
6496 real_oldequiv = rl->in;
6497 else
6498 real_oldequiv = reg_equiv_mem[REGNO (tmp)];
6501 tmp = old;
6502 if (GET_CODE (tmp) == SUBREG)
6503 tmp = SUBREG_REG (tmp);
6504 if (GET_CODE (tmp) == REG
6505 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
6506 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
6507 || reg_equiv_constant[REGNO (tmp)] != 0))
6509 if (! reg_equiv_mem[REGNO (tmp)]
6510 || num_not_at_initial_offset
6511 || GET_CODE (old) == SUBREG)
6512 real_old = rl->in;
6513 else
6514 real_old = reg_equiv_mem[REGNO (tmp)];
6517 second_reload_reg = rld[secondary_reload].reg_rtx;
6518 icode = rl->secondary_in_icode;
6520 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
6521 || (rl->in != 0 && rl->out != 0))
6523 enum reg_class new_class
6524 = SECONDARY_INPUT_RELOAD_CLASS (rl->class,
6525 mode, real_oldequiv);
6527 if (new_class == NO_REGS)
6528 second_reload_reg = 0;
6529 else
6531 enum insn_code new_icode;
6532 enum machine_mode new_mode;
6534 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) new_class],
6535 REGNO (second_reload_reg)))
6536 oldequiv = old, real_oldequiv = real_old;
6537 else
6539 new_icode = reload_in_optab[(int) mode];
6540 if (new_icode != CODE_FOR_nothing
6541 && ((insn_data[(int) new_icode].operand[0].predicate
6542 && ! ((*insn_data[(int) new_icode].operand[0].predicate)
6543 (reloadreg, mode)))
6544 || (insn_data[(int) new_icode].operand[1].predicate
6545 && ! ((*insn_data[(int) new_icode].operand[1].predicate)
6546 (real_oldequiv, mode)))))
6547 new_icode = CODE_FOR_nothing;
6549 if (new_icode == CODE_FOR_nothing)
6550 new_mode = mode;
6551 else
6552 new_mode = insn_data[(int) new_icode].operand[2].mode;
6554 if (GET_MODE (second_reload_reg) != new_mode)
6556 if (!HARD_REGNO_MODE_OK (REGNO (second_reload_reg),
6557 new_mode))
6558 oldequiv = old, real_oldequiv = real_old;
6559 else
6560 second_reload_reg
6561 = gen_rtx_REG (new_mode,
6562 REGNO (second_reload_reg));
6568 /* If we still need a secondary reload register, check
6569 to see if it is being used as a scratch or intermediate
6570 register and generate code appropriately. If we need
6571 a scratch register, use REAL_OLDEQUIV since the form of
6572 the insn may depend on the actual address if it is
6573 a MEM. */
6575 if (second_reload_reg)
6577 if (icode != CODE_FOR_nothing)
6579 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
6580 second_reload_reg));
6581 special = 1;
6583 else
6585 /* See if we need a scratch register to load the
6586 intermediate register (a tertiary reload). */
6587 enum insn_code tertiary_icode
6588 = rld[secondary_reload].secondary_in_icode;
6590 if (tertiary_icode != CODE_FOR_nothing)
6592 rtx third_reload_reg
6593 = rld[rld[secondary_reload].secondary_in_reload].reg_rtx;
6595 emit_insn ((GEN_FCN (tertiary_icode)
6596 (second_reload_reg, real_oldequiv,
6597 third_reload_reg)));
6599 else
6600 gen_reload (second_reload_reg, real_oldequiv,
6601 rl->opnum,
6602 rl->when_needed);
6604 oldequiv = second_reload_reg;
6608 #endif
6610 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
6612 rtx real_oldequiv = oldequiv;
6614 if ((GET_CODE (oldequiv) == REG
6615 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
6616 && (reg_equiv_memory_loc[REGNO (oldequiv)] != 0
6617 || reg_equiv_constant[REGNO (oldequiv)] != 0))
6618 || (GET_CODE (oldequiv) == SUBREG
6619 && GET_CODE (SUBREG_REG (oldequiv)) == REG
6620 && (REGNO (SUBREG_REG (oldequiv))
6621 >= FIRST_PSEUDO_REGISTER)
6622 && ((reg_equiv_memory_loc
6623 [REGNO (SUBREG_REG (oldequiv))] != 0)
6624 || (reg_equiv_constant
6625 [REGNO (SUBREG_REG (oldequiv))] != 0)))
6626 || (CONSTANT_P (oldequiv)
6627 && (PREFERRED_RELOAD_CLASS (oldequiv,
6628 REGNO_REG_CLASS (REGNO (reloadreg)))
6629 == NO_REGS)))
6630 real_oldequiv = rl->in;
6631 gen_reload (reloadreg, real_oldequiv, rl->opnum,
6632 rl->when_needed);
6635 if (flag_non_call_exceptions)
6636 copy_eh_notes (insn, get_insns ());
6638 /* End this sequence. */
6639 *where = get_insns ();
6640 end_sequence ();
6642 /* Update reload_override_in so that delete_address_reloads_1
6643 can see the actual register usage. */
6644 if (oldequiv_reg)
6645 reload_override_in[j] = oldequiv;
6648 /* Generate insns to for the output reload RL, which is for the insn described
6649 by CHAIN and has the number J. */
6650 static void
6651 emit_output_reload_insns (chain, rl, j)
6652 struct insn_chain *chain;
6653 struct reload *rl;
6654 int j;
6656 rtx reloadreg = rl->reg_rtx;
6657 rtx insn = chain->insn;
6658 int special = 0;
6659 rtx old = rl->out;
6660 enum machine_mode mode = GET_MODE (old);
6661 rtx p;
6663 if (rl->when_needed == RELOAD_OTHER)
6664 start_sequence ();
6665 else
6666 push_to_sequence (output_reload_insns[rl->opnum]);
6668 /* Determine the mode to reload in.
6669 See comments above (for input reloading). */
6671 if (mode == VOIDmode)
6673 /* VOIDmode should never happen for an output. */
6674 if (asm_noperands (PATTERN (insn)) < 0)
6675 /* It's the compiler's fault. */
6676 fatal_insn ("VOIDmode on an output", insn);
6677 error_for_asm (insn, "output operand is constant in `asm'");
6678 /* Prevent crash--use something we know is valid. */
6679 mode = word_mode;
6680 old = gen_rtx_REG (mode, REGNO (reloadreg));
6683 if (GET_MODE (reloadreg) != mode)
6684 reloadreg = gen_rtx_REG (mode, REGNO (reloadreg));
6686 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
6688 /* If we need two reload regs, set RELOADREG to the intermediate
6689 one, since it will be stored into OLD. We might need a secondary
6690 register only for an input reload, so check again here. */
6692 if (rl->secondary_out_reload >= 0)
6694 rtx real_old = old;
6696 if (GET_CODE (old) == REG && REGNO (old) >= FIRST_PSEUDO_REGISTER
6697 && reg_equiv_mem[REGNO (old)] != 0)
6698 real_old = reg_equiv_mem[REGNO (old)];
6700 if ((SECONDARY_OUTPUT_RELOAD_CLASS (rl->class,
6701 mode, real_old)
6702 != NO_REGS))
6704 rtx second_reloadreg = reloadreg;
6705 reloadreg = rld[rl->secondary_out_reload].reg_rtx;
6707 /* See if RELOADREG is to be used as a scratch register
6708 or as an intermediate register. */
6709 if (rl->secondary_out_icode != CODE_FOR_nothing)
6711 emit_insn ((GEN_FCN (rl->secondary_out_icode)
6712 (real_old, second_reloadreg, reloadreg)));
6713 special = 1;
6715 else
6717 /* See if we need both a scratch and intermediate reload
6718 register. */
6720 int secondary_reload = rl->secondary_out_reload;
6721 enum insn_code tertiary_icode
6722 = rld[secondary_reload].secondary_out_icode;
6724 if (GET_MODE (reloadreg) != mode)
6725 reloadreg = gen_rtx_REG (mode, REGNO (reloadreg));
6727 if (tertiary_icode != CODE_FOR_nothing)
6729 rtx third_reloadreg
6730 = rld[rld[secondary_reload].secondary_out_reload].reg_rtx;
6731 rtx tem;
6733 /* Copy primary reload reg to secondary reload reg.
6734 (Note that these have been swapped above, then
6735 secondary reload reg to OLD using our insn.) */
6737 /* If REAL_OLD is a paradoxical SUBREG, remove it
6738 and try to put the opposite SUBREG on
6739 RELOADREG. */
6740 if (GET_CODE (real_old) == SUBREG
6741 && (GET_MODE_SIZE (GET_MODE (real_old))
6742 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (real_old))))
6743 && 0 != (tem = gen_lowpart_common
6744 (GET_MODE (SUBREG_REG (real_old)),
6745 reloadreg)))
6746 real_old = SUBREG_REG (real_old), reloadreg = tem;
6748 gen_reload (reloadreg, second_reloadreg,
6749 rl->opnum, rl->when_needed);
6750 emit_insn ((GEN_FCN (tertiary_icode)
6751 (real_old, reloadreg, third_reloadreg)));
6752 special = 1;
6755 else
6756 /* Copy between the reload regs here and then to
6757 OUT later. */
6759 gen_reload (reloadreg, second_reloadreg,
6760 rl->opnum, rl->when_needed);
6764 #endif
6766 /* Output the last reload insn. */
6767 if (! special)
6769 rtx set;
6771 /* Don't output the last reload if OLD is not the dest of
6772 INSN and is in the src and is clobbered by INSN. */
6773 if (! flag_expensive_optimizations
6774 || GET_CODE (old) != REG
6775 || !(set = single_set (insn))
6776 || rtx_equal_p (old, SET_DEST (set))
6777 || !reg_mentioned_p (old, SET_SRC (set))
6778 || !regno_clobbered_p (REGNO (old), insn, rl->mode, 0))
6779 gen_reload (old, reloadreg, rl->opnum,
6780 rl->when_needed);
6783 /* Look at all insns we emitted, just to be safe. */
6784 for (p = get_insns (); p; p = NEXT_INSN (p))
6785 if (INSN_P (p))
6787 rtx pat = PATTERN (p);
6789 /* If this output reload doesn't come from a spill reg,
6790 clear any memory of reloaded copies of the pseudo reg.
6791 If this output reload comes from a spill reg,
6792 reg_has_output_reload will make this do nothing. */
6793 note_stores (pat, forget_old_reloads_1, NULL);
6795 if (reg_mentioned_p (rl->reg_rtx, pat))
6797 rtx set = single_set (insn);
6798 if (reload_spill_index[j] < 0
6799 && set
6800 && SET_SRC (set) == rl->reg_rtx)
6802 int src = REGNO (SET_SRC (set));
6804 reload_spill_index[j] = src;
6805 SET_HARD_REG_BIT (reg_is_output_reload, src);
6806 if (find_regno_note (insn, REG_DEAD, src))
6807 SET_HARD_REG_BIT (reg_reloaded_died, src);
6809 if (REGNO (rl->reg_rtx) < FIRST_PSEUDO_REGISTER)
6811 int s = rl->secondary_out_reload;
6812 set = single_set (p);
6813 /* If this reload copies only to the secondary reload
6814 register, the secondary reload does the actual
6815 store. */
6816 if (s >= 0 && set == NULL_RTX)
6817 /* We can't tell what function the secondary reload
6818 has and where the actual store to the pseudo is
6819 made; leave new_spill_reg_store alone. */
6821 else if (s >= 0
6822 && SET_SRC (set) == rl->reg_rtx
6823 && SET_DEST (set) == rld[s].reg_rtx)
6825 /* Usually the next instruction will be the
6826 secondary reload insn; if we can confirm
6827 that it is, setting new_spill_reg_store to
6828 that insn will allow an extra optimization. */
6829 rtx s_reg = rld[s].reg_rtx;
6830 rtx next = NEXT_INSN (p);
6831 rld[s].out = rl->out;
6832 rld[s].out_reg = rl->out_reg;
6833 set = single_set (next);
6834 if (set && SET_SRC (set) == s_reg
6835 && ! new_spill_reg_store[REGNO (s_reg)])
6837 SET_HARD_REG_BIT (reg_is_output_reload,
6838 REGNO (s_reg));
6839 new_spill_reg_store[REGNO (s_reg)] = next;
6842 else
6843 new_spill_reg_store[REGNO (rl->reg_rtx)] = p;
6848 if (rl->when_needed == RELOAD_OTHER)
6850 emit_insn (other_output_reload_insns[rl->opnum]);
6851 other_output_reload_insns[rl->opnum] = get_insns ();
6853 else
6854 output_reload_insns[rl->opnum] = get_insns ();
6856 if (flag_non_call_exceptions)
6857 copy_eh_notes (insn, get_insns ());
6859 end_sequence ();
6862 /* Do input reloading for reload RL, which is for the insn described by CHAIN
6863 and has the number J. */
6864 static void
6865 do_input_reload (chain, rl, j)
6866 struct insn_chain *chain;
6867 struct reload *rl;
6868 int j;
6870 int expect_occurrences = 1;
6871 rtx insn = chain->insn;
6872 rtx old = (rl->in && GET_CODE (rl->in) == MEM
6873 ? rl->in_reg : rl->in);
6875 if (old != 0
6876 /* AUTO_INC reloads need to be handled even if inherited. We got an
6877 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
6878 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
6879 && ! rtx_equal_p (rl->reg_rtx, old)
6880 && rl->reg_rtx != 0)
6881 emit_input_reload_insns (chain, rld + j, old, j);
6883 /* When inheriting a wider reload, we have a MEM in rl->in,
6884 e.g. inheriting a SImode output reload for
6885 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
6886 if (optimize && reload_inherited[j] && rl->in
6887 && GET_CODE (rl->in) == MEM
6888 && GET_CODE (rl->in_reg) == MEM
6889 && reload_spill_index[j] >= 0
6890 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
6892 expect_occurrences
6893 = count_occurrences (PATTERN (insn), rl->in, 0) == 1 ? 0 : -1;
6894 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
6897 /* If we are reloading a register that was recently stored in with an
6898 output-reload, see if we can prove there was
6899 actually no need to store the old value in it. */
6901 if (optimize
6902 && (reload_inherited[j] || reload_override_in[j])
6903 && rl->reg_rtx
6904 && GET_CODE (rl->reg_rtx) == REG
6905 && spill_reg_store[REGNO (rl->reg_rtx)] != 0
6906 #if 0
6907 /* There doesn't seem to be any reason to restrict this to pseudos
6908 and doing so loses in the case where we are copying from a
6909 register of the wrong class. */
6910 && (REGNO (spill_reg_stored_to[REGNO (rl->reg_rtx)])
6911 >= FIRST_PSEUDO_REGISTER)
6912 #endif
6913 /* The insn might have already some references to stackslots
6914 replaced by MEMs, while reload_out_reg still names the
6915 original pseudo. */
6916 && (dead_or_set_p (insn,
6917 spill_reg_stored_to[REGNO (rl->reg_rtx)])
6918 || rtx_equal_p (spill_reg_stored_to[REGNO (rl->reg_rtx)],
6919 rl->out_reg)))
6920 delete_output_reload (insn, j, REGNO (rl->reg_rtx));
