2012-09-04 Janus Weil <janus@gcc.gnu.org>
[official-gcc.git] / gcc / tree-sra.c
blobcc7becdc3191c3cfa5d5ce31aa09eca96e0eef08
1 /* Scalar Replacement of Aggregates (SRA) converts some structure
2 references into scalar references, exposing them to the scalar
3 optimizers.
4 Copyright (C) 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
5 Contributed by Martin Jambor <mjambor@suse.cz>
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 /* This file implements Scalar Reduction of Aggregates (SRA). SRA is run
24 twice, once in the early stages of compilation (early SRA) and once in the
25 late stages (late SRA). The aim of both is to turn references to scalar
26 parts of aggregates into uses of independent scalar variables.
28 The two passes are nearly identical, the only difference is that early SRA
29 does not scalarize unions which are used as the result in a GIMPLE_RETURN
30 statement because together with inlining this can lead to weird type
31 conversions.
33 Both passes operate in four stages:
35 1. The declarations that have properties which make them candidates for
36 scalarization are identified in function find_var_candidates(). The
37 candidates are stored in candidate_bitmap.
39 2. The function body is scanned. In the process, declarations which are
40 used in a manner that prevent their scalarization are removed from the
41 candidate bitmap. More importantly, for every access into an aggregate,
42 an access structure (struct access) is created by create_access() and
43 stored in a vector associated with the aggregate. Among other
44 information, the aggregate declaration, the offset and size of the access
45 and its type are stored in the structure.
47 On a related note, assign_link structures are created for every assign
48 statement between candidate aggregates and attached to the related
49 accesses.
51 3. The vectors of accesses are analyzed. They are first sorted according to
52 their offset and size and then scanned for partially overlapping accesses
53 (i.e. those which overlap but one is not entirely within another). Such
54 an access disqualifies the whole aggregate from being scalarized.
56 If there is no such inhibiting overlap, a representative access structure
57 is chosen for every unique combination of offset and size. Afterwards,
58 the pass builds a set of trees from these structures, in which children
59 of an access are within their parent (in terms of offset and size).
61 Then accesses are propagated whenever possible (i.e. in cases when it
62 does not create a partially overlapping access) across assign_links from
63 the right hand side to the left hand side.
65 Then the set of trees for each declaration is traversed again and those
66 accesses which should be replaced by a scalar are identified.
68 4. The function is traversed again, and for every reference into an
69 aggregate that has some component which is about to be scalarized,
70 statements are amended and new statements are created as necessary.
71 Finally, if a parameter got scalarized, the scalar replacements are
72 initialized with values from respective parameter aggregates. */
74 #include "config.h"
75 #include "system.h"
76 #include "coretypes.h"
77 #include "alloc-pool.h"
78 #include "tm.h"
79 #include "tree.h"
80 #include "gimple.h"
81 #include "cgraph.h"
82 #include "tree-flow.h"
83 #include "tree-pass.h"
84 #include "ipa-prop.h"
85 #include "statistics.h"
86 #include "params.h"
87 #include "target.h"
88 #include "flags.h"
89 #include "dbgcnt.h"
90 #include "tree-inline.h"
91 #include "gimple-pretty-print.h"
92 #include "ipa-inline.h"
94 /* Enumeration of all aggregate reductions we can do. */
95 enum sra_mode { SRA_MODE_EARLY_IPA, /* early call regularization */
96 SRA_MODE_EARLY_INTRA, /* early intraprocedural SRA */
97 SRA_MODE_INTRA }; /* late intraprocedural SRA */
99 /* Global variable describing which aggregate reduction we are performing at
100 the moment. */
101 static enum sra_mode sra_mode;
103 struct assign_link;
105 /* ACCESS represents each access to an aggregate variable (as a whole or a
106 part). It can also represent a group of accesses that refer to exactly the
107 same fragment of an aggregate (i.e. those that have exactly the same offset
108 and size). Such representatives for a single aggregate, once determined,
109 are linked in a linked list and have the group fields set.
111 Moreover, when doing intraprocedural SRA, a tree is built from those
112 representatives (by the means of first_child and next_sibling pointers), in
113 which all items in a subtree are "within" the root, i.e. their offset is
114 greater or equal to offset of the root and offset+size is smaller or equal
115 to offset+size of the root. Children of an access are sorted by offset.
117 Note that accesses to parts of vector and complex number types always
118 represented by an access to the whole complex number or a vector. It is a
119 duty of the modifying functions to replace them appropriately. */
121 struct access
123 /* Values returned by `get_ref_base_and_extent' for each component reference
124 If EXPR isn't a component reference just set `BASE = EXPR', `OFFSET = 0',
125 `SIZE = TREE_SIZE (TREE_TYPE (expr))'. */
126 HOST_WIDE_INT offset;
127 HOST_WIDE_INT size;
128 tree base;
130 /* Expression. It is context dependent so do not use it to create new
131 expressions to access the original aggregate. See PR 42154 for a
132 testcase. */
133 tree expr;
134 /* Type. */
135 tree type;
137 /* The statement this access belongs to. */
138 gimple stmt;
140 /* Next group representative for this aggregate. */
141 struct access *next_grp;
143 /* Pointer to the group representative. Pointer to itself if the struct is
144 the representative. */
145 struct access *group_representative;
147 /* If this access has any children (in terms of the definition above), this
148 points to the first one. */
149 struct access *first_child;
151 /* In intraprocedural SRA, pointer to the next sibling in the access tree as
152 described above. In IPA-SRA this is a pointer to the next access
153 belonging to the same group (having the same representative). */
154 struct access *next_sibling;
156 /* Pointers to the first and last element in the linked list of assign
157 links. */
158 struct assign_link *first_link, *last_link;
160 /* Pointer to the next access in the work queue. */
161 struct access *next_queued;
163 /* Replacement variable for this access "region." Never to be accessed
164 directly, always only by the means of get_access_replacement() and only
165 when grp_to_be_replaced flag is set. */
166 tree replacement_decl;
168 /* Is this particular access write access? */
169 unsigned write : 1;
171 /* Is this access an access to a non-addressable field? */
172 unsigned non_addressable : 1;
174 /* Is this access currently in the work queue? */
175 unsigned grp_queued : 1;
177 /* Does this group contain a write access? This flag is propagated down the
178 access tree. */
179 unsigned grp_write : 1;
181 /* Does this group contain a read access? This flag is propagated down the
182 access tree. */
183 unsigned grp_read : 1;
185 /* Does this group contain a read access that comes from an assignment
186 statement? This flag is propagated down the access tree. */
187 unsigned grp_assignment_read : 1;
189 /* Does this group contain a write access that comes from an assignment
190 statement? This flag is propagated down the access tree. */
191 unsigned grp_assignment_write : 1;
193 /* Does this group contain a read access through a scalar type? This flag is
194 not propagated in the access tree in any direction. */
195 unsigned grp_scalar_read : 1;
197 /* Does this group contain a write access through a scalar type? This flag
198 is not propagated in the access tree in any direction. */
199 unsigned grp_scalar_write : 1;
201 /* Is this access an artificial one created to scalarize some record
202 entirely? */
203 unsigned grp_total_scalarization : 1;
205 /* Other passes of the analysis use this bit to make function
206 analyze_access_subtree create scalar replacements for this group if
207 possible. */
208 unsigned grp_hint : 1;
210 /* Is the subtree rooted in this access fully covered by scalar
211 replacements? */
212 unsigned grp_covered : 1;
214 /* If set to true, this access and all below it in an access tree must not be
215 scalarized. */
216 unsigned grp_unscalarizable_region : 1;
218 /* Whether data have been written to parts of the aggregate covered by this
219 access which is not to be scalarized. This flag is propagated up in the
220 access tree. */
221 unsigned grp_unscalarized_data : 1;
223 /* Does this access and/or group contain a write access through a
224 BIT_FIELD_REF? */
225 unsigned grp_partial_lhs : 1;
227 /* Set when a scalar replacement should be created for this variable. */
228 unsigned grp_to_be_replaced : 1;
230 /* Should TREE_NO_WARNING of a replacement be set? */
231 unsigned grp_no_warning : 1;
233 /* Is it possible that the group refers to data which might be (directly or
234 otherwise) modified? */
235 unsigned grp_maybe_modified : 1;
237 /* Set when this is a representative of a pointer to scalar (i.e. by
238 reference) parameter which we consider for turning into a plain scalar
239 (i.e. a by value parameter). */
240 unsigned grp_scalar_ptr : 1;
242 /* Set when we discover that this pointer is not safe to dereference in the
243 caller. */
244 unsigned grp_not_necessarilly_dereferenced : 1;
247 typedef struct access *access_p;
249 DEF_VEC_P (access_p);
250 DEF_VEC_ALLOC_P (access_p, heap);
252 /* Alloc pool for allocating access structures. */
253 static alloc_pool access_pool;
255 /* A structure linking lhs and rhs accesses from an aggregate assignment. They
256 are used to propagate subaccesses from rhs to lhs as long as they don't
257 conflict with what is already there. */
258 struct assign_link
260 struct access *lacc, *racc;
261 struct assign_link *next;
264 /* Alloc pool for allocating assign link structures. */
265 static alloc_pool link_pool;
267 /* Base (tree) -> Vector (VEC(access_p,heap) *) map. */
268 static struct pointer_map_t *base_access_vec;
270 /* Set of candidates. */
271 static bitmap candidate_bitmap;
272 static htab_t candidates;
274 /* For a candidate UID return the candidates decl. */
276 static inline tree
277 candidate (unsigned uid)
279 struct tree_decl_minimal t;
280 t.uid = uid;
281 return (tree) htab_find_with_hash (candidates, &t, uid);
284 /* Bitmap of candidates which we should try to entirely scalarize away and
285 those which cannot be (because they are and need be used as a whole). */
286 static bitmap should_scalarize_away_bitmap, cannot_scalarize_away_bitmap;
288 /* Obstack for creation of fancy names. */
289 static struct obstack name_obstack;
291 /* Head of a linked list of accesses that need to have its subaccesses
292 propagated to their assignment counterparts. */
293 static struct access *work_queue_head;
295 /* Number of parameters of the analyzed function when doing early ipa SRA. */
296 static int func_param_count;
298 /* scan_function sets the following to true if it encounters a call to
299 __builtin_apply_args. */
300 static bool encountered_apply_args;
302 /* Set by scan_function when it finds a recursive call. */
303 static bool encountered_recursive_call;
305 /* Set by scan_function when it finds a recursive call with less actual
306 arguments than formal parameters.. */
307 static bool encountered_unchangable_recursive_call;
309 /* This is a table in which for each basic block and parameter there is a
310 distance (offset + size) in that parameter which is dereferenced and
311 accessed in that BB. */
312 static HOST_WIDE_INT *bb_dereferences;
313 /* Bitmap of BBs that can cause the function to "stop" progressing by
314 returning, throwing externally, looping infinitely or calling a function
315 which might abort etc.. */
316 static bitmap final_bbs;
318 /* Representative of no accesses at all. */
319 static struct access no_accesses_representant;
321 /* Predicate to test the special value. */
323 static inline bool
324 no_accesses_p (struct access *access)
326 return access == &no_accesses_representant;
329 /* Dump contents of ACCESS to file F in a human friendly way. If GRP is true,
330 representative fields are dumped, otherwise those which only describe the
331 individual access are. */
333 static struct
335 /* Number of processed aggregates is readily available in
336 analyze_all_variable_accesses and so is not stored here. */
338 /* Number of created scalar replacements. */
339 int replacements;
341 /* Number of times sra_modify_expr or sra_modify_assign themselves changed an
342 expression. */
343 int exprs;
345 /* Number of statements created by generate_subtree_copies. */
346 int subtree_copies;
348 /* Number of statements created by load_assign_lhs_subreplacements. */
349 int subreplacements;
351 /* Number of times sra_modify_assign has deleted a statement. */
352 int deleted;
354 /* Number of times sra_modify_assign has to deal with subaccesses of LHS and
355 RHS reparately due to type conversions or nonexistent matching
356 references. */
357 int separate_lhs_rhs_handling;
359 /* Number of parameters that were removed because they were unused. */
360 int deleted_unused_parameters;
362 /* Number of scalars passed as parameters by reference that have been
363 converted to be passed by value. */
364 int scalar_by_ref_to_by_val;
366 /* Number of aggregate parameters that were replaced by one or more of their
367 components. */
368 int aggregate_params_reduced;
370 /* Numbber of components created when splitting aggregate parameters. */
371 int param_reductions_created;
372 } sra_stats;
374 static void
375 dump_access (FILE *f, struct access *access, bool grp)
377 fprintf (f, "access { ");
378 fprintf (f, "base = (%d)'", DECL_UID (access->base));
379 print_generic_expr (f, access->base, 0);
380 fprintf (f, "', offset = " HOST_WIDE_INT_PRINT_DEC, access->offset);
381 fprintf (f, ", size = " HOST_WIDE_INT_PRINT_DEC, access->size);
382 fprintf (f, ", expr = ");
383 print_generic_expr (f, access->expr, 0);
384 fprintf (f, ", type = ");
385 print_generic_expr (f, access->type, 0);
386 if (grp)
387 fprintf (f, ", grp_read = %d, grp_write = %d, grp_assignment_read = %d, "
388 "grp_assignment_write = %d, grp_scalar_read = %d, "
389 "grp_scalar_write = %d, grp_total_scalarization = %d, "
390 "grp_hint = %d, grp_covered = %d, "
391 "grp_unscalarizable_region = %d, grp_unscalarized_data = %d, "
392 "grp_partial_lhs = %d, grp_to_be_replaced = %d, "
393 "grp_maybe_modified = %d, "
394 "grp_not_necessarilly_dereferenced = %d\n",
395 access->grp_read, access->grp_write, access->grp_assignment_read,
396 access->grp_assignment_write, access->grp_scalar_read,
397 access->grp_scalar_write, access->grp_total_scalarization,
398 access->grp_hint, access->grp_covered,
399 access->grp_unscalarizable_region, access->grp_unscalarized_data,
400 access->grp_partial_lhs, access->grp_to_be_replaced,
401 access->grp_maybe_modified,
402 access->grp_not_necessarilly_dereferenced);
403 else
404 fprintf (f, ", write = %d, grp_total_scalarization = %d, "
405 "grp_partial_lhs = %d\n",
406 access->write, access->grp_total_scalarization,
407 access->grp_partial_lhs);
410 /* Dump a subtree rooted in ACCESS to file F, indent by LEVEL. */
412 static void
413 dump_access_tree_1 (FILE *f, struct access *access, int level)
417 int i;
419 for (i = 0; i < level; i++)
420 fputs ("* ", dump_file);
422 dump_access (f, access, true);
424 if (access->first_child)
425 dump_access_tree_1 (f, access->first_child, level + 1);
427 access = access->next_sibling;
429 while (access);
432 /* Dump all access trees for a variable, given the pointer to the first root in
433 ACCESS. */
435 static void
436 dump_access_tree (FILE *f, struct access *access)
438 for (; access; access = access->next_grp)
439 dump_access_tree_1 (f, access, 0);
442 /* Return true iff ACC is non-NULL and has subaccesses. */
444 static inline bool
445 access_has_children_p (struct access *acc)
447 return acc && acc->first_child;
450 /* Return true iff ACC is (partly) covered by at least one replacement. */
452 static bool
453 access_has_replacements_p (struct access *acc)
455 struct access *child;
456 if (acc->grp_to_be_replaced)
457 return true;
458 for (child = acc->first_child; child; child = child->next_sibling)
459 if (access_has_replacements_p (child))
460 return true;
461 return false;
464 /* Return a vector of pointers to accesses for the variable given in BASE or
465 NULL if there is none. */
467 static VEC (access_p, heap) *
468 get_base_access_vector (tree base)
470 void **slot;
472 slot = pointer_map_contains (base_access_vec, base);
473 if (!slot)
474 return NULL;
475 else
476 return *(VEC (access_p, heap) **) slot;
479 /* Find an access with required OFFSET and SIZE in a subtree of accesses rooted
480 in ACCESS. Return NULL if it cannot be found. */
482 static struct access *
483 find_access_in_subtree (struct access *access, HOST_WIDE_INT offset,
484 HOST_WIDE_INT size)
486 while (access && (access->offset != offset || access->size != size))
488 struct access *child = access->first_child;
490 while (child && (child->offset + child->size <= offset))
491 child = child->next_sibling;
492 access = child;
495 return access;
498 /* Return the first group representative for DECL or NULL if none exists. */
500 static struct access *
501 get_first_repr_for_decl (tree base)
503 VEC (access_p, heap) *access_vec;
505 access_vec = get_base_access_vector (base);
506 if (!access_vec)
507 return NULL;
509 return VEC_index (access_p, access_vec, 0);
512 /* Find an access representative for the variable BASE and given OFFSET and
513 SIZE. Requires that access trees have already been built. Return NULL if
514 it cannot be found. */
516 static struct access *
517 get_var_base_offset_size_access (tree base, HOST_WIDE_INT offset,
518 HOST_WIDE_INT size)
520 struct access *access;
522 access = get_first_repr_for_decl (base);
523 while (access && (access->offset + access->size <= offset))
524 access = access->next_grp;
525 if (!access)
526 return NULL;
528 return find_access_in_subtree (access, offset, size);
531 /* Add LINK to the linked list of assign links of RACC. */
532 static void
533 add_link_to_rhs (struct access *racc, struct assign_link *link)
535 gcc_assert (link->racc == racc);
537 if (!racc->first_link)
539 gcc_assert (!racc->last_link);
540 racc->first_link = link;
542 else
543 racc->last_link->next = link;
545 racc->last_link = link;
546 link->next = NULL;
549 /* Move all link structures in their linked list in OLD_RACC to the linked list
550 in NEW_RACC. */
551 static void
552 relink_to_new_repr (struct access *new_racc, struct access *old_racc)
554 if (!old_racc->first_link)
556 gcc_assert (!old_racc->last_link);
557 return;
560 if (new_racc->first_link)
562 gcc_assert (!new_racc->last_link->next);
563 gcc_assert (!old_racc->last_link || !old_racc->last_link->next);
565 new_racc->last_link->next = old_racc->first_link;
566 new_racc->last_link = old_racc->last_link;
568 else
570 gcc_assert (!new_racc->last_link);
572 new_racc->first_link = old_racc->first_link;
573 new_racc->last_link = old_racc->last_link;
575 old_racc->first_link = old_racc->last_link = NULL;
578 /* Add ACCESS to the work queue (which is actually a stack). */
580 static void
581 add_access_to_work_queue (struct access *access)
583 if (!access->grp_queued)
585 gcc_assert (!access->next_queued);
586 access->next_queued = work_queue_head;
587 access->grp_queued = 1;
588 work_queue_head = access;
592 /* Pop an access from the work queue, and return it, assuming there is one. */
594 static struct access *
595 pop_access_from_work_queue (void)
597 struct access *access = work_queue_head;
599 work_queue_head = access->next_queued;
600 access->next_queued = NULL;
601 access->grp_queued = 0;
602 return access;
606 /* Allocate necessary structures. */
