2012-10-06 Janus Weil <janus@gcc.gnu.org>
[official-gcc.git] / gcc / ira-color.c
blobfc2e4e8b29b007a69b0140271aa4663591621f95
1 /* IRA allocation based on graph coloring.
2 Copyright (C) 2006, 2007, 2008, 2009, 2010, 2011, 2012
3 Free Software Foundation, Inc.
4 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "target.h"
29 #include "regs.h"
30 #include "flags.h"
31 #include "sbitmap.h"
32 #include "bitmap.h"
33 #include "hard-reg-set.h"
34 #include "basic-block.h"
35 #include "expr.h"
36 #include "diagnostic-core.h"
37 #include "reload.h"
38 #include "params.h"
39 #include "df.h"
40 #include "ira-int.h"
42 typedef struct allocno_hard_regs *allocno_hard_regs_t;
44 /* The structure contains information about hard registers can be
45 assigned to allocnos. Usually it is allocno profitable hard
46 registers but in some cases this set can be a bit different. Major
47 reason of the difference is a requirement to use hard register sets
48 that form a tree or a forest (set of trees), i.e. hard register set
49 of a node should contain hard register sets of its subnodes. */
50 struct allocno_hard_regs
52 /* Hard registers can be assigned to an allocno. */
53 HARD_REG_SET set;
54 /* Overall (spilling) cost of all allocnos with given register
55 set. */
56 HOST_WIDEST_INT cost;
59 typedef struct allocno_hard_regs_node *allocno_hard_regs_node_t;
61 /* A node representing allocno hard registers. Such nodes form a
62 forest (set of trees). Each subnode of given node in the forest
63 refers for hard register set (usually allocno profitable hard
64 register set) which is a subset of one referred from given
65 node. */
66 struct allocno_hard_regs_node
68 /* Set up number of the node in preorder traversing of the forest. */
69 int preorder_num;
70 /* Used for different calculation like finding conflict size of an
71 allocno. */
72 int check;
73 /* Used for calculation of conflict size of an allocno. The
74 conflict size of the allocno is maximal number of given allocno
75 hard registers needed for allocation of the conflicting allocnos.
76 Given allocno is trivially colored if this number plus the number
77 of hard registers needed for given allocno is not greater than
78 the number of given allocno hard register set. */
79 int conflict_size;
80 /* The number of hard registers given by member hard_regs. */
81 int hard_regs_num;
82 /* The following member is used to form the final forest. */
83 bool used_p;
84 /* Pointer to the corresponding profitable hard registers. */
85 allocno_hard_regs_t hard_regs;
86 /* Parent, first subnode, previous and next node with the same
87 parent in the forest. */
88 allocno_hard_regs_node_t parent, first, prev, next;
91 /* To decrease footprint of ira_allocno structure we store all data
92 needed only for coloring in the following structure. */
93 struct allocno_color_data
95 /* TRUE value means that the allocno was not removed yet from the
96 conflicting graph during colouring. */
97 unsigned int in_graph_p : 1;
98 /* TRUE if it is put on the stack to make other allocnos
99 colorable. */
100 unsigned int may_be_spilled_p : 1;
101 /* TRUE if the allocno is trivially colorable. */
102 unsigned int colorable_p : 1;
103 /* Number of hard registers of the allocno class really
104 available for the allocno allocation. It is number of the
105 profitable hard regs. */
106 int available_regs_num;
107 /* Allocnos in a bucket (used in coloring) chained by the following
108 two members. */
109 ira_allocno_t next_bucket_allocno;
110 ira_allocno_t prev_bucket_allocno;
111 /* Used for temporary purposes. */
112 int temp;
113 /* Used to exclude repeated processing. */
114 int last_process;
115 /* Profitable hard regs available for this pseudo allocation. It
116 means that the set excludes unavailable hard regs and hard regs
117 conflicting with given pseudo. They should be of the allocno
118 class. */
119 HARD_REG_SET profitable_hard_regs;
120 /* The allocno hard registers node. */
121 allocno_hard_regs_node_t hard_regs_node;
122 /* Array of structures allocno_hard_regs_subnode representing
123 given allocno hard registers node (the 1st element in the array)
124 and all its subnodes in the tree (forest) of allocno hard
125 register nodes (see comments above). */
126 int hard_regs_subnodes_start;
127 /* The length of the previous array. */
128 int hard_regs_subnodes_num;
131 /* See above. */
132 typedef struct allocno_color_data *allocno_color_data_t;
134 /* Container for storing allocno data concerning coloring. */
135 static allocno_color_data_t allocno_color_data;
137 /* Macro to access the data concerning coloring. */
138 #define ALLOCNO_COLOR_DATA(a) ((allocno_color_data_t) ALLOCNO_ADD_DATA (a))
140 /* Used for finding allocno colorability to exclude repeated allocno
141 processing and for updating preferencing to exclude repeated
142 allocno processing during assignment. */
143 static int curr_allocno_process;
145 /* This file contains code for regional graph coloring, spill/restore
146 code placement optimization, and code helping the reload pass to do
147 a better job. */
149 /* Bitmap of allocnos which should be colored. */
150 static bitmap coloring_allocno_bitmap;
152 /* Bitmap of allocnos which should be taken into account during
153 coloring. In general case it contains allocnos from
154 coloring_allocno_bitmap plus other already colored conflicting
155 allocnos. */
156 static bitmap consideration_allocno_bitmap;
158 /* All allocnos sorted according their priorities. */
159 static ira_allocno_t *sorted_allocnos;
161 /* Vec representing the stack of allocnos used during coloring. */
162 static VEC(ira_allocno_t,heap) *allocno_stack_vec;
164 /* Helper for qsort comparison callbacks - return a positive integer if
165 X > Y, or a negative value otherwise. Use a conditional expression
166 instead of a difference computation to insulate from possible overflow
167 issues, e.g. X - Y < 0 for some X > 0 and Y < 0. */
168 #define SORTGT(x,y) (((x) > (y)) ? 1 : -1)
172 /* Definition of vector of allocno hard registers. */
173 DEF_VEC_P(allocno_hard_regs_t);
174 DEF_VEC_ALLOC_P(allocno_hard_regs_t, heap);
176 /* Vector of unique allocno hard registers. */
177 static VEC(allocno_hard_regs_t, heap) *allocno_hard_regs_vec;
179 /* Returns hash value for allocno hard registers V. */
180 static hashval_t
181 allocno_hard_regs_hash (const void *v)
183 const struct allocno_hard_regs *hv = (const struct allocno_hard_regs *) v;
185 return iterative_hash (&hv->set, sizeof (HARD_REG_SET), 0);
188 /* Compares allocno hard registers V1 and V2. */
189 static int
190 allocno_hard_regs_eq (const void *v1, const void *v2)
192 const struct allocno_hard_regs *hv1 = (const struct allocno_hard_regs *) v1;
193 const struct allocno_hard_regs *hv2 = (const struct allocno_hard_regs *) v2;
195 return hard_reg_set_equal_p (hv1->set, hv2->set);
198 /* Hash table of unique allocno hard registers. */
199 static htab_t allocno_hard_regs_htab;
201 /* Return allocno hard registers in the hash table equal to HV. */
202 static allocno_hard_regs_t
203 find_hard_regs (allocno_hard_regs_t hv)
205 return (allocno_hard_regs_t) htab_find (allocno_hard_regs_htab, hv);
208 /* Insert allocno hard registers HV in the hash table (if it is not
209 there yet) and return the value which in the table. */
210 static allocno_hard_regs_t
211 insert_hard_regs (allocno_hard_regs_t hv)
213 PTR *slot = htab_find_slot (allocno_hard_regs_htab, hv, INSERT);
215 if (*slot == NULL)
216 *slot = hv;
217 return (allocno_hard_regs_t) *slot;
220 /* Initialize data concerning allocno hard registers. */
221 static void
222 init_allocno_hard_regs (void)
224 allocno_hard_regs_vec = VEC_alloc (allocno_hard_regs_t, heap, 200);
225 allocno_hard_regs_htab
226 = htab_create (200, allocno_hard_regs_hash, allocno_hard_regs_eq, NULL);
229 /* Add (or update info about) allocno hard registers with SET and
230 COST. */
231 static allocno_hard_regs_t
232 add_allocno_hard_regs (HARD_REG_SET set, HOST_WIDEST_INT cost)
234 struct allocno_hard_regs temp;
235 allocno_hard_regs_t hv;
237 gcc_assert (! hard_reg_set_empty_p (set));
238 COPY_HARD_REG_SET (temp.set, set);
239 if ((hv = find_hard_regs (&temp)) != NULL)
240 hv->cost += cost;
241 else
243 hv = ((struct allocno_hard_regs *)
244 ira_allocate (sizeof (struct allocno_hard_regs)));
245 COPY_HARD_REG_SET (hv->set, set);
246 hv->cost = cost;
247 VEC_safe_push (allocno_hard_regs_t, heap, allocno_hard_regs_vec, hv);
248 insert_hard_regs (hv);
250 return hv;
253 /* Finalize data concerning allocno hard registers. */
254 static void
255 finish_allocno_hard_regs (void)
257 int i;
258 allocno_hard_regs_t hv;
260 for (i = 0;
261 VEC_iterate (allocno_hard_regs_t, allocno_hard_regs_vec, i, hv);
262 i++)
263 ira_free (hv);
264 htab_delete (allocno_hard_regs_htab);
265 VEC_free (allocno_hard_regs_t, heap, allocno_hard_regs_vec);
268 /* Sort hard regs according to their frequency of usage. */
269 static int
270 allocno_hard_regs_compare (const void *v1p, const void *v2p)
272 allocno_hard_regs_t hv1 = *(const allocno_hard_regs_t *) v1p;
273 allocno_hard_regs_t hv2 = *(const allocno_hard_regs_t *) v2p;
275 if (hv2->cost > hv1->cost)
276 return 1;
277 else if (hv2->cost < hv1->cost)
278 return -1;
279 else
280 return 0;
285 /* Used for finding a common ancestor of two allocno hard registers
286 nodes in the forest. We use the current value of
287 'node_check_tick' to mark all nodes from one node to the top and
288 then walking up from another node until we find a marked node.
290 It is also used to figure out allocno colorability as a mark that
291 we already reset value of member 'conflict_size' for the forest
292 node corresponding to the processed allocno. */
293 static int node_check_tick;
295 /* Roots of the forest containing hard register sets can be assigned
296 to allocnos. */
297 static allocno_hard_regs_node_t hard_regs_roots;
299 /* Definition of vector of allocno hard register nodes. */
300 DEF_VEC_P(allocno_hard_regs_node_t);
301 DEF_VEC_ALLOC_P(allocno_hard_regs_node_t, heap);
303 /* Vector used to create the forest. */
304 static VEC(allocno_hard_regs_node_t, heap) *hard_regs_node_vec;
306 /* Create and return allocno hard registers node containing allocno
307 hard registers HV. */
308 static allocno_hard_regs_node_t
309 create_new_allocno_hard_regs_node (allocno_hard_regs_t hv)
311 allocno_hard_regs_node_t new_node;
313 new_node = ((struct allocno_hard_regs_node *)
314 ira_allocate (sizeof (struct allocno_hard_regs_node)));
315 new_node->check = 0;
316 new_node->hard_regs = hv;
317 new_node->hard_regs_num = hard_reg_set_size (hv->set);
318 new_node->first = NULL;
319 new_node->used_p = false;
320 return new_node;
323 /* Add allocno hard registers node NEW_NODE to the forest on its level
324 given by ROOTS. */
325 static void
326 add_new_allocno_hard_regs_node_to_forest (allocno_hard_regs_node_t *roots,
327 allocno_hard_regs_node_t new_node)
329 new_node->next = *roots;
330 if (new_node->next != NULL)
331 new_node->next->prev = new_node;
332 new_node->prev = NULL;
333 *roots = new_node;
336 /* Add allocno hard registers HV (or its best approximation if it is
337 not possible) to the forest on its level given by ROOTS. */
338 static void
339 add_allocno_hard_regs_to_forest (allocno_hard_regs_node_t *roots,
340 allocno_hard_regs_t hv)
342 unsigned int i, start;
343 allocno_hard_regs_node_t node, prev, new_node;
344 HARD_REG_SET temp_set;
345 allocno_hard_regs_t hv2;
347 start = VEC_length (allocno_hard_regs_node_t, hard_regs_node_vec);
348 for (node = *roots; node != NULL; node = node->next)
350 if (hard_reg_set_equal_p (hv->set, node->hard_regs->set))
351 return;
352 if (hard_reg_set_subset_p (hv->set, node->hard_regs->set))
354 add_allocno_hard_regs_to_forest (&node->first, hv);
355 return;
357 if (hard_reg_set_subset_p (node->hard_regs->set, hv->set))
358 VEC_safe_push (allocno_hard_regs_node_t, heap,
359 hard_regs_node_vec, node);
360 else if (hard_reg_set_intersect_p (hv->set, node->hard_regs->set))
362 COPY_HARD_REG_SET (temp_set, hv->set);
363 AND_HARD_REG_SET (temp_set, node->hard_regs->set);
364 hv2 = add_allocno_hard_regs (temp_set, hv->cost);
365 add_allocno_hard_regs_to_forest (&node->first, hv2);
368 if (VEC_length (allocno_hard_regs_node_t, hard_regs_node_vec)
369 > start + 1)
371 /* Create a new node which contains nodes in hard_regs_node_vec. */
372 CLEAR_HARD_REG_SET (temp_set);
373 for (i = start;
374 i < VEC_length (allocno_hard_regs_node_t, hard_regs_node_vec);
375 i++)
377 node = VEC_index (allocno_hard_regs_node_t, hard_regs_node_vec, i);
378 IOR_HARD_REG_SET (temp_set, node->hard_regs->set);
380 hv = add_allocno_hard_regs (temp_set, hv->cost);
381 new_node = create_new_allocno_hard_regs_node (hv);
382 prev = NULL;
383 for (i = start;
384 i < VEC_length (allocno_hard_regs_node_t, hard_regs_node_vec);
385 i++)
387 node = VEC_index (allocno_hard_regs_node_t, hard_regs_node_vec, i);
388 if (node->prev == NULL)
389 *roots = node->next;
390 else
391 node->prev->next = node->next;
392 if (node->next != NULL)
393 node->next->prev = node->prev;
394 if (prev == NULL)
395 new_node->first = node;
396 else
397 prev->next = node;
398 node->prev = prev;
399 node->next = NULL;
400 prev = node;
402 add_new_allocno_hard_regs_node_to_forest (roots, new_node);
404 VEC_truncate (allocno_hard_regs_node_t, hard_regs_node_vec, start);
407 /* Add allocno hard registers nodes starting with the forest level
408 given by FIRST which contains biggest set inside SET. */
409 static void
410 collect_allocno_hard_regs_cover (allocno_hard_regs_node_t first,
411 HARD_REG_SET set)
413 allocno_hard_regs_node_t node;
415 ira_assert (first != NULL);
416 for (node = first; node != NULL; node = node->next)
417 if (hard_reg_set_subset_p (node->hard_regs->set, set))
418 VEC_safe_push (allocno_hard_regs_node_t, heap, hard_regs_node_vec,
419 node);
420 else if (hard_reg_set_intersect_p (set, node->hard_regs->set))
421 collect_allocno_hard_regs_cover (node->first, set);
424 /* Set up field parent as PARENT in all allocno hard registers nodes
425 in forest given by FIRST. */
426 static void
427 setup_allocno_hard_regs_nodes_parent (allocno_hard_regs_node_t first,
428 allocno_hard_regs_node_t parent)
430 allocno_hard_regs_node_t node;
432 for (node = first; node != NULL; node = node->next)
434 node->parent = parent;
435 setup_allocno_hard_regs_nodes_parent (node->first, node);
439 /* Return allocno hard registers node which is a first common ancestor
440 node of FIRST and SECOND in the forest. */
441 static allocno_hard_regs_node_t
442 first_common_ancestor_node (allocno_hard_regs_node_t first,
443 allocno_hard_regs_node_t second)
445 allocno_hard_regs_node_t node;
447 node_check_tick++;
448 for (node = first; node != NULL; node = node->parent)
449 node->check = node_check_tick;
450 for (node = second; node != NULL; node = node->parent)
451 if (node->check == node_check_tick)
452 return node;
453 return first_common_ancestor_node (second, first);
456 /* Print hard reg set SET to F. */
457 static void
458 print_hard_reg_set (FILE *f, HARD_REG_SET set, bool new_line_p)
460 int i, start;
462 for (start = -1, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
464 if (TEST_HARD_REG_BIT (set, i))
466 if (i == 0 || ! TEST_HARD_REG_BIT (set, i - 1))
467 start = i;
469 if (start >= 0
470 && (i == FIRST_PSEUDO_REGISTER - 1 || ! TEST_HARD_REG_BIT (set, i)))
472 if (start == i - 1)
473 fprintf (f, " %d", start);
474 else if (start == i - 2)
475 fprintf (f, " %d %d", start, start + 1);
476 else
477 fprintf (f, " %d-%d", start, i - 1);
478 start = -1;
481 if (new_line_p)
482 fprintf (f, "\n");
485 /* Print allocno hard register subforest given by ROOTS and its LEVEL
486 to F. */
487 static void
488 print_hard_regs_subforest (FILE *f, allocno_hard_regs_node_t roots,
489 int level)
491 int i;
492 allocno_hard_regs_node_t node;
494 for (node = roots; node != NULL; node = node->next)
496 fprintf (f, " ");
497 for (i = 0; i < level * 2; i++)
498 fprintf (f, " ");
499 fprintf (f, "%d:(", node->preorder_num);
500 print_hard_reg_set (f, node->hard_regs->set, false);
501 fprintf (f, ")@" HOST_WIDEST_INT_PRINT_DEC "\n", node->hard_regs->cost);
502 print_hard_regs_subforest (f, node->first, level + 1);
506 /* Print the allocno hard register forest to F. */
507 static void
508 print_hard_regs_forest (FILE *f)
510 fprintf (f, " Hard reg set forest:\n");
511 print_hard_regs_subforest (f, hard_regs_roots, 1);
514 /* Print the allocno hard register forest to stderr. */
515 void
516 ira_debug_hard_regs_forest (void)
518 print_hard_regs_forest (stderr);
521 /* Remove unused allocno hard registers nodes from forest given by its
522 *ROOTS. */
523 static void
524 remove_unused_allocno_hard_regs_nodes (allocno_hard_regs_node_t *roots)
526 allocno_hard_regs_node_t node, prev, next, last;
528 for (prev = NULL, node = *roots; node != NULL; node = next)
530 next = node->next;
531 if (node->used_p)
533 remove_unused_allocno_hard_regs_nodes (&node->first);
534 prev = node;
536 else
538 for (last = node->first;
539 last != NULL && last->next != NULL;
540 last = last->next)
542 if (last != NULL)
544 if (prev == NULL)
545 *roots = node->first;
546 else
547 prev->next = node->first;
548 if (next != NULL)
549 next->prev = last;
550 last->next = next;
551 next = node->first;
553 else
555 if (prev == NULL)
556 *roots = next;
557 else
558 prev->next = next;
559 if (next != NULL)
560 next->prev = prev;
562 ira_free (node);
567 /* Set up fields preorder_num starting with START_NUM in all allocno
568 hard registers nodes in forest given by FIRST. Return biggest set
569 PREORDER_NUM increased by 1. */
570 static int
571 enumerate_allocno_hard_regs_nodes (allocno_hard_regs_node_t first,
572 allocno_hard_regs_node_t parent,
573 int start_num)
575 allocno_hard_regs_node_t node;
577 for (node = first; node != NULL; node = node->next)
579 node->preorder_num = start_num++;
580 node->parent = parent;
581 start_num = enumerate_allocno_hard_regs_nodes (node->first, node,
582 start_num);
584 return start_num;
587 /* Number of allocno hard registers nodes in the forest. */
588 static int allocno_hard_regs_nodes_num;
590 /* Table preorder number of allocno hard registers node in the forest
591 -> the allocno hard registers node. */
592 static allocno_hard_regs_node_t *allocno_hard_regs_nodes;
594 /* See below. */
595 typedef struct allocno_hard_regs_subnode *allocno_hard_regs_subnode_t;
597 /* The structure is used to describes all subnodes (not only immediate
598 ones) in the mentioned above tree for given allocno hard register
599 node. The usage of such data accelerates calculation of
600 colorability of given allocno. */
601 struct allocno_hard_regs_subnode
603 /* The conflict size of conflicting allocnos whose hard register
604 sets are equal sets (plus supersets if given node is given
605 allocno hard registers node) of one in the given node. */
606 int left_conflict_size;
607 /* The summary conflict size of conflicting allocnos whose hard
608 register sets are strict subsets of one in the given node.