6923 /* Do output reloading for reload RL, which is for the insn described by
6924 CHAIN and has the number J.
6925 ??? At some point we need to support handling output reloads of
6926 JUMP_INSNs or insns that set cc0. */
6927 static void
6928 do_output_reload (chain, rl, j)
6929 struct insn_chain *chain;
6930 struct reload *rl;
6931 int j;
6933 rtx note, old;
6934 rtx insn = chain->insn;
6935 /* If this is an output reload that stores something that is
6936 not loaded in this same reload, see if we can eliminate a previous
6937 store. */
6938 rtx pseudo = rl->out_reg;
6940 if (pseudo
6941 && optimize
6942 && GET_CODE (pseudo) == REG
6943 && ! rtx_equal_p (rl->in_reg, pseudo)
6944 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
6945 && reg_last_reload_reg[REGNO (pseudo)])
6947 int pseudo_no = REGNO (pseudo);
6948 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
6950 /* We don't need to test full validity of last_regno for
6951 inherit here; we only want to know if the store actually
6952 matches the pseudo. */
6953 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
6954 && reg_reloaded_contents[last_regno] == pseudo_no
6955 && spill_reg_store[last_regno]
6956 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
6957 delete_output_reload (insn, j, last_regno);
6960 old = rl->out_reg;
6961 if (old == 0
6962 || rl->reg_rtx == old
6963 || rl->reg_rtx == 0)
6964 return;
6966 /* An output operand that dies right away does need a reload,
6967 but need not be copied from it. Show the new location in the
6968 REG_UNUSED note. */
6969 if ((GET_CODE (old) == REG || GET_CODE (old) == SCRATCH)
6970 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
6972 XEXP (note, 0) = rl->reg_rtx;
6973 return;
6975 /* Likewise for a SUBREG of an operand that dies. */
6976 else if (GET_CODE (old) == SUBREG
6977 && GET_CODE (SUBREG_REG (old)) == REG
6978 && 0 != (note = find_reg_note (insn, REG_UNUSED,
6979 SUBREG_REG (old))))
6981 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old),
6982 rl->reg_rtx);
6983 return;
6985 else if (GET_CODE (old) == SCRATCH)
6986 /* If we aren't optimizing, there won't be a REG_UNUSED note,
6987 but we don't want to make an output reload. */
6988 return;
6990 /* If is a JUMP_INSN, we can't support output reloads yet. */
6991 if (GET_CODE (insn) == JUMP_INSN)
6992 abort ();
6994 emit_output_reload_insns (chain, rld + j, j);
6997 /* Output insns to reload values in and out of the chosen reload regs. */
6999 static void
7000 emit_reload_insns (chain)
7001 struct insn_chain *chain;
7003 rtx insn = chain->insn;
7005 int j;
7007 CLEAR_HARD_REG_SET (reg_reloaded_died);
7009 for (j = 0; j < reload_n_operands; j++)
7010 input_reload_insns[j] = input_address_reload_insns[j]
7011 = inpaddr_address_reload_insns[j]
7012 = output_reload_insns[j] = output_address_reload_insns[j]
7013 = outaddr_address_reload_insns[j]
7014 = other_output_reload_insns[j] = 0;
7015 other_input_address_reload_insns = 0;
7016 other_input_reload_insns = 0;
7017 operand_reload_insns = 0;
7018 other_operand_reload_insns = 0;
7020 /* Dump reloads into the dump file. */
7021 if (rtl_dump_file)
7023 fprintf (rtl_dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
7024 debug_reload_to_stream (rtl_dump_file);
7027 /* Now output the instructions to copy the data into and out of the
7028 reload registers. Do these in the order that the reloads were reported,
7029 since reloads of base and index registers precede reloads of operands
7030 and the operands may need the base and index registers reloaded. */
7032 for (j = 0; j < n_reloads; j++)
7034 if (rld[j].reg_rtx
7035 && REGNO (rld[j].reg_rtx) < FIRST_PSEUDO_REGISTER)
7036 new_spill_reg_store[REGNO (rld[j].reg_rtx)] = 0;
7038 do_input_reload (chain, rld + j, j);
7039 do_output_reload (chain, rld + j, j);
7042 /* Now write all the insns we made for reloads in the order expected by
7043 the allocation functions. Prior to the insn being reloaded, we write
7044 the following reloads:
7046 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
7048 RELOAD_OTHER reloads.
7050 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
7051 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
7052 RELOAD_FOR_INPUT reload for the operand.
7054 RELOAD_FOR_OPADDR_ADDRS reloads.
7056 RELOAD_FOR_OPERAND_ADDRESS reloads.
7058 After the insn being reloaded, we write the following:
7060 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
7061 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
7062 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
7063 reloads for the operand. The RELOAD_OTHER output reloads are
7064 output in descending order by reload number. */
7066 emit_insn_before (other_input_address_reload_insns, insn);
7067 emit_insn_before (other_input_reload_insns, insn);
7069 for (j = 0; j < reload_n_operands; j++)
7071 emit_insn_before (inpaddr_address_reload_insns[j], insn);
7072 emit_insn_before (input_address_reload_insns[j], insn);
7073 emit_insn_before (input_reload_insns[j], insn);
7076 emit_insn_before (other_operand_reload_insns, insn);
7077 emit_insn_before (operand_reload_insns, insn);
7079 for (j = 0; j < reload_n_operands; j++)
7081 rtx x = emit_insn_after (outaddr_address_reload_insns[j], insn);
7082 x = emit_insn_after (output_address_reload_insns[j], x);
7083 x = emit_insn_after (output_reload_insns[j], x);
7084 emit_insn_after (other_output_reload_insns[j], x);
7087 /* For all the spill regs newly reloaded in this instruction,
7088 record what they were reloaded from, so subsequent instructions
7089 can inherit the reloads.
7091 Update spill_reg_store for the reloads of this insn.
7092 Copy the elements that were updated in the loop above. */
7094 for (j = 0; j < n_reloads; j++)
7096 int r = reload_order[j];
7097 int i = reload_spill_index[r];
7099 /* If this is a non-inherited input reload from a pseudo, we must
7100 clear any memory of a previous store to the same pseudo. Only do
7101 something if there will not be an output reload for the pseudo
7102 being reloaded. */
7103 if (rld[r].in_reg != 0
7104 && ! (reload_inherited[r] || reload_override_in[r]))
7106 rtx reg = rld[r].in_reg;
7108 if (GET_CODE (reg) == SUBREG)
7109 reg = SUBREG_REG (reg);
7111 if (GET_CODE (reg) == REG
7112 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
7113 && ! reg_has_output_reload[REGNO (reg)])
7115 int nregno = REGNO (reg);
7117 if (reg_last_reload_reg[nregno])
7119 int last_regno = REGNO (reg_last_reload_reg[nregno]);
7121 if (reg_reloaded_contents[last_regno] == nregno)
7122 spill_reg_store[last_regno] = 0;
7127 /* I is nonneg if this reload used a register.
7128 If rld[r].reg_rtx is 0, this is an optional reload
7129 that we opted to ignore. */
7131 if (i >= 0 && rld[r].reg_rtx != 0)
7133 int nr = HARD_REGNO_NREGS (i, GET_MODE (rld[r].reg_rtx));
7134 int k;
7135 int part_reaches_end = 0;
7136 int all_reaches_end = 1;
7138 /* For a multi register reload, we need to check if all or part
7139 of the value lives to the end. */
7140 for (k = 0; k < nr; k++)
7142 if (reload_reg_reaches_end_p (i + k, rld[r].opnum,
7143 rld[r].when_needed))
7144 part_reaches_end = 1;
7145 else
7146 all_reaches_end = 0;
7149 /* Ignore reloads that don't reach the end of the insn in
7150 entirety. */
7151 if (all_reaches_end)
7153 /* First, clear out memory of what used to be in this spill reg.
7154 If consecutive registers are used, clear them all. */
7156 for (k = 0; k < nr; k++)
7157 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
7159 /* Maybe the spill reg contains a copy of reload_out. */
7160 if (rld[r].out != 0
7161 && (GET_CODE (rld[r].out) == REG
7162 #ifdef AUTO_INC_DEC
7163 || ! rld[r].out_reg
7164 #endif
7165 || GET_CODE (rld[r].out_reg) == REG))
7167 rtx out = (GET_CODE (rld[r].out) == REG
7168 ? rld[r].out
7169 : rld[r].out_reg
7170 ? rld[r].out_reg
7171 /* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
7172 int nregno = REGNO (out);
7173 int nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
7174 : HARD_REGNO_NREGS (nregno,
7175 GET_MODE (rld[r].reg_rtx)));
7177 spill_reg_store[i] = new_spill_reg_store[i];
7178 spill_reg_stored_to[i] = out;
7179 reg_last_reload_reg[nregno] = rld[r].reg_rtx;
7181 /* If NREGNO is a hard register, it may occupy more than
7182 one register. If it does, say what is in the
7183 rest of the registers assuming that both registers
7184 agree on how many words the object takes. If not,
7185 invalidate the subsequent registers. */
7187 if (nregno < FIRST_PSEUDO_REGISTER)
7188 for (k = 1; k < nnr; k++)
7189 reg_last_reload_reg[nregno + k]
7190 = (nr == nnr
7191 ? regno_reg_rtx[REGNO (rld[r].reg_rtx) + k]
7192 : 0);
7194 /* Now do the inverse operation. */
7195 for (k = 0; k < nr; k++)
7197 CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
7198 reg_reloaded_contents[i + k]
7199 = (nregno >= FIRST_PSEUDO_REGISTER || nr != nnr
7200 ? nregno
7201 : nregno + k);
7202 reg_reloaded_insn[i + k] = insn;
7203 SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
7207 /* Maybe the spill reg contains a copy of reload_in. Only do
7208 something if there will not be an output reload for
7209 the register being reloaded. */
7210 else if (rld[r].out_reg == 0
7211 && rld[r].in != 0
7212 && ((GET_CODE (rld[r].in) == REG
7213 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER
7214 && ! reg_has_output_reload[REGNO (rld[r].in)])
7215 || (GET_CODE (rld[r].in_reg) == REG
7216 && ! reg_has_output_reload[REGNO (rld[r].in_reg)]))
7217 && ! reg_set_p (rld[r].reg_rtx, PATTERN (insn)))
7219 int nregno;
7220 int nnr;
7222 if (GET_CODE (rld[r].in) == REG
7223 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
7224 nregno = REGNO (rld[r].in);
7225 else if (GET_CODE (rld[r].in_reg) == REG)
7226 nregno = REGNO (rld[r].in_reg);
7227 else
7228 nregno = REGNO (XEXP (rld[r].in_reg, 0));
7230 nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
7231 : HARD_REGNO_NREGS (nregno,
7232 GET_MODE (rld[r].reg_rtx)));
7234 reg_last_reload_reg[nregno] = rld[r].reg_rtx;
7236 if (nregno < FIRST_PSEUDO_REGISTER)
7237 for (k = 1; k < nnr; k++)
7238 reg_last_reload_reg[nregno + k]
7239 = (nr == nnr
7240 ? regno_reg_rtx[REGNO (rld[r].reg_rtx) + k]
7241 : 0);
7243 /* Unless we inherited this reload, show we haven't
7244 recently done a store.