608 static void
609 sra_initialize (void)
611 candidate_bitmap = BITMAP_ALLOC (NULL);
612 candidates = htab_create (VEC_length (tree, cfun->local_decls) / 2,
613 uid_decl_map_hash, uid_decl_map_eq, NULL);
614 should_scalarize_away_bitmap = BITMAP_ALLOC (NULL);
615 cannot_scalarize_away_bitmap = BITMAP_ALLOC (NULL);
616 gcc_obstack_init (&name_obstack);
617 access_pool = create_alloc_pool ("SRA accesses", sizeof (struct access), 16);
618 link_pool = create_alloc_pool ("SRA links", sizeof (struct assign_link), 16);
619 base_access_vec = pointer_map_create ();
620 memset (&sra_stats, 0, sizeof (sra_stats));
621 encountered_apply_args = false;
622 encountered_recursive_call = false;
623 encountered_unchangable_recursive_call = false;
626 /* Hook fed to pointer_map_traverse, deallocate stored vectors. */
628 static bool
629 delete_base_accesses (const void *key ATTRIBUTE_UNUSED, void **value,
630 void *data ATTRIBUTE_UNUSED)
632 VEC (access_p, heap) *access_vec;
633 access_vec = (VEC (access_p, heap) *) *value;
634 VEC_free (access_p, heap, access_vec);
636 return true;
639 /* Deallocate all general structures. */
641 static void
642 sra_deinitialize (void)
644 BITMAP_FREE (candidate_bitmap);
645 htab_delete (candidates);
646 BITMAP_FREE (should_scalarize_away_bitmap);
647 BITMAP_FREE (cannot_scalarize_away_bitmap);
648 free_alloc_pool (access_pool);
649 free_alloc_pool (link_pool);
650 obstack_free (&name_obstack, NULL);
652 pointer_map_traverse (base_access_vec, delete_base_accesses, NULL);
653 pointer_map_destroy (base_access_vec);
656 /* Remove DECL from candidates for SRA and write REASON to the dump file if
657 there is one. */
658 static void
659 disqualify_candidate (tree decl, const char *reason)
661 if (bitmap_clear_bit (candidate_bitmap, DECL_UID (decl)))
662 htab_clear_slot (candidates,
663 htab_find_slot_with_hash (candidates, decl,
664 DECL_UID (decl), NO_INSERT));
666 if (dump_file && (dump_flags & TDF_DETAILS))
668 fprintf (dump_file, "! Disqualifying ");
669 print_generic_expr (dump_file, decl, 0);
670 fprintf (dump_file, " - %s\n", reason);
674 /* Return true iff the type contains a field or an element which does not allow
675 scalarization. */
677 static bool
678 type_internals_preclude_sra_p (tree type, const char **msg)
680 tree fld;
681 tree et;
683 switch (TREE_CODE (type))
685 case RECORD_TYPE:
686 case UNION_TYPE:
687 case QUAL_UNION_TYPE:
688 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
689 if (TREE_CODE (fld) == FIELD_DECL)
691 tree ft = TREE_TYPE (fld);
693 if (TREE_THIS_VOLATILE (fld))
695 *msg = "volatile structure field";
696 return true;
698 if (!DECL_FIELD_OFFSET (fld))
700 *msg = "no structure field offset";
701 return true;
703 if (!DECL_SIZE (fld))
705 *msg = "zero structure field size";
706 return true;
708 if (!host_integerp (DECL_FIELD_OFFSET (fld), 1))
710 *msg = "structure field offset not fixed";
711 return true;
713 if (!host_integerp (DECL_SIZE (fld), 1))
715 *msg = "structure field size not fixed";
716 return true;
718 if (AGGREGATE_TYPE_P (ft)
719 && int_bit_position (fld) % BITS_PER_UNIT != 0)
721 *msg = "structure field is bit field";
722 return true;
725 if (AGGREGATE_TYPE_P (ft) && type_internals_preclude_sra_p (ft, msg))
726 return true;
729 return false;
731 case ARRAY_TYPE:
732 et = TREE_TYPE (type);
734 if (TYPE_VOLATILE (et))
736 *msg = "element type is volatile";
737 return true;
740 if (AGGREGATE_TYPE_P (et) && type_internals_preclude_sra_p (et, msg))
741 return true;
743 return false;
745 default:
746 return false;
750 /* If T is an SSA_NAME, return NULL if it is not a default def or return its
751 base variable if it is. Return T if it is not an SSA_NAME. */
753 static tree
754 get_ssa_base_param (tree t)
756 if (TREE_CODE (t) == SSA_NAME)
758 if (SSA_NAME_IS_DEFAULT_DEF (t))
759 return SSA_NAME_VAR (t);
760 else
761 return NULL_TREE;
763 return t;
766 /* Mark a dereference of BASE of distance DIST in a basic block tht STMT
767 belongs to, unless the BB has already been marked as a potentially
768 final. */
770 static void
771 mark_parm_dereference (tree base, HOST_WIDE_INT dist, gimple stmt)
773 basic_block bb = gimple_bb (stmt);
774 int idx, parm_index = 0;
775 tree parm;
777 if (bitmap_bit_p (final_bbs, bb->index))
778 return;
780 for (parm = DECL_ARGUMENTS (current_function_decl);
781 parm && parm != base;
782 parm = DECL_CHAIN (parm))
783 parm_index++;
785 gcc_assert (parm_index < func_param_count);
787 idx = bb->index * func_param_count + parm_index;
788 if (bb_dereferences[idx] < dist)
789 bb_dereferences[idx] = dist;
792 /* Allocate an access structure for BASE, OFFSET and SIZE, clear it, fill in
793 the three fields. Also add it to the vector of accesses corresponding to
794 the base. Finally, return the new access. */
796 static struct access *
797 create_access_1 (tree base, HOST_WIDE_INT offset, HOST_WIDE_INT size)
799 VEC (access_p, heap) *vec;
800 struct access *access;
801 void **slot;
803 access = (struct access *) pool_alloc (access_pool);
804 memset (access, 0, sizeof (struct access));
805 access->base = base;
806 access->offset = offset;
807 access->size = size;
809 slot = pointer_map_contains (base_access_vec, base);
810 if (slot)
811 vec = (VEC (access_p, heap) *) *slot;
812 else
813 vec = VEC_alloc (access_p, heap, 32);
815 VEC_safe_push (access_p, heap, vec, access);
817 *((struct VEC (access_p,heap) **)
818 pointer_map_insert (base_access_vec, base)) = vec;
820 return access;
823 /* Create and insert access for EXPR. Return created access, or NULL if it is
824 not possible. */
826 static struct access *
827 create_access (tree expr, gimple stmt, bool write)
829 struct access *access;
830 HOST_WIDE_INT offset, size, max_size;
831 tree base = expr;
832 bool ptr, unscalarizable_region = false;
834 base = get_ref_base_and_extent (expr, &offset, &size, &max_size);
836 if (sra_mode == SRA_MODE_EARLY_IPA
837 && TREE_CODE (base) == MEM_REF)
839 base = get_ssa_base_param (TREE_OPERAND (base, 0));
840 if (!base)
841 return NULL;
842 ptr = true;
844 else
845 ptr = false;
847 if (!DECL_P (base) || !bitmap_bit_p (candidate_bitmap, DECL_UID (base)))
848 return NULL;
850 if (sra_mode == SRA_MODE_EARLY_IPA)
852 if (size < 0 || size != max_size)
854 disqualify_candidate (base, "Encountered a variable sized access.");
855 return NULL;
857 if (TREE_CODE (expr) == COMPONENT_REF
858 && DECL_BIT_FIELD (TREE_OPERAND (expr, 1)))
860 disqualify_candidate (base, "Encountered a bit-field access.");
861 return NULL;
863 gcc_checking_assert ((offset % BITS_PER_UNIT) == 0);
865 if (ptr)
866 mark_parm_dereference (base, offset + size, stmt);
868 else
870 if (size != max_size)
872 size = max_size;
873 unscalarizable_region = true;
875 if (size < 0)
877 disqualify_candidate (base, "Encountered an unconstrained access.");
878 return NULL;
882 access = create_access_1 (base, offset, size);
883 access->expr = expr;
884 access->type = TREE_TYPE (expr);
885 access->write = write;
886 access->grp_unscalarizable_region = unscalarizable_region;
887 access->stmt = stmt;
889 if (TREE_CODE (expr) == COMPONENT_REF
890 && DECL_NONADDRESSABLE_P (TREE_OPERAND (expr, 1)))
891 access->non_addressable = 1;
893 return access;
897 /* Return true iff TYPE is a RECORD_TYPE with fields that are either of gimple
898 register types or (recursively) records with only these two kinds of fields.
899 It also returns false if any of these records contains a bit-field. */
901 static bool
902 type_consists_of_records_p (tree type)
904 tree fld;
906 if (TREE_CODE (type) != RECORD_TYPE)
907 return false;
909 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
910 if (TREE_CODE (fld) == FIELD_DECL)
912 tree ft = TREE_TYPE (fld);
914 if (DECL_BIT_FIELD (fld))
915 return false;
917 if (!is_gimple_reg_type (ft)
918 && !type_consists_of_records_p (ft))
919 return false;
922 return true;
925 /* Create total_scalarization accesses for all scalar type fields in DECL that
926 must be of a RECORD_TYPE conforming to type_consists_of_records_p. BASE
927 must be the top-most VAR_DECL representing the variable, OFFSET must be the
928 offset of DECL within BASE. REF must be the memory reference expression for
929 the given decl. */
931 static void
932 completely_scalarize_record (tree base, tree decl, HOST_WIDE_INT offset,
933 tree ref)
935 tree fld, decl_type = TREE_TYPE (decl);
937 for (fld = TYPE_FIELDS (decl_type); fld; fld = DECL_CHAIN (fld))
938 if (TREE_CODE (fld) == FIELD_DECL)
940 HOST_WIDE_INT pos = offset + int_bit_position (fld);
941 tree ft = TREE_TYPE (fld);
942 tree nref = build3 (COMPONENT_REF, TREE_TYPE (fld), ref, fld,
943 NULL_TREE);
945 if (is_gimple_reg_type (ft))
947 struct access *access;
948 HOST_WIDE_INT size;
950 size = tree_low_cst (DECL_SIZE (fld), 1);
951 access = create_access_1 (base, pos, size);
952 access->expr = nref;
953 access->type = ft;
954 access->grp_total_scalarization = 1;
955 /* Accesses for intraprocedural SRA can have their stmt NULL. */
957 else
958 completely_scalarize_record (base, fld, pos, nref);
962 /* Create total_scalarization accesses for all scalar type fields in VAR and
963 for VAR a a whole. VAR must be of a RECORD_TYPE conforming to
964 type_consists_of_records_p. */
966 static void
967 completely_scalarize_var (tree var)
969 HOST_WIDE_INT size = tree_low_cst (DECL_SIZE (var), 1);
970 struct access *access;
972 access = create_access_1 (var, 0, size);
973 access->expr = var;
974 access->type = TREE_TYPE (var);
975 access->grp_total_scalarization = 1;
977 completely_scalarize_record (var, var, 0, var);
980 /* Search the given tree for a declaration by skipping handled components and
981 exclude it from the candidates. */
983 static void
984 disqualify_base_of_expr (tree t, const char *reason)
986 t = get_base_address (t);
987 if (sra_mode == SRA_MODE_EARLY_IPA
988 && TREE_CODE (t) == MEM_REF)
989 t = get_ssa_base_param (TREE_OPERAND (t, 0));
991 if (t && DECL_P (t))
992 disqualify_candidate (t, reason);
995 /* Scan expression EXPR and create access structures for all accesses to
996 candidates for scalarization. Return the created access or NULL if none is
997 created. */
999 static struct access *
1000 build_access_from_expr_1 (tree expr, gimple stmt, bool write)
1002 struct access *ret = NULL;
1003 bool partial_ref;
1005 if (TREE_CODE (expr) == BIT_FIELD_REF
1006 || TREE_CODE (expr) == IMAGPART_EXPR
1007 || TREE_CODE (expr) == REALPART_EXPR)
1009 expr = TREE_OPERAND (expr, 0);
1010 partial_ref = true;
1012 else
1013 partial_ref = false;
1015 /* We need to dive through V_C_Es in order to get the size of its parameter
1016 and not the result type. Ada produces such statements. We are also
1017 capable of handling the topmost V_C_E but not any of those buried in other
1018 handled components. */
1019 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
1020 expr = TREE_OPERAND (expr, 0);
1022 if (contains_view_convert_expr_p (expr))
1024 disqualify_base_of_expr (expr, "V_C_E under a different handled "
1025 "component.");
1026 return NULL;
1029 switch (TREE_CODE (expr))
1031 case MEM_REF:
1032 if (TREE_CODE (TREE_OPERAND (expr, 0)) != ADDR_EXPR
1033 && sra_mode != SRA_MODE_EARLY_IPA)
1034 return NULL;
1035 /* fall through */
1036 case VAR_DECL:
1037 case PARM_DECL:
1038 case RESULT_DECL:
1039 case COMPONENT_REF:
1040 case ARRAY_REF:
1041 case ARRAY_RANGE_REF:
1042 ret = create_access (expr, stmt, write);
1043 break;
1045 default:
1046 break;
1049 if (write && partial_ref && ret)
1050 ret->grp_partial_lhs = 1;
1052 return ret;
1055 /* Scan expression EXPR and create access structures for all accesses to
1056 candidates for scalarization. Return true if any access has been inserted.
1057 STMT must be the statement from which the expression is taken, WRITE must be
1058 true if the expression is a store and false otherwise. */
1060 static bool
1061 build_access_from_expr (tree expr, gimple stmt, bool write)
1063 struct access *access;
1065 access = build_access_from_expr_1 (expr, stmt, write);
1066 if (access)
1068 /* This means the aggregate is accesses as a whole in a way other than an
1069 assign statement and thus cannot be removed even if we had a scalar
1070 replacement for everything. */
1071 if (cannot_scalarize_away_bitmap)
1072 bitmap_set_bit (cannot_scalarize_away_bitmap, DECL_UID (access->base));
1073 return true;
1075 return false;
1078 /* Disqualify LHS and RHS for scalarization if STMT must end its basic block in
1079 modes in which it matters, return true iff they have been disqualified. RHS
1080 may be NULL, in that case ignore it. If we scalarize an aggregate in
1081 intra-SRA we may need to add statements after each statement. This is not
1082 possible if a statement unconditionally has to end the basic block. */
1083 static bool
1084 disqualify_ops_if_throwing_stmt (gimple stmt, tree lhs, tree rhs)
1086 if ((sra_mode == SRA_MODE_EARLY_INTRA || sra_mode == SRA_MODE_INTRA)
1087 && (stmt_can_throw_internal (stmt) || stmt_ends_bb_p (stmt)))
1089 disqualify_base_of_expr (lhs, "LHS of a throwing stmt.");
1090 if (rhs)
1091 disqualify_base_of_expr (rhs, "RHS of a throwing stmt.");
1092 return true;
1094 return false;
1097 /* Scan expressions occurring in STMT, create access structures for all accesses
1098 to candidates for scalarization and remove those candidates which occur in
1099 statements or expressions that prevent them from being split apart. Return
1100 true if any access has been inserted. */
1102 static bool
1103 build_accesses_from_assign (gimple stmt)
1105 tree lhs, rhs;
1106 struct access *lacc, *racc;
1108 if (!gimple_assign_single_p (stmt)
1109 /* Scope clobbers don't influence scalarization. */
1110 || gimple_clobber_p (stmt))
1111 return false;
1113 lhs = gimple_assign_lhs (stmt);
1114 rhs = gimple_assign_rhs1 (stmt);
1116 if (disqualify_ops_if_throwing_stmt (stmt, lhs, rhs))
1117 return false;
1119 racc = build_access_from_expr_1 (rhs, stmt, false);
1120 lacc = build_access_from_expr_1 (lhs, stmt, true);
1122 if (lacc)
1123 lacc->grp_assignment_write = 1;
1125 if (racc)
1127 racc->grp_assignment_read = 1;
1128 if (should_scalarize_away_bitmap && !gimple_has_volatile_ops (stmt)
1129 && !is_gimple_reg_type (racc->type))
1130 bitmap_set_bit (should_scalarize_away_bitmap, DECL_UID (racc->base));
1133 if (lacc && racc
1134 && (sra_mode == SRA_MODE_EARLY_INTRA || sra_mode == SRA_MODE_INTRA)
1135 && !lacc->grp_unscalarizable_region
1136 && !racc->grp_unscalarizable_region
1137 && AGGREGATE_TYPE_P (TREE_TYPE (lhs))
1138 && lacc->size == racc->size
1139 && useless_type_conversion_p (lacc->type, racc->type))
1141 struct assign_link *link;
1143 link = (struct assign_link *) pool_alloc (link_pool);
1144 memset (link, 0, sizeof (struct assign_link));
1146 link->lacc = lacc;
1147 link->racc = racc;
1149 add_link_to_rhs (racc, link);
1152 return lacc || racc;
1155 /* Callback of walk_stmt_load_store_addr_ops visit_addr used to determine
1156 GIMPLE_ASM operands with memory constrains which cannot be scalarized. */
1158 static bool
1159 asm_visit_addr (gimple stmt ATTRIBUTE_UNUSED, tree op,
1160 void *data ATTRIBUTE_UNUSED)
1162 op = get_base_address (op);
1163 if (op
1164 && DECL_P (op))
1165 disqualify_candidate (op, "Non-scalarizable GIMPLE_ASM operand.");
1167 return false;
1170 /* Return true iff callsite CALL has at least as many actual arguments as there
1171 are formal parameters of the function currently processed by IPA-SRA. */
1173 static inline bool
1174 callsite_has_enough_arguments_p (gimple call)
1176 return gimple_call_num_args (call) >= (unsigned) func_param_count;
1179 /* Scan function and look for interesting expressions and create access
1180 structures for them. Return true iff any access is created. */
1182 static bool
1183 scan_function (void)
1185 basic_block bb;
1186 bool ret = false;
1188 FOR_EACH_BB (bb)
1190 gimple_stmt_iterator gsi;
1191 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1193 gimple stmt = gsi_stmt (gsi);
1194 tree t;
1195 unsigned i;
1197 if (final_bbs && stmt_can_throw_external (stmt))
1198 bitmap_set_bit (final_bbs, bb->index);
1199 switch (gimple_code (stmt))
1201 case GIMPLE_RETURN:
1202 t = gimple_return_retval (stmt);
1203 if (t != NULL_TREE)
1204 ret |= build_access_from_expr (t, stmt, false);
1205 if (final_bbs)
1206 bitmap_set_bit (final_bbs, bb->index);
1207 break;
1209 case GIMPLE_ASSIGN:
1210 ret |= build_accesses_from_assign (stmt);
1211 break;
1213 case GIMPLE_CALL:
1214 for (i = 0; i < gimple_call_num_args (stmt); i++)
1215 ret |= build_access_from_expr (gimple_call_arg (stmt, i),
1216 stmt, false);
1218 if (sra_mode == SRA_MODE_EARLY_IPA)
1220 tree dest = gimple_call_fndecl (stmt);
1221 int flags = gimple_call_flags (stmt);
1223 if (dest)
1225 if (DECL_BUILT_IN_CLASS (dest) == BUILT_IN_NORMAL
1226 && DECL_FUNCTION_CODE (dest) == BUILT_IN_APPLY_ARGS)
1227 encountered_apply_args = true;
1228 if (cgraph_get_node (dest)
1229 == cgraph_get_node (current_function_decl))
1231 encountered_recursive_call = true;
1232 if (!callsite_has_enough_arguments_p (stmt))
1233 encountered_unchangable_recursive_call = true;
1237 if (final_bbs
1238 && (flags & (ECF_CONST | ECF_PURE)) == 0)
1239 bitmap_set_bit (final_bbs, bb->index);
1242 t = gimple_call_lhs (stmt);
1243 if (t && !disqualify_ops_if_throwing_stmt (stmt, t, NULL))
1244 ret |= build_access_from_expr (t, stmt, true);
1245 break;
1247 case GIMPLE_ASM:
1248 walk_stmt_load_store_addr_ops (stmt, NULL, NULL, NULL,
1249 asm_visit_addr);
1250 if (final_bbs)
1251 bitmap_set_bit (final_bbs, bb->index);
1253 for (i = 0; i < gimple_asm_ninputs (stmt); i++)
1255 t = TREE_VALUE (gimple_asm_input_op (stmt, i));
1256 ret |= build_access_from_expr (t, stmt, false);
1258 for (i = 0; i < gimple_asm_noutputs (stmt); i++)
1260 t = TREE_VALUE (gimple_asm_output_op (stmt, i));
1261 ret |= build_access_from_expr (t, stmt, true);
1263 break;
1265 default:
1266 break;
1271 return ret;
1274 /* Helper of QSORT function. There are pointers to accesses in the array. An
1275 access is considered smaller than another if it has smaller offset or if the
1276 offsets are the same but is size is bigger. */
1278 static int
1279 compare_access_positions (const void *a, const void *b)
1281 const access_p *fp1 = (const access_p *) a;
1282 const access_p *fp2 = (const access_p *) b;
1283 const access_p f1 = *fp1;
1284 const access_p f2 = *fp2;
1286 if (f1->offset != f2->offset)
1287 return f1->offset < f2->offset ? -1 : 1;
1289 if (f1->size == f2->size)
1291 if (f1->type == f2->type)
1292 return 0;
1293 /* Put any non-aggregate type before any aggregate type. */
1294 else if (!is_gimple_reg_type (f1->type)
1295 && is_gimple_reg_type (f2->type))
1296 return 1;
1297 else if (is_gimple_reg_type (f1->type)
1298 && !is_gimple_reg_type (f2->type))
1299 return -1;
1300 /* Put any complex or vector type before any other scalar type. */
1301 else if (TREE_CODE (f1->type) != COMPLEX_TYPE
1302 && TREE_CODE (f1->type) != VECTOR_TYPE
1303 && (TREE_CODE (f2->type) == COMPLEX_TYPE
1304 || TREE_CODE (f2->type) == VECTOR_TYPE))
1305 return 1;
1306 else if ((TREE_CODE (f1->type) == COMPLEX_TYPE
1307 || TREE_CODE (f1->type) == VECTOR_TYPE)
1308 && TREE_CODE (f2->type) != COMPLEX_TYPE
1309 && TREE_CODE (f2->type) != VECTOR_TYPE)
1310 return -1;
1311 /* Put the integral type with the bigger precision first. */
1312 else if (INTEGRAL_TYPE_P (f1->type)
1313 && INTEGRAL_TYPE_P (f2->type))
1314 return TYPE_PRECISION (f2->type) - TYPE_PRECISION (f1->type);
1315 /* Put any integral type with non-full precision last. */
1316 else if (INTEGRAL_TYPE_P (f1->type)
1317 && (TREE_INT_CST_LOW (TYPE_SIZE (f1->type))
1318 != TYPE_PRECISION (f1->type)))
1319 return 1;
1320 else if (INTEGRAL_TYPE_P (f2->type)
1321 && (TREE_INT_CST_LOW (TYPE_SIZE (f2->type))
1322 != TYPE_PRECISION (f2->type)))
1323 return -1;
1324 /* Stabilize the sort. */
1325 return TYPE_UID (f1->type) - TYPE_UID (f2->type);
1328 /* We want the bigger accesses first, thus the opposite operator in the next
1329 line: */