609 Overall conflict size is
610 left_conflict_subnodes_size
611 + MIN (max_node_impact - left_conflict_subnodes_size,
612 left_conflict_size)
614 short left_conflict_subnodes_size;
615 short max_node_impact;
618 /* Container for hard regs subnodes of all allocnos. */
619 static allocno_hard_regs_subnode_t allocno_hard_regs_subnodes;
621 /* Table (preorder number of allocno hard registers node in the
622 forest, preorder number of allocno hard registers subnode) -> index
623 of the subnode relative to the node. -1 if it is not a
624 subnode. */
625 static int *allocno_hard_regs_subnode_index;
627 /* Setup arrays ALLOCNO_HARD_REGS_NODES and
628 ALLOCNO_HARD_REGS_SUBNODE_INDEX. */
629 static void
630 setup_allocno_hard_regs_subnode_index (allocno_hard_regs_node_t first)
632 allocno_hard_regs_node_t node, parent;
633 int index;
635 for (node = first; node != NULL; node = node->next)
637 allocno_hard_regs_nodes[node->preorder_num] = node;
638 for (parent = node; parent != NULL; parent = parent->parent)
640 index = parent->preorder_num * allocno_hard_regs_nodes_num;
641 allocno_hard_regs_subnode_index[index + node->preorder_num]
642 = node->preorder_num - parent->preorder_num;
644 setup_allocno_hard_regs_subnode_index (node->first);
648 /* Count all allocno hard registers nodes in tree ROOT. */
649 static int
650 get_allocno_hard_regs_subnodes_num (allocno_hard_regs_node_t root)
652 int len = 1;
654 for (root = root->first; root != NULL; root = root->next)
655 len += get_allocno_hard_regs_subnodes_num (root);
656 return len;
659 /* Build the forest of allocno hard registers nodes and assign each
660 allocno a node from the forest. */
661 static void
662 form_allocno_hard_regs_nodes_forest (void)
664 unsigned int i, j, size, len;
665 int start;
666 ira_allocno_t a;
667 allocno_hard_regs_t hv;
668 bitmap_iterator bi;
669 HARD_REG_SET temp;
670 allocno_hard_regs_node_t node, allocno_hard_regs_node;
671 allocno_color_data_t allocno_data;
673 node_check_tick = 0;
674 init_allocno_hard_regs ();
675 hard_regs_roots = NULL;
676 hard_regs_node_vec = VEC_alloc (allocno_hard_regs_node_t, heap, 100);
677 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
678 if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, i))
680 CLEAR_HARD_REG_SET (temp);
681 SET_HARD_REG_BIT (temp, i);
682 hv = add_allocno_hard_regs (temp, 0);
683 node = create_new_allocno_hard_regs_node (hv);
684 add_new_allocno_hard_regs_node_to_forest (&hard_regs_roots, node);
686 start = VEC_length (allocno_hard_regs_t, allocno_hard_regs_vec);
687 EXECUTE_IF_SET_IN_BITMAP (coloring_allocno_bitmap, 0, i, bi)
689 a = ira_allocnos[i];
690 allocno_data = ALLOCNO_COLOR_DATA (a);
692 if (hard_reg_set_empty_p (allocno_data->profitable_hard_regs))
693 continue;
694 hv = (add_allocno_hard_regs
695 (allocno_data->profitable_hard_regs,
696 ALLOCNO_MEMORY_COST (a) - ALLOCNO_CLASS_COST (a)));
698 SET_HARD_REG_SET (temp);
699 AND_COMPL_HARD_REG_SET (temp, ira_no_alloc_regs);
700 add_allocno_hard_regs (temp, 0);
701 qsort (VEC_address (allocno_hard_regs_t, allocno_hard_regs_vec) + start,
702 VEC_length (allocno_hard_regs_t, allocno_hard_regs_vec) - start,
703 sizeof (allocno_hard_regs_t), allocno_hard_regs_compare);
704 for (i = start;
705 VEC_iterate (allocno_hard_regs_t, allocno_hard_regs_vec, i, hv);
706 i++)
708 add_allocno_hard_regs_to_forest (&hard_regs_roots, hv);
709 ira_assert (VEC_length (allocno_hard_regs_node_t,
710 hard_regs_node_vec) == 0);
712 /* We need to set up parent fields for right work of
713 first_common_ancestor_node. */
714 setup_allocno_hard_regs_nodes_parent (hard_regs_roots, NULL);
715 EXECUTE_IF_SET_IN_BITMAP (coloring_allocno_bitmap, 0, i, bi)
717 a = ira_allocnos[i];
718 allocno_data = ALLOCNO_COLOR_DATA (a);
719 if (hard_reg_set_empty_p (allocno_data->profitable_hard_regs))
720 continue;
721 VEC_truncate (allocno_hard_regs_node_t, hard_regs_node_vec, 0);
722 collect_allocno_hard_regs_cover (hard_regs_roots,
723 allocno_data->profitable_hard_regs);
724 allocno_hard_regs_node = NULL;
725 for (j = 0;
726 VEC_iterate (allocno_hard_regs_node_t, hard_regs_node_vec,
727 j, node);
728 j++)
729 allocno_hard_regs_node
730 = (j == 0
731 ? node
732 : first_common_ancestor_node (node, allocno_hard_regs_node));
733 /* That is a temporary storage. */
734 allocno_hard_regs_node->used_p = true;
735 allocno_data->hard_regs_node = allocno_hard_regs_node;
737 ira_assert (hard_regs_roots->next == NULL);
738 hard_regs_roots->used_p = true;
739 remove_unused_allocno_hard_regs_nodes (&hard_regs_roots);
740 allocno_hard_regs_nodes_num
741 = enumerate_allocno_hard_regs_nodes (hard_regs_roots, NULL, 0);
742 allocno_hard_regs_nodes
743 = ((allocno_hard_regs_node_t *)
744 ira_allocate (allocno_hard_regs_nodes_num
745 * sizeof (allocno_hard_regs_node_t)));
746 size = allocno_hard_regs_nodes_num * allocno_hard_regs_nodes_num;
747 allocno_hard_regs_subnode_index
748 = (int *) ira_allocate (size * sizeof (int));
749 for (i = 0; i < size; i++)
750 allocno_hard_regs_subnode_index[i] = -1;
751 setup_allocno_hard_regs_subnode_index (hard_regs_roots);
752 start = 0;
753 EXECUTE_IF_SET_IN_BITMAP (coloring_allocno_bitmap, 0, i, bi)
755 a = ira_allocnos[i];
756 allocno_data = ALLOCNO_COLOR_DATA (a);
757 if (hard_reg_set_empty_p (allocno_data->profitable_hard_regs))
758 continue;
759 len = get_allocno_hard_regs_subnodes_num (allocno_data->hard_regs_node);
760 allocno_data->hard_regs_subnodes_start = start;
761 allocno_data->hard_regs_subnodes_num = len;
762 start += len;
764 allocno_hard_regs_subnodes
765 = ((allocno_hard_regs_subnode_t)
766 ira_allocate (sizeof (struct allocno_hard_regs_subnode) * start));
767 VEC_free (allocno_hard_regs_node_t, heap, hard_regs_node_vec);
770 /* Free tree of allocno hard registers nodes given by its ROOT. */
771 static void
772 finish_allocno_hard_regs_nodes_tree (allocno_hard_regs_node_t root)
774 allocno_hard_regs_node_t child, next;
776 for (child = root->first; child != NULL; child = next)
778 next = child->next;
779 finish_allocno_hard_regs_nodes_tree (child);
781 ira_free (root);
784 /* Finish work with the forest of allocno hard registers nodes. */
785 static void
786 finish_allocno_hard_regs_nodes_forest (void)
788 allocno_hard_regs_node_t node, next;
790 ira_free (allocno_hard_regs_subnodes);
791 for (node = hard_regs_roots; node != NULL; node = next)
793 next = node->next;
794 finish_allocno_hard_regs_nodes_tree (node);
796 ira_free (allocno_hard_regs_nodes);
797 ira_free (allocno_hard_regs_subnode_index);
798 finish_allocno_hard_regs ();
801 /* Set up left conflict sizes and left conflict subnodes sizes of hard
802 registers subnodes of allocno A. Return TRUE if allocno A is
803 trivially colorable. */
804 static bool
805 setup_left_conflict_sizes_p (ira_allocno_t a)
807 int i, k, nobj, start;
808 int conflict_size, left_conflict_subnodes_size, node_preorder_num;
809 allocno_color_data_t data;
810 HARD_REG_SET profitable_hard_regs;
811 allocno_hard_regs_subnode_t subnodes;
812 allocno_hard_regs_node_t node;
813 HARD_REG_SET node_set;
815 nobj = ALLOCNO_NUM_OBJECTS (a);
816 conflict_size = 0;
817 data = ALLOCNO_COLOR_DATA (a);
818 subnodes = allocno_hard_regs_subnodes + data->hard_regs_subnodes_start;
819 COPY_HARD_REG_SET (profitable_hard_regs, data->profitable_hard_regs);
820 node = data->hard_regs_node;
821 node_preorder_num = node->preorder_num;
822 COPY_HARD_REG_SET (node_set, node->hard_regs->set);
823 node_check_tick++;
824 for (k = 0; k < nobj; k++)
826 ira_object_t obj = ALLOCNO_OBJECT (a, k);
827 ira_object_t conflict_obj;
828 ira_object_conflict_iterator oci;
830 FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
832 int size;
833 ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
834 allocno_hard_regs_node_t conflict_node, temp_node;
835 HARD_REG_SET conflict_node_set;
836 allocno_color_data_t conflict_data;
838 conflict_data = ALLOCNO_COLOR_DATA (conflict_a);
839 if (! ALLOCNO_COLOR_DATA (conflict_a)->in_graph_p
840 || ! hard_reg_set_intersect_p (profitable_hard_regs,
841 conflict_data
842 ->profitable_hard_regs))
843 continue;
844 conflict_node = conflict_data->hard_regs_node;
845 COPY_HARD_REG_SET (conflict_node_set, conflict_node->hard_regs->set);
846 if (hard_reg_set_subset_p (node_set, conflict_node_set))
847 temp_node = node;
848 else
850 ira_assert (hard_reg_set_subset_p (conflict_node_set, node_set));
851 temp_node = conflict_node;
853 if (temp_node->check != node_check_tick)
855 temp_node->check = node_check_tick;
856 temp_node->conflict_size = 0;
858 size = (ira_reg_class_max_nregs
859 [ALLOCNO_CLASS (conflict_a)][ALLOCNO_MODE (conflict_a)]);
860 if (ALLOCNO_NUM_OBJECTS (conflict_a) > 1)
861 /* We will deal with the subwords individually. */
862 size = 1;
863 temp_node->conflict_size += size;
866 for (i = 0; i < data->hard_regs_subnodes_num; i++)
868 allocno_hard_regs_node_t temp_node;
870 temp_node = allocno_hard_regs_nodes[i + node_preorder_num];
871 ira_assert (temp_node->preorder_num == i + node_preorder_num);
872 subnodes[i].left_conflict_size = (temp_node->check != node_check_tick
873 ? 0 : temp_node->conflict_size);
874 if (hard_reg_set_subset_p (temp_node->hard_regs->set,
875 profitable_hard_regs))
876 subnodes[i].max_node_impact = temp_node->hard_regs_num;
877 else
879 HARD_REG_SET temp_set;
880 int j, n, hard_regno;
881 enum reg_class aclass;
883 COPY_HARD_REG_SET (temp_set, temp_node->hard_regs->set);
884 AND_HARD_REG_SET (temp_set, profitable_hard_regs);
885 aclass = ALLOCNO_CLASS (a);
886 for (n = 0, j = ira_class_hard_regs_num[aclass] - 1; j >= 0; j--)
888 hard_regno = ira_class_hard_regs[aclass][j];
889 if (TEST_HARD_REG_BIT (temp_set, hard_regno))
890 n++;
892 subnodes[i].max_node_impact = n;
894 subnodes[i].left_conflict_subnodes_size = 0;
896 start = node_preorder_num * allocno_hard_regs_nodes_num;
897 for (i = data->hard_regs_subnodes_num - 1; i >= 0; i--)
899 int size, parent_i;
900 allocno_hard_regs_node_t parent;
902 size = (subnodes[i].left_conflict_subnodes_size
903 + MIN (subnodes[i].max_node_impact
904 - subnodes[i].left_conflict_subnodes_size,
905 subnodes[i].left_conflict_size));
906 parent = allocno_hard_regs_nodes[i + node_preorder_num]->parent;
907 if (parent == NULL)
908 continue;
909 parent_i
910 = allocno_hard_regs_subnode_index[start + parent->preorder_num];
911 if (parent_i < 0)
912 continue;
913 subnodes[parent_i].left_conflict_subnodes_size += size;
915 left_conflict_subnodes_size = subnodes[0].left_conflict_subnodes_size;
916 conflict_size
917 += (left_conflict_subnodes_size
918 + MIN (subnodes[0].max_node_impact - left_conflict_subnodes_size,
919 subnodes[0].left_conflict_size));
920 conflict_size += ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)];
921 data->colorable_p = conflict_size <= data->available_regs_num;
922 return data->colorable_p;
925 /* Update left conflict sizes of hard registers subnodes of allocno A
926 after removing allocno REMOVED_A with SIZE from the conflict graph.
927 Return TRUE if A is trivially colorable. */
928 static bool
929 update_left_conflict_sizes_p (ira_allocno_t a,
930 ira_allocno_t removed_a, int size)
932 int i, conflict_size, before_conflict_size, diff, start;
933 int node_preorder_num, parent_i;
934 allocno_hard_regs_node_t node, removed_node, parent;
935 allocno_hard_regs_subnode_t subnodes;
936 allocno_color_data_t data = ALLOCNO_COLOR_DATA (a);
938 ira_assert (! data->colorable_p);
939 node = data->hard_regs_node;
940 node_preorder_num = node->preorder_num;
941 removed_node = ALLOCNO_COLOR_DATA (removed_a)->hard_regs_node;
942 ira_assert (hard_reg_set_subset_p (removed_node->hard_regs->set,
943 node->hard_regs->set)
944 || hard_reg_set_subset_p (node->hard_regs->set,
945 removed_node->hard_regs->set));
946 start = node_preorder_num * allocno_hard_regs_nodes_num;
947 i = allocno_hard_regs_subnode_index[start + removed_node->preorder_num];
948 if (i < 0)
949 i = 0;
950 subnodes = allocno_hard_regs_subnodes + data->hard_regs_subnodes_start;
951 before_conflict_size
952 = (subnodes[i].left_conflict_subnodes_size
953 + MIN (subnodes[i].max_node_impact
954 - subnodes[i].left_conflict_subnodes_size,
955 subnodes[i].left_conflict_size));
956 subnodes[i].left_conflict_size -= size;
957 for (;;)
959 conflict_size
960 = (subnodes[i].left_conflict_subnodes_size
961 + MIN (subnodes[i].max_node_impact
962 - subnodes[i].left_conflict_subnodes_size,
963 subnodes[i].left_conflict_size));
964 if ((diff = before_conflict_size - conflict_size) == 0)
965 break;
966 ira_assert (conflict_size < before_conflict_size);
967 parent = allocno_hard_regs_nodes[i + node_preorder_num]->parent;
968 if (parent == NULL)
969 break;
970 parent_i
971 = allocno_hard_regs_subnode_index[start + parent->preorder_num];
972 if (parent_i < 0)
973 break;
974 i = parent_i;
975 before_conflict_size
976 = (subnodes[i].left_conflict_subnodes_size
977 + MIN (subnodes[i].max_node_impact
978 - subnodes[i].left_conflict_subnodes_size,
979 subnodes[i].left_conflict_size));
980 subnodes[i].left_conflict_subnodes_size -= diff;
982 if (i != 0
983 || (conflict_size
984 + ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)]
985 > data->available_regs_num))
986 return false;
987 data->colorable_p = true;
988 return true;
991 /* Return true if allocno A has empty profitable hard regs. */
992 static bool
993 empty_profitable_hard_regs (ira_allocno_t a)
995 allocno_color_data_t data = ALLOCNO_COLOR_DATA (a);
997 return hard_reg_set_empty_p (data->profitable_hard_regs);
1000 /* Set up profitable hard registers for each allocno being
1001 colored. */
1002 static void
1003 setup_profitable_hard_regs (void)
1005 unsigned int i;
1006 int j, k, nobj, hard_regno, nregs, class_size;
1007 ira_allocno_t a;
1008 bitmap_iterator bi;
1009 enum reg_class aclass;
1010 enum machine_mode mode;
1011 allocno_color_data_t data;
1013 /* Initial set up from allocno classes and explicitly conflicting
1014 hard regs. */
1015 EXECUTE_IF_SET_IN_BITMAP (coloring_allocno_bitmap, 0, i, bi)
1017 a = ira_allocnos[i];
1018 if ((aclass = ALLOCNO_CLASS (a)) == NO_REGS)
1019 continue;
1020 data = ALLOCNO_COLOR_DATA (a);
1021 if (ALLOCNO_UPDATED_HARD_REG_COSTS (a) == NULL
1022 && ALLOCNO_CLASS_COST (a) > ALLOCNO_MEMORY_COST (a))
1023 CLEAR_HARD_REG_SET (data->profitable_hard_regs);
1024 else
1026 mode = ALLOCNO_MODE (a);
1027 COPY_HARD_REG_SET (data->profitable_hard_regs,
1028 ira_useful_class_mode_regs[aclass][mode]);
1029 nobj = ALLOCNO_NUM_OBJECTS (a);
1030 for (k = 0; k < nobj; k++)
1032 ira_object_t obj = ALLOCNO_OBJECT (a, k);
1034 AND_COMPL_HARD_REG_SET (data->profitable_hard_regs,
1035 OBJECT_TOTAL_CONFLICT_HARD_REGS (obj));
1039 /* Exclude hard regs already assigned for conflicting objects. */
1040 EXECUTE_IF_SET_IN_BITMAP (consideration_allocno_bitmap, 0, i, bi)
1042 a = ira_allocnos[i];
1043 if ((aclass = ALLOCNO_CLASS (a)) == NO_REGS
1044 || ! ALLOCNO_ASSIGNED_P (a)
1045 || (hard_regno = ALLOCNO_HARD_REGNO (a)) < 0)
1046 continue;
1047 mode = ALLOCNO_MODE (a);
1048 nregs = hard_regno_nregs[hard_regno][mode];
1049 nobj = ALLOCNO_NUM_OBJECTS (a);
1050 for (k = 0; k < nobj; k++)
1052 ira_object_t obj = ALLOCNO_OBJECT (a, k);
1053 ira_object_t conflict_obj;
1054 ira_object_conflict_iterator oci;
1056 FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
1058 ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
1060 /* We can process the conflict allocno repeatedly with
1061 the same result. */
1062 if (nregs == nobj && nregs > 1)
1064 int num = OBJECT_SUBWORD (conflict_obj);
1066 if (REG_WORDS_BIG_ENDIAN)
1067 CLEAR_HARD_REG_BIT
1068 (ALLOCNO_COLOR_DATA (conflict_a)->profitable_hard_regs,
1069 hard_regno + nobj - num - 1);
1070 else
1071 CLEAR_HARD_REG_BIT
1072 (ALLOCNO_COLOR_DATA (conflict_a)->profitable_hard_regs,
1073 hard_regno + num);
1075 else
1076 AND_COMPL_HARD_REG_SET
1077 (ALLOCNO_COLOR_DATA (conflict_a)->profitable_hard_regs,
1078 ira_reg_mode_hard_regset[hard_regno][mode]);
1082 /* Exclude too costly hard regs. */
1083 EXECUTE_IF_SET_IN_BITMAP (coloring_allocno_bitmap, 0, i, bi)
1085 int min_cost = INT_MAX;
1086 int *costs;
1088 a = ira_allocnos[i];
1089 if ((aclass = ALLOCNO_CLASS (a)) == NO_REGS
1090 || empty_profitable_hard_regs (a))
1091 continue;
1092 data = ALLOCNO_COLOR_DATA (a);
1093 mode = ALLOCNO_MODE (a);
1094 if ((costs = ALLOCNO_UPDATED_HARD_REG_COSTS (a)) != NULL
1095 || (costs = ALLOCNO_HARD_REG_COSTS (a)) != NULL)
1097 class_size = ira_class_hard_regs_num[aclass];
1098 for (j = 0; j < class_size; j++)
1100 hard_regno = ira_class_hard_regs[aclass][j];
1101 if (! TEST_HARD_REG_BIT (data->profitable_hard_regs,
1102 hard_regno))
1103 continue;
1104 if (ALLOCNO_UPDATED_MEMORY_COST (a) < costs[j])
1105 CLEAR_HARD_REG_BIT (data->profitable_hard_regs,
1106 hard_regno);
1107 else if (min_cost > costs[j])
1108 min_cost = costs[j];
1111 else if (ALLOCNO_UPDATED_MEMORY_COST (a)
1112 < ALLOCNO_UPDATED_CLASS_COST (a))
1113 CLEAR_HARD_REG_SET (data->profitable_hard_regs);
1114 if (ALLOCNO_UPDATED_CLASS_COST (a) > min_cost)
1115 ALLOCNO_UPDATED_CLASS_COST (a) = min_cost;
1121 /* This page contains functions used to choose hard registers for
1122 allocnos. */
1124 /* Array whose element value is TRUE if the corresponding hard
1125 register was already allocated for an allocno. */
1126 static bool allocated_hardreg_p[FIRST_PSEUDO_REGISTER];
1128 /* Describes one element in a queue of allocnos whose costs need to be
1129 updated. Each allocno in the queue is known to have an allocno
1130 class. */
1131 struct update_cost_queue_elem
1133 /* This element is in the queue iff CHECK == update_cost_check. */
1134 int check;
1136 /* COST_HOP_DIVISOR**N, where N is the length of the shortest path
1137 connecting this allocno to the one being allocated. */
1138 int divisor;
1140 /* The next allocno in the queue, or null if this is the last element. */
1141 ira_allocno_t next;
1144 /* The first element in a queue of allocnos whose copy costs need to be
1145 updated. Null if the queue is empty. */
1146 static ira_allocno_t update_cost_queue;
1148 /* The last element in the queue described by update_cost_queue.
1149 Not valid if update_cost_queue is null. */
1150 static struct update_cost_queue_elem *update_cost_queue_tail;
1152 /* A pool of elements in the queue described by update_cost_queue.
