PR target/30120
[official-gcc.git] / gcc / config / i386 / i386.h
blobe05bf66624d9eccb7449dff365f2b3360846f2e6
1 /* Definitions of target machine for GCC for IA-32.
2 Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
22 /* Algorithm to expand string function with. */
23 enum stringop_alg
25 no_stringop,
26 libcall,
27 rep_prefix_1_byte,
28 rep_prefix_4_byte,
29 rep_prefix_8_byte,
30 loop_1_byte,
31 loop,
32 unrolled_loop
34 #define NAX_STRINGOP_ALGS 4
35 /* Specify what algorithm to use for stringops on known size.
36 When size is unknown, the UNKNOWN_SIZE alg is used. When size is
37 known at compile time or estimated via feedback, the SIZE array
38 is walked in order until MAX is greater then the estimate (or -1
39 means infinity). Corresponding ALG is used then.
40 For example initializer:
41 {{256, loop}, {-1, rep_prefix_4_byte}}
42 will use loop for blocks smaller or equal to 256 bytes, rep prefix will
43 be used otherwise.
45 struct stringop_algs
47 const enum stringop_alg unknown_size;
48 const struct stringop_strategy {
49 const int max;
50 const enum stringop_alg alg;
51 } size [NAX_STRINGOP_ALGS];
54 /* The purpose of this file is to define the characteristics of the i386,
55 independent of assembler syntax or operating system.
57 Three other files build on this one to describe a specific assembler syntax:
58 bsd386.h, att386.h, and sun386.h.
60 The actual tm.h file for a particular system should include
61 this file, and then the file for the appropriate assembler syntax.
63 Many macros that specify assembler syntax are omitted entirely from
64 this file because they really belong in the files for particular
65 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
66 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
67 that start with ASM_ or end in ASM_OP. */
69 /* Define the specific costs for a given cpu */
71 struct processor_costs {
72 const int add; /* cost of an add instruction */
73 const int lea; /* cost of a lea instruction */
74 const int shift_var; /* variable shift costs */
75 const int shift_const; /* constant shift costs */
76 const int mult_init[5]; /* cost of starting a multiply
77 in QImode, HImode, SImode, DImode, TImode*/
78 const int mult_bit; /* cost of multiply per each bit set */
79 const int divide[5]; /* cost of a divide/mod
80 in QImode, HImode, SImode, DImode, TImode*/
81 int movsx; /* The cost of movsx operation. */
82 int movzx; /* The cost of movzx operation. */
83 const int large_insn; /* insns larger than this cost more */
84 const int move_ratio; /* The threshold of number of scalar
85 memory-to-memory move insns. */
86 const int movzbl_load; /* cost of loading using movzbl */
87 const int int_load[3]; /* cost of loading integer registers
88 in QImode, HImode and SImode relative
89 to reg-reg move (2). */
90 const int int_store[3]; /* cost of storing integer register
91 in QImode, HImode and SImode */
92 const int fp_move; /* cost of reg,reg fld/fst */
93 const int fp_load[3]; /* cost of loading FP register
94 in SFmode, DFmode and XFmode */
95 const int fp_store[3]; /* cost of storing FP register
96 in SFmode, DFmode and XFmode */
97 const int mmx_move; /* cost of moving MMX register. */
98 const int mmx_load[2]; /* cost of loading MMX register
99 in SImode and DImode */
100 const int mmx_store[2]; /* cost of storing MMX register
101 in SImode and DImode */
102 const int sse_move; /* cost of moving SSE register. */
103 const int sse_load[3]; /* cost of loading SSE register
104 in SImode, DImode and TImode*/
105 const int sse_store[3]; /* cost of storing SSE register
106 in SImode, DImode and TImode*/
107 const int mmxsse_to_integer; /* cost of moving mmxsse register to
108 integer and vice versa. */
109 const int prefetch_block; /* bytes moved to cache for prefetch. */
110 const int simultaneous_prefetches; /* number of parallel prefetch
111 operations. */
112 const int branch_cost; /* Default value for BRANCH_COST. */
113 const int fadd; /* cost of FADD and FSUB instructions. */
114 const int fmul; /* cost of FMUL instruction. */
115 const int fdiv; /* cost of FDIV instruction. */
116 const int fabs; /* cost of FABS instruction. */
117 const int fchs; /* cost of FCHS instruction. */
118 const int fsqrt; /* cost of FSQRT instruction. */
119 /* Specify what algorithm
120 to use for stringops on unknown size. */
121 struct stringop_algs memcpy[2], memset[2];
124 extern const struct processor_costs *ix86_cost;
126 /* Macros used in the machine description to test the flags. */
128 /* configure can arrange to make this 2, to force a 486. */
130 #ifndef TARGET_CPU_DEFAULT
131 #define TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT_generic
132 #endif
134 #ifndef TARGET_FPMATH_DEFAULT
135 #define TARGET_FPMATH_DEFAULT \
136 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
137 #endif
139 #define TARGET_FLOAT_RETURNS_IN_80387 TARGET_FLOAT_RETURNS
141 /* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
142 compile-time constant. */
143 #ifdef IN_LIBGCC2
144 #undef TARGET_64BIT
145 #ifdef __x86_64__
146 #define TARGET_64BIT 1
147 #else
148 #define TARGET_64BIT 0
149 #endif
150 #else
151 #ifndef TARGET_BI_ARCH
152 #undef TARGET_64BIT
153 #if TARGET_64BIT_DEFAULT
154 #define TARGET_64BIT 1
155 #else
156 #define TARGET_64BIT 0
157 #endif
158 #endif
159 #endif
161 #define HAS_LONG_COND_BRANCH 1
162 #define HAS_LONG_UNCOND_BRANCH 1
164 #define TARGET_386 (ix86_tune == PROCESSOR_I386)
165 #define TARGET_486 (ix86_tune == PROCESSOR_I486)
166 #define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
167 #define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
168 #define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
169 #define TARGET_K6 (ix86_tune == PROCESSOR_K6)
170 #define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
171 #define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
172 #define TARGET_K8 (ix86_tune == PROCESSOR_K8)
173 #define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
174 #define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
175 #define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2)
176 #define TARGET_GENERIC32 (ix86_tune == PROCESSOR_GENERIC32)
177 #define TARGET_GENERIC64 (ix86_tune == PROCESSOR_GENERIC64)
178 #define TARGET_GENERIC (TARGET_GENERIC32 || TARGET_GENERIC64)
180 #define TUNEMASK (1 << ix86_tune)
181 extern const int x86_use_leave, x86_push_memory, x86_zero_extend_with_and;
182 extern const int x86_use_bit_test, x86_cmove, x86_deep_branch;
183 extern const int x86_branch_hints, x86_unroll_strlen;
184 extern const int x86_double_with_add, x86_partial_reg_stall, x86_movx;
185 extern const int x86_use_himode_fiop, x86_use_simode_fiop;
186 extern const int x86_use_mov0, x86_use_cltd, x86_read_modify_write;
187 extern const int x86_read_modify, x86_split_long_moves;
188 extern const int x86_promote_QImode, x86_single_stringop, x86_fast_prefix;
189 extern const int x86_himode_math, x86_qimode_math, x86_promote_qi_regs;
190 extern const int x86_promote_hi_regs, x86_integer_DFmode_moves;