1330 return f1->size > f2->size ? -1 : 1;
1334 /* Append a name of the declaration to the name obstack. A helper function for
1335 make_fancy_name. */
1337 static void
1338 make_fancy_decl_name (tree decl)
1340 char buffer[32];
1342 tree name = DECL_NAME (decl);
1343 if (name)
1344 obstack_grow (&name_obstack, IDENTIFIER_POINTER (name),
1345 IDENTIFIER_LENGTH (name));
1346 else
1348 sprintf (buffer, "D%u", DECL_UID (decl));
1349 obstack_grow (&name_obstack, buffer, strlen (buffer));
1353 /* Helper for make_fancy_name. */
1355 static void
1356 make_fancy_name_1 (tree expr)
1358 char buffer[32];
1359 tree index;
1361 if (DECL_P (expr))
1363 make_fancy_decl_name (expr);
1364 return;
1367 switch (TREE_CODE (expr))
1369 case COMPONENT_REF:
1370 make_fancy_name_1 (TREE_OPERAND (expr, 0));
1371 obstack_1grow (&name_obstack, '$');
1372 make_fancy_decl_name (TREE_OPERAND (expr, 1));
1373 break;
1375 case ARRAY_REF:
1376 make_fancy_name_1 (TREE_OPERAND (expr, 0));
1377 obstack_1grow (&name_obstack, '$');
1378 /* Arrays with only one element may not have a constant as their
1379 index. */
1380 index = TREE_OPERAND (expr, 1);
1381 if (TREE_CODE (index) != INTEGER_CST)
1382 break;
1383 sprintf (buffer, HOST_WIDE_INT_PRINT_DEC, TREE_INT_CST_LOW (index));
1384 obstack_grow (&name_obstack, buffer, strlen (buffer));
1385 break;
1387 case ADDR_EXPR:
1388 make_fancy_name_1 (TREE_OPERAND (expr, 0));
1389 break;
1391 case MEM_REF:
1392 make_fancy_name_1 (TREE_OPERAND (expr, 0));
1393 if (!integer_zerop (TREE_OPERAND (expr, 1)))
1395 obstack_1grow (&name_obstack, '$');
1396 sprintf (buffer, HOST_WIDE_INT_PRINT_DEC,
1397 TREE_INT_CST_LOW (TREE_OPERAND (expr, 1)));
1398 obstack_grow (&name_obstack, buffer, strlen (buffer));
1400 break;
1402 case BIT_FIELD_REF:
1403 case REALPART_EXPR:
1404 case IMAGPART_EXPR:
1405 gcc_unreachable (); /* we treat these as scalars. */
1406 break;
1407 default:
1408 break;
1412 /* Create a human readable name for replacement variable of ACCESS. */
1414 static char *
1415 make_fancy_name (tree expr)
1417 make_fancy_name_1 (expr);
1418 obstack_1grow (&name_obstack, '\0');
1419 return XOBFINISH (&name_obstack, char *);
1422 /* Construct a MEM_REF that would reference a part of aggregate BASE of type
1423 EXP_TYPE at the given OFFSET. If BASE is something for which
1424 get_addr_base_and_unit_offset returns NULL, gsi must be non-NULL and is used
1425 to insert new statements either before or below the current one as specified
1426 by INSERT_AFTER. This function is not capable of handling bitfields. */
1428 tree
1429 build_ref_for_offset (location_t loc, tree base, HOST_WIDE_INT offset,
1430 tree exp_type, gimple_stmt_iterator *gsi,
1431 bool insert_after)
1433 tree prev_base = base;
1434 tree off;
1435 HOST_WIDE_INT base_offset;
1436 unsigned HOST_WIDE_INT misalign;
1437 unsigned int align;
1439 gcc_checking_assert (offset % BITS_PER_UNIT == 0);
1441 base = get_addr_base_and_unit_offset (base, &base_offset);
1443 /* get_addr_base_and_unit_offset returns NULL for references with a variable
1444 offset such as array[var_index]. */
1445 if (!base)
1447 gimple stmt;
1448 tree tmp, addr;
1450 gcc_checking_assert (gsi);
1451 tmp = make_ssa_name (build_pointer_type (TREE_TYPE (prev_base)), NULL);
1452 addr = build_fold_addr_expr (unshare_expr (prev_base));
1453 STRIP_USELESS_TYPE_CONVERSION (addr);
1454 stmt = gimple_build_assign (tmp, addr);
1455 gimple_set_location (stmt, loc);
1456 if (insert_after)
1457 gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
1458 else
1459 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1461 off = build_int_cst (reference_alias_ptr_type (prev_base),
1462 offset / BITS_PER_UNIT);
1463 base = tmp;
1465 else if (TREE_CODE (base) == MEM_REF)
1467 off = build_int_cst (TREE_TYPE (TREE_OPERAND (base, 1)),
1468 base_offset + offset / BITS_PER_UNIT);
1469 off = int_const_binop (PLUS_EXPR, TREE_OPERAND (base, 1), off);
1470 base = unshare_expr (TREE_OPERAND (base, 0));
1472 else
1474 off = build_int_cst (reference_alias_ptr_type (base),
1475 base_offset + offset / BITS_PER_UNIT);
1476 base = build_fold_addr_expr (unshare_expr (base));
1479 /* If prev_base were always an originally performed access
1480 we can extract more optimistic alignment information
1481 by looking at the access mode. That would constrain the
1482 alignment of base + base_offset which we would need to
1483 adjust according to offset. */
1484 if (!get_pointer_alignment_1 (base, &align, &misalign))
1486 gcc_assert (misalign == 0);
1487 if (TREE_CODE (prev_base) == MEM_REF
1488 || TREE_CODE (prev_base) == TARGET_MEM_REF)
1489 align = TYPE_ALIGN (TREE_TYPE (prev_base));
1491 misalign += (double_int_sext (tree_to_double_int (off),
1492 TYPE_PRECISION (TREE_TYPE (off))).low
1493 * BITS_PER_UNIT);
1494 misalign = misalign & (align - 1);
1495 if (misalign != 0)
1496 align = (misalign & -misalign);
1497 if (align < TYPE_ALIGN (exp_type))
1498 exp_type = build_aligned_type (exp_type, align);
1500 return fold_build2_loc (loc, MEM_REF, exp_type, base, off);
1503 /* Construct a memory reference to a part of an aggregate BASE at the given
1504 OFFSET and of the same type as MODEL. In case this is a reference to a
1505 bit-field, the function will replicate the last component_ref of model's
1506 expr to access it. GSI and INSERT_AFTER have the same meaning as in
1507 build_ref_for_offset. */
1509 static tree
1510 build_ref_for_model (location_t loc, tree base, HOST_WIDE_INT offset,
1511 struct access *model, gimple_stmt_iterator *gsi,
1512 bool insert_after)
1514 if (TREE_CODE (model->expr) == COMPONENT_REF
1515 && DECL_BIT_FIELD (TREE_OPERAND (model->expr, 1)))
1517 /* This access represents a bit-field. */
1518 tree t, exp_type, fld = TREE_OPERAND (model->expr, 1);
1520 offset -= int_bit_position (fld);
1521 exp_type = TREE_TYPE (TREE_OPERAND (model->expr, 0));
1522 t = build_ref_for_offset (loc, base, offset, exp_type, gsi, insert_after);
1523 return fold_build3_loc (loc, COMPONENT_REF, TREE_TYPE (fld), t, fld,
1524 NULL_TREE);
1526 else
1527 return build_ref_for_offset (loc, base, offset, model->type,
1528 gsi, insert_after);
1531 /* Construct a memory reference consisting of component_refs and array_refs to
1532 a part of an aggregate *RES (which is of type TYPE). The requested part
1533 should have type EXP_TYPE at be the given OFFSET. This function might not
1534 succeed, it returns true when it does and only then *RES points to something
1535 meaningful. This function should be used only to build expressions that we
1536 might need to present to user (e.g. in warnings). In all other situations,
1537 build_ref_for_model or build_ref_for_offset should be used instead. */
1539 static bool
1540 build_user_friendly_ref_for_offset (tree *res, tree type, HOST_WIDE_INT offset,
1541 tree exp_type)
1543 while (1)
1545 tree fld;
1546 tree tr_size, index, minidx;
1547 HOST_WIDE_INT el_size;
1549 if (offset == 0 && exp_type
1550 && types_compatible_p (exp_type, type))
1551 return true;
1553 switch (TREE_CODE (type))
1555 case UNION_TYPE:
1556 case QUAL_UNION_TYPE:
1557 case RECORD_TYPE:
1558 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
1560 HOST_WIDE_INT pos, size;
1561 tree tr_pos, expr, *expr_ptr;
1563 if (TREE_CODE (fld) != FIELD_DECL)
1564 continue;
1566 tr_pos = bit_position (fld);
1567 if (!tr_pos || !host_integerp (tr_pos, 1))
1568 continue;
1569 pos = TREE_INT_CST_LOW (tr_pos);
1570 gcc_assert (TREE_CODE (type) == RECORD_TYPE || pos == 0);
1571 tr_size = DECL_SIZE (fld);
1572 if (!tr_size || !host_integerp (tr_size, 1))
1573 continue;
1574 size = TREE_INT_CST_LOW (tr_size);
1575 if (size == 0)
1577 if (pos != offset)
1578 continue;
1580 else if (pos > offset || (pos + size) <= offset)
1581 continue;
1583 expr = build3 (COMPONENT_REF, TREE_TYPE (fld), *res, fld,
1584 NULL_TREE);
1585 expr_ptr = &expr;
1586 if (build_user_friendly_ref_for_offset (expr_ptr, TREE_TYPE (fld),
1587 offset - pos, exp_type))
1589 *res = expr;
1590 return true;
1593 return false;
1595 case ARRAY_TYPE:
1596 tr_size = TYPE_SIZE (TREE_TYPE (type));
1597 if (!tr_size || !host_integerp (tr_size, 1))
1598 return false;
1599 el_size = tree_low_cst (tr_size, 1);
1601 minidx = TYPE_MIN_VALUE (TYPE_DOMAIN (type));
1602 if (TREE_CODE (minidx) != INTEGER_CST || el_size == 0)
1603 return false;
1604 index = build_int_cst (TYPE_DOMAIN (type), offset / el_size);
1605 if (!integer_zerop (minidx))
1606 index = int_const_binop (PLUS_EXPR, index, minidx);
1607 *res = build4 (ARRAY_REF, TREE_TYPE (type), *res, index,
1608 NULL_TREE, NULL_TREE);
1609 offset = offset % el_size;
1610 type = TREE_TYPE (type);
1611 break;
1613 default:
1614 if (offset != 0)
1615 return false;
1617 if (exp_type)
1618 return false;
1619 else
1620 return true;
1625 /* Return true iff TYPE is stdarg va_list type. */
1627 static inline bool
1628 is_va_list_type (tree type)
1630 return TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (va_list_type_node);
1633 /* Print message to dump file why a variable was rejected. */
1635 static void
1636 reject (tree var, const char *msg)
1638 if (dump_file && (dump_flags & TDF_DETAILS))
1640 fprintf (dump_file, "Rejected (%d): %s: ", DECL_UID (var), msg);
1641 print_generic_expr (dump_file, var, 0);
1642 fprintf (dump_file, "\n");
1646 /* Return true if VAR is a candidate for SRA. */
1648 static bool
1649 maybe_add_sra_candidate (tree var)
1651 tree type = TREE_TYPE (var);
1652 const char *msg;
1653 void **slot;
1655 if (!AGGREGATE_TYPE_P (type))
1657 reject (var, "not aggregate");
1658 return false;
1660 if (needs_to_live_in_memory (var))
1662 reject (var, "needs to live in memory");
1663 return false;
1665 if (TREE_THIS_VOLATILE (var))
1667 reject (var, "is volatile");
1668 return false;
1670 if (!COMPLETE_TYPE_P (type))
1672 reject (var, "has incomplete type");
1673 return false;
1675 if (!host_integerp (TYPE_SIZE (type), 1))
1677 reject (var, "type size not fixed");
1678 return false;
1680 if (tree_low_cst (TYPE_SIZE (type), 1) == 0)
1682 reject (var, "type size is zero");
1683 return false;
1685 if (type_internals_preclude_sra_p (type, &msg))
1687 reject (var, msg);
1688 return false;
1690 if (/* Fix for PR 41089. tree-stdarg.c needs to have va_lists intact but
1691 we also want to schedule it rather late. Thus we ignore it in
1692 the early pass. */
1693 (sra_mode == SRA_MODE_EARLY_INTRA
1694 && is_va_list_type (type)))
1696 reject (var, "is va_list");
1697 return false;
1700 bitmap_set_bit (candidate_bitmap, DECL_UID (var));
1701 slot = htab_find_slot_with_hash (candidates, var, DECL_UID (var), INSERT);
1702 *slot = (void *) var;
1704 if (dump_file && (dump_flags & TDF_DETAILS))
1706 fprintf (dump_file, "Candidate (%d): ", DECL_UID (var));
1707 print_generic_expr (dump_file, var, 0);
1708 fprintf (dump_file, "\n");
1711 return true;
1714 /* The very first phase of intraprocedural SRA. It marks in candidate_bitmap
1715 those with type which is suitable for scalarization. */
1717 static bool
1718 find_var_candidates (void)
1720 tree var, parm;
1721 unsigned int i;
1722 bool ret = false;
1724 for (parm = DECL_ARGUMENTS (current_function_decl);
1725 parm;
1726 parm = DECL_CHAIN (parm))
1727 ret |= maybe_add_sra_candidate (parm);
1729 FOR_EACH_LOCAL_DECL (cfun, i, var)
1731 if (TREE_CODE (var) != VAR_DECL)
1732 continue;
1734 ret |= maybe_add_sra_candidate (var);
1737 return ret;
1740 /* Sort all accesses for the given variable, check for partial overlaps and
1741 return NULL if there are any. If there are none, pick a representative for
1742 each combination of offset and size and create a linked list out of them.
1743 Return the pointer to the first representative and make sure it is the first
1744 one in the vector of accesses. */
1746 static struct access *
1747 sort_and_splice_var_accesses (tree var)
1749 int i, j, access_count;
1750 struct access *res, **prev_acc_ptr = &res;
1751 VEC (access_p, heap) *access_vec;
1752 bool first = true;
1753 HOST_WIDE_INT low = -1, high = 0;
1755 access_vec = get_base_access_vector (var);
1756 if (!access_vec)
1757 return NULL;
1758 access_count = VEC_length (access_p, access_vec);
1760 /* Sort by <OFFSET, SIZE>. */
1761 VEC_qsort (access_p, access_vec, compare_access_positions);
1763 i = 0;
1764 while (i < access_count)
1766 struct access *access = VEC_index (access_p, access_vec, i);
1767 bool grp_write = access->write;
1768 bool grp_read = !access->write;
1769 bool grp_scalar_write = access->write
1770 && is_gimple_reg_type (access->type);
1771 bool grp_scalar_read = !access->write
1772 && is_gimple_reg_type (access->type);
1773 bool grp_assignment_read = access->grp_assignment_read;
1774 bool grp_assignment_write = access->grp_assignment_write;
1775 bool multiple_scalar_reads = false;
1776 bool total_scalarization = access->grp_total_scalarization;
1777 bool grp_partial_lhs = access->grp_partial_lhs;
1778 bool first_scalar = is_gimple_reg_type (access->type);
1779 bool unscalarizable_region = access->grp_unscalarizable_region;
1781 if (first || access->offset >= high)
1783 first = false;
1784 low = access->offset;
1785 high = access->offset + access->size;
1787 else if (access->offset > low && access->offset + access->size > high)
1788 return NULL;
1789 else
1790 gcc_assert (access->offset >= low
1791 && access->offset + access->size <= high);
1793 j = i + 1;
1794 while (j < access_count)
1796 struct access *ac2 = VEC_index (access_p, access_vec, j);
1797 if (ac2->offset != access->offset || ac2->size != access->size)
1798 break;
1799 if (ac2->write)
1801 grp_write = true;
1802 grp_scalar_write = (grp_scalar_write
1803 || is_gimple_reg_type (ac2->type));
1805 else
1807 grp_read = true;
1808 if (is_gimple_reg_type (ac2->type))
1810 if (grp_scalar_read)
1811 multiple_scalar_reads = true;
1812 else
1813 grp_scalar_read = true;
1816 grp_assignment_read |= ac2->grp_assignment_read;
1817 grp_assignment_write |= ac2->grp_assignment_write;
1818 grp_partial_lhs |= ac2->grp_partial_lhs;
1819 unscalarizable_region |= ac2->grp_unscalarizable_region;
1820 total_scalarization |= ac2->grp_total_scalarization;
1821 relink_to_new_repr (access, ac2);
1823 /* If there are both aggregate-type and scalar-type accesses with
1824 this combination of size and offset, the comparison function
1825 should have put the scalars first. */
1826 gcc_assert (first_scalar || !is_gimple_reg_type (ac2->type));
1827 ac2->group_representative = access;
1828 j++;
1831 i = j;
1833 access->group_representative = access;
1834 access->grp_write = grp_write;
1835 access->grp_read = grp_read;
1836 access->grp_scalar_read = grp_scalar_read;
1837 access->grp_scalar_write = grp_scalar_write;
1838 access->grp_assignment_read = grp_assignment_read;
1839 access->grp_assignment_write = grp_assignment_write;
1840 access->grp_hint = multiple_scalar_reads || total_scalarization;
1841 access->grp_total_scalarization = total_scalarization;
1842 access->grp_partial_lhs = grp_partial_lhs;
1843 access->grp_unscalarizable_region = unscalarizable_region;
1844 if (access->first_link)
1845 add_access_to_work_queue (access);
1847 *prev_acc_ptr = access;
1848 prev_acc_ptr = &access->next_grp;
1851 gcc_assert (res == VEC_index (access_p, access_vec, 0));
1852 return res;
1855 /* Create a variable for the given ACCESS which determines the type, name and a
1856 few other properties. Return the variable declaration and store it also to
1857 ACCESS->replacement. */
1859 static tree
1860 create_access_replacement (struct access *access)
1862 tree repl;
1864 repl = create_tmp_var (access->type, "SR");
1865 if (TREE_CODE (access->type) == COMPLEX_TYPE
1866 || TREE_CODE (access->type) == VECTOR_TYPE)
1868 if (!access->grp_partial_lhs)
1869 DECL_GIMPLE_REG_P (repl) = 1;
1871 else if (access->grp_partial_lhs
1872 && is_gimple_reg_type (access->type))
1873 TREE_ADDRESSABLE (repl) = 1;
1875 DECL_SOURCE_LOCATION (repl) = DECL_SOURCE_LOCATION (access->base);
1876 DECL_ARTIFICIAL (repl) = 1;
1877 DECL_IGNORED_P (repl) = DECL_IGNORED_P (access->base);
1879 if (DECL_NAME (access->base)
1880 && !DECL_IGNORED_P (access->base)
1881 && !DECL_ARTIFICIAL (access->base))
1883 char *pretty_name = make_fancy_name (access->expr);
1884 tree debug_expr = unshare_expr (access->expr), d;
1885 bool fail = false;
1887 DECL_NAME (repl) = get_identifier (pretty_name);
1888 obstack_free (&name_obstack, pretty_name);
1890 /* Get rid of any SSA_NAMEs embedded in debug_expr,
1891 as DECL_DEBUG_EXPR isn't considered when looking for still
1892 used SSA_NAMEs and thus they could be freed. All debug info
1893 generation cares is whether something is constant or variable
1894 and that get_ref_base_and_extent works properly on the
1895 expression. It cannot handle accesses at a non-constant offset
1896 though, so just give up in those cases. */
1897 for (d = debug_expr; !fail && handled_component_p (d);
1898 d = TREE_OPERAND (d, 0))
1899 switch (TREE_CODE (d))
1901 case ARRAY_REF:
1902 case ARRAY_RANGE_REF:
1903 if (TREE_OPERAND (d, 1)
1904 && TREE_CODE (TREE_OPERAND (d, 1)) != INTEGER_CST)
1905 fail = true;
1906 if (TREE_OPERAND (d, 3)
1907 && TREE_CODE (TREE_OPERAND (d, 3)) != INTEGER_CST)
1908 fail = true;
1909 /* FALLTHRU */
1910 case COMPONENT_REF:
1911 if (TREE_OPERAND (d, 2)
1912 && TREE_CODE (TREE_OPERAND (d, 2)) != INTEGER_CST)
1913 fail = true;
1914 break;
1915 default:
1916 break;
1918 if (!fail)
1920 SET_DECL_DEBUG_EXPR (repl, debug_expr);
1921 DECL_DEBUG_EXPR_IS_FROM (repl) = 1;
1923 if (access->grp_no_warning)
1924 TREE_NO_WARNING (repl) = 1;
1925 else
1926 TREE_NO_WARNING (repl) = TREE_NO_WARNING (access->base);
1928 else
1929 TREE_NO_WARNING (repl) = 1;
1931 if (dump_file)
1933 fprintf (dump_file, "Created a replacement for ");
1934 print_generic_expr (dump_file, access->base, 0);
1935 fprintf (dump_file, " offset: %u, size: %u: ",
1936 (unsigned) access->offset, (unsigned) access->size);
1937 print_generic_expr (dump_file, repl, 0);
1938 fprintf (dump_file, "\n");
1940 sra_stats.replacements++;
1942 return repl;
1945 /* Return ACCESS scalar replacement, create it if it does not exist yet. */
1947 static inline tree
1948 get_access_replacement (struct access *access)
1950 if (!access->replacement_decl)
1951 access->replacement_decl = create_access_replacement (access);
1952 return access->replacement_decl;
1956 /* Build a subtree of accesses rooted in *ACCESS, and move the pointer in the
1957 linked list along the way. Stop when *ACCESS is NULL or the access pointed
1958 to it is not "within" the root. Return false iff some accesses partially
1959 overlap. */
1961 static bool
1962 build_access_subtree (struct access **access)
1964 struct access *root = *access, *last_child = NULL;
1965 HOST_WIDE_INT limit = root->offset + root->size;
1967 *access = (*access)->next_grp;
1968 while (*access && (*access)->offset + (*access)->size <= limit)
1970 if (!last_child)
1971 root->first_child = *access;
1972 else
1973 last_child->next_sibling = *access;
1974 last_child = *access;
1976 if (!build_access_subtree (access))
1977 return false;
1980 if (*access && (*access)->offset < limit)
1981 return false;
1983 return true;
1986 /* Build a tree of access representatives, ACCESS is the pointer to the first
1987 one, others are linked in a list by the next_grp field. Return false iff
1988 some accesses partially overlap. */
1990 static bool
1991 build_access_trees (struct access *access)
1993 while (access)
1995 struct access *root = access;
1997 if (!build_access_subtree (&access))
1998 return false;
1999 root->next_grp = access;
2001 return true;
2004 /* Return true if expr contains some ARRAY_REFs into a variable bounded
2005 array. */
2007 static bool
2008 expr_with_var_bounded_array_refs_p (tree expr)
2010 while (handled_component_p (expr))
2012 if (TREE_CODE (expr) == ARRAY_REF
2013 && !host_integerp (array_ref_low_bound (expr), 0))
2014 return true;
2015 expr = TREE_OPERAND (expr, 0);
2017 return false;
2020 /* Analyze the subtree of accesses rooted in ROOT, scheduling replacements when