7245 Previous stores of inherited auto_inc expressions
7246 also have to be discarded. */
7247 if (! reload_inherited[r]
7248 || (rld[r].out && ! rld[r].out_reg))
7249 spill_reg_store[i] = 0;
7251 for (k = 0; k < nr; k++)
7253 CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
7254 reg_reloaded_contents[i + k]
7255 = (nregno >= FIRST_PSEUDO_REGISTER || nr != nnr
7256 ? nregno
7257 : nregno + k);
7258 reg_reloaded_insn[i + k] = insn;
7259 SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
7264 /* However, if part of the reload reaches the end, then we must
7265 invalidate the old info for the part that survives to the end. */
7266 else if (part_reaches_end)
7268 for (k = 0; k < nr; k++)
7269 if (reload_reg_reaches_end_p (i + k,
7270 rld[r].opnum,
7271 rld[r].when_needed))
7272 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
7276 /* The following if-statement was #if 0'd in 1.34 (or before...).
7277 It's reenabled in 1.35 because supposedly nothing else
7278 deals with this problem. */
7280 /* If a register gets output-reloaded from a non-spill register,
7281 that invalidates any previous reloaded copy of it.
7282 But forget_old_reloads_1 won't get to see it, because
7283 it thinks only about the original insn. So invalidate it here. */
7284 if (i < 0 && rld[r].out != 0
7285 && (GET_CODE (rld[r].out) == REG
7286 || (GET_CODE (rld[r].out) == MEM
7287 && GET_CODE (rld[r].out_reg) == REG)))
7289 rtx out = (GET_CODE (rld[r].out) == REG
7290 ? rld[r].out : rld[r].out_reg);
7291 int nregno = REGNO (out);
7292 if (nregno >= FIRST_PSEUDO_REGISTER)
7294 rtx src_reg, store_insn = NULL_RTX;
7296 reg_last_reload_reg[nregno] = 0;
7298 /* If we can find a hard register that is stored, record
7299 the storing insn so that we may delete this insn with
7300 delete_output_reload. */
7301 src_reg = rld[r].reg_rtx;
7303 /* If this is an optional reload, try to find the source reg
7304 from an input reload. */
7305 if (! src_reg)
7307 rtx set = single_set (insn);
7308 if (set && SET_DEST (set) == rld[r].out)
7310 int k;
7312 src_reg = SET_SRC (set);
7313 store_insn = insn;
7314 for (k = 0; k < n_reloads; k++)
7316 if (rld[k].in == src_reg)
7318 src_reg = rld[k].reg_rtx;
7319 break;
7324 else
7325 store_insn = new_spill_reg_store[REGNO (src_reg)];
7326 if (src_reg && GET_CODE (src_reg) == REG
7327 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
7329 int src_regno = REGNO (src_reg);
7330 int nr = HARD_REGNO_NREGS (src_regno, rld[r].mode);
7331 /* The place where to find a death note varies with
7332 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
7333 necessarily checked exactly in the code that moves
7334 notes, so just check both locations. */
7335 rtx note = find_regno_note (insn, REG_DEAD, src_regno);
7336 if (! note && store_insn)
7337 note = find_regno_note (store_insn, REG_DEAD, src_regno);
7338 while (nr-- > 0)
7340 spill_reg_store[src_regno + nr] = store_insn;
7341 spill_reg_stored_to[src_regno + nr] = out;
7342 reg_reloaded_contents[src_regno + nr] = nregno;
7343 reg_reloaded_insn[src_regno + nr] = store_insn;
7344 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + nr);
7345 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + nr);
7346 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + nr);
7347 if (note)
7348 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
7349 else
7350 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
7352 reg_last_reload_reg[nregno] = src_reg;
7355 else
7357 int num_regs = HARD_REGNO_NREGS (nregno, GET_MODE (rld[r].out));
7359 while (num_regs-- > 0)
7360 reg_last_reload_reg[nregno + num_regs] = 0;
7364 IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
7367 /* Emit code to perform a reload from IN (which may be a reload register) to
7368 OUT (which may also be a reload register). IN or OUT is from operand
7369 OPNUM with reload type TYPE.
7371 Returns first insn emitted. */
7374 gen_reload (out, in, opnum, type)
7375 rtx out;
7376 rtx in;
7377 int opnum;
7378 enum reload_type type;
7380 rtx last = get_last_insn ();
7381 rtx tem;
7383 /* If IN is a paradoxical SUBREG, remove it and try to put the
7384 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
7385 if (GET_CODE (in) == SUBREG
7386 && (GET_MODE_SIZE (GET_MODE (in))
7387 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
7388 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (in)), out)) != 0)
7389 in = SUBREG_REG (in), out = tem;
7390 else if (GET_CODE (out) == SUBREG
7391 && (GET_MODE_SIZE (GET_MODE (out))
7392 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
7393 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (out)), in)) != 0)
7394 out = SUBREG_REG (out), in = tem;
7396 /* How to do this reload can get quite tricky. Normally, we are being
7397 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
7398 register that didn't get a hard register. In that case we can just
7399 call emit_move_insn.
7401 We can also be asked to reload a PLUS that adds a register or a MEM to
7402 another register, constant or MEM. This can occur during frame pointer
7403 elimination and while reloading addresses. This case is handled by
7404 trying to emit a single insn to perform the add. If it is not valid,
7405 we use a two insn sequence.
7407 Finally, we could be called to handle an 'o' constraint by putting
7408 an address into a register. In that case, we first try to do this
7409 with a named pattern of "reload_load_address". If no such pattern
7410 exists, we just emit a SET insn and hope for the best (it will normally
7411 be valid on machines that use 'o').
7413 This entire process is made complex because reload will never
7414 process the insns we generate here and so we must ensure that
7415 they will fit their constraints and also by the fact that parts of
7416 IN might be being reloaded separately and replaced with spill registers.
7417 Because of this, we are, in some sense, just guessing the right approach
7418 here. The one listed above seems to work.
7420 ??? At some point, this whole thing needs to be rethought. */
7422 if (GET_CODE (in) == PLUS
7423 && (GET_CODE (XEXP (in, 0)) == REG
7424 || GET_CODE (XEXP (in, 0)) == SUBREG
7425 || GET_CODE (XEXP (in, 0)) == MEM)
7426 && (GET_CODE (XEXP (in, 1)) == REG
7427 || GET_CODE (XEXP (in, 1)) == SUBREG
7428 || CONSTANT_P (XEXP (in, 1))
7429 || GET_CODE (XEXP (in, 1)) == MEM))
7431 /* We need to compute the sum of a register or a MEM and another
7432 register, constant, or MEM, and put it into the reload
7433 register. The best possible way of doing this is if the machine
7434 has a three-operand ADD insn that accepts the required operands.
7436 The simplest approach is to try to generate such an insn and see if it
7437 is recognized and matches its constraints. If so, it can be used.
7439 It might be better not to actually emit the insn unless it is valid,
7440 but we need to pass the insn as an operand to `recog' and
7441 `extract_insn' and it is simpler to emit and then delete the insn if
7442 not valid than to dummy things up. */
7444 rtx op0, op1, tem, insn;
7445 int code;
7447 op0 = find_replacement (&XEXP (in, 0));
7448 op1 = find_replacement (&XEXP (in, 1));
7450 /* Since constraint checking is strict, commutativity won't be
7451 checked, so we need to do that here to avoid spurious failure
7452 if the add instruction is two-address and the second operand
7453 of the add is the same as the reload reg, which is frequently
7454 the case. If the insn would be A = B + A, rearrange it so
7455 it will be A = A + B as constrain_operands expects. */
7457 if (GET_CODE (XEXP (in, 1)) == REG
7458 && REGNO (out) == REGNO (XEXP (in, 1)))
7459 tem = op0, op0 = op1, op1 = tem;
7461 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
7462 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
7464 insn = emit_insn (gen_rtx_SET (VOIDmode, out, in));
7465 code = recog_memoized (insn);
7467 if (code >= 0)
7469 extract_insn (insn);
7470 /* We want constrain operands to treat this insn strictly in
7471 its validity determination, i.e., the way it would after reload
7472 has completed. */
7473 if (constrain_operands (1))
7474 return insn;
7477 delete_insns_since (last);
7479 /* If that failed, we must use a conservative two-insn sequence.
7481 Use a move to copy one operand into the reload register. Prefer
7482 to reload a constant, MEM or pseudo since the move patterns can
7483 handle an arbitrary operand. If OP1 is not a constant, MEM or
7484 pseudo and OP1 is not a valid operand for an add instruction, then
7485 reload OP1.
7487 After reloading one of the operands into the reload register, add
7488 the reload register to the output register.
7490 If there is another way to do this for a specific machine, a
7491 DEFINE_PEEPHOLE should be specified that recognizes the sequence
7492 we emit below. */
7494 code = (int) add_optab->handlers[(int) GET_MODE (out)].insn_code;
7496 if (CONSTANT_P (op1) || GET_CODE (op1) == MEM || GET_CODE (op1) == SUBREG
7497 || (GET_CODE (op1) == REG
7498 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
7499 || (code != CODE_FOR_nothing
7500 && ! ((*insn_data[code].operand[2].predicate)
7501 (op1, insn_data[code].operand[2].mode))))
7502 tem = op0, op0 = op1, op1 = tem;
7504 gen_reload (out, op0, opnum, type);
7506 /* If OP0 and OP1 are the same, we can use OUT for OP1.
7507 This fixes a problem on the 32K where the stack pointer cannot
7508 be used as an operand of an add insn. */
7510 if (rtx_equal_p (op0, op1))
7511 op1 = out;
7513 insn = emit_insn (gen_add2_insn (out, op1));
7515 /* If that failed, copy the address register to the reload register.
7516 Then add the constant to the reload register. */
7518 code = recog_memoized (insn);
7520 if (code >= 0)
7522 extract_insn (insn);
7523 /* We want constrain operands to treat this insn strictly in
7524 its validity determination, i.e., the way it would after reload
7525 has completed. */
7526 if (constrain_operands (1))
7528 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
7529 REG_NOTES (insn)
7530 = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
7531 return insn;
7535 delete_insns_since (last);
7537 gen_reload (out, op1, opnum, type);
7538 insn = emit_insn (gen_add2_insn (out, op0));
7539 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
7542 #ifdef SECONDARY_MEMORY_NEEDED
7543 /* If we need a memory location to do the move, do it that way. */
7544 else if ((GET_CODE (in) == REG || GET_CODE (in) == SUBREG)
7545 && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
7546 && (GET_CODE (out) == REG || GET_CODE (out) == SUBREG)
7547 && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
7548 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
7549 REGNO_REG_CLASS (reg_or_subregno (out)),
7550 GET_MODE (out)))
7552 /* Get the memory to use and rewrite both registers to its mode. */
7553 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
7555 if (GET_MODE (loc) != GET_MODE (out))
7556 out = gen_rtx_REG (GET_MODE (loc), REGNO (out));
7558 if (GET_MODE (loc) != GET_MODE (in))
7559 in = gen_rtx_REG (GET_MODE (loc), REGNO (in));
7561 gen_reload (loc, in, opnum, type);
7562 gen_reload (out, loc, opnum, type);
7564 #endif
7566 /* If IN is a simple operand, use gen_move_insn. */
7567 else if (GET_RTX_CLASS (GET_CODE (in)) == 'o' || GET_CODE (in) == SUBREG)
7568 emit_insn (gen_move_insn (out, in));
7570 #ifdef HAVE_reload_load_address
7571 else if (HAVE_reload_load_address)
7572 emit_insn (gen_reload_load_address (out, in));
7573 #endif
7575 /* Otherwise, just write (set OUT IN) and hope for the best. */
7576 else
7577 emit_insn (gen_rtx_SET (VOIDmode, out, in));
7579 /* Return the first insn emitted.
7580 We can not just return get_last_insn, because there may have
7581 been multiple instructions emitted. Also note that gen_move_insn may
7582 emit more than one insn itself, so we can not assume that there is one
7583 insn emitted per emit_insn_before call. */
7585 return last ? NEXT_INSN (last) : get_insns ();
7588 /* Delete a previously made output-reload whose result we now believe
7589 is not needed. First we double-check.
7591 INSN is the insn now being processed.
7592 LAST_RELOAD_REG is the hard register number for which we want to delete
7593 the last output reload.