191 extern const int x86_add_esp_4, x86_add_esp_8, x86_sub_esp_4, x86_sub_esp_8;
192 extern const int x86_partial_reg_dependency, x86_memory_mismatch_stall;
193 extern const int x86_accumulate_outgoing_args, x86_prologue_using_move;
194 extern const int x86_epilogue_using_move, x86_decompose_lea;
195 extern const int x86_arch_always_fancy_math_387, x86_shift1;
196 extern const int x86_sse_partial_reg_dependency, x86_sse_split_regs;
197 extern const int x86_sse_typeless_stores, x86_sse_load0_by_pxor;
198 extern const int x86_use_ffreep;
199 extern const int x86_inter_unit_moves, x86_schedule;
200 extern const int x86_use_bt;
201 extern const int x86_cmpxchg, x86_cmpxchg8b, x86_cmpxchg16b, x86_xadd;
202 extern const int x86_use_incdec;
203 extern const int x86_pad_returns;
204 extern const int x86_bswap;
205 extern const int x86_partial_flag_reg_stall;
206 extern int x86_prefetch_sse;
208 #define TARGET_USE_LEAVE (x86_use_leave & TUNEMASK)
209 #define TARGET_PUSH_MEMORY (x86_push_memory & TUNEMASK)
210 #define TARGET_ZERO_EXTEND_WITH_AND (x86_zero_extend_with_and & TUNEMASK)
211 #define TARGET_USE_BIT_TEST (x86_use_bit_test & TUNEMASK)
212 #define TARGET_UNROLL_STRLEN (x86_unroll_strlen & TUNEMASK)
213 /* For sane SSE instruction set generation we need fcomi instruction. It is
214 safe to enable all CMOVE instructions. */
215 #define TARGET_CMOVE ((x86_cmove & (1 << ix86_arch)) || TARGET_SSE)
216 #define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
217 #define TARGET_DEEP_BRANCH_PREDICTION (x86_deep_branch & TUNEMASK)
218 #define TARGET_BRANCH_PREDICTION_HINTS (x86_branch_hints & TUNEMASK)
219 #define TARGET_DOUBLE_WITH_ADD (x86_double_with_add & TUNEMASK)
220 #define TARGET_USE_SAHF ((x86_use_sahf & TUNEMASK) && !TARGET_64BIT)
221 #define TARGET_MOVX (x86_movx & TUNEMASK)
222 #define TARGET_PARTIAL_REG_STALL (x86_partial_reg_stall & TUNEMASK)
223 #define TARGET_PARTIAL_FLAG_REG_STALL (x86_partial_flag_reg_stall & TUNEMASK)
224 #define TARGET_USE_HIMODE_FIOP (x86_use_himode_fiop & TUNEMASK)
225 #define TARGET_USE_SIMODE_FIOP (x86_use_simode_fiop & TUNEMASK)
226 #define TARGET_USE_MOV0 (x86_use_mov0 & TUNEMASK)
227 #define TARGET_USE_CLTD (x86_use_cltd & TUNEMASK)
228 #define TARGET_SPLIT_LONG_MOVES (x86_split_long_moves & TUNEMASK)
229 #define TARGET_READ_MODIFY_WRITE (x86_read_modify_write & TUNEMASK)
230 #define TARGET_READ_MODIFY (x86_read_modify & TUNEMASK)
231 #define TARGET_PROMOTE_QImode (x86_promote_QImode & TUNEMASK)
232 #define TARGET_FAST_PREFIX (x86_fast_prefix & TUNEMASK)
233 #define TARGET_SINGLE_STRINGOP (x86_single_stringop & TUNEMASK)
234 #define TARGET_QIMODE_MATH (x86_qimode_math & TUNEMASK)
235 #define TARGET_HIMODE_MATH (x86_himode_math & TUNEMASK)
236 #define TARGET_PROMOTE_QI_REGS (x86_promote_qi_regs & TUNEMASK)
237 #define TARGET_PROMOTE_HI_REGS (x86_promote_hi_regs & TUNEMASK)
238 #define TARGET_ADD_ESP_4 (x86_add_esp_4 & TUNEMASK)
239 #define TARGET_ADD_ESP_8 (x86_add_esp_8 & TUNEMASK)
240 #define TARGET_SUB_ESP_4 (x86_sub_esp_4 & TUNEMASK)
241 #define TARGET_SUB_ESP_8 (x86_sub_esp_8 & TUNEMASK)
242 #define TARGET_INTEGER_DFMODE_MOVES (x86_integer_DFmode_moves & TUNEMASK)
243 #define TARGET_PARTIAL_REG_DEPENDENCY (x86_partial_reg_dependency & TUNEMASK)
244 #define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
245 (x86_sse_partial_reg_dependency & TUNEMASK)
246 #define TARGET_SSE_SPLIT_REGS (x86_sse_split_regs & TUNEMASK)
247 #define TARGET_SSE_TYPELESS_STORES (x86_sse_typeless_stores & TUNEMASK)
248 #define TARGET_SSE_LOAD0_BY_PXOR (x86_sse_load0_by_pxor & TUNEMASK)
249 #define TARGET_MEMORY_MISMATCH_STALL (x86_memory_mismatch_stall & TUNEMASK)
250 #define TARGET_PROLOGUE_USING_MOVE (x86_prologue_using_move & TUNEMASK)
251 #define TARGET_EPILOGUE_USING_MOVE (x86_epilogue_using_move & TUNEMASK)
252 #define TARGET_PREFETCH_SSE (x86_prefetch_sse)
253 #define TARGET_SHIFT1 (x86_shift1 & TUNEMASK)
254 #define TARGET_USE_FFREEP (x86_use_ffreep & TUNEMASK)
255 #define TARGET_INTER_UNIT_MOVES (x86_inter_unit_moves & TUNEMASK)
256 #define TARGET_FOUR_JUMP_LIMIT (x86_four_jump_limit & TUNEMASK)
257 #define TARGET_SCHEDULE (x86_schedule & TUNEMASK)
258 #define TARGET_USE_BT (x86_use_bt & TUNEMASK)
259 #define TARGET_USE_INCDEC (x86_use_incdec & TUNEMASK)
260 #define TARGET_PAD_RETURNS (x86_pad_returns & TUNEMASK)
262 #define ASSEMBLER_DIALECT (ix86_asm_dialect)
264 #define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
265 #define TARGET_MIX_SSE_I387 ((ix86_fpmath & FPMATH_SSE) \
266 && (ix86_fpmath & FPMATH_387))
268 #define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
269 #define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
270 #define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
271 #define TARGET_SUN_TLS (ix86_tls_dialect == TLS_DIALECT_SUN)
273 #define TARGET_CMPXCHG (x86_cmpxchg & (1 << ix86_arch))
274 #define TARGET_CMPXCHG8B (x86_cmpxchg8b & (1 << ix86_arch))
275 #define TARGET_CMPXCHG16B (x86_cmpxchg16b & (1 << ix86_arch))
276 #define TARGET_XADD (x86_xadd & (1 << ix86_arch))
277 #define TARGET_BSWAP (x86_bswap & (1 << ix86_arch))
279 #ifndef TARGET_64BIT_DEFAULT
280 #define TARGET_64BIT_DEFAULT 0
281 #endif
282 #ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
283 #define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
284 #endif
286 /* Once GDB has been enhanced to deal with functions without frame
287 pointers, we can change this to allow for elimination of
288 the frame pointer in leaf functions. */
289 #define TARGET_DEFAULT 0
291 /* This is not really a target flag, but is done this way so that
292 it's analogous to similar code for Mach-O on PowerPC. darwin.h
293 redefines this to 1. */
294 #define TARGET_MACHO 0
296 /* Subtargets may reset this to 1 in order to enable 96-bit long double
297 with the rounding mode forced to 53 bits. */
298 #define TARGET_96_ROUND_53_LONG_DOUBLE 0
300 /* Sometimes certain combinations of command options do not make
301 sense on a particular target machine. You can define a macro
302 `OVERRIDE_OPTIONS' to take account of this. This macro, if
303 defined, is executed once just after all the command options have
304 been parsed.
306 Don't use this macro to turn on various extra optimizations for
307 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
309 #define OVERRIDE_OPTIONS override_options ()
311 /* Define this to change the optimizations performed by default. */
312 #define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
313 optimization_options ((LEVEL), (SIZE))
315 /* -march=native handling only makes sense with compiler running on
316 an x86 or x86_64 chip. If changing this condition, also change
317 the condition in driver-i386.c. */
318 #if defined(__i386__) || defined(__x86_64__)
319 /* In driver-i386.c. */
320 extern const char *host_detect_local_cpu (int argc, const char **argv);
321 #define EXTRA_SPEC_FUNCTIONS \
322 { "local_cpu_detect", host_detect_local_cpu },
323 #define HAVE_LOCAL_CPU_DETECT
324 #endif
326 /* Support for configure-time defaults of some command line options.