2021 both seeming beneficial and when ALLOW_REPLACEMENTS allows it. Also set all
2022 sorts of access flags appropriately along the way, notably always set
2023 grp_read and grp_assign_read according to MARK_READ and grp_write when
2024 MARK_WRITE is true.
2026 Creating a replacement for a scalar access is considered beneficial if its
2027 grp_hint is set (this means we are either attempting total scalarization or
2028 there is more than one direct read access) or according to the following
2029 table:
2031 Access written to through a scalar type (once or more times)
2033 | Written to in an assignment statement
2035 | | Access read as scalar _once_
2036 | | |
2037 | | | Read in an assignment statement
2038 | | | |
2039 | | | | Scalarize Comment
2040 -----------------------------------------------------------------------------
2041 0 0 0 0 No access for the scalar
2042 0 0 0 1 No access for the scalar
2043 0 0 1 0 No Single read - won't help
2044 0 0 1 1 No The same case
2045 0 1 0 0 No access for the scalar
2046 0 1 0 1 No access for the scalar
2047 0 1 1 0 Yes s = *g; return s.i;
2048 0 1 1 1 Yes The same case as above
2049 1 0 0 0 No Won't help
2050 1 0 0 1 Yes s.i = 1; *g = s;
2051 1 0 1 0 Yes s.i = 5; g = s.i;
2052 1 0 1 1 Yes The same case as above
2053 1 1 0 0 No Won't help.
2054 1 1 0 1 Yes s.i = 1; *g = s;
2055 1 1 1 0 Yes s = *g; return s.i;
2056 1 1 1 1 Yes Any of the above yeses */
2058 static bool
2059 analyze_access_subtree (struct access *root, struct access *parent,
2060 bool allow_replacements)
2062 struct access *child;
2063 HOST_WIDE_INT limit = root->offset + root->size;
2064 HOST_WIDE_INT covered_to = root->offset;
2065 bool scalar = is_gimple_reg_type (root->type);
2066 bool hole = false, sth_created = false;
2068 if (parent)
2070 if (parent->grp_read)
2071 root->grp_read = 1;
2072 if (parent->grp_assignment_read)
2073 root->grp_assignment_read = 1;
2074 if (parent->grp_write)
2075 root->grp_write = 1;
2076 if (parent->grp_assignment_write)
2077 root->grp_assignment_write = 1;
2078 if (parent->grp_total_scalarization)
2079 root->grp_total_scalarization = 1;
2082 if (root->grp_unscalarizable_region)
2083 allow_replacements = false;
2085 if (allow_replacements && expr_with_var_bounded_array_refs_p (root->expr))
2086 allow_replacements = false;
2088 for (child = root->first_child; child; child = child->next_sibling)
2090 hole |= covered_to < child->offset;
2091 sth_created |= analyze_access_subtree (child, root,
2092 allow_replacements && !scalar);
2094 root->grp_unscalarized_data |= child->grp_unscalarized_data;
2095 root->grp_total_scalarization &= child->grp_total_scalarization;
2096 if (child->grp_covered)
2097 covered_to += child->size;
2098 else
2099 hole = true;
2102 if (allow_replacements && scalar && !root->first_child
2103 && (root->grp_hint
2104 || ((root->grp_scalar_read || root->grp_assignment_read)
2105 && (root->grp_scalar_write || root->grp_assignment_write))))
2107 bool new_integer_type;
2108 /* Always create access replacements that cover the whole access.
2109 For integral types this means the precision has to match.
2110 Avoid assumptions based on the integral type kind, too. */
2111 if (INTEGRAL_TYPE_P (root->type)
2112 && (TREE_CODE (root->type) != INTEGER_TYPE
2113 || TYPE_PRECISION (root->type) != root->size)
2114 /* But leave bitfield accesses alone. */
2115 && (TREE_CODE (root->expr) != COMPONENT_REF
2116 || !DECL_BIT_FIELD (TREE_OPERAND (root->expr, 1))))
2118 tree rt = root->type;
2119 gcc_assert ((root->offset % BITS_PER_UNIT) == 0
2120 && (root->size % BITS_PER_UNIT) == 0);
2121 root->type = build_nonstandard_integer_type (root->size,
2122 TYPE_UNSIGNED (rt));
2123 root->expr = build_ref_for_offset (UNKNOWN_LOCATION,
2124 root->base, root->offset,
2125 root->type, NULL, false);
2126 new_integer_type = true;
2128 else
2129 new_integer_type = false;
2131 if (dump_file && (dump_flags & TDF_DETAILS))
2133 fprintf (dump_file, "Marking ");
2134 print_generic_expr (dump_file, root->base, 0);
2135 fprintf (dump_file, " offset: %u, size: %u ",
2136 (unsigned) root->offset, (unsigned) root->size);
2137 fprintf (dump_file, " to be replaced%s.\n",
2138 new_integer_type ? " with an integer": "");
2141 root->grp_to_be_replaced = 1;
2142 sth_created = true;
2143 hole = false;
2145 else
2147 if (covered_to < limit)
2148 hole = true;
2149 if (scalar)
2150 root->grp_total_scalarization = 0;
2153 if (sth_created
2154 && (!hole || root->grp_total_scalarization))
2156 root->grp_covered = 1;
2157 return true;
2159 if (root->grp_write || TREE_CODE (root->base) == PARM_DECL)
2160 root->grp_unscalarized_data = 1; /* not covered and written to */
2161 if (sth_created)
2162 return true;
2163 return false;
2166 /* Analyze all access trees linked by next_grp by the means of
2167 analyze_access_subtree. */
2168 static bool
2169 analyze_access_trees (struct access *access)
2171 bool ret = false;
2173 while (access)
2175 if (analyze_access_subtree (access, NULL, true))
2176 ret = true;
2177 access = access->next_grp;
2180 return ret;
2183 /* Return true iff a potential new child of LACC at offset OFFSET and with size
2184 SIZE would conflict with an already existing one. If exactly such a child
2185 already exists in LACC, store a pointer to it in EXACT_MATCH. */
2187 static bool
2188 child_would_conflict_in_lacc (struct access *lacc, HOST_WIDE_INT norm_offset,
2189 HOST_WIDE_INT size, struct access **exact_match)
2191 struct access *child;
2193 for (child = lacc->first_child; child; child = child->next_sibling)
2195 if (child->offset == norm_offset && child->size == size)
2197 *exact_match = child;
2198 return true;
2201 if (child->offset < norm_offset + size
2202 && child->offset + child->size > norm_offset)
2203 return true;
2206 return false;
2209 /* Create a new child access of PARENT, with all properties just like MODEL
2210 except for its offset and with its grp_write false and grp_read true.
2211 Return the new access or NULL if it cannot be created. Note that this access
2212 is created long after all splicing and sorting, it's not located in any
2213 access vector and is automatically a representative of its group. */
2215 static struct access *
2216 create_artificial_child_access (struct access *parent, struct access *model,
2217 HOST_WIDE_INT new_offset)
2219 struct access *access;
2220 struct access **child;
2221 tree expr = parent->base;
2223 gcc_assert (!model->grp_unscalarizable_region);
2225 access = (struct access *) pool_alloc (access_pool);
2226 memset (access, 0, sizeof (struct access));
2227 if (!build_user_friendly_ref_for_offset (&expr, TREE_TYPE (expr), new_offset,
2228 model->type))
2230 access->grp_no_warning = true;
2231 expr = build_ref_for_model (EXPR_LOCATION (parent->base), parent->base,
2232 new_offset, model, NULL, false);
2235 access->base = parent->base;
2236 access->expr = expr;
2237 access->offset = new_offset;
2238 access->size = model->size;
2239 access->type = model->type;
2240 access->grp_write = true;
2241 access->grp_read = false;
2243 child = &parent->first_child;
2244 while (*child && (*child)->offset < new_offset)
2245 child = &(*child)->next_sibling;
2247 access->next_sibling = *child;
2248 *child = access;
2250 return access;
2254 /* Propagate all subaccesses of RACC across an assignment link to LACC. Return
2255 true if any new subaccess was created. Additionally, if RACC is a scalar
2256 access but LACC is not, change the type of the latter, if possible. */
2258 static bool
2259 propagate_subaccesses_across_link (struct access *lacc, struct access *racc)
2261 struct access *rchild;
2262 HOST_WIDE_INT norm_delta = lacc->offset - racc->offset;
2263 bool ret = false;
2265 if (is_gimple_reg_type (lacc->type)
2266 || lacc->grp_unscalarizable_region
2267 || racc->grp_unscalarizable_region)
2268 return false;
2270 if (is_gimple_reg_type (racc->type))
2272 if (!lacc->first_child && !racc->first_child)
2274 tree t = lacc->base;
2276 lacc->type = racc->type;
2277 if (build_user_friendly_ref_for_offset (&t, TREE_TYPE (t),
2278 lacc->offset, racc->type))
2279 lacc->expr = t;
2280 else
2282 lacc->expr = build_ref_for_model (EXPR_LOCATION (lacc->base),
2283 lacc->base, lacc->offset,
2284 racc, NULL, false);
2285 lacc->grp_no_warning = true;
2288 return false;
2291 for (rchild = racc->first_child; rchild; rchild = rchild->next_sibling)
2293 struct access *new_acc = NULL;
2294 HOST_WIDE_INT norm_offset = rchild->offset + norm_delta;
2296 if (rchild->grp_unscalarizable_region)
2297 continue;
2299 if (child_would_conflict_in_lacc (lacc, norm_offset, rchild->size,
2300 &new_acc))
2302 if (new_acc)
2304 rchild->grp_hint = 1;
2305 new_acc->grp_hint |= new_acc->grp_read;
2306 if (rchild->first_child)
2307 ret |= propagate_subaccesses_across_link (new_acc, rchild);
2309 continue;
2312 rchild->grp_hint = 1;
2313 new_acc = create_artificial_child_access (lacc, rchild, norm_offset);
2314 if (new_acc)
2316 ret = true;
2317 if (racc->first_child)
2318 propagate_subaccesses_across_link (new_acc, rchild);
2322 return ret;
2325 /* Propagate all subaccesses across assignment links. */
2327 static void
2328 propagate_all_subaccesses (void)
2330 while (work_queue_head)
2332 struct access *racc = pop_access_from_work_queue ();
2333 struct assign_link *link;
2335 gcc_assert (racc->first_link);
2337 for (link = racc->first_link; link; link = link->next)
2339 struct access *lacc = link->lacc;
2341 if (!bitmap_bit_p (candidate_bitmap, DECL_UID (lacc->base)))
2342 continue;
2343 lacc = lacc->group_representative;
2344 if (propagate_subaccesses_across_link (lacc, racc)
2345 && lacc->first_link)
2346 add_access_to_work_queue (lacc);
2351 /* Go through all accesses collected throughout the (intraprocedural) analysis
2352 stage, exclude overlapping ones, identify representatives and build trees
2353 out of them, making decisions about scalarization on the way. Return true
2354 iff there are any to-be-scalarized variables after this stage. */
2356 static bool
2357 analyze_all_variable_accesses (void)
2359 int res = 0;
2360 bitmap tmp = BITMAP_ALLOC (NULL);
2361 bitmap_iterator bi;
2362 unsigned i, max_total_scalarization_size;
2364 max_total_scalarization_size = UNITS_PER_WORD * BITS_PER_UNIT
2365 * MOVE_RATIO (optimize_function_for_speed_p (cfun));
2367 EXECUTE_IF_SET_IN_BITMAP (candidate_bitmap, 0, i, bi)
2368 if (bitmap_bit_p (should_scalarize_away_bitmap, i)
2369 && !bitmap_bit_p (cannot_scalarize_away_bitmap, i))
2371 tree var = candidate (i);
2373 if (TREE_CODE (var) == VAR_DECL
2374 && type_consists_of_records_p (TREE_TYPE (var)))
2376 if ((unsigned) tree_low_cst (TYPE_SIZE (TREE_TYPE (var)), 1)
2377 <= max_total_scalarization_size)
2379 completely_scalarize_var (var);
2380 if (dump_file && (dump_flags & TDF_DETAILS))
2382 fprintf (dump_file, "Will attempt to totally scalarize ");
2383 print_generic_expr (dump_file, var, 0);
2384 fprintf (dump_file, " (UID: %u): \n", DECL_UID (var));
2387 else if (dump_file && (dump_flags & TDF_DETAILS))
2389 fprintf (dump_file, "Too big to totally scalarize: ");
2390 print_generic_expr (dump_file, var, 0);
2391 fprintf (dump_file, " (UID: %u)\n", DECL_UID (var));
2396 bitmap_copy (tmp, candidate_bitmap);
2397 EXECUTE_IF_SET_IN_BITMAP (tmp, 0, i, bi)
2399 tree var = candidate (i);
2400 struct access *access;
2402 access = sort_and_splice_var_accesses (var);
2403 if (!access || !build_access_trees (access))
2404 disqualify_candidate (var,
2405 "No or inhibitingly overlapping accesses.");
2408 propagate_all_subaccesses ();
2410 bitmap_copy (tmp, candidate_bitmap);
2411 EXECUTE_IF_SET_IN_BITMAP (tmp, 0, i, bi)
2413 tree var = candidate (i);
2414 struct access *access = get_first_repr_for_decl (var);
2416 if (analyze_access_trees (access))
2418 res++;
2419 if (dump_file && (dump_flags & TDF_DETAILS))
2421 fprintf (dump_file, "\nAccess trees for ");
2422 print_generic_expr (dump_file, var, 0);
2423 fprintf (dump_file, " (UID: %u): \n", DECL_UID (var));
2424 dump_access_tree (dump_file, access);
2425 fprintf (dump_file, "\n");
2428 else
2429 disqualify_candidate (var, "No scalar replacements to be created.");
2432 BITMAP_FREE (tmp);
2434 if (res)
2436 statistics_counter_event (cfun, "Scalarized aggregates", res);
2437 return true;
2439 else
2440 return false;
2443 /* Generate statements copying scalar replacements of accesses within a subtree
2444 into or out of AGG. ACCESS, all its children, siblings and their children
2445 are to be processed. AGG is an aggregate type expression (can be a
2446 declaration but does not have to be, it can for example also be a mem_ref or
2447 a series of handled components). TOP_OFFSET is the offset of the processed
2448 subtree which has to be subtracted from offsets of individual accesses to
2449 get corresponding offsets for AGG. If CHUNK_SIZE is non-null, copy only
2450 replacements in the interval <start_offset, start_offset + chunk_size>,
2451 otherwise copy all. GSI is a statement iterator used to place the new
2452 statements. WRITE should be true when the statements should write from AGG
2453 to the replacement and false if vice versa. if INSERT_AFTER is true, new
2454 statements will be added after the current statement in GSI, they will be
2455 added before the statement otherwise. */
2457 static void
2458 generate_subtree_copies (struct access *access, tree agg,
2459 HOST_WIDE_INT top_offset,
2460 HOST_WIDE_INT start_offset, HOST_WIDE_INT chunk_size,
2461 gimple_stmt_iterator *gsi, bool write,
2462 bool insert_after, location_t loc)
2466 if (chunk_size && access->offset >= start_offset + chunk_size)
2467 return;
2469 if (access->grp_to_be_replaced
2470 && (chunk_size == 0
2471 || access->offset + access->size > start_offset))
2473 tree expr, repl = get_access_replacement (access);
2474 gimple stmt;
2476 expr = build_ref_for_model (loc, agg, access->offset - top_offset,
2477 access, gsi, insert_after);
2479 if (write)
2481 if (access->grp_partial_lhs)
2482 expr = force_gimple_operand_gsi (gsi, expr, true, NULL_TREE,
2483 !insert_after,
2484 insert_after ? GSI_NEW_STMT
2485 : GSI_SAME_STMT);
2486 stmt = gimple_build_assign (repl, expr);
2488 else
2490 TREE_NO_WARNING (repl) = 1;
2491 if (access->grp_partial_lhs)
2492 repl = force_gimple_operand_gsi (gsi, repl, true, NULL_TREE,
2493 !insert_after,
2494 insert_after ? GSI_NEW_STMT
2495 : GSI_SAME_STMT);
2496 stmt = gimple_build_assign (expr, repl);
2498 gimple_set_location (stmt, loc);
2500 if (insert_after)
2501 gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
2502 else
2503 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
2504 update_stmt (stmt);
2505 sra_stats.subtree_copies++;
2508 if (access->first_child)
2509 generate_subtree_copies (access->first_child, agg, top_offset,
2510 start_offset, chunk_size, gsi,
2511 write, insert_after, loc);
2513 access = access->next_sibling;
2515 while (access);
2518 /* Assign zero to all scalar replacements in an access subtree. ACCESS is the
2519 the root of the subtree to be processed. GSI is the statement iterator used
2520 for inserting statements which are added after the current statement if
2521 INSERT_AFTER is true or before it otherwise. */
2523 static void
2524 init_subtree_with_zero (struct access *access, gimple_stmt_iterator *gsi,
2525 bool insert_after, location_t loc)
2528 struct access *child;
2530 if (access->grp_to_be_replaced)
2532 gimple stmt;
2534 stmt = gimple_build_assign (get_access_replacement (access),
2535 build_zero_cst (access->type));
2536 if (insert_after)
2537 gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
2538 else
2539 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
2540 update_stmt (stmt);
2541 gimple_set_location (stmt, loc);
2544 for (child = access->first_child; child; child = child->next_sibling)
2545 init_subtree_with_zero (child, gsi, insert_after, loc);
2548 /* Search for an access representative for the given expression EXPR and
2549 return it or NULL if it cannot be found. */
2551 static struct access *
2552 get_access_for_expr (tree expr)
2554 HOST_WIDE_INT offset, size, max_size;
2555 tree base;
2557 /* FIXME: This should not be necessary but Ada produces V_C_Es with a type of
2558 a different size than the size of its argument and we need the latter
2559 one. */
2560 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
2561 expr = TREE_OPERAND (expr, 0);
2563 base = get_ref_base_and_extent (expr, &offset, &size, &max_size);
2564 if (max_size == -1 || !DECL_P (base))
2565 return NULL;
2567 if (!bitmap_bit_p (candidate_bitmap, DECL_UID (base)))
2568 return NULL;
2570 return get_var_base_offset_size_access (base, offset, max_size);
2573 /* Replace the expression EXPR with a scalar replacement if there is one and
2574 generate other statements to do type conversion or subtree copying if
2575 necessary. GSI is used to place newly created statements, WRITE is true if
2576 the expression is being written to (it is on a LHS of a statement or output
2577 in an assembly statement). */
2579 static bool
2580 sra_modify_expr (tree *expr, gimple_stmt_iterator *gsi, bool write)
2582 location_t loc;
2583 struct access *access;
2584 tree type, bfr;
2586 if (TREE_CODE (*expr) == BIT_FIELD_REF)
2588 bfr = *expr;
2589 expr = &TREE_OPERAND (*expr, 0);
2591 else
2592 bfr = NULL_TREE;
2594 if (TREE_CODE (*expr) == REALPART_EXPR || TREE_CODE (*expr) == IMAGPART_EXPR)
2595 expr = &TREE_OPERAND (*expr, 0);
2596 access = get_access_for_expr (*expr);
2597 if (!access)
2598 return false;
2599 type = TREE_TYPE (*expr);
2601 loc = gimple_location (gsi_stmt (*gsi));
2602 if (access->grp_to_be_replaced)
2604 tree repl = get_access_replacement (access);
2605 /* If we replace a non-register typed access simply use the original
2606 access expression to extract the scalar component afterwards.
