2012-09-04 Janus Weil <janus@gcc.gnu.org>
[official-gcc.git] / gcc / reload.c
blobf4f3ed03d859fb59a251cc3bfc32fe592d041b2d
1 /* Search an insn for pseudo regs that must be in hard regs and are not.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This file contains subroutines used only from the file reload1.c.
23 It knows how to scan one insn for operands and values
24 that need to be copied into registers to make valid code.
25 It also finds other operands and values which are valid
26 but for which equivalent values in registers exist and
27 ought to be used instead.
29 Before processing the first insn of the function, call `init_reload'.
30 init_reload actually has to be called earlier anyway.
32 To scan an insn, call `find_reloads'. This does two things:
33 1. sets up tables describing which values must be reloaded
34 for this insn, and what kind of hard regs they must be reloaded into;
35 2. optionally record the locations where those values appear in
36 the data, so they can be replaced properly later.
37 This is done only if the second arg to `find_reloads' is nonzero.
39 The third arg to `find_reloads' specifies the number of levels
40 of indirect addressing supported by the machine. If it is zero,
41 indirect addressing is not valid. If it is one, (MEM (REG n))
42 is valid even if (REG n) did not get a hard register; if it is two,
43 (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
44 hard register, and similarly for higher values.
46 Then you must choose the hard regs to reload those pseudo regs into,
47 and generate appropriate load insns before this insn and perhaps
48 also store insns after this insn. Set up the array `reload_reg_rtx'
49 to contain the REG rtx's for the registers you used. In some
50 cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
51 for certain reloads. Then that tells you which register to use,
52 so you do not need to allocate one. But you still do need to add extra
53 instructions to copy the value into and out of that register.
55 Finally you must call `subst_reloads' to substitute the reload reg rtx's
56 into the locations already recorded.
58 NOTE SIDE EFFECTS:
60 find_reloads can alter the operands of the instruction it is called on.
62 1. Two operands of any sort may be interchanged, if they are in a
63 commutative instruction.
64 This happens only if find_reloads thinks the instruction will compile
65 better that way.
67 2. Pseudo-registers that are equivalent to constants are replaced
68 with those constants if they are not in hard registers.
70 1 happens every time find_reloads is called.
71 2 happens only when REPLACE is 1, which is only when
72 actually doing the reloads, not when just counting them.
74 Using a reload register for several reloads in one insn:
76 When an insn has reloads, it is considered as having three parts:
77 the input reloads, the insn itself after reloading, and the output reloads.
78 Reloads of values used in memory addresses are often needed for only one part.
80 When this is so, reload_when_needed records which part needs the reload.
81 Two reloads for different parts of the insn can share the same reload
82 register.
84 When a reload is used for addresses in multiple parts, or when it is
85 an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
86 a register with any other reload. */
88 #define REG_OK_STRICT
90 /* We do not enable this with ENABLE_CHECKING, since it is awfully slow. */
91 #undef DEBUG_RELOAD
93 #include "config.h"
94 #include "system.h"
95 #include "coretypes.h"
96 #include "tm.h"
97 #include "rtl-error.h"
98 #include "tm_p.h"
99 #include "insn-config.h"
100 #include "expr.h"
101 #include "optabs.h"
102 #include "recog.h"
103 #include "df.h"
104 #include "reload.h"
105 #include "regs.h"
106 #include "addresses.h"
107 #include "hard-reg-set.h"
108 #include "flags.h"
109 #include "function.h"
110 #include "params.h"
111 #include "target.h"
112 #include "ira.h"
114 /* True if X is a constant that can be forced into the constant pool.
115 MODE is the mode of the operand, or VOIDmode if not known. */
116 #define CONST_POOL_OK_P(MODE, X) \
117 ((MODE) != VOIDmode \
118 && CONSTANT_P (X) \
119 && GET_CODE (X) != HIGH \
120 && !targetm.cannot_force_const_mem (MODE, X))
122 /* True if C is a non-empty register class that has too few registers
123 to be safely used as a reload target class. */
125 static inline bool
126 small_register_class_p (reg_class_t rclass)
128 return (reg_class_size [(int) rclass] == 1
129 || (reg_class_size [(int) rclass] >= 1
130 && targetm.class_likely_spilled_p (rclass)));
134 /* All reloads of the current insn are recorded here. See reload.h for
135 comments. */
136 int n_reloads;
137 struct reload rld[MAX_RELOADS];
139 /* All the "earlyclobber" operands of the current insn
140 are recorded here. */
141 int n_earlyclobbers;
142 rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
144 int reload_n_operands;
146 /* Replacing reloads.
148 If `replace_reloads' is nonzero, then as each reload is recorded
149 an entry is made for it in the table `replacements'.
150 Then later `subst_reloads' can look through that table and
151 perform all the replacements needed. */
153 /* Nonzero means record the places to replace. */
154 static int replace_reloads;
156 /* Each replacement is recorded with a structure like this. */
157 struct replacement
159 rtx *where; /* Location to store in */
160 int what; /* which reload this is for */
161 enum machine_mode mode; /* mode it must have */
164 static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
166 /* Number of replacements currently recorded. */
167 static int n_replacements;
169 /* Used to track what is modified by an operand. */
170 struct decomposition
172 int reg_flag; /* Nonzero if referencing a register. */
173 int safe; /* Nonzero if this can't conflict with anything. */
174 rtx base; /* Base address for MEM. */
175 HOST_WIDE_INT start; /* Starting offset or register number. */
176 HOST_WIDE_INT end; /* Ending offset or register number. */
179 #ifdef SECONDARY_MEMORY_NEEDED
181 /* Save MEMs needed to copy from one class of registers to another. One MEM
182 is used per mode, but normally only one or two modes are ever used.
184 We keep two versions, before and after register elimination. The one
185 after register elimination is record separately for each operand. This
186 is done in case the address is not valid to be sure that we separately
187 reload each. */
189 static rtx secondary_memlocs[NUM_MACHINE_MODES];
190 static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
191 static int secondary_memlocs_elim_used = 0;
192 #endif
194 /* The instruction we are doing reloads for;
195 so we can test whether a register dies in it. */
196 static rtx this_insn;
198 /* Nonzero if this instruction is a user-specified asm with operands. */
199 static int this_insn_is_asm;
201 /* If hard_regs_live_known is nonzero,
202 we can tell which hard regs are currently live,
203 at least enough to succeed in choosing dummy reloads. */
204 static int hard_regs_live_known;
206 /* Indexed by hard reg number,
207 element is nonnegative if hard reg has been spilled.
208 This vector is passed to `find_reloads' as an argument
209 and is not changed here. */
210 static short *static_reload_reg_p;
212 /* Set to 1 in subst_reg_equivs if it changes anything. */
213 static int subst_reg_equivs_changed;
215 /* On return from push_reload, holds the reload-number for the OUT
216 operand, which can be different for that from the input operand. */
217 static int output_reloadnum;
219 /* Compare two RTX's. */
220 #define MATCHES(x, y) \
221 (x == y || (x != 0 && (REG_P (x) \
222 ? REG_P (y) && REGNO (x) == REGNO (y) \
223 : rtx_equal_p (x, y) && ! side_effects_p (x))))
225 /* Indicates if two reloads purposes are for similar enough things that we
226 can merge their reloads. */
227 #define MERGABLE_RELOADS(when1, when2, op1, op2) \
228 ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
229 || ((when1) == (when2) && (op1) == (op2)) \
230 || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
231 || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
232 && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
233 || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
234 && (when2) == RELOAD_FOR_OTHER_ADDRESS))
236 /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
237 #define MERGE_TO_OTHER(when1, when2, op1, op2) \
238 ((when1) != (when2) \
239 || ! ((op1) == (op2) \
240 || (when1) == RELOAD_FOR_INPUT \
241 || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
242 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
244 /* If we are going to reload an address, compute the reload type to
245 use. */
246 #define ADDR_TYPE(type) \
247 ((type) == RELOAD_FOR_INPUT_ADDRESS \
248 ? RELOAD_FOR_INPADDR_ADDRESS \
249 : ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
250 ? RELOAD_FOR_OUTADDR_ADDRESS \
251 : (type)))
253 static int push_secondary_reload (int, rtx, int, int, enum reg_class,
254 enum machine_mode, enum reload_type,
255 enum insn_code *, secondary_reload_info *);
256 static enum reg_class find_valid_class (enum machine_mode, enum machine_mode,
257 int, unsigned int);
258 static void push_replacement (rtx *, int, enum machine_mode);
259 static void dup_replacements (rtx *, rtx *);
260 static void combine_reloads (void);
261 static int find_reusable_reload (rtx *, rtx, enum reg_class,
262 enum reload_type, int, int);
263 static rtx find_dummy_reload (rtx, rtx, rtx *, rtx *, enum machine_mode,
264 enum machine_mode, reg_class_t, int, int);
265 static int hard_reg_set_here_p (unsigned int, unsigned int, rtx);
266 static struct decomposition decompose (rtx);
267 static int immune_p (rtx, rtx, struct decomposition);
268 static bool alternative_allows_const_pool_ref (rtx, const char *, int);
269 static rtx find_reloads_toplev (rtx, int, enum reload_type, int, int, rtx,
270 int *);
271 static rtx make_memloc (rtx, int);
272 static int maybe_memory_address_addr_space_p (enum machine_mode, rtx,
273 addr_space_t, rtx *);
274 static int find_reloads_address (enum machine_mode, rtx *, rtx, rtx *,
275 int, enum reload_type, int, rtx);
276 static rtx subst_reg_equivs (rtx, rtx);
277 static rtx subst_indexed_address (rtx);
278 static void update_auto_inc_notes (rtx, int, int);
279 static int find_reloads_address_1 (enum machine_mode, addr_space_t, rtx, int,
280 enum rtx_code, enum rtx_code, rtx *,
281 int, enum reload_type,int, rtx);
282 static void find_reloads_address_part (rtx, rtx *, enum reg_class,
283 enum machine_mode, int,
284 enum reload_type, int);
285 static rtx find_reloads_subreg_address (rtx, int, int, enum reload_type,
286 int, rtx, int *);
287 static void copy_replacements_1 (rtx *, rtx *, int);
288 static int find_inc_amount (rtx, rtx);
289 static int refers_to_mem_for_reload_p (rtx);
290 static int refers_to_regno_for_reload_p (unsigned int, unsigned int,
291 rtx, rtx *);
293 /* Add NEW to reg_equiv_alt_mem_list[REGNO] if it's not present in the
294 list yet. */
296 static void
297 push_reg_equiv_alt_mem (int regno, rtx mem)
299 rtx it;
301 for (it = reg_equiv_alt_mem_list (regno); it; it = XEXP (it, 1))
302 if (rtx_equal_p (XEXP (it, 0), mem))
303 return;
305 reg_equiv_alt_mem_list (regno)
306 = alloc_EXPR_LIST (REG_EQUIV, mem,
307 reg_equiv_alt_mem_list (regno));
310 /* Determine if any secondary reloads are needed for loading (if IN_P is
311 nonzero) or storing (if IN_P is zero) X to or from a reload register of
312 register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
313 are needed, push them.
315 Return the reload number of the secondary reload we made, or -1 if
316 we didn't need one. *PICODE is set to the insn_code to use if we do
317 need a secondary reload. */
319 static int
320 push_secondary_reload (int in_p, rtx x, int opnum, int optional,
321 enum reg_class reload_class,
322 enum machine_mode reload_mode, enum reload_type type,
323 enum insn_code *picode, secondary_reload_info *prev_sri)
325 enum reg_class rclass = NO_REGS;
326 enum reg_class scratch_class;
327 enum machine_mode mode = reload_mode;
328 enum insn_code icode = CODE_FOR_nothing;
329 enum insn_code t_icode = CODE_FOR_nothing;
330 enum reload_type secondary_type;
331 int s_reload, t_reload = -1;
332 const char *scratch_constraint;
333 char letter;
334 secondary_reload_info sri;
336 if (type == RELOAD_FOR_INPUT_ADDRESS
337 || type == RELOAD_FOR_OUTPUT_ADDRESS
338 || type == RELOAD_FOR_INPADDR_ADDRESS
339 || type == RELOAD_FOR_OUTADDR_ADDRESS)
340 secondary_type = type;
341 else
342 secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
344 *picode = CODE_FOR_nothing;
346 /* If X is a paradoxical SUBREG, use the inner value to determine both the
347 mode and object being reloaded. */
348 if (paradoxical_subreg_p (x))
350 x = SUBREG_REG (x);
351 reload_mode = GET_MODE (x);
354 /* If X is a pseudo-register that has an equivalent MEM (actually, if it
355 is still a pseudo-register by now, it *must* have an equivalent MEM
356 but we don't want to assume that), use that equivalent when seeing if
357 a secondary reload is needed since whether or not a reload is needed
358 might be sensitive to the form of the MEM. */
360 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER
361 && reg_equiv_mem (REGNO (x)))
362 x = reg_equiv_mem (REGNO (x));
364 sri.icode = CODE_FOR_nothing;
365 sri.prev_sri = prev_sri;
366 rclass = (enum reg_class) targetm.secondary_reload (in_p, x, reload_class,
367 reload_mode, &sri);
368 icode = (enum insn_code) sri.icode;
370 /* If we don't need any secondary registers, done. */
371 if (rclass == NO_REGS && icode == CODE_FOR_nothing)
372 return -1;
374 if (rclass != NO_REGS)
375 t_reload = push_secondary_reload (in_p, x, opnum, optional, rclass,
376 reload_mode, type, &t_icode, &sri);
378 /* If we will be using an insn, the secondary reload is for a
379 scratch register. */
381 if (icode != CODE_FOR_nothing)
383 /* If IN_P is nonzero, the reload register will be the output in
384 operand 0. If IN_P is zero, the reload register will be the input
385 in operand 1. Outputs should have an initial "=", which we must
386 skip. */
388 /* ??? It would be useful to be able to handle only two, or more than
389 three, operands, but for now we can only handle the case of having
390 exactly three: output, input and one temp/scratch. */
391 gcc_assert (insn_data[(int) icode].n_operands == 3);
393 /* ??? We currently have no way to represent a reload that needs
394 an icode to reload from an intermediate tertiary reload register.
395 We should probably have a new field in struct reload to tag a
396 chain of scratch operand reloads onto. */
397 gcc_assert (rclass == NO_REGS);
399 scratch_constraint = insn_data[(int) icode].operand[2].constraint;
400 gcc_assert (*scratch_constraint == '=');
401 scratch_constraint++;
402 if (*scratch_constraint == '&')
403 scratch_constraint++;
404 letter = *scratch_constraint;
405 scratch_class = (letter == 'r' ? GENERAL_REGS
406 : REG_CLASS_FROM_CONSTRAINT ((unsigned char) letter,
407 scratch_constraint));
409 rclass = scratch_class;
410 mode = insn_data[(int) icode].operand[2].mode;
413 /* This case isn't valid, so fail. Reload is allowed to use the same
414 register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
415 in the case of a secondary register, we actually need two different
416 registers for correct code. We fail here to prevent the possibility of
417 silently generating incorrect code later.
419 The convention is that secondary input reloads are valid only if the
420 secondary_class is different from class. If you have such a case, you
421 can not use secondary reloads, you must work around the problem some
422 other way.
424 Allow this when a reload_in/out pattern is being used. I.e. assume
425 that the generated code handles this case. */
427 gcc_assert (!in_p || rclass != reload_class || icode != CODE_FOR_nothing
428 || t_icode != CODE_FOR_nothing);
430 /* See if we can reuse an existing secondary reload. */
431 for (s_reload = 0; s_reload < n_reloads; s_reload++)
432 if (rld[s_reload].secondary_p
433 && (reg_class_subset_p (rclass, rld[s_reload].rclass)
434 || reg_class_subset_p (rld[s_reload].rclass, rclass))
435 && ((in_p && rld[s_reload].inmode == mode)
436 || (! in_p && rld[s_reload].outmode == mode))
437 && ((in_p && rld[s_reload].secondary_in_reload == t_reload)
438 || (! in_p && rld[s_reload].secondary_out_reload == t_reload))
439 && ((in_p && rld[s_reload].secondary_in_icode == t_icode)
440 || (! in_p && rld[s_reload].secondary_out_icode == t_icode))
441 && (small_register_class_p (rclass)
442 || targetm.small_register_classes_for_mode_p (VOIDmode))
443 && MERGABLE_RELOADS (secondary_type, rld[s_reload].when_needed,
444 opnum, rld[s_reload].opnum))
446 if (in_p)
447 rld[s_reload].inmode = mode;
448 if (! in_p)
449 rld[s_reload].outmode = mode;
451 if (reg_class_subset_p (rclass, rld[s_reload].rclass))
452 rld[s_reload].rclass = rclass;
454 rld[s_reload].opnum = MIN (rld[s_reload].opnum, opnum);
455 rld[s_reload].optional &= optional;
456 rld[s_reload].secondary_p = 1;
457 if (MERGE_TO_OTHER (secondary_type, rld[s_reload].when_needed,
458 opnum, rld[s_reload].opnum))
459 rld[s_reload].when_needed = RELOAD_OTHER;
461 break;
464 if (s_reload == n_reloads)
466 #ifdef SECONDARY_MEMORY_NEEDED
467 /* If we need a memory location to copy between the two reload regs,
468 set it up now. Note that we do the input case before making
469 the reload and the output case after. This is due to the
470 way reloads are output. */
472 if (in_p && icode == CODE_FOR_nothing
473 && SECONDARY_MEMORY_NEEDED (rclass, reload_class, mode))
475 get_secondary_mem (x, reload_mode, opnum, type);
477 /* We may have just added new reloads. Make sure we add
478 the new reload at the end. */
479 s_reload = n_reloads;
481 #endif
483 /* We need to make a new secondary reload for this register class. */
484 rld[s_reload].in = rld[s_reload].out = 0;
485 rld[s_reload].rclass = rclass;
487 rld[s_reload].inmode = in_p ? mode : VOIDmode;
488 rld[s_reload].outmode = ! in_p ? mode : VOIDmode;
489 rld[s_reload].reg_rtx = 0;
490 rld[s_reload].optional = optional;
491 rld[s_reload].inc = 0;
492 /* Maybe we could combine these, but it seems too tricky. */
493 rld[s_reload].nocombine = 1;
494 rld[s_reload].in_reg = 0;
495 rld[s_reload].out_reg = 0;
496 rld[s_reload].opnum = opnum;
497 rld[s_reload].when_needed = secondary_type;
498 rld[s_reload].secondary_in_reload = in_p ? t_reload : -1;
499 rld[s_reload].secondary_out_reload = ! in_p ? t_reload : -1;
500 rld[s_reload].secondary_in_icode = in_p ? t_icode : CODE_FOR_nothing;
501 rld[s_reload].secondary_out_icode
502 = ! in_p ? t_icode : CODE_FOR_nothing;
503 rld[s_reload].secondary_p = 1;
505 n_reloads++;
507 #ifdef SECONDARY_MEMORY_NEEDED
508 if (! in_p && icode == CODE_FOR_nothing
509 && SECONDARY_MEMORY_NEEDED (reload_class, rclass, mode))
510 get_secondary_mem (x, mode, opnum, type);
511 #endif
514 *picode = icode;
515 return s_reload;
518 /* If a secondary reload is needed, return its class. If both an intermediate
519 register and a scratch register is needed, we return the class of the
520 intermediate register. */
521 reg_class_t
522 secondary_reload_class (bool in_p, reg_class_t rclass, enum machine_mode mode,
523 rtx x)
525 enum insn_code icode;
526 secondary_reload_info sri;
528 sri.icode = CODE_FOR_nothing;
529 sri.prev_sri = NULL;
530 rclass
531 = (enum reg_class) targetm.secondary_reload (in_p, x, rclass, mode, &sri);
532 icode = (enum insn_code) sri.icode;
534 /* If there are no secondary reloads at all, we return NO_REGS.
535 If an intermediate register is needed, we return its class. */
536 if (icode == CODE_FOR_nothing || rclass != NO_REGS)
537 return rclass;
539 /* No intermediate register is needed, but we have a special reload
540 pattern, which we assume for now needs a scratch register. */
541 return scratch_reload_class (icode);
544 /* ICODE is the insn_code of a reload pattern. Check that it has exactly
545 three operands, verify that operand 2 is an output operand, and return
546 its register class.
547 ??? We'd like to be able to handle any pattern with at least 2 operands,
548 for zero or more scratch registers, but that needs more infrastructure. */
549 enum reg_class
550 scratch_reload_class (enum insn_code icode)
552 const char *scratch_constraint;
553 char scratch_letter;
554 enum reg_class rclass;
556 gcc_assert (insn_data[(int) icode].n_operands == 3);
557 scratch_constraint = insn_data[(int) icode].operand[2].constraint;
558 gcc_assert (*scratch_constraint == '=');
559 scratch_constraint++;
560 if (*scratch_constraint == '&')
561 scratch_constraint++;
562 scratch_letter = *scratch_constraint;
563 if (scratch_letter == 'r')
564 return GENERAL_REGS;
565 rclass = REG_CLASS_FROM_CONSTRAINT ((unsigned char) scratch_letter,
566 scratch_constraint);
567 gcc_assert (rclass != NO_REGS);
568 return rclass;
571 #ifdef SECONDARY_MEMORY_NEEDED
573 /* Return a memory location that will be used to copy X in mode MODE.
574 If we haven't already made a location for this mode in this insn,
575 call find_reloads_address on the location being returned. */
578 get_secondary_mem (rtx x ATTRIBUTE_UNUSED, enum machine_mode mode,
579 int opnum, enum reload_type type)
581 rtx loc;
582 int mem_valid;
584 /* By default, if MODE is narrower than a word, widen it to a word.
585 This is required because most machines that require these memory
586 locations do not support short load and stores from all registers
587 (e.g., FP registers). */
589 #ifdef SECONDARY_MEMORY_NEEDED_MODE
590 mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
591 #else
592 if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD && INTEGRAL_MODE_P (mode))
593 mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
594 #endif
596 /* If we already have made a MEM for this operand in MODE, return it. */
597 if (secondary_memlocs_elim[(int) mode][opnum] != 0)
598 return secondary_memlocs_elim[(int) mode][opnum];
600 /* If this is the first time we've tried to get a MEM for this mode,
601 allocate a new one. `something_changed' in reload will get set
602 by noticing that the frame size has changed. */
604 if (secondary_memlocs[(int) mode] == 0)
606 #ifdef SECONDARY_MEMORY_NEEDED_RTX
607 secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
608 #else
609 secondary_memlocs[(int) mode]
610 = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
611 #endif
614 /* Get a version of the address doing any eliminations needed. If that
615 didn't give us a new MEM, make a new one if it isn't valid. */
617 loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
618 mem_valid = strict_memory_address_addr_space_p (mode, XEXP (loc, 0),
619 MEM_ADDR_SPACE (loc));
621 if (! mem_valid && loc == secondary_memlocs[(int) mode])
622 loc = copy_rtx (loc);
624 /* The only time the call below will do anything is if the stack
625 offset is too large. In that case IND_LEVELS doesn't matter, so we
626 can just pass a zero. Adjust the type to be the address of the
627 corresponding object. If the address was valid, save the eliminated
628 address. If it wasn't valid, we need to make a reload each time, so
629 don't save it. */
631 if (! mem_valid)
633 type = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
634 : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
635 : RELOAD_OTHER);
637 find_reloads_address (mode, &loc, XEXP (loc, 0), &XEXP (loc, 0),
638 opnum, type, 0, 0);
641 secondary_memlocs_elim[(int) mode][opnum] = loc;
642 if (secondary_memlocs_elim_used <= (int)mode)
643 secondary_memlocs_elim_used = (int)mode + 1;
644 return loc;
647 /* Clear any secondary memory locations we've made. */
649 void
650 clear_secondary_mem (void)
652 memset (secondary_memlocs, 0, sizeof secondary_memlocs);
654 #endif /* SECONDARY_MEMORY_NEEDED */
657 /* Find the largest class which has at least one register valid in
658 mode INNER, and which for every such register, that register number
659 plus N is also valid in OUTER (if in range) and is cheap to move
660 into REGNO. Such a class must exist. */
662 static enum reg_class
663 find_valid_class (enum machine_mode outer ATTRIBUTE_UNUSED,
664 enum machine_mode inner ATTRIBUTE_UNUSED, int n,
665 unsigned int dest_regno ATTRIBUTE_UNUSED)
667 int best_cost = -1;
668 int rclass;
669 int regno;
670 enum reg_class best_class = NO_REGS;
671 enum reg_class dest_class ATTRIBUTE_UNUSED = REGNO_REG_CLASS (dest_regno);
672 unsigned int best_size = 0;
673 int cost;
675 for (rclass = 1; rclass < N_REG_CLASSES; rclass++)
677 int bad = 0;
678 int good = 0;
679 for (regno = 0; regno < FIRST_PSEUDO_REGISTER - n && ! bad; regno++)
680 if (TEST_HARD_REG_BIT (reg_class_contents[rclass], regno))
682 if (HARD_REGNO_MODE_OK (regno, inner))
684 good = 1;
685 if (! TEST_HARD_REG_BIT (reg_class_contents[rclass], regno + n)
686 || ! HARD_REGNO_MODE_OK (regno + n, outer))
687 bad = 1;
691 if (bad || !good)
692 continue;
693 cost = register_move_cost (outer, (enum reg_class) rclass, dest_class);
695 if ((reg_class_size[rclass] > best_size
696 && (best_cost < 0 || best_cost >= cost))
697 || best_cost > cost)
699 best_class = (enum reg_class) rclass;
700 best_size = reg_class_size[rclass];
701 best_cost = register_move_cost (outer, (enum reg_class) rclass,
702 dest_class);
706 gcc_assert (best_size != 0);
708 return best_class;
711 /* We are trying to reload a subreg of something that is not a register.
712 Find the largest class which has at least one register valid in
713 mode MODE. OUTER is the mode of the subreg, DEST_CLASS the class in
714 which we would eventually like to obtain the object. */
716 static enum reg_class
717 find_valid_class_1 (enum machine_mode outer ATTRIBUTE_UNUSED,
718 enum machine_mode mode ATTRIBUTE_UNUSED,
719 enum reg_class dest_class ATTRIBUTE_UNUSED)
721 int best_cost = -1;
722 int rclass;
723 int regno;
724 enum reg_class best_class = NO_REGS;
725 unsigned int best_size = 0;
726 int cost;
728 for (rclass = 1; rclass < N_REG_CLASSES; rclass++)
730 int bad = 0;
731 for (regno = 0; regno < FIRST_PSEUDO_REGISTER && !bad; regno++)
732 if (TEST_HARD_REG_BIT (reg_class_contents[rclass], regno)
733 && !HARD_REGNO_MODE_OK (regno, mode))
734 bad = 1;
736 if (bad)
737 continue;
739 cost = register_move_cost (outer, (enum reg_class) rclass, dest_class);
741 if ((reg_class_size[rclass] > best_size
742 && (best_cost < 0 || best_cost >= cost))
743 || best_cost > cost)
745 best_class = (enum reg_class) rclass;
746 best_size = reg_class_size[rclass];
747 best_cost = register_move_cost (outer, (enum reg_class) rclass,
748 dest_class);
752 gcc_assert (best_size != 0);
754 #ifdef LIMIT_RELOAD_CLASS
755 best_class = LIMIT_RELOAD_CLASS (mode, best_class);
756 #endif
757 return best_class;
760 /* Return the number of a previously made reload that can be combined with
761 a new one, or n_reloads if none of the existing reloads can be used.
762 OUT, RCLASS, TYPE and OPNUM are the same arguments as passed to
763 push_reload, they determine the kind of the new reload that we try to
764 combine. P_IN points to the corresponding value of IN, which can be
765 modified by this function.
766 DONT_SHARE is nonzero if we can't share any input-only reload for IN. */
768 static int
769 find_reusable_reload (rtx *p_in, rtx out, enum reg_class rclass,
770 enum reload_type type, int opnum, int dont_share)
772 rtx in = *p_in;
773 int i;
774 /* We can't merge two reloads if the output of either one is
775 earlyclobbered. */
777 if (earlyclobber_operand_p (out))
778 return n_reloads;
780 /* We can use an existing reload if the class is right
781 and at least one of IN and OUT is a match
782 and the other is at worst neutral.
783 (A zero compared against anything is neutral.)
785 For targets with small register classes, don't use existing reloads
786 unless they are for the same thing since that can cause us to need
787 more reload registers than we otherwise would. */
789 for (i = 0; i < n_reloads; i++)
790 if ((reg_class_subset_p (rclass, rld[i].rclass)
791 || reg_class_subset_p (rld[i].rclass, rclass))
792 /* If the existing reload has a register, it must fit our class. */
793 && (rld[i].reg_rtx == 0
794 || TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
795 true_regnum (rld[i].reg_rtx)))
796 && ((in != 0 && MATCHES (rld[i].in, in) && ! dont_share
797 && (out == 0 || rld[i].out == 0 || MATCHES (rld[i].out, out)))
798 || (out != 0 && MATCHES (rld[i].out, out)
799 && (in == 0 || rld[i].in == 0 || MATCHES (rld[i].in, in))))
800 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
801 && (small_register_class_p (rclass)
802 || targetm.small_register_classes_for_mode_p (VOIDmode))
803 && MERGABLE_RELOADS (type, rld[i].when_needed, opnum, rld[i].opnum))
804 return i;
806 /* Reloading a plain reg for input can match a reload to postincrement
807 that reg, since the postincrement's value is the right value.
808 Likewise, it can match a preincrement reload, since we regard
809 the preincrementation as happening before any ref in this insn
810 to that register. */
811 for (i = 0; i < n_reloads; i++)
812 if ((reg_class_subset_p (rclass, rld[i].rclass)
813 || reg_class_subset_p (rld[i].rclass, rclass))
814 /* If the existing reload has a register, it must fit our
815 class. */
816 && (rld[i].reg_rtx == 0
817 || TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
818 true_regnum (rld[i].reg_rtx)))
819 && out == 0 && rld[i].out == 0 && rld[i].in != 0
820 && ((REG_P (in)
821 && GET_RTX_CLASS (GET_CODE (rld[i].in)) == RTX_AUTOINC
822 && MATCHES (XEXP (rld[i].in, 0), in))
823 || (REG_P (rld[i].in)
824 && GET_RTX_CLASS (GET_CODE (in)) == RTX_AUTOINC
825 && MATCHES (XEXP (in, 0), rld[i].in)))
826 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
827 && (small_register_class_p (rclass)
828 || targetm.small_register_classes_for_mode_p (VOIDmode))
829 && MERGABLE_RELOADS (type, rld[i].when_needed,
830 opnum, rld[i].opnum))
832 /* Make sure reload_in ultimately has the increment,
833 not the plain register. */
834 if (REG_P (in))
835 *p_in = rld[i].in;
836 return i;
838 return n_reloads;
841 /* Return true if X is a SUBREG that will need reloading of its SUBREG_REG
842 expression. MODE is the mode that X will be used in. OUTPUT is true if
843 the function is invoked for the output part of an enclosing reload. */
845 static bool
846 reload_inner_reg_of_subreg (rtx x, enum machine_mode mode, bool output)
848 rtx inner;
850 /* Only SUBREGs are problematical. */
851 if (GET_CODE (x) != SUBREG)
852 return false;
854 inner = SUBREG_REG (x);
856 /* If INNER is a constant or PLUS, then INNER will need reloading. */
857 if (CONSTANT_P (inner) || GET_CODE (inner) == PLUS)
858 return true;
860 /* If INNER is not a hard register, then INNER will not need reloading. */
861 if (!(REG_P (inner) && HARD_REGISTER_P (inner)))
862 return false;
864 /* If INNER is not ok for MODE, then INNER will need reloading. */
865 if (!HARD_REGNO_MODE_OK (subreg_regno (x), mode))
866 return true;
868 /* If this is for an output, and the outer part is a word or smaller,
869 INNER is larger than a word and the number of registers in INNER is
870 not the same as the number of words in INNER, then INNER will need
871 reloading (with an in-out reload). */
872 return (output
873 && GET_MODE_SIZE (mode) <= UNITS_PER_WORD
874 && GET_MODE_SIZE (GET_MODE (inner)) > UNITS_PER_WORD
875 && ((GET_MODE_SIZE (GET_MODE (inner)) / UNITS_PER_WORD)
876 != (int) hard_regno_nregs[REGNO (inner)][GET_MODE (inner)]));
879 /* Return nonzero if IN can be reloaded into REGNO with mode MODE without
880 requiring an extra reload register. The caller has already found that
881 IN contains some reference to REGNO, so check that we can produce the
882 new value in a single step. E.g. if we have
883 (set (reg r13) (plus (reg r13) (const int 1))), and there is an
884 instruction that adds one to a register, this should succeed.
885 However, if we have something like
886 (set (reg r13) (plus (reg r13) (const int 999))), and the constant 999
887 needs to be loaded into a register first, we need a separate reload
888 register.