327 The order here is important so that -march doesn't squash the
328 tune or cpu values. */
329 #define OPTION_DEFAULT_SPECS \
330 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
331 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
332 {"arch", "%{!march=*:-march=%(VALUE)}"}
334 /* Specs for the compiler proper */
336 #ifndef CC1_CPU_SPEC
337 #define CC1_CPU_SPEC_1 "\
338 %{!mtune*: \
339 %{m386:mtune=i386 \
340 %n`-m386' is deprecated. Use `-march=i386' or `-mtune=i386' instead.\n} \
341 %{m486:-mtune=i486 \
342 %n`-m486' is deprecated. Use `-march=i486' or `-mtune=i486' instead.\n} \
343 %{mpentium:-mtune=pentium \
344 %n`-mpentium' is deprecated. Use `-march=pentium' or `-mtune=pentium' instead.\n} \
345 %{mpentiumpro:-mtune=pentiumpro \
346 %n`-mpentiumpro' is deprecated. Use `-march=pentiumpro' or `-mtune=pentiumpro' instead.\n} \
347 %{mcpu=*:-mtune=%* \
348 %n`-mcpu=' is deprecated. Use `-mtune=' or '-march=' instead.\n}} \
349 %<mcpu=* \
350 %{mintel-syntax:-masm=intel \
351 %n`-mintel-syntax' is deprecated. Use `-masm=intel' instead.\n} \
352 %{mno-intel-syntax:-masm=att \
353 %n`-mno-intel-syntax' is deprecated. Use `-masm=att' instead.\n}"
355 #ifndef HAVE_LOCAL_CPU_DETECT
356 #define CC1_CPU_SPEC CC1_CPU_SPEC_1
357 #else
358 #define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
359 "%{march=native:%<march=native %:local_cpu_detect(arch) \
360 %{!mtune=*:%<mtune=native %:local_cpu_detect(tune)}} \
361 %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
362 #endif
363 #endif
365 /* Target CPU builtins. */
366 #define TARGET_CPU_CPP_BUILTINS() \
367 do \
369 size_t arch_len = strlen (ix86_arch_string); \
370 size_t tune_len = strlen (ix86_tune_string); \
371 int last_arch_char = ix86_arch_string[arch_len - 1]; \
372 int last_tune_char = ix86_tune_string[tune_len - 1]; \
374 if (TARGET_64BIT) \
376 builtin_assert ("cpu=x86_64"); \
377 builtin_assert ("machine=x86_64"); \
378 builtin_define ("__amd64"); \
379 builtin_define ("__amd64__"); \
380 builtin_define ("__x86_64"); \
381 builtin_define ("__x86_64__"); \
383 else \
385 builtin_assert ("cpu=i386"); \
386 builtin_assert ("machine=i386"); \
387 builtin_define_std ("i386"); \
390 /* Built-ins based on -mtune= (or -march= if no \
391 -mtune= given). */ \
392 if (TARGET_386) \
393 builtin_define ("__tune_i386__"); \
394 else if (TARGET_486) \
395 builtin_define ("__tune_i486__"); \
396 else if (TARGET_PENTIUM) \
398 builtin_define ("__tune_i586__"); \
399 builtin_define ("__tune_pentium__"); \
400 if (last_tune_char == 'x') \
401 builtin_define ("__tune_pentium_mmx__"); \
403 else if (TARGET_PENTIUMPRO) \
405 builtin_define ("__tune_i686__"); \
406 builtin_define ("__tune_pentiumpro__"); \
407 switch (last_tune_char) \
409 case '3': \
410 builtin_define ("__tune_pentium3__"); \
411 /* FALLTHRU */ \
412 case '2': \
413 builtin_define ("__tune_pentium2__"); \
414 break; \
417 else if (TARGET_GEODE) \
419 builtin_define ("__tune_geode__"); \
421 else if (TARGET_K6) \
423 builtin_define ("__tune_k6__"); \
424 if (last_tune_char == '2') \
425 builtin_define ("__tune_k6_2__"); \
426 else if (last_tune_char == '3') \
427 builtin_define ("__tune_k6_3__"); \
429 else if (TARGET_ATHLON) \
431 builtin_define ("__tune_athlon__"); \
432 /* Only plain "athlon" lacks SSE. */ \
433 if (last_tune_char != 'n') \
434 builtin_define ("__tune_athlon_sse__"); \
436 else if (TARGET_K8) \
437 builtin_define ("__tune_k8__"); \
438 else if (TARGET_PENTIUM4) \
439 builtin_define ("__tune_pentium4__"); \
440 else if (TARGET_NOCONA) \
441 builtin_define ("__tune_nocona__"); \
442 else if (TARGET_CORE2) \
443 builtin_define ("__tune_core2__"); \
445 if (TARGET_MMX) \
446 builtin_define ("__MMX__"); \
447 if (TARGET_3DNOW) \
448 builtin_define ("__3dNOW__"); \
449 if (TARGET_3DNOW_A) \
450 builtin_define ("__3dNOW_A__"); \
451 if (TARGET_SSE) \
452 builtin_define ("__SSE__"); \
453 if (TARGET_SSE2) \
454 builtin_define ("__SSE2__"); \
455 if (TARGET_SSE3) \
456 builtin_define ("__SSE3__"); \
457 if (TARGET_SSSE3) \
458 builtin_define ("__SSSE3__"); \
459 if (TARGET_SSE_MATH && TARGET_SSE) \
460 builtin_define ("__SSE_MATH__"); \
461 if (TARGET_SSE_MATH && TARGET_SSE2) \
462 builtin_define ("__SSE2_MATH__"); \
464 /* Built-ins based on -march=. */ \
465 if (ix86_arch == PROCESSOR_I486) \
467 builtin_define ("__i486"); \
468 builtin_define ("__i486__"); \
470 else if (ix86_arch == PROCESSOR_PENTIUM) \
472 builtin_define ("__i586"); \
473 builtin_define ("__i586__"); \
474 builtin_define ("__pentium"); \
475 builtin_define ("__pentium__"); \
476 if (last_arch_char == 'x') \
477 builtin_define ("__pentium_mmx__"); \
479 else if (ix86_arch == PROCESSOR_PENTIUMPRO) \
481 builtin_define ("__i686"); \
482 builtin_define ("__i686__"); \
483 builtin_define ("__pentiumpro"); \
484 builtin_define ("__pentiumpro__"); \
486 else if (ix86_arch == PROCESSOR_GEODE) \
488 builtin_define ("__geode"); \
489 builtin_define ("__geode__"); \
491 else if (ix86_arch == PROCESSOR_K6) \
494 builtin_define ("__k6"); \
495 builtin_define ("__k6__"); \
496 if (last_arch_char == '2') \
497 builtin_define ("__k6_2__"); \
498 else if (last_arch_char == '3') \
499 builtin_define ("__k6_3__"); \
501 else if (ix86_arch == PROCESSOR_ATHLON) \
503 builtin_define ("__athlon"); \
504 builtin_define ("__athlon__"); \
505 /* Only plain "athlon" lacks SSE. */ \
506 if (last_arch_char != 'n') \
507 builtin_define ("__athlon_sse__"); \
509 else if (ix86_arch == PROCESSOR_K8) \
511 builtin_define ("__k8"); \
512 builtin_define ("__k8__"); \
514 else if (ix86_arch == PROCESSOR_PENTIUM4) \
516 builtin_define ("__pentium4"); \
517 builtin_define ("__pentium4__"); \
519 else if (ix86_arch == PROCESSOR_NOCONA) \
521 builtin_define ("__nocona"); \
522 builtin_define ("__nocona__"); \
524 else if (ix86_arch == PROCESSOR_CORE2) \
526 builtin_define ("__core2"); \
527 builtin_define ("__core2__"); \
530 while (0)
532 #define TARGET_CPU_DEFAULT_i386 0
533 #define TARGET_CPU_DEFAULT_i486 1
534 #define TARGET_CPU_DEFAULT_pentium 2
535 #define TARGET_CPU_DEFAULT_pentium_mmx 3
536 #define TARGET_CPU_DEFAULT_pentiumpro 4
537 #define TARGET_CPU_DEFAULT_pentium2 5
538 #define TARGET_CPU_DEFAULT_pentium3 6
539 #define TARGET_CPU_DEFAULT_pentium4 7
540 #define TARGET_CPU_DEFAULT_geode 8
541 #define TARGET_CPU_DEFAULT_k6 9
542 #define TARGET_CPU_DEFAULT_k6_2 10
543 #define TARGET_CPU_DEFAULT_k6_3 11
544 #define TARGET_CPU_DEFAULT_athlon 12
545 #define TARGET_CPU_DEFAULT_athlon_sse 13
546 #define TARGET_CPU_DEFAULT_k8 14
547 #define TARGET_CPU_DEFAULT_pentium_m 15
548 #define TARGET_CPU_DEFAULT_prescott 16
549 #define TARGET_CPU_DEFAULT_nocona 17
550 #define TARGET_CPU_DEFAULT_core2 18
551 #define TARGET_CPU_DEFAULT_generic 19
553 #define TARGET_CPU_DEFAULT_NAMES {"i386", "i486", "pentium", "pentium-mmx",\
554 "pentiumpro", "pentium2", "pentium3", \
555 "pentium4", "geode", "k6", "k6-2", "k6-3", \
556 "athlon", "athlon-4", "k8", \
557 "pentium-m", "prescott", "nocona", \
558 "core2", "generic"}
560 #ifndef CC1_SPEC
561 #define CC1_SPEC "%(cc1_cpu) "
562 #endif
564 /* This macro defines names of additional specifications to put in the
565 specs that can be used in various specifications like CC1_SPEC. Its
566 definition is an initializer with a subgrouping for each command option.
568 Each subgrouping contains a string constant, that defines the
569 specification name, and a string constant that used by the GCC driver
570 program.