1153 Elements are indexed by ALLOCNO_NUM. */
1154 static struct update_cost_queue_elem *update_cost_queue_elems;
1156 /* The current value of update_copy_cost call count. */
1157 static int update_cost_check;
1159 /* Allocate and initialize data necessary for function
1160 update_copy_costs. */
1161 static void
1162 initiate_cost_update (void)
1164 size_t size;
1166 size = ira_allocnos_num * sizeof (struct update_cost_queue_elem);
1167 update_cost_queue_elems
1168 = (struct update_cost_queue_elem *) ira_allocate (size);
1169 memset (update_cost_queue_elems, 0, size);
1170 update_cost_check = 0;
1173 /* Deallocate data used by function update_copy_costs. */
1174 static void
1175 finish_cost_update (void)
1177 ira_free (update_cost_queue_elems);
1180 /* When we traverse allocnos to update hard register costs, the cost
1181 divisor will be multiplied by the following macro value for each
1182 hop from given allocno to directly connected allocnos. */
1183 #define COST_HOP_DIVISOR 4
1185 /* Start a new cost-updating pass. */
1186 static void
1187 start_update_cost (void)
1189 update_cost_check++;
1190 update_cost_queue = NULL;
1193 /* Add (ALLOCNO, DIVISOR) to the end of update_cost_queue, unless
1194 ALLOCNO is already in the queue, or has NO_REGS class. */
1195 static inline void
1196 queue_update_cost (ira_allocno_t allocno, int divisor)
1198 struct update_cost_queue_elem *elem;
1200 elem = &update_cost_queue_elems[ALLOCNO_NUM (allocno)];
1201 if (elem->check != update_cost_check
1202 && ALLOCNO_CLASS (allocno) != NO_REGS)
1204 elem->check = update_cost_check;
1205 elem->divisor = divisor;
1206 elem->next = NULL;
1207 if (update_cost_queue == NULL)
1208 update_cost_queue = allocno;
1209 else
1210 update_cost_queue_tail->next = allocno;
1211 update_cost_queue_tail = elem;
1215 /* Try to remove the first element from update_cost_queue. Return false
1216 if the queue was empty, otherwise make (*ALLOCNO, *DIVISOR) describe
1217 the removed element. */
1218 static inline bool
1219 get_next_update_cost (ira_allocno_t *allocno, int *divisor)
1221 struct update_cost_queue_elem *elem;
1223 if (update_cost_queue == NULL)
1224 return false;
1226 *allocno = update_cost_queue;
1227 elem = &update_cost_queue_elems[ALLOCNO_NUM (*allocno)];
1228 *divisor = elem->divisor;
1229 update_cost_queue = elem->next;
1230 return true;
1233 /* Update the cost of allocnos to increase chances to remove some
1234 copies as the result of subsequent assignment. */
1235 static void
1236 update_copy_costs (ira_allocno_t allocno, bool decr_p)
1238 int i, cost, update_cost, hard_regno, divisor;
1239 enum machine_mode mode;
1240 enum reg_class rclass, aclass;
1241 ira_allocno_t another_allocno;
1242 ira_copy_t cp, next_cp;
1244 hard_regno = ALLOCNO_HARD_REGNO (allocno);
1245 ira_assert (hard_regno >= 0);
1247 aclass = ALLOCNO_CLASS (allocno);
1248 if (aclass == NO_REGS)
1249 return;
1250 i = ira_class_hard_reg_index[aclass][hard_regno];
1251 ira_assert (i >= 0);
1252 rclass = REGNO_REG_CLASS (hard_regno);
1254 start_update_cost ();
1255 divisor = 1;
1258 mode = ALLOCNO_MODE (allocno);
1259 ira_init_register_move_cost_if_necessary (mode);
1260 for (cp = ALLOCNO_COPIES (allocno); cp != NULL; cp = next_cp)
1262 if (cp->first == allocno)
1264 next_cp = cp->next_first_allocno_copy;
1265 another_allocno = cp->second;
1267 else if (cp->second == allocno)
1269 next_cp = cp->next_second_allocno_copy;
1270 another_allocno = cp->first;
1272 else
1273 gcc_unreachable ();
1275 aclass = ALLOCNO_CLASS (another_allocno);
1276 if (! TEST_HARD_REG_BIT (reg_class_contents[aclass],
1277 hard_regno)
1278 || ALLOCNO_ASSIGNED_P (another_allocno))
1279 continue;
1281 cost = (cp->second == allocno
1282 ? ira_register_move_cost[mode][rclass][aclass]
1283 : ira_register_move_cost[mode][aclass][rclass]);
1284 if (decr_p)
1285 cost = -cost;
1287 update_cost = cp->freq * cost / divisor;
1288 if (update_cost == 0)
1289 continue;
1291 ira_allocate_and_set_or_copy_costs
1292 (&ALLOCNO_UPDATED_HARD_REG_COSTS (another_allocno), aclass,
1293 ALLOCNO_UPDATED_CLASS_COST (another_allocno),
1294 ALLOCNO_HARD_REG_COSTS (another_allocno));
1295 ira_allocate_and_set_or_copy_costs
1296 (&ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (another_allocno),
1297 aclass, 0, ALLOCNO_CONFLICT_HARD_REG_COSTS (another_allocno));
1298 i = ira_class_hard_reg_index[aclass][hard_regno];
1299 if (i < 0)
1300 continue;
1301 ALLOCNO_UPDATED_HARD_REG_COSTS (another_allocno)[i] += update_cost;
1302 ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (another_allocno)[i]
1303 += update_cost;
1305 queue_update_cost (another_allocno, divisor * COST_HOP_DIVISOR);
1308 while (get_next_update_cost (&allocno, &divisor));
1311 /* This function updates COSTS (decrease if DECR_P) for hard_registers
1312 of ACLASS by conflict costs of the unassigned allocnos
1313 connected by copies with allocnos in update_cost_queue. This
1314 update increases chances to remove some copies. */
1315 static void
1316 update_conflict_hard_regno_costs (int *costs, enum reg_class aclass,
1317 bool decr_p)
1319 int i, cost, class_size, freq, mult, div, divisor;
1320 int index, hard_regno;
1321 int *conflict_costs;
1322 bool cont_p;
1323 enum reg_class another_aclass;
1324 ira_allocno_t allocno, another_allocno;
1325 ira_copy_t cp, next_cp;
1327 while (get_next_update_cost (&allocno, &divisor))
1328 for (cp = ALLOCNO_COPIES (allocno); cp != NULL; cp = next_cp)
1330 if (cp->first == allocno)
1332 next_cp = cp->next_first_allocno_copy;
1333 another_allocno = cp->second;
1335 else if (cp->second == allocno)
1337 next_cp = cp->next_second_allocno_copy;
1338 another_allocno = cp->first;
1340 else
1341 gcc_unreachable ();
1342 another_aclass = ALLOCNO_CLASS (another_allocno);
1343 if (! ira_reg_classes_intersect_p[aclass][another_aclass]
1344 || ALLOCNO_ASSIGNED_P (another_allocno)
1345 || ALLOCNO_COLOR_DATA (another_allocno)->may_be_spilled_p)
1346 continue;
1347 class_size = ira_class_hard_regs_num[another_aclass];
1348 ira_allocate_and_copy_costs
1349 (&ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (another_allocno),
1350 another_aclass, ALLOCNO_CONFLICT_HARD_REG_COSTS (another_allocno));
1351 conflict_costs
1352 = ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (another_allocno);
1353 if (conflict_costs == NULL)
1354 cont_p = true;
1355 else
1357 mult = cp->freq;
1358 freq = ALLOCNO_FREQ (another_allocno);
1359 if (freq == 0)
1360 freq = 1;
1361 div = freq * divisor;
1362 cont_p = false;
1363 for (i = class_size - 1; i >= 0; i--)
1365 hard_regno = ira_class_hard_regs[another_aclass][i];
1366 ira_assert (hard_regno >= 0);
1367 index = ira_class_hard_reg_index[aclass][hard_regno];
1368 if (index < 0)
1369 continue;
1370 cost = conflict_costs [i] * mult / div;
1371 if (cost == 0)
1372 continue;
1373 cont_p = true;
1374 if (decr_p)
1375 cost = -cost;
1376 costs[index] += cost;
1379 /* Probably 5 hops will be enough. */
1380 if (cont_p
1381 && divisor <= (COST_HOP_DIVISOR
1382 * COST_HOP_DIVISOR
1383 * COST_HOP_DIVISOR
1384 * COST_HOP_DIVISOR))
1385 queue_update_cost (another_allocno, divisor * COST_HOP_DIVISOR);
1389 /* Set up conflicting (through CONFLICT_REGS) for each object of
1390 allocno A and the start allocno profitable regs (through
1391 START_PROFITABLE_REGS). Remember that the start profitable regs
1392 exclude hard regs which can not hold value of mode of allocno A.
1393 This covers mostly cases when multi-register value should be
1394 aligned. */
1395 static inline void
1396 get_conflict_and_start_profitable_regs (ira_allocno_t a, bool retry_p,
1397 HARD_REG_SET *conflict_regs,
1398 HARD_REG_SET *start_profitable_regs)
1400 int i, nwords;
1401 ira_object_t obj;
1403 nwords = ALLOCNO_NUM_OBJECTS (a);
1404 for (i = 0; i < nwords; i++)
1406 obj = ALLOCNO_OBJECT (a, i);
1407 COPY_HARD_REG_SET (conflict_regs[i],
1408 OBJECT_TOTAL_CONFLICT_HARD_REGS (obj));
1410 if (retry_p)
1412 COPY_HARD_REG_SET (*start_profitable_regs,
1413 reg_class_contents[ALLOCNO_CLASS (a)]);
1414 AND_COMPL_HARD_REG_SET (*start_profitable_regs,
1415 ira_prohibited_class_mode_regs
1416 [ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)]);
1418 else
1419 COPY_HARD_REG_SET (*start_profitable_regs,
1420 ALLOCNO_COLOR_DATA (a)->profitable_hard_regs);
1423 /* Return true if HARD_REGNO is ok for assigning to allocno A with
1424 PROFITABLE_REGS and whose objects have CONFLICT_REGS. */
1425 static inline bool
1426 check_hard_reg_p (ira_allocno_t a, int hard_regno,
1427 HARD_REG_SET *conflict_regs, HARD_REG_SET profitable_regs)
1429 int j, nwords, nregs;
1430 enum reg_class aclass;
1431 enum machine_mode mode;
1433 aclass = ALLOCNO_CLASS (a);
1434 mode = ALLOCNO_MODE (a);
1435 if (TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[aclass][mode],
1436 hard_regno))
1437 return false;
1438 /* Checking only profitable hard regs. */
1439 if (! TEST_HARD_REG_BIT (profitable_regs, hard_regno))
1440 return false;
1441 nregs = hard_regno_nregs[hard_regno][mode];
1442 nwords = ALLOCNO_NUM_OBJECTS (a);
1443 for (j = 0; j < nregs; j++)
1445 int k;
1446 int set_to_test_start = 0, set_to_test_end = nwords;
1448 if (nregs == nwords)
1450 if (REG_WORDS_BIG_ENDIAN)
1451 set_to_test_start = nwords - j - 1;
1452 else
1453 set_to_test_start = j;
1454 set_to_test_end = set_to_test_start + 1;
1456 for (k = set_to_test_start; k < set_to_test_end; k++)
1457 if (TEST_HARD_REG_BIT (conflict_regs[k], hard_regno + j))
1458 break;
1459 if (k != set_to_test_end)
1460 break;
1462 return j == nregs;
1464 #ifndef HONOR_REG_ALLOC_ORDER
1466 /* Return number of registers needed to be saved and restored at
1467 function prologue/epilogue if we allocate HARD_REGNO to hold value
1468 of MODE. */
1469 static int
1470 calculate_saved_nregs (int hard_regno, enum machine_mode mode)
1472 int i;
1473 int nregs = 0;
1475 ira_assert (hard_regno >= 0);
1476 for (i = hard_regno_nregs[hard_regno][mode] - 1; i >= 0; i--)
1477 if (!allocated_hardreg_p[hard_regno + i]
1478 && !TEST_HARD_REG_BIT (call_used_reg_set, hard_regno + i)
1479 && !LOCAL_REGNO (hard_regno + i))
1480 nregs++;
1481 return nregs;
1483 #endif
1485 /* Choose a hard register for allocno A. If RETRY_P is TRUE, it means
1486 that the function called from function
1487 `ira_reassign_conflict_allocnos' and `allocno_reload_assign'. In
1488 this case some allocno data are not defined or updated and we
1489 should not touch these data. The function returns true if we
1490 managed to assign a hard register to the allocno.
1492 To assign a hard register, first of all we calculate all conflict
1493 hard registers which can come from conflicting allocnos with
1494 already assigned hard registers. After that we find first free
1495 hard register with the minimal cost. During hard register cost
1496 calculation we take conflict hard register costs into account to
1497 give a chance for conflicting allocnos to get a better hard
1498 register in the future.
1500 If the best hard register cost is bigger than cost of memory usage
1501 for the allocno, we don't assign a hard register to given allocno
1502 at all.
1504 If we assign a hard register to the allocno, we update costs of the
1505 hard register for allocnos connected by copies to improve a chance
1506 to coalesce insns represented by the copies when we assign hard
1507 registers to the allocnos connected by the copies. */
1508 static bool
1509 assign_hard_reg (ira_allocno_t a, bool retry_p)
1511 HARD_REG_SET conflicting_regs[2], profitable_hard_regs;
1512 int i, j, hard_regno, best_hard_regno, class_size;
1513 int cost, mem_cost, min_cost, full_cost, min_full_cost, nwords, word;
1514 int *a_costs;
1515 enum reg_class aclass;
1516 enum machine_mode mode;
1517 static int costs[FIRST_PSEUDO_REGISTER], full_costs[FIRST_PSEUDO_REGISTER];
1518 #ifndef HONOR_REG_ALLOC_ORDER
1519 int saved_nregs;
1520 enum reg_class rclass;
1521 int add_cost;
1522 #endif
1523 #ifdef STACK_REGS
1524 bool no_stack_reg_p;
1525 #endif
1527 ira_assert (! ALLOCNO_ASSIGNED_P (a));
1528 get_conflict_and_start_profitable_regs (a, retry_p,
1529 conflicting_regs,
1530 &profitable_hard_regs);
1531 aclass = ALLOCNO_CLASS (a);
1532 class_size = ira_class_hard_regs_num[aclass];
1533 best_hard_regno = -1;
1534 memset (full_costs, 0, sizeof (int) * class_size);
1535 mem_cost = 0;
1536 memset (costs, 0, sizeof (int) * class_size);
1537 memset (full_costs, 0, sizeof (int) * class_size);
1538 #ifdef STACK_REGS
1539 no_stack_reg_p = false;
1540 #endif
1541 if (! retry_p)
1542 start_update_cost ();
1543 mem_cost += ALLOCNO_UPDATED_MEMORY_COST (a);
1545 ira_allocate_and_copy_costs (&ALLOCNO_UPDATED_HARD_REG_COSTS (a),
1546 aclass, ALLOCNO_HARD_REG_COSTS (a));
1547 a_costs = ALLOCNO_UPDATED_HARD_REG_COSTS (a);
1548 #ifdef STACK_REGS
1549 no_stack_reg_p = no_stack_reg_p || ALLOCNO_TOTAL_NO_STACK_REG_P (a);
1550 #endif
1551 cost = ALLOCNO_UPDATED_CLASS_COST (a);
1552 for (i = 0; i < class_size; i++)
1553 if (a_costs != NULL)
1555 costs[i] += a_costs[i];
1556 full_costs[i] += a_costs[i];
1558 else
1560 costs[i] += cost;
1561 full_costs[i] += cost;
1563 nwords = ALLOCNO_NUM_OBJECTS (a);
1564 curr_allocno_process++;
1565 for (word = 0; word < nwords; word++)
1567 ira_object_t conflict_obj;
1568 ira_object_t obj = ALLOCNO_OBJECT (a, word);
1569 ira_object_conflict_iterator oci;
1571 /* Take preferences of conflicting allocnos into account. */
1572 FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
1574 ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
1575 enum reg_class conflict_aclass;
1577 /* Reload can give another class so we need to check all
1578 allocnos. */
1579 if (!retry_p
1580 && (!bitmap_bit_p (consideration_allocno_bitmap,
1581 ALLOCNO_NUM (conflict_a))
1582 || ((!ALLOCNO_ASSIGNED_P (conflict_a)
1583 || ALLOCNO_HARD_REGNO (conflict_a) < 0)
1584 && !(hard_reg_set_intersect_p
1585 (profitable_hard_regs,
1586 ALLOCNO_COLOR_DATA
1587 (conflict_a)->profitable_hard_regs)))))
1588 continue;
1589 conflict_aclass = ALLOCNO_CLASS (conflict_a);
1590 ira_assert (ira_reg_classes_intersect_p
1591 [aclass][conflict_aclass]);
1592 if (ALLOCNO_ASSIGNED_P (conflict_a))
1594 hard_regno = ALLOCNO_HARD_REGNO (conflict_a);
1595 if (hard_regno >= 0
1596 && (ira_hard_reg_set_intersection_p
1597 (hard_regno, ALLOCNO_MODE (conflict_a),
1598 reg_class_contents[aclass])))
1600 int n_objects = ALLOCNO_NUM_OBJECTS (conflict_a);
1601 int conflict_nregs;
1603 mode = ALLOCNO_MODE (conflict_a);
1604 conflict_nregs = hard_regno_nregs[hard_regno][mode];
1605 if (conflict_nregs == n_objects && conflict_nregs > 1)
1607 int num = OBJECT_SUBWORD (conflict_obj);
1609 if (REG_WORDS_BIG_ENDIAN)
1610 SET_HARD_REG_BIT (conflicting_regs[word],
1611 hard_regno + n_objects - num - 1);
1612 else
1613 SET_HARD_REG_BIT (conflicting_regs[word],
1614 hard_regno + num);
1616 else
1617 IOR_HARD_REG_SET
1618 (conflicting_regs[word],
1619 ira_reg_mode_hard_regset[hard_regno][mode]);
1620 if (hard_reg_set_subset_p (profitable_hard_regs,
1621 conflicting_regs[word]))
1622 goto fail;
1625 else if (! retry_p
1626 && ! ALLOCNO_COLOR_DATA (conflict_a)->may_be_spilled_p
1627 /* Don't process the conflict allocno twice. */
1628 && (ALLOCNO_COLOR_DATA (conflict_a)->last_process
1629 != curr_allocno_process))
1631 int k, *conflict_costs;
1633 ALLOCNO_COLOR_DATA (conflict_a)->last_process
1634 = curr_allocno_process;
1635 ira_allocate_and_copy_costs
1636 (&ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (conflict_a),
1637 conflict_aclass,
1638 ALLOCNO_CONFLICT_HARD_REG_COSTS (conflict_a));
1639 conflict_costs
1640 = ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (conflict_a);
1641 if (conflict_costs != NULL)
1642 for (j = class_size - 1; j >= 0; j--)
1644 hard_regno = ira_class_hard_regs[aclass][j];
1645 ira_assert (hard_regno >= 0);
1646 k = ira_class_hard_reg_index[conflict_aclass][hard_regno];
1647 if (k < 0)
1648 continue;
1649 full_costs[j] -= conflict_costs[k];
1651 queue_update_cost (conflict_a, COST_HOP_DIVISOR);
1655 if (! retry_p)
1656 /* Take into account preferences of allocnos connected by copies to
1657 the conflict allocnos. */
1658 update_conflict_hard_regno_costs (full_costs, aclass, true);
1660 /* Take preferences of allocnos connected by copies into
1661 account. */
1662 if (! retry_p)
1664 start_update_cost ();
1665 queue_update_cost (a, COST_HOP_DIVISOR);
1666 update_conflict_hard_regno_costs (full_costs, aclass, false);
1668 min_cost = min_full_cost = INT_MAX;
1669 /* We don't care about giving callee saved registers to allocnos no
1670 living through calls because call clobbered registers are
1671 allocated first (it is usual practice to put them first in
1672 REG_ALLOC_ORDER). */
1673 mode = ALLOCNO_MODE (a);
1674 for (i = 0; i < class_size; i++)
1676 hard_regno = ira_class_hard_regs[aclass][i];
1677 #ifdef STACK_REGS
1678 if (no_stack_reg_p
1679 && FIRST_STACK_REG <= hard_regno && hard_regno <= LAST_STACK_REG)
1680 continue;
1681 #endif
1682 if (! check_hard_reg_p (a, hard_regno,
1683 conflicting_regs, profitable_hard_regs))
1684 continue;
1685 cost = costs[i];
1686 full_cost = full_costs[i];
1687 #ifndef HONOR_REG_ALLOC_ORDER
1688 if ((saved_nregs = calculate_saved_nregs (hard_regno, mode)) != 0)
1689 /* We need to save/restore the hard register in
1690 epilogue/prologue. Therefore we increase the cost. */
1692 rclass = REGNO_REG_CLASS (hard_regno);
1693 add_cost = ((ira_memory_move_cost[mode][rclass][0]
1694 + ira_memory_move_cost[mode][rclass][1])
1695 * saved_nregs / hard_regno_nregs[hard_regno][mode] - 1);
1696 cost += add_cost;
1697 full_cost += add_cost;
1699 #endif
1700 if (min_cost > cost)
1701 min_cost = cost;
1702 if (min_full_cost > full_cost)
1704 min_full_cost = full_cost;
1705 best_hard_regno = hard_regno;
1706 ira_assert (hard_regno >= 0);
1709 if (min_full_cost > mem_cost)
1711 if (! retry_p && internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
1712 fprintf (ira_dump_file, "(memory is more profitable %d vs %d) ",
1713 mem_cost, min_full_cost);
1714 best_hard_regno = -1;
1716 fail:
1717 if (best_hard_regno >= 0)
1719 for (i = hard_regno_nregs[best_hard_regno][mode] - 1; i >= 0; i--)
1720 allocated_hardreg_p[best_hard_regno + i] = true;
1722 ALLOCNO_HARD_REGNO (a) = best_hard_regno;
1723 ALLOCNO_ASSIGNED_P (a) = true;
1724 if (best_hard_regno >= 0)
1725 update_copy_costs (a, true);
1726 ira_assert (ALLOCNO_CLASS (a) == aclass);
1727 /* We don't need updated costs anymore: */
1728 ira_free_allocno_updated_costs (a);
1729 return best_hard_regno >= 0;
1734 /* This page contains the allocator based on the Chaitin-Briggs algorithm. */
1736 /* Bucket of allocnos that can colored currently without spilling. */
1737 static ira_allocno_t colorable_allocno_bucket;
1739 /* Bucket of allocnos that might be not colored currently without
1740 spilling. */
1741 static ira_allocno_t uncolorable_allocno_bucket;
1743 /* The current number of allocnos in the uncolorable_bucket. */
1744 static int uncolorable_allocnos_num;
1746 /* Return the current spill priority of allocno A. The less the