889 Such PLUS reloads are generated by find_reload_address_part.
890 The out-of-range PLUS expressions are usually introduced in the instruction
891 patterns by register elimination and substituting pseudos without a home
892 by their function-invariant equivalences. */
893 static int
894 can_reload_into (rtx in, int regno, enum machine_mode mode)
896 rtx dst, test_insn;
897 int r = 0;
898 struct recog_data save_recog_data;
900 /* For matching constraints, we often get notional input reloads where
901 we want to use the original register as the reload register. I.e.
902 technically this is a non-optional input-output reload, but IN is
903 already a valid register, and has been chosen as the reload register.
904 Speed this up, since it trivially works. */
905 if (REG_P (in))
906 return 1;
908 /* To test MEMs properly, we'd have to take into account all the reloads
909 that are already scheduled, which can become quite complicated.
910 And since we've already handled address reloads for this MEM, it
911 should always succeed anyway. */
912 if (MEM_P (in))
913 return 1;
915 /* If we can make a simple SET insn that does the job, everything should
916 be fine. */
917 dst = gen_rtx_REG (mode, regno);
918 test_insn = make_insn_raw (gen_rtx_SET (VOIDmode, dst, in));
919 save_recog_data = recog_data;
920 if (recog_memoized (test_insn) >= 0)
922 extract_insn (test_insn);
923 r = constrain_operands (1);
925 recog_data = save_recog_data;
926 return r;
929 /* Record one reload that needs to be performed.
930 IN is an rtx saying where the data are to be found before this instruction.
931 OUT says where they must be stored after the instruction.
932 (IN is zero for data not read, and OUT is zero for data not written.)
933 INLOC and OUTLOC point to the places in the instructions where
934 IN and OUT were found.
935 If IN and OUT are both nonzero, it means the same register must be used
936 to reload both IN and OUT.
938 RCLASS is a register class required for the reloaded data.
939 INMODE is the machine mode that the instruction requires
940 for the reg that replaces IN and OUTMODE is likewise for OUT.
942 If IN is zero, then OUT's location and mode should be passed as
943 INLOC and INMODE.
945 STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
947 OPTIONAL nonzero means this reload does not need to be performed:
948 it can be discarded if that is more convenient.
950 OPNUM and TYPE say what the purpose of this reload is.
952 The return value is the reload-number for this reload.
954 If both IN and OUT are nonzero, in some rare cases we might
955 want to make two separate reloads. (Actually we never do this now.)
956 Therefore, the reload-number for OUT is stored in
957 output_reloadnum when we return; the return value applies to IN.
958 Usually (presently always), when IN and OUT are nonzero,
959 the two reload-numbers are equal, but the caller should be careful to
960 distinguish them. */
963 push_reload (rtx in, rtx out, rtx *inloc, rtx *outloc,
964 enum reg_class rclass, enum machine_mode inmode,
965 enum machine_mode outmode, int strict_low, int optional,
966 int opnum, enum reload_type type)
968 int i;
969 int dont_share = 0;
970 int dont_remove_subreg = 0;
971 #ifdef LIMIT_RELOAD_CLASS
972 rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
973 #endif
974 int secondary_in_reload = -1, secondary_out_reload = -1;
975 enum insn_code secondary_in_icode = CODE_FOR_nothing;
976 enum insn_code secondary_out_icode = CODE_FOR_nothing;
977 enum reg_class subreg_in_class ATTRIBUTE_UNUSED;
978 subreg_in_class = NO_REGS;
980 /* INMODE and/or OUTMODE could be VOIDmode if no mode
981 has been specified for the operand. In that case,
982 use the operand's mode as the mode to reload. */
983 if (inmode == VOIDmode && in != 0)
984 inmode = GET_MODE (in);
985 if (outmode == VOIDmode && out != 0)
986 outmode = GET_MODE (out);
988 /* If find_reloads and friends until now missed to replace a pseudo
989 with a constant of reg_equiv_constant something went wrong
990 beforehand.
991 Note that it can't simply be done here if we missed it earlier
992 since the constant might need to be pushed into the literal pool
993 and the resulting memref would probably need further
994 reloading. */
995 if (in != 0 && REG_P (in))
997 int regno = REGNO (in);
999 gcc_assert (regno < FIRST_PSEUDO_REGISTER
1000 || reg_renumber[regno] >= 0
1001 || reg_equiv_constant (regno) == NULL_RTX);
1004 /* reg_equiv_constant only contains constants which are obviously
1005 not appropriate as destination. So if we would need to replace
1006 the destination pseudo with a constant we are in real
1007 trouble. */
1008 if (out != 0 && REG_P (out))
1010 int regno = REGNO (out);
1012 gcc_assert (regno < FIRST_PSEUDO_REGISTER
1013 || reg_renumber[regno] >= 0
1014 || reg_equiv_constant (regno) == NULL_RTX);
1017 /* If we have a read-write operand with an address side-effect,
1018 change either IN or OUT so the side-effect happens only once. */
1019 if (in != 0 && out != 0 && MEM_P (in) && rtx_equal_p (in, out))
1020 switch (GET_CODE (XEXP (in, 0)))
1022 case POST_INC: case POST_DEC: case POST_MODIFY:
1023 in = replace_equiv_address_nv (in, XEXP (XEXP (in, 0), 0));
1024 break;
1026 case PRE_INC: case PRE_DEC: case PRE_MODIFY:
1027 out = replace_equiv_address_nv (out, XEXP (XEXP (out, 0), 0));
1028 break;
1030 default:
1031 break;
1034 /* If we are reloading a (SUBREG constant ...), really reload just the
1035 inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
1036 If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
1037 a pseudo and hence will become a MEM) with M1 wider than M2 and the
1038 register is a pseudo, also reload the inside expression.
1039 For machines that extend byte loads, do this for any SUBREG of a pseudo
1040 where both M1 and M2 are a word or smaller, M1 is wider than M2, and
1041 M2 is an integral mode that gets extended when loaded.
1042 Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R
1043 where either M1 is not valid for R or M2 is wider than a word but we
1044 only need one register to store an M2-sized quantity in R.
1045 (However, if OUT is nonzero, we need to reload the reg *and*
1046 the subreg, so do nothing here, and let following statement handle it.)
1048 Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
1049 we can't handle it here because CONST_INT does not indicate a mode.
1051 Similarly, we must reload the inside expression if we have a
1052 STRICT_LOW_PART (presumably, in == out in this case).
1054 Also reload the inner expression if it does not require a secondary
1055 reload but the SUBREG does.
1057 Finally, reload the inner expression if it is a register that is in
1058 the class whose registers cannot be referenced in a different size
1059 and M1 is not the same size as M2. If subreg_lowpart_p is false, we
1060 cannot reload just the inside since we might end up with the wrong
1061 register class. But if it is inside a STRICT_LOW_PART, we have
1062 no choice, so we hope we do get the right register class there. */
1064 if (in != 0 && GET_CODE (in) == SUBREG
1065 && (subreg_lowpart_p (in) || strict_low)
1066 #ifdef CANNOT_CHANGE_MODE_CLASS
1067 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (in)), inmode, rclass)
1068 #endif
1069 && contains_reg_of_mode[(int) rclass][(int) GET_MODE (SUBREG_REG (in))]
1070 && (CONSTANT_P (SUBREG_REG (in))
1071 || GET_CODE (SUBREG_REG (in)) == PLUS
1072 || strict_low
1073 || (((REG_P (SUBREG_REG (in))
1074 && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
1075 || MEM_P (SUBREG_REG (in)))
1076 && ((GET_MODE_PRECISION (inmode)
1077 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (in))))
1078 #ifdef LOAD_EXTEND_OP
1079 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1080 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1081 <= UNITS_PER_WORD)
1082 && (GET_MODE_PRECISION (inmode)
1083 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (in))))
1084 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
1085 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != UNKNOWN)
1086 #endif
1087 #ifdef WORD_REGISTER_OPERATIONS
1088 || ((GET_MODE_PRECISION (inmode)
1089 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (in))))
1090 && ((GET_MODE_SIZE (inmode) - 1) / UNITS_PER_WORD ==
1091 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1)
1092 / UNITS_PER_WORD)))
1093 #endif
1095 || (REG_P (SUBREG_REG (in))
1096 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1097 /* The case where out is nonzero
1098 is handled differently in the following statement. */
1099 && (out == 0 || subreg_lowpart_p (in))
1100 && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1101 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1102 > UNITS_PER_WORD)
1103 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1104 / UNITS_PER_WORD)
1105 != (int) hard_regno_nregs[REGNO (SUBREG_REG (in))]
1106 [GET_MODE (SUBREG_REG (in))]))
1107 || ! HARD_REGNO_MODE_OK (subreg_regno (in), inmode)))
1108 || (secondary_reload_class (1, rclass, inmode, in) != NO_REGS
1109 && (secondary_reload_class (1, rclass, GET_MODE (SUBREG_REG (in)),
1110 SUBREG_REG (in))
1111 == NO_REGS))
1112 #ifdef CANNOT_CHANGE_MODE_CLASS
1113 || (REG_P (SUBREG_REG (in))
1114 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1115 && REG_CANNOT_CHANGE_MODE_P
1116 (REGNO (SUBREG_REG (in)), GET_MODE (SUBREG_REG (in)), inmode))
1117 #endif
1120 #ifdef LIMIT_RELOAD_CLASS
1121 in_subreg_loc = inloc;
1122 #endif
1123 inloc = &SUBREG_REG (in);
1124 in = *inloc;
1125 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1126 if (MEM_P (in))
1127 /* This is supposed to happen only for paradoxical subregs made by
1128 combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
1129 gcc_assert (GET_MODE_SIZE (GET_MODE (in)) <= GET_MODE_SIZE (inmode));
1130 #endif
1131 inmode = GET_MODE (in);
1134 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R
1135 where M1 is not valid for R if it was not handled by the code above.
1137 Similar issue for (SUBREG constant ...) if it was not handled by the
1138 code above. This can happen if SUBREG_BYTE != 0.
1140 However, we must reload the inner reg *as well as* the subreg in
1141 that case. */
1143 if (in != 0 && reload_inner_reg_of_subreg (in, inmode, false))
1145 if (REG_P (SUBREG_REG (in)))
1146 subreg_in_class
1147 = find_valid_class (inmode, GET_MODE (SUBREG_REG (in)),
1148 subreg_regno_offset (REGNO (SUBREG_REG (in)),
1149 GET_MODE (SUBREG_REG (in)),
1150 SUBREG_BYTE (in),
1151 GET_MODE (in)),
1152 REGNO (SUBREG_REG (in)));
1153 else if (GET_CODE (SUBREG_REG (in)) == SYMBOL_REF)
1154 subreg_in_class = find_valid_class_1 (inmode,
1155 GET_MODE (SUBREG_REG (in)),
1156 rclass);
1158 /* This relies on the fact that emit_reload_insns outputs the
1159 instructions for input reloads of type RELOAD_OTHER in the same
1160 order as the reloads. Thus if the outer reload is also of type
1161 RELOAD_OTHER, we are guaranteed that this inner reload will be
1162 output before the outer reload. */
1163 push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), (rtx *) 0,
1164 subreg_in_class, VOIDmode, VOIDmode, 0, 0, opnum, type);
1165 dont_remove_subreg = 1;
1168 /* Similarly for paradoxical and problematical SUBREGs on the output.
1169 Note that there is no reason we need worry about the previous value
1170 of SUBREG_REG (out); even if wider than out, storing in a subreg is
1171 entitled to clobber it all (except in the case of a word mode subreg
1172 or of a STRICT_LOW_PART, in that latter case the constraint should
1173 label it input-output.) */
1174 if (out != 0 && GET_CODE (out) == SUBREG
1175 && (subreg_lowpart_p (out) || strict_low)
1176 #ifdef CANNOT_CHANGE_MODE_CLASS
1177 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (out)), outmode, rclass)
1178 #endif
1179 && contains_reg_of_mode[(int) rclass][(int) GET_MODE (SUBREG_REG (out))]
1180 && (CONSTANT_P (SUBREG_REG (out))
1181 || strict_low
1182 || (((REG_P (SUBREG_REG (out))
1183 && REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
1184 || MEM_P (SUBREG_REG (out)))
1185 && ((GET_MODE_PRECISION (outmode)
1186 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (out))))
1187 #ifdef WORD_REGISTER_OPERATIONS
1188 || ((GET_MODE_PRECISION (outmode)
1189 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (out))))
1190 && ((GET_MODE_SIZE (outmode) - 1) / UNITS_PER_WORD ==
1191 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1)
1192 / UNITS_PER_WORD)))
1193 #endif
1195 || (REG_P (SUBREG_REG (out))
1196 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1197 /* The case of a word mode subreg
1198 is handled differently in the following statement. */
1199 && ! (GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1200 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1201 > UNITS_PER_WORD))
1202 && ! HARD_REGNO_MODE_OK (subreg_regno (out), outmode))
1203 || (secondary_reload_class (0, rclass, outmode, out) != NO_REGS
1204 && (secondary_reload_class (0, rclass, GET_MODE (SUBREG_REG (out)),
1205 SUBREG_REG (out))
1206 == NO_REGS))
1207 #ifdef CANNOT_CHANGE_MODE_CLASS
1208 || (REG_P (SUBREG_REG (out))
1209 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1210 && REG_CANNOT_CHANGE_MODE_P (REGNO (SUBREG_REG (out)),
1211 GET_MODE (SUBREG_REG (out)),
1212 outmode))
1213 #endif
1216 #ifdef LIMIT_RELOAD_CLASS
1217 out_subreg_loc = outloc;
1218 #endif
1219 outloc = &SUBREG_REG (out);
1220 out = *outloc;
1221 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1222 gcc_assert (!MEM_P (out)
1223 || GET_MODE_SIZE (GET_MODE (out))
1224 <= GET_MODE_SIZE (outmode));
1225 #endif
1226 outmode = GET_MODE (out);
1229 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R
1230 where either M1 is not valid for R or M2 is wider than a word but we
1231 only need one register to store an M2-sized quantity in R.
1233 However, we must reload the inner reg *as well as* the subreg in
1234 that case and the inner reg is an in-out reload. */
1236 if (out != 0 && reload_inner_reg_of_subreg (out, outmode, true))
1238 enum reg_class in_out_class
1239 = find_valid_class (outmode, GET_MODE (SUBREG_REG (out)),
1240 subreg_regno_offset (REGNO (SUBREG_REG (out)),
1241 GET_MODE (SUBREG_REG (out)),
1242 SUBREG_BYTE (out),
1243 GET_MODE (out)),
1244 REGNO (SUBREG_REG (out)));
1246 /* This relies on the fact that emit_reload_insns outputs the
1247 instructions for output reloads of type RELOAD_OTHER in reverse
1248 order of the reloads. Thus if the outer reload is also of type
1249 RELOAD_OTHER, we are guaranteed that this inner reload will be
1250 output after the outer reload. */
1251 push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
1252 &SUBREG_REG (out), in_out_class, VOIDmode, VOIDmode,
1253 0, 0, opnum, RELOAD_OTHER);
1254 dont_remove_subreg = 1;
1257 /* If IN appears in OUT, we can't share any input-only reload for IN. */
1258 if (in != 0 && out != 0 && MEM_P (out)
1259 && (REG_P (in) || MEM_P (in) || GET_CODE (in) == PLUS)
1260 && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
1261 dont_share = 1;
1263 /* If IN is a SUBREG of a hard register, make a new REG. This
1264 simplifies some of the cases below. */
1266 if (in != 0 && GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))
1267 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1268 && ! dont_remove_subreg)
1269 in = gen_rtx_REG (GET_MODE (in), subreg_regno (in));
1271 /* Similarly for OUT. */
1272 if (out != 0 && GET_CODE (out) == SUBREG
1273 && REG_P (SUBREG_REG (out))
1274 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1275 && ! dont_remove_subreg)
1276 out = gen_rtx_REG (GET_MODE (out), subreg_regno (out));
1278 /* Narrow down the class of register wanted if that is
1279 desirable on this machine for efficiency. */
1281 reg_class_t preferred_class = rclass;
1283 if (in != 0)
1284 preferred_class = targetm.preferred_reload_class (in, rclass);
1286 /* Output reloads may need analogous treatment, different in detail. */
1287 if (out != 0)
1288 preferred_class
1289 = targetm.preferred_output_reload_class (out, preferred_class);
1291 /* Discard what the target said if we cannot do it. */
1292 if (preferred_class != NO_REGS
1293 || (optional && type == RELOAD_FOR_OUTPUT))
1294 rclass = (enum reg_class) preferred_class;
1297 /* Make sure we use a class that can handle the actual pseudo
1298 inside any subreg. For example, on the 386, QImode regs
1299 can appear within SImode subregs. Although GENERAL_REGS
1300 can handle SImode, QImode needs a smaller class. */
1301 #ifdef LIMIT_RELOAD_CLASS
1302 if (in_subreg_loc)
1303 rclass = LIMIT_RELOAD_CLASS (inmode, rclass);
1304 else if (in != 0 && GET_CODE (in) == SUBREG)
1305 rclass = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), rclass);
1307 if (out_subreg_loc)
1308 rclass = LIMIT_RELOAD_CLASS (outmode, rclass);
1309 if (out != 0 && GET_CODE (out) == SUBREG)
1310 rclass = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), rclass);
1311 #endif
1313 /* Verify that this class is at least possible for the mode that
1314 is specified. */
1315 if (this_insn_is_asm)
1317 enum machine_mode mode;
1318 if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
1319 mode = inmode;
1320 else
1321 mode = outmode;
1322 if (mode == VOIDmode)
1324 error_for_asm (this_insn, "cannot reload integer constant "
1325 "operand in %<asm%>");
1326 mode = word_mode;
1327 if (in != 0)
1328 inmode = word_mode;
1329 if (out != 0)
1330 outmode = word_mode;
1332 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1333 if (HARD_REGNO_MODE_OK (i, mode)
1334 && in_hard_reg_set_p (reg_class_contents[(int) rclass], mode, i))
1335 break;
1336 if (i == FIRST_PSEUDO_REGISTER)
1338 error_for_asm (this_insn, "impossible register constraint "
1339 "in %<asm%>");
1340 /* Avoid further trouble with this insn. */
1341 PATTERN (this_insn) = gen_rtx_USE (VOIDmode, const0_rtx);
1342 /* We used to continue here setting class to ALL_REGS, but it triggers
1343 sanity check on i386 for:
1344 void foo(long double d)
1346 asm("" :: "a" (d));
1348 Returning zero here ought to be safe as we take care in
1349 find_reloads to not process the reloads when instruction was
1350 replaced by USE. */
1352 return 0;
1356 /* Optional output reloads are always OK even if we have no register class,
1357 since the function of these reloads is only to have spill_reg_store etc.
1358 set, so that the storing insn can be deleted later. */
1359 gcc_assert (rclass != NO_REGS
1360 || (optional != 0 && type == RELOAD_FOR_OUTPUT));
1362 i = find_reusable_reload (&in, out, rclass, type, opnum, dont_share);
1364 if (i == n_reloads)
1366 /* See if we need a secondary reload register to move between CLASS
1367 and IN or CLASS and OUT. Get the icode and push any required reloads
1368 needed for each of them if so. */
1370 if (in != 0)
1371 secondary_in_reload
1372 = push_secondary_reload (1, in, opnum, optional, rclass, inmode, type,
1373 &secondary_in_icode, NULL);
1374 if (out != 0 && GET_CODE (out) != SCRATCH)
1375 secondary_out_reload
1376 = push_secondary_reload (0, out, opnum, optional, rclass, outmode,
1377 type, &secondary_out_icode, NULL);
1379 /* We found no existing reload suitable for re-use.
1380 So add an additional reload. */
1382 #ifdef SECONDARY_MEMORY_NEEDED
1383 if (subreg_in_class == NO_REGS
1384 && in != 0
1385 && (REG_P (in)
1386 || (GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))))
1387 && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER)
1388 subreg_in_class = REGNO_REG_CLASS (reg_or_subregno (in));
1389 /* If a memory location is needed for the copy, make one. */
1390 if (subreg_in_class != NO_REGS
1391 && SECONDARY_MEMORY_NEEDED (subreg_in_class, rclass, inmode))
1392 get_secondary_mem (in, inmode, opnum, type);
1393 #endif
1395 i = n_reloads;
1396 rld[i].in = in;
1397 rld[i].out = out;
1398 rld[i].rclass = rclass;
1399 rld[i].inmode = inmode;
1400 rld[i].outmode = outmode;
1401 rld[i].reg_rtx = 0;
1402 rld[i].optional = optional;
1403 rld[i].inc = 0;
1404 rld[i].nocombine = 0;
1405 rld[i].in_reg = inloc ? *inloc : 0;
1406 rld[i].out_reg = outloc ? *outloc : 0;
1407 rld[i].opnum = opnum;
1408 rld[i].when_needed = type;
1409 rld[i].secondary_in_reload = secondary_in_reload;
1410 rld[i].secondary_out_reload = secondary_out_reload;
1411 rld[i].secondary_in_icode = secondary_in_icode;
1412 rld[i].secondary_out_icode = secondary_out_icode;
1413 rld[i].secondary_p = 0;
1415 n_reloads++;
1417 #ifdef SECONDARY_MEMORY_NEEDED
1418 if (out != 0
1419 && (REG_P (out)
1420 || (GET_CODE (out) == SUBREG && REG_P (SUBREG_REG (out))))
1421 && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
1422 && SECONDARY_MEMORY_NEEDED (rclass,
1423 REGNO_REG_CLASS (reg_or_subregno (out)),
1424 outmode))
1425 get_secondary_mem (out, outmode, opnum, type);
1426 #endif
1428 else
1430 /* We are reusing an existing reload,
1431 but we may have additional information for it.
1432 For example, we may now have both IN and OUT
1433 while the old one may have just one of them. */
1435 /* The modes can be different. If they are, we want to reload in
1436 the larger mode, so that the value is valid for both modes. */
1437 if (inmode != VOIDmode
1438 && GET_MODE_SIZE (inmode) > GET_MODE_SIZE (rld[i].inmode))
1439 rld[i].inmode = inmode;
1440 if (outmode != VOIDmode
1441 && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (rld[i].outmode))
1442 rld[i].outmode = outmode;
1443 if (in != 0)
1445 rtx in_reg = inloc ? *inloc : 0;
1446 /* If we merge reloads for two distinct rtl expressions that
1447 are identical in content, there might be duplicate address
1448 reloads. Remove the extra set now, so that if we later find
1449 that we can inherit this reload, we can get rid of the
1450 address reloads altogether.
1452 Do not do this if both reloads are optional since the result
1453 would be an optional reload which could potentially leave
1454 unresolved address replacements.
1456 It is not sufficient to call transfer_replacements since
1457 choose_reload_regs will remove the replacements for address
1458 reloads of inherited reloads which results in the same
1459 problem. */
1460 if (rld[i].in != in && rtx_equal_p (in, rld[i].in)
1461 && ! (rld[i].optional && optional))
1463 /* We must keep the address reload with the lower operand
1464 number alive. */
1465 if (opnum > rld[i].opnum)
1467 remove_address_replacements (in);
1468 in = rld[i].in;
1469 in_reg = rld[i].in_reg;
1471 else
1472 remove_address_replacements (rld[i].in);
1474 /* When emitting reloads we don't necessarily look at the in-
1475 and outmode, but also directly at the operands (in and out).
1476 So we can't simply overwrite them with whatever we have found
1477 for this (to-be-merged) reload, we have to "merge" that too.
1478 Reusing another reload already verified that we deal with the
1479 same operands, just possibly in different modes. So we
1480 overwrite the operands only when the new mode is larger.
1481 See also PR33613. */
1482 if (!rld[i].in
1483 || GET_MODE_SIZE (GET_MODE (in))
1484 > GET_MODE_SIZE (GET_MODE (rld[i].in)))
1485 rld[i].in = in;
1486 if (!rld[i].in_reg
1487 || (in_reg
1488 && GET_MODE_SIZE (GET_MODE (in_reg))
1489 > GET_MODE_SIZE (GET_MODE (rld[i].in_reg))))
1490 rld[i].in_reg = in_reg;
1492 if (out != 0)
1494 if (!rld[i].out
1495 || (out
1496 && GET_MODE_SIZE (GET_MODE (out))
1497 > GET_MODE_SIZE (GET_MODE (rld[i].out))))
1498 rld[i].out = out;
1499 if (outloc
1500 && (!rld[i].out_reg
1501 || GET_MODE_SIZE (GET_MODE (*outloc))
1502 > GET_MODE_SIZE (GET_MODE (rld[i].out_reg))))
1503 rld[i].out_reg = *outloc;
1505 if (reg_class_subset_p (rclass, rld[i].rclass))
1506 rld[i].rclass = rclass;
1507 rld[i].optional &= optional;
1508 if (MERGE_TO_OTHER (type, rld[i].when_needed,
1509 opnum, rld[i].opnum))
1510 rld[i].when_needed = RELOAD_OTHER;
1511 rld[i].opnum = MIN (rld[i].opnum, opnum);
1514 /* If the ostensible rtx being reloaded differs from the rtx found
1515 in the location to substitute, this reload is not safe to combine
1516 because we cannot reliably tell whether it appears in the insn. */
1518 if (in != 0 && in != *inloc)
1519 rld[i].nocombine = 1;
1521 #if 0
1522 /* This was replaced by changes in find_reloads_address_1 and the new
1523 function inc_for_reload, which go with a new meaning of reload_inc. */
1525 /* If this is an IN/OUT reload in an insn that sets the CC,
1526 it must be for an autoincrement. It doesn't work to store
1527 the incremented value after the insn because that would clobber the CC.
1528 So we must do the increment of the value reloaded from,
1529 increment it, store it back, then decrement again. */
1530 if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
1532 out = 0;
1533 rld[i].out = 0;
1534 rld[i].inc = find_inc_amount (PATTERN (this_insn), in);
1535 /* If we did not find a nonzero amount-to-increment-by,
1536 that contradicts the belief that IN is being incremented
1537 in an address in this insn. */
1538 gcc_assert (rld[i].inc != 0);
1540 #endif
1542 /* If we will replace IN and OUT with the reload-reg,
1543 record where they are located so that substitution need
1544 not do a tree walk. */
1546 if (replace_reloads)
1548 if (inloc != 0)
1550 struct replacement *r = &replacements[n_replacements++];
1551 r->what = i;
1552 r->where = inloc;
1553 r->mode = inmode;
1555 if (outloc != 0 && outloc != inloc)
1557 struct replacement *r = &replacements[n_replacements++];
1558 r->what = i;
1559 r->where = outloc;
1560 r->mode = outmode;
1564 /* If this reload is just being introduced and it has both
1565 an incoming quantity and an outgoing quantity that are
1566 supposed to be made to match, see if either one of the two
1567 can serve as the place to reload into.
1569 If one of them is acceptable, set rld[i].reg_rtx
1570 to that one. */
1572 if (in != 0 && out != 0 && in != out && rld[i].reg_rtx == 0)
1574 rld[i].reg_rtx = find_dummy_reload (in, out, inloc, outloc,
1575 inmode, outmode,
1576 rld[i].rclass, i,
1577 earlyclobber_operand_p (out));
1579 /* If the outgoing register already contains the same value
1580 as the incoming one, we can dispense with loading it.
1581 The easiest way to tell the caller that is to give a phony
1582 value for the incoming operand (same as outgoing one). */
1583 if (rld[i].reg_rtx == out
1584 && (REG_P (in) || CONSTANT_P (in))
1585 && 0 != find_equiv_reg (in, this_insn, NO_REGS, REGNO (out),
1586 static_reload_reg_p, i, inmode))
1587 rld[i].in = out;
1590 /* If this is an input reload and the operand contains a register that
1591 dies in this insn and is used nowhere else, see if it is the right class
1592 to be used for this reload. Use it if so. (This occurs most commonly
1593 in the case of paradoxical SUBREGs and in-out reloads). We cannot do
1594 this if it is also an output reload that mentions the register unless
1595 the output is a SUBREG that clobbers an entire register.
1597 Note that the operand might be one of the spill regs, if it is a
1598 pseudo reg and we are in a block where spilling has not taken place.
1599 But if there is no spilling in this block, that is OK.
1600 An explicitly used hard reg cannot be a spill reg. */
1602 if (rld[i].reg_rtx == 0 && in != 0 && hard_regs_live_known)
1604 rtx note;
1605 int regno;
1606 enum machine_mode rel_mode = inmode;
1608 if (out && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (inmode))
1609 rel_mode = outmode;
1611 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1612 if (REG_NOTE_KIND (note) == REG_DEAD
1613 && REG_P (XEXP (note, 0))
1614 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1615 && reg_mentioned_p (XEXP (note, 0), in)
1616 /* Check that a former pseudo is valid; see find_dummy_reload. */
1617 && (ORIGINAL_REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1618 || (! bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR),
1619 ORIGINAL_REGNO (XEXP (note, 0)))
1620 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] == 1))
1621 && ! refers_to_regno_for_reload_p (regno,
1622 end_hard_regno (rel_mode,
1623 regno),
1624 PATTERN (this_insn), inloc)
1625 /* If this is also an output reload, IN cannot be used as
1626 the reload register if it is set in this insn unless IN
1627 is also OUT. */
1628 && (out == 0 || in == out
1629 || ! hard_reg_set_here_p (regno,
1630 end_hard_regno (rel_mode, regno),
1631 PATTERN (this_insn)))
1632 /* ??? Why is this code so different from the previous?
1633 Is there any simple coherent way to describe the two together?
1634 What's going on here. */
1635 && (in != out
1636 || (GET_CODE (in) == SUBREG
1637 && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
1638 / UNITS_PER_WORD)
1639 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1640 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
1641 /* Make sure the operand fits in the reg that dies. */
1642 && (GET_MODE_SIZE (rel_mode)
1643 <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0))))
1644 && HARD_REGNO_MODE_OK (regno, inmode)
1645 && HARD_REGNO_MODE_OK (regno, outmode))
1647 unsigned int offs;
1648 unsigned int nregs = MAX (hard_regno_nregs[regno][inmode],
1649 hard_regno_nregs[regno][outmode]);
1651 for (offs = 0; offs < nregs; offs++)
1652 if (fixed_regs[regno + offs]
1653 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
1654 regno + offs))
1655 break;
1657 if (offs == nregs
1658 && (! (refers_to_regno_for_reload_p
1659 (regno, end_hard_regno (inmode, regno), in, (rtx *) 0))
1660 || can_reload_into (in, regno, inmode)))
1662 rld[i].reg_rtx = gen_rtx_REG (rel_mode, regno);
1663 break;
1668 if (out)
1669 output_reloadnum = i;
1671 return i;
1674 /* Record an additional place we must replace a value
1675 for which we have already recorded a reload.
1676 RELOADNUM is the value returned by push_reload
1677 when the reload was recorded.
1678 This is used in insn patterns that use match_dup. */
1680 static void
1681 push_replacement (rtx *loc, int reloadnum, enum machine_mode mode)
1683 if (replace_reloads)
1685 struct replacement *r = &replacements[n_replacements++];
1686 r->what = reloadnum;
1687 r->where = loc;
1688 r->mode = mode;
1692 /* Duplicate any replacement we have recorded to apply at
1693 location ORIG_LOC to also be performed at DUP_LOC.
1694 This is used in insn patterns that use match_dup. */
1696 static void
1697 dup_replacements (rtx *dup_loc, rtx *orig_loc)
1699 int i, n = n_replacements;
1701 for (i = 0; i < n; i++)
1703 struct replacement *r = &replacements[i];
1704 if (r->where == orig_loc)
1705 push_replacement (dup_loc, r->what, r->mode);
1709 /* Transfer all replacements that used to be in reload FROM to be in
1710 reload TO. */
1712 void
1713 transfer_replacements (int to, int from)
1715 int i;
1717 for (i = 0; i < n_replacements; i++)
1718 if (replacements[i].what == from)
1719 replacements[i].what = to;
1722 /* IN_RTX is the value loaded by a reload that we now decided to inherit,
1723 or a subpart of it. If we have any replacements registered for IN_RTX,
1724 cancel the reloads that were supposed to load them.
1725 Return nonzero if we canceled any reloads. */
1727 remove_address_replacements (rtx in_rtx)
1729 int i, j;
1730 char reload_flags[MAX_RELOADS];
1731 int something_changed = 0;
1733 memset (reload_flags, 0, sizeof reload_flags);
1734 for (i = 0, j = 0; i < n_replacements; i++)
1736 if (loc_mentioned_in_p (replacements[i].where, in_rtx))
1737 reload_flags[replacements[i].what] |= 1;
1738 else
1740 replacements[j++] = replacements[i];
1741 reload_flags[replacements[i].what] |= 2;
1744 /* Note that the following store must be done before the recursive calls. */
1745 n_replacements = j;
1747 for (i = n_reloads - 1; i >= 0; i--)
1749 if (reload_flags[i] == 1)
1751 deallocate_reload_reg (i);
1752 remove_address_replacements (rld[i].in);
1753 rld[i].in = 0;
1754 something_changed = 1;
1757 return something_changed;
1760 /* If there is only one output reload, and it is not for an earlyclobber
1761 operand, try to combine it with a (logically unrelated) input reload
1762 to reduce the number of reload registers needed.