7594 J is the reload-number that originally used REG. The caller has made
7595 certain that reload J doesn't use REG any longer for input. */
7597 static void
7598 delete_output_reload (insn, j, last_reload_reg)
7599 rtx insn;
7600 int j;
7601 int last_reload_reg;
7603 rtx output_reload_insn = spill_reg_store[last_reload_reg];
7604 rtx reg = spill_reg_stored_to[last_reload_reg];
7605 int k;
7606 int n_occurrences;
7607 int n_inherited = 0;
7608 rtx i1;
7609 rtx substed;
7611 /* Get the raw pseudo-register referred to. */
7613 while (GET_CODE (reg) == SUBREG)
7614 reg = SUBREG_REG (reg);
7615 substed = reg_equiv_memory_loc[REGNO (reg)];
7617 /* This is unsafe if the operand occurs more often in the current
7618 insn than it is inherited. */
7619 for (k = n_reloads - 1; k >= 0; k--)
7621 rtx reg2 = rld[k].in;
7622 if (! reg2)
7623 continue;
7624 if (GET_CODE (reg2) == MEM || reload_override_in[k])
7625 reg2 = rld[k].in_reg;
7626 #ifdef AUTO_INC_DEC
7627 if (rld[k].out && ! rld[k].out_reg)
7628 reg2 = XEXP (rld[k].in_reg, 0);
7629 #endif
7630 while (GET_CODE (reg2) == SUBREG)
7631 reg2 = SUBREG_REG (reg2);
7632 if (rtx_equal_p (reg2, reg))
7634 if (reload_inherited[k] || reload_override_in[k] || k == j)
7636 n_inherited++;
7637 reg2 = rld[k].out_reg;
7638 if (! reg2)
7639 continue;
7640 while (GET_CODE (reg2) == SUBREG)
7641 reg2 = XEXP (reg2, 0);
7642 if (rtx_equal_p (reg2, reg))
7643 n_inherited++;
7645 else
7646 return;
7649 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
7650 if (substed)
7651 n_occurrences += count_occurrences (PATTERN (insn),
7652 eliminate_regs (substed, 0,
7653 NULL_RTX), 0);
7654 if (n_occurrences > n_inherited)
7655 return;
7657 /* If the pseudo-reg we are reloading is no longer referenced
7658 anywhere between the store into it and here,
7659 and no jumps or labels intervene, then the value can get
7660 here through the reload reg alone.
7661 Otherwise, give up--return. */
7662 for (i1 = NEXT_INSN (output_reload_insn);
7663 i1 != insn; i1 = NEXT_INSN (i1))
7665 if (GET_CODE (i1) == CODE_LABEL || GET_CODE (i1) == JUMP_INSN)
7666 return;
7667 if ((GET_CODE (i1) == INSN || GET_CODE (i1) == CALL_INSN)
7668 && reg_mentioned_p (reg, PATTERN (i1)))
7670 /* If this is USE in front of INSN, we only have to check that
7671 there are no more references than accounted for by inheritance. */
7672 while (GET_CODE (i1) == INSN && GET_CODE (PATTERN (i1)) == USE)
7674 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
7675 i1 = NEXT_INSN (i1);
7677 if (n_occurrences <= n_inherited && i1 == insn)
7678 break;
7679 return;
7683 /* We will be deleting the insn. Remove the spill reg information. */
7684 for (k = HARD_REGNO_NREGS (last_reload_reg, GET_MODE (reg)); k-- > 0; )
7686 spill_reg_store[last_reload_reg + k] = 0;
7687 spill_reg_stored_to[last_reload_reg + k] = 0;
7690 /* The caller has already checked that REG dies or is set in INSN.
7691 It has also checked that we are optimizing, and thus some
7692 inaccurancies in the debugging information are acceptable.
7693 So we could just delete output_reload_insn. But in some cases
7694 we can improve the debugging information without sacrificing
7695 optimization - maybe even improving the code: See if the pseudo
7696 reg has been completely replaced with reload regs. If so, delete
7697 the store insn and forget we had a stack slot for the pseudo. */
7698 if (rld[j].out != rld[j].in
7699 && REG_N_DEATHS (REGNO (reg)) == 1
7700 && REG_N_SETS (REGNO (reg)) == 1
7701 && REG_BASIC_BLOCK (REGNO (reg)) >= 0
7702 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
7704 rtx i2;
7706 /* We know that it was used only between here and the beginning of
7707 the current basic block. (We also know that the last use before
7708 INSN was the output reload we are thinking of deleting, but never
7709 mind that.) Search that range; see if any ref remains. */
7710 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
7712 rtx set = single_set (i2);
7714 /* Uses which just store in the pseudo don't count,
7715 since if they are the only uses, they are dead. */
7716 if (set != 0 && SET_DEST (set) == reg)
7717 continue;
7718 if (GET_CODE (i2) == CODE_LABEL
7719 || GET_CODE (i2) == JUMP_INSN)
7720 break;
7721 if ((GET_CODE (i2) == INSN || GET_CODE (i2) == CALL_INSN)
7722 && reg_mentioned_p (reg, PATTERN (i2)))
7724 /* Some other ref remains; just delete the output reload we
7725 know to be dead. */
7726 delete_address_reloads (output_reload_insn, insn);
7727 delete_insn (output_reload_insn);
7728 return;
7732 /* Delete the now-dead stores into this pseudo. Note that this
7733 loop also takes care of deleting output_reload_insn. */
7734 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
7736 rtx set = single_set (i2);
7738 if (set != 0 && SET_DEST (set) == reg)
7740 delete_address_reloads (i2, insn);
7741 delete_insn (i2);
7743 if (GET_CODE (i2) == CODE_LABEL
7744 || GET_CODE (i2) == JUMP_INSN)
7745 break;
7748 /* For the debugging info, say the pseudo lives in this reload reg. */
7749 reg_renumber[REGNO (reg)] = REGNO (rld[j].reg_rtx);
7750 alter_reg (REGNO (reg), -1);
7752 else
7754 delete_address_reloads (output_reload_insn, insn);
7755 delete_insn (output_reload_insn);
7759 /* We are going to delete DEAD_INSN. Recursively delete loads of
7760 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
7761 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
7762 static void
7763 delete_address_reloads (dead_insn, current_insn)
7764 rtx dead_insn, current_insn;
7766 rtx set = single_set (dead_insn);
7767 rtx set2, dst, prev, next;
7768 if (set)
7770 rtx dst = SET_DEST (set);
7771 if (GET_CODE (dst) == MEM)
7772 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
7774 /* If we deleted the store from a reloaded post_{in,de}c expression,
7775 we can delete the matching adds. */
7776 prev = PREV_INSN (dead_insn);
7777 next = NEXT_INSN (dead_insn);
7778 if (! prev || ! next)
7779 return;
7780 set = single_set (next);
7781 set2 = single_set (prev);
7782 if (! set || ! set2
7783 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
7784 || GET_CODE (XEXP (SET_SRC (set), 1)) != CONST_INT
7785 || GET_CODE (XEXP (SET_SRC (set2), 1)) != CONST_INT)
7786 return;
7787 dst = SET_DEST (set);
7788 if (! rtx_equal_p (dst, SET_DEST (set2))
7789 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
7790 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
7791 || (INTVAL (XEXP (SET_SRC (set), 1))
7792 != -INTVAL (XEXP (SET_SRC (set2), 1))))
7793 return;
7794 delete_related_insns (prev);
7795 delete_related_insns (next);
7798 /* Subfunction of delete_address_reloads: process registers found in X. */
7799 static void
7800 delete_address_reloads_1 (dead_insn, x, current_insn)
7801 rtx dead_insn, x, current_insn;
7803 rtx prev, set, dst, i2;
7804 int i, j;
7805 enum rtx_code code = GET_CODE (x);
7807 if (code != REG)
7809 const char *fmt = GET_RTX_FORMAT (code);
7810 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7812 if (fmt[i] == 'e')
7813 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
7814 else if (fmt[i] == 'E')
7816 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7817 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
7818 current_insn);
7821 return;
7824 if (spill_reg_order[REGNO (x)] < 0)
7825 return;
7827 /* Scan backwards for the insn that sets x. This might be a way back due
7828 to inheritance. */
7829 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
7831 code = GET_CODE (prev);
7832 if (code == CODE_LABEL || code == JUMP_INSN)
7833 return;
7834 if (GET_RTX_CLASS (code) != 'i')
7835 continue;
7836 if (reg_set_p (x, PATTERN (prev)))
7837 break;
7838 if (reg_referenced_p (x, PATTERN (prev)))
7839 return;
7841 if (! prev || INSN_UID (prev) < reload_first_uid)
7842 return;
7843 /* Check that PREV only sets the reload register. */
7844 set = single_set (prev);
7845 if (! set)
7846 return;
7847 dst = SET_DEST (set);
7848 if (GET_CODE (dst) != REG
7849 || ! rtx_equal_p (dst, x))
7850 return;
7851 if (! reg_set_p (dst, PATTERN (dead_insn)))
7853 /* Check if DST was used in a later insn -
7854 it might have been inherited. */
7855 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
7857 if (GET_CODE (i2) == CODE_LABEL)
7858 break;
7859 if (! INSN_P (i2))
7860 continue;
7861 if (reg_referenced_p (dst, PATTERN (i2)))
7863 /* If there is a reference to the register in the current insn,
7864 it might be loaded in a non-inherited reload. If no other
7865 reload uses it, that means the register is set before
7866 referenced. */
7867 if (i2 == current_insn)
7869 for (j = n_reloads - 1; j >= 0; j--)
7870 if ((rld[j].reg_rtx == dst && reload_inherited[j])
7871 || reload_override_in[j] == dst)
7872 return;
7873 for (j = n_reloads - 1; j >= 0; j--)
7874 if (rld[j].in && rld[j].reg_rtx == dst)
7875 break;
7876 if (j >= 0)
7877 break;
7879 return;
7881 if (GET_CODE (i2) == JUMP_INSN)
7882 break;
7883 /* If DST is still live at CURRENT_INSN, check if it is used for
7884 any reload. Note that even if CURRENT_INSN sets DST, we still
7885 have to check the reloads. */
7886 if (i2 == current_insn)
7888 for (j = n_reloads - 1; j >= 0; j--)
7889 if ((rld[j].reg_rtx == dst && reload_inherited[j])
7890 || reload_override_in[j] == dst)
7891 return;
7892 /* ??? We can't finish the loop here, because dst might be
7893 allocated to a pseudo in this block if no reload in this
7894 block needs any of the clsses containing DST - see
7895 spill_hard_reg. There is no easy way to tell this, so we
7896 have to scan till the end of the basic block. */
7898 if (reg_set_p (dst, PATTERN (i2)))
7899 break;
7902 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
7903 reg_reloaded_contents[REGNO (dst)] = -1;
7904 delete_insn (prev);
7907 /* Output reload-insns to reload VALUE into RELOADREG.
7908 VALUE is an autoincrement or autodecrement RTX whose operand
7909 is a register or memory location;
7910 so reloading involves incrementing that location.
7911 IN is either identical to VALUE, or some cheaper place to reload from.
7913 INC_AMOUNT is the number to increment or decrement by (always positive).
7914 This cannot be deduced from VALUE.
7916 Return the instruction that stores into RELOADREG. */
7918 static rtx
7919 inc_for_reload (reloadreg, in, value, inc_amount)
7920 rtx reloadreg;
7921 rtx in, value;
7922 int inc_amount;
7924 /* REG or MEM to be copied and incremented. */
7925 rtx incloc = XEXP (value, 0);
7926 /* Nonzero if increment after copying. */
7927 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC);
7928 rtx last;
7929 rtx inc;
7930 rtx add_insn;
7931 int code;
7932 rtx store;
7933 rtx real_in = in == value ? XEXP (in, 0) : in;
7935 /* No hard register is equivalent to this register after
7936 inc/dec operation. If REG_LAST_RELOAD_REG were nonzero,
7937 we could inc/dec that register as well (maybe even using it for
7938 the source), but I'm not sure it's worth worrying about. */
7939 if (GET_CODE (incloc) == REG)
7940 reg_last_reload_reg[REGNO (incloc)] = 0;
7942 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
7943 inc_amount = -inc_amount;
7945 inc = GEN_INT (inc_amount);
7947 /* If this is post-increment, first copy the location to the reload reg. */
7948 if (post && real_in != reloadreg)
7949 emit_insn (gen_move_insn (reloadreg, real_in));
7951 if (in == value)
7953 /* See if we can directly increment INCLOC. Use a method similar to
7954 that in gen_reload. */
7956 last = get_last_insn ();
7957 add_insn = emit_insn (gen_rtx_SET (VOIDmode, incloc,
7958 gen_rtx_PLUS (GET_MODE (incloc),
7959 incloc, inc)));
7961 code = recog_memoized (add_insn);
7962 if (code >= 0)
7964 extract_insn (add_insn);
7965 if (constrain_operands (1))
7967 /* If this is a pre-increment and we have incremented the value
7968 where it lives, copy the incremented value to RELOADREG to
7969 be used as an address. */
7971 if (! post)
7972 emit_insn (gen_move_insn (reloadreg, incloc));
7974 return add_insn;
7977 delete_insns_since (last);
7980 /* If couldn't do the increment directly, must increment in RELOADREG.