2607 This happens if scalarizing a function return value or parameter
2608 like in gcc.c-torture/execute/20041124-1.c, 20050316-1.c and
2609 gcc.c-torture/compile/20011217-1.c.
2611 We also want to use this when accessing a complex or vector which can
2612 be accessed as a different type too, potentially creating a need for
2613 type conversion (see PR42196) and when scalarized unions are involved
2614 in assembler statements (see PR42398). */
2615 if (!useless_type_conversion_p (type, access->type))
2617 tree ref;
2619 ref = build_ref_for_model (loc, access->base, access->offset, access,
2620 NULL, false);
2622 if (write)
2624 gimple stmt;
2626 if (access->grp_partial_lhs)
2627 ref = force_gimple_operand_gsi (gsi, ref, true, NULL_TREE,
2628 false, GSI_NEW_STMT);
2629 stmt = gimple_build_assign (repl, ref);
2630 gimple_set_location (stmt, loc);
2631 gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
2633 else
2635 gimple stmt;
2637 if (access->grp_partial_lhs)
2638 repl = force_gimple_operand_gsi (gsi, repl, true, NULL_TREE,
2639 true, GSI_SAME_STMT);
2640 stmt = gimple_build_assign (ref, repl);
2641 gimple_set_location (stmt, loc);
2642 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
2645 else
2646 *expr = repl;
2647 sra_stats.exprs++;
2650 if (access->first_child)
2652 HOST_WIDE_INT start_offset, chunk_size;
2653 if (bfr
2654 && host_integerp (TREE_OPERAND (bfr, 1), 1)
2655 && host_integerp (TREE_OPERAND (bfr, 2), 1))
2657 chunk_size = tree_low_cst (TREE_OPERAND (bfr, 1), 1);
2658 start_offset = access->offset
2659 + tree_low_cst (TREE_OPERAND (bfr, 2), 1);
2661 else
2662 start_offset = chunk_size = 0;
2664 generate_subtree_copies (access->first_child, access->base, 0,
2665 start_offset, chunk_size, gsi, write, write,
2666 loc);
2668 return true;
2671 /* Where scalar replacements of the RHS have been written to when a replacement
2672 of a LHS of an assigments cannot be direclty loaded from a replacement of
2673 the RHS. */
2674 enum unscalarized_data_handling { SRA_UDH_NONE, /* Nothing done so far. */
2675 SRA_UDH_RIGHT, /* Data flushed to the RHS. */
2676 SRA_UDH_LEFT }; /* Data flushed to the LHS. */
2678 /* Store all replacements in the access tree rooted in TOP_RACC either to their
2679 base aggregate if there are unscalarized data or directly to LHS of the
2680 statement that is pointed to by GSI otherwise. */
2682 static enum unscalarized_data_handling
2683 handle_unscalarized_data_in_subtree (struct access *top_racc,
2684 gimple_stmt_iterator *gsi)
2686 if (top_racc->grp_unscalarized_data)
2688 generate_subtree_copies (top_racc->first_child, top_racc->base, 0, 0, 0,
2689 gsi, false, false,
2690 gimple_location (gsi_stmt (*gsi)));
2691 return SRA_UDH_RIGHT;
2693 else
2695 tree lhs = gimple_assign_lhs (gsi_stmt (*gsi));
2696 generate_subtree_copies (top_racc->first_child, lhs, top_racc->offset,
2697 0, 0, gsi, false, false,
2698 gimple_location (gsi_stmt (*gsi)));
2699 return SRA_UDH_LEFT;
2704 /* Try to generate statements to load all sub-replacements in an access subtree
2705 formed by children of LACC from scalar replacements in the TOP_RACC subtree.
2706 If that is not possible, refresh the TOP_RACC base aggregate and load the
2707 accesses from it. LEFT_OFFSET is the offset of the left whole subtree being
2708 copied. NEW_GSI is stmt iterator used for statement insertions after the
2709 original assignment, OLD_GSI is used to insert statements before the
2710 assignment. *REFRESHED keeps the information whether we have needed to
2711 refresh replacements of the LHS and from which side of the assignments this
2712 takes place. */
2714 static void
2715 load_assign_lhs_subreplacements (struct access *lacc, struct access *top_racc,
2716 HOST_WIDE_INT left_offset,
2717 gimple_stmt_iterator *old_gsi,
2718 gimple_stmt_iterator *new_gsi,
2719 enum unscalarized_data_handling *refreshed)
2721 location_t loc = gimple_location (gsi_stmt (*old_gsi));
2722 for (lacc = lacc->first_child; lacc; lacc = lacc->next_sibling)
2724 if (lacc->grp_to_be_replaced)
2726 struct access *racc;
2727 HOST_WIDE_INT offset = lacc->offset - left_offset + top_racc->offset;
2728 gimple stmt;
2729 tree rhs;
2731 racc = find_access_in_subtree (top_racc, offset, lacc->size);
2732 if (racc && racc->grp_to_be_replaced)
2734 rhs = get_access_replacement (racc);
2735 if (!useless_type_conversion_p (lacc->type, racc->type))
2736 rhs = fold_build1_loc (loc, VIEW_CONVERT_EXPR, lacc->type, rhs);
2738 if (racc->grp_partial_lhs && lacc->grp_partial_lhs)
2739 rhs = force_gimple_operand_gsi (old_gsi, rhs, true, NULL_TREE,
2740 true, GSI_SAME_STMT);
2742 else
2744 /* No suitable access on the right hand side, need to load from
2745 the aggregate. See if we have to update it first... */
2746 if (*refreshed == SRA_UDH_NONE)
2747 *refreshed = handle_unscalarized_data_in_subtree (top_racc,
2748 old_gsi);
2750 if (*refreshed == SRA_UDH_LEFT)
2751 rhs = build_ref_for_model (loc, lacc->base, lacc->offset, lacc,
2752 new_gsi, true);
2753 else
2754 rhs = build_ref_for_model (loc, top_racc->base, offset, lacc,
2755 new_gsi, true);
2756 if (lacc->grp_partial_lhs)
2757 rhs = force_gimple_operand_gsi (new_gsi, rhs, true, NULL_TREE,
2758 false, GSI_NEW_STMT);
2761 stmt = gimple_build_assign (get_access_replacement (lacc), rhs);
2762 gsi_insert_after (new_gsi, stmt, GSI_NEW_STMT);
2763 gimple_set_location (stmt, loc);
2764 update_stmt (stmt);
2765 sra_stats.subreplacements++;
2767 else if (*refreshed == SRA_UDH_NONE
2768 && lacc->grp_read && !lacc->grp_covered)
2769 *refreshed = handle_unscalarized_data_in_subtree (top_racc,
2770 old_gsi);
2772 if (lacc->first_child)
2773 load_assign_lhs_subreplacements (lacc, top_racc, left_offset,
2774 old_gsi, new_gsi, refreshed);
2778 /* Result code for SRA assignment modification. */
2779 enum assignment_mod_result { SRA_AM_NONE, /* nothing done for the stmt */
2780 SRA_AM_MODIFIED, /* stmt changed but not
2781 removed */
2782 SRA_AM_REMOVED }; /* stmt eliminated */
2784 /* Modify assignments with a CONSTRUCTOR on their RHS. STMT contains a pointer
2785 to the assignment and GSI is the statement iterator pointing at it. Returns
2786 the same values as sra_modify_assign. */
2788 static enum assignment_mod_result
2789 sra_modify_constructor_assign (gimple *stmt, gimple_stmt_iterator *gsi)
2791 tree lhs = gimple_assign_lhs (*stmt);
2792 struct access *acc;
2793 location_t loc;
2795 acc = get_access_for_expr (lhs);
2796 if (!acc)
2797 return SRA_AM_NONE;
2799 if (gimple_clobber_p (*stmt))
2801 /* Remove clobbers of fully scalarized variables, otherwise
2802 do nothing. */
2803 if (acc->grp_covered)
2805 unlink_stmt_vdef (*stmt);
2806 gsi_remove (gsi, true);
2807 release_defs (*stmt);
2808 return SRA_AM_REMOVED;
2810 else
2811 return SRA_AM_NONE;
2814 loc = gimple_location (*stmt);
2815 if (VEC_length (constructor_elt,
2816 CONSTRUCTOR_ELTS (gimple_assign_rhs1 (*stmt))) > 0)
2818 /* I have never seen this code path trigger but if it can happen the
2819 following should handle it gracefully. */
2820 if (access_has_children_p (acc))
2821 generate_subtree_copies (acc->first_child, acc->base, 0, 0, 0, gsi,
2822 true, true, loc);
2823 return SRA_AM_MODIFIED;
2826 if (acc->grp_covered)
2828 init_subtree_with_zero (acc, gsi, false, loc);
2829 unlink_stmt_vdef (*stmt);
2830 gsi_remove (gsi, true);
2831 release_defs (*stmt);
2832 return SRA_AM_REMOVED;
2834 else
2836 init_subtree_with_zero (acc, gsi, true, loc);
2837 return SRA_AM_MODIFIED;
2841 /* Create and return a new suitable default definition SSA_NAME for RACC which
2842 is an access describing an uninitialized part of an aggregate that is being
2843 loaded. */
2845 static tree
2846 get_repl_default_def_ssa_name (struct access *racc)
2848 return get_or_create_ssa_default_def (cfun, get_access_replacement (racc));
2851 /* Return true if REF has a COMPONENT_REF with a bit-field field declaration
2852 somewhere in it. */
2854 static inline bool
2855 contains_bitfld_comp_ref_p (const_tree ref)
2857 while (handled_component_p (ref))
2859 if (TREE_CODE (ref) == COMPONENT_REF
2860 && DECL_BIT_FIELD (TREE_OPERAND (ref, 1)))
2861 return true;
2862 ref = TREE_OPERAND (ref, 0);
2865 return false;
2868 /* Return true if REF has an VIEW_CONVERT_EXPR or a COMPONENT_REF with a
2869 bit-field field declaration somewhere in it. */
2871 static inline bool
2872 contains_vce_or_bfcref_p (const_tree ref)
2874 while (handled_component_p (ref))
2876 if (TREE_CODE (ref) == VIEW_CONVERT_EXPR
2877 || (TREE_CODE (ref) == COMPONENT_REF
2878 && DECL_BIT_FIELD (TREE_OPERAND (ref, 1))))
2879 return true;
2880 ref = TREE_OPERAND (ref, 0);
2883 return false;
2886 /* Examine both sides of the assignment statement pointed to by STMT, replace
2887 them with a scalare replacement if there is one and generate copying of
2888 replacements if scalarized aggregates have been used in the assignment. GSI
2889 is used to hold generated statements for type conversions and subtree
2890 copying. */
2892 static enum assignment_mod_result
2893 sra_modify_assign (gimple *stmt, gimple_stmt_iterator *gsi)
2895 struct access *lacc, *racc;
2896 tree lhs, rhs;
2897 bool modify_this_stmt = false;
2898 bool force_gimple_rhs = false;
2899 location_t loc;
2900 gimple_stmt_iterator orig_gsi = *gsi;
2902 if (!gimple_assign_single_p (*stmt))
2903 return SRA_AM_NONE;
2904 lhs = gimple_assign_lhs (*stmt);
2905 rhs = gimple_assign_rhs1 (*stmt);
2907 if (TREE_CODE (rhs) == CONSTRUCTOR)
2908 return sra_modify_constructor_assign (stmt, gsi);
2910 if (TREE_CODE (rhs) == REALPART_EXPR || TREE_CODE (lhs) == REALPART_EXPR
2911 || TREE_CODE (rhs) == IMAGPART_EXPR || TREE_CODE (lhs) == IMAGPART_EXPR
2912 || TREE_CODE (rhs) == BIT_FIELD_REF || TREE_CODE (lhs) == BIT_FIELD_REF)
2914 modify_this_stmt = sra_modify_expr (gimple_assign_rhs1_ptr (*stmt),
2915 gsi, false);
2916 modify_this_stmt |= sra_modify_expr (gimple_assign_lhs_ptr (*stmt),
2917 gsi, true);
2918 return modify_this_stmt ? SRA_AM_MODIFIED : SRA_AM_NONE;
2921 lacc = get_access_for_expr (lhs);
2922 racc = get_access_for_expr (rhs);
2923 if (!lacc && !racc)
2924 return SRA_AM_NONE;
2926 loc = gimple_location (*stmt);
2927 if (lacc && lacc->grp_to_be_replaced)
2929 lhs = get_access_replacement (lacc);
2930 gimple_assign_set_lhs (*stmt, lhs);
2931 modify_this_stmt = true;
2932 if (lacc->grp_partial_lhs)
2933 force_gimple_rhs = true;
2934 sra_stats.exprs++;
2937 if (racc && racc->grp_to_be_replaced)
2939 rhs = get_access_replacement (racc);
2940 modify_this_stmt = true;
2941 if (racc->grp_partial_lhs)
2942 force_gimple_rhs = true;
2943 sra_stats.exprs++;
2945 else if (racc
2946 && !racc->grp_unscalarized_data
2947 && TREE_CODE (lhs) == SSA_NAME
2948 && !access_has_replacements_p (racc))
2950 rhs = get_repl_default_def_ssa_name (racc);
2951 modify_this_stmt = true;
2952 sra_stats.exprs++;
2955 if (modify_this_stmt)
2957 if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
2959 /* If we can avoid creating a VIEW_CONVERT_EXPR do so.
2960 ??? This should move to fold_stmt which we simply should
2961 call after building a VIEW_CONVERT_EXPR here. */
2962 if (AGGREGATE_TYPE_P (TREE_TYPE (lhs))
2963 && !contains_bitfld_comp_ref_p (lhs)
2964 && !access_has_children_p (lacc))
2966 lhs = build_ref_for_model (loc, lhs, 0, racc, gsi, false);
2967 gimple_assign_set_lhs (*stmt, lhs);
2969 else if (AGGREGATE_TYPE_P (TREE_TYPE (rhs))
2970 && !contains_vce_or_bfcref_p (rhs)
2971 && !access_has_children_p (racc))
2972 rhs = build_ref_for_model (loc, rhs, 0, lacc, gsi, false);
2974 if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
2976 rhs = fold_build1_loc (loc, VIEW_CONVERT_EXPR, TREE_TYPE (lhs),
2977 rhs);
2978 if (is_gimple_reg_type (TREE_TYPE (lhs))
2979 && TREE_CODE (lhs) != SSA_NAME)
2980 force_gimple_rhs = true;
2985 /* From this point on, the function deals with assignments in between
2986 aggregates when at least one has scalar reductions of some of its
2987 components. There are three possible scenarios: Both the LHS and RHS have
2988 to-be-scalarized components, 2) only the RHS has or 3) only the LHS has.
2990 In the first case, we would like to load the LHS components from RHS
2991 components whenever possible. If that is not possible, we would like to
2992 read it directly from the RHS (after updating it by storing in it its own
2993 components). If there are some necessary unscalarized data in the LHS,
2994 those will be loaded by the original assignment too. If neither of these
2995 cases happen, the original statement can be removed. Most of this is done
2996 by load_assign_lhs_subreplacements.
2998 In the second case, we would like to store all RHS scalarized components
2999 directly into LHS and if they cover the aggregate completely, remove the
3000 statement too. In the third case, we want the LHS components to be loaded
3001 directly from the RHS (DSE will remove the original statement if it
3002 becomes redundant).
3004 This is a bit complex but manageable when types match and when unions do
3005 not cause confusion in a way that we cannot really load a component of LHS
3006 from the RHS or vice versa (the access representing this level can have
3007 subaccesses that are accessible only through a different union field at a
3008 higher level - different from the one used in the examined expression).
3009 Unions are fun.
3011 Therefore, I specially handle a fourth case, happening when there is a
3012 specific type cast or it is impossible to locate a scalarized subaccess on
3013 the other side of the expression. If that happens, I simply "refresh" the
3014 RHS by storing in it is scalarized components leave the original statement
3015 there to do the copying and then load the scalar replacements of the LHS.