1764 This is safe if the input reload does not appear in
1765 the value being output-reloaded, because this implies
1766 it is not needed any more once the original insn completes.
1768 If that doesn't work, see we can use any of the registers that
1769 die in this insn as a reload register. We can if it is of the right
1770 class and does not appear in the value being output-reloaded. */
1772 static void
1773 combine_reloads (void)
1775 int i, regno;
1776 int output_reload = -1;
1777 int secondary_out = -1;
1778 rtx note;
1780 /* Find the output reload; return unless there is exactly one
1781 and that one is mandatory. */
1783 for (i = 0; i < n_reloads; i++)
1784 if (rld[i].out != 0)
1786 if (output_reload >= 0)
1787 return;
1788 output_reload = i;
1791 if (output_reload < 0 || rld[output_reload].optional)
1792 return;
1794 /* An input-output reload isn't combinable. */
1796 if (rld[output_reload].in != 0)
1797 return;
1799 /* If this reload is for an earlyclobber operand, we can't do anything. */
1800 if (earlyclobber_operand_p (rld[output_reload].out))
1801 return;
1803 /* If there is a reload for part of the address of this operand, we would
1804 need to change it to RELOAD_FOR_OTHER_ADDRESS. But that would extend
1805 its life to the point where doing this combine would not lower the
1806 number of spill registers needed. */
1807 for (i = 0; i < n_reloads; i++)
1808 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
1809 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
1810 && rld[i].opnum == rld[output_reload].opnum)
1811 return;
1813 /* Check each input reload; can we combine it? */
1815 for (i = 0; i < n_reloads; i++)
1816 if (rld[i].in && ! rld[i].optional && ! rld[i].nocombine
1817 /* Life span of this reload must not extend past main insn. */
1818 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
1819 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
1820 && rld[i].when_needed != RELOAD_OTHER
1821 && (ira_reg_class_max_nregs [(int)rld[i].rclass][(int) rld[i].inmode]
1822 == ira_reg_class_max_nregs [(int) rld[output_reload].rclass]
1823 [(int) rld[output_reload].outmode])
1824 && rld[i].inc == 0
1825 && rld[i].reg_rtx == 0
1826 #ifdef SECONDARY_MEMORY_NEEDED
1827 /* Don't combine two reloads with different secondary
1828 memory locations. */
1829 && (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum] == 0
1830 || secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] == 0
1831 || rtx_equal_p (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum],
1832 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum]))
1833 #endif
1834 && (targetm.small_register_classes_for_mode_p (VOIDmode)
1835 ? (rld[i].rclass == rld[output_reload].rclass)
1836 : (reg_class_subset_p (rld[i].rclass,
1837 rld[output_reload].rclass)
1838 || reg_class_subset_p (rld[output_reload].rclass,
1839 rld[i].rclass)))
1840 && (MATCHES (rld[i].in, rld[output_reload].out)
1841 /* Args reversed because the first arg seems to be
1842 the one that we imagine being modified
1843 while the second is the one that might be affected. */
1844 || (! reg_overlap_mentioned_for_reload_p (rld[output_reload].out,
1845 rld[i].in)
1846 /* However, if the input is a register that appears inside
1847 the output, then we also can't share.
1848 Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1849 If the same reload reg is used for both reg 69 and the
1850 result to be stored in memory, then that result
1851 will clobber the address of the memory ref. */
1852 && ! (REG_P (rld[i].in)
1853 && reg_overlap_mentioned_for_reload_p (rld[i].in,
1854 rld[output_reload].out))))
1855 && ! reload_inner_reg_of_subreg (rld[i].in, rld[i].inmode,
1856 rld[i].when_needed != RELOAD_FOR_INPUT)
1857 && (reg_class_size[(int) rld[i].rclass]
1858 || targetm.small_register_classes_for_mode_p (VOIDmode))
1859 /* We will allow making things slightly worse by combining an
1860 input and an output, but no worse than that. */
1861 && (rld[i].when_needed == RELOAD_FOR_INPUT
1862 || rld[i].when_needed == RELOAD_FOR_OUTPUT))
1864 int j;
1866 /* We have found a reload to combine with! */
1867 rld[i].out = rld[output_reload].out;
1868 rld[i].out_reg = rld[output_reload].out_reg;
1869 rld[i].outmode = rld[output_reload].outmode;
1870 /* Mark the old output reload as inoperative. */
1871 rld[output_reload].out = 0;
1872 /* The combined reload is needed for the entire insn. */
1873 rld[i].when_needed = RELOAD_OTHER;
1874 /* If the output reload had a secondary reload, copy it. */
1875 if (rld[output_reload].secondary_out_reload != -1)
1877 rld[i].secondary_out_reload
1878 = rld[output_reload].secondary_out_reload;
1879 rld[i].secondary_out_icode
1880 = rld[output_reload].secondary_out_icode;
1883 #ifdef SECONDARY_MEMORY_NEEDED
1884 /* Copy any secondary MEM. */
1885 if (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] != 0)
1886 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum]
1887 = secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum];
1888 #endif
1889 /* If required, minimize the register class. */
1890 if (reg_class_subset_p (rld[output_reload].rclass,
1891 rld[i].rclass))
1892 rld[i].rclass = rld[output_reload].rclass;
1894 /* Transfer all replacements from the old reload to the combined. */
1895 for (j = 0; j < n_replacements; j++)
1896 if (replacements[j].what == output_reload)
1897 replacements[j].what = i;
1899 return;
1902 /* If this insn has only one operand that is modified or written (assumed
1903 to be the first), it must be the one corresponding to this reload. It
1904 is safe to use anything that dies in this insn for that output provided
1905 that it does not occur in the output (we already know it isn't an
1906 earlyclobber. If this is an asm insn, give up. */
1908 if (INSN_CODE (this_insn) == -1)
1909 return;
1911 for (i = 1; i < insn_data[INSN_CODE (this_insn)].n_operands; i++)
1912 if (insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '='
1913 || insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '+')
1914 return;
1916 /* See if some hard register that dies in this insn and is not used in
1917 the output is the right class. Only works if the register we pick
1918 up can fully hold our output reload. */
1919 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1920 if (REG_NOTE_KIND (note) == REG_DEAD
1921 && REG_P (XEXP (note, 0))
1922 && !reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1923 rld[output_reload].out)
1924 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1925 && HARD_REGNO_MODE_OK (regno, rld[output_reload].outmode)
1926 && TEST_HARD_REG_BIT (reg_class_contents[(int) rld[output_reload].rclass],
1927 regno)
1928 && (hard_regno_nregs[regno][rld[output_reload].outmode]
1929 <= hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))])
1930 /* Ensure that a secondary or tertiary reload for this output
1931 won't want this register. */
1932 && ((secondary_out = rld[output_reload].secondary_out_reload) == -1
1933 || (!(TEST_HARD_REG_BIT
1934 (reg_class_contents[(int) rld[secondary_out].rclass], regno))
1935 && ((secondary_out = rld[secondary_out].secondary_out_reload) == -1
1936 || !(TEST_HARD_REG_BIT
1937 (reg_class_contents[(int) rld[secondary_out].rclass],
1938 regno)))))
1939 && !fixed_regs[regno]
1940 /* Check that a former pseudo is valid; see find_dummy_reload. */
1941 && (ORIGINAL_REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1942 || (!bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR),
1943 ORIGINAL_REGNO (XEXP (note, 0)))
1944 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] == 1)))
1946 rld[output_reload].reg_rtx
1947 = gen_rtx_REG (rld[output_reload].outmode, regno);
1948 return;
1952 /* Try to find a reload register for an in-out reload (expressions IN and OUT).
1953 See if one of IN and OUT is a register that may be used;
1954 this is desirable since a spill-register won't be needed.
1955 If so, return the register rtx that proves acceptable.
1957 INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1958 RCLASS is the register class required for the reload.
1960 If FOR_REAL is >= 0, it is the number of the reload,
1961 and in some cases when it can be discovered that OUT doesn't need
1962 to be computed, clear out rld[FOR_REAL].out.
1964 If FOR_REAL is -1, this should not be done, because this call
1965 is just to see if a register can be found, not to find and install it.
1967 EARLYCLOBBER is nonzero if OUT is an earlyclobber operand. This
1968 puts an additional constraint on being able to use IN for OUT since
1969 IN must not appear elsewhere in the insn (it is assumed that IN itself
1970 is safe from the earlyclobber). */
1972 static rtx
1973 find_dummy_reload (rtx real_in, rtx real_out, rtx *inloc, rtx *outloc,
1974 enum machine_mode inmode, enum machine_mode outmode,
1975 reg_class_t rclass, int for_real, int earlyclobber)
1977 rtx in = real_in;
1978 rtx out = real_out;
1979 int in_offset = 0;
1980 int out_offset = 0;
1981 rtx value = 0;
1983 /* If operands exceed a word, we can't use either of them
1984 unless they have the same size. */
1985 if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
1986 && (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
1987 || GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
1988 return 0;
1990 /* Note that {in,out}_offset are needed only when 'in' or 'out'
1991 respectively refers to a hard register. */
1993 /* Find the inside of any subregs. */
1994 while (GET_CODE (out) == SUBREG)
1996 if (REG_P (SUBREG_REG (out))
1997 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER)
1998 out_offset += subreg_regno_offset (REGNO (SUBREG_REG (out)),
1999 GET_MODE (SUBREG_REG (out)),
2000 SUBREG_BYTE (out),
2001 GET_MODE (out));
2002 out = SUBREG_REG (out);
2004 while (GET_CODE (in) == SUBREG)
2006 if (REG_P (SUBREG_REG (in))
2007 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER)
2008 in_offset += subreg_regno_offset (REGNO (SUBREG_REG (in)),
2009 GET_MODE (SUBREG_REG (in)),
2010 SUBREG_BYTE (in),
2011 GET_MODE (in));
2012 in = SUBREG_REG (in);
2015 /* Narrow down the reg class, the same way push_reload will;
2016 otherwise we might find a dummy now, but push_reload won't. */
2018 reg_class_t preferred_class = targetm.preferred_reload_class (in, rclass);
2019 if (preferred_class != NO_REGS)
2020 rclass = (enum reg_class) preferred_class;
2023 /* See if OUT will do. */
2024 if (REG_P (out)
2025 && REGNO (out) < FIRST_PSEUDO_REGISTER)
2027 unsigned int regno = REGNO (out) + out_offset;
2028 unsigned int nwords = hard_regno_nregs[regno][outmode];
2029 rtx saved_rtx;
2031 /* When we consider whether the insn uses OUT,
2032 ignore references within IN. They don't prevent us
2033 from copying IN into OUT, because those refs would
2034 move into the insn that reloads IN.
2036 However, we only ignore IN in its role as this reload.
2037 If the insn uses IN elsewhere and it contains OUT,
2038 that counts. We can't be sure it's the "same" operand
2039 so it might not go through this reload. */
2040 saved_rtx = *inloc;
2041 *inloc = const0_rtx;
2043 if (regno < FIRST_PSEUDO_REGISTER
2044 && HARD_REGNO_MODE_OK (regno, outmode)
2045 && ! refers_to_regno_for_reload_p (regno, regno + nwords,
2046 PATTERN (this_insn), outloc))
2048 unsigned int i;
2050 for (i = 0; i < nwords; i++)
2051 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
2052 regno + i))
2053 break;
2055 if (i == nwords)
2057 if (REG_P (real_out))
2058 value = real_out;
2059 else
2060 value = gen_rtx_REG (outmode, regno);
2064 *inloc = saved_rtx;
2067 /* Consider using IN if OUT was not acceptable
2068 or if OUT dies in this insn (like the quotient in a divmod insn).
2069 We can't use IN unless it is dies in this insn,
2070 which means we must know accurately which hard regs are live.
2071 Also, the result can't go in IN if IN is used within OUT,
2072 or if OUT is an earlyclobber and IN appears elsewhere in the insn. */
2073 if (hard_regs_live_known
2074 && REG_P (in)
2075 && REGNO (in) < FIRST_PSEUDO_REGISTER
2076 && (value == 0
2077 || find_reg_note (this_insn, REG_UNUSED, real_out))
2078 && find_reg_note (this_insn, REG_DEAD, real_in)
2079 && !fixed_regs[REGNO (in)]
2080 && HARD_REGNO_MODE_OK (REGNO (in),
2081 /* The only case where out and real_out might
2082 have different modes is where real_out
2083 is a subreg, and in that case, out
2084 has a real mode. */
2085 (GET_MODE (out) != VOIDmode
2086 ? GET_MODE (out) : outmode))
2087 && (ORIGINAL_REGNO (in) < FIRST_PSEUDO_REGISTER
2088 /* However only do this if we can be sure that this input
2089 operand doesn't correspond with an uninitialized pseudo.
2090 global can assign some hardreg to it that is the same as
2091 the one assigned to a different, also live pseudo (as it
2092 can ignore the conflict). We must never introduce writes
2093 to such hardregs, as they would clobber the other live
2094 pseudo. See PR 20973. */
2095 || (!bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR),
2096 ORIGINAL_REGNO (in))
2097 /* Similarly, only do this if we can be sure that the death
2098 note is still valid. global can assign some hardreg to
2099 the pseudo referenced in the note and simultaneously a
2100 subword of this hardreg to a different, also live pseudo,
2101 because only another subword of the hardreg is actually
2102 used in the insn. This cannot happen if the pseudo has
2103 been assigned exactly one hardreg. See PR 33732. */
2104 && hard_regno_nregs[REGNO (in)][GET_MODE (in)] == 1)))
2106 unsigned int regno = REGNO (in) + in_offset;
2107 unsigned int nwords = hard_regno_nregs[regno][inmode];
2109 if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, (rtx*) 0)
2110 && ! hard_reg_set_here_p (regno, regno + nwords,
2111 PATTERN (this_insn))
2112 && (! earlyclobber
2113 || ! refers_to_regno_for_reload_p (regno, regno + nwords,
2114 PATTERN (this_insn), inloc)))
2116 unsigned int i;
2118 for (i = 0; i < nwords; i++)
2119 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
2120 regno + i))
2121 break;
2123 if (i == nwords)
2125 /* If we were going to use OUT as the reload reg
2126 and changed our mind, it means OUT is a dummy that
2127 dies here. So don't bother copying value to it. */
2128 if (for_real >= 0 && value == real_out)
2129 rld[for_real].out = 0;
2130 if (REG_P (real_in))
2131 value = real_in;
2132 else
2133 value = gen_rtx_REG (inmode, regno);
2138 return value;
2141 /* This page contains subroutines used mainly for determining
2142 whether the IN or an OUT of a reload can serve as the
2143 reload register. */
2145 /* Return 1 if X is an operand of an insn that is being earlyclobbered. */
2148 earlyclobber_operand_p (rtx x)
2150 int i;
2152 for (i = 0; i < n_earlyclobbers; i++)
2153 if (reload_earlyclobbers[i] == x)
2154 return 1;
2156 return 0;
2159 /* Return 1 if expression X alters a hard reg in the range
2160 from BEG_REGNO (inclusive) to END_REGNO (exclusive),
2161 either explicitly or in the guise of a pseudo-reg allocated to REGNO.
2162 X should be the body of an instruction. */
2164 static int
2165 hard_reg_set_here_p (unsigned int beg_regno, unsigned int end_regno, rtx x)
2167 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
2169 rtx op0 = SET_DEST (x);
2171 while (GET_CODE (op0) == SUBREG)
2172 op0 = SUBREG_REG (op0);
2173 if (REG_P (op0))
2175 unsigned int r = REGNO (op0);
2177 /* See if this reg overlaps range under consideration. */
2178 if (r < end_regno
2179 && end_hard_regno (GET_MODE (op0), r) > beg_regno)
2180 return 1;
2183 else if (GET_CODE (x) == PARALLEL)
2185 int i = XVECLEN (x, 0) - 1;
2187 for (; i >= 0; i--)
2188 if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
2189 return 1;
2192 return 0;
2195 /* Return 1 if ADDR is a valid memory address for mode MODE
2196 in address space AS, and check that each pseudo reg has the
2197 proper kind of hard reg. */
2200 strict_memory_address_addr_space_p (enum machine_mode mode ATTRIBUTE_UNUSED,
2201 rtx addr, addr_space_t as)
2203 #ifdef GO_IF_LEGITIMATE_ADDRESS
2204 gcc_assert (ADDR_SPACE_GENERIC_P (as));
2205 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
2206 return 0;
2208 win:
2209 return 1;
2210 #else
2211 return targetm.addr_space.legitimate_address_p (mode, addr, 1, as);
2212 #endif
2215 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
2216 if they are the same hard reg, and has special hacks for
2217 autoincrement and autodecrement.
2218 This is specifically intended for find_reloads to use
2219 in determining whether two operands match.
2220 X is the operand whose number is the lower of the two.
2222 The value is 2 if Y contains a pre-increment that matches
2223 a non-incrementing address in X. */
2225 /* ??? To be completely correct, we should arrange to pass
2226 for X the output operand and for Y the input operand.
2227 For now, we assume that the output operand has the lower number
2228 because that is natural in (SET output (... input ...)). */
2231 operands_match_p (rtx x, rtx y)
2233 int i;
2234 RTX_CODE code = GET_CODE (x);
2235 const char *fmt;
2236 int success_2;
2238 if (x == y)
2239 return 1;
2240 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
2241 && (REG_P (y) || (GET_CODE (y) == SUBREG
2242 && REG_P (SUBREG_REG (y)))))
2244 int j;
2246 if (code == SUBREG)
2248 i = REGNO (SUBREG_REG (x));
2249 if (i >= FIRST_PSEUDO_REGISTER)
2250 goto slow;
2251 i += subreg_regno_offset (REGNO (SUBREG_REG (x)),
2252 GET_MODE (SUBREG_REG (x)),
2253 SUBREG_BYTE (x),
2254 GET_MODE (x));
2256 else
2257 i = REGNO (x);
2259 if (GET_CODE (y) == SUBREG)
2261 j = REGNO (SUBREG_REG (y));
2262 if (j >= FIRST_PSEUDO_REGISTER)
2263 goto slow;
2264 j += subreg_regno_offset (REGNO (SUBREG_REG (y)),
2265 GET_MODE (SUBREG_REG (y)),
2266 SUBREG_BYTE (y),
2267 GET_MODE (y));
2269 else
2270 j = REGNO (y);
2272 /* On a REG_WORDS_BIG_ENDIAN machine, point to the last register of a
2273 multiple hard register group of scalar integer registers, so that
2274 for example (reg:DI 0) and (reg:SI 1) will be considered the same
2275 register. */
2276 if (REG_WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
2277 && SCALAR_INT_MODE_P (GET_MODE (x))
2278 && i < FIRST_PSEUDO_REGISTER)
2279 i += hard_regno_nregs[i][GET_MODE (x)] - 1;
2280 if (REG_WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
2281 && SCALAR_INT_MODE_P (GET_MODE (y))
2282 && j < FIRST_PSEUDO_REGISTER)
2283 j += hard_regno_nregs[j][GET_MODE (y)] - 1;
2285 return i == j;
2287 /* If two operands must match, because they are really a single
2288 operand of an assembler insn, then two postincrements are invalid
2289 because the assembler insn would increment only once.
2290 On the other hand, a postincrement matches ordinary indexing
2291 if the postincrement is the output operand. */
2292 if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
2293 return operands_match_p (XEXP (x, 0), y);
2294 /* Two preincrements are invalid
2295 because the assembler insn would increment only once.
2296 On the other hand, a preincrement matches ordinary indexing
2297 if the preincrement is the input operand.
2298 In this case, return 2, since some callers need to do special
2299 things when this happens. */
2300 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
2301 || GET_CODE (y) == PRE_MODIFY)
2302 return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
2304 slow:
2306 /* Now we have disposed of all the cases in which different rtx codes
2307 can match. */
2308 if (code != GET_CODE (y))
2309 return 0;
2311 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2312 if (GET_MODE (x) != GET_MODE (y))
2313 return 0;
2315 /* MEMs referring to different address space are not equivalent. */
2316 if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
2317 return 0;
2319 switch (code)
2321 CASE_CONST_UNIQUE:
2322 return 0;
2324 case LABEL_REF:
2325 return XEXP (x, 0) == XEXP (y, 0);
2326 case SYMBOL_REF:
2327 return XSTR (x, 0) == XSTR (y, 0);
2329 default:
2330 break;
2333 /* Compare the elements. If any pair of corresponding elements
2334 fail to match, return 0 for the whole things. */
2336 success_2 = 0;
2337 fmt = GET_RTX_FORMAT (code);
2338 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2340 int val, j;
2341 switch (fmt[i])
2343 case 'w':
2344 if (XWINT (x, i) != XWINT (y, i))
2345 return 0;
2346 break;
2348 case 'i':
2349 if (XINT (x, i) != XINT (y, i))
2350 return 0;
2351 break;
2353 case 'e':
2354 val = operands_match_p (XEXP (x, i), XEXP (y, i));
2355 if (val == 0)
2356 return 0;
2357 /* If any subexpression returns 2,
2358 we should return 2 if we are successful. */
2359 if (val == 2)
2360 success_2 = 1;
2361 break;
2363 case '0':
2364 break;
2366 case 'E':
2367 if (XVECLEN (x, i) != XVECLEN (y, i))
2368 return 0;
2369 for (j = XVECLEN (x, i) - 1; j >= 0; --j)
2371 val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j));
2372 if (val == 0)
2373 return 0;
2374 if (val == 2)
2375 success_2 = 1;
2377 break;
2379 /* It is believed that rtx's at this level will never
2380 contain anything but integers and other rtx's,
2381 except for within LABEL_REFs and SYMBOL_REFs. */
2382 default:
2383 gcc_unreachable ();
2386 return 1 + success_2;
2389 /* Describe the range of registers or memory referenced by X.
2390 If X is a register, set REG_FLAG and put the first register
2391 number into START and the last plus one into END.
2392 If X is a memory reference, put a base address into BASE
2393 and a range of integer offsets into START and END.
2394 If X is pushing on the stack, we can assume it causes no trouble,
2395 so we set the SAFE field. */
2397 static struct decomposition
2398 decompose (rtx x)
2400 struct decomposition val;
2401 int all_const = 0;
2403 memset (&val, 0, sizeof (val));
2405 switch (GET_CODE (x))
2407 case MEM:
2409 rtx base = NULL_RTX, offset = 0;
2410 rtx addr = XEXP (x, 0);
2412 if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2413 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2415 val.base = XEXP (addr, 0);
2416 val.start = -GET_MODE_SIZE (GET_MODE (x));
2417 val.end = GET_MODE_SIZE (GET_MODE (x));
2418 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2419 return val;
2422 if (GET_CODE (addr) == PRE_MODIFY || GET_CODE (addr) == POST_MODIFY)
2424 if (GET_CODE (XEXP (addr, 1)) == PLUS
2425 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
2426 && CONSTANT_P (XEXP (XEXP (addr, 1), 1)))
2428 val.base = XEXP (addr, 0);
2429 val.start = -INTVAL (XEXP (XEXP (addr, 1), 1));
2430 val.end = INTVAL (XEXP (XEXP (addr, 1), 1));
2431 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2432 return val;
2436 if (GET_CODE (addr) == CONST)
2438 addr = XEXP (addr, 0);
2439 all_const = 1;
2441 if (GET_CODE (addr) == PLUS)
2443 if (CONSTANT_P (XEXP (addr, 0)))
2445 base = XEXP (addr, 1);
2446 offset = XEXP (addr, 0);
2448 else if (CONSTANT_P (XEXP (addr, 1)))
2450 base = XEXP (addr, 0);
2451 offset = XEXP (addr, 1);
2455 if (offset == 0)
2457 base = addr;
2458 offset = const0_rtx;
2460 if (GET_CODE (offset) == CONST)
2461 offset = XEXP (offset, 0);
2462 if (GET_CODE (offset) == PLUS)
2464 if (CONST_INT_P (XEXP (offset, 0)))
2466 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
2467 offset = XEXP (offset, 0);
2469 else if (CONST_INT_P (XEXP (offset, 1)))
2471 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
2472 offset = XEXP (offset, 1);
2474 else
2476 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2477 offset = const0_rtx;
2480 else if (!CONST_INT_P (offset))
2482 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2483 offset = const0_rtx;
2486 if (all_const && GET_CODE (base) == PLUS)
2487 base = gen_rtx_CONST (GET_MODE (base), base);
2489 gcc_assert (CONST_INT_P (offset));
2491 val.start = INTVAL (offset);
2492 val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2493 val.base = base;
2495 break;
2497 case REG:
2498 val.reg_flag = 1;
2499 val.start = true_regnum (x);
2500 if (val.start < 0 || val.start >= FIRST_PSEUDO_REGISTER)
2502 /* A pseudo with no hard reg. */
2503 val.start = REGNO (x);
2504 val.end = val.start + 1;
2506 else
2507 /* A hard reg. */
2508 val.end = end_hard_regno (GET_MODE (x), val.start);
2509 break;
2511 case SUBREG:
2512 if (!REG_P (SUBREG_REG (x)))
2513 /* This could be more precise, but it's good enough. */
2514 return decompose (SUBREG_REG (x));
2515 val.reg_flag = 1;
2516 val.start = true_regnum (x);
2517 if (val.start < 0 || val.start >= FIRST_PSEUDO_REGISTER)
2518 return decompose (SUBREG_REG (x));
2519 else
2520 /* A hard reg. */
2521 val.end = val.start + subreg_nregs (x);
2522 break;
2524 case SCRATCH:
2525 /* This hasn't been assigned yet, so it can't conflict yet. */
2526 val.safe = 1;
2527 break;
2529 default:
2530 gcc_assert (CONSTANT_P (x));
2531 val.safe = 1;
2532 break;
2534 return val;
2537 /* Return 1 if altering Y will not modify the value of X.
2538 Y is also described by YDATA, which should be decompose (Y). */
2540 static int
2541 immune_p (rtx x, rtx y, struct decomposition ydata)
2543 struct decomposition xdata;
2545 if (ydata.reg_flag)
2546 return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, (rtx*) 0);
2547 if (ydata.safe)
2548 return 1;
2550 gcc_assert (MEM_P (y));
2551 /* If Y is memory and X is not, Y can't affect X. */
2552 if (!MEM_P (x))
2553 return 1;
2555 xdata = decompose (x);
2557 if (! rtx_equal_p (xdata.base, ydata.base))
2559 /* If bases are distinct symbolic constants, there is no overlap. */
2560 if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
2561 return 1;
2562 /* Constants and stack slots never overlap. */
2563 if (CONSTANT_P (xdata.base)
2564 && (ydata.base == frame_pointer_rtx
2565 || ydata.base == hard_frame_pointer_rtx
2566 || ydata.base == stack_pointer_rtx))
2567 return 1;
2568 if (CONSTANT_P (ydata.base)
2569 && (xdata.base == frame_pointer_rtx
2570 || xdata.base == hard_frame_pointer_rtx
2571 || xdata.base == stack_pointer_rtx))
2572 return 1;
2573 /* If either base is variable, we don't know anything. */
2574 return 0;
2577 return (xdata.start >= ydata.end || ydata.start >= xdata.end);
2580 /* Similar, but calls decompose. */
2583 safe_from_earlyclobber (rtx op, rtx clobber)
2585 struct decomposition early_data;
2587 early_data = decompose (clobber);
2588 return immune_p (op, clobber, early_data);
2591 /* Main entry point of this file: search the body of INSN
2592 for values that need reloading and record them with push_reload.
2593 REPLACE nonzero means record also where the values occur
2594 so that subst_reloads can be used.
2596 IND_LEVELS says how many levels of indirection are supported by this
2597 machine; a value of zero means that a memory reference is not a valid
2598 memory address.
2600 LIVE_KNOWN says we have valid information about which hard
2601 regs are live at each point in the program; this is true when
2602 we are called from global_alloc but false when stupid register
2603 allocation has been done.
2605 RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2606 which is nonnegative if the reg has been commandeered for reloading into.
2607 It is copied into STATIC_RELOAD_REG_P and referenced from there
2608 by various subroutines.
2610 Return TRUE if some operands need to be changed, because of swapping
2611 commutative operands, reg_equiv_address substitution, or whatever. */
2614 find_reloads (rtx insn, int replace, int ind_levels, int live_known,
2615 short *reload_reg_p)
2617 int insn_code_number;
2618 int i, j;
2619 int noperands;
2620 /* These start out as the constraints for the insn
2621 and they are chewed up as we consider alternatives. */
2622 const char *constraints[MAX_RECOG_OPERANDS];
2623 /* These are the preferred classes for an operand, or NO_REGS if it isn't
2624 a register. */
2625 enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2626 char pref_or_nothing[MAX_RECOG_OPERANDS];
2627 /* Nonzero for a MEM operand whose entire address needs a reload.
2628 May be -1 to indicate the entire address may or may not need a reload. */
2629 int address_reloaded[MAX_RECOG_OPERANDS];
2630 /* Nonzero for an address operand that needs to be completely reloaded.
2631 May be -1 to indicate the entire operand may or may not need a reload. */
2632 int address_operand_reloaded[MAX_RECOG_OPERANDS];
2633 /* Value of enum reload_type to use for operand. */
2634 enum reload_type operand_type[MAX_RECOG_OPERANDS];
2635 /* Value of enum reload_type to use within address of operand. */
2636 enum reload_type address_type[MAX_RECOG_OPERANDS];
2637 /* Save the usage of each operand. */
2638 enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
2639 int no_input_reloads = 0, no_output_reloads = 0;
2640 int n_alternatives;
2641 reg_class_t this_alternative[MAX_RECOG_OPERANDS];
2642 char this_alternative_match_win[MAX_RECOG_OPERANDS];
2643 char this_alternative_win[MAX_RECOG_OPERANDS];
2644 char this_alternative_offmemok[MAX_RECOG_OPERANDS];
2645 char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2646 int this_alternative_matches[MAX_RECOG_OPERANDS];
2647 reg_class_t goal_alternative[MAX_RECOG_OPERANDS];
2648 int this_alternative_number;
2649 int goal_alternative_number = 0;
2650 int operand_reloadnum[MAX_RECOG_OPERANDS];
2651 int goal_alternative_matches[MAX_RECOG_OPERANDS];
2652 int goal_alternative_matched[MAX_RECOG_OPERANDS];
2653 char goal_alternative_match_win[MAX_RECOG_OPERANDS];
2654 char goal_alternative_win[MAX_RECOG_OPERANDS];
2655 char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
2656 char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2657 int goal_alternative_swapped;
2658 int best;
2659 int commutative;
2660 char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2661 rtx substed_operand[MAX_RECOG_OPERANDS];
2662 rtx body = PATTERN (insn);
2663 rtx set = single_set (insn);
2664 int goal_earlyclobber = 0, this_earlyclobber;
2665 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
2666 int retval = 0;
2668 this_insn = insn;
2669 n_reloads = 0;
2670 n_replacements = 0;
2671 n_earlyclobbers = 0;
2672 replace_reloads = replace;
2673 hard_regs_live_known = live_known;
2674 static_reload_reg_p = reload_reg_p;
2676 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2677 neither are insns that SET cc0. Insns that use CC0 are not allowed
2678 to have any input reloads. */
2679 if (JUMP_P (insn) || CALL_P (insn))
2680 no_output_reloads = 1;
2682 #ifdef HAVE_cc0
2683 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2684 no_input_reloads = 1;
2685 if (reg_set_p (cc0_rtx, PATTERN (insn)))
2686 no_output_reloads = 1;
2687 #endif
2689 #ifdef SECONDARY_MEMORY_NEEDED
2690 /* The eliminated forms of any secondary memory locations are per-insn, so
2691 clear them out here. */
2693 if (secondary_memlocs_elim_used)
2695 memset (secondary_memlocs_elim, 0,
2696 sizeof (secondary_memlocs_elim[0]) * secondary_memlocs_elim_used);
2697 secondary_memlocs_elim_used = 0;
2699 #endif
2701 /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2702 is cheap to move between them. If it is not, there may not be an insn
2703 to do the copy, so we may need a reload. */
2704 if (GET_CODE (body) == SET
2705 && REG_P (SET_DEST (body))
2706 && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
2707 && REG_P (SET_SRC (body))
2708 && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
2709 && register_move_cost (GET_MODE (SET_SRC (body)),
2710 REGNO_REG_CLASS (REGNO (SET_SRC (body))),
2711 REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2712 return 0;
2714 extract_insn (insn);
2716 noperands = reload_n_operands = recog_data.n_operands;
2717 n_alternatives = recog_data.n_alternatives;
2719 /* Just return "no reloads" if insn has no operands with constraints. */
2720 if (noperands == 0 || n_alternatives == 0)
2721 return 0;
2723 insn_code_number = INSN_CODE (insn);
2724 this_insn_is_asm = insn_code_number < 0;
2726 memcpy (operand_mode, recog_data.operand_mode,
2727 noperands * sizeof (enum machine_mode));
2728 memcpy (constraints, recog_data.constraints,
2729 noperands * sizeof (const char *));
2731 commutative = -1;
2733 /* If we will need to know, later, whether some pair of operands
2734 are the same, we must compare them now and save the result.