1747 number, the more preferable the allocno for spilling. */
1748 static inline int
1749 allocno_spill_priority (ira_allocno_t a)
1751 allocno_color_data_t data = ALLOCNO_COLOR_DATA (a);
1753 return (data->temp
1754 / (ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a)
1755 * ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)]
1756 + 1));
1759 /* Add allocno A to bucket *BUCKET_PTR. A should be not in a bucket
1760 before the call. */
1761 static void
1762 add_allocno_to_bucket (ira_allocno_t a, ira_allocno_t *bucket_ptr)
1764 ira_allocno_t first_a;
1765 allocno_color_data_t data;
1767 if (bucket_ptr == &uncolorable_allocno_bucket
1768 && ALLOCNO_CLASS (a) != NO_REGS)
1770 uncolorable_allocnos_num++;
1771 ira_assert (uncolorable_allocnos_num > 0);
1773 first_a = *bucket_ptr;
1774 data = ALLOCNO_COLOR_DATA (a);
1775 data->next_bucket_allocno = first_a;
1776 data->prev_bucket_allocno = NULL;
1777 if (first_a != NULL)
1778 ALLOCNO_COLOR_DATA (first_a)->prev_bucket_allocno = a;
1779 *bucket_ptr = a;
1782 /* Compare two allocnos to define which allocno should be pushed first
1783 into the coloring stack. If the return is a negative number, the
1784 allocno given by the first parameter will be pushed first. In this
1785 case such allocno has less priority than the second one and the
1786 hard register will be assigned to it after assignment to the second
1787 one. As the result of such assignment order, the second allocno
1788 has a better chance to get the best hard register. */
1789 static int
1790 bucket_allocno_compare_func (const void *v1p, const void *v2p)
1792 ira_allocno_t a1 = *(const ira_allocno_t *) v1p;
1793 ira_allocno_t a2 = *(const ira_allocno_t *) v2p;
1794 int diff, a1_freq, a2_freq, a1_num, a2_num;
1795 int cl1 = ALLOCNO_CLASS (a1), cl2 = ALLOCNO_CLASS (a2);
1797 /* Push pseudos requiring less hard registers first. It means that
1798 we will assign pseudos requiring more hard registers first
1799 avoiding creation small holes in free hard register file into
1800 which the pseudos requiring more hard registers can not fit. */
1801 if ((diff = (ira_reg_class_max_nregs[cl1][ALLOCNO_MODE (a1)]
1802 - ira_reg_class_max_nregs[cl2][ALLOCNO_MODE (a2)])) != 0)
1803 return diff;
1804 a1_freq = ALLOCNO_FREQ (a1);
1805 a2_freq = ALLOCNO_FREQ (a2);
1806 if ((diff = a1_freq - a2_freq) != 0)
1807 return diff;
1808 a1_num = ALLOCNO_COLOR_DATA (a1)->available_regs_num;
1809 a2_num = ALLOCNO_COLOR_DATA (a2)->available_regs_num;
1810 if ((diff = a2_num - a1_num) != 0)
1811 return diff;
1812 return ALLOCNO_NUM (a2) - ALLOCNO_NUM (a1);
1815 /* Sort bucket *BUCKET_PTR and return the result through
1816 BUCKET_PTR. */
1817 static void
1818 sort_bucket (ira_allocno_t *bucket_ptr,
1819 int (*compare_func) (const void *, const void *))
1821 ira_allocno_t a, head;
1822 int n;
1824 for (n = 0, a = *bucket_ptr;
1825 a != NULL;
1826 a = ALLOCNO_COLOR_DATA (a)->next_bucket_allocno)
1827 sorted_allocnos[n++] = a;
1828 if (n <= 1)
1829 return;
1830 qsort (sorted_allocnos, n, sizeof (ira_allocno_t), compare_func);
1831 head = NULL;
1832 for (n--; n >= 0; n--)
1834 a = sorted_allocnos[n];
1835 ALLOCNO_COLOR_DATA (a)->next_bucket_allocno = head;
1836 ALLOCNO_COLOR_DATA (a)->prev_bucket_allocno = NULL;
1837 if (head != NULL)
1838 ALLOCNO_COLOR_DATA (head)->prev_bucket_allocno = a;
1839 head = a;
1841 *bucket_ptr = head;
1844 /* Add ALLOCNO to bucket *BUCKET_PTR maintaining the order according
1845 their priority. ALLOCNO should be not in a bucket before the
1846 call. */
1847 static void
1848 add_allocno_to_ordered_bucket (ira_allocno_t allocno,
1849 ira_allocno_t *bucket_ptr)
1851 ira_allocno_t before, after;
1853 if (bucket_ptr == &uncolorable_allocno_bucket
1854 && ALLOCNO_CLASS (allocno) != NO_REGS)
1856 uncolorable_allocnos_num++;
1857 ira_assert (uncolorable_allocnos_num > 0);
1859 for (before = *bucket_ptr, after = NULL;
1860 before != NULL;
1861 after = before,
1862 before = ALLOCNO_COLOR_DATA (before)->next_bucket_allocno)
1863 if (bucket_allocno_compare_func (&allocno, &before) < 0)
1864 break;
1865 ALLOCNO_COLOR_DATA (allocno)->next_bucket_allocno = before;
1866 ALLOCNO_COLOR_DATA (allocno)->prev_bucket_allocno = after;
1867 if (after == NULL)
1868 *bucket_ptr = allocno;
1869 else
1870 ALLOCNO_COLOR_DATA (after)->next_bucket_allocno = allocno;
1871 if (before != NULL)
1872 ALLOCNO_COLOR_DATA (before)->prev_bucket_allocno = allocno;
1875 /* Delete ALLOCNO from bucket *BUCKET_PTR. It should be there before
1876 the call. */
1877 static void
1878 delete_allocno_from_bucket (ira_allocno_t allocno, ira_allocno_t *bucket_ptr)
1880 ira_allocno_t prev_allocno, next_allocno;
1882 if (bucket_ptr == &uncolorable_allocno_bucket
1883 && ALLOCNO_CLASS (allocno) != NO_REGS)
1885 uncolorable_allocnos_num--;
1886 ira_assert (uncolorable_allocnos_num >= 0);
1888 prev_allocno = ALLOCNO_COLOR_DATA (allocno)->prev_bucket_allocno;
1889 next_allocno = ALLOCNO_COLOR_DATA (allocno)->next_bucket_allocno;
1890 if (prev_allocno != NULL)
1891 ALLOCNO_COLOR_DATA (prev_allocno)->next_bucket_allocno = next_allocno;
1892 else
1894 ira_assert (*bucket_ptr == allocno);
1895 *bucket_ptr = next_allocno;
1897 if (next_allocno != NULL)
1898 ALLOCNO_COLOR_DATA (next_allocno)->prev_bucket_allocno = prev_allocno;
1901 /* Put allocno A onto the coloring stack without removing it from its
1902 bucket. Pushing allocno to the coloring stack can result in moving
1903 conflicting allocnos from the uncolorable bucket to the colorable
1904 one. */
1905 static void
1906 push_allocno_to_stack (ira_allocno_t a)
1908 enum reg_class aclass;
1909 allocno_color_data_t data, conflict_data;
1910 int size, i, n = ALLOCNO_NUM_OBJECTS (a);
1912 data = ALLOCNO_COLOR_DATA (a);
1913 data->in_graph_p = false;
1914 VEC_safe_push (ira_allocno_t, heap, allocno_stack_vec, a);
1915 aclass = ALLOCNO_CLASS (a);
1916 if (aclass == NO_REGS)
1917 return;
1918 size = ira_reg_class_max_nregs[aclass][ALLOCNO_MODE (a)];
1919 if (n > 1)
1921 /* We will deal with the subwords individually. */
1922 gcc_assert (size == ALLOCNO_NUM_OBJECTS (a));
1923 size = 1;
1925 for (i = 0; i < n; i++)
1927 ira_object_t obj = ALLOCNO_OBJECT (a, i);
1928 ira_object_t conflict_obj;
1929 ira_object_conflict_iterator oci;
1931 FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
1933 ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
1935 conflict_data = ALLOCNO_COLOR_DATA (conflict_a);
1936 if (conflict_data->colorable_p
1937 || ! conflict_data->in_graph_p
1938 || ALLOCNO_ASSIGNED_P (conflict_a)
1939 || !(hard_reg_set_intersect_p
1940 (ALLOCNO_COLOR_DATA (a)->profitable_hard_regs,
1941 conflict_data->profitable_hard_regs)))
1942 continue;
1943 ira_assert (bitmap_bit_p (coloring_allocno_bitmap,
1944 ALLOCNO_NUM (conflict_a)));
1945 if (update_left_conflict_sizes_p (conflict_a, a, size))
1947 delete_allocno_from_bucket
1948 (conflict_a, &uncolorable_allocno_bucket);
1949 add_allocno_to_ordered_bucket
1950 (conflict_a, &colorable_allocno_bucket);
1951 if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL)
1953 fprintf (ira_dump_file, " Making");
1954 ira_print_expanded_allocno (conflict_a);
1955 fprintf (ira_dump_file, " colorable\n");
1963 /* Put ALLOCNO onto the coloring stack and remove it from its bucket.
1964 The allocno is in the colorable bucket if COLORABLE_P is TRUE. */
1965 static void
1966 remove_allocno_from_bucket_and_push (ira_allocno_t allocno, bool colorable_p)
1968 if (colorable_p)
1969 delete_allocno_from_bucket (allocno, &colorable_allocno_bucket);
1970 else
1971 delete_allocno_from_bucket (allocno, &uncolorable_allocno_bucket);
1972 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
1974 fprintf (ira_dump_file, " Pushing");
1975 ira_print_expanded_allocno (allocno);
1976 if (colorable_p)
1977 fprintf (ira_dump_file, "(cost %d)\n",
1978 ALLOCNO_COLOR_DATA (allocno)->temp);
1979 else
1980 fprintf (ira_dump_file, "(potential spill: %spri=%d, cost=%d)\n",
1981 ALLOCNO_BAD_SPILL_P (allocno) ? "bad spill, " : "",
1982 allocno_spill_priority (allocno),
1983 ALLOCNO_COLOR_DATA (allocno)->temp);
1985 if (! colorable_p)
1986 ALLOCNO_COLOR_DATA (allocno)->may_be_spilled_p = true;
1987 push_allocno_to_stack (allocno);
1990 /* Put all allocnos from colorable bucket onto the coloring stack. */
1991 static void
1992 push_only_colorable (void)
1994 sort_bucket (&colorable_allocno_bucket, bucket_allocno_compare_func);
1995 for (;colorable_allocno_bucket != NULL;)
1996 remove_allocno_from_bucket_and_push (colorable_allocno_bucket, true);
1999 /* Return the frequency of exit edges (if EXIT_P) or entry from/to the
2000 loop given by its LOOP_NODE. */
2002 ira_loop_edge_freq (ira_loop_tree_node_t loop_node, int regno, bool exit_p)
2004 int freq, i;
2005 edge_iterator ei;
2006 edge e;
2007 VEC (edge, heap) *edges;
2009 ira_assert (current_loops != NULL && loop_node->loop != NULL
2010 && (regno < 0 || regno >= FIRST_PSEUDO_REGISTER));
2011 freq = 0;
2012 if (! exit_p)
2014 FOR_EACH_EDGE (e, ei, loop_node->loop->header->preds)
2015 if (e->src != loop_node->loop->latch
2016 && (regno < 0
2017 || (bitmap_bit_p (DF_LR_OUT (e->src), regno)
2018 && bitmap_bit_p (DF_LR_IN (e->dest), regno))))
2019 freq += EDGE_FREQUENCY (e);
2021 else
2023 edges = get_loop_exit_edges (loop_node->loop);
2024 FOR_EACH_VEC_ELT (edge, edges, i, e)
2025 if (regno < 0
2026 || (bitmap_bit_p (DF_LR_OUT (e->src), regno)
2027 && bitmap_bit_p (DF_LR_IN (e->dest), regno)))
2028 freq += EDGE_FREQUENCY (e);
2029 VEC_free (edge, heap, edges);
2032 return REG_FREQ_FROM_EDGE_FREQ (freq);
2035 /* Calculate and return the cost of putting allocno A into memory. */
2036 static int
2037 calculate_allocno_spill_cost (ira_allocno_t a)
2039 int regno, cost;
2040 enum machine_mode mode;
2041 enum reg_class rclass;
2042 ira_allocno_t parent_allocno;
2043 ira_loop_tree_node_t parent_node, loop_node;
2045 regno = ALLOCNO_REGNO (a);
2046 cost = ALLOCNO_UPDATED_MEMORY_COST (a) - ALLOCNO_UPDATED_CLASS_COST (a);
2047 if (ALLOCNO_CAP (a) != NULL)
2048 return cost;
2049 loop_node = ALLOCNO_LOOP_TREE_NODE (a);
2050 if ((parent_node = loop_node->parent) == NULL)
2051 return cost;
2052 if ((parent_allocno = parent_node->regno_allocno_map[regno]) == NULL)
2053 return cost;
2054 mode = ALLOCNO_MODE (a);
2055 rclass = ALLOCNO_CLASS (a);
2056 if (ALLOCNO_HARD_REGNO (parent_allocno) < 0)
2057 cost -= (ira_memory_move_cost[mode][rclass][0]
2058 * ira_loop_edge_freq (loop_node, regno, true)
2059 + ira_memory_move_cost[mode][rclass][1]
2060 * ira_loop_edge_freq (loop_node, regno, false));
2061 else
2063 ira_init_register_move_cost_if_necessary (mode);
2064 cost += ((ira_memory_move_cost[mode][rclass][1]
2065 * ira_loop_edge_freq (loop_node, regno, true)
2066 + ira_memory_move_cost[mode][rclass][0]
2067 * ira_loop_edge_freq (loop_node, regno, false))
2068 - (ira_register_move_cost[mode][rclass][rclass]
2069 * (ira_loop_edge_freq (loop_node, regno, false)
2070 + ira_loop_edge_freq (loop_node, regno, true))));
2072 return cost;
2075 /* Used for sorting allocnos for spilling. */
2076 static inline int
2077 allocno_spill_priority_compare (ira_allocno_t a1, ira_allocno_t a2)
2079 int pri1, pri2, diff;
2081 if (ALLOCNO_BAD_SPILL_P (a1) && ! ALLOCNO_BAD_SPILL_P (a2))
2082 return 1;
2083 if (ALLOCNO_BAD_SPILL_P (a2) && ! ALLOCNO_BAD_SPILL_P (a1))
2084 return -1;
2085 pri1 = allocno_spill_priority (a1);
2086 pri2 = allocno_spill_priority (a2);
2087 if ((diff = pri1 - pri2) != 0)
2088 return diff;
2089 if ((diff
2090 = ALLOCNO_COLOR_DATA (a1)->temp - ALLOCNO_COLOR_DATA (a2)->temp) != 0)
2091 return diff;
2092 return ALLOCNO_NUM (a1) - ALLOCNO_NUM (a2);
2095 /* Used for sorting allocnos for spilling. */
2096 static int
2097 allocno_spill_sort_compare (const void *v1p, const void *v2p)
2099 ira_allocno_t p1 = *(const ira_allocno_t *) v1p;
2100 ira_allocno_t p2 = *(const ira_allocno_t *) v2p;
2102 return allocno_spill_priority_compare (p1, p2);
2105 /* Push allocnos to the coloring stack. The order of allocnos in the
2106 stack defines the order for the subsequent coloring. */
2107 static void
2108 push_allocnos_to_stack (void)
2110 ira_allocno_t a;
2111 int cost;
2113 /* Calculate uncolorable allocno spill costs. */
2114 for (a = uncolorable_allocno_bucket;
2115 a != NULL;
2116 a = ALLOCNO_COLOR_DATA (a)->next_bucket_allocno)
2117 if (ALLOCNO_CLASS (a) != NO_REGS)
2119 cost = calculate_allocno_spill_cost (a);
2120 /* ??? Remove cost of copies between the coalesced
2121 allocnos. */
2122 ALLOCNO_COLOR_DATA (a)->temp = cost;
2124 sort_bucket (&uncolorable_allocno_bucket, allocno_spill_sort_compare);
2125 for (;;)
2127 push_only_colorable ();
2128 a = uncolorable_allocno_bucket;
2129 if (a == NULL)
2130 break;
2131 remove_allocno_from_bucket_and_push (a, false);
2133 ira_assert (colorable_allocno_bucket == NULL
2134 && uncolorable_allocno_bucket == NULL);
2135 ira_assert (uncolorable_allocnos_num == 0);
2138 /* Pop the coloring stack and assign hard registers to the popped
2139 allocnos. */
2140 static void
2141 pop_allocnos_from_stack (void)
2143 ira_allocno_t allocno;
2144 enum reg_class aclass;
2146 for (;VEC_length (ira_allocno_t, allocno_stack_vec) != 0;)
2148 allocno = VEC_pop (ira_allocno_t, allocno_stack_vec);
2149 aclass = ALLOCNO_CLASS (allocno);
2150 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2152 fprintf (ira_dump_file, " Popping");
2153 ira_print_expanded_allocno (allocno);
2154 fprintf (ira_dump_file, " -- ");
2156 if (aclass == NO_REGS)
2158 ALLOCNO_HARD_REGNO (allocno) = -1;
2159 ALLOCNO_ASSIGNED_P (allocno) = true;
2160 ira_assert (ALLOCNO_UPDATED_HARD_REG_COSTS (allocno) == NULL);
2161 ira_assert
2162 (ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (allocno) == NULL);
2163 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2164 fprintf (ira_dump_file, "assign memory\n");
2166 else if (assign_hard_reg (allocno, false))
2168 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2169 fprintf (ira_dump_file, "assign reg %d\n",
2170 ALLOCNO_HARD_REGNO (allocno));
2172 else if (ALLOCNO_ASSIGNED_P (allocno))
2174 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2175 fprintf (ira_dump_file, "spill\n");
2177 ALLOCNO_COLOR_DATA (allocno)->in_graph_p = true;
2181 /* Set up number of available hard registers for allocno A. */
2182 static void
2183 setup_allocno_available_regs_num (ira_allocno_t a)
2185 int i, n, hard_regno, hard_regs_num, nwords;
2186 enum reg_class aclass;
2187 allocno_color_data_t data;
2189 aclass = ALLOCNO_CLASS (a);
2190 data = ALLOCNO_COLOR_DATA (a);
2191 data->available_regs_num = 0;
2192 if (aclass == NO_REGS)
2193 return;
2194 hard_regs_num = ira_class_hard_regs_num[aclass];
2195 nwords = ALLOCNO_NUM_OBJECTS (a);
2196 for (n = 0, i = hard_regs_num - 1; i >= 0; i--)
2198 hard_regno = ira_class_hard_regs[aclass][i];
2199 /* Checking only profitable hard regs. */
2200 if (TEST_HARD_REG_BIT (data->profitable_hard_regs, hard_regno))
2201 n++;
2203 data->available_regs_num = n;
2204 if (internal_flag_ira_verbose <= 2 || ira_dump_file == NULL)
2205 return;
2206 fprintf
2207 (ira_dump_file,
2208 " Allocno a%dr%d of %s(%d) has %d avail. regs ",
2209 ALLOCNO_NUM (a), ALLOCNO_REGNO (a),
2210 reg_class_names[aclass], ira_class_hard_regs_num[aclass], n);
2211 print_hard_reg_set (ira_dump_file, data->profitable_hard_regs, false);
2212 fprintf (ira_dump_file, ", %snode: ",
2213 hard_reg_set_equal_p (data->profitable_hard_regs,
2214 data->hard_regs_node->hard_regs->set)
2215 ? "" : "^");
2216 print_hard_reg_set (ira_dump_file,
2217 data->hard_regs_node->hard_regs->set, false);
2218 for (i = 0; i < nwords; i++)
2220 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2222 if (nwords != 1)
2224 if (i != 0)
2225 fprintf (ira_dump_file, ", ");
2226 fprintf (ira_dump_file, " obj %d", i);
2228 fprintf (ira_dump_file, " (confl regs = ");
2229 print_hard_reg_set (ira_dump_file, OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
2230 false);
2231 fprintf (ira_dump_file, ")");
2233 fprintf (ira_dump_file, "\n");
2236 /* Put ALLOCNO in a bucket corresponding to its number and size of its
2237 conflicting allocnos and hard registers. */
2238 static void
2239 put_allocno_into_bucket (ira_allocno_t allocno)
2241 ALLOCNO_COLOR_DATA (allocno)->in_graph_p = true;
2242 setup_allocno_available_regs_num (allocno);
2243 if (setup_left_conflict_sizes_p (allocno))
2244 add_allocno_to_bucket (allocno, &colorable_allocno_bucket);
2245 else
2246 add_allocno_to_bucket (allocno, &uncolorable_allocno_bucket);
2249 /* Map: allocno number -> allocno priority. */
2250 static int *allocno_priorities;
2252 /* Set up priorities for N allocnos in array
2253 CONSIDERATION_ALLOCNOS. */
2254 static void
2255 setup_allocno_priorities (ira_allocno_t *consideration_allocnos, int n)
2257 int i, length, nrefs, priority, max_priority, mult;
2258 ira_allocno_t a;
2260 max_priority = 0;
2261 for (i = 0; i < n; i++)
2263 a = consideration_allocnos[i];
2264 nrefs = ALLOCNO_NREFS (a);
2265 ira_assert (nrefs >= 0);
2266 mult = floor_log2 (ALLOCNO_NREFS (a)) + 1;
2267 ira_assert (mult >= 0);
2268 allocno_priorities[ALLOCNO_NUM (a)]
2269 = priority
2270 = (mult
2271 * (ALLOCNO_MEMORY_COST (a) - ALLOCNO_CLASS_COST (a))
2272 * ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)]);
2273 if (priority < 0)
2274 priority = -priority;
2275 if (max_priority < priority)
2276 max_priority = priority;
2278 mult = max_priority == 0 ? 1 : INT_MAX / max_priority;
2279 for (i = 0; i < n; i++)
2281 a = consideration_allocnos[i];
2282 length = ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a);
2283 if (ALLOCNO_NUM_OBJECTS (a) > 1)
2284 length /= ALLOCNO_NUM_OBJECTS (a);
2285 if (length <= 0)
2286 length = 1;
2287 allocno_priorities[ALLOCNO_NUM (a)]
2288 = allocno_priorities[ALLOCNO_NUM (a)] * mult / length;
2292 /* Sort allocnos according to the profit of usage of a hard register
2293 instead of memory for them. */
2294 static int
2295 allocno_cost_compare_func (const void *v1p, const void *v2p)
2297 ira_allocno_t p1 = *(const ira_allocno_t *) v1p;
2298 ira_allocno_t p2 = *(const ira_allocno_t *) v2p;
2299 int c1, c2;
2301 c1 = ALLOCNO_UPDATED_MEMORY_COST (p1) - ALLOCNO_UPDATED_CLASS_COST (p1);
2302 c2 = ALLOCNO_UPDATED_MEMORY_COST (p2) - ALLOCNO_UPDATED_CLASS_COST (p2);
2303 if (c1 - c2)
2304 return c1 - c2;
2306 /* If regs are equally good, sort by allocno numbers, so that the
2307 results of qsort leave nothing to chance. */
2308 return ALLOCNO_NUM (p1) - ALLOCNO_NUM (p2);
2311 /* We used Chaitin-Briggs coloring to assign as many pseudos as
2312 possible to hard registers. Let us try to improve allocation with
2313 cost point of view. This function improves the allocation by
2314 spilling some allocnos and assigning the freed hard registers to
2315 other allocnos if it decreases the overall allocation cost. */
2316 static void
2317 improve_allocation (void)
2319 unsigned int i;
2320 int j, k, n, hregno, conflict_hregno, base_cost, class_size, word, nwords;
2321 int check, spill_cost, min_cost, nregs, conflict_nregs, r, best;
2322 bool try_p;