7981 The way we do this depends on whether this is pre- or post-increment.
7982 For pre-increment, copy INCLOC to the reload register, increment it
7983 there, then save back. */
7985 if (! post)
7987 if (in != reloadreg)
7988 emit_insn (gen_move_insn (reloadreg, real_in));
7989 emit_insn (gen_add2_insn (reloadreg, inc));
7990 store = emit_insn (gen_move_insn (incloc, reloadreg));
7992 else
7994 /* Postincrement.
7995 Because this might be a jump insn or a compare, and because RELOADREG
7996 may not be available after the insn in an input reload, we must do
7997 the incrementation before the insn being reloaded for.
7999 We have already copied IN to RELOADREG. Increment the copy in
8000 RELOADREG, save that back, then decrement RELOADREG so it has
8001 the original value. */
8003 emit_insn (gen_add2_insn (reloadreg, inc));
8004 store = emit_insn (gen_move_insn (incloc, reloadreg));
8005 emit_insn (gen_add2_insn (reloadreg, GEN_INT (-inc_amount)));
8008 return store;
8012 /* See whether a single set SET is a noop. */
8013 static int
8014 reload_cse_noop_set_p (set)
8015 rtx set;
8017 return rtx_equal_for_cselib_p (SET_DEST (set), SET_SRC (set));
8020 /* Try to simplify INSN. */
8021 static void
8022 reload_cse_simplify (insn, testreg)
8023 rtx insn;
8024 rtx testreg;
8026 rtx body = PATTERN (insn);
8028 if (GET_CODE (body) == SET)
8030 int count = 0;
8032 /* Simplify even if we may think it is a no-op.
8033 We may think a memory load of a value smaller than WORD_SIZE
8034 is redundant because we haven't taken into account possible
8035 implicit extension. reload_cse_simplify_set() will bring
8036 this out, so it's safer to simplify before we delete. */
8037 count += reload_cse_simplify_set (body, insn);
8039 if (!count && reload_cse_noop_set_p (body))
8041 rtx value = SET_DEST (body);
8042 if (REG_P (value)
8043 && ! REG_FUNCTION_VALUE_P (value))
8044 value = 0;
8045 delete_insn_and_edges (insn);
8046 return;
8049 if (count > 0)
8050 apply_change_group ();
8051 else
8052 reload_cse_simplify_operands (insn, testreg);
8054 else if (GET_CODE (body) == PARALLEL)
8056 int i;
8057 int count = 0;
8058 rtx value = NULL_RTX;
8060 /* If every action in a PARALLEL is a noop, we can delete
8061 the entire PARALLEL. */
8062 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
8064 rtx part = XVECEXP (body, 0, i);
8065 if (GET_CODE (part) == SET)
8067 if (! reload_cse_noop_set_p (part))
8068 break;
8069 if (REG_P (SET_DEST (part))
8070 && REG_FUNCTION_VALUE_P (SET_DEST (part)))
8072 if (value)
8073 break;
8074 value = SET_DEST (part);
8077 else if (GET_CODE (part) != CLOBBER)
8078 break;
8081 if (i < 0)
8083 delete_insn_and_edges (insn);
8084 /* We're done with this insn. */
8085 return;
8088 /* It's not a no-op, but we can try to simplify it. */
8089 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
8090 if (GET_CODE (XVECEXP (body, 0, i)) == SET)
8091 count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
8093 if (count > 0)
8094 apply_change_group ();
8095 else
8096 reload_cse_simplify_operands (insn, testreg);
8100 /* Do a very simple CSE pass over the hard registers.
8102 This function detects no-op moves where we happened to assign two
8103 different pseudo-registers to the same hard register, and then
8104 copied one to the other. Reload will generate a useless
8105 instruction copying a register to itself.
8107 This function also detects cases where we load a value from memory
8108 into two different registers, and (if memory is more expensive than
8109 registers) changes it to simply copy the first register into the
8110 second register.
8112 Another optimization is performed that scans the operands of each
8113 instruction to see whether the value is already available in a
8114 hard register. It then replaces the operand with the hard register
8115 if possible, much like an optional reload would. */
8117 static void
8118 reload_cse_regs_1 (first)
8119 rtx first;
8121 rtx insn;
8122 rtx testreg = gen_rtx_REG (VOIDmode, -1);
8124 cselib_init ();
8125 init_alias_analysis ();
8127 for (insn = first; insn; insn = NEXT_INSN (insn))
8129 if (INSN_P (insn))
8130 reload_cse_simplify (insn, testreg);
8132 cselib_process_insn (insn);
8135 /* Clean up. */
8136 end_alias_analysis ();
8137 cselib_finish ();
8140 /* Call cse / combine like post-reload optimization phases.
8141 FIRST is the first instruction. */
8142 void
8143 reload_cse_regs (first)
8144 rtx first;
8146 reload_cse_regs_1 (first);
8147 reload_combine ();
8148 reload_cse_move2add (first);
8149 if (flag_expensive_optimizations)
8150 reload_cse_regs_1 (first);
8153 /* Try to simplify a single SET instruction. SET is the set pattern.
8154 INSN is the instruction it came from.
8155 This function only handles one case: if we set a register to a value
8156 which is not a register, we try to find that value in some other register
8157 and change the set into a register copy. */
8159 static int
8160 reload_cse_simplify_set (set, insn)
8161 rtx set;
8162 rtx insn;
8164 int did_change = 0;
8165 int dreg;
8166 rtx src;
8167 enum reg_class dclass;
8168 int old_cost;
8169 cselib_val *val;
8170 struct elt_loc_list *l;
8171 #ifdef LOAD_EXTEND_OP
8172 enum rtx_code extend_op = NIL;
8173 #endif
8175 dreg = true_regnum (SET_DEST (set));
8176 if (dreg < 0)
8177 return 0;
8179 src = SET_SRC (set);
8180 if (side_effects_p (src) || true_regnum (src) >= 0)
8181 return 0;
8183 dclass = REGNO_REG_CLASS (dreg);
8185 #ifdef LOAD_EXTEND_OP
8186 /* When replacing a memory with a register, we need to honor assumptions
8187 that combine made wrt the contents of sign bits. We'll do this by
8188 generating an extend instruction instead of a reg->reg copy. Thus
8189 the destination must be a register that we can widen. */
8190 if (GET_CODE (src) == MEM
8191 && GET_MODE_BITSIZE (GET_MODE (src)) < BITS_PER_WORD
8192 && (extend_op = LOAD_EXTEND_OP (GET_MODE (src))) != NIL
8193 && GET_CODE (SET_DEST (set)) != REG)
8194 return 0;
8195 #endif
8197 /* If memory loads are cheaper than register copies, don't change them. */
8198 if (GET_CODE (src) == MEM)
8199 old_cost = MEMORY_MOVE_COST (GET_MODE (src), dclass, 1);
8200 else if (CONSTANT_P (src))
8201 old_cost = rtx_cost (src, SET);
8202 else if (GET_CODE (src) == REG)
8203 old_cost = REGISTER_MOVE_COST (GET_MODE (src),
8204 REGNO_REG_CLASS (REGNO (src)), dclass);
8205 else
8206 /* ??? */
8207 old_cost = rtx_cost (src, SET);
8209 val = cselib_lookup (src, GET_MODE (SET_DEST (set)), 0);
8210 if (! val)
8211 return 0;
8212 for (l = val->locs; l; l = l->next)
8214 rtx this_rtx = l->loc;
8215 int this_cost;
8217 if (CONSTANT_P (this_rtx) && ! references_value_p (this_rtx, 0))
8219 #ifdef LOAD_EXTEND_OP
8220 if (extend_op != NIL)
8222 HOST_WIDE_INT this_val;
8224 /* ??? I'm lazy and don't wish to handle CONST_DOUBLE. Other
8225 constants, such as SYMBOL_REF, cannot be extended. */
8226 if (GET_CODE (this_rtx) != CONST_INT)
8227 continue;
8229 this_val = INTVAL (this_rtx);
8230 switch (extend_op)
8232 case ZERO_EXTEND:
8233 this_val &= GET_MODE_MASK (GET_MODE (src));
8234 break;
8235 case SIGN_EXTEND:
8236 /* ??? In theory we're already extended. */
8237 if (this_val == trunc_int_for_mode (this_val, GET_MODE (src)))
8238 break;
8239 default:
8240 abort ();
8242 this_rtx = GEN_INT (this_val);
8244 #endif
8245 this_cost = rtx_cost (this_rtx, SET);
8247 else if (GET_CODE (this_rtx) == REG)
8249 #ifdef LOAD_EXTEND_OP
8250 if (extend_op != NIL)
8252 this_rtx = gen_rtx_fmt_e (extend_op, word_mode, this_rtx);
8253 this_cost = rtx_cost (this_rtx, SET);
8255 else
8256 #endif
8257 this_cost = REGISTER_MOVE_COST (GET_MODE (this_rtx),
8258 REGNO_REG_CLASS (REGNO (this_rtx)),
8259 dclass);
8261 else
8262 continue;
8264 /* If equal costs, prefer registers over anything else. That
8265 tends to lead to smaller instructions on some machines. */
8266 if (this_cost < old_cost
8267 || (this_cost == old_cost
8268 && GET_CODE (this_rtx) == REG
8269 && GET_CODE (SET_SRC (set)) != REG))
8271 #ifdef LOAD_EXTEND_OP
8272 if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set))) < BITS_PER_WORD
8273 && extend_op != NIL)
8275 rtx wide_dest = gen_rtx_REG (word_mode, REGNO (SET_DEST (set)));
8276 ORIGINAL_REGNO (wide_dest) = ORIGINAL_REGNO (SET_DEST (set));
8277 validate_change (insn, &SET_DEST (set), wide_dest, 1);
8279 #endif
8281 validate_change (insn, &SET_SRC (set), copy_rtx (this_rtx), 1);
8282 old_cost = this_cost, did_change = 1;
8286 return did_change;
8289 /* Try to replace operands in INSN with equivalent values that are already
8290 in registers. This can be viewed as optional reloading.
8292 For each non-register operand in the insn, see if any hard regs are
8293 known to be equivalent to that operand. Record the alternatives which
8294 can accept these hard registers. Among all alternatives, select the
8295 ones which are better or equal to the one currently matching, where
8296 "better" is in terms of '?' and '!' constraints. Among the remaining
8297 alternatives, select the one which replaces most operands with
8298 hard registers. */
8300 static int
8301 reload_cse_simplify_operands (insn, testreg)
8302 rtx insn;
8303 rtx testreg;
8305 int i, j;
8307 /* For each operand, all registers that are equivalent to it. */
8308 HARD_REG_SET equiv_regs[MAX_RECOG_OPERANDS];
8310 const char *constraints[MAX_RECOG_OPERANDS];
8312 /* Vector recording how bad an alternative is. */
8313 int *alternative_reject;
8314 /* Vector recording how many registers can be introduced by choosing
8315 this alternative. */
8316 int *alternative_nregs;
8317 /* Array of vectors recording, for each operand and each alternative,
8318 which hard register to substitute, or -1 if the operand should be
8319 left as it is. */
8320 int *op_alt_regno[MAX_RECOG_OPERANDS];
8321 /* Array of alternatives, sorted in order of decreasing desirability. */
8322 int *alternative_order;
8324 extract_insn (insn);
8326 if (recog_data.n_alternatives == 0 || recog_data.n_operands == 0)
8327 return 0;
8329 /* Figure out which alternative currently matches. */
8330 if (! constrain_operands (1))
8331 fatal_insn_not_found (insn);
8333 alternative_reject = (int *) alloca (recog_data.n_alternatives * sizeof (int));
8334 alternative_nregs = (int *) alloca (recog_data.n_alternatives * sizeof (int));
8335 alternative_order = (int *) alloca (recog_data.n_alternatives * sizeof (int));
8336 memset ((char *) alternative_reject, 0, recog_data.n_alternatives * sizeof (int));
8337 memset ((char *) alternative_nregs, 0, recog_data.n_alternatives * sizeof (int));
8339 /* For each operand, find out which regs are equivalent. */
8340 for (i = 0; i < recog_data.n_operands; i++)
8342 cselib_val *v;
8343 struct elt_loc_list *l;
8345 CLEAR_HARD_REG_SET (equiv_regs[i]);
8347 /* cselib blows up on CODE_LABELs. Trying to fix that doesn't seem
8348 right, so avoid the problem here. Likewise if we have a constant
8349 and the insn pattern doesn't tell us the mode we need. */
8350 if (GET_CODE (recog_data.operand[i]) == CODE_LABEL
8351 || (CONSTANT_P (recog_data.operand[i])
8352 && recog_data.operand_mode[i] == VOIDmode))
8353 continue;
8355 v = cselib_lookup (recog_data.operand[i], recog_data.operand_mode[i], 0);
8356 if (! v)
8357 continue;
8359 for (l = v->locs; l; l = l->next)
8360 if (GET_CODE (l->loc) == REG)
8361 SET_HARD_REG_BIT (equiv_regs[i], REGNO (l->loc));
8364 for (i = 0; i < recog_data.n_operands; i++)
8366 enum machine_mode mode;
8367 int regno;
8368 const char *p;
8370 op_alt_regno[i] = (int *) alloca (recog_data.n_alternatives * sizeof (int));
8371 for (j = 0; j < recog_data.n_alternatives; j++)
8372 op_alt_regno[i][j] = -1;
8374 p = constraints[i] = recog_data.constraints[i];
8375 mode = recog_data.operand_mode[i];
8377 /* Add the reject values for each alternative given by the constraints
8378 for this operand. */
8379 j = 0;
8380 while (*p != '\0')
8382 char c = *p++;
8383 if (c == ',')
8384 j++;
8385 else if (c == '?')