2735 Reloading the base and index registers will clobber them
2736 and afterward they will fail to match. */
2738 for (i = 0; i < noperands; i++)
2740 const char *p;
2741 int c;
2742 char *end;
2744 substed_operand[i] = recog_data.operand[i];
2745 p = constraints[i];
2747 modified[i] = RELOAD_READ;
2749 /* Scan this operand's constraint to see if it is an output operand,
2750 an in-out operand, is commutative, or should match another. */
2752 while ((c = *p))
2754 p += CONSTRAINT_LEN (c, p);
2755 switch (c)
2757 case '=':
2758 modified[i] = RELOAD_WRITE;
2759 break;
2760 case '+':
2761 modified[i] = RELOAD_READ_WRITE;
2762 break;
2763 case '%':
2765 /* The last operand should not be marked commutative. */
2766 gcc_assert (i != noperands - 1);
2768 /* We currently only support one commutative pair of
2769 operands. Some existing asm code currently uses more
2770 than one pair. Previously, that would usually work,
2771 but sometimes it would crash the compiler. We
2772 continue supporting that case as well as we can by
2773 silently ignoring all but the first pair. In the
2774 future we may handle it correctly. */
2775 if (commutative < 0)
2776 commutative = i;
2777 else
2778 gcc_assert (this_insn_is_asm);
2780 break;
2781 /* Use of ISDIGIT is tempting here, but it may get expensive because
2782 of locale support we don't want. */
2783 case '0': case '1': case '2': case '3': case '4':
2784 case '5': case '6': case '7': case '8': case '9':
2786 c = strtoul (p - 1, &end, 10);
2787 p = end;
2789 operands_match[c][i]
2790 = operands_match_p (recog_data.operand[c],
2791 recog_data.operand[i]);
2793 /* An operand may not match itself. */
2794 gcc_assert (c != i);
2796 /* If C can be commuted with C+1, and C might need to match I,
2797 then C+1 might also need to match I. */
2798 if (commutative >= 0)
2800 if (c == commutative || c == commutative + 1)
2802 int other = c + (c == commutative ? 1 : -1);
2803 operands_match[other][i]
2804 = operands_match_p (recog_data.operand[other],
2805 recog_data.operand[i]);
2807 if (i == commutative || i == commutative + 1)
2809 int other = i + (i == commutative ? 1 : -1);
2810 operands_match[c][other]
2811 = operands_match_p (recog_data.operand[c],
2812 recog_data.operand[other]);
2814 /* Note that C is supposed to be less than I.
2815 No need to consider altering both C and I because in
2816 that case we would alter one into the other. */
2823 /* Examine each operand that is a memory reference or memory address
2824 and reload parts of the addresses into index registers.
2825 Also here any references to pseudo regs that didn't get hard regs
2826 but are equivalent to constants get replaced in the insn itself
2827 with those constants. Nobody will ever see them again.
2829 Finally, set up the preferred classes of each operand. */
2831 for (i = 0; i < noperands; i++)
2833 RTX_CODE code = GET_CODE (recog_data.operand[i]);
2835 address_reloaded[i] = 0;
2836 address_operand_reloaded[i] = 0;
2837 operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
2838 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
2839 : RELOAD_OTHER);
2840 address_type[i]
2841 = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
2842 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
2843 : RELOAD_OTHER);
2845 if (*constraints[i] == 0)
2846 /* Ignore things like match_operator operands. */
2848 else if (constraints[i][0] == 'p'
2849 || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0], constraints[i]))
2851 address_operand_reloaded[i]
2852 = find_reloads_address (recog_data.operand_mode[i], (rtx*) 0,
2853 recog_data.operand[i],
2854 recog_data.operand_loc[i],
2855 i, operand_type[i], ind_levels, insn);
2857 /* If we now have a simple operand where we used to have a
2858 PLUS or MULT, re-recognize and try again. */
2859 if ((OBJECT_P (*recog_data.operand_loc[i])
2860 || GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2861 && (GET_CODE (recog_data.operand[i]) == MULT
2862 || GET_CODE (recog_data.operand[i]) == PLUS))
2864 INSN_CODE (insn) = -1;
2865 retval = find_reloads (insn, replace, ind_levels, live_known,
2866 reload_reg_p);
2867 return retval;
2870 recog_data.operand[i] = *recog_data.operand_loc[i];
2871 substed_operand[i] = recog_data.operand[i];
2873 /* Address operands are reloaded in their existing mode,
2874 no matter what is specified in the machine description. */
2875 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2877 /* If the address is a single CONST_INT pick address mode
2878 instead otherwise we will later not know in which mode
2879 the reload should be performed. */
2880 if (operand_mode[i] == VOIDmode)
2881 operand_mode[i] = Pmode;
2884 else if (code == MEM)
2886 address_reloaded[i]
2887 = find_reloads_address (GET_MODE (recog_data.operand[i]),
2888 recog_data.operand_loc[i],
2889 XEXP (recog_data.operand[i], 0),
2890 &XEXP (recog_data.operand[i], 0),
2891 i, address_type[i], ind_levels, insn);
2892 recog_data.operand[i] = *recog_data.operand_loc[i];
2893 substed_operand[i] = recog_data.operand[i];
2895 else if (code == SUBREG)
2897 rtx reg = SUBREG_REG (recog_data.operand[i]);
2898 rtx op
2899 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2900 ind_levels,
2901 set != 0
2902 && &SET_DEST (set) == recog_data.operand_loc[i],
2903 insn,
2904 &address_reloaded[i]);
2906 /* If we made a MEM to load (a part of) the stackslot of a pseudo
2907 that didn't get a hard register, emit a USE with a REG_EQUAL
2908 note in front so that we might inherit a previous, possibly
2909 wider reload. */
2911 if (replace
2912 && MEM_P (op)
2913 && REG_P (reg)
2914 && (GET_MODE_SIZE (GET_MODE (reg))
2915 >= GET_MODE_SIZE (GET_MODE (op)))
2916 && reg_equiv_constant (REGNO (reg)) == 0)
2917 set_unique_reg_note (emit_insn_before (gen_rtx_USE (VOIDmode, reg),
2918 insn),
2919 REG_EQUAL, reg_equiv_memory_loc (REGNO (reg)));
2921 substed_operand[i] = recog_data.operand[i] = op;
2923 else if (code == PLUS || GET_RTX_CLASS (code) == RTX_UNARY)
2924 /* We can get a PLUS as an "operand" as a result of register
2925 elimination. See eliminate_regs and gen_reload. We handle
2926 a unary operator by reloading the operand. */
2927 substed_operand[i] = recog_data.operand[i]
2928 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2929 ind_levels, 0, insn,
2930 &address_reloaded[i]);
2931 else if (code == REG)
2933 /* This is equivalent to calling find_reloads_toplev.
2934 The code is duplicated for speed.
2935 When we find a pseudo always equivalent to a constant,
2936 we replace it by the constant. We must be sure, however,
2937 that we don't try to replace it in the insn in which it
2938 is being set. */
2939 int regno = REGNO (recog_data.operand[i]);
2940 if (reg_equiv_constant (regno) != 0
2941 && (set == 0 || &SET_DEST (set) != recog_data.operand_loc[i]))
2943 /* Record the existing mode so that the check if constants are
2944 allowed will work when operand_mode isn't specified. */
2946 if (operand_mode[i] == VOIDmode)
2947 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2949 substed_operand[i] = recog_data.operand[i]
2950 = reg_equiv_constant (regno);
2952 if (reg_equiv_memory_loc (regno) != 0
2953 && (reg_equiv_address (regno) != 0 || num_not_at_initial_offset))
2954 /* We need not give a valid is_set_dest argument since the case
2955 of a constant equivalence was checked above. */
2956 substed_operand[i] = recog_data.operand[i]
2957 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2958 ind_levels, 0, insn,
2959 &address_reloaded[i]);
2961 /* If the operand is still a register (we didn't replace it with an
2962 equivalent), get the preferred class to reload it into. */
2963 code = GET_CODE (recog_data.operand[i]);
2964 preferred_class[i]
2965 = ((code == REG && REGNO (recog_data.operand[i])
2966 >= FIRST_PSEUDO_REGISTER)
2967 ? reg_preferred_class (REGNO (recog_data.operand[i]))
2968 : NO_REGS);
2969 pref_or_nothing[i]
2970 = (code == REG
2971 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER
2972 && reg_alternate_class (REGNO (recog_data.operand[i])) == NO_REGS);
2975 /* If this is simply a copy from operand 1 to operand 0, merge the
2976 preferred classes for the operands. */
2977 if (set != 0 && noperands >= 2 && recog_data.operand[0] == SET_DEST (set)
2978 && recog_data.operand[1] == SET_SRC (set))
2980 preferred_class[0] = preferred_class[1]
2981 = reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
2982 pref_or_nothing[0] |= pref_or_nothing[1];
2983 pref_or_nothing[1] |= pref_or_nothing[0];
2986 /* Now see what we need for pseudo-regs that didn't get hard regs
2987 or got the wrong kind of hard reg. For this, we must consider
2988 all the operands together against the register constraints. */
2990 best = MAX_RECOG_OPERANDS * 2 + 600;
2992 goal_alternative_swapped = 0;
2994 /* The constraints are made of several alternatives.
2995 Each operand's constraint looks like foo,bar,... with commas
2996 separating the alternatives. The first alternatives for all
2997 operands go together, the second alternatives go together, etc.
2999 First loop over alternatives. */
3001 for (this_alternative_number = 0;
3002 this_alternative_number < n_alternatives;
3003 this_alternative_number++)
3005 int swapped;
3007 if (!recog_data.alternative_enabled_p[this_alternative_number])
3009 int i;
3011 for (i = 0; i < recog_data.n_operands; i++)
3012 constraints[i] = skip_alternative (constraints[i]);
3014 continue;
3017 /* If insn is commutative (it's safe to exchange a certain pair
3018 of operands) then we need to try each alternative twice, the
3019 second time matching those two operands as if we had
3020 exchanged them. To do this, really exchange them in
3021 operands. */
3022 for (swapped = 0; swapped < (commutative >= 0 ? 2 : 1); swapped++)
3024 /* Loop over operands for one constraint alternative. */
3025 /* LOSERS counts those that don't fit this alternative
3026 and would require loading. */
3027 int losers = 0;
3028 /* BAD is set to 1 if it some operand can't fit this alternative
3029 even after reloading. */
3030 int bad = 0;
3031 /* REJECT is a count of how undesirable this alternative says it is
3032 if any reloading is required. If the alternative matches exactly
3033 then REJECT is ignored, but otherwise it gets this much
3034 counted against it in addition to the reloading needed. Each
3035 ? counts three times here since we want the disparaging caused by
3036 a bad register class to only count 1/3 as much. */
3037 int reject = 0;
3039 if (swapped)
3041 enum reg_class tclass;
3042 int t;
3044 recog_data.operand[commutative] = substed_operand[commutative + 1];
3045 recog_data.operand[commutative + 1] = substed_operand[commutative];
3046 /* Swap the duplicates too. */
3047 for (i = 0; i < recog_data.n_dups; i++)
3048 if (recog_data.dup_num[i] == commutative
3049 || recog_data.dup_num[i] == commutative + 1)
3050 *recog_data.dup_loc[i]
3051 = recog_data.operand[(int) recog_data.dup_num[i]];
3053 tclass = preferred_class[commutative];
3054 preferred_class[commutative] = preferred_class[commutative + 1];
3055 preferred_class[commutative + 1] = tclass;
3057 t = pref_or_nothing[commutative];
3058 pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3059 pref_or_nothing[commutative + 1] = t;
3061 t = address_reloaded[commutative];
3062 address_reloaded[commutative] = address_reloaded[commutative + 1];
3063 address_reloaded[commutative + 1] = t;
3066 this_earlyclobber = 0;
3068 for (i = 0; i < noperands; i++)
3070 const char *p = constraints[i];
3071 char *end;
3072 int len;
3073 int win = 0;
3074 int did_match = 0;
3075 /* 0 => this operand can be reloaded somehow for this alternative. */
3076 int badop = 1;
3077 /* 0 => this operand can be reloaded if the alternative allows regs. */
3078 int winreg = 0;
3079 int c;
3080 int m;
3081 rtx operand = recog_data.operand[i];
3082 int offset = 0;
3083 /* Nonzero means this is a MEM that must be reloaded into a reg
3084 regardless of what the constraint says. */
3085 int force_reload = 0;
3086 int offmemok = 0;
3087 /* Nonzero if a constant forced into memory would be OK for this
3088 operand. */
3089 int constmemok = 0;
3090 int earlyclobber = 0;
3092 /* If the predicate accepts a unary operator, it means that
3093 we need to reload the operand, but do not do this for
3094 match_operator and friends. */
3095 if (UNARY_P (operand) && *p != 0)
3096 operand = XEXP (operand, 0);
3098 /* If the operand is a SUBREG, extract
3099 the REG or MEM (or maybe even a constant) within.
3100 (Constants can occur as a result of reg_equiv_constant.) */
3102 while (GET_CODE (operand) == SUBREG)
3104 /* Offset only matters when operand is a REG and
3105 it is a hard reg. This is because it is passed
3106 to reg_fits_class_p if it is a REG and all pseudos
3107 return 0 from that function. */
3108 if (REG_P (SUBREG_REG (operand))
3109 && REGNO (SUBREG_REG (operand)) < FIRST_PSEUDO_REGISTER)
3111 if (simplify_subreg_regno (REGNO (SUBREG_REG (operand)),
3112 GET_MODE (SUBREG_REG (operand)),
3113 SUBREG_BYTE (operand),
3114 GET_MODE (operand)) < 0)
3115 force_reload = 1;
3116 offset += subreg_regno_offset (REGNO (SUBREG_REG (operand)),
3117 GET_MODE (SUBREG_REG (operand)),
3118 SUBREG_BYTE (operand),
3119 GET_MODE (operand));
3121 operand = SUBREG_REG (operand);
3122 /* Force reload if this is a constant or PLUS or if there may
3123 be a problem accessing OPERAND in the outer mode. */
3124 if (CONSTANT_P (operand)
3125 || GET_CODE (operand) == PLUS
3126 /* We must force a reload of paradoxical SUBREGs
3127 of a MEM because the alignment of the inner value
3128 may not be enough to do the outer reference. On
3129 big-endian machines, it may also reference outside
3130 the object.
3132 On machines that extend byte operations and we have a
3133 SUBREG where both the inner and outer modes are no wider
3134 than a word and the inner mode is narrower, is integral,
3135 and gets extended when loaded from memory, combine.c has
3136 made assumptions about the behavior of the machine in such
3137 register access. If the data is, in fact, in memory we
3138 must always load using the size assumed to be in the
3139 register and let the insn do the different-sized
3140 accesses.
3142 This is doubly true if WORD_REGISTER_OPERATIONS. In
3143 this case eliminate_regs has left non-paradoxical
3144 subregs for push_reload to see. Make sure it does
3145 by forcing the reload.
3147 ??? When is it right at this stage to have a subreg
3148 of a mem that is _not_ to be handled specially? IMO
3149 those should have been reduced to just a mem. */
3150 || ((MEM_P (operand)
3151 || (REG_P (operand)
3152 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3153 #ifndef WORD_REGISTER_OPERATIONS
3154 && (((GET_MODE_BITSIZE (GET_MODE (operand))
3155 < BIGGEST_ALIGNMENT)
3156 && (GET_MODE_SIZE (operand_mode[i])
3157 > GET_MODE_SIZE (GET_MODE (operand))))
3158 || BYTES_BIG_ENDIAN
3159 #ifdef LOAD_EXTEND_OP
3160 || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3161 && (GET_MODE_SIZE (GET_MODE (operand))
3162 <= UNITS_PER_WORD)
3163 && (GET_MODE_SIZE (operand_mode[i])
3164 > GET_MODE_SIZE (GET_MODE (operand)))
3165 && INTEGRAL_MODE_P (GET_MODE (operand))
3166 && LOAD_EXTEND_OP (GET_MODE (operand)) != UNKNOWN)
3167 #endif
3169 #endif
3172 force_reload = 1;
3175 this_alternative[i] = NO_REGS;
3176 this_alternative_win[i] = 0;
3177 this_alternative_match_win[i] = 0;
3178 this_alternative_offmemok[i] = 0;
3179 this_alternative_earlyclobber[i] = 0;
3180 this_alternative_matches[i] = -1;
3182 /* An empty constraint or empty alternative
3183 allows anything which matched the pattern. */
3184 if (*p == 0 || *p == ',')
3185 win = 1, badop = 0;
3187 /* Scan this alternative's specs for this operand;
3188 set WIN if the operand fits any letter in this alternative.
3189 Otherwise, clear BADOP if this operand could
3190 fit some letter after reloads,
3191 or set WINREG if this operand could fit after reloads
3192 provided the constraint allows some registers. */
3195 switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
3197 case '\0':
3198 len = 0;
3199 break;
3200 case ',':
3201 c = '\0';
3202 break;
3204 case '=': case '+': case '*':
3205 break;
3207 case '%':
3208 /* We only support one commutative marker, the first
3209 one. We already set commutative above. */
3210 break;
3212 case '?':
3213 reject += 6;
3214 break;
3216 case '!':
3217 reject = 600;
3218 break;
3220 case '#':
3221 /* Ignore rest of this alternative as far as
3222 reloading is concerned. */
3224 p++;
3225 while (*p && *p != ',');
3226 len = 0;
3227 break;
3229 case '0': case '1': case '2': case '3': case '4':
3230 case '5': case '6': case '7': case '8': case '9':
3231 m = strtoul (p, &end, 10);
3232 p = end;
3233 len = 0;
3235 this_alternative_matches[i] = m;
3236 /* We are supposed to match a previous operand.
3237 If we do, we win if that one did.
3238 If we do not, count both of the operands as losers.
3239 (This is too conservative, since most of the time
3240 only a single reload insn will be needed to make
3241 the two operands win. As a result, this alternative
3242 may be rejected when it is actually desirable.) */
3243 if ((swapped && (m != commutative || i != commutative + 1))
3244 /* If we are matching as if two operands were swapped,
3245 also pretend that operands_match had been computed
3246 with swapped.
3247 But if I is the second of those and C is the first,
3248 don't exchange them, because operands_match is valid
3249 only on one side of its diagonal. */
3250 ? (operands_match
3251 [(m == commutative || m == commutative + 1)
3252 ? 2 * commutative + 1 - m : m]
3253 [(i == commutative || i == commutative + 1)
3254 ? 2 * commutative + 1 - i : i])
3255 : operands_match[m][i])
3257 /* If we are matching a non-offsettable address where an
3258 offsettable address was expected, then we must reject
3259 this combination, because we can't reload it. */
3260 if (this_alternative_offmemok[m]
3261 && MEM_P (recog_data.operand[m])
3262 && this_alternative[m] == NO_REGS
3263 && ! this_alternative_win[m])
3264 bad = 1;
3266 did_match = this_alternative_win[m];
3268 else
3270 /* Operands don't match. */
3271 rtx value;
3272 int loc1, loc2;
3273 /* Retroactively mark the operand we had to match
3274 as a loser, if it wasn't already. */
3275 if (this_alternative_win[m])
3276 losers++;
3277 this_alternative_win[m] = 0;
3278 if (this_alternative[m] == NO_REGS)
3279 bad = 1;
3280 /* But count the pair only once in the total badness of
3281 this alternative, if the pair can be a dummy reload.
3282 The pointers in operand_loc are not swapped; swap
3283 them by hand if necessary. */
3284 if (swapped && i == commutative)
3285 loc1 = commutative + 1;
3286 else if (swapped && i == commutative + 1)
3287 loc1 = commutative;
3288 else
3289 loc1 = i;
3290 if (swapped && m == commutative)
3291 loc2 = commutative + 1;
3292 else if (swapped && m == commutative + 1)
3293 loc2 = commutative;
3294 else
3295 loc2 = m;
3296 value
3297 = find_dummy_reload (recog_data.operand[i],
3298 recog_data.operand[m],
3299 recog_data.operand_loc[loc1],
3300 recog_data.operand_loc[loc2],
3301 operand_mode[i], operand_mode[m],
3302 this_alternative[m], -1,
3303 this_alternative_earlyclobber[m]);
3305 if (value != 0)
3306 losers--;
3308 /* This can be fixed with reloads if the operand
3309 we are supposed to match can be fixed with reloads. */
3310 badop = 0;
3311 this_alternative[i] = this_alternative[m];
3313 /* If we have to reload this operand and some previous
3314 operand also had to match the same thing as this
3315 operand, we don't know how to do that. So reject this
3316 alternative. */
3317 if (! did_match || force_reload)
3318 for (j = 0; j < i; j++)
3319 if (this_alternative_matches[j]
3320 == this_alternative_matches[i])
3321 badop = 1;
3322 break;
3324 case 'p':
3325 /* All necessary reloads for an address_operand
3326 were handled in find_reloads_address. */
3327 this_alternative[i]
3328 = base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
3329 ADDRESS, SCRATCH);
3330 win = 1;
3331 badop = 0;
3332 break;
3334 case TARGET_MEM_CONSTRAINT:
3335 if (force_reload)
3336 break;
3337 if (MEM_P (operand)
3338 || (REG_P (operand)
3339 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3340 && reg_renumber[REGNO (operand)] < 0))
3341 win = 1;
3342 if (CONST_POOL_OK_P (operand_mode[i], operand))
3343 badop = 0;
3344 constmemok = 1;
3345 break;
3347 case '<':
3348 if (MEM_P (operand)
3349 && ! address_reloaded[i]
3350 && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
3351 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
3352 win = 1;
3353 break;
3355 case '>':
3356 if (MEM_P (operand)
3357 && ! address_reloaded[i]
3358 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
3359 || GET_CODE (XEXP (operand, 0)) == POST_INC))
3360 win = 1;
3361 break;
3363 /* Memory operand whose address is not offsettable. */
3364 case 'V':
3365 if (force_reload)
3366 break;
3367 if (MEM_P (operand)
3368 && ! (ind_levels ? offsettable_memref_p (operand)
3369 : offsettable_nonstrict_memref_p (operand))
3370 /* Certain mem addresses will become offsettable
3371 after they themselves are reloaded. This is important;
3372 we don't want our own handling of unoffsettables
3373 to override the handling of reg_equiv_address. */
3374 && !(REG_P (XEXP (operand, 0))
3375 && (ind_levels == 0
3376 || reg_equiv_address (REGNO (XEXP (operand, 0))) != 0)))
3377 win = 1;
3378 break;
3380 /* Memory operand whose address is offsettable. */
3381 case 'o':
3382 if (force_reload)
3383 break;
3384 if ((MEM_P (operand)
3385 /* If IND_LEVELS, find_reloads_address won't reload a
3386 pseudo that didn't get a hard reg, so we have to
3387 reject that case. */
3388 && ((ind_levels ? offsettable_memref_p (operand)
3389 : offsettable_nonstrict_memref_p (operand))
3390 /* A reloaded address is offsettable because it is now
3391 just a simple register indirect. */
3392 || address_reloaded[i] == 1))
3393 || (REG_P (operand)
3394 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3395 && reg_renumber[REGNO (operand)] < 0
3396 /* If reg_equiv_address is nonzero, we will be
3397 loading it into a register; hence it will be
3398 offsettable, but we cannot say that reg_equiv_mem
3399 is offsettable without checking. */
3400 && ((reg_equiv_mem (REGNO (operand)) != 0
3401 && offsettable_memref_p (reg_equiv_mem (REGNO (operand))))
3402 || (reg_equiv_address (REGNO (operand)) != 0))))
3403 win = 1;
3404 if (CONST_POOL_OK_P (operand_mode[i], operand)
3405 || MEM_P (operand))
3406 badop = 0;
3407 constmemok = 1;
3408 offmemok = 1;
3409 break;
3411 case '&':
3412 /* Output operand that is stored before the need for the
3413 input operands (and their index registers) is over. */
3414 earlyclobber = 1, this_earlyclobber = 1;
3415 break;
3417 case 'E':
3418 case 'F':
3419 if (CONST_DOUBLE_AS_FLOAT_P (operand)
3420 || (GET_CODE (operand) == CONST_VECTOR
3421 && (GET_MODE_CLASS (GET_MODE (operand))
3422 == MODE_VECTOR_FLOAT)))
3423 win = 1;
3424 break;
3426 case 'G':
3427 case 'H':
3428 if (CONST_DOUBLE_AS_FLOAT_P (operand)
3429 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (operand, c, p))
3430 win = 1;
3431 break;
3433 case 's':
3434 if (CONST_INT_P (operand) || CONST_DOUBLE_AS_INT_P (operand))
3435 break;
3436 case 'i':
3437 if (CONSTANT_P (operand)
3438 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (operand)))
3439 win = 1;
3440 break;
3442 case 'n':
3443 if (CONST_INT_P (operand) || CONST_DOUBLE_AS_INT_P (operand))
3444 win = 1;
3445 break;
3447 case 'I':
3448 case 'J':
3449 case 'K':
3450 case 'L':
3451 case 'M':
3452 case 'N':
3453 case 'O':
3454 case 'P':
3455 if (CONST_INT_P (operand)
3456 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (operand), c, p))
3457 win = 1;
3458 break;
3460 case 'X':
3461 force_reload = 0;
3462 win = 1;
3463 break;
3465 case 'g':
3466 if (! force_reload
3467 /* A PLUS is never a valid operand, but reload can make
3468 it from a register when eliminating registers. */
3469 && GET_CODE (operand) != PLUS
3470 /* A SCRATCH is not a valid operand. */
3471 && GET_CODE (operand) != SCRATCH
3472 && (! CONSTANT_P (operand)
3473 || ! flag_pic
3474 || LEGITIMATE_PIC_OPERAND_P (operand))
3475 && (GENERAL_REGS == ALL_REGS
3476 || !REG_P (operand)
3477 || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3478 && reg_renumber[REGNO (operand)] < 0)))
3479 win = 1;
3480 /* Drop through into 'r' case. */
3482 case 'r':
3483 this_alternative[i]
3484 = reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];
3485 goto reg;
3487 default:
3488 if (REG_CLASS_FROM_CONSTRAINT (c, p) == NO_REGS)
3490 #ifdef EXTRA_CONSTRAINT_STR
3491 if (EXTRA_MEMORY_CONSTRAINT (c, p))
3493 if (force_reload)
3494 break;
3495 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3496 win = 1;
3497 /* If the address was already reloaded,
3498 we win as well. */
3499 else if (MEM_P (operand)
3500 && address_reloaded[i] == 1)
3501 win = 1;
3502 /* Likewise if the address will be reloaded because
3503 reg_equiv_address is nonzero. For reg_equiv_mem
3504 we have to check. */
3505 else if (REG_P (operand)
3506 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3507 && reg_renumber[REGNO (operand)] < 0
3508 && ((reg_equiv_mem (REGNO (operand)) != 0
3509 && EXTRA_CONSTRAINT_STR (reg_equiv_mem (REGNO (operand)), c, p))
3510 || (reg_equiv_address (REGNO (operand)) != 0)))
3511 win = 1;
3513 /* If we didn't already win, we can reload
3514 constants via force_const_mem, and other
3515 MEMs by reloading the address like for 'o'. */
3516 if (CONST_POOL_OK_P (operand_mode[i], operand)
3517 || MEM_P (operand))
3518 badop = 0;
3519 constmemok = 1;
3520 offmemok = 1;
3521 break;
3523 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
3525 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3526 win = 1;
3528 /* If we didn't already win, we can reload
3529 the address into a base register. */
3530 this_alternative[i]
3531 = base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
3532 ADDRESS, SCRATCH);
3533 badop = 0;
3534 break;
3537 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3538 win = 1;
3539 #endif
3540 break;
3543 this_alternative[i]
3544 = (reg_class_subunion
3545 [this_alternative[i]]
3546 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)]);
3547 reg:
3548 if (GET_MODE (operand) == BLKmode)
3549 break;
3550 winreg = 1;
3551 if (REG_P (operand)
3552 && reg_fits_class_p (operand, this_alternative[i],
3553 offset, GET_MODE (recog_data.operand[i])))
3554 win = 1;
3555 break;
3557 while ((p += len), c);
3559 if (swapped == (commutative >= 0 ? 1 : 0))
3560 constraints[i] = p;
3562 /* If this operand could be handled with a reg,
3563 and some reg is allowed, then this operand can be handled. */
3564 if (winreg && this_alternative[i] != NO_REGS
3565 && (win || !class_only_fixed_regs[this_alternative[i]]))
3566 badop = 0;
3568 /* Record which operands fit this alternative. */
3569 this_alternative_earlyclobber[i] = earlyclobber;
3570 if (win && ! force_reload)
3571 this_alternative_win[i] = 1;
3572 else if (did_match && ! force_reload)
3573 this_alternative_match_win[i] = 1;
3574 else
3576 int const_to_mem = 0;
3578 this_alternative_offmemok[i] = offmemok;
3579 losers++;
3580 if (badop)
3581 bad = 1;
3582 /* Alternative loses if it has no regs for a reg operand. */
3583 if (REG_P (operand)
3584 && this_alternative[i] == NO_REGS
3585 && this_alternative_matches[i] < 0)
3586 bad = 1;
3588 /* If this is a constant that is reloaded into the desired
3589 class by copying it to memory first, count that as another
3590 reload. This is consistent with other code and is
3591 required to avoid choosing another alternative when
3592 the constant is moved into memory by this function on
3593 an early reload pass. Note that the test here is
3594 precisely the same as in the code below that calls
3595 force_const_mem. */
3596 if (CONST_POOL_OK_P (operand_mode[i], operand)
3597 && ((targetm.preferred_reload_class (operand,
3598 this_alternative[i])
3599 == NO_REGS)
3600 || no_input_reloads))
3602 const_to_mem = 1;
3603 if (this_alternative[i] != NO_REGS)
3604 losers++;
3607 /* Alternative loses if it requires a type of reload not
3608 permitted for this insn. We can always reload SCRATCH
3609 and objects with a REG_UNUSED note. */
3610 if (GET_CODE (operand) != SCRATCH
3611 && modified[i] != RELOAD_READ && no_output_reloads
3612 && ! find_reg_note (insn, REG_UNUSED, operand))
3613 bad = 1;
3614 else if (modified[i] != RELOAD_WRITE && no_input_reloads
3615 && ! const_to_mem)
3616 bad = 1;
3618 /* If we can't reload this value at all, reject this
3619 alternative. Note that we could also lose due to
3620 LIMIT_RELOAD_CLASS, but we don't check that
3621 here. */
3623 if (! CONSTANT_P (operand) && this_alternative[i] != NO_REGS)
3625 if (targetm.preferred_reload_class (operand,
3626 this_alternative[i])
3627 == NO_REGS)
3628 reject = 600;
3630 if (operand_type[i] == RELOAD_FOR_OUTPUT
3631 && (targetm.preferred_output_reload_class (operand,
3632 this_alternative[i])
3633 == NO_REGS))
3634 reject = 600;
3637 /* We prefer to reload pseudos over reloading other things,
3638 since such reloads may be able to be eliminated later.
3639 If we are reloading a SCRATCH, we won't be generating any
3640 insns, just using a register, so it is also preferred.
3641 So bump REJECT in other cases. Don't do this in the
3642 case where we are forcing a constant into memory and
3643 it will then win since we don't want to have a different
3644 alternative match then. */
3645 if (! (REG_P (operand)
3646 && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
3647 && GET_CODE (operand) != SCRATCH
3648 && ! (const_to_mem && constmemok))
3649 reject += 2;
3651 /* Input reloads can be inherited more often than output
3652 reloads can be removed, so penalize output reloads. */
3653 if (operand_type[i] != RELOAD_FOR_INPUT
3654 && GET_CODE (operand) != SCRATCH)
3655 reject++;
3658 /* If this operand is a pseudo register that didn't get
3659 a hard reg and this alternative accepts some
3660 register, see if the class that we want is a subset
3661 of the preferred class for this register. If not,
3662 but it intersects that class, use the preferred class
3663 instead. If it does not intersect the preferred
3664 class, show that usage of this alternative should be
3665 discouraged; it will be discouraged more still if the
3666 register is `preferred or nothing'. We do this
3667 because it increases the chance of reusing our spill
3668 register in a later insn and avoiding a pair of
3669 memory stores and loads.
3671 Don't bother with this if this alternative will
3672 accept this operand.
3674 Don't do this for a multiword operand, since it is
3675 only a small win and has the risk of requiring more
3676 spill registers, which could cause a large loss.