572 Do not define this macro if it does not need to do anything. */
574 #ifndef SUBTARGET_EXTRA_SPECS
575 #define SUBTARGET_EXTRA_SPECS
576 #endif
578 #define EXTRA_SPECS \
579 { "cc1_cpu", CC1_CPU_SPEC }, \
580 SUBTARGET_EXTRA_SPECS
582 /* target machine storage layout */
584 #define LONG_DOUBLE_TYPE_SIZE 80
586 /* Set the value of FLT_EVAL_METHOD in float.h. When using only the
587 FPU, assume that the fpcw is set to extended precision; when using
588 only SSE, rounding is correct; when using both SSE and the FPU,
589 the rounding precision is indeterminate, since either may be chosen
590 apparently at random. */
591 #define TARGET_FLT_EVAL_METHOD \
592 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
594 #define SHORT_TYPE_SIZE 16
595 #define INT_TYPE_SIZE 32
596 #define FLOAT_TYPE_SIZE 32
597 #define LONG_TYPE_SIZE BITS_PER_WORD
598 #define DOUBLE_TYPE_SIZE 64
599 #define LONG_LONG_TYPE_SIZE 64
601 #if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
602 #define MAX_BITS_PER_WORD 64
603 #else
604 #define MAX_BITS_PER_WORD 32
605 #endif
607 /* Define this if most significant byte of a word is the lowest numbered. */
608 /* That is true on the 80386. */
610 #define BITS_BIG_ENDIAN 0
612 /* Define this if most significant byte of a word is the lowest numbered. */
613 /* That is not true on the 80386. */
614 #define BYTES_BIG_ENDIAN 0
616 /* Define this if most significant word of a multiword number is the lowest
617 numbered. */
618 /* Not true for 80386 */
619 #define WORDS_BIG_ENDIAN 0
621 /* Width of a word, in units (bytes). */
622 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
623 #ifdef IN_LIBGCC2
624 #define MIN_UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
625 #else
626 #define MIN_UNITS_PER_WORD 4
627 #endif
629 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
630 #define PARM_BOUNDARY BITS_PER_WORD
632 /* Boundary (in *bits*) on which stack pointer should be aligned. */
633 #define STACK_BOUNDARY BITS_PER_WORD
635 /* Boundary (in *bits*) on which the stack pointer prefers to be
636 aligned; the compiler cannot rely on having this alignment. */
637 #define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
639 /* As of July 2001, many runtimes do not align the stack properly when
640 entering main. This causes expand_main_function to forcibly align
641 the stack, which results in aligned frames for functions called from
642 main, though it does nothing for the alignment of main itself. */
643 #define FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN \
644 (ix86_preferred_stack_boundary > STACK_BOUNDARY && !TARGET_64BIT)
646 /* Minimum allocation boundary for the code of a function. */
647 #define FUNCTION_BOUNDARY 8
649 /* C++ stores the virtual bit in the lowest bit of function pointers. */
650 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
652 /* Alignment of field after `int : 0' in a structure. */
654 #define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
656 /* Minimum size in bits of the largest boundary to which any
657 and all fundamental data types supported by the hardware
658 might need to be aligned. No data type wants to be aligned
659 rounder than this.
661 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
662 and Pentium Pro XFmode values at 128 bit boundaries. */
664 #define BIGGEST_ALIGNMENT 128
666 /* Decide whether a variable of mode MODE should be 128 bit aligned. */
667 #define ALIGN_MODE_128(MODE) \
668 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
670 /* The published ABIs say that doubles should be aligned on word
671 boundaries, so lower the alignment for structure fields unless
672 -malign-double is set. */
674 /* ??? Blah -- this macro is used directly by libobjc. Since it
675 supports no vector modes, cut out the complexity and fall back
676 on BIGGEST_FIELD_ALIGNMENT. */
677 #ifdef IN_TARGET_LIBS
678 #ifdef __x86_64__
679 #define BIGGEST_FIELD_ALIGNMENT 128
680 #else
681 #define BIGGEST_FIELD_ALIGNMENT 32
682 #endif
683 #else
684 #define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
685 x86_field_alignment (FIELD, COMPUTED)
686 #endif
688 /* If defined, a C expression to compute the alignment given to a
689 constant that is being placed in memory. EXP is the constant
690 and ALIGN is the alignment that the object would ordinarily have.
691 The value of this macro is used instead of that alignment to align
692 the object.
694 If this macro is not defined, then ALIGN is used.
696 The typical use of this macro is to increase alignment for string
697 constants to be word aligned so that `strcpy' calls that copy
698 constants can be done inline. */
700 #define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
702 /* If defined, a C expression to compute the alignment for a static
703 variable. TYPE is the data type, and ALIGN is the alignment that
704 the object would ordinarily have. The value of this macro is used
705 instead of that alignment to align the object.
707 If this macro is not defined, then ALIGN is used.
709 One use of this macro is to increase alignment of medium-size
710 data to make it all fit in fewer cache lines. Another is to
711 cause character arrays to be word-aligned so that `strcpy' calls
712 that copy constants to character arrays can be done inline. */
714 #define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
716 /* If defined, a C expression to compute the alignment for a local
717 variable. TYPE is the data type, and ALIGN is the alignment that
718 the object would ordinarily have. The value of this macro is used
719 instead of that alignment to align the object.
721 If this macro is not defined, then ALIGN is used.
723 One use of this macro is to increase alignment of medium-size
724 data to make it all fit in fewer cache lines. */
726 #define LOCAL_ALIGNMENT(TYPE, ALIGN) ix86_local_alignment ((TYPE), (ALIGN))
728 /* If defined, a C expression that gives the alignment boundary, in
729 bits, of an argument with the specified mode and type. If it is
730 not defined, `PARM_BOUNDARY' is used for all arguments. */
732 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
733 ix86_function_arg_boundary ((MODE), (TYPE))
735 /* Set this nonzero if move instructions will actually fail to work
736 when given unaligned data. */
737 #define STRICT_ALIGNMENT 0
739 /* If bit field type is int, don't let it cross an int,
740 and give entire struct the alignment of an int. */
741 /* Required on the 386 since it doesn't have bit-field insns. */
742 #define PCC_BITFIELD_TYPE_MATTERS 1
744 /* Standard register usage. */
746 /* This processor has special stack-like registers. See reg-stack.c
747 for details. */
749 #define STACK_REGS
750 #define IS_STACK_MODE(MODE) \
751 (((MODE) == SFmode && (!TARGET_SSE || !TARGET_SSE_MATH)) \
752 || ((MODE) == DFmode && (!TARGET_SSE2 || !TARGET_SSE_MATH)) \
753 || (MODE) == XFmode)
755 /* Number of actual hardware registers.
756 The hardware registers are assigned numbers for the compiler
757 from 0 to just below FIRST_PSEUDO_REGISTER.
758 All registers that the compiler knows about must be given numbers,
759 even those that are not normally considered general registers.
761 In the 80386 we give the 8 general purpose registers the numbers 0-7.
762 We number the floating point registers 8-15.
763 Note that registers 0-7 can be accessed as a short or int,
764 while only 0-3 may be used with byte `mov' instructions.
766 Reg 16 does not correspond to any hardware register, but instead
767 appears in the RTL as an argument pointer prior to reload, and is
768 eliminated during reloading in favor of either the stack or frame
769 pointer. */
771 #define FIRST_PSEUDO_REGISTER 54
773 /* Number of hardware registers that go into the DWARF-2 unwind info.
774 If not defined, equals FIRST_PSEUDO_REGISTER. */
776 #define DWARF_FRAME_REGISTERS 17
778 /* 1 for registers that have pervasive standard uses
779 and are not available for the register allocator.
780 On the 80386, the stack pointer is such, as is the arg pointer.
782 The value is zero if the register is not fixed on either 32 or
783 64 bit targets, one if the register if fixed on both 32 and 64
784 bit targets, two if it is only fixed on 32bit targets and three
785 if its only fixed on 64bit targets.
786 Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
788 #define FIXED_REGISTERS \
789 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
790 { 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
791 /*arg,flags,fpsr,fpcr,dir,frame*/ \
792 1, 1, 1, 1, 1, 1, \
793 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
794 0, 0, 0, 0, 0, 0, 0, 0, \
795 /*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
796 0, 0, 0, 0, 0, 0, 0, 0, \
797 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
798 2, 2, 2, 2, 2, 2, 2, 2, \
799 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
800 2, 2, 2, 2, 2, 2, 2, 2}
803 /* 1 for registers not available across function calls.
804 These must include the FIXED_REGISTERS and also any
805 registers that can be used without being saved.
806 The latter must include the registers where values are returned
807 and the register where structure-value addresses are passed.