3016 This is what the first branch does. */
3018 if (modify_this_stmt
3019 || gimple_has_volatile_ops (*stmt)
3020 || contains_vce_or_bfcref_p (rhs)
3021 || contains_vce_or_bfcref_p (lhs))
3023 if (access_has_children_p (racc))
3024 generate_subtree_copies (racc->first_child, racc->base, 0, 0, 0,
3025 gsi, false, false, loc);
3026 if (access_has_children_p (lacc))
3027 generate_subtree_copies (lacc->first_child, lacc->base, 0, 0, 0,
3028 gsi, true, true, loc);
3029 sra_stats.separate_lhs_rhs_handling++;
3031 /* This gimplification must be done after generate_subtree_copies,
3032 lest we insert the subtree copies in the middle of the gimplified
3033 sequence. */
3034 if (force_gimple_rhs)
3035 rhs = force_gimple_operand_gsi (&orig_gsi, rhs, true, NULL_TREE,
3036 true, GSI_SAME_STMT);
3037 if (gimple_assign_rhs1 (*stmt) != rhs)
3039 modify_this_stmt = true;
3040 gimple_assign_set_rhs_from_tree (&orig_gsi, rhs);
3041 gcc_assert (*stmt == gsi_stmt (orig_gsi));
3044 return modify_this_stmt ? SRA_AM_MODIFIED : SRA_AM_NONE;
3046 else
3048 if (access_has_children_p (lacc)
3049 && access_has_children_p (racc)
3050 /* When an access represents an unscalarizable region, it usually
3051 represents accesses with variable offset and thus must not be used
3052 to generate new memory accesses. */
3053 && !lacc->grp_unscalarizable_region
3054 && !racc->grp_unscalarizable_region)
3056 gimple_stmt_iterator orig_gsi = *gsi;
3057 enum unscalarized_data_handling refreshed;
3059 if (lacc->grp_read && !lacc->grp_covered)
3060 refreshed = handle_unscalarized_data_in_subtree (racc, gsi);
3061 else
3062 refreshed = SRA_UDH_NONE;
3064 load_assign_lhs_subreplacements (lacc, racc, lacc->offset,
3065 &orig_gsi, gsi, &refreshed);
3066 if (refreshed != SRA_UDH_RIGHT)
3068 gsi_next (gsi);
3069 unlink_stmt_vdef (*stmt);
3070 gsi_remove (&orig_gsi, true);
3071 release_defs (*stmt);
3072 sra_stats.deleted++;
3073 return SRA_AM_REMOVED;
3076 else
3078 if (access_has_children_p (racc)
3079 && !racc->grp_unscalarized_data)
3081 if (dump_file)
3083 fprintf (dump_file, "Removing load: ");
3084 print_gimple_stmt (dump_file, *stmt, 0, 0);
3086 generate_subtree_copies (racc->first_child, lhs,
3087 racc->offset, 0, 0, gsi,
3088 false, false, loc);
3089 gcc_assert (*stmt == gsi_stmt (*gsi));
3090 unlink_stmt_vdef (*stmt);
3091 gsi_remove (gsi, true);
3092 release_defs (*stmt);
3093 sra_stats.deleted++;
3094 return SRA_AM_REMOVED;
3096 /* Restore the aggregate RHS from its components so the
3097 prevailing aggregate copy does the right thing. */
3098 if (access_has_children_p (racc))
3099 generate_subtree_copies (racc->first_child, racc->base, 0, 0, 0,
3100 gsi, false, false, loc);
3101 /* Re-load the components of the aggregate copy destination.
3102 But use the RHS aggregate to load from to expose more
3103 optimization opportunities. */
3104 if (access_has_children_p (lacc))
3105 generate_subtree_copies (lacc->first_child, rhs, lacc->offset,
3106 0, 0, gsi, true, true, loc);
3109 return SRA_AM_NONE;
3113 /* Traverse the function body and all modifications as decided in
3114 analyze_all_variable_accesses. Return true iff the CFG has been
3115 changed. */
3117 static bool
3118 sra_modify_function_body (void)
3120 bool cfg_changed = false;
3121 basic_block bb;
3123 FOR_EACH_BB (bb)
3125 gimple_stmt_iterator gsi = gsi_start_bb (bb);
3126 while (!gsi_end_p (gsi))
3128 gimple stmt = gsi_stmt (gsi);
3129 enum assignment_mod_result assign_result;
3130 bool modified = false, deleted = false;
3131 tree *t;
3132 unsigned i;
3134 switch (gimple_code (stmt))
3136 case GIMPLE_RETURN:
3137 t = gimple_return_retval_ptr (stmt);
3138 if (*t != NULL_TREE)
3139 modified |= sra_modify_expr (t, &gsi, false);
3140 break;
3142 case GIMPLE_ASSIGN:
3143 assign_result = sra_modify_assign (&stmt, &gsi);
3144 modified |= assign_result == SRA_AM_MODIFIED;
3145 deleted = assign_result == SRA_AM_REMOVED;
3146 break;
3148 case GIMPLE_CALL:
3149 /* Operands must be processed before the lhs. */
3150 for (i = 0; i < gimple_call_num_args (stmt); i++)
3152 t = gimple_call_arg_ptr (stmt, i);
3153 modified |= sra_modify_expr (t, &gsi, false);
3156 if (gimple_call_lhs (stmt))
3158 t = gimple_call_lhs_ptr (stmt);
3159 modified |= sra_modify_expr (t, &gsi, true);
3161 break;
3163 case GIMPLE_ASM:
3164 for (i = 0; i < gimple_asm_ninputs (stmt); i++)
3166 t = &TREE_VALUE (gimple_asm_input_op (stmt, i));
3167 modified |= sra_modify_expr (t, &gsi, false);
3169 for (i = 0; i < gimple_asm_noutputs (stmt); i++)
3171 t = &TREE_VALUE (gimple_asm_output_op (stmt, i));
3172 modified |= sra_modify_expr (t, &gsi, true);
3174 break;
3176 default:
3177 break;
3180 if (modified)
3182 update_stmt (stmt);
3183 if (maybe_clean_eh_stmt (stmt)
3184 && gimple_purge_dead_eh_edges (gimple_bb (stmt)))
3185 cfg_changed = true;
3187 if (!deleted)
3188 gsi_next (&gsi);
3192 return cfg_changed;
3195 /* Generate statements initializing scalar replacements of parts of function
3196 parameters. */
3198 static void
3199 initialize_parameter_reductions (void)
3201 gimple_stmt_iterator gsi;
3202 gimple_seq seq = NULL;
3203 tree parm;
3205 gsi = gsi_start (seq);
3206 for (parm = DECL_ARGUMENTS (current_function_decl);
3207 parm;
3208 parm = DECL_CHAIN (parm))
3210 VEC (access_p, heap) *access_vec;
3211 struct access *access;
3213 if (!bitmap_bit_p (candidate_bitmap, DECL_UID (parm)))
3214 continue;
3215 access_vec = get_base_access_vector (parm);
3216 if (!access_vec)
3217 continue;
3219 for (access = VEC_index (access_p, access_vec, 0);
3220 access;
3221 access = access->next_grp)
3222 generate_subtree_copies (access, parm, 0, 0, 0, &gsi, true, true,
3223 EXPR_LOCATION (parm));
3226 seq = gsi_seq (gsi);
3227 if (seq)
3228 gsi_insert_seq_on_edge_immediate (single_succ_edge (ENTRY_BLOCK_PTR), seq);
3231 /* The "main" function of intraprocedural SRA passes. Runs the analysis and if
3232 it reveals there are components of some aggregates to be scalarized, it runs
3233 the required transformations. */
3234 static unsigned int
3235 perform_intra_sra (void)
3237 int ret = 0;
3238 sra_initialize ();
3240 if (!find_var_candidates ())
3241 goto out;
3243 if (!scan_function ())
3244 goto out;
3246 if (!analyze_all_variable_accesses ())
3247 goto out;
3249 if (sra_modify_function_body ())
3250 ret = TODO_update_ssa | TODO_cleanup_cfg;
3251 else
3252 ret = TODO_update_ssa;
3253 initialize_parameter_reductions ();
3255 statistics_counter_event (cfun, "Scalar replacements created",
3256 sra_stats.replacements);
3257 statistics_counter_event (cfun, "Modified expressions", sra_stats.exprs);
3258 statistics_counter_event (cfun, "Subtree copy stmts",
3259 sra_stats.subtree_copies);
3260 statistics_counter_event (cfun, "Subreplacement stmts",
3261 sra_stats.subreplacements);
3262 statistics_counter_event (cfun, "Deleted stmts", sra_stats.deleted);
3263 statistics_counter_event (cfun, "Separate LHS and RHS handling",
3264 sra_stats.separate_lhs_rhs_handling);
3266 out:
3267 sra_deinitialize ();
3268 return ret;
3271 /* Perform early intraprocedural SRA. */
3272 static unsigned int
3273 early_intra_sra (void)
3275 sra_mode = SRA_MODE_EARLY_INTRA;
3276 return perform_intra_sra ();
3279 /* Perform "late" intraprocedural SRA. */
3280 static unsigned int
3281 late_intra_sra (void)
3283 sra_mode = SRA_MODE_INTRA;
3284 return perform_intra_sra ();
3288 static bool
3289 gate_intra_sra (void)
3291 return flag_tree_sra != 0 && dbg_cnt (tree_sra);
3295 struct gimple_opt_pass pass_sra_early =
3298 GIMPLE_PASS,
3299 "esra", /* name */
3300 gate_intra_sra, /* gate */
3301 early_intra_sra, /* execute */
3302 NULL, /* sub */
3303 NULL, /* next */
3304 0, /* static_pass_number */
3305 TV_TREE_SRA, /* tv_id */
3306 PROP_cfg | PROP_ssa, /* properties_required */
3307 0, /* properties_provided */
3308 0, /* properties_destroyed */
3309 0, /* todo_flags_start */
3310 TODO_update_ssa
3311 | TODO_ggc_collect
3312 | TODO_verify_ssa /* todo_flags_finish */
3316 struct gimple_opt_pass pass_sra =
3319 GIMPLE_PASS,
3320 "sra", /* name */
3321 gate_intra_sra, /* gate */
3322 late_intra_sra, /* execute */
3323 NULL, /* sub */
3324 NULL, /* next */
3325 0, /* static_pass_number */
3326 TV_TREE_SRA, /* tv_id */
3327 PROP_cfg | PROP_ssa, /* properties_required */
3328 0, /* properties_provided */
3329 0, /* properties_destroyed */
3330 TODO_update_address_taken, /* todo_flags_start */
3331 TODO_update_ssa
3332 | TODO_ggc_collect
3333 | TODO_verify_ssa /* todo_flags_finish */
3338 /* Return true iff PARM (which must be a parm_decl) is an unused scalar
3339 parameter. */
3341 static bool
3342 is_unused_scalar_param (tree parm)
3344 tree name;
3345 return (is_gimple_reg (parm)
3346 && (!(name = ssa_default_def (cfun, parm))
3347 || has_zero_uses (name)));
3350 /* Scan immediate uses of a default definition SSA name of a parameter PARM and
3351 examine whether there are any direct or otherwise infeasible ones. If so,
3352 return true, otherwise return false. PARM must be a gimple register with a
3353 non-NULL default definition. */
3355 static bool
3356 ptr_parm_has_direct_uses (tree parm)
3358 imm_use_iterator ui;
3359 gimple stmt;
3360 tree name = ssa_default_def (cfun, parm);
3361 bool ret = false;
3363 FOR_EACH_IMM_USE_STMT (stmt, ui, name)
3365 int uses_ok = 0;
3366 use_operand_p use_p;
3368 if (is_gimple_debug (stmt))
3369 continue;
3371 /* Valid uses include dereferences on the lhs and the rhs. */
3372 if (gimple_has_lhs (stmt))
3374 tree lhs = gimple_get_lhs (stmt);
3375 while (handled_component_p (lhs))
3376 lhs = TREE_OPERAND (lhs, 0);
3377 if (TREE_CODE (lhs) == MEM_REF
3378 && TREE_OPERAND (lhs, 0) == name
3379 && integer_zerop (TREE_OPERAND (lhs, 1))
3380 && types_compatible_p (TREE_TYPE (lhs),
3381 TREE_TYPE (TREE_TYPE (name)))
3382 && !TREE_THIS_VOLATILE (lhs))
3383 uses_ok++;
3385 if (gimple_assign_single_p (stmt))
3387 tree rhs = gimple_assign_rhs1 (stmt);
3388 while (handled_component_p (rhs))
3389 rhs = TREE_OPERAND (rhs, 0);
3390 if (TREE_CODE (rhs) == MEM_REF
3391 && TREE_OPERAND (rhs, 0) == name
3392 && integer_zerop (TREE_OPERAND (rhs, 1))
3393 && types_compatible_p (TREE_TYPE (rhs),
3394 TREE_TYPE (TREE_TYPE (name)))
3395 && !TREE_THIS_VOLATILE (rhs))
3396 uses_ok++;
3398 else if (is_gimple_call (stmt))
3400 unsigned i;
3401 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3403 tree arg = gimple_call_arg (stmt, i);
3404 while (handled_component_p (arg))
3405 arg = TREE_OPERAND (arg, 0);
3406 if (TREE_CODE (arg) == MEM_REF
3407 && TREE_OPERAND (arg, 0) == name
3408 && integer_zerop (TREE_OPERAND (arg, 1))
3409 && types_compatible_p (TREE_TYPE (arg),
3410 TREE_TYPE (TREE_TYPE (name)))
3411 && !TREE_THIS_VOLATILE (arg))
3412 uses_ok++;
3416 /* If the number of valid uses does not match the number of
3417 uses in this stmt there is an unhandled use. */
3418 FOR_EACH_IMM_USE_ON_STMT (use_p, ui)
3419 --uses_ok;
3421 if (uses_ok != 0)
3422 ret = true;
3424 if (ret)
3425 BREAK_FROM_IMM_USE_STMT (ui);
3428 return ret;
3431 /* Identify candidates for reduction for IPA-SRA based on their type and mark
3432 them in candidate_bitmap. Note that these do not necessarily include
3433 parameter which are unused and thus can be removed. Return true iff any
3434 such candidate has been found. */
3436 static bool
3437 find_param_candidates (void)
3439 tree parm;
3440 int count = 0;
3441 bool ret = false;
3442 const char *msg;
3444 for (parm = DECL_ARGUMENTS (current_function_decl);
3445 parm;
3446 parm = DECL_CHAIN (parm))
3448 tree type = TREE_TYPE (parm);
3449 void **slot;
3451 count++;
3453 if (TREE_THIS_VOLATILE (parm)
3454 || TREE_ADDRESSABLE (parm)
3455 || (!is_gimple_reg_type (type) && is_va_list_type (type)))
3456 continue;
3458 if (is_unused_scalar_param (parm))
3460 ret = true;
3461 continue;
3464 if (POINTER_TYPE_P (type))
3466 type = TREE_TYPE (type);
3468 if (TREE_CODE (type) == FUNCTION_TYPE
3469 || TYPE_VOLATILE (type)
3470 || (TREE_CODE (type) == ARRAY_TYPE
3471 && TYPE_NONALIASED_COMPONENT (type))
3472 || !is_gimple_reg (parm)
3473 || is_va_list_type (type)
3474 || ptr_parm_has_direct_uses (parm))
3475 continue;
3477 else if (!AGGREGATE_TYPE_P (type))
3478 continue;
3480 if (!COMPLETE_TYPE_P (type)
3481 || !host_integerp (TYPE_SIZE (type), 1)
3482 || tree_low_cst (TYPE_SIZE (type), 1) == 0
3483 || (AGGREGATE_TYPE_P (type)
3484 && type_internals_preclude_sra_p (type, &msg)))
3485 continue;
3487 bitmap_set_bit (candidate_bitmap, DECL_UID (parm));
3488 slot = htab_find_slot_with_hash (candidates, parm,
3489 DECL_UID (parm), INSERT);
3490 *slot = (void *) parm;
3492 ret = true;
3493 if (dump_file && (dump_flags & TDF_DETAILS))
3495 fprintf (dump_file, "Candidate (%d): ", DECL_UID (parm));
3496 print_generic_expr (dump_file, parm, 0);
3497 fprintf (dump_file, "\n");
3501 func_param_count = count;
3502 return ret;
3505 /* Callback of walk_aliased_vdefs, marks the access passed as DATA as
3506 maybe_modified. */
3508 static bool
3509 mark_maybe_modified (ao_ref *ao ATTRIBUTE_UNUSED, tree vdef ATTRIBUTE_UNUSED,
3510 void *data)
3512 struct access *repr = (struct access *) data;
3514 repr->grp_maybe_modified = 1;
3515 return true;
3518 /* Analyze what representatives (in linked lists accessible from
3519 REPRESENTATIVES) can be modified by side effects of statements in the
3520 current function. */
3522 static void
3523 analyze_modified_params (VEC (access_p, heap) *representatives)
3525 int i;
3527 for (i = 0; i < func_param_count; i++)
3529 struct access *repr;
3531 for (repr = VEC_index (access_p, representatives, i);
3532 repr;
3533 repr = repr->next_grp)
3535 struct access *access;
3536 bitmap visited;
3537 ao_ref ar;
3539 if (no_accesses_p (repr))
3540 continue;
3541 if (!POINTER_TYPE_P (TREE_TYPE (repr->base))
3542 || repr->grp_maybe_modified)
3543 continue;
3545 ao_ref_init (&ar, repr->expr);
3546 visited = BITMAP_ALLOC (NULL);
3547 for (access = repr; access; access = access->next_sibling)
3549 /* All accesses are read ones, otherwise grp_maybe_modified would
3550 be trivially set. */
3551 walk_aliased_vdefs (&ar, gimple_vuse (access->stmt),
3552 mark_maybe_modified, repr, &visited);
3553 if (repr->grp_maybe_modified)
3554 break;
3556 BITMAP_FREE (visited);
3561 /* Propagate distances in bb_dereferences in the opposite direction than the
3562 control flow edges, in each step storing the maximum of the current value
3563 and the minimum of all successors. These steps are repeated until the table
3564 stabilizes. Note that BBs which might terminate the functions (according to
3565 final_bbs bitmap) never updated in this way. */
3567 static void
3568 propagate_dereference_distances (void)
3570 VEC (basic_block, heap) *queue;
3571 basic_block bb;
3573 queue = VEC_alloc (basic_block, heap, last_basic_block_for_function (cfun));
3574 VEC_quick_push (basic_block, queue, ENTRY_BLOCK_PTR);
3575 FOR_EACH_BB (bb)
3577 VEC_quick_push (basic_block, queue, bb);
3578 bb->aux = bb;
3581 while (!VEC_empty (basic_block, queue))
3583 edge_iterator ei;
3584 edge e;
3585 bool change = false;
3586 int i;
3588 bb = VEC_pop (basic_block, queue);
3589 bb->aux = NULL;
3591 if (bitmap_bit_p (final_bbs, bb->index))
3592 continue;
3594 for (i = 0; i < func_param_count; i++)
3596 int idx = bb->index * func_param_count + i;
3597 bool first = true;
3598 HOST_WIDE_INT inh = 0;
3600 FOR_EACH_EDGE (e, ei, bb->succs)
3602 int succ_idx = e->dest->index * func_param_count + i;
3604 if (e->src == EXIT_BLOCK_PTR)
3605 continue;
3607 if (first)
3609 first = false;
3610 inh = bb_dereferences [succ_idx];
3612 else if (bb_dereferences [succ_idx] < inh)
3613 inh = bb_dereferences [succ_idx];
3616 if (!first && bb_dereferences[idx] < inh)
3618 bb_dereferences[idx] = inh;
3619 change = true;
3623 if (change && !bitmap_bit_p (final_bbs, bb->index))
3624 FOR_EACH_EDGE (e, ei, bb->preds)
3626 if (e->src->aux)
3627 continue;
3629 e->src->aux = e->src;
3630 VEC_quick_push (basic_block, queue, e->src);
3634 VEC_free (basic_block, heap, queue);
3637 /* Dump a dereferences TABLE with heading STR to file F. */
3639 static void
3640 dump_dereferences_table (FILE *f, const char *str, HOST_WIDE_INT *table)
3642 basic_block bb;
3644 fprintf (dump_file, str);
3645 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
3647 fprintf (f, "%4i %i ", bb->index, bitmap_bit_p (final_bbs, bb->index));
3648 if (bb != EXIT_BLOCK_PTR)
3650 int i;
3651 for (i = 0; i < func_param_count; i++)
3653 int idx = bb->index * func_param_count + i;
3654 fprintf (f, " %4" HOST_WIDE_INT_PRINT "d", table[idx]);
3657 fprintf (f, "\n");
3659 fprintf (dump_file, "\n");
3662 /* Determine what (parts of) parameters passed by reference that are not
3663 assigned to are not certainly dereferenced in this function and thus the
3664 dereferencing cannot be safely moved to the caller without potentially
3665 introducing a segfault. Mark such REPRESENTATIVES as
3666 grp_not_necessarilly_dereferenced.
3668 The dereferenced maximum "distance," i.e. the offset + size of the accessed
3669 part is calculated rather than simple booleans are calculated for each
3670 pointer parameter to handle cases when only a fraction of the whole
3671 aggregate is allocated (see testsuite/gcc.c-torture/execute/ipa-sra-2.c for
3672 an example).