3678 Don't do this if the preferred class has only one
3679 register because we might otherwise exhaust the
3680 class. */
3682 if (! win && ! did_match
3683 && this_alternative[i] != NO_REGS
3684 && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3685 && reg_class_size [(int) preferred_class[i]] > 0
3686 && ! small_register_class_p (preferred_class[i]))
3688 if (! reg_class_subset_p (this_alternative[i],
3689 preferred_class[i]))
3691 /* Since we don't have a way of forming the intersection,
3692 we just do something special if the preferred class
3693 is a subset of the class we have; that's the most
3694 common case anyway. */
3695 if (reg_class_subset_p (preferred_class[i],
3696 this_alternative[i]))
3697 this_alternative[i] = preferred_class[i];
3698 else
3699 reject += (2 + 2 * pref_or_nothing[i]);
3704 /* Now see if any output operands that are marked "earlyclobber"
3705 in this alternative conflict with any input operands
3706 or any memory addresses. */
3708 for (i = 0; i < noperands; i++)
3709 if (this_alternative_earlyclobber[i]
3710 && (this_alternative_win[i] || this_alternative_match_win[i]))
3712 struct decomposition early_data;
3714 early_data = decompose (recog_data.operand[i]);
3716 gcc_assert (modified[i] != RELOAD_READ);
3718 if (this_alternative[i] == NO_REGS)
3720 this_alternative_earlyclobber[i] = 0;
3721 gcc_assert (this_insn_is_asm);
3722 error_for_asm (this_insn,
3723 "%<&%> constraint used with no register class");
3726 for (j = 0; j < noperands; j++)
3727 /* Is this an input operand or a memory ref? */
3728 if ((MEM_P (recog_data.operand[j])
3729 || modified[j] != RELOAD_WRITE)
3730 && j != i
3731 /* Ignore things like match_operator operands. */
3732 && !recog_data.is_operator[j]
3733 /* Don't count an input operand that is constrained to match
3734 the early clobber operand. */
3735 && ! (this_alternative_matches[j] == i
3736 && rtx_equal_p (recog_data.operand[i],
3737 recog_data.operand[j]))
3738 /* Is it altered by storing the earlyclobber operand? */
3739 && !immune_p (recog_data.operand[j], recog_data.operand[i],
3740 early_data))
3742 /* If the output is in a non-empty few-regs class,
3743 it's costly to reload it, so reload the input instead. */
3744 if (small_register_class_p (this_alternative[i])
3745 && (REG_P (recog_data.operand[j])
3746 || GET_CODE (recog_data.operand[j]) == SUBREG))
3748 losers++;
3749 this_alternative_win[j] = 0;
3750 this_alternative_match_win[j] = 0;
3752 else
3753 break;
3755 /* If an earlyclobber operand conflicts with something,
3756 it must be reloaded, so request this and count the cost. */
3757 if (j != noperands)
3759 losers++;
3760 this_alternative_win[i] = 0;
3761 this_alternative_match_win[j] = 0;
3762 for (j = 0; j < noperands; j++)
3763 if (this_alternative_matches[j] == i
3764 && this_alternative_match_win[j])
3766 this_alternative_win[j] = 0;
3767 this_alternative_match_win[j] = 0;
3768 losers++;
3773 /* If one alternative accepts all the operands, no reload required,
3774 choose that alternative; don't consider the remaining ones. */
3775 if (losers == 0)
3777 /* Unswap these so that they are never swapped at `finish'. */
3778 if (swapped)
3780 recog_data.operand[commutative] = substed_operand[commutative];
3781 recog_data.operand[commutative + 1]
3782 = substed_operand[commutative + 1];
3784 for (i = 0; i < noperands; i++)
3786 goal_alternative_win[i] = this_alternative_win[i];
3787 goal_alternative_match_win[i] = this_alternative_match_win[i];
3788 goal_alternative[i] = this_alternative[i];
3789 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3790 goal_alternative_matches[i] = this_alternative_matches[i];
3791 goal_alternative_earlyclobber[i]
3792 = this_alternative_earlyclobber[i];
3794 goal_alternative_number = this_alternative_number;
3795 goal_alternative_swapped = swapped;
3796 goal_earlyclobber = this_earlyclobber;
3797 goto finish;
3800 /* REJECT, set by the ! and ? constraint characters and when a register
3801 would be reloaded into a non-preferred class, discourages the use of
3802 this alternative for a reload goal. REJECT is incremented by six
3803 for each ? and two for each non-preferred class. */
3804 losers = losers * 6 + reject;
3806 /* If this alternative can be made to work by reloading,
3807 and it needs less reloading than the others checked so far,
3808 record it as the chosen goal for reloading. */
3809 if (! bad)
3811 if (best > losers)
3813 for (i = 0; i < noperands; i++)
3815 goal_alternative[i] = this_alternative[i];
3816 goal_alternative_win[i] = this_alternative_win[i];
3817 goal_alternative_match_win[i]
3818 = this_alternative_match_win[i];
3819 goal_alternative_offmemok[i]
3820 = this_alternative_offmemok[i];
3821 goal_alternative_matches[i] = this_alternative_matches[i];
3822 goal_alternative_earlyclobber[i]
3823 = this_alternative_earlyclobber[i];
3825 goal_alternative_swapped = swapped;
3826 best = losers;
3827 goal_alternative_number = this_alternative_number;
3828 goal_earlyclobber = this_earlyclobber;
3832 if (swapped)
3834 enum reg_class tclass;
3835 int t;
3837 /* If the commutative operands have been swapped, swap
3838 them back in order to check the next alternative. */
3839 recog_data.operand[commutative] = substed_operand[commutative];
3840 recog_data.operand[commutative + 1] = substed_operand[commutative + 1];
3841 /* Unswap the duplicates too. */
3842 for (i = 0; i < recog_data.n_dups; i++)
3843 if (recog_data.dup_num[i] == commutative
3844 || recog_data.dup_num[i] == commutative + 1)
3845 *recog_data.dup_loc[i]
3846 = recog_data.operand[(int) recog_data.dup_num[i]];
3848 /* Unswap the operand related information as well. */
3849 tclass = preferred_class[commutative];
3850 preferred_class[commutative] = preferred_class[commutative + 1];
3851 preferred_class[commutative + 1] = tclass;
3853 t = pref_or_nothing[commutative];
3854 pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3855 pref_or_nothing[commutative + 1] = t;
3857 t = address_reloaded[commutative];
3858 address_reloaded[commutative] = address_reloaded[commutative + 1];
3859 address_reloaded[commutative + 1] = t;
3864 /* The operands don't meet the constraints.
3865 goal_alternative describes the alternative
3866 that we could reach by reloading the fewest operands.
3867 Reload so as to fit it. */
3869 if (best == MAX_RECOG_OPERANDS * 2 + 600)
3871 /* No alternative works with reloads?? */
3872 if (insn_code_number >= 0)
3873 fatal_insn ("unable to generate reloads for:", insn);
3874 error_for_asm (insn, "inconsistent operand constraints in an %<asm%>");
3875 /* Avoid further trouble with this insn. */
3876 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3877 n_reloads = 0;
3878 return 0;
3881 /* Jump to `finish' from above if all operands are valid already.
3882 In that case, goal_alternative_win is all 1. */
3883 finish:
3885 /* Right now, for any pair of operands I and J that are required to match,
3886 with I < J,
3887 goal_alternative_matches[J] is I.
3888 Set up goal_alternative_matched as the inverse function:
3889 goal_alternative_matched[I] = J. */
3891 for (i = 0; i < noperands; i++)
3892 goal_alternative_matched[i] = -1;
3894 for (i = 0; i < noperands; i++)
3895 if (! goal_alternative_win[i]
3896 && goal_alternative_matches[i] >= 0)
3897 goal_alternative_matched[goal_alternative_matches[i]] = i;
3899 for (i = 0; i < noperands; i++)
3900 goal_alternative_win[i] |= goal_alternative_match_win[i];
3902 /* If the best alternative is with operands 1 and 2 swapped,
3903 consider them swapped before reporting the reloads. Update the
3904 operand numbers of any reloads already pushed. */
3906 if (goal_alternative_swapped)
3908 rtx tem;
3910 tem = substed_operand[commutative];
3911 substed_operand[commutative] = substed_operand[commutative + 1];
3912 substed_operand[commutative + 1] = tem;
3913 tem = recog_data.operand[commutative];
3914 recog_data.operand[commutative] = recog_data.operand[commutative + 1];
3915 recog_data.operand[commutative + 1] = tem;
3916 tem = *recog_data.operand_loc[commutative];
3917 *recog_data.operand_loc[commutative]
3918 = *recog_data.operand_loc[commutative + 1];
3919 *recog_data.operand_loc[commutative + 1] = tem;
3921 for (i = 0; i < n_reloads; i++)
3923 if (rld[i].opnum == commutative)
3924 rld[i].opnum = commutative + 1;
3925 else if (rld[i].opnum == commutative + 1)
3926 rld[i].opnum = commutative;
3930 for (i = 0; i < noperands; i++)
3932 operand_reloadnum[i] = -1;
3934 /* If this is an earlyclobber operand, we need to widen the scope.
3935 The reload must remain valid from the start of the insn being
3936 reloaded until after the operand is stored into its destination.
3937 We approximate this with RELOAD_OTHER even though we know that we
3938 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3940 One special case that is worth checking is when we have an
3941 output that is earlyclobber but isn't used past the insn (typically
3942 a SCRATCH). In this case, we only need have the reload live
3943 through the insn itself, but not for any of our input or output
3944 reloads.
3945 But we must not accidentally narrow the scope of an existing
3946 RELOAD_OTHER reload - leave these alone.
3948 In any case, anything needed to address this operand can remain
3949 however they were previously categorized. */
3951 if (goal_alternative_earlyclobber[i] && operand_type[i] != RELOAD_OTHER)
3952 operand_type[i]
3953 = (find_reg_note (insn, REG_UNUSED, recog_data.operand[i])
3954 ? RELOAD_FOR_INSN : RELOAD_OTHER);
3957 /* Any constants that aren't allowed and can't be reloaded
3958 into registers are here changed into memory references. */
3959 for (i = 0; i < noperands; i++)
3960 if (! goal_alternative_win[i])
3962 rtx op = recog_data.operand[i];
3963 rtx subreg = NULL_RTX;
3964 rtx plus = NULL_RTX;
3965 enum machine_mode mode = operand_mode[i];
3967 /* Reloads of SUBREGs of CONSTANT RTXs are handled later in
3968 push_reload so we have to let them pass here. */
3969 if (GET_CODE (op) == SUBREG)
3971 subreg = op;
3972 op = SUBREG_REG (op);
3973 mode = GET_MODE (op);
3976 if (GET_CODE (op) == PLUS)
3978 plus = op;
3979 op = XEXP (op, 1);
3982 if (CONST_POOL_OK_P (mode, op)
3983 && ((targetm.preferred_reload_class (op, goal_alternative[i])
3984 == NO_REGS)
3985 || no_input_reloads))
3987 int this_address_reloaded;
3988 rtx tem = force_const_mem (mode, op);
3990 /* If we stripped a SUBREG or a PLUS above add it back. */
3991 if (plus != NULL_RTX)
3992 tem = gen_rtx_PLUS (mode, XEXP (plus, 0), tem);
3994 if (subreg != NULL_RTX)
3995 tem = gen_rtx_SUBREG (operand_mode[i], tem, SUBREG_BYTE (subreg));
3997 this_address_reloaded = 0;
3998 substed_operand[i] = recog_data.operand[i]
3999 = find_reloads_toplev (tem, i, address_type[i], ind_levels,
4000 0, insn, &this_address_reloaded);
4002 /* If the alternative accepts constant pool refs directly
4003 there will be no reload needed at all. */
4004 if (plus == NULL_RTX
4005 && subreg == NULL_RTX
4006 && alternative_allows_const_pool_ref (this_address_reloaded == 0
4007 ? substed_operand[i]
4008 : NULL,
4009 recog_data.constraints[i],
4010 goal_alternative_number))
4011 goal_alternative_win[i] = 1;
4015 /* Record the values of the earlyclobber operands for the caller. */
4016 if (goal_earlyclobber)
4017 for (i = 0; i < noperands; i++)
4018 if (goal_alternative_earlyclobber[i])
4019 reload_earlyclobbers[n_earlyclobbers++] = recog_data.operand[i];
4021 /* Now record reloads for all the operands that need them. */
4022 for (i = 0; i < noperands; i++)
4023 if (! goal_alternative_win[i])
4025 /* Operands that match previous ones have already been handled. */
4026 if (goal_alternative_matches[i] >= 0)
4028 /* Handle an operand with a nonoffsettable address
4029 appearing where an offsettable address will do
4030 by reloading the address into a base register.
4032 ??? We can also do this when the operand is a register and
4033 reg_equiv_mem is not offsettable, but this is a bit tricky,
4034 so we don't bother with it. It may not be worth doing. */
4035 else if (goal_alternative_matched[i] == -1
4036 && goal_alternative_offmemok[i]
4037 && MEM_P (recog_data.operand[i]))
4039 /* If the address to be reloaded is a VOIDmode constant,
4040 use the default address mode as mode of the reload register,
4041 as would have been done by find_reloads_address. */
4042 addr_space_t as = MEM_ADDR_SPACE (recog_data.operand[i]);
4043 enum machine_mode address_mode;
4045 address_mode = get_address_mode (recog_data.operand[i]);
4046 operand_reloadnum[i]
4047 = push_reload (XEXP (recog_data.operand[i], 0), NULL_RTX,
4048 &XEXP (recog_data.operand[i], 0), (rtx*) 0,
4049 base_reg_class (VOIDmode, as, MEM, SCRATCH),
4050 address_mode,
4051 VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
4052 rld[operand_reloadnum[i]].inc
4053 = GET_MODE_SIZE (GET_MODE (recog_data.operand[i]));
4055 /* If this operand is an output, we will have made any
4056 reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
4057 now we are treating part of the operand as an input, so
4058 we must change these to RELOAD_FOR_INPUT_ADDRESS. */
4060 if (modified[i] == RELOAD_WRITE)
4062 for (j = 0; j < n_reloads; j++)
4064 if (rld[j].opnum == i)
4066 if (rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS)
4067 rld[j].when_needed = RELOAD_FOR_INPUT_ADDRESS;
4068 else if (rld[j].when_needed
4069 == RELOAD_FOR_OUTADDR_ADDRESS)
4070 rld[j].when_needed = RELOAD_FOR_INPADDR_ADDRESS;
4075 else if (goal_alternative_matched[i] == -1)
4077 operand_reloadnum[i]
4078 = push_reload ((modified[i] != RELOAD_WRITE
4079 ? recog_data.operand[i] : 0),
4080 (modified[i] != RELOAD_READ
4081 ? recog_data.operand[i] : 0),
4082 (modified[i] != RELOAD_WRITE
4083 ? recog_data.operand_loc[i] : 0),
4084 (modified[i] != RELOAD_READ
4085 ? recog_data.operand_loc[i] : 0),
4086 (enum reg_class) goal_alternative[i],
4087 (modified[i] == RELOAD_WRITE
4088 ? VOIDmode : operand_mode[i]),
4089 (modified[i] == RELOAD_READ
4090 ? VOIDmode : operand_mode[i]),
4091 (insn_code_number < 0 ? 0
4092 : insn_data[insn_code_number].operand[i].strict_low),
4093 0, i, operand_type[i]);
4095 /* In a matching pair of operands, one must be input only
4096 and the other must be output only.
4097 Pass the input operand as IN and the other as OUT. */
4098 else if (modified[i] == RELOAD_READ
4099 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
4101 operand_reloadnum[i]
4102 = push_reload (recog_data.operand[i],
4103 recog_data.operand[goal_alternative_matched[i]],
4104 recog_data.operand_loc[i],
4105 recog_data.operand_loc[goal_alternative_matched[i]],
4106 (enum reg_class) goal_alternative[i],
4107 operand_mode[i],
4108 operand_mode[goal_alternative_matched[i]],
4109 0, 0, i, RELOAD_OTHER);
4110 operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
4112 else if (modified[i] == RELOAD_WRITE
4113 && modified[goal_alternative_matched[i]] == RELOAD_READ)
4115 operand_reloadnum[goal_alternative_matched[i]]
4116 = push_reload (recog_data.operand[goal_alternative_matched[i]],
4117 recog_data.operand[i],
4118 recog_data.operand_loc[goal_alternative_matched[i]],
4119 recog_data.operand_loc[i],
4120 (enum reg_class) goal_alternative[i],
4121 operand_mode[goal_alternative_matched[i]],
4122 operand_mode[i],
4123 0, 0, i, RELOAD_OTHER);
4124 operand_reloadnum[i] = output_reloadnum;
4126 else
4128 gcc_assert (insn_code_number < 0);
4129 error_for_asm (insn, "inconsistent operand constraints "
4130 "in an %<asm%>");
4131 /* Avoid further trouble with this insn. */
4132 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
4133 n_reloads = 0;
4134 return 0;
4137 else if (goal_alternative_matched[i] < 0
4138 && goal_alternative_matches[i] < 0
4139 && address_operand_reloaded[i] != 1
4140 && optimize)
4142 /* For each non-matching operand that's a MEM or a pseudo-register
4143 that didn't get a hard register, make an optional reload.
4144 This may get done even if the insn needs no reloads otherwise. */
4146 rtx operand = recog_data.operand[i];
4148 while (GET_CODE (operand) == SUBREG)
4149 operand = SUBREG_REG (operand);
4150 if ((MEM_P (operand)
4151 || (REG_P (operand)
4152 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
4153 /* If this is only for an output, the optional reload would not
4154 actually cause us to use a register now, just note that
4155 something is stored here. */
4156 && (goal_alternative[i] != NO_REGS
4157 || modified[i] == RELOAD_WRITE)
4158 && ! no_input_reloads
4159 /* An optional output reload might allow to delete INSN later.
4160 We mustn't make in-out reloads on insns that are not permitted
4161 output reloads.
4162 If this is an asm, we can't delete it; we must not even call
4163 push_reload for an optional output reload in this case,
4164 because we can't be sure that the constraint allows a register,
4165 and push_reload verifies the constraints for asms. */
4166 && (modified[i] == RELOAD_READ
4167 || (! no_output_reloads && ! this_insn_is_asm)))
4168 operand_reloadnum[i]
4169 = push_reload ((modified[i] != RELOAD_WRITE
4170 ? recog_data.operand[i] : 0),
4171 (modified[i] != RELOAD_READ
4172 ? recog_data.operand[i] : 0),
4173 (modified[i] != RELOAD_WRITE
4174 ? recog_data.operand_loc[i] : 0),
4175 (modified[i] != RELOAD_READ
4176 ? recog_data.operand_loc[i] : 0),
4177 (enum reg_class) goal_alternative[i],
4178 (modified[i] == RELOAD_WRITE
4179 ? VOIDmode : operand_mode[i]),
4180 (modified[i] == RELOAD_READ
4181 ? VOIDmode : operand_mode[i]),
4182 (insn_code_number < 0 ? 0
4183 : insn_data[insn_code_number].operand[i].strict_low),
4184 1, i, operand_type[i]);
4185 /* If a memory reference remains (either as a MEM or a pseudo that
4186 did not get a hard register), yet we can't make an optional
4187 reload, check if this is actually a pseudo register reference;
4188 we then need to emit a USE and/or a CLOBBER so that reload
4189 inheritance will do the right thing. */
4190 else if (replace
4191 && (MEM_P (operand)
4192 || (REG_P (operand)
4193 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
4194 && reg_renumber [REGNO (operand)] < 0)))
4196 operand = *recog_data.operand_loc[i];
4198 while (GET_CODE (operand) == SUBREG)
4199 operand = SUBREG_REG (operand);
4200 if (REG_P (operand))
4202 if (modified[i] != RELOAD_WRITE)
4203 /* We mark the USE with QImode so that we recognize
4204 it as one that can be safely deleted at the end
4205 of reload. */
4206 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, operand),
4207 insn), QImode);
4208 if (modified[i] != RELOAD_READ)
4209 emit_insn_after (gen_clobber (operand), insn);
4213 else if (goal_alternative_matches[i] >= 0
4214 && goal_alternative_win[goal_alternative_matches[i]]
4215 && modified[i] == RELOAD_READ
4216 && modified[goal_alternative_matches[i]] == RELOAD_WRITE
4217 && ! no_input_reloads && ! no_output_reloads
4218 && optimize)
4220 /* Similarly, make an optional reload for a pair of matching
4221 objects that are in MEM or a pseudo that didn't get a hard reg. */
4223 rtx operand = recog_data.operand[i];
4225 while (GET_CODE (operand) == SUBREG)
4226 operand = SUBREG_REG (operand);
4227 if ((MEM_P (operand)
4228 || (REG_P (operand)
4229 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
4230 && (goal_alternative[goal_alternative_matches[i]] != NO_REGS))
4231 operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
4232 = push_reload (recog_data.operand[goal_alternative_matches[i]],
4233 recog_data.operand[i],
4234 recog_data.operand_loc[goal_alternative_matches[i]],
4235 recog_data.operand_loc[i],
4236 (enum reg_class) goal_alternative[goal_alternative_matches[i]],
4237 operand_mode[goal_alternative_matches[i]],
4238 operand_mode[i],
4239 0, 1, goal_alternative_matches[i], RELOAD_OTHER);
4242 /* Perform whatever substitutions on the operands we are supposed
4243 to make due to commutativity or replacement of registers
4244 with equivalent constants or memory slots. */
4246 for (i = 0; i < noperands; i++)
4248 /* We only do this on the last pass through reload, because it is
4249 possible for some data (like reg_equiv_address) to be changed during
4250 later passes. Moreover, we lose the opportunity to get a useful
4251 reload_{in,out}_reg when we do these replacements. */
4253 if (replace)
4255 rtx substitution = substed_operand[i];
4257 *recog_data.operand_loc[i] = substitution;
4259 /* If we're replacing an operand with a LABEL_REF, we need to
4260 make sure that there's a REG_LABEL_OPERAND note attached to
4261 this instruction. */
4262 if (GET_CODE (substitution) == LABEL_REF
4263 && !find_reg_note (insn, REG_LABEL_OPERAND,
4264 XEXP (substitution, 0))
4265 /* For a JUMP_P, if it was a branch target it must have
4266 already been recorded as such. */
4267 && (!JUMP_P (insn)
4268 || !label_is_jump_target_p (XEXP (substitution, 0),
4269 insn)))
4271 add_reg_note (insn, REG_LABEL_OPERAND, XEXP (substitution, 0));
4272 if (LABEL_P (XEXP (substitution, 0)))
4273 ++LABEL_NUSES (XEXP (substitution, 0));
4277 else
4278 retval |= (substed_operand[i] != *recog_data.operand_loc[i]);
4281 /* If this insn pattern contains any MATCH_DUP's, make sure that
4282 they will be substituted if the operands they match are substituted.
4283 Also do now any substitutions we already did on the operands.
4285 Don't do this if we aren't making replacements because we might be
4286 propagating things allocated by frame pointer elimination into places
4287 it doesn't expect. */
4289 if (insn_code_number >= 0 && replace)
4290 for (i = insn_data[insn_code_number].n_dups - 1; i >= 0; i--)
4292 int opno = recog_data.dup_num[i];
4293 *recog_data.dup_loc[i] = *recog_data.operand_loc[opno];
4294 dup_replacements (recog_data.dup_loc[i], recog_data.operand_loc[opno]);
4297 #if 0
4298 /* This loses because reloading of prior insns can invalidate the equivalence
4299 (or at least find_equiv_reg isn't smart enough to find it any more),
4300 causing this insn to need more reload regs than it needed before.
4301 It may be too late to make the reload regs available.
4302 Now this optimization is done safely in choose_reload_regs. */
4304 /* For each reload of a reg into some other class of reg,
4305 search for an existing equivalent reg (same value now) in the right class.
4306 We can use it as long as we don't need to change its contents. */
4307 for (i = 0; i < n_reloads; i++)
4308 if (rld[i].reg_rtx == 0
4309 && rld[i].in != 0
4310 && REG_P (rld[i].in)
4311 && rld[i].out == 0)
4313 rld[i].reg_rtx
4314 = find_equiv_reg (rld[i].in, insn, rld[i].rclass, -1,
4315 static_reload_reg_p, 0, rld[i].inmode);
4316 /* Prevent generation of insn to load the value
4317 because the one we found already has the value. */
4318 if (rld[i].reg_rtx)
4319 rld[i].in = rld[i].reg_rtx;
4321 #endif
4323 /* If we detected error and replaced asm instruction by USE, forget about the
4324 reloads. */
4325 if (GET_CODE (PATTERN (insn)) == USE
4326 && CONST_INT_P (XEXP (PATTERN (insn), 0)))
4327 n_reloads = 0;
4329 /* Perhaps an output reload can be combined with another
4330 to reduce needs by one. */
4331 if (!goal_earlyclobber)
4332 combine_reloads ();
4334 /* If we have a pair of reloads for parts of an address, they are reloading
4335 the same object, the operands themselves were not reloaded, and they
4336 are for two operands that are supposed to match, merge the reloads and
4337 change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
4339 for (i = 0; i < n_reloads; i++)
4341 int k;
4343 for (j = i + 1; j < n_reloads; j++)
4344 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4345 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4346 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4347 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4348 && (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
4349 || rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4350 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4351 || rld[j].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4352 && rtx_equal_p (rld[i].in, rld[j].in)
4353 && (operand_reloadnum[rld[i].opnum] < 0
4354 || rld[operand_reloadnum[rld[i].opnum]].optional)
4355 && (operand_reloadnum[rld[j].opnum] < 0
4356 || rld[operand_reloadnum[rld[j].opnum]].optional)
4357 && (goal_alternative_matches[rld[i].opnum] == rld[j].opnum
4358 || (goal_alternative_matches[rld[j].opnum]
4359 == rld[i].opnum)))
4361 for (k = 0; k < n_replacements; k++)
4362 if (replacements[k].what == j)
4363 replacements[k].what = i;
4365 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4366 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4367 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4368 else
4369 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4370 rld[j].in = 0;
4374 /* Scan all the reloads and update their type.
4375 If a reload is for the address of an operand and we didn't reload
4376 that operand, change the type. Similarly, change the operand number
4377 of a reload when two operands match. If a reload is optional, treat it
4378 as though the operand isn't reloaded.
4380 ??? This latter case is somewhat odd because if we do the optional
4381 reload, it means the object is hanging around. Thus we need only
4382 do the address reload if the optional reload was NOT done.
4384 Change secondary reloads to be the address type of their operand, not
4385 the normal type.
4387 If an operand's reload is now RELOAD_OTHER, change any
4388 RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
4389 RELOAD_FOR_OTHER_ADDRESS. */
4391 for (i = 0; i < n_reloads; i++)
4393 if (rld[i].secondary_p
4394 && rld[i].when_needed == operand_type[rld[i].opnum])
4395 rld[i].when_needed = address_type[rld[i].opnum];
4397 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4398 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4399 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4400 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4401 && (operand_reloadnum[rld[i].opnum] < 0
4402 || rld[operand_reloadnum[rld[i].opnum]].optional))
4404 /* If we have a secondary reload to go along with this reload,
4405 change its type to RELOAD_FOR_OPADDR_ADDR. */
4407 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4408 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4409 && rld[i].secondary_in_reload != -1)
4411 int secondary_in_reload = rld[i].secondary_in_reload;
4413 rld[secondary_in_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4415 /* If there's a tertiary reload we have to change it also. */
4416 if (secondary_in_reload > 0
4417 && rld[secondary_in_reload].secondary_in_reload != -1)
4418 rld[rld[secondary_in_reload].secondary_in_reload].when_needed
4419 = RELOAD_FOR_OPADDR_ADDR;
4422 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4423 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4424 && rld[i].secondary_out_reload != -1)
4426 int secondary_out_reload = rld[i].secondary_out_reload;
4428 rld[secondary_out_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4430 /* If there's a tertiary reload we have to change it also. */
4431 if (secondary_out_reload
4432 && rld[secondary_out_reload].secondary_out_reload != -1)
4433 rld[rld[secondary_out_reload].secondary_out_reload].when_needed
4434 = RELOAD_FOR_OPADDR_ADDR;
4437 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4438 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4439 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4440 else
4441 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4444 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4445 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4446 && operand_reloadnum[rld[i].opnum] >= 0
4447 && (rld[operand_reloadnum[rld[i].opnum]].when_needed
4448 == RELOAD_OTHER))
4449 rld[i].when_needed = RELOAD_FOR_OTHER_ADDRESS;
4451 if (goal_alternative_matches[rld[i].opnum] >= 0)
4452 rld[i].opnum = goal_alternative_matches[rld[i].opnum];
4455 /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
4456 If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
4457 reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
4459 choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
4460 conflict with RELOAD_FOR_OPERAND_ADDRESS reloads. This is true for a
4461 single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
4462 However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
4463 then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
4464 RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
4465 This is complicated by the fact that a single operand can have more
4466 than one RELOAD_FOR_OPERAND_ADDRESS reload. It is very difficult to fix
4467 choose_reload_regs without affecting code quality, and cases that
4468 actually fail are extremely rare, so it turns out to be better to fix
4469 the problem here by not generating cases that choose_reload_regs will
4470 fail for. */
4471 /* There is a similar problem with RELOAD_FOR_INPUT_ADDRESS /
4472 RELOAD_FOR_OUTPUT_ADDRESS when there is more than one of a kind for
4473 a single operand.
4474 We can reduce the register pressure by exploiting that a
4475 RELOAD_FOR_X_ADDR_ADDR that precedes all RELOAD_FOR_X_ADDRESS reloads
4476 does not conflict with any of them, if it is only used for the first of
4477 the RELOAD_FOR_X_ADDRESS reloads. */
4479 int first_op_addr_num = -2;
4480 int first_inpaddr_num[MAX_RECOG_OPERANDS];
4481 int first_outpaddr_num[MAX_RECOG_OPERANDS];
4482 int need_change = 0;
4483 /* We use last_op_addr_reload and the contents of the above arrays
4484 first as flags - -2 means no instance encountered, -1 means exactly
4485 one instance encountered.
4486 If more than one instance has been encountered, we store the reload
4487 number of the first reload of the kind in question; reload numbers
4488 are known to be non-negative. */
4489 for (i = 0; i < noperands; i++)
4490 first_inpaddr_num[i] = first_outpaddr_num[i] = -2;
4491 for (i = n_reloads - 1; i >= 0; i--)
4493 switch (rld[i].when_needed)
4495 case RELOAD_FOR_OPERAND_ADDRESS:
4496 if (++first_op_addr_num >= 0)
4498 first_op_addr_num = i;
4499 need_change = 1;
4501 break;
4502 case RELOAD_FOR_INPUT_ADDRESS:
4503 if (++first_inpaddr_num[rld[i].opnum] >= 0)
4505 first_inpaddr_num[rld[i].opnum] = i;
4506 need_change = 1;
4508 break;
4509 case RELOAD_FOR_OUTPUT_ADDRESS:
4510 if (++first_outpaddr_num[rld[i].opnum] >= 0)
4512 first_outpaddr_num[rld[i].opnum] = i;
4513 need_change = 1;
4515 break;
4516 default:
4517 break;
4521 if (need_change)
4523 for (i = 0; i < n_reloads; i++)
4525 int first_num;
4526 enum reload_type type;
4528 switch (rld[i].when_needed)
4530 case RELOAD_FOR_OPADDR_ADDR:
4531 first_num = first_op_addr_num;
4532 type = RELOAD_FOR_OPERAND_ADDRESS;
4533 break;
4534 case RELOAD_FOR_INPADDR_ADDRESS:
4535 first_num = first_inpaddr_num[rld[i].opnum];
4536 type = RELOAD_FOR_INPUT_ADDRESS;
4537 break;
4538 case RELOAD_FOR_OUTADDR_ADDRESS:
4539 first_num = first_outpaddr_num[rld[i].opnum];
4540 type = RELOAD_FOR_OUTPUT_ADDRESS;
4541 break;
4542 default:
4543 continue;
4545 if (first_num < 0)
4546 continue;
4547 else if (i > first_num)
4548 rld[i].when_needed = type;
4549 else
4551 /* Check if the only TYPE reload that uses reload I is
4552 reload FIRST_NUM. */
4553 for (j = n_reloads - 1; j > first_num; j--)
4555 if (rld[j].when_needed == type
4556 && (rld[i].secondary_p
4557 ? rld[j].secondary_in_reload == i
4558 : reg_mentioned_p (rld[i].in, rld[j].in)))
4560 rld[i].when_needed = type;
4561 break;
4569 /* See if we have any reloads that are now allowed to be merged
4570 because we've changed when the reload is needed to
4571 RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
4572 check for the most common cases. */
4574 for (i = 0; i < n_reloads; i++)
4575 if (rld[i].in != 0 && rld[i].out == 0
4576 && (rld[i].when_needed == RELOAD_FOR_OPERAND_ADDRESS
4577 || rld[i].when_needed == RELOAD_FOR_OPADDR_ADDR
4578 || rld[i].when_needed == RELOAD_FOR_OTHER_ADDRESS))
4579 for (j = 0; j < n_reloads; j++)
4580 if (i != j && rld[j].in != 0 && rld[j].out == 0
4581 && rld[j].when_needed == rld[i].when_needed
4582 && MATCHES (rld[i].in, rld[j].in)
4583 && rld[i].rclass == rld[j].rclass
4584 && !rld[i].nocombine && !rld[j].nocombine
4585 && rld[i].reg_rtx == rld[j].reg_rtx)
4587 rld[i].opnum = MIN (rld[i].opnum, rld[j].opnum);
4588 transfer_replacements (i, j);
4589 rld[j].in = 0;
4592 #ifdef HAVE_cc0
4593 /* If we made any reloads for addresses, see if they violate a
4594 "no input reloads" requirement for this insn. But loads that we
4595 do after the insn (such as for output addresses) are fine. */
4596 if (no_input_reloads)
4597 for (i = 0; i < n_reloads; i++)
4598 gcc_assert (rld[i].in == 0
4599 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS
4600 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS);
4601 #endif
4603 /* Compute reload_mode and reload_nregs. */
4604 for (i = 0; i < n_reloads; i++)
4606 rld[i].mode
4607 = (rld[i].inmode == VOIDmode
4608 || (GET_MODE_SIZE (rld[i].outmode)
4609 > GET_MODE_SIZE (rld[i].inmode)))
4610 ? rld[i].outmode : rld[i].inmode;
4612 rld[i].nregs = ira_reg_class_max_nregs [rld[i].rclass][rld[i].mode];
4615 /* Special case a simple move with an input reload and a
4616 destination of a hard reg, if the hard reg is ok, use it. */
4617 for (i = 0; i < n_reloads; i++)
4618 if (rld[i].when_needed == RELOAD_FOR_INPUT
4619 && GET_CODE (PATTERN (insn)) == SET
4620 && REG_P (SET_DEST (PATTERN (insn)))
4621 && (SET_SRC (PATTERN (insn)) == rld[i].in
4622 || SET_SRC (PATTERN (insn)) == rld[i].in_reg)
4623 && !elimination_target_reg_p (SET_DEST (PATTERN (insn))))
4625 rtx dest = SET_DEST (PATTERN (insn));
4626 unsigned int regno = REGNO (dest);
4628 if (regno < FIRST_PSEUDO_REGISTER
4629 && TEST_HARD_REG_BIT (reg_class_contents[rld[i].rclass], regno)
4630 && HARD_REGNO_MODE_OK (regno, rld[i].mode))
4632 int nr = hard_regno_nregs[regno][rld[i].mode];
4633 int ok = 1, nri;
4635 for (nri = 1; nri < nr; nri ++)
4636 if (! TEST_HARD_REG_BIT (reg_class_contents[rld[i].rclass], regno + nri))
4637 ok = 0;
4639 if (ok)
4640 rld[i].reg_rtx = dest;
4644 return retval;
4647 /* Return true if alternative number ALTNUM in constraint-string
4648 CONSTRAINT is guaranteed to accept a reloaded constant-pool reference.
4649 MEM gives the reference if it didn't need any reloads, otherwise it
4650 is null. */
4652 static bool
4653 alternative_allows_const_pool_ref (rtx mem ATTRIBUTE_UNUSED,
4654 const char *constraint, int altnum)
4656 int c;
4658 /* Skip alternatives before the one requested. */
4659 while (altnum > 0)
4661 while (*constraint++ != ',')
4663 altnum--;
4665 /* Scan the requested alternative for TARGET_MEM_CONSTRAINT or 'o'.