808 Aside from that, you can include as many other registers as you like.
810 The value is zero if the register is not call used on either 32 or
811 64 bit targets, one if the register if call used on both 32 and 64
812 bit targets, two if it is only call used on 32bit targets and three
813 if its only call used on 64bit targets.
814 Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
816 #define CALL_USED_REGISTERS \
817 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
818 { 1, 1, 1, 0, 3, 3, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
819 /*arg,flags,fpsr,fpcr,dir,frame*/ \
820 1, 1, 1, 1, 1, 1, \
821 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
822 1, 1, 1, 1, 1, 1, 1, 1, \
823 /*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
824 1, 1, 1, 1, 1, 1, 1, 1, \
825 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
826 1, 1, 1, 1, 2, 2, 2, 2, \
827 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
828 1, 1, 1, 1, 1, 1, 1, 1} \
830 /* Order in which to allocate registers. Each register must be
831 listed once, even those in FIXED_REGISTERS. List frame pointer
832 late and fixed registers last. Note that, in general, we prefer
833 registers listed in CALL_USED_REGISTERS, keeping the others
834 available for storage of persistent values.
836 The ORDER_REGS_FOR_LOCAL_ALLOC actually overwrite the order,
837 so this is just empty initializer for array. */
839 #define REG_ALLOC_ORDER \
840 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
841 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
842 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
843 48, 49, 50, 51, 52, 53 }
845 /* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
846 to be rearranged based on a particular function. When using sse math,
847 we want to allocate SSE before x87 registers and vice versa. */
849 #define ORDER_REGS_FOR_LOCAL_ALLOC x86_order_regs_for_local_alloc ()
852 /* Macro to conditionally modify fixed_regs/call_used_regs. */
853 #define CONDITIONAL_REGISTER_USAGE \
854 do { \
855 int i; \
856 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
858 if (fixed_regs[i] > 1) \
859 fixed_regs[i] = (fixed_regs[i] == (TARGET_64BIT ? 3 : 2)); \
860 if (call_used_regs[i] > 1) \
861 call_used_regs[i] = (call_used_regs[i] \
862 == (TARGET_64BIT ? 3 : 2)); \
864 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) \
866 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
867 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
869 if (! TARGET_MMX) \
871 int i; \
872 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
873 if (TEST_HARD_REG_BIT (reg_class_contents[(int)MMX_REGS], i)) \
874 fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; \
876 if (! TARGET_SSE) \
878 int i; \
879 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
880 if (TEST_HARD_REG_BIT (reg_class_contents[(int)SSE_REGS], i)) \
881 fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; \
883 if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387) \
885 int i; \
886 HARD_REG_SET x; \
887 COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]); \
888 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
889 if (TEST_HARD_REG_BIT (x, i)) \
890 fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; \
892 if (! TARGET_64BIT) \
894 int i; \
895 for (i = FIRST_REX_INT_REG; i <= LAST_REX_INT_REG; i++) \
896 reg_names[i] = ""; \
897 for (i = FIRST_REX_SSE_REG; i <= LAST_REX_SSE_REG; i++) \
898 reg_names[i] = ""; \
900 } while (0)
902 /* Return number of consecutive hard regs needed starting at reg REGNO
903 to hold something of mode MODE.
904 This is ordinarily the length in words of a value of mode MODE
905 but can be less for certain modes in special long registers.
907 Actually there are no two word move instructions for consecutive
908 registers. And only registers 0-3 may have mov byte instructions
909 applied to them.
912 #define HARD_REGNO_NREGS(REGNO, MODE) \
913 (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
914 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
915 : ((MODE) == XFmode \
916 ? (TARGET_64BIT ? 2 : 3) \
917 : (MODE) == XCmode \
918 ? (TARGET_64BIT ? 4 : 6) \
919 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
921 #define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \
922 ((TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT) \
923 ? (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
924 ? 0 \
925 : ((MODE) == XFmode || (MODE) == XCmode)) \
926 : 0)
928 #define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
930 #define VALID_SSE2_REG_MODE(MODE) \
931 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
932 || (MODE) == V2DImode || (MODE) == DFmode)
934 #define VALID_SSE_REG_MODE(MODE) \
935 ((MODE) == TImode || (MODE) == V4SFmode || (MODE) == V4SImode \
936 || (MODE) == SFmode || (MODE) == TFmode)
938 #define VALID_MMX_REG_MODE_3DNOW(MODE) \
939 ((MODE) == V2SFmode || (MODE) == SFmode)
941 #define VALID_MMX_REG_MODE(MODE) \
942 ((MODE) == DImode || (MODE) == V8QImode || (MODE) == V4HImode \
943 || (MODE) == V2SImode || (MODE) == SImode)
945 /* ??? No autovectorization into MMX or 3DNOW until we can reliably
946 place emms and femms instructions. */
947 #define UNITS_PER_SIMD_WORD (TARGET_SSE ? 16 : UNITS_PER_WORD)
949 #define VALID_FP_MODE_P(MODE) \
950 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
951 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
953 #define VALID_INT_MODE_P(MODE) \
954 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
955 || (MODE) == DImode \
956 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
957 || (MODE) == CDImode \
958 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
959 || (MODE) == TFmode || (MODE) == TCmode)))
961 /* Return true for modes passed in SSE registers. */
962 #define SSE_REG_MODE_P(MODE) \
963 ((MODE) == TImode || (MODE) == V16QImode || (MODE) == TFmode \
964 || (MODE) == V8HImode || (MODE) == V2DFmode || (MODE) == V2DImode \
965 || (MODE) == V4SFmode || (MODE) == V4SImode)
967 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
969 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
970 ix86_hard_regno_mode_ok ((REGNO), (MODE))
972 /* Value is 1 if it is a good idea to tie two pseudo registers
973 when one has mode MODE1 and one has mode MODE2.
974 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
975 for any hard reg, then this must be 0 for correct output. */
977 #define MODES_TIEABLE_P(MODE1, MODE2) ix86_modes_tieable_p (MODE1, MODE2)
979 /* It is possible to write patterns to move flags; but until someone
980 does it, */
981 #define AVOID_CCMODE_COPIES
983 /* Specify the modes required to caller save a given hard regno.
984 We do this on i386 to prevent flags from being saved at all.
986 Kill any attempts to combine saving of modes. */
988 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
989 (CC_REGNO_P (REGNO) ? VOIDmode \
990 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
991 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false)\
992 : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \
993 : (MODE) == QImode && (REGNO) >= 4 && !TARGET_64BIT ? SImode \
994 : (MODE))
995 /* Specify the registers used for certain standard purposes.
996 The values of these macros are register numbers. */
998 /* on the 386 the pc register is %eip, and is not usable as a general
999 register. The ordinary mov instructions won't work */
1000 /* #define PC_REGNUM */
1002 /* Register to use for pushing function arguments. */
1003 #define STACK_POINTER_REGNUM 7
1005 /* Base register for access to local variables of the function. */
1006 #define HARD_FRAME_POINTER_REGNUM 6
1008 /* Base register for access to local variables of the function. */
1009 #define FRAME_POINTER_REGNUM 21
1011 /* First floating point reg */
1012 #define FIRST_FLOAT_REG 8
1014 /* First & last stack-like regs */
1015 #define FIRST_STACK_REG FIRST_FLOAT_REG
1016 #define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1018 #define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1019 #define LAST_SSE_REG (FIRST_SSE_REG + 7)
1021 #define FIRST_MMX_REG (LAST_SSE_REG + 1)
1022 #define LAST_MMX_REG (FIRST_MMX_REG + 7)
1024 #define FIRST_REX_INT_REG (LAST_MMX_REG + 1)
1025 #define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
1027 #define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1)
1028 #define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
1030 /* Value should be nonzero if functions must have frame pointers.
1031 Zero means the frame pointer need not be set up (and parms
1032 may be accessed via the stack pointer) in functions that seem suitable.
1033 This is computed in `reload', in reload1.c. */
1034 #define FRAME_POINTER_REQUIRED ix86_frame_pointer_required ()
1036 /* Override this in other tm.h files to cope with various OS lossage
1037 requiring a frame pointer. */
1038 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1039 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
1040 #endif
1042 /* Make sure we can access arbitrary call frames. */
1043 #define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
1045 /* Base register for access to arguments of the function. */
1046 #define ARG_POINTER_REGNUM 16
1048 /* Register in which static-chain is passed to a function.
1049 We do use ECX as static chain register for 32 bit ABI. On the
1050 64bit ABI, ECX is an argument register, so we use R10 instead. */
1051 #define STATIC_CHAIN_REGNUM (TARGET_64BIT ? FIRST_REX_INT_REG + 10 - 8 : 2)
1053 /* Register to hold the addressing base for position independent
1054 code access to data items. We don't use PIC pointer for 64bit
1055 mode. Define the regnum to dummy value to prevent gcc from
1056 pessimizing code dealing with EBX.