2323 enum reg_class aclass;
2324 enum machine_mode mode;
2325 int *allocno_costs;
2326 int costs[FIRST_PSEUDO_REGISTER];
2327 HARD_REG_SET conflicting_regs[2], profitable_hard_regs;
2328 ira_allocno_t a;
2329 bitmap_iterator bi;
2331 /* Clear counts used to process conflicting allocnos only once for
2332 each allocno. */
2333 EXECUTE_IF_SET_IN_BITMAP (coloring_allocno_bitmap, 0, i, bi)
2334 ALLOCNO_COLOR_DATA (ira_allocnos[i])->temp = 0;
2335 check = n = 0;
2336 /* Process each allocno and try to assign a hard register to it by
2337 spilling some its conflicting allocnos. */
2338 EXECUTE_IF_SET_IN_BITMAP (coloring_allocno_bitmap, 0, i, bi)
2340 a = ira_allocnos[i];
2341 ALLOCNO_COLOR_DATA (a)->temp = 0;
2342 if (empty_profitable_hard_regs (a))
2343 continue;
2344 check++;
2345 aclass = ALLOCNO_CLASS (a);
2346 allocno_costs = ALLOCNO_UPDATED_HARD_REG_COSTS (a);
2347 if (allocno_costs == NULL)
2348 allocno_costs = ALLOCNO_HARD_REG_COSTS (a);
2349 if ((hregno = ALLOCNO_HARD_REGNO (a)) < 0)
2350 base_cost = ALLOCNO_UPDATED_MEMORY_COST (a);
2351 else if (allocno_costs == NULL)
2352 /* It means that assigning a hard register is not profitable
2353 (we don't waste memory for hard register costs in this
2354 case). */
2355 continue;
2356 else
2357 base_cost = allocno_costs[ira_class_hard_reg_index[aclass][hregno]];
2358 try_p = false;
2359 get_conflict_and_start_profitable_regs (a, false,
2360 conflicting_regs,
2361 &profitable_hard_regs);
2362 class_size = ira_class_hard_regs_num[aclass];
2363 /* Set up cost improvement for usage of each profitable hard
2364 register for allocno A. */
2365 for (j = 0; j < class_size; j++)
2367 hregno = ira_class_hard_regs[aclass][j];
2368 if (! check_hard_reg_p (a, hregno,
2369 conflicting_regs, profitable_hard_regs))
2370 continue;
2371 ira_assert (ira_class_hard_reg_index[aclass][hregno] == j);
2372 k = allocno_costs == NULL ? 0 : j;
2373 costs[hregno] = (allocno_costs == NULL
2374 ? ALLOCNO_UPDATED_CLASS_COST (a) : allocno_costs[k]);
2375 costs[hregno] -= base_cost;
2376 if (costs[hregno] < 0)
2377 try_p = true;
2379 if (! try_p)
2380 /* There is no chance to improve the allocation cost by
2381 assigning hard register to allocno A even without spilling
2382 conflicting allocnos. */
2383 continue;
2384 mode = ALLOCNO_MODE (a);
2385 nwords = ALLOCNO_NUM_OBJECTS (a);
2386 /* Process each allocno conflicting with A and update the cost
2387 improvement for profitable hard registers of A. To use a
2388 hard register for A we need to spill some conflicting
2389 allocnos and that creates penalty for the cost
2390 improvement. */
2391 for (word = 0; word < nwords; word++)
2393 ira_object_t conflict_obj;
2394 ira_object_t obj = ALLOCNO_OBJECT (a, word);
2395 ira_object_conflict_iterator oci;
2397 FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
2399 ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
2401 if (ALLOCNO_COLOR_DATA (conflict_a)->temp == check)
2402 /* We already processed this conflicting allocno
2403 because we processed earlier another object of the
2404 conflicting allocno. */
2405 continue;
2406 ALLOCNO_COLOR_DATA (conflict_a)->temp = check;
2407 if ((conflict_hregno = ALLOCNO_HARD_REGNO (conflict_a)) < 0)
2408 continue;
2409 spill_cost = ALLOCNO_UPDATED_MEMORY_COST (conflict_a);
2410 k = (ira_class_hard_reg_index
2411 [ALLOCNO_CLASS (conflict_a)][conflict_hregno]);
2412 ira_assert (k >= 0);
2413 if ((allocno_costs = ALLOCNO_UPDATED_HARD_REG_COSTS (conflict_a))
2414 != NULL)
2415 spill_cost -= allocno_costs[k];
2416 else if ((allocno_costs = ALLOCNO_HARD_REG_COSTS (conflict_a))
2417 != NULL)
2418 spill_cost -= allocno_costs[k];
2419 else
2420 spill_cost -= ALLOCNO_UPDATED_CLASS_COST (conflict_a);
2421 conflict_nregs
2422 = hard_regno_nregs[conflict_hregno][ALLOCNO_MODE (conflict_a)];
2423 for (r = conflict_hregno;
2424 r >= 0 && r + hard_regno_nregs[r][mode] > conflict_hregno;
2425 r--)
2426 if (check_hard_reg_p (a, r,
2427 conflicting_regs, profitable_hard_regs))
2428 costs[r] += spill_cost;
2429 for (r = conflict_hregno + 1;
2430 r < conflict_hregno + conflict_nregs;
2431 r++)
2432 if (check_hard_reg_p (a, r,
2433 conflicting_regs, profitable_hard_regs))
2434 costs[r] += spill_cost;
2437 min_cost = INT_MAX;
2438 best = -1;
2439 /* Now we choose hard register for A which results in highest
2440 allocation cost improvement. */
2441 for (j = 0; j < class_size; j++)
2443 hregno = ira_class_hard_regs[aclass][j];
2444 if (check_hard_reg_p (a, hregno,
2445 conflicting_regs, profitable_hard_regs)
2446 && min_cost > costs[hregno])
2448 best = hregno;
2449 min_cost = costs[hregno];
2452 if (min_cost >= 0)
2453 /* We are in a situation when assigning any hard register to A
2454 by spilling some conflicting allocnos does not improve the
2455 allocation cost. */
2456 continue;
2457 nregs = hard_regno_nregs[best][mode];
2458 /* Now spill conflicting allocnos which contain a hard register
2459 of A when we assign the best chosen hard register to it. */
2460 for (word = 0; word < nwords; word++)
2462 ira_object_t conflict_obj;
2463 ira_object_t obj = ALLOCNO_OBJECT (a, word);
2464 ira_object_conflict_iterator oci;
2466 FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
2468 ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
2470 if ((conflict_hregno = ALLOCNO_HARD_REGNO (conflict_a)) < 0)
2471 continue;
2472 conflict_nregs
2473 = hard_regno_nregs[conflict_hregno][ALLOCNO_MODE (conflict_a)];
2474 if (best + nregs <= conflict_hregno
2475 || conflict_hregno + conflict_nregs <= best)
2476 /* No intersection. */
2477 continue;
2478 ALLOCNO_HARD_REGNO (conflict_a) = -1;
2479 sorted_allocnos[n++] = conflict_a;
2480 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
2481 fprintf (ira_dump_file, "Spilling a%dr%d for a%dr%d\n",
2482 ALLOCNO_NUM (conflict_a), ALLOCNO_REGNO (conflict_a),
2483 ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
2486 /* Assign the best chosen hard register to A. */
2487 ALLOCNO_HARD_REGNO (a) = best;
2488 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
2489 fprintf (ira_dump_file, "Assigning %d to a%dr%d\n",
2490 best, ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
2492 if (n == 0)
2493 return;
2494 /* We spilled some allocnos to assign their hard registers to other
2495 allocnos. The spilled allocnos are now in array
2496 'sorted_allocnos'. There is still a possibility that some of the
2497 spilled allocnos can get hard registers. So let us try assign
2498 them hard registers again (just a reminder -- function
2499 'assign_hard_reg' assigns hard registers only if it is possible
2500 and profitable). We process the spilled allocnos with biggest
2501 benefit to get hard register first -- see function
2502 'allocno_cost_compare_func'. */
2503 qsort (sorted_allocnos, n, sizeof (ira_allocno_t),
2504 allocno_cost_compare_func);
2505 for (j = 0; j < n; j++)
2507 a = sorted_allocnos[j];
2508 ALLOCNO_ASSIGNED_P (a) = false;
2509 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2511 fprintf (ira_dump_file, " ");
2512 ira_print_expanded_allocno (a);
2513 fprintf (ira_dump_file, " -- ");
2515 if (assign_hard_reg (a, false))
2517 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2518 fprintf (ira_dump_file, "assign hard reg %d\n",
2519 ALLOCNO_HARD_REGNO (a));
2521 else
2523 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2524 fprintf (ira_dump_file, "assign memory\n");
2529 /* Sort allocnos according to their priorities which are calculated
2530 analogous to ones in file `global.c'. */
2531 static int
2532 allocno_priority_compare_func (const void *v1p, const void *v2p)
2534 ira_allocno_t a1 = *(const ira_allocno_t *) v1p;
2535 ira_allocno_t a2 = *(const ira_allocno_t *) v2p;
2536 int pri1, pri2;
2538 pri1 = allocno_priorities[ALLOCNO_NUM (a1)];
2539 pri2 = allocno_priorities[ALLOCNO_NUM (a2)];
2540 if (pri2 != pri1)
2541 return SORTGT (pri2, pri1);
2543 /* If regs are equally good, sort by allocnos, so that the results of
2544 qsort leave nothing to chance. */
2545 return ALLOCNO_NUM (a1) - ALLOCNO_NUM (a2);
2548 /* Chaitin-Briggs coloring for allocnos in COLORING_ALLOCNO_BITMAP
2549 taking into account allocnos in CONSIDERATION_ALLOCNO_BITMAP. */
2550 static void
2551 color_allocnos (void)
2553 unsigned int i, n;
2554 bitmap_iterator bi;
2555 ira_allocno_t a;
2557 setup_profitable_hard_regs ();
2558 if (flag_ira_algorithm == IRA_ALGORITHM_PRIORITY)
2560 n = 0;
2561 EXECUTE_IF_SET_IN_BITMAP (coloring_allocno_bitmap, 0, i, bi)
2563 a = ira_allocnos[i];
2564 if (ALLOCNO_CLASS (a) == NO_REGS)
2566 ALLOCNO_HARD_REGNO (a) = -1;
2567 ALLOCNO_ASSIGNED_P (a) = true;
2568 ira_assert (ALLOCNO_UPDATED_HARD_REG_COSTS (a) == NULL);
2569 ira_assert (ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a) == NULL);
2570 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2572 fprintf (ira_dump_file, " Spill");
2573 ira_print_expanded_allocno (a);
2574 fprintf (ira_dump_file, "\n");
2576 continue;
2578 sorted_allocnos[n++] = a;
2580 if (n != 0)
2582 setup_allocno_priorities (sorted_allocnos, n);
2583 qsort (sorted_allocnos, n, sizeof (ira_allocno_t),
2584 allocno_priority_compare_func);
2585 for (i = 0; i < n; i++)
2587 a = sorted_allocnos[i];
2588 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2590 fprintf (ira_dump_file, " ");
2591 ira_print_expanded_allocno (a);
2592 fprintf (ira_dump_file, " -- ");
2594 if (assign_hard_reg (a, false))
2596 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2597 fprintf (ira_dump_file, "assign hard reg %d\n",
2598 ALLOCNO_HARD_REGNO (a));
2600 else
2602 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2603 fprintf (ira_dump_file, "assign memory\n");
2608 else
2610 form_allocno_hard_regs_nodes_forest ();
2611 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
2612 print_hard_regs_forest (ira_dump_file);
2613 EXECUTE_IF_SET_IN_BITMAP (coloring_allocno_bitmap, 0, i, bi)
2615 a = ira_allocnos[i];
2616 if (ALLOCNO_CLASS (a) != NO_REGS && ! empty_profitable_hard_regs (a))
2617 ALLOCNO_COLOR_DATA (a)->in_graph_p = true;
2618 else
2620 ALLOCNO_HARD_REGNO (a) = -1;
2621 ALLOCNO_ASSIGNED_P (a) = true;
2622 /* We don't need updated costs anymore. */
2623 ira_free_allocno_updated_costs (a);
2624 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2626 fprintf (ira_dump_file, " Spill");
2627 ira_print_expanded_allocno (a);
2628 fprintf (ira_dump_file, "\n");
2632 /* Put the allocnos into the corresponding buckets. */
2633 colorable_allocno_bucket = NULL;
2634 uncolorable_allocno_bucket = NULL;
2635 EXECUTE_IF_SET_IN_BITMAP (coloring_allocno_bitmap, 0, i, bi)
2637 a = ira_allocnos[i];
2638 if (ALLOCNO_COLOR_DATA (a)->in_graph_p)
2639 put_allocno_into_bucket (a);
2641 push_allocnos_to_stack ();
2642 pop_allocnos_from_stack ();
2643 finish_allocno_hard_regs_nodes_forest ();
2645 improve_allocation ();
2650 /* Output information about the loop given by its LOOP_TREE_NODE. */
2651 static void
2652 print_loop_title (ira_loop_tree_node_t loop_tree_node)
2654 unsigned int j;
2655 bitmap_iterator bi;
2656 ira_loop_tree_node_t subloop_node, dest_loop_node;
2657 edge e;
2658 edge_iterator ei;
2660 if (loop_tree_node->parent == NULL)
2661 fprintf (ira_dump_file,
2662 "\n Loop 0 (parent -1, header bb%d, depth 0)\n bbs:",
2663 NUM_FIXED_BLOCKS);
2664 else
2666 ira_assert (current_loops != NULL && loop_tree_node->loop != NULL);
2667 fprintf (ira_dump_file,
2668 "\n Loop %d (parent %d, header bb%d, depth %d)\n bbs:",
2669 loop_tree_node->loop_num, loop_tree_node->parent->loop_num,
2670 loop_tree_node->loop->header->index,
2671 loop_depth (loop_tree_node->loop));
2673 for (subloop_node = loop_tree_node->children;
2674 subloop_node != NULL;
2675 subloop_node = subloop_node->next)
2676 if (subloop_node->bb != NULL)
2678 fprintf (ira_dump_file, " %d", subloop_node->bb->index);
2679 FOR_EACH_EDGE (e, ei, subloop_node->bb->succs)
2680 if (e->dest != EXIT_BLOCK_PTR
2681 && ((dest_loop_node = IRA_BB_NODE (e->dest)->parent)
2682 != loop_tree_node))
2683 fprintf (ira_dump_file, "(->%d:l%d)",
2684 e->dest->index, dest_loop_node->loop_num);
2686 fprintf (ira_dump_file, "\n all:");
2687 EXECUTE_IF_SET_IN_BITMAP (loop_tree_node->all_allocnos, 0, j, bi)
2688 fprintf (ira_dump_file, " %dr%d", j, ALLOCNO_REGNO (ira_allocnos[j]));
2689 fprintf (ira_dump_file, "\n modified regnos:");
2690 EXECUTE_IF_SET_IN_BITMAP (loop_tree_node->modified_regnos, 0, j, bi)
2691 fprintf (ira_dump_file, " %d", j);
2692 fprintf (ira_dump_file, "\n border:");
2693 EXECUTE_IF_SET_IN_BITMAP (loop_tree_node->border_allocnos, 0, j, bi)
2694 fprintf (ira_dump_file, " %dr%d", j, ALLOCNO_REGNO (ira_allocnos[j]));
2695 fprintf (ira_dump_file, "\n Pressure:");
2696 for (j = 0; (int) j < ira_pressure_classes_num; j++)
2698 enum reg_class pclass;
2700 pclass = ira_pressure_classes[j];
2701 if (loop_tree_node->reg_pressure[pclass] == 0)
2702 continue;
2703 fprintf (ira_dump_file, " %s=%d", reg_class_names[pclass],
2704 loop_tree_node->reg_pressure[pclass]);
2706 fprintf (ira_dump_file, "\n");
2709 /* Color the allocnos inside loop (in the extreme case it can be all
2710 of the function) given the corresponding LOOP_TREE_NODE. The
2711 function is called for each loop during top-down traverse of the
2712 loop tree. */
2713 static void
2714 color_pass (ira_loop_tree_node_t loop_tree_node)
2716 int regno, hard_regno, index = -1, n;
2717 int cost, exit_freq, enter_freq;
2718 unsigned int j;
2719 bitmap_iterator bi;
2720 enum machine_mode mode;
2721 enum reg_class rclass, aclass, pclass;
2722 ira_allocno_t a, subloop_allocno;
2723 ira_loop_tree_node_t subloop_node;
2725 ira_assert (loop_tree_node->bb == NULL);
2726 if (internal_flag_ira_verbose > 1 && ira_dump_file != NULL)
2727 print_loop_title (loop_tree_node);
2729 bitmap_copy (coloring_allocno_bitmap, loop_tree_node->all_allocnos);
2730 bitmap_copy (consideration_allocno_bitmap, coloring_allocno_bitmap);
2731 n = 0;
2732 EXECUTE_IF_SET_IN_BITMAP (consideration_allocno_bitmap, 0, j, bi)
2734 a = ira_allocnos[j];
2735 n++;
2736 if (! ALLOCNO_ASSIGNED_P (a))
2737 continue;
2738 bitmap_clear_bit (coloring_allocno_bitmap, ALLOCNO_NUM (a));
2740 allocno_color_data
2741 = (allocno_color_data_t) ira_allocate (sizeof (struct allocno_color_data)
2742 * n);
2743 memset (allocno_color_data, 0, sizeof (struct allocno_color_data) * n);
2744 curr_allocno_process = 0;
2745 n = 0;
2746 EXECUTE_IF_SET_IN_BITMAP (consideration_allocno_bitmap, 0, j, bi)
2748 a = ira_allocnos[j];
2749 ALLOCNO_ADD_DATA (a) = allocno_color_data + n;
2750 n++;
2752 /* Color all mentioned allocnos including transparent ones. */
2753 color_allocnos ();
2754 /* Process caps. They are processed just once. */
2755 if (flag_ira_region == IRA_REGION_MIXED
2756 || flag_ira_region == IRA_REGION_ALL)
2757 EXECUTE_IF_SET_IN_BITMAP (loop_tree_node->all_allocnos, 0, j, bi)
2759 a = ira_allocnos[j];
2760 if (ALLOCNO_CAP_MEMBER (a) == NULL)
2761 continue;
2762 /* Remove from processing in the next loop. */
2763 bitmap_clear_bit (consideration_allocno_bitmap, j);
2764 rclass = ALLOCNO_CLASS (a);
2765 pclass = ira_pressure_class_translate[rclass];
2766 if (flag_ira_region == IRA_REGION_MIXED
2767 && (loop_tree_node->reg_pressure[pclass]
2768 <= ira_class_hard_regs_num[pclass]))
2770 mode = ALLOCNO_MODE (a);
2771 hard_regno = ALLOCNO_HARD_REGNO (a);
2772 if (hard_regno >= 0)
2774 index = ira_class_hard_reg_index[rclass][hard_regno];
2775 ira_assert (index >= 0);
2777 regno = ALLOCNO_REGNO (a);
2778 subloop_allocno = ALLOCNO_CAP_MEMBER (a);
2779 subloop_node = ALLOCNO_LOOP_TREE_NODE (subloop_allocno);
2780 ira_assert (!ALLOCNO_ASSIGNED_P (subloop_allocno));
2781 ALLOCNO_HARD_REGNO (subloop_allocno) = hard_regno;
2782 ALLOCNO_ASSIGNED_P (subloop_allocno) = true;
2783 if (hard_regno >= 0)
2784 update_copy_costs (subloop_allocno, true);
2785 /* We don't need updated costs anymore: */
2786 ira_free_allocno_updated_costs (subloop_allocno);
2789 /* Update costs of the corresponding allocnos (not caps) in the
2790 subloops. */
2791 for (subloop_node = loop_tree_node->subloops;
2792 subloop_node != NULL;
2793 subloop_node = subloop_node->subloop_next)
2795 ira_assert (subloop_node->bb == NULL);
2796 EXECUTE_IF_SET_IN_BITMAP (consideration_allocno_bitmap, 0, j, bi)
2798 a = ira_allocnos[j];
2799 ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
2800 mode = ALLOCNO_MODE (a);
2801 rclass = ALLOCNO_CLASS (a);
2802 pclass = ira_pressure_class_translate[rclass];
2803 hard_regno = ALLOCNO_HARD_REGNO (a);
2804 /* Use hard register class here. ??? */
2805 if (hard_regno >= 0)
2807 index = ira_class_hard_reg_index[rclass][hard_regno];
2808 ira_assert (index >= 0);
2810 regno = ALLOCNO_REGNO (a);
2811 /* ??? conflict costs */
2812 subloop_allocno = subloop_node->regno_allocno_map[regno];
2813 if (subloop_allocno == NULL
2814 || ALLOCNO_CAP (subloop_allocno) != NULL)
2815 continue;
2816 ira_assert (ALLOCNO_CLASS (subloop_allocno) == rclass);
2817 ira_assert (bitmap_bit_p (subloop_node->all_allocnos,
2818 ALLOCNO_NUM (subloop_allocno)));
2819 if ((flag_ira_region == IRA_REGION_MIXED)
2820 && (loop_tree_node->reg_pressure[pclass]
2821 <= ira_class_hard_regs_num[pclass]))
2823 if (! ALLOCNO_ASSIGNED_P (subloop_allocno))
2825 ALLOCNO_HARD_REGNO (subloop_allocno) = hard_regno;
2826 ALLOCNO_ASSIGNED_P (subloop_allocno) = true;
2827 if (hard_regno >= 0)
2828 update_copy_costs (subloop_allocno, true);
2829 /* We don't need updated costs anymore: */
2830 ira_free_allocno_updated_costs (subloop_allocno);
2832 continue;
2834 exit_freq = ira_loop_edge_freq (subloop_node, regno, true);
2835 enter_freq = ira_loop_edge_freq (subloop_node, regno, false);
2836 ira_assert (regno < ira_reg_equiv_len);
2837 if (ira_reg_equiv_invariant_p[regno]
2838 || ira_reg_equiv_const[regno] != NULL_RTX)
2840 if (! ALLOCNO_ASSIGNED_P (subloop_allocno))
2842 ALLOCNO_HARD_REGNO (subloop_allocno) = hard_regno;
2843 ALLOCNO_ASSIGNED_P (subloop_allocno) = true;
2844 if (hard_regno >= 0)
2845 update_copy_costs (subloop_allocno, true);
2846 /* We don't need updated costs anymore: */
2847 ira_free_allocno_updated_costs (subloop_allocno);
2850 else if (hard_regno < 0)
2852 ALLOCNO_UPDATED_MEMORY_COST (subloop_allocno)
2853 -= ((ira_memory_move_cost[mode][rclass][1] * enter_freq)
2854 + (ira_memory_move_cost[mode][rclass][0] * exit_freq));
2856 else
2858 aclass = ALLOCNO_CLASS (subloop_allocno);
2859 ira_init_register_move_cost_if_necessary (mode);
2860 cost = (ira_register_move_cost[mode][rclass][rclass]
2861 * (exit_freq + enter_freq));
2862 ira_allocate_and_set_or_copy_costs
2863 (&ALLOCNO_UPDATED_HARD_REG_COSTS (subloop_allocno), aclass,
2864 ALLOCNO_UPDATED_CLASS_COST (subloop_allocno),
2865 ALLOCNO_HARD_REG_COSTS (subloop_allocno));
2866 ira_allocate_and_set_or_copy_costs
2867 (&ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (subloop_allocno),
2868 aclass, 0, ALLOCNO_CONFLICT_HARD_REG_COSTS (subloop_allocno));
2869 ALLOCNO_UPDATED_HARD_REG_COSTS (subloop_allocno)[index] -= cost;
2870 ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (subloop_allocno)[index]
2871 -= cost;