4666 If one of them is present, this alternative accepts the result of
4667 passing a constant-pool reference through find_reloads_toplev.
4669 The same is true of extra memory constraints if the address
4670 was reloaded into a register. However, the target may elect
4671 to disallow the original constant address, forcing it to be
4672 reloaded into a register instead. */
4673 for (; (c = *constraint) && c != ',' && c != '#';
4674 constraint += CONSTRAINT_LEN (c, constraint))
4676 if (c == TARGET_MEM_CONSTRAINT || c == 'o')
4677 return true;
4678 #ifdef EXTRA_CONSTRAINT_STR
4679 if (EXTRA_MEMORY_CONSTRAINT (c, constraint)
4680 && (mem == NULL || EXTRA_CONSTRAINT_STR (mem, c, constraint)))
4681 return true;
4682 #endif
4684 return false;
4687 /* Scan X for memory references and scan the addresses for reloading.
4688 Also checks for references to "constant" regs that we want to eliminate
4689 and replaces them with the values they stand for.
4690 We may alter X destructively if it contains a reference to such.
4691 If X is just a constant reg, we return the equivalent value
4692 instead of X.
4694 IND_LEVELS says how many levels of indirect addressing this machine
4695 supports.
4697 OPNUM and TYPE identify the purpose of the reload.
4699 IS_SET_DEST is true if X is the destination of a SET, which is not
4700 appropriate to be replaced by a constant.
4702 INSN, if nonzero, is the insn in which we do the reload. It is used
4703 to determine if we may generate output reloads, and where to put USEs
4704 for pseudos that we have to replace with stack slots.
4706 ADDRESS_RELOADED. If nonzero, is a pointer to where we put the
4707 result of find_reloads_address. */
4709 static rtx
4710 find_reloads_toplev (rtx x, int opnum, enum reload_type type,
4711 int ind_levels, int is_set_dest, rtx insn,
4712 int *address_reloaded)
4714 RTX_CODE code = GET_CODE (x);
4716 const char *fmt = GET_RTX_FORMAT (code);
4717 int i;
4718 int copied;
4720 if (code == REG)
4722 /* This code is duplicated for speed in find_reloads. */
4723 int regno = REGNO (x);
4724 if (reg_equiv_constant (regno) != 0 && !is_set_dest)
4725 x = reg_equiv_constant (regno);
4726 #if 0
4727 /* This creates (subreg (mem...)) which would cause an unnecessary
4728 reload of the mem. */
4729 else if (reg_equiv_mem (regno) != 0)
4730 x = reg_equiv_mem (regno);
4731 #endif
4732 else if (reg_equiv_memory_loc (regno)
4733 && (reg_equiv_address (regno) != 0 || num_not_at_initial_offset))
4735 rtx mem = make_memloc (x, regno);
4736 if (reg_equiv_address (regno)
4737 || ! rtx_equal_p (mem, reg_equiv_mem (regno)))
4739 /* If this is not a toplevel operand, find_reloads doesn't see
4740 this substitution. We have to emit a USE of the pseudo so
4741 that delete_output_reload can see it. */
4742 if (replace_reloads && recog_data.operand[opnum] != x)
4743 /* We mark the USE with QImode so that we recognize it
4744 as one that can be safely deleted at the end of
4745 reload. */
4746 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, x), insn),
4747 QImode);
4748 x = mem;
4749 i = find_reloads_address (GET_MODE (x), &x, XEXP (x, 0), &XEXP (x, 0),
4750 opnum, type, ind_levels, insn);
4751 if (!rtx_equal_p (x, mem))
4752 push_reg_equiv_alt_mem (regno, x);
4753 if (address_reloaded)
4754 *address_reloaded = i;
4757 return x;
4759 if (code == MEM)
4761 rtx tem = x;
4763 i = find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
4764 opnum, type, ind_levels, insn);
4765 if (address_reloaded)
4766 *address_reloaded = i;
4768 return tem;
4771 if (code == SUBREG && REG_P (SUBREG_REG (x)))
4773 /* Check for SUBREG containing a REG that's equivalent to a
4774 constant. If the constant has a known value, truncate it
4775 right now. Similarly if we are extracting a single-word of a
4776 multi-word constant. If the constant is symbolic, allow it
4777 to be substituted normally. push_reload will strip the
4778 subreg later. The constant must not be VOIDmode, because we
4779 will lose the mode of the register (this should never happen
4780 because one of the cases above should handle it). */
4782 int regno = REGNO (SUBREG_REG (x));
4783 rtx tem;
4785 if (regno >= FIRST_PSEUDO_REGISTER
4786 && reg_renumber[regno] < 0
4787 && reg_equiv_constant (regno) != 0)
4789 tem =
4790 simplify_gen_subreg (GET_MODE (x), reg_equiv_constant (regno),
4791 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
4792 gcc_assert (tem);
4793 if (CONSTANT_P (tem)
4794 && !targetm.legitimate_constant_p (GET_MODE (x), tem))
4796 tem = force_const_mem (GET_MODE (x), tem);
4797 i = find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4798 &XEXP (tem, 0), opnum, type,
4799 ind_levels, insn);
4800 if (address_reloaded)
4801 *address_reloaded = i;
4803 return tem;
4806 /* If the subreg contains a reg that will be converted to a mem,
4807 convert the subreg to a narrower memref now.
4808 Otherwise, we would get (subreg (mem ...) ...),
4809 which would force reload of the mem.
4811 We also need to do this if there is an equivalent MEM that is
4812 not offsettable. In that case, alter_subreg would produce an
4813 invalid address on big-endian machines.
4815 For machines that extend byte loads, we must not reload using
4816 a wider mode if we have a paradoxical SUBREG. find_reloads will
4817 force a reload in that case. So we should not do anything here. */
4819 if (regno >= FIRST_PSEUDO_REGISTER
4820 #ifdef LOAD_EXTEND_OP
4821 && !paradoxical_subreg_p (x)
4822 #endif
4823 && (reg_equiv_address (regno) != 0
4824 || (reg_equiv_mem (regno) != 0
4825 && (! strict_memory_address_addr_space_p
4826 (GET_MODE (x), XEXP (reg_equiv_mem (regno), 0),
4827 MEM_ADDR_SPACE (reg_equiv_mem (regno)))
4828 || ! offsettable_memref_p (reg_equiv_mem (regno))
4829 || num_not_at_initial_offset))))
4830 x = find_reloads_subreg_address (x, 1, opnum, type, ind_levels,
4831 insn, address_reloaded);
4834 for (copied = 0, i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4836 if (fmt[i] == 'e')
4838 rtx new_part = find_reloads_toplev (XEXP (x, i), opnum, type,
4839 ind_levels, is_set_dest, insn,
4840 address_reloaded);
4841 /* If we have replaced a reg with it's equivalent memory loc -
4842 that can still be handled here e.g. if it's in a paradoxical
4843 subreg - we must make the change in a copy, rather than using
4844 a destructive change. This way, find_reloads can still elect
4845 not to do the change. */
4846 if (new_part != XEXP (x, i) && ! CONSTANT_P (new_part) && ! copied)
4848 x = shallow_copy_rtx (x);
4849 copied = 1;
4851 XEXP (x, i) = new_part;
4854 return x;
4857 /* Return a mem ref for the memory equivalent of reg REGNO.
4858 This mem ref is not shared with anything. */
4860 static rtx
4861 make_memloc (rtx ad, int regno)
4863 /* We must rerun eliminate_regs, in case the elimination
4864 offsets have changed. */
4865 rtx tem
4866 = XEXP (eliminate_regs (reg_equiv_memory_loc (regno), VOIDmode, NULL_RTX),
4869 /* If TEM might contain a pseudo, we must copy it to avoid
4870 modifying it when we do the substitution for the reload. */
4871 if (rtx_varies_p (tem, 0))
4872 tem = copy_rtx (tem);
4874 tem = replace_equiv_address_nv (reg_equiv_memory_loc (regno), tem);
4875 tem = adjust_address_nv (tem, GET_MODE (ad), 0);
4877 /* Copy the result if it's still the same as the equivalence, to avoid
4878 modifying it when we do the substitution for the reload. */
4879 if (tem == reg_equiv_memory_loc (regno))
4880 tem = copy_rtx (tem);
4881 return tem;
4884 /* Returns true if AD could be turned into a valid memory reference
4885 to mode MODE in address space AS by reloading the part pointed to
4886 by PART into a register. */
4888 static int
4889 maybe_memory_address_addr_space_p (enum machine_mode mode, rtx ad,
4890 addr_space_t as, rtx *part)
4892 int retv;
4893 rtx tem = *part;
4894 rtx reg = gen_rtx_REG (GET_MODE (tem), max_reg_num ());
4896 *part = reg;
4897 retv = memory_address_addr_space_p (mode, ad, as);
4898 *part = tem;
4900 return retv;
4903 /* Record all reloads needed for handling memory address AD
4904 which appears in *LOC in a memory reference to mode MODE
4905 which itself is found in location *MEMREFLOC.
4906 Note that we take shortcuts assuming that no multi-reg machine mode
4907 occurs as part of an address.
4909 OPNUM and TYPE specify the purpose of this reload.
4911 IND_LEVELS says how many levels of indirect addressing this machine
4912 supports.
4914 INSN, if nonzero, is the insn in which we do the reload. It is used
4915 to determine if we may generate output reloads, and where to put USEs
4916 for pseudos that we have to replace with stack slots.
4918 Value is one if this address is reloaded or replaced as a whole; it is
4919 zero if the top level of this address was not reloaded or replaced, and
4920 it is -1 if it may or may not have been reloaded or replaced.
4922 Note that there is no verification that the address will be valid after
4923 this routine does its work. Instead, we rely on the fact that the address
4924 was valid when reload started. So we need only undo things that reload
4925 could have broken. These are wrong register types, pseudos not allocated
4926 to a hard register, and frame pointer elimination. */
4928 static int
4929 find_reloads_address (enum machine_mode mode, rtx *memrefloc, rtx ad,
4930 rtx *loc, int opnum, enum reload_type type,
4931 int ind_levels, rtx insn)
4933 addr_space_t as = memrefloc? MEM_ADDR_SPACE (*memrefloc)
4934 : ADDR_SPACE_GENERIC;
4935 int regno;
4936 int removed_and = 0;
4937 int op_index;
4938 rtx tem;
4940 /* If the address is a register, see if it is a legitimate address and
4941 reload if not. We first handle the cases where we need not reload
4942 or where we must reload in a non-standard way. */
4944 if (REG_P (ad))
4946 regno = REGNO (ad);
4948 if (reg_equiv_constant (regno) != 0)
4950 find_reloads_address_part (reg_equiv_constant (regno), loc,
4951 base_reg_class (mode, as, MEM, SCRATCH),
4952 GET_MODE (ad), opnum, type, ind_levels);
4953 return 1;
4956 tem = reg_equiv_memory_loc (regno);
4957 if (tem != 0)
4959 if (reg_equiv_address (regno) != 0 || num_not_at_initial_offset)
4961 tem = make_memloc (ad, regno);
4962 if (! strict_memory_address_addr_space_p (GET_MODE (tem),
4963 XEXP (tem, 0),
4964 MEM_ADDR_SPACE (tem)))
4966 rtx orig = tem;
4968 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4969 &XEXP (tem, 0), opnum,
4970 ADDR_TYPE (type), ind_levels, insn);
4971 if (!rtx_equal_p (tem, orig))
4972 push_reg_equiv_alt_mem (regno, tem);
4974 /* We can avoid a reload if the register's equivalent memory
4975 expression is valid as an indirect memory address.
4976 But not all addresses are valid in a mem used as an indirect
4977 address: only reg or reg+constant. */
4979 if (ind_levels > 0
4980 && strict_memory_address_addr_space_p (mode, tem, as)
4981 && (REG_P (XEXP (tem, 0))
4982 || (GET_CODE (XEXP (tem, 0)) == PLUS
4983 && REG_P (XEXP (XEXP (tem, 0), 0))
4984 && CONSTANT_P (XEXP (XEXP (tem, 0), 1)))))
4986 /* TEM is not the same as what we'll be replacing the
4987 pseudo with after reload, put a USE in front of INSN
4988 in the final reload pass. */
4989 if (replace_reloads
4990 && num_not_at_initial_offset
4991 && ! rtx_equal_p (tem, reg_equiv_mem (regno)))
4993 *loc = tem;
4994 /* We mark the USE with QImode so that we
4995 recognize it as one that can be safely
4996 deleted at the end of reload. */
4997 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad),
4998 insn), QImode);
5000 /* This doesn't really count as replacing the address
5001 as a whole, since it is still a memory access. */
5003 return 0;
5005 ad = tem;
5009 /* The only remaining case where we can avoid a reload is if this is a
5010 hard register that is valid as a base register and which is not the
5011 subject of a CLOBBER in this insn. */
5013 else if (regno < FIRST_PSEUDO_REGISTER
5014 && regno_ok_for_base_p (regno, mode, as, MEM, SCRATCH)
5015 && ! regno_clobbered_p (regno, this_insn, mode, 0))
5016 return 0;
5018 /* If we do not have one of the cases above, we must do the reload. */
5019 push_reload (ad, NULL_RTX, loc, (rtx*) 0,
5020 base_reg_class (mode, as, MEM, SCRATCH),
5021 GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
5022 return 1;
5025 if (strict_memory_address_addr_space_p (mode, ad, as))
5027 /* The address appears valid, so reloads are not needed.
5028 But the address may contain an eliminable register.
5029 This can happen because a machine with indirect addressing
5030 may consider a pseudo register by itself a valid address even when
5031 it has failed to get a hard reg.
5032 So do a tree-walk to find and eliminate all such regs. */
5034 /* But first quickly dispose of a common case. */
5035 if (GET_CODE (ad) == PLUS
5036 && CONST_INT_P (XEXP (ad, 1))
5037 && REG_P (XEXP (ad, 0))
5038 && reg_equiv_constant (REGNO (XEXP (ad, 0))) == 0)
5039 return 0;
5041 subst_reg_equivs_changed = 0;
5042 *loc = subst_reg_equivs (ad, insn);
5044 if (! subst_reg_equivs_changed)
5045 return 0;
5047 /* Check result for validity after substitution. */
5048 if (strict_memory_address_addr_space_p (mode, ad, as))
5049 return 0;
5052 #ifdef LEGITIMIZE_RELOAD_ADDRESS
5055 if (memrefloc && ADDR_SPACE_GENERIC_P (as))
5057 LEGITIMIZE_RELOAD_ADDRESS (ad, GET_MODE (*memrefloc), opnum, type,
5058 ind_levels, win);
5060 break;
5061 win:
5062 *memrefloc = copy_rtx (*memrefloc);
5063 XEXP (*memrefloc, 0) = ad;
5064 move_replacements (&ad, &XEXP (*memrefloc, 0));
5065 return -1;
5067 while (0);
5068 #endif
5070 /* The address is not valid. We have to figure out why. First see if
5071 we have an outer AND and remove it if so. Then analyze what's inside. */
5073 if (GET_CODE (ad) == AND)
5075 removed_and = 1;
5076 loc = &XEXP (ad, 0);
5077 ad = *loc;
5080 /* One possibility for why the address is invalid is that it is itself
5081 a MEM. This can happen when the frame pointer is being eliminated, a
5082 pseudo is not allocated to a hard register, and the offset between the
5083 frame and stack pointers is not its initial value. In that case the
5084 pseudo will have been replaced by a MEM referring to the
5085 stack pointer. */
5086 if (MEM_P (ad))
5088 /* First ensure that the address in this MEM is valid. Then, unless
5089 indirect addresses are valid, reload the MEM into a register. */
5090 tem = ad;
5091 find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
5092 opnum, ADDR_TYPE (type),
5093 ind_levels == 0 ? 0 : ind_levels - 1, insn);
5095 /* If tem was changed, then we must create a new memory reference to
5096 hold it and store it back into memrefloc. */
5097 if (tem != ad && memrefloc)
5099 *memrefloc = copy_rtx (*memrefloc);
5100 copy_replacements (tem, XEXP (*memrefloc, 0));
5101 loc = &XEXP (*memrefloc, 0);
5102 if (removed_and)
5103 loc = &XEXP (*loc, 0);
5106 /* Check similar cases as for indirect addresses as above except
5107 that we can allow pseudos and a MEM since they should have been
5108 taken care of above. */
5110 if (ind_levels == 0
5111 || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
5112 || MEM_P (XEXP (tem, 0))
5113 || ! (REG_P (XEXP (tem, 0))
5114 || (GET_CODE (XEXP (tem, 0)) == PLUS
5115 && REG_P (XEXP (XEXP (tem, 0), 0))
5116 && CONST_INT_P (XEXP (XEXP (tem, 0), 1)))))
5118 /* Must use TEM here, not AD, since it is the one that will
5119 have any subexpressions reloaded, if needed. */
5120 push_reload (tem, NULL_RTX, loc, (rtx*) 0,
5121 base_reg_class (mode, as, MEM, SCRATCH), GET_MODE (tem),
5122 VOIDmode, 0,
5123 0, opnum, type);
5124 return ! removed_and;
5126 else
5127 return 0;
5130 /* If we have address of a stack slot but it's not valid because the
5131 displacement is too large, compute the sum in a register.
5132 Handle all base registers here, not just fp/ap/sp, because on some
5133 targets (namely SH) we can also get too large displacements from
5134 big-endian corrections. */
5135 else if (GET_CODE (ad) == PLUS
5136 && REG_P (XEXP (ad, 0))
5137 && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
5138 && CONST_INT_P (XEXP (ad, 1))
5139 && (regno_ok_for_base_p (REGNO (XEXP (ad, 0)), mode, as, PLUS,
5140 CONST_INT)
5141 /* Similarly, if we were to reload the base register and the
5142 mem+offset address is still invalid, then we want to reload
5143 the whole address, not just the base register. */
5144 || ! maybe_memory_address_addr_space_p
5145 (mode, ad, as, &(XEXP (ad, 0)))))
5148 /* Unshare the MEM rtx so we can safely alter it. */
5149 if (memrefloc)
5151 *memrefloc = copy_rtx (*memrefloc);
5152 loc = &XEXP (*memrefloc, 0);
5153 if (removed_and)
5154 loc = &XEXP (*loc, 0);
5157 if (double_reg_address_ok
5158 && regno_ok_for_base_p (REGNO (XEXP (ad, 0)), mode, as,
5159 PLUS, CONST_INT))
5161 /* Unshare the sum as well. */
5162 *loc = ad = copy_rtx (ad);
5164 /* Reload the displacement into an index reg.
5165 We assume the frame pointer or arg pointer is a base reg. */
5166 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
5167 INDEX_REG_CLASS, GET_MODE (ad), opnum,
5168 type, ind_levels);
5169 return 0;
5171 else
5173 /* If the sum of two regs is not necessarily valid,
5174 reload the sum into a base reg.
5175 That will at least work. */
5176 find_reloads_address_part (ad, loc,
5177 base_reg_class (mode, as, MEM, SCRATCH),
5178 GET_MODE (ad), opnum, type, ind_levels);
5180 return ! removed_and;
5183 /* If we have an indexed stack slot, there are three possible reasons why
5184 it might be invalid: The index might need to be reloaded, the address
5185 might have been made by frame pointer elimination and hence have a
5186 constant out of range, or both reasons might apply.
5188 We can easily check for an index needing reload, but even if that is the
5189 case, we might also have an invalid constant. To avoid making the
5190 conservative assumption and requiring two reloads, we see if this address
5191 is valid when not interpreted strictly. If it is, the only problem is
5192 that the index needs a reload and find_reloads_address_1 will take care
5193 of it.
5195 Handle all base registers here, not just fp/ap/sp, because on some
5196 targets (namely SPARC) we can also get invalid addresses from preventive
5197 subreg big-endian corrections made by find_reloads_toplev. We
5198 can also get expressions involving LO_SUM (rather than PLUS) from
5199 find_reloads_subreg_address.
5201 If we decide to do something, it must be that `double_reg_address_ok'
5202 is true. We generate a reload of the base register + constant and
5203 rework the sum so that the reload register will be added to the index.
5204 This is safe because we know the address isn't shared.
5206 We check for the base register as both the first and second operand of
5207 the innermost PLUS and/or LO_SUM. */
5209 for (op_index = 0; op_index < 2; ++op_index)
5211 rtx operand, addend;
5212 enum rtx_code inner_code;
5214 if (GET_CODE (ad) != PLUS)
5215 continue;
5217 inner_code = GET_CODE (XEXP (ad, 0));
5218 if (!(GET_CODE (ad) == PLUS
5219 && CONST_INT_P (XEXP (ad, 1))
5220 && (inner_code == PLUS || inner_code == LO_SUM)))
5221 continue;
5223 operand = XEXP (XEXP (ad, 0), op_index);
5224 if (!REG_P (operand) || REGNO (operand) >= FIRST_PSEUDO_REGISTER)
5225 continue;
5227 addend = XEXP (XEXP (ad, 0), 1 - op_index);
5229 if ((regno_ok_for_base_p (REGNO (operand), mode, as, inner_code,
5230 GET_CODE (addend))
5231 || operand == frame_pointer_rtx
5232 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
5233 || operand == hard_frame_pointer_rtx
5234 #endif
5235 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
5236 || operand == arg_pointer_rtx
5237 #endif
5238 || operand == stack_pointer_rtx)
5239 && ! maybe_memory_address_addr_space_p
5240 (mode, ad, as, &XEXP (XEXP (ad, 0), 1 - op_index)))
5242 rtx offset_reg;
5243 enum reg_class cls;
5245 offset_reg = plus_constant (GET_MODE (ad), operand,
5246 INTVAL (XEXP (ad, 1)));
5248 /* Form the adjusted address. */
5249 if (GET_CODE (XEXP (ad, 0)) == PLUS)
5250 ad = gen_rtx_PLUS (GET_MODE (ad),
5251 op_index == 0 ? offset_reg : addend,
5252 op_index == 0 ? addend : offset_reg);
5253 else
5254 ad = gen_rtx_LO_SUM (GET_MODE (ad),
5255 op_index == 0 ? offset_reg : addend,
5256 op_index == 0 ? addend : offset_reg);
5257 *loc = ad;
5259 cls = base_reg_class (mode, as, MEM, GET_CODE (addend));
5260 find_reloads_address_part (XEXP (ad, op_index),
5261 &XEXP (ad, op_index), cls,
5262 GET_MODE (ad), opnum, type, ind_levels);
5263 find_reloads_address_1 (mode, as,
5264 XEXP (ad, 1 - op_index), 1, GET_CODE (ad),
5265 GET_CODE (XEXP (ad, op_index)),
5266 &XEXP (ad, 1 - op_index), opnum,
5267 type, 0, insn);
5269 return 0;
5273 /* See if address becomes valid when an eliminable register
5274 in a sum is replaced. */
5276 tem = ad;
5277 if (GET_CODE (ad) == PLUS)
5278 tem = subst_indexed_address (ad);
5279 if (tem != ad && strict_memory_address_addr_space_p (mode, tem, as))
5281 /* Ok, we win that way. Replace any additional eliminable
5282 registers. */
5284 subst_reg_equivs_changed = 0;
5285 tem = subst_reg_equivs (tem, insn);
5287 /* Make sure that didn't make the address invalid again. */
5289 if (! subst_reg_equivs_changed
5290 || strict_memory_address_addr_space_p (mode, tem, as))
5292 *loc = tem;
5293 return 0;
5297 /* If constants aren't valid addresses, reload the constant address
5298 into a register. */
5299 if (CONSTANT_P (ad) && ! strict_memory_address_addr_space_p (mode, ad, as))
5301 enum machine_mode address_mode = GET_MODE (ad);
5302 if (address_mode == VOIDmode)
5303 address_mode = targetm.addr_space.address_mode (as);
5305 /* If AD is an address in the constant pool, the MEM rtx may be shared.
5306 Unshare it so we can safely alter it. */
5307 if (memrefloc && GET_CODE (ad) == SYMBOL_REF
5308 && CONSTANT_POOL_ADDRESS_P (ad))
5310 *memrefloc = copy_rtx (*memrefloc);
5311 loc = &XEXP (*memrefloc, 0);
5312 if (removed_and)
5313 loc = &XEXP (*loc, 0);
5316 find_reloads_address_part (ad, loc,
5317 base_reg_class (mode, as, MEM, SCRATCH),
5318 address_mode, opnum, type, ind_levels);
5319 return ! removed_and;
5322 return find_reloads_address_1 (mode, as, ad, 0, MEM, SCRATCH, loc,
5323 opnum, type, ind_levels, insn);
5326 /* Find all pseudo regs appearing in AD
5327 that are eliminable in favor of equivalent values
5328 and do not have hard regs; replace them by their equivalents.
5329 INSN, if nonzero, is the insn in which we do the reload. We put USEs in
5330 front of it for pseudos that we have to replace with stack slots. */
5332 static rtx
5333 subst_reg_equivs (rtx ad, rtx insn)
5335 RTX_CODE code = GET_CODE (ad);
5336 int i;
5337 const char *fmt;
5339 switch (code)
5341 case HIGH:
5342 case CONST:
5343 CASE_CONST_ANY:
5344 case SYMBOL_REF:
5345 case LABEL_REF:
5346 case PC:
5347 case CC0:
5348 return ad;
5350 case REG:
5352 int regno = REGNO (ad);
5354 if (reg_equiv_constant (regno) != 0)
5356 subst_reg_equivs_changed = 1;
5357 return reg_equiv_constant (regno);
5359 if (reg_equiv_memory_loc (regno) && num_not_at_initial_offset)
5361 rtx mem = make_memloc (ad, regno);
5362 if (! rtx_equal_p (mem, reg_equiv_mem (regno)))
5364 subst_reg_equivs_changed = 1;
5365 /* We mark the USE with QImode so that we recognize it
5366 as one that can be safely deleted at the end of
5367 reload. */
5368 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn),
5369 QImode);
5370 return mem;
5374 return ad;
5376 case PLUS:
5377 /* Quickly dispose of a common case. */
5378 if (XEXP (ad, 0) == frame_pointer_rtx
5379 && CONST_INT_P (XEXP (ad, 1)))
5380 return ad;
5381 break;
5383 default:
5384 break;
5387 fmt = GET_RTX_FORMAT (code);
5388 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5389 if (fmt[i] == 'e')
5390 XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i), insn);
5391 return ad;
5394 /* Compute the sum of X and Y, making canonicalizations assumed in an
5395 address, namely: sum constant integers, surround the sum of two
5396 constants with a CONST, put the constant as the second operand, and
5397 group the constant on the outermost sum.
5399 This routine assumes both inputs are already in canonical form. */
5402 form_sum (enum machine_mode mode, rtx x, rtx y)
5404 rtx tem;
5406 gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
5407 gcc_assert (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode);
5409 if (CONST_INT_P (x))
5410 return plus_constant (mode, y, INTVAL (x));
5411 else if (CONST_INT_P (y))
5412 return plus_constant (mode, x, INTVAL (y));
5413 else if (CONSTANT_P (x))
5414 tem = x, x = y, y = tem;
5416 if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
5417 return form_sum (mode, XEXP (x, 0), form_sum (mode, XEXP (x, 1), y));
5419 /* Note that if the operands of Y are specified in the opposite
5420 order in the recursive calls below, infinite recursion will occur. */
5421 if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
5422 return form_sum (mode, form_sum (mode, x, XEXP (y, 0)), XEXP (y, 1));
5424 /* If both constant, encapsulate sum. Otherwise, just form sum. A
5425 constant will have been placed second. */
5426 if (CONSTANT_P (x) && CONSTANT_P (y))
5428 if (GET_CODE (x) == CONST)
5429 x = XEXP (x, 0);
5430 if (GET_CODE (y) == CONST)
5431 y = XEXP (y, 0);
5433 return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
5436 return gen_rtx_PLUS (mode, x, y);
5439 /* If ADDR is a sum containing a pseudo register that should be
5440 replaced with a constant (from reg_equiv_constant),
5441 return the result of doing so, and also apply the associative
5442 law so that the result is more likely to be a valid address.
5443 (But it is not guaranteed to be one.)
5445 Note that at most one register is replaced, even if more are
5446 replaceable. Also, we try to put the result into a canonical form
5447 so it is more likely to be a valid address.
5449 In all other cases, return ADDR. */
5451 static rtx
5452 subst_indexed_address (rtx addr)
5454 rtx op0 = 0, op1 = 0, op2 = 0;
5455 rtx tem;
5456 int regno;
5458 if (GET_CODE (addr) == PLUS)
5460 /* Try to find a register to replace. */
5461 op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
5462 if (REG_P (op0)
5463 && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
5464 && reg_renumber[regno] < 0
5465 && reg_equiv_constant (regno) != 0)
5466 op0 = reg_equiv_constant (regno);
5467 else if (REG_P (op1)
5468 && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
5469 && reg_renumber[regno] < 0
5470 && reg_equiv_constant (regno) != 0)
5471 op1 = reg_equiv_constant (regno);
5472 else if (GET_CODE (op0) == PLUS
5473 && (tem = subst_indexed_address (op0)) != op0)
5474 op0 = tem;
5475 else if (GET_CODE (op1) == PLUS
5476 && (tem = subst_indexed_address (op1)) != op1)
5477 op1 = tem;
5478 else
5479 return addr;
5481 /* Pick out up to three things to add. */
5482 if (GET_CODE (op1) == PLUS)
5483 op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
5484 else if (GET_CODE (op0) == PLUS)
5485 op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5487 /* Compute the sum. */
5488 if (op2 != 0)
5489 op1 = form_sum (GET_MODE (addr), op1, op2);
5490 if (op1 != 0)
5491 op0 = form_sum (GET_MODE (addr), op0, op1);
5493 return op0;
5495 return addr;
5498 /* Update the REG_INC notes for an insn. It updates all REG_INC
5499 notes for the instruction which refer to REGNO the to refer
5500 to the reload number.