8386 alternative_reject[j] += 3;
8387 else if (c == '!')
8388 alternative_reject[j] += 300;
8391 /* We won't change operands which are already registers. We
8392 also don't want to modify output operands. */
8393 regno = true_regnum (recog_data.operand[i]);
8394 if (regno >= 0
8395 || constraints[i][0] == '='
8396 || constraints[i][0] == '+')
8397 continue;
8399 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
8401 int class = (int) NO_REGS;
8403 if (! TEST_HARD_REG_BIT (equiv_regs[i], regno))
8404 continue;
8406 REGNO (testreg) = regno;
8407 PUT_MODE (testreg, mode);
8409 /* We found a register equal to this operand. Now look for all
8410 alternatives that can accept this register and have not been
8411 assigned a register they can use yet. */
8412 j = 0;
8413 p = constraints[i];
8414 for (;;)
8416 char c = *p++;
8418 switch (c)
8420 case '=': case '+': case '?':
8421 case '#': case '&': case '!':
8422 case '*': case '%':
8423 case '0': case '1': case '2': case '3': case '4':
8424 case '5': case '6': case '7': case '8': case '9':
8425 case 'm': case '<': case '>': case 'V': case 'o':
8426 case 'E': case 'F': case 'G': case 'H':
8427 case 's': case 'i': case 'n':
8428 case 'I': case 'J': case 'K': case 'L':
8429 case 'M': case 'N': case 'O': case 'P':
8430 case 'p': case 'X':
8431 /* These don't say anything we care about. */
8432 break;
8434 case 'g': case 'r':
8435 class = reg_class_subunion[(int) class][(int) GENERAL_REGS];
8436 break;
8438 default:
8439 class
8440 = reg_class_subunion[(int) class][(int) REG_CLASS_FROM_LETTER ((unsigned char) c)];
8441 break;
8443 case ',': case '\0':
8444 /* See if REGNO fits this alternative, and set it up as the
8445 replacement register if we don't have one for this
8446 alternative yet and the operand being replaced is not
8447 a cheap CONST_INT. */
8448 if (op_alt_regno[i][j] == -1
8449 && reg_fits_class_p (testreg, class, 0, mode)
8450 && (GET_CODE (recog_data.operand[i]) != CONST_INT
8451 || (rtx_cost (recog_data.operand[i], SET)
8452 > rtx_cost (testreg, SET))))
8454 alternative_nregs[j]++;
8455 op_alt_regno[i][j] = regno;
8457 j++;
8458 break;
8461 if (c == '\0')
8462 break;
8467 /* Record all alternatives which are better or equal to the currently
8468 matching one in the alternative_order array. */
8469 for (i = j = 0; i < recog_data.n_alternatives; i++)
8470 if (alternative_reject[i] <= alternative_reject[which_alternative])
8471 alternative_order[j++] = i;
8472 recog_data.n_alternatives = j;
8474 /* Sort it. Given a small number of alternatives, a dumb algorithm
8475 won't hurt too much. */
8476 for (i = 0; i < recog_data.n_alternatives - 1; i++)
8478 int best = i;
8479 int best_reject = alternative_reject[alternative_order[i]];
8480 int best_nregs = alternative_nregs[alternative_order[i]];
8481 int tmp;
8483 for (j = i + 1; j < recog_data.n_alternatives; j++)
8485 int this_reject = alternative_reject[alternative_order[j]];
8486 int this_nregs = alternative_nregs[alternative_order[j]];
8488 if (this_reject < best_reject
8489 || (this_reject == best_reject && this_nregs < best_nregs))
8491 best = j;
8492 best_reject = this_reject;
8493 best_nregs = this_nregs;
8497 tmp = alternative_order[best];
8498 alternative_order[best] = alternative_order[i];
8499 alternative_order[i] = tmp;
8502 /* Substitute the operands as determined by op_alt_regno for the best
8503 alternative. */
8504 j = alternative_order[0];
8506 for (i = 0; i < recog_data.n_operands; i++)
8508 enum machine_mode mode = recog_data.operand_mode[i];
8509 if (op_alt_regno[i][j] == -1)
8510 continue;
8512 validate_change (insn, recog_data.operand_loc[i],
8513 gen_rtx_REG (mode, op_alt_regno[i][j]), 1);
8516 for (i = recog_data.n_dups - 1; i >= 0; i--)
8518 int op = recog_data.dup_num[i];
8519 enum machine_mode mode = recog_data.operand_mode[op];
8521 if (op_alt_regno[op][j] == -1)
8522 continue;
8524 validate_change (insn, recog_data.dup_loc[i],
8525 gen_rtx_REG (mode, op_alt_regno[op][j]), 1);
8528 return apply_change_group ();
8531 /* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
8532 addressing now.
8533 This code might also be useful when reload gave up on reg+reg addresssing
8534 because of clashes between the return register and INDEX_REG_CLASS. */
8536 /* The maximum number of uses of a register we can keep track of to
8537 replace them with reg+reg addressing. */
8538 #define RELOAD_COMBINE_MAX_USES 6
8540 /* INSN is the insn where a register has ben used, and USEP points to the
8541 location of the register within the rtl. */
8542 struct reg_use { rtx insn, *usep; };
8544 /* If the register is used in some unknown fashion, USE_INDEX is negative.
8545 If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
8546 indicates where it becomes live again.
8547 Otherwise, USE_INDEX is the index of the last encountered use of the
8548 register (which is first among these we have seen since we scan backwards),
8549 OFFSET contains the constant offset that is added to the register in
8550 all encountered uses, and USE_RUID indicates the first encountered, i.e.
8551 last, of these uses.
8552 STORE_RUID is always meaningful if we only want to use a value in a
8553 register in a different place: it denotes the next insn in the insn
8554 stream (i.e. the last ecountered) that sets or clobbers the register. */
8555 static struct
8557 struct reg_use reg_use[RELOAD_COMBINE_MAX_USES];
8558 int use_index;
8559 rtx offset;
8560 int store_ruid;
8561 int use_ruid;
8562 } reg_state[FIRST_PSEUDO_REGISTER];
8564 /* Reverse linear uid. This is increased in reload_combine while scanning
8565 the instructions from last to first. It is used to set last_label_ruid
8566 and the store_ruid / use_ruid fields in reg_state. */
8567 static int reload_combine_ruid;
8569 #define LABEL_LIVE(LABEL) \
8570 (label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
8572 static void
8573 reload_combine ()
8575 rtx insn, set;
8576 int first_index_reg = -1;
8577 int last_index_reg = 0;
8578 int i;
8579 basic_block bb;
8580 unsigned int r;
8581 int last_label_ruid;
8582 int min_labelno, n_labels;
8583 HARD_REG_SET ever_live_at_start, *label_live;
8585 /* If reg+reg can be used in offsetable memory addresses, the main chunk of
8586 reload has already used it where appropriate, so there is no use in
8587 trying to generate it now. */
8588 if (double_reg_address_ok && INDEX_REG_CLASS != NO_REGS)
8589 return;
8591 /* To avoid wasting too much time later searching for an index register,
8592 determine the minimum and maximum index register numbers. */
8593 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
8594 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], r))
8596 if (first_index_reg == -1)
8597 first_index_reg = r;
8599 last_index_reg = r;
8602 /* If no index register is available, we can quit now. */
8603 if (first_index_reg == -1)
8604 return;
8606 /* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime
8607 information is a bit fuzzy immediately after reload, but it's
8608 still good enough to determine which registers are live at a jump
8609 destination. */
8610 min_labelno = get_first_label_num ();
8611 n_labels = max_label_num () - min_labelno;
8612 label_live = (HARD_REG_SET *) xmalloc (n_labels * sizeof (HARD_REG_SET));
8613 CLEAR_HARD_REG_SET (ever_live_at_start);
8615 FOR_EACH_BB_REVERSE (bb)
8617 insn = bb->head;
8618 if (GET_CODE (insn) == CODE_LABEL)
8620 HARD_REG_SET live;
8622 REG_SET_TO_HARD_REG_SET (live,
8623 bb->global_live_at_start);
8624 compute_use_by_pseudos (&live,
8625 bb->global_live_at_start);
8626 COPY_HARD_REG_SET (LABEL_LIVE (insn), live);
8627 IOR_HARD_REG_SET (ever_live_at_start, live);
8631 /* Initialize last_label_ruid, reload_combine_ruid and reg_state. */
8632 last_label_ruid = reload_combine_ruid = 0;
8633 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
8635 reg_state[r].store_ruid = reload_combine_ruid;
8636 if (fixed_regs[r])
8637 reg_state[r].use_index = -1;
8638 else
8639 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
8642 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
8644 rtx note;
8646 /* We cannot do our optimization across labels. Invalidating all the use
8647 information we have would be costly, so we just note where the label
8648 is and then later disable any optimization that would cross it. */
8649 if (GET_CODE (insn) == CODE_LABEL)
8650 last_label_ruid = reload_combine_ruid;
8651 else if (GET_CODE (insn) == BARRIER)
8652 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
8653 if (! fixed_regs[r])
8654 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
8656 if (! INSN_P (insn))
8657 continue;
8659 reload_combine_ruid++;
8661 /* Look for (set (REGX) (CONST_INT))
8662 (set (REGX) (PLUS (REGX) (REGY)))
8664 ... (MEM (REGX)) ...
8665 and convert it to
8666 (set (REGZ) (CONST_INT))
8668 ... (MEM (PLUS (REGZ) (REGY)))... .
8670 First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
8671 and that we know all uses of REGX before it dies. */
8672 set = single_set (insn);
8673 if (set != NULL_RTX
8674 && GET_CODE (SET_DEST (set)) == REG
8675 && (HARD_REGNO_NREGS (REGNO (SET_DEST (set)),
8676 GET_MODE (SET_DEST (set)))
8677 == 1)
8678 && GET_CODE (SET_SRC (set)) == PLUS
8679 && GET_CODE (XEXP (SET_SRC (set), 1)) == REG
8680 && rtx_equal_p (XEXP (SET_SRC (set), 0), SET_DEST (set))
8681 && last_label_ruid < reg_state[REGNO (SET_DEST (set))].use_ruid)
8683 rtx reg = SET_DEST (set);
8684 rtx plus = SET_SRC (set);
8685 rtx base = XEXP (plus, 1);
8686 rtx prev = prev_nonnote_insn (insn);
8687 rtx prev_set = prev ? single_set (prev) : NULL_RTX;
8688 unsigned int regno = REGNO (reg);
8689 rtx const_reg = NULL_RTX;
8690 rtx reg_sum = NULL_RTX;
8692 /* Now, we need an index register.
8693 We'll set index_reg to this index register, const_reg to the
8694 register that is to be loaded with the constant
8695 (denoted as REGZ in the substitution illustration above),
8696 and reg_sum to the register-register that we want to use to
8697 substitute uses of REG (typically in MEMs) with.