3674 The maximum dereference distances for each pointer parameter and BB are
3675 already stored in bb_dereference. This routine simply propagates these
3676 values upwards by propagate_dereference_distances and then compares the
3677 distances of individual parameters in the ENTRY BB to the equivalent
3678 distances of each representative of a (fraction of a) parameter. */
3680 static void
3681 analyze_caller_dereference_legality (VEC (access_p, heap) *representatives)
3683 int i;
3685 if (dump_file && (dump_flags & TDF_DETAILS))
3686 dump_dereferences_table (dump_file,
3687 "Dereference table before propagation:\n",
3688 bb_dereferences);
3690 propagate_dereference_distances ();
3692 if (dump_file && (dump_flags & TDF_DETAILS))
3693 dump_dereferences_table (dump_file,
3694 "Dereference table after propagation:\n",
3695 bb_dereferences);
3697 for (i = 0; i < func_param_count; i++)
3699 struct access *repr = VEC_index (access_p, representatives, i);
3700 int idx = ENTRY_BLOCK_PTR->index * func_param_count + i;
3702 if (!repr || no_accesses_p (repr))
3703 continue;
3707 if ((repr->offset + repr->size) > bb_dereferences[idx])
3708 repr->grp_not_necessarilly_dereferenced = 1;
3709 repr = repr->next_grp;
3711 while (repr);
3715 /* Return the representative access for the parameter declaration PARM if it is
3716 a scalar passed by reference which is not written to and the pointer value
3717 is not used directly. Thus, if it is legal to dereference it in the caller
3718 and we can rule out modifications through aliases, such parameter should be
3719 turned into one passed by value. Return NULL otherwise. */
3721 static struct access *
3722 unmodified_by_ref_scalar_representative (tree parm)
3724 int i, access_count;
3725 struct access *repr;
3726 VEC (access_p, heap) *access_vec;
3728 access_vec = get_base_access_vector (parm);
3729 gcc_assert (access_vec);
3730 repr = VEC_index (access_p, access_vec, 0);
3731 if (repr->write)
3732 return NULL;
3733 repr->group_representative = repr;
3735 access_count = VEC_length (access_p, access_vec);
3736 for (i = 1; i < access_count; i++)
3738 struct access *access = VEC_index (access_p, access_vec, i);
3739 if (access->write)
3740 return NULL;
3741 access->group_representative = repr;
3742 access->next_sibling = repr->next_sibling;
3743 repr->next_sibling = access;
3746 repr->grp_read = 1;
3747 repr->grp_scalar_ptr = 1;
3748 return repr;
3751 /* Return true iff this access precludes IPA-SRA of the parameter it is
3752 associated with. */
3754 static bool
3755 access_precludes_ipa_sra_p (struct access *access)
3757 /* Avoid issues such as the second simple testcase in PR 42025. The problem
3758 is incompatible assign in a call statement (and possibly even in asm
3759 statements). This can be relaxed by using a new temporary but only for
3760 non-TREE_ADDRESSABLE types and is probably not worth the complexity. (In
3761 intraprocedural SRA we deal with this by keeping the old aggregate around,
3762 something we cannot do in IPA-SRA.) */
3763 if (access->write
3764 && (is_gimple_call (access->stmt)
3765 || gimple_code (access->stmt) == GIMPLE_ASM))
3766 return true;
3768 return false;
3772 /* Sort collected accesses for parameter PARM, identify representatives for
3773 each accessed region and link them together. Return NULL if there are
3774 different but overlapping accesses, return the special ptr value meaning
3775 there are no accesses for this parameter if that is the case and return the
3776 first representative otherwise. Set *RO_GRP if there is a group of accesses
3777 with only read (i.e. no write) accesses. */
3779 static struct access *
3780 splice_param_accesses (tree parm, bool *ro_grp)
3782 int i, j, access_count, group_count;
3783 int agg_size, total_size = 0;
3784 struct access *access, *res, **prev_acc_ptr = &res;
3785 VEC (access_p, heap) *access_vec;
3787 access_vec = get_base_access_vector (parm);
3788 if (!access_vec)
3789 return &no_accesses_representant;
3790 access_count = VEC_length (access_p, access_vec);
3792 VEC_qsort (access_p, access_vec, compare_access_positions);
3794 i = 0;
3795 total_size = 0;
3796 group_count = 0;
3797 while (i < access_count)
3799 bool modification;
3800 tree a1_alias_type;
3801 access = VEC_index (access_p, access_vec, i);
3802 modification = access->write;
3803 if (access_precludes_ipa_sra_p (access))
3804 return NULL;
3805 a1_alias_type = reference_alias_ptr_type (access->expr);
3807 /* Access is about to become group representative unless we find some
3808 nasty overlap which would preclude us from breaking this parameter
3809 apart. */
3811 j = i + 1;
3812 while (j < access_count)
3814 struct access *ac2 = VEC_index (access_p, access_vec, j);
3815 if (ac2->offset != access->offset)
3817 /* All or nothing law for parameters. */
3818 if (access->offset + access->size > ac2->offset)
3819 return NULL;
3820 else
3821 break;
3823 else if (ac2->size != access->size)
3824 return NULL;
3826 if (access_precludes_ipa_sra_p (ac2)
3827 || (ac2->type != access->type
3828 && (TREE_ADDRESSABLE (ac2->type)
3829 || TREE_ADDRESSABLE (access->type)))
3830 || (reference_alias_ptr_type (ac2->expr) != a1_alias_type))
3831 return NULL;
3833 modification |= ac2->write;
3834 ac2->group_representative = access;
3835 ac2->next_sibling = access->next_sibling;
3836 access->next_sibling = ac2;
3837 j++;
3840 group_count++;
3841 access->grp_maybe_modified = modification;
3842 if (!modification)
3843 *ro_grp = true;
3844 *prev_acc_ptr = access;
3845 prev_acc_ptr = &access->next_grp;
3846 total_size += access->size;
3847 i = j;
3850 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3851 agg_size = tree_low_cst (TYPE_SIZE (TREE_TYPE (TREE_TYPE (parm))), 1);
3852 else
3853 agg_size = tree_low_cst (TYPE_SIZE (TREE_TYPE (parm)), 1);
3854 if (total_size >= agg_size)
3855 return NULL;
3857 gcc_assert (group_count > 0);
3858 return res;
3861 /* Decide whether parameters with representative accesses given by REPR should
3862 be reduced into components. */
3864 static int
3865 decide_one_param_reduction (struct access *repr)
3867 int total_size, cur_parm_size, agg_size, new_param_count, parm_size_limit;
3868 bool by_ref;
3869 tree parm;
3871 parm = repr->base;
3872 cur_parm_size = tree_low_cst (TYPE_SIZE (TREE_TYPE (parm)), 1);
3873 gcc_assert (cur_parm_size > 0);
3875 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3877 by_ref = true;
3878 agg_size = tree_low_cst (TYPE_SIZE (TREE_TYPE (TREE_TYPE (parm))), 1);
3880 else
3882 by_ref = false;
3883 agg_size = cur_parm_size;
3886 if (dump_file)
3888 struct access *acc;
3889 fprintf (dump_file, "Evaluating PARAM group sizes for ");
3890 print_generic_expr (dump_file, parm, 0);
3891 fprintf (dump_file, " (UID: %u): \n", DECL_UID (parm));
3892 for (acc = repr; acc; acc = acc->next_grp)
3893 dump_access (dump_file, acc, true);
3896 total_size = 0;
3897 new_param_count = 0;
3899 for (; repr; repr = repr->next_grp)
3901 gcc_assert (parm == repr->base);
3903 /* Taking the address of a non-addressable field is verboten. */
3904 if (by_ref && repr->non_addressable)
3905 return 0;
3907 /* Do not decompose a non-BLKmode param in a way that would
3908 create BLKmode params. Especially for by-reference passing
3909 (thus, pointer-type param) this is hardly worthwhile. */
3910 if (DECL_MODE (parm) != BLKmode
3911 && TYPE_MODE (repr->type) == BLKmode)
3912 return 0;
3914 if (!by_ref || (!repr->grp_maybe_modified
3915 && !repr->grp_not_necessarilly_dereferenced))
3916 total_size += repr->size;
3917 else
3918 total_size += cur_parm_size;
3920 new_param_count++;
3923 gcc_assert (new_param_count > 0);
3925 if (optimize_function_for_size_p (cfun))
3926 parm_size_limit = cur_parm_size;
3927 else
3928 parm_size_limit = (PARAM_VALUE (PARAM_IPA_SRA_PTR_GROWTH_FACTOR)
3929 * cur_parm_size);
3931 if (total_size < agg_size
3932 && total_size <= parm_size_limit)
3934 if (dump_file)
3935 fprintf (dump_file, " ....will be split into %i components\n",
3936 new_param_count);
3937 return new_param_count;
3939 else
3940 return 0;
3943 /* The order of the following enums is important, we need to do extra work for
3944 UNUSED_PARAMS, BY_VAL_ACCESSES and UNMODIF_BY_REF_ACCESSES. */
3945 enum ipa_splicing_result { NO_GOOD_ACCESS, UNUSED_PARAMS, BY_VAL_ACCESSES,
3946 MODIF_BY_REF_ACCESSES, UNMODIF_BY_REF_ACCESSES };
3948 /* Identify representatives of all accesses to all candidate parameters for
3949 IPA-SRA. Return result based on what representatives have been found. */
3951 static enum ipa_splicing_result
3952 splice_all_param_accesses (VEC (access_p, heap) **representatives)
3954 enum ipa_splicing_result result = NO_GOOD_ACCESS;
3955 tree parm;
3956 struct access *repr;
3958 *representatives = VEC_alloc (access_p, heap, func_param_count);
3960 for (parm = DECL_ARGUMENTS (current_function_decl);
3961 parm;
3962 parm = DECL_CHAIN (parm))
3964 if (is_unused_scalar_param (parm))
3966 VEC_quick_push (access_p, *representatives,
3967 &no_accesses_representant);
3968 if (result == NO_GOOD_ACCESS)
3969 result = UNUSED_PARAMS;
3971 else if (POINTER_TYPE_P (TREE_TYPE (parm))
3972 && is_gimple_reg_type (TREE_TYPE (TREE_TYPE (parm)))
3973 && bitmap_bit_p (candidate_bitmap, DECL_UID (parm)))
3975 repr = unmodified_by_ref_scalar_representative (parm);
3976 VEC_quick_push (access_p, *representatives, repr);
3977 if (repr)
3978 result = UNMODIF_BY_REF_ACCESSES;
3980 else if (bitmap_bit_p (candidate_bitmap, DECL_UID (parm)))
3982 bool ro_grp = false;
3983 repr = splice_param_accesses (parm, &ro_grp);
3984 VEC_quick_push (access_p, *representatives, repr);
3986 if (repr && !no_accesses_p (repr))
3988 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3990 if (ro_grp)
3991 result = UNMODIF_BY_REF_ACCESSES;
3992 else if (result < MODIF_BY_REF_ACCESSES)
3993 result = MODIF_BY_REF_ACCESSES;
3995 else if (result < BY_VAL_ACCESSES)
3996 result = BY_VAL_ACCESSES;
3998 else if (no_accesses_p (repr) && (result == NO_GOOD_ACCESS))
3999 result = UNUSED_PARAMS;
4001 else
4002 VEC_quick_push (access_p, *representatives, (access_p) NULL);
4005 if (result == NO_GOOD_ACCESS)
4007 VEC_free (access_p, heap, *representatives);
4008 *representatives = NULL;
4009 return NO_GOOD_ACCESS;
4012 return result;
4015 /* Return the index of BASE in PARMS. Abort if it is not found. */
4017 static inline int
4018 get_param_index (tree base, VEC(tree, heap) *parms)
4020 int i, len;
4022 len = VEC_length (tree, parms);
4023 for (i = 0; i < len; i++)
4024 if (VEC_index (tree, parms, i) == base)
4025 return i;
4026 gcc_unreachable ();
4029 /* Convert the decisions made at the representative level into compact
4030 parameter adjustments. REPRESENTATIVES are pointers to first
4031 representatives of each param accesses, ADJUSTMENTS_COUNT is the expected
4032 final number of adjustments. */
4034 static ipa_parm_adjustment_vec
4035 turn_representatives_into_adjustments (VEC (access_p, heap) *representatives,
4036 int adjustments_count)
4038 VEC (tree, heap) *parms;
4039 ipa_parm_adjustment_vec adjustments;
4040 tree parm;
4041 int i;
4043 gcc_assert (adjustments_count > 0);
4044 parms = ipa_get_vector_of_formal_parms (current_function_decl);
4045 adjustments = VEC_alloc (ipa_parm_adjustment_t, heap, adjustments_count);
4046 parm = DECL_ARGUMENTS (current_function_decl);
4047 for (i = 0; i < func_param_count; i++, parm = DECL_CHAIN (parm))
4049 struct access *repr = VEC_index (access_p, representatives, i);
4051 if (!repr || no_accesses_p (repr))
4053 struct ipa_parm_adjustment *adj;
4055 adj = VEC_quick_push (ipa_parm_adjustment_t, adjustments, NULL);
4056 memset (adj, 0, sizeof (*adj));
4057 adj->base_index = get_param_index (parm, parms);
4058 adj->base = parm;
4059 if (!repr)
4060 adj->copy_param = 1;
4061 else
4062 adj->remove_param = 1;
4064 else
4066 struct ipa_parm_adjustment *adj;
4067 int index = get_param_index (parm, parms);
4069 for (; repr; repr = repr->next_grp)
4071 adj = VEC_quick_push (ipa_parm_adjustment_t, adjustments, NULL);
4072 memset (adj, 0, sizeof (*adj));
4073 gcc_assert (repr->base == parm);
4074 adj->base_index = index;
4075 adj->base = repr->base;
4076 adj->type = repr->type;
4077 adj->alias_ptr_type = reference_alias_ptr_type (repr->expr);
4078 adj->offset = repr->offset;
4079 adj->by_ref = (POINTER_TYPE_P (TREE_TYPE (repr->base))
4080 && (repr->grp_maybe_modified
4081 || repr->grp_not_necessarilly_dereferenced));
4086 VEC_free (tree, heap, parms);
4087 return adjustments;
4090 /* Analyze the collected accesses and produce a plan what to do with the
4091 parameters in the form of adjustments, NULL meaning nothing. */
4093 static ipa_parm_adjustment_vec
4094 analyze_all_param_acesses (void)
4096 enum ipa_splicing_result repr_state;
4097 bool proceed = false;
4098 int i, adjustments_count = 0;
4099 VEC (access_p, heap) *representatives;
4100 ipa_parm_adjustment_vec adjustments;
4102 repr_state = splice_all_param_accesses (&representatives);
4103 if (repr_state == NO_GOOD_ACCESS)
4104 return NULL;
4106 /* If there are any parameters passed by reference which are not modified
4107 directly, we need to check whether they can be modified indirectly. */
4108 if (repr_state == UNMODIF_BY_REF_ACCESSES)
4110 analyze_caller_dereference_legality (representatives);
4111 analyze_modified_params (representatives);
4114 for (i = 0; i < func_param_count; i++)
4116 struct access *repr = VEC_index (access_p, representatives, i);
4118 if (repr && !no_accesses_p (repr))
4120 if (repr->grp_scalar_ptr)
4122 adjustments_count++;
4123 if (repr->grp_not_necessarilly_dereferenced
4124 || repr->grp_maybe_modified)
4125 VEC_replace (access_p, representatives, i, NULL);
4126 else
4128 proceed = true;
4129 sra_stats.scalar_by_ref_to_by_val++;
4132 else
4134 int new_components = decide_one_param_reduction (repr);
4136 if (new_components == 0)
4138 VEC_replace (access_p, representatives, i, NULL);
4139 adjustments_count++;
4141 else
4143 adjustments_count += new_components;
4144 sra_stats.aggregate_params_reduced++;
4145 sra_stats.param_reductions_created += new_components;
4146 proceed = true;
4150 else
4152 if (no_accesses_p (repr))
4154 proceed = true;
4155 sra_stats.deleted_unused_parameters++;
4157 adjustments_count++;
4161 if (!proceed && dump_file)
4162 fprintf (dump_file, "NOT proceeding to change params.\n");
4164 if (proceed)
4165 adjustments = turn_representatives_into_adjustments (representatives,
4166 adjustments_count);
4167 else
4168 adjustments = NULL;
4170 VEC_free (access_p, heap, representatives);
4171 return adjustments;
4174 /* If a parameter replacement identified by ADJ does not yet exist in the form
4175 of declaration, create it and record it, otherwise return the previously
4176 created one. */
4178 static tree
4179 get_replaced_param_substitute (struct ipa_parm_adjustment *adj)
4181 tree repl;
4182 if (!adj->new_ssa_base)
4184 char *pretty_name = make_fancy_name (adj->base);
4186 repl = create_tmp_reg (TREE_TYPE (adj->base), "ISR");
4187 DECL_NAME (repl) = get_identifier (pretty_name);
4188 obstack_free (&name_obstack, pretty_name);
4190 adj->new_ssa_base = repl;
4192 else
4193 repl = adj->new_ssa_base;
4194 return repl;
4197 /* Find the first adjustment for a particular parameter BASE in a vector of
4198 ADJUSTMENTS which is not a copy_param. Return NULL if there is no such
4199 adjustment. */
4201 static struct ipa_parm_adjustment *
4202 get_adjustment_for_base (ipa_parm_adjustment_vec adjustments, tree base)
4204 int i, len;
4206 len = VEC_length (ipa_parm_adjustment_t, adjustments);
4207 for (i = 0; i < len; i++)
4209 struct ipa_parm_adjustment *adj;
4211 adj = &VEC_index (ipa_parm_adjustment_t, adjustments, i);
4212 if (!adj->copy_param && adj->base == base)
4213 return adj;
4216 return NULL;
4219 /* If the statement STMT defines an SSA_NAME of a parameter which is to be
4220 removed because its value is not used, replace the SSA_NAME with a one
4221 relating to a created VAR_DECL together all of its uses and return true.