5502 INSN is the insn for which any REG_INC notes need updating.
5504 REGNO is the register number which has been reloaded.
5506 RELOADNUM is the reload number. */
5508 static void
5509 update_auto_inc_notes (rtx insn ATTRIBUTE_UNUSED, int regno ATTRIBUTE_UNUSED,
5510 int reloadnum ATTRIBUTE_UNUSED)
5512 #ifdef AUTO_INC_DEC
5513 rtx link;
5515 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5516 if (REG_NOTE_KIND (link) == REG_INC
5517 && (int) REGNO (XEXP (link, 0)) == regno)
5518 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5519 #endif
5522 /* Record the pseudo registers we must reload into hard registers in a
5523 subexpression of a would-be memory address, X referring to a value
5524 in mode MODE. (This function is not called if the address we find
5525 is strictly valid.)
5527 CONTEXT = 1 means we are considering regs as index regs,
5528 = 0 means we are considering them as base regs.
5529 OUTER_CODE is the code of the enclosing RTX, typically a MEM, a PLUS,
5530 or an autoinc code.
5531 If CONTEXT == 0 and OUTER_CODE is a PLUS or LO_SUM, then INDEX_CODE
5532 is the code of the index part of the address. Otherwise, pass SCRATCH
5533 for this argument.
5534 OPNUM and TYPE specify the purpose of any reloads made.
5536 IND_LEVELS says how many levels of indirect addressing are
5537 supported at this point in the address.
5539 INSN, if nonzero, is the insn in which we do the reload. It is used
5540 to determine if we may generate output reloads.
5542 We return nonzero if X, as a whole, is reloaded or replaced. */
5544 /* Note that we take shortcuts assuming that no multi-reg machine mode
5545 occurs as part of an address.
5546 Also, this is not fully machine-customizable; it works for machines
5547 such as VAXen and 68000's and 32000's, but other possible machines
5548 could have addressing modes that this does not handle right.
5549 If you add push_reload calls here, you need to make sure gen_reload
5550 handles those cases gracefully. */
5552 static int
5553 find_reloads_address_1 (enum machine_mode mode, addr_space_t as,
5554 rtx x, int context,
5555 enum rtx_code outer_code, enum rtx_code index_code,
5556 rtx *loc, int opnum, enum reload_type type,
5557 int ind_levels, rtx insn)
5559 #define REG_OK_FOR_CONTEXT(CONTEXT, REGNO, MODE, AS, OUTER, INDEX) \
5560 ((CONTEXT) == 0 \
5561 ? regno_ok_for_base_p (REGNO, MODE, AS, OUTER, INDEX) \
5562 : REGNO_OK_FOR_INDEX_P (REGNO))
5564 enum reg_class context_reg_class;
5565 RTX_CODE code = GET_CODE (x);
5567 if (context == 1)
5568 context_reg_class = INDEX_REG_CLASS;
5569 else
5570 context_reg_class = base_reg_class (mode, as, outer_code, index_code);
5572 switch (code)
5574 case PLUS:
5576 rtx orig_op0 = XEXP (x, 0);
5577 rtx orig_op1 = XEXP (x, 1);
5578 RTX_CODE code0 = GET_CODE (orig_op0);
5579 RTX_CODE code1 = GET_CODE (orig_op1);
5580 rtx op0 = orig_op0;
5581 rtx op1 = orig_op1;
5583 if (GET_CODE (op0) == SUBREG)
5585 op0 = SUBREG_REG (op0);
5586 code0 = GET_CODE (op0);
5587 if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
5588 op0 = gen_rtx_REG (word_mode,
5589 (REGNO (op0) +
5590 subreg_regno_offset (REGNO (SUBREG_REG (orig_op0)),
5591 GET_MODE (SUBREG_REG (orig_op0)),
5592 SUBREG_BYTE (orig_op0),
5593 GET_MODE (orig_op0))));
5596 if (GET_CODE (op1) == SUBREG)
5598 op1 = SUBREG_REG (op1);
5599 code1 = GET_CODE (op1);
5600 if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
5601 /* ??? Why is this given op1's mode and above for
5602 ??? op0 SUBREGs we use word_mode? */
5603 op1 = gen_rtx_REG (GET_MODE (op1),
5604 (REGNO (op1) +
5605 subreg_regno_offset (REGNO (SUBREG_REG (orig_op1)),
5606 GET_MODE (SUBREG_REG (orig_op1)),
5607 SUBREG_BYTE (orig_op1),
5608 GET_MODE (orig_op1))));
5610 /* Plus in the index register may be created only as a result of
5611 register rematerialization for expression like &localvar*4. Reload it.
5612 It may be possible to combine the displacement on the outer level,
5613 but it is probably not worthwhile to do so. */
5614 if (context == 1)
5616 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5617 opnum, ADDR_TYPE (type), ind_levels, insn);
5618 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5619 context_reg_class,
5620 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5621 return 1;
5624 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
5625 || code0 == ZERO_EXTEND || code1 == MEM)
5627 find_reloads_address_1 (mode, as, orig_op0, 1, PLUS, SCRATCH,
5628 &XEXP (x, 0), opnum, type, ind_levels,
5629 insn);
5630 find_reloads_address_1 (mode, as, orig_op1, 0, PLUS, code0,
5631 &XEXP (x, 1), opnum, type, ind_levels,
5632 insn);
5635 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
5636 || code1 == ZERO_EXTEND || code0 == MEM)
5638 find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, code1,
5639 &XEXP (x, 0), opnum, type, ind_levels,
5640 insn);
5641 find_reloads_address_1 (mode, as, orig_op1, 1, PLUS, SCRATCH,
5642 &XEXP (x, 1), opnum, type, ind_levels,
5643 insn);
5646 else if (code0 == CONST_INT || code0 == CONST
5647 || code0 == SYMBOL_REF || code0 == LABEL_REF)
5648 find_reloads_address_1 (mode, as, orig_op1, 0, PLUS, code0,
5649 &XEXP (x, 1), opnum, type, ind_levels,
5650 insn);
5652 else if (code1 == CONST_INT || code1 == CONST
5653 || code1 == SYMBOL_REF || code1 == LABEL_REF)
5654 find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, code1,
5655 &XEXP (x, 0), opnum, type, ind_levels,
5656 insn);
5658 else if (code0 == REG && code1 == REG)
5660 if (REGNO_OK_FOR_INDEX_P (REGNO (op1))
5661 && regno_ok_for_base_p (REGNO (op0), mode, as, PLUS, REG))
5662 return 0;
5663 else if (REGNO_OK_FOR_INDEX_P (REGNO (op0))
5664 && regno_ok_for_base_p (REGNO (op1), mode, as, PLUS, REG))
5665 return 0;
5666 else if (regno_ok_for_base_p (REGNO (op0), mode, as, PLUS, REG))
5667 find_reloads_address_1 (mode, as, orig_op1, 1, PLUS, SCRATCH,
5668 &XEXP (x, 1), opnum, type, ind_levels,
5669 insn);
5670 else if (REGNO_OK_FOR_INDEX_P (REGNO (op1)))
5671 find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, REG,
5672 &XEXP (x, 0), opnum, type, ind_levels,
5673 insn);
5674 else if (regno_ok_for_base_p (REGNO (op1), mode, as, PLUS, REG))
5675 find_reloads_address_1 (mode, as, orig_op0, 1, PLUS, SCRATCH,
5676 &XEXP (x, 0), opnum, type, ind_levels,
5677 insn);
5678 else if (REGNO_OK_FOR_INDEX_P (REGNO (op0)))
5679 find_reloads_address_1 (mode, as, orig_op1, 0, PLUS, REG,
5680 &XEXP (x, 1), opnum, type, ind_levels,
5681 insn);
5682 else
5684 find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, REG,
5685 &XEXP (x, 0), opnum, type, ind_levels,
5686 insn);
5687 find_reloads_address_1 (mode, as, orig_op1, 1, PLUS, SCRATCH,
5688 &XEXP (x, 1), opnum, type, ind_levels,
5689 insn);
5693 else if (code0 == REG)
5695 find_reloads_address_1 (mode, as, orig_op0, 1, PLUS, SCRATCH,
5696 &XEXP (x, 0), opnum, type, ind_levels,
5697 insn);
5698 find_reloads_address_1 (mode, as, orig_op1, 0, PLUS, REG,
5699 &XEXP (x, 1), opnum, type, ind_levels,
5700 insn);
5703 else if (code1 == REG)
5705 find_reloads_address_1 (mode, as, orig_op1, 1, PLUS, SCRATCH,
5706 &XEXP (x, 1), opnum, type, ind_levels,
5707 insn);
5708 find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, REG,
5709 &XEXP (x, 0), opnum, type, ind_levels,
5710 insn);
5714 return 0;
5716 case POST_MODIFY:
5717 case PRE_MODIFY:
5719 rtx op0 = XEXP (x, 0);
5720 rtx op1 = XEXP (x, 1);
5721 enum rtx_code index_code;
5722 int regno;
5723 int reloadnum;
5725 if (GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
5726 return 0;
5728 /* Currently, we only support {PRE,POST}_MODIFY constructs
5729 where a base register is {inc,dec}remented by the contents
5730 of another register or by a constant value. Thus, these
5731 operands must match. */
5732 gcc_assert (op0 == XEXP (op1, 0));
5734 /* Require index register (or constant). Let's just handle the
5735 register case in the meantime... If the target allows
5736 auto-modify by a constant then we could try replacing a pseudo
5737 register with its equivalent constant where applicable.
5739 We also handle the case where the register was eliminated
5740 resulting in a PLUS subexpression.
5742 If we later decide to reload the whole PRE_MODIFY or
5743 POST_MODIFY, inc_for_reload might clobber the reload register
5744 before reading the index. The index register might therefore
5745 need to live longer than a TYPE reload normally would, so be
5746 conservative and class it as RELOAD_OTHER. */
5747 if ((REG_P (XEXP (op1, 1))
5748 && !REGNO_OK_FOR_INDEX_P (REGNO (XEXP (op1, 1))))
5749 || GET_CODE (XEXP (op1, 1)) == PLUS)
5750 find_reloads_address_1 (mode, as, XEXP (op1, 1), 1, code, SCRATCH,
5751 &XEXP (op1, 1), opnum, RELOAD_OTHER,
5752 ind_levels, insn);
5754 gcc_assert (REG_P (XEXP (op1, 0)));
5756 regno = REGNO (XEXP (op1, 0));
5757 index_code = GET_CODE (XEXP (op1, 1));
5759 /* A register that is incremented cannot be constant! */
5760 gcc_assert (regno < FIRST_PSEUDO_REGISTER
5761 || reg_equiv_constant (regno) == 0);
5763 /* Handle a register that is equivalent to a memory location
5764 which cannot be addressed directly. */
5765 if (reg_equiv_memory_loc (regno) != 0
5766 && (reg_equiv_address (regno) != 0
5767 || num_not_at_initial_offset))
5769 rtx tem = make_memloc (XEXP (x, 0), regno);
5771 if (reg_equiv_address (regno)
5772 || ! rtx_equal_p (tem, reg_equiv_mem (regno)))
5774 rtx orig = tem;
5776 /* First reload the memory location's address.
5777 We can't use ADDR_TYPE (type) here, because we need to
5778 write back the value after reading it, hence we actually
5779 need two registers. */
5780 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5781 &XEXP (tem, 0), opnum,
5782 RELOAD_OTHER,
5783 ind_levels, insn);
5785 if (!rtx_equal_p (tem, orig))
5786 push_reg_equiv_alt_mem (regno, tem);
5788 /* Then reload the memory location into a base
5789 register. */
5790 reloadnum = push_reload (tem, tem, &XEXP (x, 0),
5791 &XEXP (op1, 0),
5792 base_reg_class (mode, as,
5793 code, index_code),
5794 GET_MODE (x), GET_MODE (x), 0,
5795 0, opnum, RELOAD_OTHER);
5797 update_auto_inc_notes (this_insn, regno, reloadnum);
5798 return 0;
5802 if (reg_renumber[regno] >= 0)
5803 regno = reg_renumber[regno];
5805 /* We require a base register here... */
5806 if (!regno_ok_for_base_p (regno, GET_MODE (x), as, code, index_code))
5808 reloadnum = push_reload (XEXP (op1, 0), XEXP (x, 0),
5809 &XEXP (op1, 0), &XEXP (x, 0),
5810 base_reg_class (mode, as,
5811 code, index_code),
5812 GET_MODE (x), GET_MODE (x), 0, 0,
5813 opnum, RELOAD_OTHER);
5815 update_auto_inc_notes (this_insn, regno, reloadnum);
5816 return 0;
5819 return 0;
5821 case POST_INC:
5822 case POST_DEC:
5823 case PRE_INC:
5824 case PRE_DEC:
5825 if (REG_P (XEXP (x, 0)))
5827 int regno = REGNO (XEXP (x, 0));
5828 int value = 0;
5829 rtx x_orig = x;
5831 /* A register that is incremented cannot be constant! */
5832 gcc_assert (regno < FIRST_PSEUDO_REGISTER
5833 || reg_equiv_constant (regno) == 0);
5835 /* Handle a register that is equivalent to a memory location
5836 which cannot be addressed directly. */
5837 if (reg_equiv_memory_loc (regno) != 0
5838 && (reg_equiv_address (regno) != 0 || num_not_at_initial_offset))
5840 rtx tem = make_memloc (XEXP (x, 0), regno);
5841 if (reg_equiv_address (regno)
5842 || ! rtx_equal_p (tem, reg_equiv_mem (regno)))
5844 rtx orig = tem;
5846 /* First reload the memory location's address.
5847 We can't use ADDR_TYPE (type) here, because we need to
5848 write back the value after reading it, hence we actually
5849 need two registers. */
5850 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5851 &XEXP (tem, 0), opnum, type,
5852 ind_levels, insn);
5853 if (!rtx_equal_p (tem, orig))
5854 push_reg_equiv_alt_mem (regno, tem);
5855 /* Put this inside a new increment-expression. */
5856 x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
5857 /* Proceed to reload that, as if it contained a register. */
5861 /* If we have a hard register that is ok in this incdec context,
5862 don't make a reload. If the register isn't nice enough for
5863 autoincdec, we can reload it. But, if an autoincrement of a
5864 register that we here verified as playing nice, still outside
5865 isn't "valid", it must be that no autoincrement is "valid".
5866 If that is true and something made an autoincrement anyway,
5867 this must be a special context where one is allowed.
5868 (For example, a "push" instruction.)
5869 We can't improve this address, so leave it alone. */
5871 /* Otherwise, reload the autoincrement into a suitable hard reg
5872 and record how much to increment by. */
5874 if (reg_renumber[regno] >= 0)
5875 regno = reg_renumber[regno];
5876 if (regno >= FIRST_PSEUDO_REGISTER
5877 || !REG_OK_FOR_CONTEXT (context, regno, mode, as, code,
5878 index_code))
5880 int reloadnum;
5882 /* If we can output the register afterwards, do so, this
5883 saves the extra update.
5884 We can do so if we have an INSN - i.e. no JUMP_INSN nor
5885 CALL_INSN - and it does not set CC0.
5886 But don't do this if we cannot directly address the
5887 memory location, since this will make it harder to
5888 reuse address reloads, and increases register pressure.
5889 Also don't do this if we can probably update x directly. */
5890 rtx equiv = (MEM_P (XEXP (x, 0))
5891 ? XEXP (x, 0)
5892 : reg_equiv_mem (regno));
5893 enum insn_code icode = optab_handler (add_optab, GET_MODE (x));
5894 if (insn && NONJUMP_INSN_P (insn) && equiv
5895 && memory_operand (equiv, GET_MODE (equiv))
5896 #ifdef HAVE_cc0
5897 && ! sets_cc0_p (PATTERN (insn))
5898 #endif
5899 && ! (icode != CODE_FOR_nothing
5900 && insn_operand_matches (icode, 0, equiv)
5901 && insn_operand_matches (icode, 1, equiv)))
5903 /* We use the original pseudo for loc, so that
5904 emit_reload_insns() knows which pseudo this
5905 reload refers to and updates the pseudo rtx, not
5906 its equivalent memory location, as well as the
5907 corresponding entry in reg_last_reload_reg. */
5908 loc = &XEXP (x_orig, 0);
5909 x = XEXP (x, 0);
5910 reloadnum
5911 = push_reload (x, x, loc, loc,
5912 context_reg_class,
5913 GET_MODE (x), GET_MODE (x), 0, 0,
5914 opnum, RELOAD_OTHER);
5916 else
5918 reloadnum
5919 = push_reload (x, x, loc, (rtx*) 0,
5920 context_reg_class,
5921 GET_MODE (x), GET_MODE (x), 0, 0,
5922 opnum, type);
5923 rld[reloadnum].inc
5924 = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
5926 value = 1;
5929 update_auto_inc_notes (this_insn, REGNO (XEXP (x_orig, 0)),
5930 reloadnum);
5932 return value;
5934 return 0;
5936 case TRUNCATE:
5937 case SIGN_EXTEND:
5938 case ZERO_EXTEND:
5939 /* Look for parts to reload in the inner expression and reload them
5940 too, in addition to this operation. Reloading all inner parts in
5941 addition to this one shouldn't be necessary, but at this point,
5942 we don't know if we can possibly omit any part that *can* be
5943 reloaded. Targets that are better off reloading just either part
5944 (or perhaps even a different part of an outer expression), should
5945 define LEGITIMIZE_RELOAD_ADDRESS. */
5946 find_reloads_address_1 (GET_MODE (XEXP (x, 0)), as, XEXP (x, 0),
5947 context, code, SCRATCH, &XEXP (x, 0), opnum,
5948 type, ind_levels, insn);
5949 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5950 context_reg_class,
5951 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5952 return 1;
5954 case MEM:
5955 /* This is probably the result of a substitution, by eliminate_regs, of
5956 an equivalent address for a pseudo that was not allocated to a hard
5957 register. Verify that the specified address is valid and reload it
5958 into a register.
5960 Since we know we are going to reload this item, don't decrement for
5961 the indirection level.
5963 Note that this is actually conservative: it would be slightly more
5964 efficient to use the value of SPILL_INDIRECT_LEVELS from
5965 reload1.c here. */
5967 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5968 opnum, ADDR_TYPE (type), ind_levels, insn);
5969 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5970 context_reg_class,
5971 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5972 return 1;
5974 case REG:
5976 int regno = REGNO (x);
5978 if (reg_equiv_constant (regno) != 0)
5980 find_reloads_address_part (reg_equiv_constant (regno), loc,
5981 context_reg_class,
5982 GET_MODE (x), opnum, type, ind_levels);
5983 return 1;
5986 #if 0 /* This might screw code in reload1.c to delete prior output-reload
5987 that feeds this insn. */
5988 if (reg_equiv_mem (regno) != 0)
5990 push_reload (reg_equiv_mem (regno), NULL_RTX, loc, (rtx*) 0,
5991 context_reg_class,
5992 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5993 return 1;
5995 #endif
5997 if (reg_equiv_memory_loc (regno)
5998 && (reg_equiv_address (regno) != 0 || num_not_at_initial_offset))
6000 rtx tem = make_memloc (x, regno);
6001 if (reg_equiv_address (regno) != 0
6002 || ! rtx_equal_p (tem, reg_equiv_mem (regno)))
6004 x = tem;
6005 find_reloads_address (GET_MODE (x), &x, XEXP (x, 0),
6006 &XEXP (x, 0), opnum, ADDR_TYPE (type),
6007 ind_levels, insn);
6008 if (!rtx_equal_p (x, tem))
6009 push_reg_equiv_alt_mem (regno, x);
6013 if (reg_renumber[regno] >= 0)
6014 regno = reg_renumber[regno];
6016 if (regno >= FIRST_PSEUDO_REGISTER
6017 || !REG_OK_FOR_CONTEXT (context, regno, mode, as, outer_code,
6018 index_code))
6020 push_reload (x, NULL_RTX, loc, (rtx*) 0,
6021 context_reg_class,
6022 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
6023 return 1;
6026 /* If a register appearing in an address is the subject of a CLOBBER
6027 in this insn, reload it into some other register to be safe.
6028 The CLOBBER is supposed to make the register unavailable
6029 from before this insn to after it. */
6030 if (regno_clobbered_p (regno, this_insn, GET_MODE (x), 0))
6032 push_reload (x, NULL_RTX, loc, (rtx*) 0,
6033 context_reg_class,
6034 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
6035 return 1;
6038 return 0;
6040 case SUBREG:
6041 if (REG_P (SUBREG_REG (x)))
6043 /* If this is a SUBREG of a hard register and the resulting register
6044 is of the wrong class, reload the whole SUBREG. This avoids
6045 needless copies if SUBREG_REG is multi-word. */
6046 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
6048 int regno ATTRIBUTE_UNUSED = subreg_regno (x);
6050 if (!REG_OK_FOR_CONTEXT (context, regno, mode, as, outer_code,
6051 index_code))
6053 push_reload (x, NULL_RTX, loc, (rtx*) 0,
6054 context_reg_class,
6055 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
6056 return 1;
6059 /* If this is a SUBREG of a pseudo-register, and the pseudo-register
6060 is larger than the class size, then reload the whole SUBREG. */
6061 else
6063 enum reg_class rclass = context_reg_class;
6064 if (ira_reg_class_max_nregs [rclass][GET_MODE (SUBREG_REG (x))]
6065 > reg_class_size[(int) rclass])
6067 x = find_reloads_subreg_address (x, 0, opnum,
6068 ADDR_TYPE (type),
6069 ind_levels, insn, NULL);
6070 push_reload (x, NULL_RTX, loc, (rtx*) 0, rclass,
6071 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
6072 return 1;
6076 break;
6078 default:
6079 break;
6083 const char *fmt = GET_RTX_FORMAT (code);
6084 int i;
6086 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6088 if (fmt[i] == 'e')
6089 /* Pass SCRATCH for INDEX_CODE, since CODE can never be a PLUS once
6090 we get here. */
6091 find_reloads_address_1 (mode, as, XEXP (x, i), context,
6092 code, SCRATCH, &XEXP (x, i),
6093 opnum, type, ind_levels, insn);
6097 #undef REG_OK_FOR_CONTEXT
6098 return 0;
6101 /* X, which is found at *LOC, is a part of an address that needs to be
6102 reloaded into a register of class RCLASS. If X is a constant, or if
6103 X is a PLUS that contains a constant, check that the constant is a
6104 legitimate operand and that we are supposed to be able to load
6105 it into the register.
6107 If not, force the constant into memory and reload the MEM instead.
6109 MODE is the mode to use, in case X is an integer constant.
6111 OPNUM and TYPE describe the purpose of any reloads made.
6113 IND_LEVELS says how many levels of indirect addressing this machine
6114 supports. */
6116 static void
6117 find_reloads_address_part (rtx x, rtx *loc, enum reg_class rclass,
6118 enum machine_mode mode, int opnum,
6119 enum reload_type type, int ind_levels)
6121 if (CONSTANT_P (x)
6122 && (!targetm.legitimate_constant_p (mode, x)
6123 || targetm.preferred_reload_class (x, rclass) == NO_REGS))
6125 x = force_const_mem (mode, x);
6126 find_reloads_address (mode, &x, XEXP (x, 0), &XEXP (x, 0),
6127 opnum, type, ind_levels, 0);
6130 else if (GET_CODE (x) == PLUS
6131 && CONSTANT_P (XEXP (x, 1))
6132 && (!targetm.legitimate_constant_p (GET_MODE (x), XEXP (x, 1))
6133 || targetm.preferred_reload_class (XEXP (x, 1), rclass)
6134 == NO_REGS))
6136 rtx tem;
6138 tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
6139 x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
6140 find_reloads_address (mode, &XEXP (x, 1), XEXP (tem, 0), &XEXP (tem, 0),
6141 opnum, type, ind_levels, 0);
6144 push_reload (x, NULL_RTX, loc, (rtx*) 0, rclass,
6145 mode, VOIDmode, 0, 0, opnum, type);
6148 /* X, a subreg of a pseudo, is a part of an address that needs to be
6149 reloaded.
6151 If the pseudo is equivalent to a memory location that cannot be directly
6152 addressed, make the necessary address reloads.
6154 If address reloads have been necessary, or if the address is changed
6155 by register elimination, return the rtx of the memory location;
6156 otherwise, return X.
6158 If FORCE_REPLACE is nonzero, unconditionally replace the subreg with the
6159 memory location.
6161 OPNUM and TYPE identify the purpose of the reload.
6163 IND_LEVELS says how many levels of indirect addressing are
6164 supported at this point in the address.
6166 INSN, if nonzero, is the insn in which we do the reload. It is used
6167 to determine where to put USEs for pseudos that we have to replace with
6168 stack slots. */
6170 static rtx
6171 find_reloads_subreg_address (rtx x, int force_replace, int opnum,
6172 enum reload_type type, int ind_levels, rtx insn,
6173 int *address_reloaded)
6175 int regno = REGNO (SUBREG_REG (x));
6176 int reloaded = 0;
6178 if (reg_equiv_memory_loc (regno))
6180 /* If the address is not directly addressable, or if the address is not
6181 offsettable, then it must be replaced. */
6182 if (! force_replace
6183 && (reg_equiv_address (regno)
6184 || ! offsettable_memref_p (reg_equiv_mem (regno))))
6185 force_replace = 1;
6187 if (force_replace || num_not_at_initial_offset)
6189 rtx tem = make_memloc (SUBREG_REG (x), regno);
6191 /* If the address changes because of register elimination, then
6192 it must be replaced. */
6193 if (force_replace
6194 || ! rtx_equal_p (tem, reg_equiv_mem (regno)))
6196 unsigned outer_size = GET_MODE_SIZE (GET_MODE (x));
6197 unsigned inner_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
6198 int offset;
6199 rtx orig = tem;
6201 /* For big-endian paradoxical subregs, SUBREG_BYTE does not
6202 hold the correct (negative) byte offset. */
6203 if (BYTES_BIG_ENDIAN && outer_size > inner_size)
6204 offset = inner_size - outer_size;
6205 else
6206 offset = SUBREG_BYTE (x);
6208 XEXP (tem, 0) = plus_constant (GET_MODE (XEXP (tem, 0)),
6209 XEXP (tem, 0), offset);
6210 PUT_MODE (tem, GET_MODE (x));
6211 if (MEM_OFFSET_KNOWN_P (tem))
6212 set_mem_offset (tem, MEM_OFFSET (tem) + offset);
6213 if (MEM_SIZE_KNOWN_P (tem)
6214 && MEM_SIZE (tem) != (HOST_WIDE_INT) outer_size)
6215 set_mem_size (tem, outer_size);
6217 /* If this was a paradoxical subreg that we replaced, the
6218 resulting memory must be sufficiently aligned to allow
6219 us to widen the mode of the memory. */
6220 if (outer_size > inner_size)
6222 rtx base;
6224 base = XEXP (tem, 0);
6225 if (GET_CODE (base) == PLUS)
6227 if (CONST_INT_P (XEXP (base, 1))
6228 && INTVAL (XEXP (base, 1)) % outer_size != 0)
6229 return x;
6230 base = XEXP (base, 0);
6232 if (!REG_P (base)
6233 || (REGNO_POINTER_ALIGN (REGNO (base))
6234 < outer_size * BITS_PER_UNIT))
6235 return x;
6238 reloaded = find_reloads_address (GET_MODE (tem), &tem,
6239 XEXP (tem, 0), &XEXP (tem, 0),
6240 opnum, type, ind_levels, insn);
6241 /* ??? Do we need to handle nonzero offsets somehow? */
6242 if (!offset && !rtx_equal_p (tem, orig))
6243 push_reg_equiv_alt_mem (regno, tem);
6245 /* For some processors an address may be valid in the
6246 original mode but not in a smaller mode. For
6247 example, ARM accepts a scaled index register in
6248 SImode but not in HImode. Note that this is only
6249 a problem if the address in reg_equiv_mem is already
6250 invalid in the new mode; other cases would be fixed
6251 by find_reloads_address as usual.
6253 ??? We attempt to handle such cases here by doing an
6254 additional reload of the full address after the
6255 usual processing by find_reloads_address. Note that
6256 this may not work in the general case, but it seems
6257 to cover the cases where this situation currently
6258 occurs. A more general fix might be to reload the
6259 *value* instead of the address, but this would not
6260 be expected by the callers of this routine as-is.
6262 If find_reloads_address already completed replaced
6263 the address, there is nothing further to do. */
6264 if (reloaded == 0
6265 && reg_equiv_mem (regno) != 0
6266 && !strict_memory_address_addr_space_p
6267 (GET_MODE (x), XEXP (reg_equiv_mem (regno), 0),
6268 MEM_ADDR_SPACE (reg_equiv_mem (regno))))
6270 push_reload (XEXP (tem, 0), NULL_RTX, &XEXP (tem, 0), (rtx*) 0,
6271 base_reg_class (GET_MODE (tem),
6272 MEM_ADDR_SPACE (tem),
6273 MEM, SCRATCH),
6274 GET_MODE (XEXP (tem, 0)), VOIDmode, 0, 0,
6275 opnum, type);
6276 reloaded = 1;
6278 /* If this is not a toplevel operand, find_reloads doesn't see
6279 this substitution. We have to emit a USE of the pseudo so
6280 that delete_output_reload can see it. */
6281 if (replace_reloads && recog_data.operand[opnum] != x)
6282 /* We mark the USE with QImode so that we recognize it
6283 as one that can be safely deleted at the end of
6284 reload. */
6285 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode,
6286 SUBREG_REG (x)),
6287 insn), QImode);
6288 x = tem;
6292 if (address_reloaded)
6293 *address_reloaded = reloaded;
6295 return x;
6298 /* Substitute into the current INSN the registers into which we have reloaded
6299 the things that need reloading. The array `replacements'
6300 contains the locations of all pointers that must be changed
6301 and says what to replace them with.
6303 Return the rtx that X translates into; usually X, but modified. */
6305 void
6306 subst_reloads (rtx insn)
6308 int i;
6310 for (i = 0; i < n_replacements; i++)
6312 struct replacement *r = &replacements[i];
6313 rtx reloadreg = rld[r->what].reg_rtx;
6314 if (reloadreg)
6316 #ifdef DEBUG_RELOAD
6317 /* This checking takes a very long time on some platforms
6318 causing the gcc.c-torture/compile/limits-fnargs.c test
6319 to time out during testing. See PR 31850.
6321 Internal consistency test. Check that we don't modify
6322 anything in the equivalence arrays. Whenever something from
6323 those arrays needs to be reloaded, it must be unshared before
6324 being substituted into; the equivalence must not be modified.
6325 Otherwise, if the equivalence is used after that, it will
6326 have been modified, and the thing substituted (probably a
6327 register) is likely overwritten and not a usable equivalence. */
6328 int check_regno;
6330 for (check_regno = 0; check_regno < max_regno; check_regno++)
6332 #define CHECK_MODF(ARRAY) \
6333 gcc_assert (!VEC_index (reg_equivs_t, reg_equivs, check_regno).ARRAY \
6334 || !loc_mentioned_in_p (r->where, \
6335 VEC_index (reg_equivs_t, reg_equivs, check_regno).ARRAY))
6337 CHECK_MODF (equiv_constant);
6338 CHECK_MODF (equiv_memory_loc);
6339 CHECK_MODF (equiv_address);
6340 CHECK_MODF (equiv_mem);
6341 #undef CHECK_MODF
6343 #endif /* DEBUG_RELOAD */
6345 /* If we're replacing a LABEL_REF with a register, there must
6346 already be an indication (to e.g. flow) which label this
6347 register refers to. */
6348 gcc_assert (GET_CODE (*r->where) != LABEL_REF
6349 || !JUMP_P (insn)
6350 || find_reg_note (insn,
6351 REG_LABEL_OPERAND,
6352 XEXP (*r->where, 0))
6353 || label_is_jump_target_p (XEXP (*r->where, 0), insn));
6355 /* Encapsulate RELOADREG so its machine mode matches what
6356 used to be there. Note that gen_lowpart_common will
6357 do the wrong thing if RELOADREG is multi-word. RELOADREG
6358 will always be a REG here. */
6359 if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
6360 reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
6362 *r->where = reloadreg;
6364 /* If reload got no reg and isn't optional, something's wrong. */
6365 else
6366 gcc_assert (rld[r->what].optional);
6370 /* Make a copy of any replacements being done into X and move those
6371 copies to locations in Y, a copy of X. */
6373 void
6374 copy_replacements (rtx x, rtx y)
6376 copy_replacements_1 (&x, &y, n_replacements);
6379 static void
6380 copy_replacements_1 (rtx *px, rtx *py, int orig_replacements)
6382 int i, j;
6383 rtx x, y;
6384 struct replacement *r;
6385 enum rtx_code code;
6386 const char *fmt;
6388 for (j = 0; j < orig_replacements; j++)
6389 if (replacements[j].where == px)
6391 r = &replacements[n_replacements++];
6392 r->where = py;
6393 r->what = replacements[j].what;
6394 r->mode = replacements[j].mode;
6397 x = *px;
6398 y = *py;
6399 code = GET_CODE (x);
6400 fmt = GET_RTX_FORMAT (code);
6402 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6404 if (fmt[i] == 'e')
6405 copy_replacements_1 (&XEXP (x, i), &XEXP (y, i), orig_replacements);
6406 else if (fmt[i] == 'E')
6407 for (j = XVECLEN (x, i); --j >= 0; )
6408 copy_replacements_1 (&XVECEXP (x, i, j), &XVECEXP (y, i, j),
6409 orig_replacements);
6413 /* Change any replacements being done to *X to be done to *Y. */
6415 void
6416 move_replacements (rtx *x, rtx *y)
6418 int i;
6420 for (i = 0; i < n_replacements; i++)
6421 if (replacements[i].where == x)
6422 replacements[i].where = y;
6425 /* If LOC was scheduled to be replaced by something, return the replacement.