2872 if (ALLOCNO_UPDATED_CLASS_COST (subloop_allocno)
2873 > ALLOCNO_UPDATED_HARD_REG_COSTS (subloop_allocno)[index])
2874 ALLOCNO_UPDATED_CLASS_COST (subloop_allocno)
2875 = ALLOCNO_UPDATED_HARD_REG_COSTS (subloop_allocno)[index];
2876 ALLOCNO_UPDATED_MEMORY_COST (subloop_allocno)
2877 += (ira_memory_move_cost[mode][rclass][0] * enter_freq
2878 + ira_memory_move_cost[mode][rclass][1] * exit_freq);
2882 ira_free (allocno_color_data);
2883 EXECUTE_IF_SET_IN_BITMAP (coloring_allocno_bitmap, 0, j, bi)
2885 a = ira_allocnos[j];
2886 ALLOCNO_ADD_DATA (a) = NULL;
2890 /* Initialize the common data for coloring and calls functions to do
2891 Chaitin-Briggs and regional coloring. */
2892 static void
2893 do_coloring (void)
2895 coloring_allocno_bitmap = ira_allocate_bitmap ();
2896 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
2897 fprintf (ira_dump_file, "\n**** Allocnos coloring:\n\n");
2899 ira_traverse_loop_tree (false, ira_loop_tree_root, color_pass, NULL);
2901 if (internal_flag_ira_verbose > 1 && ira_dump_file != NULL)
2902 ira_print_disposition (ira_dump_file);
2904 ira_free_bitmap (coloring_allocno_bitmap);
2909 /* Move spill/restore code, which are to be generated in ira-emit.c,
2910 to less frequent points (if it is profitable) by reassigning some
2911 allocnos (in loop with subloops containing in another loop) to
2912 memory which results in longer live-range where the corresponding
2913 pseudo-registers will be in memory. */
2914 static void
2915 move_spill_restore (void)
2917 int cost, regno, hard_regno, hard_regno2, index;
2918 bool changed_p;
2919 int enter_freq, exit_freq;
2920 enum machine_mode mode;
2921 enum reg_class rclass;
2922 ira_allocno_t a, parent_allocno, subloop_allocno;
2923 ira_loop_tree_node_t parent, loop_node, subloop_node;
2924 ira_allocno_iterator ai;
2926 for (;;)
2928 changed_p = false;
2929 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
2930 fprintf (ira_dump_file, "New iteration of spill/restore move\n");
2931 FOR_EACH_ALLOCNO (a, ai)
2933 regno = ALLOCNO_REGNO (a);
2934 loop_node = ALLOCNO_LOOP_TREE_NODE (a);
2935 if (ALLOCNO_CAP_MEMBER (a) != NULL
2936 || ALLOCNO_CAP (a) != NULL
2937 || (hard_regno = ALLOCNO_HARD_REGNO (a)) < 0
2938 || loop_node->children == NULL
2939 /* don't do the optimization because it can create
2940 copies and the reload pass can spill the allocno set
2941 by copy although the allocno will not get memory
2942 slot. */
2943 || (regno < ira_reg_equiv_len
2944 && (ira_reg_equiv_invariant_p[regno]
2945 || ira_reg_equiv_const[regno] != NULL_RTX))
2946 || !bitmap_bit_p (loop_node->border_allocnos, ALLOCNO_NUM (a)))
2947 continue;
2948 mode = ALLOCNO_MODE (a);
2949 rclass = ALLOCNO_CLASS (a);
2950 index = ira_class_hard_reg_index[rclass][hard_regno];
2951 ira_assert (index >= 0);
2952 cost = (ALLOCNO_MEMORY_COST (a)
2953 - (ALLOCNO_HARD_REG_COSTS (a) == NULL
2954 ? ALLOCNO_CLASS_COST (a)
2955 : ALLOCNO_HARD_REG_COSTS (a)[index]));
2956 ira_init_register_move_cost_if_necessary (mode);
2957 for (subloop_node = loop_node->subloops;
2958 subloop_node != NULL;
2959 subloop_node = subloop_node->subloop_next)
2961 ira_assert (subloop_node->bb == NULL);
2962 subloop_allocno = subloop_node->regno_allocno_map[regno];
2963 if (subloop_allocno == NULL)
2964 continue;
2965 ira_assert (rclass == ALLOCNO_CLASS (subloop_allocno));
2966 /* We have accumulated cost. To get the real cost of
2967 allocno usage in the loop we should subtract costs of
2968 the subloop allocnos. */
2969 cost -= (ALLOCNO_MEMORY_COST (subloop_allocno)
2970 - (ALLOCNO_HARD_REG_COSTS (subloop_allocno) == NULL
2971 ? ALLOCNO_CLASS_COST (subloop_allocno)
2972 : ALLOCNO_HARD_REG_COSTS (subloop_allocno)[index]));
2973 exit_freq = ira_loop_edge_freq (subloop_node, regno, true);
2974 enter_freq = ira_loop_edge_freq (subloop_node, regno, false);
2975 if ((hard_regno2 = ALLOCNO_HARD_REGNO (subloop_allocno)) < 0)
2976 cost -= (ira_memory_move_cost[mode][rclass][0] * exit_freq
2977 + ira_memory_move_cost[mode][rclass][1] * enter_freq);
2978 else
2980 cost
2981 += (ira_memory_move_cost[mode][rclass][0] * exit_freq
2982 + ira_memory_move_cost[mode][rclass][1] * enter_freq);
2983 if (hard_regno2 != hard_regno)
2984 cost -= (ira_register_move_cost[mode][rclass][rclass]
2985 * (exit_freq + enter_freq));
2988 if ((parent = loop_node->parent) != NULL
2989 && (parent_allocno = parent->regno_allocno_map[regno]) != NULL)
2991 ira_assert (rclass == ALLOCNO_CLASS (parent_allocno));
2992 exit_freq = ira_loop_edge_freq (loop_node, regno, true);
2993 enter_freq = ira_loop_edge_freq (loop_node, regno, false);
2994 if ((hard_regno2 = ALLOCNO_HARD_REGNO (parent_allocno)) < 0)
2995 cost -= (ira_memory_move_cost[mode][rclass][0] * exit_freq
2996 + ira_memory_move_cost[mode][rclass][1] * enter_freq);
2997 else
2999 cost
3000 += (ira_memory_move_cost[mode][rclass][1] * exit_freq
3001 + ira_memory_move_cost[mode][rclass][0] * enter_freq);
3002 if (hard_regno2 != hard_regno)
3003 cost -= (ira_register_move_cost[mode][rclass][rclass]
3004 * (exit_freq + enter_freq));
3007 if (cost < 0)
3009 ALLOCNO_HARD_REGNO (a) = -1;
3010 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
3012 fprintf
3013 (ira_dump_file,
3014 " Moving spill/restore for a%dr%d up from loop %d",
3015 ALLOCNO_NUM (a), regno, loop_node->loop_num);
3016 fprintf (ira_dump_file, " - profit %d\n", -cost);
3018 changed_p = true;
3021 if (! changed_p)
3022 break;
3028 /* Update current hard reg costs and current conflict hard reg costs
3029 for allocno A. It is done by processing its copies containing
3030 other allocnos already assigned. */
3031 static void
3032 update_curr_costs (ira_allocno_t a)
3034 int i, hard_regno, cost;
3035 enum machine_mode mode;
3036 enum reg_class aclass, rclass;
3037 ira_allocno_t another_a;
3038 ira_copy_t cp, next_cp;
3040 ira_free_allocno_updated_costs (a);
3041 ira_assert (! ALLOCNO_ASSIGNED_P (a));
3042 aclass = ALLOCNO_CLASS (a);
3043 if (aclass == NO_REGS)
3044 return;
3045 mode = ALLOCNO_MODE (a);
3046 ira_init_register_move_cost_if_necessary (mode);
3047 for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
3049 if (cp->first == a)
3051 next_cp = cp->next_first_allocno_copy;
3052 another_a = cp->second;
3054 else if (cp->second == a)
3056 next_cp = cp->next_second_allocno_copy;
3057 another_a = cp->first;
3059 else
3060 gcc_unreachable ();
3061 if (! ira_reg_classes_intersect_p[aclass][ALLOCNO_CLASS (another_a)]
3062 || ! ALLOCNO_ASSIGNED_P (another_a)
3063 || (hard_regno = ALLOCNO_HARD_REGNO (another_a)) < 0)
3064 continue;
3065 rclass = REGNO_REG_CLASS (hard_regno);
3066 i = ira_class_hard_reg_index[aclass][hard_regno];
3067 if (i < 0)
3068 continue;
3069 cost = (cp->first == a
3070 ? ira_register_move_cost[mode][rclass][aclass]
3071 : ira_register_move_cost[mode][aclass][rclass]);
3072 ira_allocate_and_set_or_copy_costs
3073 (&ALLOCNO_UPDATED_HARD_REG_COSTS (a), aclass, ALLOCNO_CLASS_COST (a),
3074 ALLOCNO_HARD_REG_COSTS (a));
3075 ira_allocate_and_set_or_copy_costs
3076 (&ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a),
3077 aclass, 0, ALLOCNO_CONFLICT_HARD_REG_COSTS (a));
3078 ALLOCNO_UPDATED_HARD_REG_COSTS (a)[i] -= cp->freq * cost;
3079 ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a)[i] -= cp->freq * cost;
3083 /* Try to assign hard registers to the unassigned allocnos and
3084 allocnos conflicting with them or conflicting with allocnos whose
3085 regno >= START_REGNO. The function is called after ira_flattening,
3086 so more allocnos (including ones created in ira-emit.c) will have a
3087 chance to get a hard register. We use simple assignment algorithm
3088 based on priorities. */
3089 void
3090 ira_reassign_conflict_allocnos (int start_regno)
3092 int i, allocnos_to_color_num;
3093 ira_allocno_t a;
3094 enum reg_class aclass;
3095 bitmap allocnos_to_color;
3096 ira_allocno_iterator ai;
3098 allocnos_to_color = ira_allocate_bitmap ();
3099 allocnos_to_color_num = 0;
3100 FOR_EACH_ALLOCNO (a, ai)
3102 int n = ALLOCNO_NUM_OBJECTS (a);
3104 if (! ALLOCNO_ASSIGNED_P (a)
3105 && ! bitmap_bit_p (allocnos_to_color, ALLOCNO_NUM (a)))
3107 if (ALLOCNO_CLASS (a) != NO_REGS)
3108 sorted_allocnos[allocnos_to_color_num++] = a;
3109 else
3111 ALLOCNO_ASSIGNED_P (a) = true;
3112 ALLOCNO_HARD_REGNO (a) = -1;
3113 ira_assert (ALLOCNO_UPDATED_HARD_REG_COSTS (a) == NULL);
3114 ira_assert (ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a) == NULL);
3116 bitmap_set_bit (allocnos_to_color, ALLOCNO_NUM (a));
3118 if (ALLOCNO_REGNO (a) < start_regno
3119 || (aclass = ALLOCNO_CLASS (a)) == NO_REGS)
3120 continue;
3121 for (i = 0; i < n; i++)
3123 ira_object_t obj = ALLOCNO_OBJECT (a, i);
3124 ira_object_t conflict_obj;
3125 ira_object_conflict_iterator oci;
3127 FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
3129 ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
3131 ira_assert (ira_reg_classes_intersect_p
3132 [aclass][ALLOCNO_CLASS (conflict_a)]);
3133 if (!bitmap_set_bit (allocnos_to_color, ALLOCNO_NUM (conflict_a)))
3134 continue;
3135 sorted_allocnos[allocnos_to_color_num++] = conflict_a;
3139 ira_free_bitmap (allocnos_to_color);
3140 if (allocnos_to_color_num > 1)
3142 setup_allocno_priorities (sorted_allocnos, allocnos_to_color_num);
3143 qsort (sorted_allocnos, allocnos_to_color_num, sizeof (ira_allocno_t),
3144 allocno_priority_compare_func);
3146 for (i = 0; i < allocnos_to_color_num; i++)
3148 a = sorted_allocnos[i];
3149 ALLOCNO_ASSIGNED_P (a) = false;
3150 update_curr_costs (a);
3152 for (i = 0; i < allocnos_to_color_num; i++)
3154 a = sorted_allocnos[i];
3155 if (assign_hard_reg (a, true))
3157 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
3158 fprintf
3159 (ira_dump_file,
3160 " Secondary allocation: assign hard reg %d to reg %d\n",
3161 ALLOCNO_HARD_REGNO (a), ALLOCNO_REGNO (a));
3168 /* This page contains functions used to find conflicts using allocno
3169 live ranges. */
3171 /* Return TRUE if live ranges of allocnos A1 and A2 intersect. It is
3172 used to find a conflict for new allocnos or allocnos with the
3173 different allocno classes. */
3174 static bool
3175 allocnos_conflict_by_live_ranges_p (ira_allocno_t a1, ira_allocno_t a2)
3177 rtx reg1, reg2;
3178 int i, j;
3179 int n1 = ALLOCNO_NUM_OBJECTS (a1);
3180 int n2 = ALLOCNO_NUM_OBJECTS (a2);
3182 if (a1 == a2)
3183 return false;
3184 reg1 = regno_reg_rtx[ALLOCNO_REGNO (a1)];
3185 reg2 = regno_reg_rtx[ALLOCNO_REGNO (a2)];
3186 if (reg1 != NULL && reg2 != NULL
3187 && ORIGINAL_REGNO (reg1) == ORIGINAL_REGNO (reg2))
3188 return false;
3190 for (i = 0; i < n1; i++)
3192 ira_object_t c1 = ALLOCNO_OBJECT (a1, i);
3194 for (j = 0; j < n2; j++)
3196 ira_object_t c2 = ALLOCNO_OBJECT (a2, j);
3198 if (ira_live_ranges_intersect_p (OBJECT_LIVE_RANGES (c1),
3199 OBJECT_LIVE_RANGES (c2)))
3200 return true;
3203 return false;
3206 #ifdef ENABLE_IRA_CHECKING
3208 /* Return TRUE if live ranges of pseudo-registers REGNO1 and REGNO2
3209 intersect. This should be used when there is only one region.
3210 Currently this is used during reload. */
3211 static bool
3212 conflict_by_live_ranges_p (int regno1, int regno2)
3214 ira_allocno_t a1, a2;
3216 ira_assert (regno1 >= FIRST_PSEUDO_REGISTER
3217 && regno2 >= FIRST_PSEUDO_REGISTER);
3218 /* Reg info caclulated by dataflow infrastructure can be different
3219 from one calculated by regclass. */
3220 if ((a1 = ira_loop_tree_root->regno_allocno_map[regno1]) == NULL
3221 || (a2 = ira_loop_tree_root->regno_allocno_map[regno2]) == NULL)
3222 return false;
3223 return allocnos_conflict_by_live_ranges_p (a1, a2);
3226 #endif
3230 /* This page contains code to coalesce memory stack slots used by
3231 spilled allocnos. This results in smaller stack frame, better data
3232 locality, and in smaller code for some architectures like
3233 x86/x86_64 where insn size depends on address displacement value.
3234 On the other hand, it can worsen insn scheduling after the RA but
3235 in practice it is less important than smaller stack frames. */
3237 /* TRUE if we coalesced some allocnos. In other words, if we got
3238 loops formed by members first_coalesced_allocno and
3239 next_coalesced_allocno containing more one allocno. */
3240 static bool allocno_coalesced_p;
3242 /* Bitmap used to prevent a repeated allocno processing because of
3243 coalescing. */
3244 static bitmap processed_coalesced_allocno_bitmap;
3246 /* See below. */
3247 typedef struct coalesce_data *coalesce_data_t;
3249 /* To decrease footprint of ira_allocno structure we store all data
3250 needed only for coalescing in the following structure. */
3251 struct coalesce_data
3253 /* Coalesced allocnos form a cyclic list. One allocno given by
3254 FIRST represents all coalesced allocnos. The
3255 list is chained by NEXT. */
3256 ira_allocno_t first;
3257 ira_allocno_t next;
3258 int temp;
3261 /* Container for storing allocno data concerning coalescing. */
3262 static coalesce_data_t allocno_coalesce_data;
3264 /* Macro to access the data concerning coalescing. */
3265 #define ALLOCNO_COALESCE_DATA(a) ((coalesce_data_t) ALLOCNO_ADD_DATA (a))
3267 /* The function is used to sort allocnos according to their execution
3268 frequencies. */
3269 static int
3270 copy_freq_compare_func (const void *v1p, const void *v2p)
3272 ira_copy_t cp1 = *(const ira_copy_t *) v1p, cp2 = *(const ira_copy_t *) v2p;
3273 int pri1, pri2;
3275 pri1 = cp1->freq;
3276 pri2 = cp2->freq;
3277 if (pri2 - pri1)
3278 return pri2 - pri1;
3280 /* If freqencies are equal, sort by copies, so that the results of
3281 qsort leave nothing to chance. */
3282 return cp1->num - cp2->num;
3285 /* Merge two sets of coalesced allocnos given correspondingly by
3286 allocnos A1 and A2 (more accurately merging A2 set into A1
3287 set). */
3288 static void
3289 merge_allocnos (ira_allocno_t a1, ira_allocno_t a2)
3291 ira_allocno_t a, first, last, next;
3293 first = ALLOCNO_COALESCE_DATA (a1)->first;
3294 a = ALLOCNO_COALESCE_DATA (a2)->first;
3295 if (first == a)
3296 return;
3297 for (last = a2, a = ALLOCNO_COALESCE_DATA (a2)->next;;
3298 a = ALLOCNO_COALESCE_DATA (a)->next)
3300 ALLOCNO_COALESCE_DATA (a)->first = first;
3301 if (a == a2)
3302 break;
3303 last = a;
3305 next = allocno_coalesce_data[ALLOCNO_NUM (first)].next;
3306 allocno_coalesce_data[ALLOCNO_NUM (first)].next = a2;
3307 allocno_coalesce_data[ALLOCNO_NUM (last)].next = next;
3310 /* Return TRUE if there are conflicting allocnos from two sets of
3311 coalesced allocnos given correspondingly by allocnos A1 and A2. We
3312 use live ranges to find conflicts because conflicts are represented
3313 only for allocnos of the same allocno class and during the reload
3314 pass we coalesce allocnos for sharing stack memory slots. */
3315 static bool
3316 coalesced_allocno_conflict_p (ira_allocno_t a1, ira_allocno_t a2)
3318 ira_allocno_t a, conflict_a;
3320 if (allocno_coalesced_p)
3322 bitmap_clear (processed_coalesced_allocno_bitmap);
3323 for (a = ALLOCNO_COALESCE_DATA (a1)->next;;
3324 a = ALLOCNO_COALESCE_DATA (a)->next)
3326 bitmap_set_bit (processed_coalesced_allocno_bitmap, ALLOCNO_NUM (a));
3327 if (a == a1)
3328 break;
3331 for (a = ALLOCNO_COALESCE_DATA (a2)->next;;
3332 a = ALLOCNO_COALESCE_DATA (a)->next)
3334 for (conflict_a = ALLOCNO_COALESCE_DATA (a1)->next;;
3335 conflict_a = ALLOCNO_COALESCE_DATA (conflict_a)->next)
3337 if (allocnos_conflict_by_live_ranges_p (a, conflict_a))
3338 return true;
3339 if (conflict_a == a1)
3340 break;
3342 if (a == a2)
3343 break;
3345 return false;
3348 /* The major function for aggressive allocno coalescing. We coalesce
3349 only spilled allocnos. If some allocnos have been coalesced, we
3350 set up flag allocno_coalesced_p. */
3351 static void
3352 coalesce_allocnos (void)
3354 ira_allocno_t a;
3355 ira_copy_t cp, next_cp, *sorted_copies;
3356 unsigned int j;
3357 int i, n, cp_num, regno;
3358 bitmap_iterator bi;
3360 sorted_copies = (ira_copy_t *) ira_allocate (ira_copies_num
3361 * sizeof (ira_copy_t));
3362 cp_num = 0;
3363 /* Collect copies. */
3364 EXECUTE_IF_SET_IN_BITMAP (coloring_allocno_bitmap, 0, j, bi)
3366 a = ira_allocnos[j];
3367 regno = ALLOCNO_REGNO (a);
3368 if (! ALLOCNO_ASSIGNED_P (a) || ALLOCNO_HARD_REGNO (a) >= 0
3369 || (regno < ira_reg_equiv_len
3370 && (ira_reg_equiv_const[regno] != NULL_RTX
3371 || ira_reg_equiv_invariant_p[regno])))
3372 continue;
3373 for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
3375 if (cp->first == a)
3377 next_cp = cp->next_first_allocno_copy;
3378 regno = ALLOCNO_REGNO (cp->second);
3379 /* For priority coloring we coalesce allocnos only with
3380 the same allocno class not with intersected allocno
3381 classes as it were possible. It is done for
3382 simplicity. */
3383 if ((cp->insn != NULL || cp->constraint_p)
3384 && ALLOCNO_ASSIGNED_P (cp->second)
3385 && ALLOCNO_HARD_REGNO (cp->second) < 0
3386 && (regno >= ira_reg_equiv_len
3387 || (! ira_reg_equiv_invariant_p[regno]
3388 && ira_reg_equiv_const[regno] == NULL_RTX)))
3389 sorted_copies[cp_num++] = cp;
3391 else if (cp->second == a)
3392 next_cp = cp->next_second_allocno_copy;
3393 else
3394 gcc_unreachable ();
3397 qsort (sorted_copies, cp_num, sizeof (ira_copy_t), copy_freq_compare_func);
3398 /* Coalesced copies, most frequently executed first. */
3399 for (; cp_num != 0;)
3401 for (i = 0; i < cp_num; i++)
3403 cp = sorted_copies[i];
3404 if (! coalesced_allocno_conflict_p (cp->first, cp->second))
3406 allocno_coalesced_p = true;
3407 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
3408 fprintf
3409 (ira_dump_file,
3410 " Coalescing copy %d:a%dr%d-a%dr%d (freq=%d)\n",
3411 cp->num, ALLOCNO_NUM (cp->first), ALLOCNO_REGNO (cp->first),
3412 ALLOCNO_NUM (cp->second), ALLOCNO_REGNO (cp->second),
3413 cp->freq);
3414 merge_allocnos (cp->first, cp->second);
3415 i++;
3416 break;
3419 /* Collect the rest of copies. */
3420 for (n = 0; i < cp_num; i++)
3422 cp = sorted_copies[i];
3423 if (allocno_coalesce_data[ALLOCNO_NUM (cp->first)].first
3424 != allocno_coalesce_data[ALLOCNO_NUM (cp->second)].first)
3425 sorted_copies[n++] = cp;
3427 cp_num = n;
3429 ira_free (sorted_copies);
3432 /* Usage cost and order number of coalesced allocno set to which
3433 given pseudo register belongs to. */
3434 static int *regno_coalesced_allocno_cost;
3435 static int *regno_coalesced_allocno_num;
3437 /* Sort pseudos according frequencies of coalesced allocno sets they
3438 belong to (putting most frequently ones first), and according to
3439 coalesced allocno set order numbers. */
3440 static int
3441 coalesced_pseudo_reg_freq_compare (const void *v1p, const void *v2p)
3443 const int regno1 = *(const int *) v1p;
3444 const int regno2 = *(const int *) v2p;
3445 int diff;
3447 if ((diff = (regno_coalesced_allocno_cost[regno2]
3448 - regno_coalesced_allocno_cost[regno1])) != 0)
3449 return diff;
3450 if ((diff = (regno_coalesced_allocno_num[regno1]
3451 - regno_coalesced_allocno_num[regno2])) != 0)
3452 return diff;
3453 return regno1 - regno2;
3456 /* Widest width in which each pseudo reg is referred to (via subreg).