4222 ADJUSTMENTS is a pointer to an adjustments vector. */
4224 static bool
4225 replace_removed_params_ssa_names (gimple stmt,
4226 ipa_parm_adjustment_vec adjustments)
4228 struct ipa_parm_adjustment *adj;
4229 tree lhs, decl, repl, name;
4231 if (gimple_code (stmt) == GIMPLE_PHI)
4232 lhs = gimple_phi_result (stmt);
4233 else if (is_gimple_assign (stmt))
4234 lhs = gimple_assign_lhs (stmt);
4235 else if (is_gimple_call (stmt))
4236 lhs = gimple_call_lhs (stmt);
4237 else
4238 gcc_unreachable ();
4240 if (TREE_CODE (lhs) != SSA_NAME)
4241 return false;
4243 decl = SSA_NAME_VAR (lhs);
4244 if (decl == NULL_TREE
4245 || TREE_CODE (decl) != PARM_DECL)
4246 return false;
4248 adj = get_adjustment_for_base (adjustments, decl);
4249 if (!adj)
4250 return false;
4252 repl = get_replaced_param_substitute (adj);
4253 name = make_ssa_name (repl, stmt);
4255 if (dump_file)
4257 fprintf (dump_file, "replacing an SSA name of a removed param ");
4258 print_generic_expr (dump_file, lhs, 0);
4259 fprintf (dump_file, " with ");
4260 print_generic_expr (dump_file, name, 0);
4261 fprintf (dump_file, "\n");
4264 if (is_gimple_assign (stmt))
4265 gimple_assign_set_lhs (stmt, name);
4266 else if (is_gimple_call (stmt))
4267 gimple_call_set_lhs (stmt, name);
4268 else
4269 gimple_phi_set_result (stmt, name);
4271 replace_uses_by (lhs, name);
4272 release_ssa_name (lhs);
4273 return true;
4276 /* If the expression *EXPR should be replaced by a reduction of a parameter, do
4277 so. ADJUSTMENTS is a pointer to a vector of adjustments. CONVERT
4278 specifies whether the function should care about type incompatibility the
4279 current and new expressions. If it is false, the function will leave
4280 incompatibility issues to the caller. Return true iff the expression
4281 was modified. */
4283 static bool
4284 sra_ipa_modify_expr (tree *expr, bool convert,
4285 ipa_parm_adjustment_vec adjustments)
4287 int i, len;
4288 struct ipa_parm_adjustment *adj, *cand = NULL;
4289 HOST_WIDE_INT offset, size, max_size;
4290 tree base, src;
4292 len = VEC_length (ipa_parm_adjustment_t, adjustments);
4294 if (TREE_CODE (*expr) == BIT_FIELD_REF
4295 || TREE_CODE (*expr) == IMAGPART_EXPR
4296 || TREE_CODE (*expr) == REALPART_EXPR)
4298 expr = &TREE_OPERAND (*expr, 0);
4299 convert = true;
4302 base = get_ref_base_and_extent (*expr, &offset, &size, &max_size);
4303 if (!base || size == -1 || max_size == -1)
4304 return false;
4306 if (TREE_CODE (base) == MEM_REF)
4308 offset += mem_ref_offset (base).low * BITS_PER_UNIT;
4309 base = TREE_OPERAND (base, 0);
4312 base = get_ssa_base_param (base);
4313 if (!base || TREE_CODE (base) != PARM_DECL)
4314 return false;
4316 for (i = 0; i < len; i++)
4318 adj = &VEC_index (ipa_parm_adjustment_t, adjustments, i);
4320 if (adj->base == base &&
4321 (adj->offset == offset || adj->remove_param))
4323 cand = adj;
4324 break;
4327 if (!cand || cand->copy_param || cand->remove_param)
4328 return false;
4330 if (cand->by_ref)
4331 src = build_simple_mem_ref (cand->reduction);
4332 else
4333 src = cand->reduction;
4335 if (dump_file && (dump_flags & TDF_DETAILS))
4337 fprintf (dump_file, "About to replace expr ");
4338 print_generic_expr (dump_file, *expr, 0);
4339 fprintf (dump_file, " with ");
4340 print_generic_expr (dump_file, src, 0);
4341 fprintf (dump_file, "\n");
4344 if (convert && !useless_type_conversion_p (TREE_TYPE (*expr), cand->type))
4346 tree vce = build1 (VIEW_CONVERT_EXPR, TREE_TYPE (*expr), src);
4347 *expr = vce;
4349 else
4350 *expr = src;
4351 return true;
4354 /* If the statement pointed to by STMT_PTR contains any expressions that need
4355 to replaced with a different one as noted by ADJUSTMENTS, do so. Handle any
4356 potential type incompatibilities (GSI is used to accommodate conversion
4357 statements and must point to the statement). Return true iff the statement
4358 was modified. */
4360 static bool
4361 sra_ipa_modify_assign (gimple *stmt_ptr, gimple_stmt_iterator *gsi,
4362 ipa_parm_adjustment_vec adjustments)
4364 gimple stmt = *stmt_ptr;
4365 tree *lhs_p, *rhs_p;
4366 bool any;
4368 if (!gimple_assign_single_p (stmt))
4369 return false;
4371 rhs_p = gimple_assign_rhs1_ptr (stmt);
4372 lhs_p = gimple_assign_lhs_ptr (stmt);
4374 any = sra_ipa_modify_expr (rhs_p, false, adjustments);
4375 any |= sra_ipa_modify_expr (lhs_p, false, adjustments);
4376 if (any)
4378 tree new_rhs = NULL_TREE;
4380 if (!useless_type_conversion_p (TREE_TYPE (*lhs_p), TREE_TYPE (*rhs_p)))
4382 if (TREE_CODE (*rhs_p) == CONSTRUCTOR)
4384 /* V_C_Es of constructors can cause trouble (PR 42714). */
4385 if (is_gimple_reg_type (TREE_TYPE (*lhs_p)))
4386 *rhs_p = build_zero_cst (TREE_TYPE (*lhs_p));
4387 else
4388 *rhs_p = build_constructor (TREE_TYPE (*lhs_p), 0);
4390 else
4391 new_rhs = fold_build1_loc (gimple_location (stmt),
4392 VIEW_CONVERT_EXPR, TREE_TYPE (*lhs_p),
4393 *rhs_p);
4395 else if (REFERENCE_CLASS_P (*rhs_p)
4396 && is_gimple_reg_type (TREE_TYPE (*lhs_p))
4397 && !is_gimple_reg (*lhs_p))
4398 /* This can happen when an assignment in between two single field
4399 structures is turned into an assignment in between two pointers to
4400 scalars (PR 42237). */
4401 new_rhs = *rhs_p;
4403 if (new_rhs)
4405 tree tmp = force_gimple_operand_gsi (gsi, new_rhs, true, NULL_TREE,
4406 true, GSI_SAME_STMT);
4408 gimple_assign_set_rhs_from_tree (gsi, tmp);
4411 return true;
4414 return false;
4417 /* Traverse the function body and all modifications as described in
4418 ADJUSTMENTS. Return true iff the CFG has been changed. */
4420 static bool
4421 ipa_sra_modify_function_body (ipa_parm_adjustment_vec adjustments)
4423 bool cfg_changed = false;
4424 basic_block bb;
4426 FOR_EACH_BB (bb)
4428 gimple_stmt_iterator gsi;
4430 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4431 replace_removed_params_ssa_names (gsi_stmt (gsi), adjustments);
4433 gsi = gsi_start_bb (bb);
4434 while (!gsi_end_p (gsi))
4436 gimple stmt = gsi_stmt (gsi);
4437 bool modified = false;
4438 tree *t;
4439 unsigned i;
4441 switch (gimple_code (stmt))
4443 case GIMPLE_RETURN:
4444 t = gimple_return_retval_ptr (stmt);
4445 if (*t != NULL_TREE)
4446 modified |= sra_ipa_modify_expr (t, true, adjustments);
4447 break;
4449 case GIMPLE_ASSIGN:
4450 modified |= sra_ipa_modify_assign (&stmt, &gsi, adjustments);
4451 modified |= replace_removed_params_ssa_names (stmt, adjustments);
4452 break;
4454 case GIMPLE_CALL:
4455 /* Operands must be processed before the lhs. */
4456 for (i = 0; i < gimple_call_num_args (stmt); i++)
4458 t = gimple_call_arg_ptr (stmt, i);
4459 modified |= sra_ipa_modify_expr (t, true, adjustments);
4462 if (gimple_call_lhs (stmt))
4464 t = gimple_call_lhs_ptr (stmt);
4465 modified |= sra_ipa_modify_expr (t, false, adjustments);
4466 modified |= replace_removed_params_ssa_names (stmt,
4467 adjustments);
4469 break;
4471 case GIMPLE_ASM:
4472 for (i = 0; i < gimple_asm_ninputs (stmt); i++)
4474 t = &TREE_VALUE (gimple_asm_input_op (stmt, i));
4475 modified |= sra_ipa_modify_expr (t, true, adjustments);
4477 for (i = 0; i < gimple_asm_noutputs (stmt); i++)
4479 t = &TREE_VALUE (gimple_asm_output_op (stmt, i));
4480 modified |= sra_ipa_modify_expr (t, false, adjustments);
4482 break;
4484 default:
4485 break;
4488 if (modified)
4490 update_stmt (stmt);
4491 if (maybe_clean_eh_stmt (stmt)
4492 && gimple_purge_dead_eh_edges (gimple_bb (stmt)))
4493 cfg_changed = true;
4495 gsi_next (&gsi);
4499 return cfg_changed;
4502 /* Call gimple_debug_bind_reset_value on all debug statements describing
4503 gimple register parameters that are being removed or replaced. */
4505 static void
4506 sra_ipa_reset_debug_stmts (ipa_parm_adjustment_vec adjustments)
4508 int i, len;
4509 gimple_stmt_iterator *gsip = NULL, gsi;
4511 if (MAY_HAVE_DEBUG_STMTS && single_succ_p (ENTRY_BLOCK_PTR))
4513 gsi = gsi_after_labels (single_succ (ENTRY_BLOCK_PTR));
4514 gsip = &gsi;
4516 len = VEC_length (ipa_parm_adjustment_t, adjustments);
4517 for (i = 0; i < len; i++)
4519 struct ipa_parm_adjustment *adj;
4520 imm_use_iterator ui;
4521 gimple stmt, def_temp;
4522 tree name, vexpr, copy = NULL_TREE;
4523 use_operand_p use_p;
4525 adj = &VEC_index (ipa_parm_adjustment_t, adjustments, i);
4526 if (adj->copy_param || !is_gimple_reg (adj->base))
4527 continue;
4528 name = ssa_default_def (cfun, adj->base);
4529 vexpr = NULL;
4530 if (name)
4531 FOR_EACH_IMM_USE_STMT (stmt, ui, name)
4533 /* All other users must have been removed by
4534 ipa_sra_modify_function_body. */
4535 gcc_assert (is_gimple_debug (stmt));
4536 if (vexpr == NULL && gsip != NULL)
4538 gcc_assert (TREE_CODE (adj->base) == PARM_DECL);
4539 vexpr = make_node (DEBUG_EXPR_DECL);
4540 def_temp = gimple_build_debug_source_bind (vexpr, adj->base,
4541 NULL);
4542 DECL_ARTIFICIAL (vexpr) = 1;
4543 TREE_TYPE (vexpr) = TREE_TYPE (name);
4544 DECL_MODE (vexpr) = DECL_MODE (adj->base);
4545 gsi_insert_before (gsip, def_temp, GSI_SAME_STMT);
4547 if (vexpr)
4549 FOR_EACH_IMM_USE_ON_STMT (use_p, ui)
4550 SET_USE (use_p, vexpr);
4552 else
4553 gimple_debug_bind_reset_value (stmt);
4554 update_stmt (stmt);
4556 /* Create a VAR_DECL for debug info purposes. */
4557 if (!DECL_IGNORED_P (adj->base))
4559 copy = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
4560 VAR_DECL, DECL_NAME (adj->base),
4561 TREE_TYPE (adj->base));
4562 if (DECL_PT_UID_SET_P (adj->base))
4563 SET_DECL_PT_UID (copy, DECL_PT_UID (adj->base));
4564 TREE_ADDRESSABLE (copy) = TREE_ADDRESSABLE (adj->base);
4565 TREE_READONLY (copy) = TREE_READONLY (adj->base);
4566 TREE_THIS_VOLATILE (copy) = TREE_THIS_VOLATILE (adj->base);
4567 DECL_GIMPLE_REG_P (copy) = DECL_GIMPLE_REG_P (adj->base);
4568 DECL_ARTIFICIAL (copy) = DECL_ARTIFICIAL (adj->base);
4569 DECL_IGNORED_P (copy) = DECL_IGNORED_P (adj->base);
4570 DECL_ABSTRACT_ORIGIN (copy) = DECL_ORIGIN (adj->base);
4571 DECL_SEEN_IN_BIND_EXPR_P (copy) = 1;
4572 SET_DECL_RTL (copy, 0);
4573 TREE_USED (copy) = 1;
4574 DECL_CONTEXT (copy) = current_function_decl;
4575 add_local_decl (cfun, copy);
4576 DECL_CHAIN (copy) =
4577 BLOCK_VARS (DECL_INITIAL (current_function_decl));
4578 BLOCK_VARS (DECL_INITIAL (current_function_decl)) = copy;
4580 if (gsip != NULL && copy && target_for_debug_bind (adj->base))
4582 gcc_assert (TREE_CODE (adj->base) == PARM_DECL);
4583 if (vexpr)
4584 def_temp = gimple_build_debug_bind (copy, vexpr, NULL);
4585 else
4586 def_temp = gimple_build_debug_source_bind (copy, adj->base,
4587 NULL);
4588 gsi_insert_before (gsip, def_temp, GSI_SAME_STMT);
4593 /* Return false iff all callers have at least as many actual arguments as there
4594 are formal parameters in the current function. */
4596 static bool
4597 not_all_callers_have_enough_arguments_p (struct cgraph_node *node,
4598 void *data ATTRIBUTE_UNUSED)
4600 struct cgraph_edge *cs;
4601 for (cs = node->callers; cs; cs = cs->next_caller)
4602 if (!callsite_has_enough_arguments_p (cs->call_stmt))
4603 return true;
4605 return false;
4608 /* Convert all callers of NODE. */
4610 static bool
4611 convert_callers_for_node (struct cgraph_node *node,
4612 void *data)
4614 ipa_parm_adjustment_vec adjustments = (ipa_parm_adjustment_vec)data;
4615 bitmap recomputed_callers = BITMAP_ALLOC (NULL);
4616 struct cgraph_edge *cs;
4618 for (cs = node->callers; cs; cs = cs->next_caller)
4620 current_function_decl = cs->caller->symbol.decl;
4621 push_cfun (DECL_STRUCT_FUNCTION (cs->caller->symbol.decl));
4623 if (dump_file)
4624 fprintf (dump_file, "Adjusting call (%i -> %i) %s -> %s\n",
4625 cs->caller->uid, cs->callee->uid,
4626 xstrdup (cgraph_node_name (cs->caller)),
4627 xstrdup (cgraph_node_name (cs->callee)));
4629 ipa_modify_call_arguments (cs, cs->call_stmt, adjustments);
4631 pop_cfun ();
4634 for (cs = node->callers; cs; cs = cs->next_caller)
4635 if (bitmap_set_bit (recomputed_callers, cs->caller->uid)
4636 && gimple_in_ssa_p (DECL_STRUCT_FUNCTION (cs->caller->symbol.decl)))
4637 compute_inline_parameters (cs->caller, true);
4638 BITMAP_FREE (recomputed_callers);
4640 return true;
4643 /* Convert all callers of NODE to pass parameters as given in ADJUSTMENTS. */
4645 static void
4646 convert_callers (struct cgraph_node *node, tree old_decl,
4647 ipa_parm_adjustment_vec adjustments)
4649 tree old_cur_fndecl = current_function_decl;
4650 basic_block this_block;
4652 cgraph_for_node_and_aliases (node, convert_callers_for_node,
4653 adjustments, false);
4655 current_function_decl = old_cur_fndecl;
4657 if (!encountered_recursive_call)
4658 return;
4660 FOR_EACH_BB (this_block)
4662 gimple_stmt_iterator gsi;
4664 for (gsi = gsi_start_bb (this_block); !gsi_end_p (gsi); gsi_next (&gsi))
4666 gimple stmt = gsi_stmt (gsi);
4667 tree call_fndecl;
4668 if (gimple_code (stmt) != GIMPLE_CALL)
4669 continue;
4670 call_fndecl = gimple_call_fndecl (stmt);
4671 if (call_fndecl == old_decl)
4673 if (dump_file)
4674 fprintf (dump_file, "Adjusting recursive call");
4675 gimple_call_set_fndecl (stmt, node->symbol.decl);
4676 ipa_modify_call_arguments (NULL, stmt, adjustments);
4681 return;
4684 /* Perform all the modification required in IPA-SRA for NODE to have parameters
4685 as given in ADJUSTMENTS. Return true iff the CFG has been changed. */
4687 static bool
4688 modify_function (struct cgraph_node *node, ipa_parm_adjustment_vec adjustments)
4690 struct cgraph_node *new_node;
4691 bool cfg_changed;
4692 VEC (cgraph_edge_p, heap) * redirect_callers = collect_callers_of_node (node);
4694 rebuild_cgraph_edges ();
4695 free_dominance_info (CDI_DOMINATORS);
4696 pop_cfun ();
4697 current_function_decl = NULL_TREE;
4699 new_node = cgraph_function_versioning (node, redirect_callers, NULL, NULL,
4700 false, NULL, NULL, "isra");
4701 VEC_free (cgraph_edge_p, heap, redirect_callers);
4703 current_function_decl = new_node->symbol.decl;
4704 push_cfun (DECL_STRUCT_FUNCTION (new_node->symbol.decl));
4706 ipa_modify_formal_parameters (current_function_decl, adjustments, "ISRA");
4707 cfg_changed = ipa_sra_modify_function_body (adjustments);
4708 sra_ipa_reset_debug_stmts (adjustments);
4709 convert_callers (new_node, node->symbol.decl, adjustments);
4710 cgraph_make_node_local (new_node);
4711 return cfg_changed;
4714 /* Return false the function is apparently unsuitable for IPA-SRA based on it's
4715 attributes, return true otherwise. NODE is the cgraph node of the current
4716 function. */
4718 static bool
4719 ipa_sra_preliminary_function_checks (struct cgraph_node *node)
4721 if (!cgraph_node_can_be_local_p (node))
4723 if (dump_file)
4724 fprintf (dump_file, "Function not local to this compilation unit.\n");
4725 return false;
4728 if (!node->local.can_change_signature)
4730 if (dump_file)
4731 fprintf (dump_file, "Function can not change signature.\n");
4732 return false;
4735 if (!tree_versionable_function_p (node->symbol.decl))
4737 if (dump_file)
4738 fprintf (dump_file, "Function is not versionable.\n");
4739 return false;
4742 if (DECL_VIRTUAL_P (current_function_decl))
4744 if (dump_file)
4745 fprintf (dump_file, "Function is a virtual method.\n");
4746 return false;
4749 if ((DECL_COMDAT (node->symbol.decl) || DECL_EXTERNAL (node->symbol.decl))
4750 && inline_summary(node)->size >= MAX_INLINE_INSNS_AUTO)
4752 if (dump_file)
4753 fprintf (dump_file, "Function too big to be made truly local.\n");
4754 return false;
4757 if (!node->callers)
4759 if (dump_file)
4760 fprintf (dump_file,
4761 "Function has no callers in this compilation unit.\n");
4762 return false;
4765 if (cfun->stdarg)
4767 if (dump_file)
4768 fprintf (dump_file, "Function uses stdarg. \n");
4769 return false;
4772 if (TYPE_ATTRIBUTES (TREE_TYPE (node->symbol.decl)))
4773 return false;
4775 return true;
4778 /* Perform early interprocedural SRA. */
4780 static unsigned int
4781 ipa_early_sra (void)
4783 struct cgraph_node *node = cgraph_get_node (current_function_decl);
4784 ipa_parm_adjustment_vec adjustments;
4785 int ret = 0;
4787 if (!ipa_sra_preliminary_function_checks (node))
4788 return 0;
4790 sra_initialize ();
4791 sra_mode = SRA_MODE_EARLY_IPA;
4793 if (!find_param_candidates ())
4795 if (dump_file)
4796 fprintf (dump_file, "Function has no IPA-SRA candidates.\n");
4797 goto simple_out;
4800 if (cgraph_for_node_and_aliases (node, not_all_callers_have_enough_arguments_p,
4801 NULL, true))
4803 if (dump_file)
4804 fprintf (dump_file, "There are callers with insufficient number of "
4805 "arguments.\n");
4806 goto simple_out;
4809 bb_dereferences = XCNEWVEC (HOST_WIDE_INT,
4810 func_param_count
4811 * last_basic_block_for_function (cfun));
4812 final_bbs = BITMAP_ALLOC (NULL);
4814 scan_function ();
4815 if (encountered_apply_args)
4817 if (dump_file)
4818 fprintf (dump_file, "Function calls __builtin_apply_args().\n");
4819 goto out;
4822 if (encountered_unchangable_recursive_call)
4824 if (dump_file)
4825 fprintf (dump_file, "Function calls itself with insufficient "
4826 "number of arguments.\n");
4827 goto out;
4830 adjustments = analyze_all_param_acesses ();
4831 if (!adjustments)
4832 goto out;
4833 if (dump_file)
4834 ipa_dump_param_adjustments (dump_file, adjustments, current_function_decl);
4836 if (modify_function (node, adjustments))
4837 ret = TODO_update_ssa | TODO_cleanup_cfg;
4838 else
4839 ret = TODO_update_ssa;
4840 VEC_free (ipa_parm_adjustment_t, heap, adjustments);
4842 statistics_counter_event (cfun, "Unused parameters deleted",
4843 sra_stats.deleted_unused_parameters);
4844 statistics_counter_event (cfun, "Scalar parameters converted to by-value",
4845 sra_stats.scalar_by_ref_to_by_val);
4846 statistics_counter_event (cfun, "Aggregate parameters broken up",
4847 sra_stats.aggregate_params_reduced);
4848 statistics_counter_event (cfun, "Aggregate parameter components created",
4849 sra_stats.param_reductions_created);
4851 out:
4852 BITMAP_FREE (final_bbs);
4853 free (bb_dereferences);
4854 simple_out:
4855 sra_deinitialize ();
4856 return ret;
4859 /* Return if early ipa sra shall be performed. */
4860 static bool
4861 ipa_early_sra_gate (void)
4863 return flag_ipa_sra && dbg_cnt (eipa_sra);
4866 struct gimple_opt_pass pass_early_ipa_sra =
4869 GIMPLE_PASS,
4870 "eipa_sra", /* name */
4871 ipa_early_sra_gate, /* gate */
4872 ipa_early_sra, /* execute */
4873 NULL, /* sub */
4874 NULL, /* next */
4875 0, /* static_pass_number */
4876 TV_IPA_SRA, /* tv_id */
4877 0, /* properties_required */
4878 0, /* properties_provided */
4879 0, /* properties_destroyed */
4880 0, /* todo_flags_start */
4881 TODO_dump_symtab /* todo_flags_finish */