8698 First check REG and BASE for being index registers;
8699 we can use them even if they are not dead. */
8700 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], regno)
8701 || TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
8702 REGNO (base)))
8704 const_reg = reg;
8705 reg_sum = plus;
8707 else
8709 /* Otherwise, look for a free index register. Since we have
8710 checked above that neiter REG nor BASE are index registers,
8711 if we find anything at all, it will be different from these
8712 two registers. */
8713 for (i = first_index_reg; i <= last_index_reg; i++)
8715 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
8717 && reg_state[i].use_index == RELOAD_COMBINE_MAX_USES
8718 && reg_state[i].store_ruid <= reg_state[regno].use_ruid
8719 && HARD_REGNO_NREGS (i, GET_MODE (reg)) == 1)
8721 rtx index_reg = gen_rtx_REG (GET_MODE (reg), i);
8723 const_reg = index_reg;
8724 reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base);
8725 break;
8730 /* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
8731 (REGY), i.e. BASE, is not clobbered before the last use we'll
8732 create. */
8733 if (prev_set != 0
8734 && GET_CODE (SET_SRC (prev_set)) == CONST_INT
8735 && rtx_equal_p (SET_DEST (prev_set), reg)
8736 && reg_state[regno].use_index >= 0
8737 && (reg_state[REGNO (base)].store_ruid
8738 <= reg_state[regno].use_ruid)
8739 && reg_sum != 0)
8741 int i;
8743 /* Change destination register and, if necessary, the
8744 constant value in PREV, the constant loading instruction. */
8745 validate_change (prev, &SET_DEST (prev_set), const_reg, 1);
8746 if (reg_state[regno].offset != const0_rtx)
8747 validate_change (prev,
8748 &SET_SRC (prev_set),
8749 GEN_INT (INTVAL (SET_SRC (prev_set))
8750 + INTVAL (reg_state[regno].offset)),
8753 /* Now for every use of REG that we have recorded, replace REG
8754 with REG_SUM. */
8755 for (i = reg_state[regno].use_index;
8756 i < RELOAD_COMBINE_MAX_USES; i++)
8757 validate_change (reg_state[regno].reg_use[i].insn,
8758 reg_state[regno].reg_use[i].usep,
8759 /* Each change must have its own
8760 replacement. */
8761 copy_rtx (reg_sum), 1);
8763 if (apply_change_group ())
8765 rtx *np;
8767 /* Delete the reg-reg addition. */
8768 delete_insn (insn);
8770 if (reg_state[regno].offset != const0_rtx)
8771 /* Previous REG_EQUIV / REG_EQUAL notes for PREV
8772 are now invalid. */
8773 for (np = &REG_NOTES (prev); *np;)
8775 if (REG_NOTE_KIND (*np) == REG_EQUAL
8776 || REG_NOTE_KIND (*np) == REG_EQUIV)
8777 *np = XEXP (*np, 1);
8778 else
8779 np = &XEXP (*np, 1);
8782 reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
8783 reg_state[REGNO (const_reg)].store_ruid
8784 = reload_combine_ruid;
8785 continue;
8790 note_stores (PATTERN (insn), reload_combine_note_store, NULL);
8792 if (GET_CODE (insn) == CALL_INSN)
8794 rtx link;
8796 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
8797 if (call_used_regs[r])
8799 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
8800 reg_state[r].store_ruid = reload_combine_ruid;
8803 for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
8804 link = XEXP (link, 1))
8806 rtx usage_rtx = XEXP (XEXP (link, 0), 0);
8807 if (GET_CODE (usage_rtx) == REG)
8809 unsigned int i;
8810 unsigned int start_reg = REGNO (usage_rtx);
8811 unsigned int num_regs =
8812 HARD_REGNO_NREGS (start_reg, GET_MODE (usage_rtx));
8813 unsigned int end_reg = start_reg + num_regs - 1;
8814 for (i = start_reg; i <= end_reg; i++)
8815 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
8817 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
8818 reg_state[i].store_ruid = reload_combine_ruid;
8820 else
8821 reg_state[i].use_index = -1;
8826 else if (GET_CODE (insn) == JUMP_INSN
8827 && GET_CODE (PATTERN (insn)) != RETURN)
8829 /* Non-spill registers might be used at the call destination in
8830 some unknown fashion, so we have to mark the unknown use. */
8831 HARD_REG_SET *live;
8833 if ((condjump_p (insn) || condjump_in_parallel_p (insn))
8834 && JUMP_LABEL (insn))
8835 live = &LABEL_LIVE (JUMP_LABEL (insn));
8836 else
8837 live = &ever_live_at_start;
8839 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; --i)
8840 if (TEST_HARD_REG_BIT (*live, i))
8841 reg_state[i].use_index = -1;
8844 reload_combine_note_use (&PATTERN (insn), insn);
8845 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
8847 if (REG_NOTE_KIND (note) == REG_INC
8848 && GET_CODE (XEXP (note, 0)) == REG)
8850 int regno = REGNO (XEXP (note, 0));
8852 reg_state[regno].store_ruid = reload_combine_ruid;
8853 reg_state[regno].use_index = -1;
8858 free (label_live);
8861 /* Check if DST is a register or a subreg of a register; if it is,
8862 update reg_state[regno].store_ruid and reg_state[regno].use_index
8863 accordingly. Called via note_stores from reload_combine. */
8865 static void
8866 reload_combine_note_store (dst, set, data)
8867 rtx dst, set;
8868 void *data ATTRIBUTE_UNUSED;
8870 int regno = 0;
8871 int i;
8872 enum machine_mode mode = GET_MODE (dst);
8874 if (GET_CODE (dst) == SUBREG)
8876 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
8877 GET_MODE (SUBREG_REG (dst)),
8878 SUBREG_BYTE (dst),
8879 GET_MODE (dst));
8880 dst = SUBREG_REG (dst);
8882 if (GET_CODE (dst) != REG)
8883 return;
8884 regno += REGNO (dst);
8886 /* note_stores might have stripped a STRICT_LOW_PART, so we have to be
8887 careful with registers / register parts that are not full words.
8889 Similarly for ZERO_EXTRACT and SIGN_EXTRACT. */
8890 if (GET_CODE (set) != SET
8891 || GET_CODE (SET_DEST (set)) == ZERO_EXTRACT
8892 || GET_CODE (SET_DEST (set)) == SIGN_EXTRACT
8893 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
8895 for (i = HARD_REGNO_NREGS (regno, mode) - 1 + regno; i >= regno; i--)
8897 reg_state[i].use_index = -1;
8898 reg_state[i].store_ruid = reload_combine_ruid;
8901 else
8903 for (i = HARD_REGNO_NREGS (regno, mode) - 1 + regno; i >= regno; i--)
8905 reg_state[i].store_ruid = reload_combine_ruid;
8906 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
8911 /* XP points to a piece of rtl that has to be checked for any uses of
8912 registers.
8913 *XP is the pattern of INSN, or a part of it.
8914 Called from reload_combine, and recursively by itself. */
8915 static void
8916 reload_combine_note_use (xp, insn)
8917 rtx *xp, insn;
8919 rtx x = *xp;
8920 enum rtx_code code = x->code;
8921 const char *fmt;
8922 int i, j;
8923 rtx offset = const0_rtx; /* For the REG case below. */
8925 switch (code)
8927 case SET:
8928 if (GET_CODE (SET_DEST (x)) == REG)
8930 reload_combine_note_use (&SET_SRC (x), insn);
8931 return;
8933 break;
8935 case USE:
8936 /* If this is the USE of a return value, we can't change it. */
8937 if (GET_CODE (XEXP (x, 0)) == REG && REG_FUNCTION_VALUE_P (XEXP (x, 0)))
8939 /* Mark the return register as used in an unknown fashion. */
8940 rtx reg = XEXP (x, 0);
8941 int regno = REGNO (reg);
8942 int nregs = HARD_REGNO_NREGS (regno, GET_MODE (reg));
8944 while (--nregs >= 0)
8945 reg_state[regno + nregs].use_index = -1;
8946 return;
8948 break;
8950 case CLOBBER:
8951 if (GET_CODE (SET_DEST (x)) == REG)
8953 /* No spurious CLOBBERs of pseudo registers may remain. */
8954 if (REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER)
8955 abort ();
8956 return;
8958 break;
8960 case PLUS:
8961 /* We are interested in (plus (reg) (const_int)) . */
8962 if (GET_CODE (XEXP (x, 0)) != REG
8963 || GET_CODE (XEXP (x, 1)) != CONST_INT)
8964 break;
8965 offset = XEXP (x, 1);
8966 x = XEXP (x, 0);
8967 /* Fall through. */
8968 case REG:
8970 int regno = REGNO (x);
8971 int use_index;
8972 int nregs;
8974 /* No spurious USEs of pseudo registers may remain. */
8975 if (regno >= FIRST_PSEUDO_REGISTER)
8976 abort ();
8978 nregs = HARD_REGNO_NREGS (regno, GET_MODE (x));
8980 /* We can't substitute into multi-hard-reg uses. */
8981 if (nregs > 1)
8983 while (--nregs >= 0)
8984 reg_state[regno + nregs].use_index = -1;
8985 return;
8988 /* If this register is already used in some unknown fashion, we
8989 can't do anything.
8990 If we decrement the index from zero to -1, we can't store more
8991 uses, so this register becomes used in an unknown fashion. */
8992 use_index = --reg_state[regno].use_index;
8993 if (use_index < 0)
8994 return;
8996 if (use_index != RELOAD_COMBINE_MAX_USES - 1)
8998 /* We have found another use for a register that is already
8999 used later. Check if the offsets match; if not, mark the
9000 register as used in an unknown fashion. */
9001 if (! rtx_equal_p (offset, reg_state[regno].offset))
9003 reg_state[regno].use_index = -1;
9004 return;
9007 else
9009 /* This is the first use of this register we have seen since we
9010 marked it as dead. */
9011 reg_state[regno].offset = offset;
9012 reg_state[regno].use_ruid = reload_combine_ruid;
9014 reg_state[regno].reg_use[use_index].insn = insn;
9015 reg_state[regno].reg_use[use_index].usep = xp;
9016 return;
9019 default:
9020 break;
9023 /* Recursively process the components of X. */
9024 fmt = GET_RTX_FORMAT (code);
9025 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9027 if (fmt[i] == 'e')
9028 reload_combine_note_use (&XEXP (x, i), insn);
9029 else if (fmt[i] == 'E')
9031 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9032 reload_combine_note_use (&XVECEXP (x, i, j), insn);
9037 /* See if we can reduce the cost of a constant by replacing a move
9038 with an add. We track situations in which a register is set to a
9039 constant or to a register plus a constant. */
9040 /* We cannot do our optimization across labels. Invalidating all the
9041 information about register contents we have would be costly, so we
9042 use move2add_last_label_luid to note where the label is and then
9043 later disable any optimization that would cross it.
9044 reg_offset[n] / reg_base_reg[n] / reg_mode[n] are only valid if
9045 reg_set_luid[n] is greater than last_label_luid[n] . */
9046 static int reg_set_luid[FIRST_PSEUDO_REGISTER];
9048 /* If reg_base_reg[n] is negative, register n has been set to
9049 reg_offset[n] in mode reg_mode[n] .
9050 If reg_base_reg[n] is non-negative, register n has been set to the
9051 sum of reg_offset[n] and the value of register reg_base_reg[n]
9052 before reg_set_luid[n], calculated in mode reg_mode[n] . */
9053 static HOST_WIDE_INT reg_offset[FIRST_PSEUDO_REGISTER];
9054 static int reg_base_reg[FIRST_PSEUDO_REGISTER];
9055 static enum machine_mode reg_mode[FIRST_PSEUDO_REGISTER];
9057 /* move2add_luid is linearily increased while scanning the instructions
9058 from first to last. It is used to set reg_set_luid in
9059 reload_cse_move2add and move2add_note_store. */
9060 static int move2add_luid;
9062 /* move2add_last_label_luid is set whenever a label is found. Labels
9063 invalidate all previously collected reg_offset data. */
9064 static int move2add_last_label_luid;
9066 /* Generate a CONST_INT and force it in the range of MODE. */
9068 static HOST_WIDE_INT
9069 sext_for_mode (mode, value)
9070 enum machine_mode mode;
9071 HOST_WIDE_INT value;
9073 HOST_WIDE_INT cval = value & GET_MODE_MASK (mode);
9074 int width = GET_MODE_BITSIZE (mode);
9076 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative number,
9077 sign extend it. */
9078 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
9079 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
9080 cval |= (HOST_WIDE_INT) -1 << width;
9082 return cval;
9085 /* ??? We don't know how zero / sign extension is handled, hence we
9086 can't go from a narrower to a wider mode. */
9087 #define MODES_OK_FOR_MOVE2ADD(OUTMODE, INMODE) \
9088 (GET_MODE_SIZE (OUTMODE) == GET_MODE_SIZE (INMODE) \
9089 || (GET_MODE_SIZE (OUTMODE) <= GET_MODE_SIZE (INMODE) \
9090 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (OUTMODE), \
9091 GET_MODE_BITSIZE (INMODE))))
9093 static void
9094 reload_cse_move2add (first)
9095 rtx first;
9097 int i;
9098 rtx insn;
9100 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
9101 reg_set_luid[i] = 0;
9103 move2add_last_label_luid = 0;
9104 move2add_luid = 2;
9105 for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++)
9107 rtx pat, note;
9109 if (GET_CODE (insn) == CODE_LABEL)
9111 move2add_last_label_luid = move2add_luid;
9112 /* We're going to increment move2add_luid twice after a
9113 label, so that we can use move2add_last_label_luid + 1 as
9114 the luid for constants. */
9115 move2add_luid++;
9116 continue;
9118 if (! INSN_P (insn))
9119 continue;
9120 pat = PATTERN (insn);
9121 /* For simplicity, we only perform this optimization on
9122 straightforward SETs. */
9123 if (GET_CODE (pat) == SET
9124 && GET_CODE (SET_DEST (pat)) == REG)
9126 rtx reg = SET_DEST (pat);
9127 int regno = REGNO (reg);
9128 rtx src = SET_SRC (pat);
9130 /* Check if we have valid information on the contents of this
9131 register in the mode of REG. */
9132 if (reg_set_luid[regno] > move2add_last_label_luid
9133 && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg), reg_mode[regno]))
9135 /* Try to transform (set (REGX) (CONST_INT A))
9137 (set (REGX) (CONST_INT B))
9139 (set (REGX) (CONST_INT A))
9141 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
9143 if (GET_CODE (src) == CONST_INT && reg_base_reg[regno] < 0)
9145 int success = 0;
9146 rtx new_src = GEN_INT (sext_for_mode (GET_MODE (reg),
9147 INTVAL (src)
9148 - reg_offset[regno]));
9149 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
9150 use (set (reg) (reg)) instead.