1058 To avoid clobbering a call-saved register unnecessarily, we renumber
1059 the pic register when possible. The change is visible after the
1060 prologue has been emitted. */
1062 #define REAL_PIC_OFFSET_TABLE_REGNUM 3
1064 #define PIC_OFFSET_TABLE_REGNUM \
1065 ((TARGET_64BIT && ix86_cmodel == CM_SMALL_PIC) \
1066 || !flag_pic ? INVALID_REGNUM \
1067 : reload_completed ? REGNO (pic_offset_table_rtx) \
1068 : REAL_PIC_OFFSET_TABLE_REGNUM)
1070 #define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1072 /* A C expression which can inhibit the returning of certain function
1073 values in registers, based on the type of value. A nonzero value
1074 says to return the function value in memory, just as large
1075 structures are always returned. Here TYPE will be a C expression
1076 of type `tree', representing the data type of the value.
1078 Note that values of mode `BLKmode' must be explicitly handled by
1079 this macro. Also, the option `-fpcc-struct-return' takes effect
1080 regardless of this macro. On most systems, it is possible to
1081 leave the macro undefined; this causes a default definition to be
1082 used, whose value is the constant 1 for `BLKmode' values, and 0
1083 otherwise.
1085 Do not use this macro to indicate that structures and unions
1086 should always be returned in memory. You should instead use
1087 `DEFAULT_PCC_STRUCT_RETURN' to indicate this. */
1089 #define RETURN_IN_MEMORY(TYPE) \
1090 ix86_return_in_memory (TYPE)
1092 /* This is overridden by <cygwin.h>. */
1093 #define MS_AGGREGATE_RETURN 0
1095 /* This is overridden by <netware.h>. */
1096 #define KEEP_AGGREGATE_RETURN_POINTER 0
1098 /* Define the classes of registers for register constraints in the
1099 machine description. Also define ranges of constants.
1101 One of the classes must always be named ALL_REGS and include all hard regs.
1102 If there is more than one class, another class must be named NO_REGS
1103 and contain no registers.
1105 The name GENERAL_REGS must be the name of a class (or an alias for
1106 another name such as ALL_REGS). This is the class of registers
1107 that is allowed by "g" or "r" in a register constraint.
1108 Also, registers outside this class are allocated only when
1109 instructions express preferences for them.
1111 The classes must be numbered in nondecreasing order; that is,
1112 a larger-numbered class must never be contained completely
1113 in a smaller-numbered class.
1115 For any two classes, it is very desirable that there be another
1116 class that represents their union.
1118 It might seem that class BREG is unnecessary, since no useful 386
1119 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
1120 and the "b" register constraint is useful in asms for syscalls.
1122 The flags, fpsr and fpcr registers are in no class. */
1124 enum reg_class
1126 NO_REGS,
1127 AREG, DREG, CREG, BREG, SIREG, DIREG,
1128 AD_REGS, /* %eax/%edx for DImode */
1129 Q_REGS, /* %eax %ebx %ecx %edx */
1130 NON_Q_REGS, /* %esi %edi %ebp %esp */
1131 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
1132 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1133 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/
1134 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1135 FLOAT_REGS,
1136 SSE_REGS,
1137 MMX_REGS,
1138 FP_TOP_SSE_REGS,
1139 FP_SECOND_SSE_REGS,
1140 FLOAT_SSE_REGS,
1141 FLOAT_INT_REGS,
1142 INT_SSE_REGS,
1143 FLOAT_INT_SSE_REGS,
1144 ALL_REGS, LIM_REG_CLASSES
1147 #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1149 #define INTEGER_CLASS_P(CLASS) \
1150 reg_class_subset_p ((CLASS), GENERAL_REGS)
1151 #define FLOAT_CLASS_P(CLASS) \
1152 reg_class_subset_p ((CLASS), FLOAT_REGS)
1153 #define SSE_CLASS_P(CLASS) \
1154 ((CLASS) == SSE_REGS)
1155 #define MMX_CLASS_P(CLASS) \
1156 ((CLASS) == MMX_REGS)
1157 #define MAYBE_INTEGER_CLASS_P(CLASS) \
1158 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1159 #define MAYBE_FLOAT_CLASS_P(CLASS) \
1160 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1161 #define MAYBE_SSE_CLASS_P(CLASS) \
1162 reg_classes_intersect_p (SSE_REGS, (CLASS))
1163 #define MAYBE_MMX_CLASS_P(CLASS) \
1164 reg_classes_intersect_p (MMX_REGS, (CLASS))
1166 #define Q_CLASS_P(CLASS) \
1167 reg_class_subset_p ((CLASS), Q_REGS)
1169 /* Give names of register classes as strings for dump file. */
1171 #define REG_CLASS_NAMES \
1172 { "NO_REGS", \
1173 "AREG", "DREG", "CREG", "BREG", \
1174 "SIREG", "DIREG", \
1175 "AD_REGS", \
1176 "Q_REGS", "NON_Q_REGS", \
1177 "INDEX_REGS", \
1178 "LEGACY_REGS", \
1179 "GENERAL_REGS", \
1180 "FP_TOP_REG", "FP_SECOND_REG", \
1181 "FLOAT_REGS", \
1182 "SSE_REGS", \
1183 "MMX_REGS", \
1184 "FP_TOP_SSE_REGS", \
1185 "FP_SECOND_SSE_REGS", \
1186 "FLOAT_SSE_REGS", \
1187 "FLOAT_INT_REGS", \
1188 "INT_SSE_REGS", \
1189 "FLOAT_INT_SSE_REGS", \
1190 "ALL_REGS" }
1192 /* Define which registers fit in which classes.
1193 This is an initializer for a vector of HARD_REG_SET
1194 of length N_REG_CLASSES. */
1196 #define REG_CLASS_CONTENTS \
1197 { { 0x00, 0x0 }, \
1198 { 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \
1199 { 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \
1200 { 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \
1201 { 0x03, 0x0 }, /* AD_REGS */ \
1202 { 0x0f, 0x0 }, /* Q_REGS */ \
1203 { 0x2100f0, 0x3fc0 }, /* NON_Q_REGS */ \
1204 { 0x7f, 0x3fc0 }, /* INDEX_REGS */ \
1205 { 0x2100ff, 0x0 }, /* LEGACY_REGS */ \
1206 { 0x2100ff, 0x3fc0 }, /* GENERAL_REGS */ \
1207 { 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1208 { 0xff00, 0x0 }, /* FLOAT_REGS */ \
1209 { 0x3fc00000,0x3fc000 }, /* SSE_REGS */ \
1210 { 0xc0000000, 0x3f }, /* MMX_REGS */ \
1211 { 0x3fc00100,0x3fc000 }, /* FP_TOP_SSE_REG */ \
1212 { 0x3fc00200,0x3fc000 }, /* FP_SECOND_SSE_REG */ \
1213 { 0x3fc0ff00,0x3fc000 }, /* FLOAT_SSE_REGS */ \
1214 { 0x1ffff, 0x3fc0 }, /* FLOAT_INT_REGS */ \
1215 { 0x3fc100ff,0x3fffc0 }, /* INT_SSE_REGS */ \
1216 { 0x3fc1ffff,0x3fffc0 }, /* FLOAT_INT_SSE_REGS */ \
1217 { 0xffffffff,0x3fffff } \
1220 /* The same information, inverted:
1221 Return the class number of the smallest class containing
1222 reg number REGNO. This could be a conditional expression
1223 or could index an array. */
1225 #define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1227 /* When defined, the compiler allows registers explicitly used in the
1228 rtl to be used as spill registers but prevents the compiler from
1229 extending the lifetime of these registers. */
1231 #define SMALL_REGISTER_CLASSES 1
1233 #define QI_REG_P(X) (REG_P (X) && REGNO (X) < 4)
1235 #define GENERAL_REGNO_P(N) \
1236 ((N) <= STACK_POINTER_REGNUM || REX_INT_REGNO_P (N))
1238 #define GENERAL_REG_P(X) \
1239 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
1241 #define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
1243 #define NON_QI_REG_P(X) \
1244 (REG_P (X) && IN_RANGE (REGNO (X), 4, FIRST_PSEUDO_REGISTER - 1))
1246 #define REX_INT_REGNO_P(N) \
1247 IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
1248 #define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1250 #define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
1251 #define FP_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
1252 #define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1253 #define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
1255 #define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
1256 #define SSE_REGNO_P(N) \
1257 (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG) \
1258 || REX_SSE_REGNO_P (N))
1260 #define REX_SSE_REGNO_P(N) \
1261 IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
1263 #define SSE_REGNO(N) \
1264 ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
1266 #define SSE_FLOAT_MODE_P(MODE) \
1267 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1269 #define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
1270 #define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
1272 #define STACK_REG_P(XOP) (REG_P (XOP) && STACK_REGNO_P (REGNO (XOP)))
1273 #define NON_STACK_REG_P(XOP) \
1274 (REG_P (XOP) && ! STACK_REGNO_P (REGNO (XOP)))
1275 #define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
1277 #define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
1279 #define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1280 #define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1282 /* The class value for index registers, and the one for base regs. */
1284 #define INDEX_REG_CLASS INDEX_REGS
1285 #define BASE_REG_CLASS GENERAL_REGS
1287 /* Place additional restrictions on the register class to use when it
1288 is necessary to be able to hold a value of mode MODE in a reload
1289 register for which class CLASS would ordinarily be used. */
1291 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1292 ((MODE) == QImode && !TARGET_64BIT \
1293 && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS \
1294 || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS) \
1295 ? Q_REGS : (CLASS))
1297 /* Given an rtx X being reloaded into a reg required to be
1298 in class CLASS, return the class of reg to actually use.