6426 Otherwise, return *LOC. */
6429 find_replacement (rtx *loc)
6431 struct replacement *r;
6433 for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
6435 rtx reloadreg = rld[r->what].reg_rtx;
6437 if (reloadreg && r->where == loc)
6439 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
6440 reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
6442 return reloadreg;
6444 else if (reloadreg && GET_CODE (*loc) == SUBREG
6445 && r->where == &SUBREG_REG (*loc))
6447 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
6448 reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
6450 return simplify_gen_subreg (GET_MODE (*loc), reloadreg,
6451 GET_MODE (SUBREG_REG (*loc)),
6452 SUBREG_BYTE (*loc));
6456 /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
6457 what's inside and make a new rtl if so. */
6458 if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
6459 || GET_CODE (*loc) == MULT)
6461 rtx x = find_replacement (&XEXP (*loc, 0));
6462 rtx y = find_replacement (&XEXP (*loc, 1));
6464 if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
6465 return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
6468 return *loc;
6471 /* Return nonzero if register in range [REGNO, ENDREGNO)
6472 appears either explicitly or implicitly in X
6473 other than being stored into (except for earlyclobber operands).
6475 References contained within the substructure at LOC do not count.
6476 LOC may be zero, meaning don't ignore anything.
6478 This is similar to refers_to_regno_p in rtlanal.c except that we
6479 look at equivalences for pseudos that didn't get hard registers. */
6481 static int
6482 refers_to_regno_for_reload_p (unsigned int regno, unsigned int endregno,
6483 rtx x, rtx *loc)
6485 int i;
6486 unsigned int r;
6487 RTX_CODE code;
6488 const char *fmt;
6490 if (x == 0)
6491 return 0;
6493 repeat:
6494 code = GET_CODE (x);
6496 switch (code)
6498 case REG:
6499 r = REGNO (x);
6501 /* If this is a pseudo, a hard register must not have been allocated.
6502 X must therefore either be a constant or be in memory. */
6503 if (r >= FIRST_PSEUDO_REGISTER)
6505 if (reg_equiv_memory_loc (r))
6506 return refers_to_regno_for_reload_p (regno, endregno,
6507 reg_equiv_memory_loc (r),
6508 (rtx*) 0);
6510 gcc_assert (reg_equiv_constant (r) || reg_equiv_invariant (r));
6511 return 0;
6514 return (endregno > r
6515 && regno < r + (r < FIRST_PSEUDO_REGISTER
6516 ? hard_regno_nregs[r][GET_MODE (x)]
6517 : 1));
6519 case SUBREG:
6520 /* If this is a SUBREG of a hard reg, we can see exactly which
6521 registers are being modified. Otherwise, handle normally. */
6522 if (REG_P (SUBREG_REG (x))
6523 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
6525 unsigned int inner_regno = subreg_regno (x);
6526 unsigned int inner_endregno
6527 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
6528 ? subreg_nregs (x) : 1);
6530 return endregno > inner_regno && regno < inner_endregno;
6532 break;
6534 case CLOBBER:
6535 case SET:
6536 if (&SET_DEST (x) != loc
6537 /* Note setting a SUBREG counts as referring to the REG it is in for
6538 a pseudo but not for hard registers since we can
6539 treat each word individually. */
6540 && ((GET_CODE (SET_DEST (x)) == SUBREG
6541 && loc != &SUBREG_REG (SET_DEST (x))
6542 && REG_P (SUBREG_REG (SET_DEST (x)))
6543 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
6544 && refers_to_regno_for_reload_p (regno, endregno,
6545 SUBREG_REG (SET_DEST (x)),
6546 loc))
6547 /* If the output is an earlyclobber operand, this is
6548 a conflict. */
6549 || ((!REG_P (SET_DEST (x))
6550 || earlyclobber_operand_p (SET_DEST (x)))
6551 && refers_to_regno_for_reload_p (regno, endregno,
6552 SET_DEST (x), loc))))
6553 return 1;
6555 if (code == CLOBBER || loc == &SET_SRC (x))
6556 return 0;
6557 x = SET_SRC (x);
6558 goto repeat;
6560 default:
6561 break;
6564 /* X does not match, so try its subexpressions. */
6566 fmt = GET_RTX_FORMAT (code);
6567 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6569 if (fmt[i] == 'e' && loc != &XEXP (x, i))
6571 if (i == 0)
6573 x = XEXP (x, 0);
6574 goto repeat;
6576 else
6577 if (refers_to_regno_for_reload_p (regno, endregno,
6578 XEXP (x, i), loc))
6579 return 1;
6581 else if (fmt[i] == 'E')
6583 int j;
6584 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6585 if (loc != &XVECEXP (x, i, j)
6586 && refers_to_regno_for_reload_p (regno, endregno,
6587 XVECEXP (x, i, j), loc))
6588 return 1;
6591 return 0;
6594 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
6595 we check if any register number in X conflicts with the relevant register
6596 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
6597 contains a MEM (we don't bother checking for memory addresses that can't
6598 conflict because we expect this to be a rare case.
6600 This function is similar to reg_overlap_mentioned_p in rtlanal.c except
6601 that we look at equivalences for pseudos that didn't get hard registers. */
6604 reg_overlap_mentioned_for_reload_p (rtx x, rtx in)
6606 int regno, endregno;
6608 /* Overly conservative. */
6609 if (GET_CODE (x) == STRICT_LOW_PART
6610 || GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
6611 x = XEXP (x, 0);
6613 /* If either argument is a constant, then modifying X can not affect IN. */
6614 if (CONSTANT_P (x) || CONSTANT_P (in))
6615 return 0;
6616 else if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
6617 return refers_to_mem_for_reload_p (in);
6618 else if (GET_CODE (x) == SUBREG)
6620 regno = REGNO (SUBREG_REG (x));
6621 if (regno < FIRST_PSEUDO_REGISTER)
6622 regno += subreg_regno_offset (REGNO (SUBREG_REG (x)),
6623 GET_MODE (SUBREG_REG (x)),
6624 SUBREG_BYTE (x),
6625 GET_MODE (x));
6626 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
6627 ? subreg_nregs (x) : 1);
6629 return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6631 else if (REG_P (x))
6633 regno = REGNO (x);
6635 /* If this is a pseudo, it must not have been assigned a hard register.
6636 Therefore, it must either be in memory or be a constant. */
6638 if (regno >= FIRST_PSEUDO_REGISTER)
6640 if (reg_equiv_memory_loc (regno))
6641 return refers_to_mem_for_reload_p (in);
6642 gcc_assert (reg_equiv_constant (regno));
6643 return 0;
6646 endregno = END_HARD_REGNO (x);
6648 return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6650 else if (MEM_P (x))
6651 return refers_to_mem_for_reload_p (in);
6652 else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
6653 || GET_CODE (x) == CC0)
6654 return reg_mentioned_p (x, in);
6655 else
6657 gcc_assert (GET_CODE (x) == PLUS);
6659 /* We actually want to know if X is mentioned somewhere inside IN.
6660 We must not say that (plus (sp) (const_int 124)) is in
6661 (plus (sp) (const_int 64)), since that can lead to incorrect reload
6662 allocation when spuriously changing a RELOAD_FOR_OUTPUT_ADDRESS
6663 into a RELOAD_OTHER on behalf of another RELOAD_OTHER. */
6664 while (MEM_P (in))
6665 in = XEXP (in, 0);
6666 if (REG_P (in))
6667 return 0;
6668 else if (GET_CODE (in) == PLUS)
6669 return (rtx_equal_p (x, in)
6670 || reg_overlap_mentioned_for_reload_p (x, XEXP (in, 0))
6671 || reg_overlap_mentioned_for_reload_p (x, XEXP (in, 1)));
6672 else return (reg_overlap_mentioned_for_reload_p (XEXP (x, 0), in)
6673 || reg_overlap_mentioned_for_reload_p (XEXP (x, 1), in));
6676 gcc_unreachable ();
6679 /* Return nonzero if anything in X contains a MEM. Look also for pseudo
6680 registers. */
6682 static int
6683 refers_to_mem_for_reload_p (rtx x)
6685 const char *fmt;
6686 int i;
6688 if (MEM_P (x))
6689 return 1;
6691 if (REG_P (x))
6692 return (REGNO (x) >= FIRST_PSEUDO_REGISTER
6693 && reg_equiv_memory_loc (REGNO (x)));
6695 fmt = GET_RTX_FORMAT (GET_CODE (x));
6696 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6697 if (fmt[i] == 'e'
6698 && (MEM_P (XEXP (x, i))
6699 || refers_to_mem_for_reload_p (XEXP (x, i))))
6700 return 1;
6702 return 0;
6705 /* Check the insns before INSN to see if there is a suitable register
6706 containing the same value as GOAL.
6707 If OTHER is -1, look for a register in class RCLASS.
6708 Otherwise, just see if register number OTHER shares GOAL's value.
6710 Return an rtx for the register found, or zero if none is found.
6712 If RELOAD_REG_P is (short *)1,
6713 we reject any hard reg that appears in reload_reg_rtx
6714 because such a hard reg is also needed coming into this insn.
6716 If RELOAD_REG_P is any other nonzero value,
6717 it is a vector indexed by hard reg number
6718 and we reject any hard reg whose element in the vector is nonnegative
6719 as well as any that appears in reload_reg_rtx.
6721 If GOAL is zero, then GOALREG is a register number; we look
6722 for an equivalent for that register.
6724 MODE is the machine mode of the value we want an equivalence for.
6725 If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
6727 This function is used by jump.c as well as in the reload pass.
6729 If GOAL is the sum of the stack pointer and a constant, we treat it
6730 as if it were a constant except that sp is required to be unchanging. */
6733 find_equiv_reg (rtx goal, rtx insn, enum reg_class rclass, int other,
6734 short *reload_reg_p, int goalreg, enum machine_mode mode)
6736 rtx p = insn;
6737 rtx goaltry, valtry, value, where;
6738 rtx pat;
6739 int regno = -1;
6740 int valueno;
6741 int goal_mem = 0;
6742 int goal_const = 0;
6743 int goal_mem_addr_varies = 0;
6744 int need_stable_sp = 0;
6745 int nregs;
6746 int valuenregs;
6747 int num = 0;
6749 if (goal == 0)
6750 regno = goalreg;
6751 else if (REG_P (goal))
6752 regno = REGNO (goal);
6753 else if (MEM_P (goal))
6755 enum rtx_code code = GET_CODE (XEXP (goal, 0));
6756 if (MEM_VOLATILE_P (goal))
6757 return 0;
6758 if (flag_float_store && SCALAR_FLOAT_MODE_P (GET_MODE (goal)))
6759 return 0;
6760 /* An address with side effects must be reexecuted. */
6761 switch (code)
6763 case POST_INC:
6764 case PRE_INC:
6765 case POST_DEC:
6766 case PRE_DEC:
6767 case POST_MODIFY:
6768 case PRE_MODIFY:
6769 return 0;
6770 default:
6771 break;
6773 goal_mem = 1;
6775 else if (CONSTANT_P (goal))
6776 goal_const = 1;
6777 else if (GET_CODE (goal) == PLUS
6778 && XEXP (goal, 0) == stack_pointer_rtx
6779 && CONSTANT_P (XEXP (goal, 1)))
6780 goal_const = need_stable_sp = 1;
6781 else if (GET_CODE (goal) == PLUS
6782 && XEXP (goal, 0) == frame_pointer_rtx
6783 && CONSTANT_P (XEXP (goal, 1)))
6784 goal_const = 1;
6785 else
6786 return 0;
6788 num = 0;
6789 /* Scan insns back from INSN, looking for one that copies
6790 a value into or out of GOAL.
6791 Stop and give up if we reach a label. */
6793 while (1)
6795 p = PREV_INSN (p);
6796 if (p && DEBUG_INSN_P (p))
6797 continue;
6798 num++;
6799 if (p == 0 || LABEL_P (p)
6800 || num > PARAM_VALUE (PARAM_MAX_RELOAD_SEARCH_INSNS))
6801 return 0;
6803 /* Don't reuse register contents from before a setjmp-type
6804 function call; on the second return (from the longjmp) it
6805 might have been clobbered by a later reuse. It doesn't
6806 seem worthwhile to actually go and see if it is actually
6807 reused even if that information would be readily available;
6808 just don't reuse it across the setjmp call. */
6809 if (CALL_P (p) && find_reg_note (p, REG_SETJMP, NULL_RTX))
6810 return 0;
6812 if (NONJUMP_INSN_P (p)
6813 /* If we don't want spill regs ... */
6814 && (! (reload_reg_p != 0
6815 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6816 /* ... then ignore insns introduced by reload; they aren't
6817 useful and can cause results in reload_as_needed to be
6818 different from what they were when calculating the need for
6819 spills. If we notice an input-reload insn here, we will
6820 reject it below, but it might hide a usable equivalent.
6821 That makes bad code. It may even fail: perhaps no reg was
6822 spilled for this insn because it was assumed we would find
6823 that equivalent. */
6824 || INSN_UID (p) < reload_first_uid))
6826 rtx tem;
6827 pat = single_set (p);
6829 /* First check for something that sets some reg equal to GOAL. */
6830 if (pat != 0
6831 && ((regno >= 0
6832 && true_regnum (SET_SRC (pat)) == regno
6833 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6835 (regno >= 0
6836 && true_regnum (SET_DEST (pat)) == regno
6837 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
6839 (goal_const && rtx_equal_p (SET_SRC (pat), goal)
6840 /* When looking for stack pointer + const,
6841 make sure we don't use a stack adjust. */
6842 && !reg_overlap_mentioned_for_reload_p (SET_DEST (pat), goal)
6843 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6844 || (goal_mem
6845 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
6846 && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
6847 || (goal_mem
6848 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
6849 && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
6850 /* If we are looking for a constant,
6851 and something equivalent to that constant was copied
6852 into a reg, we can use that reg. */
6853 || (goal_const && REG_NOTES (p) != 0
6854 && (tem = find_reg_note (p, REG_EQUIV, NULL_RTX))
6855 && ((rtx_equal_p (XEXP (tem, 0), goal)
6856 && (valueno
6857 = true_regnum (valtry = SET_DEST (pat))) >= 0)
6858 || (REG_P (SET_DEST (pat))
6859 && CONST_DOUBLE_AS_FLOAT_P (XEXP (tem, 0))
6860 && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem, 0)))
6861 && CONST_INT_P (goal)
6862 && 0 != (goaltry
6863 = operand_subword (XEXP (tem, 0), 0, 0,
6864 VOIDmode))
6865 && rtx_equal_p (goal, goaltry)
6866 && (valtry
6867 = operand_subword (SET_DEST (pat), 0, 0,
6868 VOIDmode))
6869 && (valueno = true_regnum (valtry)) >= 0)))
6870 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
6871 NULL_RTX))
6872 && REG_P (SET_DEST (pat))
6873 && CONST_DOUBLE_AS_FLOAT_P (XEXP (tem, 0))
6874 && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem, 0)))
6875 && CONST_INT_P (goal)
6876 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
6877 VOIDmode))
6878 && rtx_equal_p (goal, goaltry)
6879 && (valtry
6880 = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
6881 && (valueno = true_regnum (valtry)) >= 0)))
6883 if (other >= 0)
6885 if (valueno != other)
6886 continue;
6888 else if ((unsigned) valueno >= FIRST_PSEUDO_REGISTER)
6889 continue;
6890 else if (!in_hard_reg_set_p (reg_class_contents[(int) rclass],
6891 mode, valueno))
6892 continue;
6893 value = valtry;
6894 where = p;
6895 break;
6900 /* We found a previous insn copying GOAL into a suitable other reg VALUE
6901 (or copying VALUE into GOAL, if GOAL is also a register).
6902 Now verify that VALUE is really valid. */
6904 /* VALUENO is the register number of VALUE; a hard register. */
6906 /* Don't try to re-use something that is killed in this insn. We want
6907 to be able to trust REG_UNUSED notes. */
6908 if (REG_NOTES (where) != 0 && find_reg_note (where, REG_UNUSED, value))
6909 return 0;
6911 /* If we propose to get the value from the stack pointer or if GOAL is
6912 a MEM based on the stack pointer, we need a stable SP. */
6913 if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
6914 || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
6915 goal)))
6916 need_stable_sp = 1;
6918 /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
6919 if (GET_MODE (value) != mode)
6920 return 0;
6922 /* Reject VALUE if it was loaded from GOAL
6923 and is also a register that appears in the address of GOAL. */
6925 if (goal_mem && value == SET_DEST (single_set (where))
6926 && refers_to_regno_for_reload_p (valueno, end_hard_regno (mode, valueno),
6927 goal, (rtx*) 0))
6928 return 0;
6930 /* Reject registers that overlap GOAL. */
6932 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6933 nregs = hard_regno_nregs[regno][mode];
6934 else
6935 nregs = 1;
6936 valuenregs = hard_regno_nregs[valueno][mode];
6938 if (!goal_mem && !goal_const
6939 && regno + nregs > valueno && regno < valueno + valuenregs)
6940 return 0;
6942 /* Reject VALUE if it is one of the regs reserved for reloads.
6943 Reload1 knows how to reuse them anyway, and it would get
6944 confused if we allocated one without its knowledge.
6945 (Now that insns introduced by reload are ignored above,
6946 this case shouldn't happen, but I'm not positive.) */
6948 if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6950 int i;
6951 for (i = 0; i < valuenregs; ++i)
6952 if (reload_reg_p[valueno + i] >= 0)
6953 return 0;
6956 /* Reject VALUE if it is a register being used for an input reload
6957 even if it is not one of those reserved. */
6959 if (reload_reg_p != 0)
6961 int i;
6962 for (i = 0; i < n_reloads; i++)
6963 if (rld[i].reg_rtx != 0 && rld[i].in)
6965 int regno1 = REGNO (rld[i].reg_rtx);
6966 int nregs1 = hard_regno_nregs[regno1]
6967 [GET_MODE (rld[i].reg_rtx)];
6968 if (regno1 < valueno + valuenregs
6969 && regno1 + nregs1 > valueno)
6970 return 0;
6974 if (goal_mem)
6975 /* We must treat frame pointer as varying here,
6976 since it can vary--in a nonlocal goto as generated by expand_goto. */
6977 goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
6979 /* Now verify that the values of GOAL and VALUE remain unaltered
6980 until INSN is reached. */
6982 p = insn;
6983 while (1)
6985 p = PREV_INSN (p);
6986 if (p == where)
6987 return value;
6989 /* Don't trust the conversion past a function call
6990 if either of the two is in a call-clobbered register, or memory. */
6991 if (CALL_P (p))
6993 int i;
6995 if (goal_mem || need_stable_sp)
6996 return 0;
6998 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6999 for (i = 0; i < nregs; ++i)
7000 if (call_used_regs[regno + i]
7001 || HARD_REGNO_CALL_PART_CLOBBERED (regno + i, mode))
7002 return 0;
7004 if (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER)
7005 for (i = 0; i < valuenregs; ++i)
7006 if (call_used_regs[valueno + i]
7007 || HARD_REGNO_CALL_PART_CLOBBERED (valueno + i, mode))
7008 return 0;
7011 if (INSN_P (p))
7013 pat = PATTERN (p);
7015 /* Watch out for unspec_volatile, and volatile asms. */
7016 if (volatile_insn_p (pat))
7017 return 0;
7019 /* If this insn P stores in either GOAL or VALUE, return 0.
7020 If GOAL is a memory ref and this insn writes memory, return 0.
7021 If GOAL is a memory ref and its address is not constant,
7022 and this insn P changes a register used in GOAL, return 0. */
7024 if (GET_CODE (pat) == COND_EXEC)
7025 pat = COND_EXEC_CODE (pat);
7026 if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
7028 rtx dest = SET_DEST (pat);
7029 while (GET_CODE (dest) == SUBREG
7030 || GET_CODE (dest) == ZERO_EXTRACT
7031 || GET_CODE (dest) == STRICT_LOW_PART)
7032 dest = XEXP (dest, 0);
7033 if (REG_P (dest))
7035 int xregno = REGNO (dest);
7036 int xnregs;
7037 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
7038 xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
7039 else
7040 xnregs = 1;
7041 if (xregno < regno + nregs && xregno + xnregs > regno)
7042 return 0;
7043 if (xregno < valueno + valuenregs
7044 && xregno + xnregs > valueno)
7045 return 0;
7046 if (goal_mem_addr_varies
7047 && reg_overlap_mentioned_for_reload_p (dest, goal))
7048 return 0;
7049 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
7050 return 0;
7052 else if (goal_mem && MEM_P (dest)
7053 && ! push_operand (dest, GET_MODE (dest)))
7054 return 0;
7055 else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
7056 && reg_equiv_memory_loc (regno) != 0)
7057 return 0;
7058 else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
7059 return 0;
7061 else if (GET_CODE (pat) == PARALLEL)
7063 int i;
7064 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
7066 rtx v1 = XVECEXP (pat, 0, i);
7067 if (GET_CODE (v1) == COND_EXEC)
7068 v1 = COND_EXEC_CODE (v1);
7069 if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
7071 rtx dest = SET_DEST (v1);
7072 while (GET_CODE (dest) == SUBREG
7073 || GET_CODE (dest) == ZERO_EXTRACT
7074 || GET_CODE (dest) == STRICT_LOW_PART)
7075 dest = XEXP (dest, 0);
7076 if (REG_P (dest))
7078 int xregno = REGNO (dest);
7079 int xnregs;
7080 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
7081 xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
7082 else
7083 xnregs = 1;
7084 if (xregno < regno + nregs
7085 && xregno + xnregs > regno)
7086 return 0;
7087 if (xregno < valueno + valuenregs
7088 && xregno + xnregs > valueno)
7089 return 0;
7090 if (goal_mem_addr_varies
7091 && reg_overlap_mentioned_for_reload_p (dest,
7092 goal))
7093 return 0;
7094 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
7095 return 0;
7097 else if (goal_mem && MEM_P (dest)
7098 && ! push_operand (dest, GET_MODE (dest)))
7099 return 0;
7100 else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
7101 && reg_equiv_memory_loc (regno) != 0)
7102 return 0;
7103 else if (need_stable_sp
7104 && push_operand (dest, GET_MODE (dest)))
7105 return 0;
7110 if (CALL_P (p) && CALL_INSN_FUNCTION_USAGE (p))
7112 rtx link;
7114 for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
7115 link = XEXP (link, 1))
7117 pat = XEXP (link, 0);
7118 if (GET_CODE (pat) == CLOBBER)
7120 rtx dest = SET_DEST (pat);
7122 if (REG_P (dest))
7124 int xregno = REGNO (dest);
7125 int xnregs
7126 = hard_regno_nregs[xregno][GET_MODE (dest)];
7128 if (xregno < regno + nregs
7129 && xregno + xnregs > regno)
7130 return 0;
7131 else if (xregno < valueno + valuenregs
7132 && xregno + xnregs > valueno)
7133 return 0;
7134 else if (goal_mem_addr_varies
7135 && reg_overlap_mentioned_for_reload_p (dest,
7136 goal))
7137 return 0;
7140 else if (goal_mem && MEM_P (dest)
7141 && ! push_operand (dest, GET_MODE (dest)))
7142 return 0;
7143 else if (need_stable_sp
7144 && push_operand (dest, GET_MODE (dest)))
7145 return 0;
7150 #ifdef AUTO_INC_DEC
7151 /* If this insn auto-increments or auto-decrements
7152 either regno or valueno, return 0 now.
7153 If GOAL is a memory ref and its address is not constant,
7154 and this insn P increments a register used in GOAL, return 0. */
7156 rtx link;
7158 for (link = REG_NOTES (p); link; link = XEXP (link, 1))
7159 if (REG_NOTE_KIND (link) == REG_INC
7160 && REG_P (XEXP (link, 0)))
7162 int incno = REGNO (XEXP (link, 0));
7163 if (incno < regno + nregs && incno >= regno)
7164 return 0;
7165 if (incno < valueno + valuenregs && incno >= valueno)
7166 return 0;
7167 if (goal_mem_addr_varies
7168 && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
7169 goal))
7170 return 0;
7173 #endif
7178 /* Find a place where INCED appears in an increment or decrement operator
7179 within X, and return the amount INCED is incremented or decremented by.
7180 The value is always positive. */
7182 static int
7183 find_inc_amount (rtx x, rtx inced)
7185 enum rtx_code code = GET_CODE (x);
7186 const char *fmt;
7187 int i;
7189 if (code == MEM)
7191 rtx addr = XEXP (x, 0);
7192 if ((GET_CODE (addr) == PRE_DEC
7193 || GET_CODE (addr) == POST_DEC
7194 || GET_CODE (addr) == PRE_INC
7195 || GET_CODE (addr) == POST_INC)
7196 && XEXP (addr, 0) == inced)
7197 return GET_MODE_SIZE (GET_MODE (x));
7198 else if ((GET_CODE (addr) == PRE_MODIFY
7199 || GET_CODE (addr) == POST_MODIFY)
7200 && GET_CODE (XEXP (addr, 1)) == PLUS
7201 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
7202 && XEXP (addr, 0) == inced
7203 && CONST_INT_P (XEXP (XEXP (addr, 1), 1)))
7205 i = INTVAL (XEXP (XEXP (addr, 1), 1));
7206 return i < 0 ? -i : i;
7210 fmt = GET_RTX_FORMAT (code);
7211 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7213 if (fmt[i] == 'e')
7215 int tem = find_inc_amount (XEXP (x, i), inced);
7216 if (tem != 0)
7217 return tem;
7219 if (fmt[i] == 'E')
7221 int j;
7222 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7224 int tem = find_inc_amount (XVECEXP (x, i, j), inced);
7225 if (tem != 0)
7226 return tem;
7231 return 0;
7234 /* Return 1 if registers from REGNO to ENDREGNO are the subjects of a
7235 REG_INC note in insn INSN. REGNO must refer to a hard register. */
7237 #ifdef AUTO_INC_DEC
7238 static int
7239 reg_inc_found_and_valid_p (unsigned int regno, unsigned int endregno,
7240 rtx insn)
7242 rtx link;
7244 gcc_assert (insn);
7246 if (! INSN_P (insn))
7247 return 0;
7249 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
7250 if (REG_NOTE_KIND (link) == REG_INC)
7252 unsigned int test = (int) REGNO (XEXP (link, 0));
7253 if (test >= regno && test < endregno)
7254 return 1;
7256 return 0;
7258 #else
7260 #define reg_inc_found_and_valid_p(regno,endregno,insn) 0
7262 #endif
7264 /* Return 1 if register REGNO is the subject of a clobber in insn INSN.
7265 If SETS is 1, also consider SETs. If SETS is 2, enable checking
7266 REG_INC. REGNO must refer to a hard register. */
7269 regno_clobbered_p (unsigned int regno, rtx insn, enum machine_mode mode,
7270 int sets)
7272 unsigned int nregs, endregno;
7274 /* regno must be a hard register. */
7275 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
7277 nregs = hard_regno_nregs[regno][mode];
7278 endregno = regno + nregs;
7280 if ((GET_CODE (PATTERN (insn)) == CLOBBER
7281 || (sets == 1 && GET_CODE (PATTERN (insn)) == SET))
7282 && REG_P (XEXP (PATTERN (insn), 0)))
7284 unsigned int test = REGNO (XEXP (PATTERN (insn), 0));
7286 return test >= regno && test < endregno;
7289 if (sets == 2 && reg_inc_found_and_valid_p (regno, endregno, insn))
7290 return 1;
7292 if (GET_CODE (PATTERN (insn)) == PARALLEL)
7294 int i = XVECLEN (PATTERN (insn), 0) - 1;
7296 for (; i >= 0; i--)
7298 rtx elt = XVECEXP (PATTERN (insn), 0, i);
7299 if ((GET_CODE (elt) == CLOBBER
7300 || (sets == 1 && GET_CODE (elt) == SET))
7301 && REG_P (XEXP (elt, 0)))
7303 unsigned int test = REGNO (XEXP (elt, 0));
7305 if (test >= regno && test < endregno)
7306 return 1;
7308 if (sets == 2
7309 && reg_inc_found_and_valid_p (regno, endregno, elt))
7310 return 1;
7314 return 0;
7317 /* Find the low part, with mode MODE, of a hard regno RELOADREG. */
7319 reload_adjust_reg_for_mode (rtx reloadreg, enum machine_mode mode)
7321 int regno;
7323 if (GET_MODE (reloadreg) == mode)
7324 return reloadreg;
7326 regno = REGNO (reloadreg);
7328 if (REG_WORDS_BIG_ENDIAN)
7329 regno += (int) hard_regno_nregs[regno][GET_MODE (reloadreg)]
7330 - (int) hard_regno_nregs[regno][mode];
7332 return gen_rtx_REG (mode, regno);
7335 static const char *const reload_when_needed_name[] =
7337 "RELOAD_FOR_INPUT",
7338 "RELOAD_FOR_OUTPUT",
7339 "RELOAD_FOR_INSN",
7340 "RELOAD_FOR_INPUT_ADDRESS",
7341 "RELOAD_FOR_INPADDR_ADDRESS",
7342 "RELOAD_FOR_OUTPUT_ADDRESS",
7343 "RELOAD_FOR_OUTADDR_ADDRESS",
7344 "RELOAD_FOR_OPERAND_ADDRESS",
7345 "RELOAD_FOR_OPADDR_ADDR",
7346 "RELOAD_OTHER",
7347 "RELOAD_FOR_OTHER_ADDRESS"
7350 /* These functions are used to print the variables set by 'find_reloads' */
7352 DEBUG_FUNCTION void
7353 debug_reload_to_stream (FILE *f)
7355 int r;
7356 const char *prefix;
7358 if (! f)
7359 f = stderr;
7360 for (r = 0; r < n_reloads; r++)
7362 fprintf (f, "Reload %d: ", r);
7364 if (rld[r].in != 0)
7366 fprintf (f, "reload_in (%s) = ",
7367 GET_MODE_NAME (rld[r].inmode));
7368 print_inline_rtx (f, rld[r].in, 24);
7369 fprintf (f, "\n\t");
7372 if (rld[r].out != 0)
7374 fprintf (f, "reload_out (%s) = ",
7375 GET_MODE_NAME (rld[r].outmode));
7376 print_inline_rtx (f, rld[r].out, 24);
7377 fprintf (f, "\n\t");
7380 fprintf (f, "%s, ", reg_class_names[(int) rld[r].rclass]);
7382 fprintf (f, "%s (opnum = %d)",
7383 reload_when_needed_name[(int) rld[r].when_needed],
7384 rld[r].opnum);
7386 if (rld[r].optional)
7387 fprintf (f, ", optional");
7389 if (rld[r].nongroup)
7390 fprintf (f, ", nongroup");
7392 if (rld[r].inc != 0)
7393 fprintf (f, ", inc by %d", rld[r].inc);
7395 if (rld[r].nocombine)
7396 fprintf (f, ", can't combine");
7398 if (rld[r].secondary_p)
7399 fprintf (f, ", secondary_reload_p");
7401 if (rld[r].in_reg != 0)
7403 fprintf (f, "\n\treload_in_reg: ");
7404 print_inline_rtx (f, rld[r].in_reg, 24);
7407 if (rld[r].out_reg != 0)
7409 fprintf (f, "\n\treload_out_reg: ");
7410 print_inline_rtx (f, rld[r].out_reg, 24);
7413 if (rld[r].reg_rtx != 0)
7415 fprintf (f, "\n\treload_reg_rtx: ");
7416 print_inline_rtx (f, rld[r].reg_rtx, 24);
7419 prefix = "\n\t";
7420 if (rld[r].secondary_in_reload != -1)
7422 fprintf (f, "%ssecondary_in_reload = %d",
7423 prefix, rld[r].secondary_in_reload);
7424 prefix = ", ";
7427 if (rld[r].secondary_out_reload != -1)
7428 fprintf (f, "%ssecondary_out_reload = %d\n",
7429 prefix, rld[r].secondary_out_reload);
7431 prefix = "\n\t";
7432 if (rld[r].secondary_in_icode != CODE_FOR_nothing)
7434 fprintf (f, "%ssecondary_in_icode = %s", prefix,
7435 insn_data[rld[r].secondary_in_icode].name);
7436 prefix = ", ";
7439 if (rld[r].secondary_out_icode != CODE_FOR_nothing)
7440 fprintf (f, "%ssecondary_out_icode = %s", prefix,
7441 insn_data[rld[r].secondary_out_icode].name);
7443 fprintf (f, "\n");
7447 DEBUG_FUNCTION void
7448 debug_reload (void)
7450 debug_reload_to_stream (stderr);