3457 It is used for sorting pseudo registers. */
3458 static unsigned int *regno_max_ref_width;
3460 /* Redefine STACK_GROWS_DOWNWARD in terms of 0 or 1. */
3461 #ifdef STACK_GROWS_DOWNWARD
3462 # undef STACK_GROWS_DOWNWARD
3463 # define STACK_GROWS_DOWNWARD 1
3464 #else
3465 # define STACK_GROWS_DOWNWARD 0
3466 #endif
3468 /* Sort pseudos according their slot numbers (putting ones with
3469 smaller numbers first, or last when the frame pointer is not
3470 needed). */
3471 static int
3472 coalesced_pseudo_reg_slot_compare (const void *v1p, const void *v2p)
3474 const int regno1 = *(const int *) v1p;
3475 const int regno2 = *(const int *) v2p;
3476 ira_allocno_t a1 = ira_regno_allocno_map[regno1];
3477 ira_allocno_t a2 = ira_regno_allocno_map[regno2];
3478 int diff, slot_num1, slot_num2;
3479 int total_size1, total_size2;
3481 if (a1 == NULL || ALLOCNO_HARD_REGNO (a1) >= 0)
3483 if (a2 == NULL || ALLOCNO_HARD_REGNO (a2) >= 0)
3484 return regno1 - regno2;
3485 return 1;
3487 else if (a2 == NULL || ALLOCNO_HARD_REGNO (a2) >= 0)
3488 return -1;
3489 slot_num1 = -ALLOCNO_HARD_REGNO (a1);
3490 slot_num2 = -ALLOCNO_HARD_REGNO (a2);
3491 if ((diff = slot_num1 - slot_num2) != 0)
3492 return (frame_pointer_needed
3493 || !FRAME_GROWS_DOWNWARD == STACK_GROWS_DOWNWARD ? diff : -diff);
3494 total_size1 = MAX (PSEUDO_REGNO_BYTES (regno1),
3495 regno_max_ref_width[regno1]);
3496 total_size2 = MAX (PSEUDO_REGNO_BYTES (regno2),
3497 regno_max_ref_width[regno2]);
3498 if ((diff = total_size2 - total_size1) != 0)
3499 return diff;
3500 return regno1 - regno2;
3503 /* Setup REGNO_COALESCED_ALLOCNO_COST and REGNO_COALESCED_ALLOCNO_NUM
3504 for coalesced allocno sets containing allocnos with their regnos
3505 given in array PSEUDO_REGNOS of length N. */
3506 static void
3507 setup_coalesced_allocno_costs_and_nums (int *pseudo_regnos, int n)
3509 int i, num, regno, cost;
3510 ira_allocno_t allocno, a;
3512 for (num = i = 0; i < n; i++)
3514 regno = pseudo_regnos[i];
3515 allocno = ira_regno_allocno_map[regno];
3516 if (allocno == NULL)
3518 regno_coalesced_allocno_cost[regno] = 0;
3519 regno_coalesced_allocno_num[regno] = ++num;
3520 continue;
3522 if (ALLOCNO_COALESCE_DATA (allocno)->first != allocno)
3523 continue;
3524 num++;
3525 for (cost = 0, a = ALLOCNO_COALESCE_DATA (allocno)->next;;
3526 a = ALLOCNO_COALESCE_DATA (a)->next)
3528 cost += ALLOCNO_FREQ (a);
3529 if (a == allocno)
3530 break;
3532 for (a = ALLOCNO_COALESCE_DATA (allocno)->next;;
3533 a = ALLOCNO_COALESCE_DATA (a)->next)
3535 regno_coalesced_allocno_num[ALLOCNO_REGNO (a)] = num;
3536 regno_coalesced_allocno_cost[ALLOCNO_REGNO (a)] = cost;
3537 if (a == allocno)
3538 break;
3543 /* Collect spilled allocnos representing coalesced allocno sets (the
3544 first coalesced allocno). The collected allocnos are returned
3545 through array SPILLED_COALESCED_ALLOCNOS. The function returns the
3546 number of the collected allocnos. The allocnos are given by their
3547 regnos in array PSEUDO_REGNOS of length N. */
3548 static int
3549 collect_spilled_coalesced_allocnos (int *pseudo_regnos, int n,
3550 ira_allocno_t *spilled_coalesced_allocnos)
3552 int i, num, regno;
3553 ira_allocno_t allocno;
3555 for (num = i = 0; i < n; i++)
3557 regno = pseudo_regnos[i];
3558 allocno = ira_regno_allocno_map[regno];
3559 if (allocno == NULL || ALLOCNO_HARD_REGNO (allocno) >= 0
3560 || ALLOCNO_COALESCE_DATA (allocno)->first != allocno)
3561 continue;
3562 spilled_coalesced_allocnos[num++] = allocno;
3564 return num;
3567 /* Array of live ranges of size IRA_ALLOCNOS_NUM. Live range for
3568 given slot contains live ranges of coalesced allocnos assigned to
3569 given slot. */
3570 static live_range_t *slot_coalesced_allocnos_live_ranges;
3572 /* Return TRUE if coalesced allocnos represented by ALLOCNO has live
3573 ranges intersected with live ranges of coalesced allocnos assigned
3574 to slot with number N. */
3575 static bool
3576 slot_coalesced_allocno_live_ranges_intersect_p (ira_allocno_t allocno, int n)
3578 ira_allocno_t a;
3580 for (a = ALLOCNO_COALESCE_DATA (allocno)->next;;
3581 a = ALLOCNO_COALESCE_DATA (a)->next)
3583 int i;
3584 int nr = ALLOCNO_NUM_OBJECTS (a);
3586 for (i = 0; i < nr; i++)
3588 ira_object_t obj = ALLOCNO_OBJECT (a, i);
3590 if (ira_live_ranges_intersect_p
3591 (slot_coalesced_allocnos_live_ranges[n],
3592 OBJECT_LIVE_RANGES (obj)))
3593 return true;
3595 if (a == allocno)
3596 break;
3598 return false;
3601 /* Update live ranges of slot to which coalesced allocnos represented
3602 by ALLOCNO were assigned. */
3603 static void
3604 setup_slot_coalesced_allocno_live_ranges (ira_allocno_t allocno)
3606 int i, n;
3607 ira_allocno_t a;
3608 live_range_t r;
3610 n = ALLOCNO_COALESCE_DATA (allocno)->temp;
3611 for (a = ALLOCNO_COALESCE_DATA (allocno)->next;;
3612 a = ALLOCNO_COALESCE_DATA (a)->next)
3614 int nr = ALLOCNO_NUM_OBJECTS (a);
3615 for (i = 0; i < nr; i++)
3617 ira_object_t obj = ALLOCNO_OBJECT (a, i);
3619 r = ira_copy_live_range_list (OBJECT_LIVE_RANGES (obj));
3620 slot_coalesced_allocnos_live_ranges[n]
3621 = ira_merge_live_ranges
3622 (slot_coalesced_allocnos_live_ranges[n], r);
3624 if (a == allocno)
3625 break;
3629 /* We have coalesced allocnos involving in copies. Coalesce allocnos
3630 further in order to share the same memory stack slot. Allocnos
3631 representing sets of allocnos coalesced before the call are given
3632 in array SPILLED_COALESCED_ALLOCNOS of length NUM. Return TRUE if
3633 some allocnos were coalesced in the function. */
3634 static bool
3635 coalesce_spill_slots (ira_allocno_t *spilled_coalesced_allocnos, int num)
3637 int i, j, n, last_coalesced_allocno_num;
3638 ira_allocno_t allocno, a;
3639 bool merged_p = false;
3640 bitmap set_jump_crosses = regstat_get_setjmp_crosses ();
3642 slot_coalesced_allocnos_live_ranges
3643 = (live_range_t *) ira_allocate (sizeof (live_range_t) * ira_allocnos_num);
3644 memset (slot_coalesced_allocnos_live_ranges, 0,
3645 sizeof (live_range_t) * ira_allocnos_num);
3646 last_coalesced_allocno_num = 0;
3647 /* Coalesce non-conflicting spilled allocnos preferring most
3648 frequently used. */
3649 for (i = 0; i < num; i++)
3651 allocno = spilled_coalesced_allocnos[i];
3652 if (ALLOCNO_COALESCE_DATA (allocno)->first != allocno
3653 || bitmap_bit_p (set_jump_crosses, ALLOCNO_REGNO (allocno))
3654 || (ALLOCNO_REGNO (allocno) < ira_reg_equiv_len
3655 && (ira_reg_equiv_const[ALLOCNO_REGNO (allocno)] != NULL_RTX
3656 || ira_reg_equiv_invariant_p[ALLOCNO_REGNO (allocno)])))
3657 continue;
3658 for (j = 0; j < i; j++)
3660 a = spilled_coalesced_allocnos[j];
3661 n = ALLOCNO_COALESCE_DATA (a)->temp;
3662 if (ALLOCNO_COALESCE_DATA (a)->first == a
3663 && ! bitmap_bit_p (set_jump_crosses, ALLOCNO_REGNO (a))
3664 && (ALLOCNO_REGNO (a) >= ira_reg_equiv_len
3665 || (! ira_reg_equiv_invariant_p[ALLOCNO_REGNO (a)]
3666 && ira_reg_equiv_const[ALLOCNO_REGNO (a)] == NULL_RTX))
3667 && ! slot_coalesced_allocno_live_ranges_intersect_p (allocno, n))
3668 break;
3670 if (j >= i)
3672 /* No coalescing: set up number for coalesced allocnos
3673 represented by ALLOCNO. */
3674 ALLOCNO_COALESCE_DATA (allocno)->temp = last_coalesced_allocno_num++;
3675 setup_slot_coalesced_allocno_live_ranges (allocno);
3677 else
3679 allocno_coalesced_p = true;
3680 merged_p = true;
3681 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
3682 fprintf (ira_dump_file,
3683 " Coalescing spilled allocnos a%dr%d->a%dr%d\n",
3684 ALLOCNO_NUM (allocno), ALLOCNO_REGNO (allocno),
3685 ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
3686 ALLOCNO_COALESCE_DATA (allocno)->temp
3687 = ALLOCNO_COALESCE_DATA (a)->temp;
3688 setup_slot_coalesced_allocno_live_ranges (allocno);
3689 merge_allocnos (a, allocno);
3690 ira_assert (ALLOCNO_COALESCE_DATA (a)->first == a);
3693 for (i = 0; i < ira_allocnos_num; i++)
3694 ira_finish_live_range_list (slot_coalesced_allocnos_live_ranges[i]);
3695 ira_free (slot_coalesced_allocnos_live_ranges);
3696 return merged_p;
3699 /* Sort pseudo-register numbers in array PSEUDO_REGNOS of length N for
3700 subsequent assigning stack slots to them in the reload pass. To do
3701 this we coalesce spilled allocnos first to decrease the number of
3702 memory-memory move insns. This function is called by the
3703 reload. */
3704 void
3705 ira_sort_regnos_for_alter_reg (int *pseudo_regnos, int n,
3706 unsigned int *reg_max_ref_width)
3708 int max_regno = max_reg_num ();
3709 int i, regno, num, slot_num;
3710 ira_allocno_t allocno, a;
3711 ira_allocno_iterator ai;
3712 ira_allocno_t *spilled_coalesced_allocnos;
3714 /* Set up allocnos can be coalesced. */
3715 coloring_allocno_bitmap = ira_allocate_bitmap ();
3716 for (i = 0; i < n; i++)
3718 regno = pseudo_regnos[i];
3719 allocno = ira_regno_allocno_map[regno];
3720 if (allocno != NULL)
3721 bitmap_set_bit (coloring_allocno_bitmap, ALLOCNO_NUM (allocno));
3723 allocno_coalesced_p = false;
3724 processed_coalesced_allocno_bitmap = ira_allocate_bitmap ();
3725 allocno_coalesce_data
3726 = (coalesce_data_t) ira_allocate (sizeof (struct coalesce_data)
3727 * ira_allocnos_num);
3728 /* Initialize coalesce data for allocnos. */
3729 FOR_EACH_ALLOCNO (a, ai)
3731 ALLOCNO_ADD_DATA (a) = allocno_coalesce_data + ALLOCNO_NUM (a);
3732 ALLOCNO_COALESCE_DATA (a)->first = a;
3733 ALLOCNO_COALESCE_DATA (a)->next = a;
3735 coalesce_allocnos ();
3736 ira_free_bitmap (coloring_allocno_bitmap);
3737 regno_coalesced_allocno_cost
3738 = (int *) ira_allocate (max_regno * sizeof (int));
3739 regno_coalesced_allocno_num
3740 = (int *) ira_allocate (max_regno * sizeof (int));
3741 memset (regno_coalesced_allocno_num, 0, max_regno * sizeof (int));
3742 setup_coalesced_allocno_costs_and_nums (pseudo_regnos, n);
3743 /* Sort regnos according frequencies of the corresponding coalesced
3744 allocno sets. */
3745 qsort (pseudo_regnos, n, sizeof (int), coalesced_pseudo_reg_freq_compare);
3746 spilled_coalesced_allocnos
3747 = (ira_allocno_t *) ira_allocate (ira_allocnos_num
3748 * sizeof (ira_allocno_t));
3749 /* Collect allocnos representing the spilled coalesced allocno
3750 sets. */
3751 num = collect_spilled_coalesced_allocnos (pseudo_regnos, n,
3752 spilled_coalesced_allocnos);
3753 if (flag_ira_share_spill_slots
3754 && coalesce_spill_slots (spilled_coalesced_allocnos, num))
3756 setup_coalesced_allocno_costs_and_nums (pseudo_regnos, n);
3757 qsort (pseudo_regnos, n, sizeof (int),
3758 coalesced_pseudo_reg_freq_compare);
3759 num = collect_spilled_coalesced_allocnos (pseudo_regnos, n,
3760 spilled_coalesced_allocnos);
3762 ira_free_bitmap (processed_coalesced_allocno_bitmap);
3763 allocno_coalesced_p = false;
3764 /* Assign stack slot numbers to spilled allocno sets, use smaller
3765 numbers for most frequently used coalesced allocnos. -1 is
3766 reserved for dynamic search of stack slots for pseudos spilled by
3767 the reload. */
3768 slot_num = 1;
3769 for (i = 0; i < num; i++)
3771 allocno = spilled_coalesced_allocnos[i];
3772 if (ALLOCNO_COALESCE_DATA (allocno)->first != allocno
3773 || ALLOCNO_HARD_REGNO (allocno) >= 0
3774 || (ALLOCNO_REGNO (allocno) < ira_reg_equiv_len
3775 && (ira_reg_equiv_const[ALLOCNO_REGNO (allocno)] != NULL_RTX
3776 || ira_reg_equiv_invariant_p[ALLOCNO_REGNO (allocno)])))
3777 continue;
3778 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
3779 fprintf (ira_dump_file, " Slot %d (freq,size):", slot_num);
3780 slot_num++;
3781 for (a = ALLOCNO_COALESCE_DATA (allocno)->next;;
3782 a = ALLOCNO_COALESCE_DATA (a)->next)
3784 ira_assert (ALLOCNO_HARD_REGNO (a) < 0);
3785 ALLOCNO_HARD_REGNO (a) = -slot_num;
3786 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
3787 fprintf (ira_dump_file, " a%dr%d(%d,%d)",
3788 ALLOCNO_NUM (a), ALLOCNO_REGNO (a), ALLOCNO_FREQ (a),
3789 MAX (PSEUDO_REGNO_BYTES (ALLOCNO_REGNO (a)),
3790 reg_max_ref_width[ALLOCNO_REGNO (a)]));
3792 if (a == allocno)
3793 break;
3795 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
3796 fprintf (ira_dump_file, "\n");
3798 ira_spilled_reg_stack_slots_num = slot_num - 1;
3799 ira_free (spilled_coalesced_allocnos);
3800 /* Sort regnos according the slot numbers. */
3801 regno_max_ref_width = reg_max_ref_width;
3802 qsort (pseudo_regnos, n, sizeof (int), coalesced_pseudo_reg_slot_compare);
3803 FOR_EACH_ALLOCNO (a, ai)
3804 ALLOCNO_ADD_DATA (a) = NULL;
3805 ira_free (allocno_coalesce_data);
3806 ira_free (regno_coalesced_allocno_num);
3807 ira_free (regno_coalesced_allocno_cost);
3812 /* This page contains code used by the reload pass to improve the
3813 final code. */
3815 /* The function is called from reload to mark changes in the
3816 allocation of REGNO made by the reload. Remember that reg_renumber
3817 reflects the change result. */
3818 void
3819 ira_mark_allocation_change (int regno)
3821 ira_allocno_t a = ira_regno_allocno_map[regno];
3822 int old_hard_regno, hard_regno, cost;
3823 enum reg_class aclass = ALLOCNO_CLASS (a);
3825 ira_assert (a != NULL);
3826 hard_regno = reg_renumber[regno];
3827 if ((old_hard_regno = ALLOCNO_HARD_REGNO (a)) == hard_regno)
3828 return;
3829 if (old_hard_regno < 0)
3830 cost = -ALLOCNO_MEMORY_COST (a);
3831 else
3833 ira_assert (ira_class_hard_reg_index[aclass][old_hard_regno] >= 0);
3834 cost = -(ALLOCNO_HARD_REG_COSTS (a) == NULL
3835 ? ALLOCNO_CLASS_COST (a)
3836 : ALLOCNO_HARD_REG_COSTS (a)
3837 [ira_class_hard_reg_index[aclass][old_hard_regno]]);
3838 update_copy_costs (a, false);
3840 ira_overall_cost -= cost;
3841 ALLOCNO_HARD_REGNO (a) = hard_regno;
3842 if (hard_regno < 0)
3844 ALLOCNO_HARD_REGNO (a) = -1;
3845 cost += ALLOCNO_MEMORY_COST (a);
3847 else if (ira_class_hard_reg_index[aclass][hard_regno] >= 0)
3849 cost += (ALLOCNO_HARD_REG_COSTS (a) == NULL
3850 ? ALLOCNO_CLASS_COST (a)
3851 : ALLOCNO_HARD_REG_COSTS (a)
3852 [ira_class_hard_reg_index[aclass][hard_regno]]);
3853 update_copy_costs (a, true);
3855 else
3856 /* Reload changed class of the allocno. */
3857 cost = 0;
3858 ira_overall_cost += cost;
3861 /* This function is called when reload deletes memory-memory move. In
3862 this case we marks that the allocation of the corresponding
3863 allocnos should be not changed in future. Otherwise we risk to get
3864 a wrong code. */
3865 void
3866 ira_mark_memory_move_deletion (int dst_regno, int src_regno)
3868 ira_allocno_t dst = ira_regno_allocno_map[dst_regno];
3869 ira_allocno_t src = ira_regno_allocno_map[src_regno];
3871 ira_assert (dst != NULL && src != NULL
3872 && ALLOCNO_HARD_REGNO (dst) < 0
3873 && ALLOCNO_HARD_REGNO (src) < 0);
3874 ALLOCNO_DONT_REASSIGN_P (dst) = true;
3875 ALLOCNO_DONT_REASSIGN_P (src) = true;
3878 /* Try to assign a hard register (except for FORBIDDEN_REGS) to
3879 allocno A and return TRUE in the case of success. */
3880 static bool
3881 allocno_reload_assign (ira_allocno_t a, HARD_REG_SET forbidden_regs)
3883 int hard_regno;
3884 enum reg_class aclass;
3885 int regno = ALLOCNO_REGNO (a);
3886 HARD_REG_SET saved[2];
3887 int i, n;
3889 n = ALLOCNO_NUM_OBJECTS (a);
3890 for (i = 0; i < n; i++)
3892 ira_object_t obj = ALLOCNO_OBJECT (a, i);
3893 COPY_HARD_REG_SET (saved[i], OBJECT_TOTAL_CONFLICT_HARD_REGS (obj));
3894 IOR_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), forbidden_regs);
3895 if (! flag_caller_saves && ALLOCNO_CALLS_CROSSED_NUM (a) != 0)
3896 IOR_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
3897 call_used_reg_set);
3899 ALLOCNO_ASSIGNED_P (a) = false;
3900 aclass = ALLOCNO_CLASS (a);
3901 update_curr_costs (a);
3902 assign_hard_reg (a, true);
3903 hard_regno = ALLOCNO_HARD_REGNO (a);
3904 reg_renumber[regno] = hard_regno;
3905 if (hard_regno < 0)
3906 ALLOCNO_HARD_REGNO (a) = -1;
3907 else
3909 ira_assert (ira_class_hard_reg_index[aclass][hard_regno] >= 0);
3910 ira_overall_cost
3911 -= (ALLOCNO_MEMORY_COST (a)
3912 - (ALLOCNO_HARD_REG_COSTS (a) == NULL
3913 ? ALLOCNO_CLASS_COST (a)
3914 : ALLOCNO_HARD_REG_COSTS (a)[ira_class_hard_reg_index
3915 [aclass][hard_regno]]));
3916 if (ALLOCNO_CALLS_CROSSED_NUM (a) != 0
3917 && ira_hard_reg_set_intersection_p (hard_regno, ALLOCNO_MODE (a),
3918 call_used_reg_set))
3920 ira_assert (flag_caller_saves);
3921 caller_save_needed = 1;
3925 /* If we found a hard register, modify the RTL for the pseudo
3926 register to show the hard register, and mark the pseudo register
3927 live. */
3928 if (reg_renumber[regno] >= 0)