1299 In general this is just CLASS; but on some machines
1300 in some cases it is preferable to use a more restrictive class.
1301 On the 80386 series, we prevent floating constants from being
1302 reloaded into floating registers (since no move-insn can do that)
1303 and we ensure that QImodes aren't reloaded into the esi or edi reg. */
1305 /* Put float CONST_DOUBLE in the constant pool instead of fp regs.
1306 QImode must go into class Q_REGS.
1307 Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and
1308 movdf to do mem-to-mem moves through integer regs. */
1310 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
1311 ix86_preferred_reload_class ((X), (CLASS))
1313 /* Discourage putting floating-point values in SSE registers unless
1314 SSE math is being used, and likewise for the 387 registers. */
1316 #define PREFERRED_OUTPUT_RELOAD_CLASS(X, CLASS) \
1317 ix86_preferred_output_reload_class ((X), (CLASS))
1319 /* If we are copying between general and FP registers, we need a memory
1320 location. The same is true for SSE and MMX registers. */
1321 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1322 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
1324 /* QImode spills from non-QI registers need a scratch. This does not
1325 happen often -- the only example so far requires an uninitialized
1326 pseudo. */
1328 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, OUT) \
1329 (((CLASS) == GENERAL_REGS || (CLASS) == LEGACY_REGS \
1330 || (CLASS) == INDEX_REGS) && !TARGET_64BIT && (MODE) == QImode \
1331 ? Q_REGS : NO_REGS)
1333 /* Return the maximum number of consecutive registers
1334 needed to represent mode MODE in a register of class CLASS. */
1335 /* On the 80386, this is the size of MODE in words,
1336 except in the FP regs, where a single reg is always enough. */
1337 #define CLASS_MAX_NREGS(CLASS, MODE) \
1338 (!MAYBE_INTEGER_CLASS_P (CLASS) \
1339 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
1340 : (((((MODE) == XFmode ? 12 : GET_MODE_SIZE (MODE))) \
1341 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1343 /* A C expression whose value is nonzero if pseudos that have been
1344 assigned to registers of class CLASS would likely be spilled
1345 because registers of CLASS are needed for spill registers.
1347 The default value of this macro returns 1 if CLASS has exactly one
1348 register and zero otherwise. On most machines, this default
1349 should be used. Only define this macro to some other expression
1350 if pseudo allocated by `local-alloc.c' end up in memory because
1351 their hard registers were needed for spill registers. If this
1352 macro returns nonzero for those classes, those pseudos will only
1353 be allocated by `global.c', which knows how to reallocate the
1354 pseudo to another register. If there would not be another
1355 register available for reallocation, you should not change the
1356 definition of this macro since the only effect of such a
1357 definition would be to slow down register allocation. */
1359 #define CLASS_LIKELY_SPILLED_P(CLASS) \
1360 (((CLASS) == AREG) \
1361 || ((CLASS) == DREG) \
1362 || ((CLASS) == CREG) \
1363 || ((CLASS) == BREG) \
1364 || ((CLASS) == AD_REGS) \
1365 || ((CLASS) == SIREG) \
1366 || ((CLASS) == DIREG) \
1367 || ((CLASS) == FP_TOP_REG) \
1368 || ((CLASS) == FP_SECOND_REG))
1370 /* Return a class of registers that cannot change FROM mode to TO mode. */
1372 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1373 ix86_cannot_change_mode_class (FROM, TO, CLASS)
1375 /* Stack layout; function entry, exit and calling. */
1377 /* Define this if pushing a word on the stack
1378 makes the stack pointer a smaller address. */
1379 #define STACK_GROWS_DOWNWARD
1381 /* Define this to nonzero if the nominal address of the stack frame
1382 is at the high-address end of the local variables;
1383 that is, each additional local variable allocated
1384 goes at a more negative offset in the frame. */
1385 #define FRAME_GROWS_DOWNWARD 1
1387 /* Offset within stack frame to start allocating local variables at.
1388 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1389 first local allocated. Otherwise, it is the offset to the BEGINNING
1390 of the first local allocated. */
1391 #define STARTING_FRAME_OFFSET 0
1393 /* If we generate an insn to push BYTES bytes,
1394 this says how many the stack pointer really advances by.
1395 On 386, we have pushw instruction that decrements by exactly 2 no
1396 matter what the position was, there is no pushb.
1397 But as CIE data alignment factor on this arch is -4, we need to make
1398 sure all stack pointer adjustments are in multiple of 4.
1400 For 64bit ABI we round up to 8 bytes.
1403 #define PUSH_ROUNDING(BYTES) \
1404 (TARGET_64BIT \
1405 ? (((BYTES) + 7) & (-8)) \
1406 : (((BYTES) + 3) & (-4)))
1408 /* If defined, the maximum amount of space required for outgoing arguments will
1409 be computed and placed into the variable
1410 `current_function_outgoing_args_size'. No space will be pushed onto the
1411 stack for each call; instead, the function prologue should increase the stack
1412 frame size by this amount. */
1414 #define ACCUMULATE_OUTGOING_ARGS TARGET_ACCUMULATE_OUTGOING_ARGS
1416 /* If defined, a C expression whose value is nonzero when we want to use PUSH
1417 instructions to pass outgoing arguments. */
1419 #define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1421 /* We want the stack and args grow in opposite directions, even if
1422 PUSH_ARGS is 0. */
1423 #define PUSH_ARGS_REVERSED 1
1425 /* Offset of first parameter from the argument pointer register value. */
1426 #define FIRST_PARM_OFFSET(FNDECL) 0
1428 /* Define this macro if functions should assume that stack space has been
1429 allocated for arguments even when their values are passed in registers.
1431 The value of this macro is the size, in bytes, of the area reserved for
1432 arguments passed in registers for the function represented by FNDECL.
1434 This space can be allocated by the caller, or be a part of the
1435 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1436 which. */
1437 #define REG_PARM_STACK_SPACE(FNDECL) 0
1439 /* Value is the number of bytes of arguments automatically
1440 popped when returning from a subroutine call.
1441 FUNDECL is the declaration node of the function (as a tree),
1442 FUNTYPE is the data type of the function (as a tree),
1443 or for a library call it is an identifier node for the subroutine name.
1444 SIZE is the number of bytes of arguments passed on the stack.
1446 On the 80386, the RTD insn may be used to pop them if the number
1447 of args is fixed, but if the number is variable then the caller
1448 must pop them all. RTD can't be used for library calls now
1449 because the library is compiled with the Unix compiler.
1450 Use of RTD is a selectable option, since it is incompatible with
1451 standard Unix calling sequences. If the option is not selected,
1452 the caller must always pop the args.