9151 We don't delete this insn, nor do we convert it into a
9152 note, to avoid losing register notes or the return
9153 value flag. jump2 already knowns how to get rid of
9154 no-op moves. */
9155 if (new_src == const0_rtx)
9156 success = validate_change (insn, &SET_SRC (pat), reg, 0);
9157 else if (rtx_cost (new_src, PLUS) < rtx_cost (src, SET)
9158 && have_add2_insn (reg, new_src))
9159 success = validate_change (insn, &PATTERN (insn),
9160 gen_add2_insn (reg, new_src), 0);
9161 reg_set_luid[regno] = move2add_luid;
9162 reg_mode[regno] = GET_MODE (reg);
9163 reg_offset[regno] = INTVAL (src);
9164 continue;
9167 /* Try to transform (set (REGX) (REGY))
9168 (set (REGX) (PLUS (REGX) (CONST_INT A)))
9170 (set (REGX) (REGY))
9171 (set (REGX) (PLUS (REGX) (CONST_INT B)))
9173 (REGX) (REGY))
9174 (set (REGX) (PLUS (REGX) (CONST_INT A)))
9176 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
9177 else if (GET_CODE (src) == REG
9178 && reg_set_luid[regno] == reg_set_luid[REGNO (src)]
9179 && reg_base_reg[regno] == reg_base_reg[REGNO (src)]
9180 && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg),
9181 reg_mode[REGNO (src)]))
9183 rtx next = next_nonnote_insn (insn);
9184 rtx set = NULL_RTX;
9185 if (next)
9186 set = single_set (next);
9187 if (set
9188 && SET_DEST (set) == reg
9189 && GET_CODE (SET_SRC (set)) == PLUS
9190 && XEXP (SET_SRC (set), 0) == reg
9191 && GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
9193 rtx src3 = XEXP (SET_SRC (set), 1);
9194 HOST_WIDE_INT added_offset = INTVAL (src3);
9195 HOST_WIDE_INT base_offset = reg_offset[REGNO (src)];
9196 HOST_WIDE_INT regno_offset = reg_offset[regno];
9197 rtx new_src = GEN_INT (sext_for_mode (GET_MODE (reg),
9198 added_offset
9199 + base_offset
9200 - regno_offset));
9201 int success = 0;
9203 if (new_src == const0_rtx)
9204 /* See above why we create (set (reg) (reg)) here. */
9205 success
9206 = validate_change (next, &SET_SRC (set), reg, 0);
9207 else if ((rtx_cost (new_src, PLUS)
9208 < COSTS_N_INSNS (1) + rtx_cost (src3, SET))
9209 && have_add2_insn (reg, new_src))
9210 success
9211 = validate_change (next, &PATTERN (next),
9212 gen_add2_insn (reg, new_src), 0);
9213 if (success)
9214 delete_insn (insn);
9215 insn = next;
9216 reg_mode[regno] = GET_MODE (reg);
9217 reg_offset[regno] = sext_for_mode (GET_MODE (reg),
9218 added_offset
9219 + base_offset);
9220 continue;
9226 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
9228 if (REG_NOTE_KIND (note) == REG_INC
9229 && GET_CODE (XEXP (note, 0)) == REG)
9231 /* Reset the information about this register. */
9232 int regno = REGNO (XEXP (note, 0));
9233 if (regno < FIRST_PSEUDO_REGISTER)
9234 reg_set_luid[regno] = 0;
9237 note_stores (PATTERN (insn), move2add_note_store, NULL);
9238 /* If this is a CALL_INSN, all call used registers are stored with
9239 unknown values. */
9240 if (GET_CODE (insn) == CALL_INSN)
9242 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
9244 if (call_used_regs[i])
9245 /* Reset the information about this register. */
9246 reg_set_luid[i] = 0;
9252 /* SET is a SET or CLOBBER that sets DST.
9253 Update reg_set_luid, reg_offset and reg_base_reg accordingly.
9254 Called from reload_cse_move2add via note_stores. */
9256 static void
9257 move2add_note_store (dst, set, data)
9258 rtx dst, set;
9259 void *data ATTRIBUTE_UNUSED;
9261 unsigned int regno = 0;
9262 unsigned int i;
9263 enum machine_mode mode = GET_MODE (dst);
9265 if (GET_CODE (dst) == SUBREG)
9267 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
9268 GET_MODE (SUBREG_REG (dst)),
9269 SUBREG_BYTE (dst),
9270 GET_MODE (dst));
9271 dst = SUBREG_REG (dst);
9274 /* Some targets do argument pushes without adding REG_INC notes. */
9276 if (GET_CODE (dst) == MEM)
9278 dst = XEXP (dst, 0);
9279 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
9280 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC)
9281 reg_set_luid[REGNO (XEXP (dst, 0))] = 0;
9282 return;
9284 if (GET_CODE (dst) != REG)
9285 return;
9287 regno += REGNO (dst);
9289 if (HARD_REGNO_NREGS (regno, mode) == 1 && GET_CODE (set) == SET
9290 && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
9291 && GET_CODE (SET_DEST (set)) != SIGN_EXTRACT
9292 && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
9294 rtx src = SET_SRC (set);
9295 rtx base_reg;
9296 HOST_WIDE_INT offset;
9297 int base_regno;
9298 /* This may be different from mode, if SET_DEST (set) is a
9299 SUBREG. */
9300 enum machine_mode dst_mode = GET_MODE (dst);
9302 switch (GET_CODE (src))
9304 case PLUS:
9305 if (GET_CODE (XEXP (src, 0)) == REG)
9307 base_reg = XEXP (src, 0);
9309 if (GET_CODE (XEXP (src, 1)) == CONST_INT)
9310 offset = INTVAL (XEXP (src, 1));
9311 else if (GET_CODE (XEXP (src, 1)) == REG
9312 && (reg_set_luid[REGNO (XEXP (src, 1))]
9313 > move2add_last_label_luid)
9314 && (MODES_OK_FOR_MOVE2ADD
9315 (dst_mode, reg_mode[REGNO (XEXP (src, 1))])))
9317 if (reg_base_reg[REGNO (XEXP (src, 1))] < 0)
9318 offset = reg_offset[REGNO (XEXP (src, 1))];
9319 /* Maybe the first register is known to be a
9320 constant. */
9321 else if (reg_set_luid[REGNO (base_reg)]
9322 > move2add_last_label_luid
9323 && (MODES_OK_FOR_MOVE2ADD
9324 (dst_mode, reg_mode[REGNO (XEXP (src, 1))]))
9325 && reg_base_reg[REGNO (base_reg)] < 0)
9327 offset = reg_offset[REGNO (base_reg)];
9328 base_reg = XEXP (src, 1);
9330 else
9331 goto invalidate;
9333 else
9334 goto invalidate;
9336 break;
9339 goto invalidate;
9341 case REG:
9342 base_reg = src;
9343 offset = 0;
9344 break;
9346 case CONST_INT:
9347 /* Start tracking the register as a constant. */
9348 reg_base_reg[regno] = -1;
9349 reg_offset[regno] = INTVAL (SET_SRC (set));
9350 /* We assign the same luid to all registers set to constants. */
9351 reg_set_luid[regno] = move2add_last_label_luid + 1;
9352 reg_mode[regno] = mode;
9353 return;
9355 default:
9356 invalidate:
9357 /* Invalidate the contents of the register. */
9358 reg_set_luid[regno] = 0;
9359 return;
9362 base_regno = REGNO (base_reg);
9363 /* If information about the base register is not valid, set it
9364 up as a new base register, pretending its value is known
9365 starting from the current insn. */
9366 if (reg_set_luid[base_regno] <= move2add_last_label_luid)
9368 reg_base_reg[base_regno] = base_regno;
9369 reg_offset[base_regno] = 0;
9370 reg_set_luid[base_regno] = move2add_luid;
9371 reg_mode[base_regno] = mode;
9373 else if (! MODES_OK_FOR_MOVE2ADD (dst_mode,
9374 reg_mode[base_regno]))
9375 goto invalidate;
9377 reg_mode[regno] = mode;
9379 /* Copy base information from our base register. */
9380 reg_set_luid[regno] = reg_set_luid[base_regno];
9381 reg_base_reg[regno] = reg_base_reg[base_regno];
9383 /* Compute the sum of the offsets or constants. */
9384 reg_offset[regno] = sext_for_mode (dst_mode,
9385 offset
9386 + reg_offset[base_regno]);
9388 else
9390 unsigned int endregno = regno + HARD_REGNO_NREGS (regno, mode);
9392 for (i = regno; i < endregno; i++)
9393 /* Reset the information about this register. */
9394 reg_set_luid[i] = 0;
9398 #ifdef AUTO_INC_DEC
9399 static void
9400 add_auto_inc_notes (insn, x)
9401 rtx insn;
9402 rtx x;
9404 enum rtx_code code = GET_CODE (x);
9405 const char *fmt;
9406 int i, j;
9408 if (code == MEM && auto_inc_p (XEXP (x, 0)))
9410 REG_NOTES (insn)
9411 = gen_rtx_EXPR_LIST (REG_INC, XEXP (XEXP (x, 0), 0), REG_NOTES (insn));
9412 return;
9415 /* Scan all the operand sub-expressions. */
9416 fmt = GET_RTX_FORMAT (code);
9417 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9419 if (fmt[i] == 'e')
9420 add_auto_inc_notes (insn, XEXP (x, i));
9421 else if (fmt[i] == 'E')
9422 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9423 add_auto_inc_notes (insn, XVECEXP (x, i, j));
9426 #endif
9428 /* Copy EH notes from an insn to its reloads. */
9429 static void
9430 copy_eh_notes (insn, x)
9431 rtx insn;
9432 rtx x;
9434 rtx eh_note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
9435 if (eh_note)
9437 for (; x != 0; x = NEXT_INSN (x))
9439 if (may_trap_p (PATTERN (x)))
9440 REG_NOTES (x)
9441 = gen_rtx_EXPR_LIST (REG_EH_REGION, XEXP (eh_note, 0),
9442 REG_NOTES (x));
9447 /* This is used by reload pass, that does emit some instructions after
9448 abnormal calls moving basic block end, but in fact it wants to emit
9449 them on the edge. Looks for abnormal call edges, find backward the
9450 proper call and fix the damage.
9452 Similar handle instructions throwing exceptions internally. */
9453 void
9454 fixup_abnormal_edges ()
9456 bool inserted = false;
9457 basic_block bb;
9459 FOR_EACH_BB (bb)
9461 edge e;
9463 /* Look for cases we are interested in - an calls or instructions causing
9464 exceptions. */
9465 for (e = bb->succ; e; e = e->succ_next)
9467 if (e->flags & EDGE_ABNORMAL_CALL)
9468 break;
9469 if ((e->flags & (EDGE_ABNORMAL | EDGE_EH))
9470 == (EDGE_ABNORMAL | EDGE_EH))
9471 break;
9473 if (e && GET_CODE (bb->end) != CALL_INSN && !can_throw_internal (bb->end))
9475 rtx insn = bb->end, stop = NEXT_INSN (bb->end);
9476 rtx next;
9477 for (e = bb->succ; e; e = e->succ_next)
9478 if (e->flags & EDGE_FALLTHRU)
9479 break;
9480 /* Get past the new insns generated. Allow notes, as the insns may
9481 be already deleted. */
9482 while ((GET_CODE (insn) == INSN || GET_CODE (insn) == NOTE)
9483 && !can_throw_internal (insn)
9484 && insn != bb->head)
9485 insn = PREV_INSN (insn);
9486 if (GET_CODE (insn) != CALL_INSN && !can_throw_internal (insn))
9487 abort ();
9488 bb->end = insn;
9489 inserted = true;
9490 insn = NEXT_INSN (insn);
9491 while (insn && insn != stop)
9493 next = NEXT_INSN (insn);
9494 if (INSN_P (insn))
9496 delete_insn (insn);
9498 /* Sometimes there's still the return value USE.
9499 If it's placed after a trapping call (i.e. that
9500 call is the last insn anyway), we have no fallthru
9501 edge. Simply delete this use and don't try to insert
9502 on the non-existant edge. */
9503 if (GET_CODE (PATTERN (insn)) != USE)
9505 /* We're not deleting it, we're moving it. */
9506 INSN_DELETED_P (insn) = 0;
9507 PREV_INSN (insn) = NULL_RTX;
9508 NEXT_INSN (insn) = NULL_RTX;
9510 insert_insn_on_edge (insn, e);
9513 insn = next;
9517 if (inserted)
9518 commit_edge_insertions ();