3930 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
3931 fprintf (ira_dump_file, ": reassign to %d\n", reg_renumber[regno]);
3932 SET_REGNO (regno_reg_rtx[regno], reg_renumber[regno]);
3933 mark_home_live (regno);
3935 else if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
3936 fprintf (ira_dump_file, "\n");
3937 for (i = 0; i < n; i++)
3939 ira_object_t obj = ALLOCNO_OBJECT (a, i);
3940 COPY_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), saved[i]);
3942 return reg_renumber[regno] >= 0;
3945 /* Sort pseudos according their usage frequencies (putting most
3946 frequently ones first). */
3947 static int
3948 pseudo_reg_compare (const void *v1p, const void *v2p)
3950 int regno1 = *(const int *) v1p;
3951 int regno2 = *(const int *) v2p;
3952 int diff;
3954 if ((diff = REG_FREQ (regno2) - REG_FREQ (regno1)) != 0)
3955 return diff;
3956 return regno1 - regno2;
3959 /* Try to allocate hard registers to SPILLED_PSEUDO_REGS (there are
3960 NUM of them) or spilled pseudos conflicting with pseudos in
3961 SPILLED_PSEUDO_REGS. Return TRUE and update SPILLED, if the
3962 allocation has been changed. The function doesn't use
3963 BAD_SPILL_REGS and hard registers in PSEUDO_FORBIDDEN_REGS and
3964 PSEUDO_PREVIOUS_REGS for the corresponding pseudos. The function
3965 is called by the reload pass at the end of each reload
3966 iteration. */
3967 bool
3968 ira_reassign_pseudos (int *spilled_pseudo_regs, int num,
3969 HARD_REG_SET bad_spill_regs,
3970 HARD_REG_SET *pseudo_forbidden_regs,
3971 HARD_REG_SET *pseudo_previous_regs,
3972 bitmap spilled)
3974 int i, n, regno;
3975 bool changed_p;
3976 ira_allocno_t a;
3977 HARD_REG_SET forbidden_regs;
3978 bitmap temp = BITMAP_ALLOC (NULL);
3980 /* Add pseudos which conflict with pseudos already in
3981 SPILLED_PSEUDO_REGS to SPILLED_PSEUDO_REGS. This is preferable
3982 to allocating in two steps as some of the conflicts might have
3983 a higher priority than the pseudos passed in SPILLED_PSEUDO_REGS. */
3984 for (i = 0; i < num; i++)
3985 bitmap_set_bit (temp, spilled_pseudo_regs[i]);
3987 for (i = 0, n = num; i < n; i++)
3989 int nr, j;
3990 int regno = spilled_pseudo_regs[i];
3991 bitmap_set_bit (temp, regno);
3993 a = ira_regno_allocno_map[regno];
3994 nr = ALLOCNO_NUM_OBJECTS (a);
3995 for (j = 0; j < nr; j++)
3997 ira_object_t conflict_obj;
3998 ira_object_t obj = ALLOCNO_OBJECT (a, j);
3999 ira_object_conflict_iterator oci;
4001 FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
4003 ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
4004 if (ALLOCNO_HARD_REGNO (conflict_a) < 0
4005 && ! ALLOCNO_DONT_REASSIGN_P (conflict_a)
4006 && bitmap_set_bit (temp, ALLOCNO_REGNO (conflict_a)))
4008 spilled_pseudo_regs[num++] = ALLOCNO_REGNO (conflict_a);
4009 /* ?!? This seems wrong. */
4010 bitmap_set_bit (consideration_allocno_bitmap,
4011 ALLOCNO_NUM (conflict_a));
4017 if (num > 1)
4018 qsort (spilled_pseudo_regs, num, sizeof (int), pseudo_reg_compare);
4019 changed_p = false;
4020 /* Try to assign hard registers to pseudos from
4021 SPILLED_PSEUDO_REGS. */
4022 for (i = 0; i < num; i++)
4024 regno = spilled_pseudo_regs[i];
4025 COPY_HARD_REG_SET (forbidden_regs, bad_spill_regs);
4026 IOR_HARD_REG_SET (forbidden_regs, pseudo_forbidden_regs[regno]);
4027 IOR_HARD_REG_SET (forbidden_regs, pseudo_previous_regs[regno]);
4028 gcc_assert (reg_renumber[regno] < 0);
4029 a = ira_regno_allocno_map[regno];
4030 ira_mark_allocation_change (regno);
4031 ira_assert (reg_renumber[regno] < 0);
4032 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
4033 fprintf (ira_dump_file,
4034 " Try Assign %d(a%d), cost=%d", regno, ALLOCNO_NUM (a),
4035 ALLOCNO_MEMORY_COST (a)
4036 - ALLOCNO_CLASS_COST (a));
4037 allocno_reload_assign (a, forbidden_regs);
4038 if (reg_renumber[regno] >= 0)
4040 CLEAR_REGNO_REG_SET (spilled, regno);
4041 changed_p = true;
4044 BITMAP_FREE (temp);
4045 return changed_p;
4048 /* The function is called by reload and returns already allocated
4049 stack slot (if any) for REGNO with given INHERENT_SIZE and
4050 TOTAL_SIZE. In the case of failure to find a slot which can be
4051 used for REGNO, the function returns NULL. */
4053 ira_reuse_stack_slot (int regno, unsigned int inherent_size,
4054 unsigned int total_size)
4056 unsigned int i;
4057 int slot_num, best_slot_num;
4058 int cost, best_cost;
4059 ira_copy_t cp, next_cp;
4060 ira_allocno_t another_allocno, allocno = ira_regno_allocno_map[regno];
4061 rtx x;
4062 bitmap_iterator bi;
4063 struct ira_spilled_reg_stack_slot *slot = NULL;
4065 ira_assert (inherent_size == PSEUDO_REGNO_BYTES (regno)
4066 && inherent_size <= total_size
4067 && ALLOCNO_HARD_REGNO (allocno) < 0);
4068 if (! flag_ira_share_spill_slots)
4069 return NULL_RTX;
4070 slot_num = -ALLOCNO_HARD_REGNO (allocno) - 2;
4071 if (slot_num != -1)
4073 slot = &ira_spilled_reg_stack_slots[slot_num];
4074 x = slot->mem;
4076 else
4078 best_cost = best_slot_num = -1;
4079 x = NULL_RTX;
4080 /* It means that the pseudo was spilled in the reload pass, try
4081 to reuse a slot. */
4082 for (slot_num = 0;
4083 slot_num < ira_spilled_reg_stack_slots_num;
4084 slot_num++)
4086 slot = &ira_spilled_reg_stack_slots[slot_num];
4087 if (slot->mem == NULL_RTX)
4088 continue;
4089 if (slot->width < total_size
4090 || GET_MODE_SIZE (GET_MODE (slot->mem)) < inherent_size)
4091 continue;
4093 EXECUTE_IF_SET_IN_BITMAP (&slot->spilled_regs,
4094 FIRST_PSEUDO_REGISTER, i, bi)
4096 another_allocno = ira_regno_allocno_map[i];
4097 if (allocnos_conflict_by_live_ranges_p (allocno,
4098 another_allocno))
4099 goto cont;
4101 for (cost = 0, cp = ALLOCNO_COPIES (allocno);
4102 cp != NULL;
4103 cp = next_cp)
4105 if (cp->first == allocno)
4107 next_cp = cp->next_first_allocno_copy;
4108 another_allocno = cp->second;
4110 else if (cp->second == allocno)
4112 next_cp = cp->next_second_allocno_copy;
4113 another_allocno = cp->first;
4115 else
4116 gcc_unreachable ();
4117 if (cp->insn == NULL_RTX)
4118 continue;
4119 if (bitmap_bit_p (&slot->spilled_regs,
4120 ALLOCNO_REGNO (another_allocno)))
4121 cost += cp->freq;
4123 if (cost > best_cost)
4125 best_cost = cost;
4126 best_slot_num = slot_num;
4128 cont:
4131 if (best_cost >= 0)
4133 slot_num = best_slot_num;
4134 slot = &ira_spilled_reg_stack_slots[slot_num];
4135 SET_REGNO_REG_SET (&slot->spilled_regs, regno);
4136 x = slot->mem;
4137 ALLOCNO_HARD_REGNO (allocno) = -slot_num - 2;
4140 if (x != NULL_RTX)
4142 ira_assert (slot->width >= total_size);
4143 #ifdef ENABLE_IRA_CHECKING
4144 EXECUTE_IF_SET_IN_BITMAP (&slot->spilled_regs,
4145 FIRST_PSEUDO_REGISTER, i, bi)
4147 ira_assert (! conflict_by_live_ranges_p (regno, i));
4149 #endif
4150 SET_REGNO_REG_SET (&slot->spilled_regs, regno);
4151 if (internal_flag_ira_verbose > 3 && ira_dump_file)
4153 fprintf (ira_dump_file, " Assigning %d(freq=%d) slot %d of",
4154 regno, REG_FREQ (regno), slot_num);
4155 EXECUTE_IF_SET_IN_BITMAP (&slot->spilled_regs,
4156 FIRST_PSEUDO_REGISTER, i, bi)
4158 if ((unsigned) regno != i)
4159 fprintf (ira_dump_file, " %d", i);
4161 fprintf (ira_dump_file, "\n");
4164 return x;
4167 /* This is called by reload every time a new stack slot X with
4168 TOTAL_SIZE was allocated for REGNO. We store this info for
4169 subsequent ira_reuse_stack_slot calls. */
4170 void
4171 ira_mark_new_stack_slot (rtx x, int regno, unsigned int total_size)
4173 struct ira_spilled_reg_stack_slot *slot;
4174 int slot_num;
4175 ira_allocno_t allocno;
4177 ira_assert (PSEUDO_REGNO_BYTES (regno) <= total_size);
4178 allocno = ira_regno_allocno_map[regno];
4179 slot_num = -ALLOCNO_HARD_REGNO (allocno) - 2;
4180 if (slot_num == -1)
4182 slot_num = ira_spilled_reg_stack_slots_num++;
4183 ALLOCNO_HARD_REGNO (allocno) = -slot_num - 2;
4185 slot = &ira_spilled_reg_stack_slots[slot_num];
4186 INIT_REG_SET (&slot->spilled_regs);
4187 SET_REGNO_REG_SET (&slot->spilled_regs, regno);
4188 slot->mem = x;
4189 slot->width = total_size;
4190 if (internal_flag_ira_verbose > 3 && ira_dump_file)
4191 fprintf (ira_dump_file, " Assigning %d(freq=%d) a new slot %d\n",
4192 regno, REG_FREQ (regno), slot_num);
4196 /* Return spill cost for pseudo-registers whose numbers are in array
4197 REGNOS (with a negative number as an end marker) for reload with
4198 given IN and OUT for INSN. Return also number points (through
4199 EXCESS_PRESSURE_LIVE_LENGTH) where the pseudo-register lives and
4200 the register pressure is high, number of references of the
4201 pseudo-registers (through NREFS), number of callee-clobbered
4202 hard-registers occupied by the pseudo-registers (through
4203 CALL_USED_COUNT), and the first hard regno occupied by the
4204 pseudo-registers (through FIRST_HARD_REGNO). */
4205 static int
4206 calculate_spill_cost (int *regnos, rtx in, rtx out, rtx insn,
4207 int *excess_pressure_live_length,
4208 int *nrefs, int *call_used_count, int *first_hard_regno)
4210 int i, cost, regno, hard_regno, j, count, saved_cost, nregs;
4211 bool in_p, out_p;
4212 int length;
4213 ira_allocno_t a;
4215 *nrefs = 0;
4216 for (length = count = cost = i = 0;; i++)
4218 regno = regnos[i];
4219 if (regno < 0)
4220 break;
4221 *nrefs += REG_N_REFS (regno);
4222 hard_regno = reg_renumber[regno];
4223 ira_assert (hard_regno >= 0);
4224 a = ira_regno_allocno_map[regno];
4225 length += ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a) / ALLOCNO_NUM_OBJECTS (a);
4226 cost += ALLOCNO_MEMORY_COST (a) - ALLOCNO_CLASS_COST (a);
4227 nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (a)];
4228 for (j = 0; j < nregs; j++)
4229 if (! TEST_HARD_REG_BIT (call_used_reg_set, hard_regno + j))
4230 break;
4231 if (j == nregs)
4232 count++;
4233 in_p = in && REG_P (in) && (int) REGNO (in) == hard_regno;
4234 out_p = out && REG_P (out) && (int) REGNO (out) == hard_regno;
4235 if ((in_p || out_p)
4236 && find_regno_note (insn, REG_DEAD, hard_regno) != NULL_RTX)
4238 saved_cost = 0;
4239 if (in_p)
4240 saved_cost += ira_memory_move_cost
4241 [ALLOCNO_MODE (a)][ALLOCNO_CLASS (a)][1];
4242 if (out_p)
4243 saved_cost
4244 += ira_memory_move_cost
4245 [ALLOCNO_MODE (a)][ALLOCNO_CLASS (a)][0];
4246 cost -= REG_FREQ_FROM_BB (BLOCK_FOR_INSN (insn)) * saved_cost;
4249 *excess_pressure_live_length = length;
4250 *call_used_count = count;
4251 hard_regno = -1;
4252 if (regnos[0] >= 0)
4254 hard_regno = reg_renumber[regnos[0]];
4256 *first_hard_regno = hard_regno;
4257 return cost;
4260 /* Return TRUE if spilling pseudo-registers whose numbers are in array
4261 REGNOS is better than spilling pseudo-registers with numbers in
4262 OTHER_REGNOS for reload with given IN and OUT for INSN. The
4263 function used by the reload pass to make better register spilling
4264 decisions. */
4265 bool
4266 ira_better_spill_reload_regno_p (int *regnos, int *other_regnos,
4267 rtx in, rtx out, rtx insn)
4269 int cost, other_cost;
4270 int length, other_length;
4271 int nrefs, other_nrefs;
4272 int call_used_count, other_call_used_count;
4273 int hard_regno, other_hard_regno;
4275 cost = calculate_spill_cost (regnos, in, out, insn,
4276 &length, &nrefs, &call_used_count, &hard_regno);
4277 other_cost = calculate_spill_cost (other_regnos, in, out, insn,
4278 &other_length, &other_nrefs,
4279 &other_call_used_count,
4280 &other_hard_regno);
4281 if (nrefs == 0 && other_nrefs != 0)
4282 return true;
4283 if (nrefs != 0 && other_nrefs == 0)
4284 return false;
4285 if (cost != other_cost)
4286 return cost < other_cost;
4287 if (length != other_length)
4288 return length > other_length;
4289 #ifdef REG_ALLOC_ORDER
4290 if (hard_regno >= 0 && other_hard_regno >= 0)
4291 return (inv_reg_alloc_order[hard_regno]
4292 < inv_reg_alloc_order[other_hard_regno]);
4293 #else
4294 if (call_used_count != other_call_used_count)
4295 return call_used_count > other_call_used_count;
4296 #endif
4297 return false;
4302 /* Allocate and initialize data necessary for assign_hard_reg. */
4303 void
4304 ira_initiate_assign (void)
4306 sorted_allocnos
4307 = (ira_allocno_t *) ira_allocate (sizeof (ira_allocno_t)
4308 * ira_allocnos_num);
4309 consideration_allocno_bitmap = ira_allocate_bitmap ();
4310 initiate_cost_update ();
4311 allocno_priorities = (int *) ira_allocate (sizeof (int) * ira_allocnos_num);
4314 /* Deallocate data used by assign_hard_reg. */
4315 void
4316 ira_finish_assign (void)
4318 ira_free (sorted_allocnos);
4319 ira_free_bitmap (consideration_allocno_bitmap);
4320 finish_cost_update ();
4321 ira_free (allocno_priorities);
4326 /* Entry function doing color-based register allocation. */
4327 static void
4328 color (void)
4330 allocno_stack_vec = VEC_alloc (ira_allocno_t, heap, ira_allocnos_num);
4331 memset (allocated_hardreg_p, 0, sizeof (allocated_hardreg_p));
4332 ira_initiate_assign ();
4333 do_coloring ();
4334 ira_finish_assign ();
4335 VEC_free (ira_allocno_t, heap, allocno_stack_vec);
4336 move_spill_restore ();
4341 /* This page contains a simple register allocator without usage of
4342 allocno conflicts. This is used for fast allocation for -O0. */
4344 /* Do register allocation by not using allocno conflicts. It uses
4345 only allocno live ranges. The algorithm is close to Chow's
4346 priority coloring. */
4347 static void
4348 fast_allocation (void)
4350 int i, j, k, num, class_size, hard_regno;
4351 #ifdef STACK_REGS
4352 bool no_stack_reg_p;
4353 #endif
4354 enum reg_class aclass;
4355 enum machine_mode mode;
4356 ira_allocno_t a;
4357 ira_allocno_iterator ai;
4358 live_range_t r;
4359 HARD_REG_SET conflict_hard_regs, *used_hard_regs;
4361 sorted_allocnos = (ira_allocno_t *) ira_allocate (sizeof (ira_allocno_t)
4362 * ira_allocnos_num);
4363 num = 0;
4364 FOR_EACH_ALLOCNO (a, ai)
4365 sorted_allocnos[num++] = a;
4366 allocno_priorities = (int *) ira_allocate (sizeof (int) * ira_allocnos_num);
4367 setup_allocno_priorities (sorted_allocnos, num);
4368 used_hard_regs = (HARD_REG_SET *) ira_allocate (sizeof (HARD_REG_SET)
4369 * ira_max_point);
4370 for (i = 0; i < ira_max_point; i++)
4371 CLEAR_HARD_REG_SET (used_hard_regs[i]);
4372 qsort (sorted_allocnos, num, sizeof (ira_allocno_t),
4373 allocno_priority_compare_func);
4374 for (i = 0; i < num; i++)
4376 int nr, l;
4378 a = sorted_allocnos[i];
4379 nr = ALLOCNO_NUM_OBJECTS (a);
4380 CLEAR_HARD_REG_SET (conflict_hard_regs);
4381 for (l = 0; l < nr; l++)
4383 ira_object_t obj = ALLOCNO_OBJECT (a, l);
4384 IOR_HARD_REG_SET (conflict_hard_regs,
4385 OBJECT_CONFLICT_HARD_REGS (obj));
4386 for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next)
4387 for (j = r->start; j <= r->finish; j++)
4388 IOR_HARD_REG_SET (conflict_hard_regs, used_hard_regs[j]);
4390 aclass = ALLOCNO_CLASS (a);
4391 ALLOCNO_ASSIGNED_P (a) = true;
4392 ALLOCNO_HARD_REGNO (a) = -1;
4393 if (hard_reg_set_subset_p (reg_class_contents[aclass],
4394 conflict_hard_regs))
4395 continue;
4396 mode = ALLOCNO_MODE (a);
4397 #ifdef STACK_REGS
4398 no_stack_reg_p = ALLOCNO_NO_STACK_REG_P (a);
4399 #endif
4400 class_size = ira_class_hard_regs_num[aclass];
4401 for (j = 0; j < class_size; j++)
4403 hard_regno = ira_class_hard_regs[aclass][j];
4404 #ifdef STACK_REGS
4405 if (no_stack_reg_p && FIRST_STACK_REG <= hard_regno
4406 && hard_regno <= LAST_STACK_REG)
4407 continue;
4408 #endif
4409 if (ira_hard_reg_set_intersection_p (hard_regno, mode, conflict_hard_regs)
4410 || (TEST_HARD_REG_BIT
4411 (ira_prohibited_class_mode_regs[aclass][mode], hard_regno)))
4412 continue;
4413 ALLOCNO_HARD_REGNO (a) = hard_regno;
4414 for (l = 0; l < nr; l++)
4416 ira_object_t obj = ALLOCNO_OBJECT (a, l);
4417 for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next)
4418 for (k = r->start; k <= r->finish; k++)
4419 IOR_HARD_REG_SET (used_hard_regs[k],
4420 ira_reg_mode_hard_regset[hard_regno][mode]);
4422 break;
4425 ira_free (sorted_allocnos);
4426 ira_free (used_hard_regs);
4427 ira_free (allocno_priorities);
4428 if (internal_flag_ira_verbose > 1 && ira_dump_file != NULL)
4429 ira_print_disposition (ira_dump_file);
4434 /* Entry function doing coloring. */
4435 void
4436 ira_color (void)
4438 ira_allocno_t a;
4439 ira_allocno_iterator ai;
4441 /* Setup updated costs. */
4442 FOR_EACH_ALLOCNO (a, ai)
4444 ALLOCNO_UPDATED_MEMORY_COST (a) = ALLOCNO_MEMORY_COST (a);
4445 ALLOCNO_UPDATED_CLASS_COST (a) = ALLOCNO_CLASS_COST (a);
4447 if (ira_conflicts_p)
4448 color ();
4449 else
4450 fast_allocation ();