1454 The attribute stdcall is equivalent to RTD on a per module basis. */
1456 #define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) \
1457 ix86_return_pops_args ((FUNDECL), (FUNTYPE), (SIZE))
1459 #define FUNCTION_VALUE_REGNO_P(N) \
1460 ix86_function_value_regno_p (N)
1462 /* Define how to find the value returned by a library function
1463 assuming the value has mode MODE. */
1465 #define LIBCALL_VALUE(MODE) \
1466 ix86_libcall_value (MODE)
1468 /* Define the size of the result block used for communication between
1469 untyped_call and untyped_return. The block contains a DImode value
1470 followed by the block used by fnsave and frstor. */
1472 #define APPLY_RESULT_SIZE (8+108)
1474 /* 1 if N is a possible register number for function argument passing. */
1475 #define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
1477 /* Define a data type for recording info about an argument list
1478 during the scan of that argument list. This data type should
1479 hold all necessary information about the function itself
1480 and about the args processed so far, enough to enable macros
1481 such as FUNCTION_ARG to determine where the next arg should go. */
1483 typedef struct ix86_args {
1484 int nregs; /* # registers available for passing */
1485 int regno; /* next available register number */
1486 int words; /* # words passed so far */
1487 int fastcall; /* fastcall calling convention is used */
1488 int x87_nregs; /* # x87 registers available for passing */
1489 int x87_regno; /* # next available x87 register number */
1490 int sse_nregs; /* # sse registers available for passing */
1491 int sse_regno; /* next available sse register number */
1492 int warn_sse; /* True when we want to warn about SSE ABI. */
1493 int mmx_nregs; /* # mmx registers available for passing */
1494 int mmx_regno; /* next available mmx register number */
1495 int warn_mmx; /* True when we want to warn about MMX ABI. */
1496 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
1497 int float_in_x87; /* 1 if floating point arguments should
1498 be passed in 80387 registers. */
1499 int float_in_sse; /* 1 if in 32-bit mode SFmode (2 for DFmode) should
1500 be passed in SSE registers. Otherwise 0. */
1501 } CUMULATIVE_ARGS;
1503 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1504 for a call to a function whose data type is FNTYPE.
1505 For a library call, FNTYPE is 0. */
1507 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1508 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
1510 /* Update the data in CUM to advance over an argument
1511 of mode MODE and data type TYPE.
1512 (TYPE is null for libcalls where that information may not be available.) */
1514 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1515 function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED))
1517 /* Define where to put the arguments to a function.
1518 Value is zero to push the argument on the stack,
1519 or a hard register in which to store the argument.
1521 MODE is the argument's machine mode.
1522 TYPE is the data type of the argument (as a tree).
1523 This is null for libcalls where that information may
1524 not be available.
1525 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1526 the preceding args and about the function being called.
1527 NAMED is nonzero if this argument is a named parameter
1528 (otherwise it is an extra parameter matching an ellipsis). */
1530 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1531 function_arg (&(CUM), (MODE), (TYPE), (NAMED))
1533 /* Implement `va_start' for varargs and stdarg. */
1534 #define EXPAND_BUILTIN_VA_START(VALIST, NEXTARG) \
1535 ix86_va_start (VALIST, NEXTARG)
1537 #define TARGET_ASM_FILE_END ix86_file_end
1538 #define NEED_INDICATE_EXEC_STACK 0
1540 /* Output assembler code to FILE to increment profiler label # LABELNO
1541 for profiling a function entry. */
1543 #define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1545 #define MCOUNT_NAME "_mcount"
1547 #define PROFILE_COUNT_REGISTER "edx"
1549 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1550 the stack pointer does not matter. The value is tested only in
1551 functions that have frame pointers.
1552 No definition is equivalent to always zero. */
1553 /* Note on the 386 it might be more efficient not to define this since
1554 we have to restore it ourselves from the frame pointer, in order to
1555 use pop */
1557 #define EXIT_IGNORE_STACK 1
1559 /* Output assembler code for a block containing the constant parts
1560 of a trampoline, leaving space for the variable parts. */
1562 /* On the 386, the trampoline contains two instructions:
1563 mov #STATIC,ecx
1564 jmp FUNCTION
1565 The trampoline is generated entirely at runtime. The operand of JMP
1566 is the address of FUNCTION relative to the instruction following the
1567 JMP (which is 5 bytes long). */
1569 /* Length in units of the trampoline for entering a nested function. */
1571 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 23 : 10)
1573 /* Emit RTL insns to initialize the variable parts of a trampoline.
1574 FNADDR is an RTX for the address of the function's pure code.
1575 CXT is an RTX for the static chain value for the function. */
1577 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1578 x86_initialize_trampoline ((TRAMP), (FNADDR), (CXT))
1580 /* Definitions for register eliminations.
1582 This is an array of structures. Each structure initializes one pair
1583 of eliminable registers. The "from" register number is given first,
1584 followed by "to". Eliminations of the same "from" register are listed
1585 in order of preference.
1587 There are two registers that can always be eliminated on the i386.
1588 The frame pointer and the arg pointer can be replaced by either the
1589 hard frame pointer or to the stack pointer, depending upon the
1590 circumstances. The hard frame pointer is not used before reload and
1591 so it is not eligible for elimination. */
1593 #define ELIMINABLE_REGS \
1594 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1595 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1596 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1597 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
1599 /* Given FROM and TO register numbers, say whether this elimination is
1600 allowed. Frame pointer elimination is automatically handled.
1602 All other eliminations are valid. */
1604 #define CAN_ELIMINATE(FROM, TO) \
1605 ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
1607 /* Define the offset between two registers, one to be eliminated, and the other
1608 its replacement, at the start of a routine. */
1610 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1611 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
1613 /* Addressing modes, and classification of registers for them. */
1615 /* Macros to check register numbers against specific register classes. */
1617 /* These assume that REGNO is a hard or pseudo reg number.
1618 They give nonzero only if REGNO is a hard reg of the suitable class
1619 or a pseudo reg currently allocated to a suitable hard reg.
1620 Since they use reg_renumber, they are safe only once reg_renumber
1621 has been allocated, which happens in local-alloc.c. */
1623 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1624 ((REGNO) < STACK_POINTER_REGNUM \
1625 || REX_INT_REGNO_P (REGNO) \
1626 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \
1627 || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
1629 #define REGNO_OK_FOR_BASE_P(REGNO) \
1630 (GENERAL_REGNO_P (REGNO) \
1631 || (REGNO) == ARG_POINTER_REGNUM \
1632 || (REGNO) == FRAME_POINTER_REGNUM \
1633 || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
1635 #define REGNO_OK_FOR_SIREG_P(REGNO) \
1636 ((REGNO) == 4 || reg_renumber[(REGNO)] == 4)
1637 #define REGNO_OK_FOR_DIREG_P(REGNO) \
1638 ((REGNO) == 5 || reg_renumber[(REGNO)] == 5)
1640 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1641 and check its validity for a certain class.
1642 We have two alternate definitions for each of them.
1643 The usual definition accepts all pseudo regs; the other rejects
1644 them unless they have been allocated suitable hard regs.
1645 The symbol REG_OK_STRICT causes the latter definition to be used.
1647 Most source files want to accept pseudo regs in the hope that
1648 they will get allocated to the class that the insn wants them to be in.
1649 Source files for reload pass need to be strict.
1650 After reload, it makes no difference, since pseudo regs have
1651 been eliminated by then. */
1654 /* Non strict versions, pseudos are ok. */
1655 #define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1656 (REGNO (X) < STACK_POINTER_REGNUM \
1657 || REX_INT_REGNO_P (REGNO (X)) \
1658 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1660 #define REG_OK_FOR_BASE_NONSTRICT_P(X) \
1661 (GENERAL_REGNO_P (REGNO (X)) \
1662 || REGNO (X) == ARG_POINTER_REGNUM \
1663 || REGNO (X) == FRAME_POINTER_REGNUM \
1664 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1666 /* Strict versions, hard registers only */
1667 #define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1668 #define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1670 #ifndef REG_OK_STRICT
1671 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1672 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
1674 #else
1675 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1676 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
1677 #endif
1679 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1680 that is a valid memory address for an instruction.
1681 The MODE argument is the machine mode for the MEM expression
1682 that wants to use this address.
1684 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
1685 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1687 See legitimize_pic_address in i386.c for details as to what
1688 constitutes a legitimate address when -fpic is used. */
1690 #define MAX_REGS_PER_ADDRESS 2
1692 #define CONSTANT_ADDRESS_P(X) constant_address_p (X)
1694 /* Nonzero if the constant value X is a legitimate general operand.
1695 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1697 #define LEGITIMATE_CONSTANT_P(X) legitimate_constant_p (X)
1699 #ifdef REG_OK_STRICT
1700 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1701 do { \
1702 if (legitimate_address_p ((MODE), (X), 1)) \
1703 goto ADDR; \
1704 } while (0)
1706 #else
1707 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1708 do { \
1709 if (legitimate_address_p ((MODE), (X), 0)) \
1710 goto ADDR; \
1711 } while (0)
1713 #endif
1715 /* If defined, a C expression to determine the base term of address X.
1716 This macro is used in only one place: `find_base_term' in alias.c.
1718 It is always safe for this macro to not be defined. It exists so
1719 that alias analysis can understand machine-dependent addresses.
1721 The typical use of this macro is to handle addresses containing
1722 a label_ref or symbol_ref within an UNSPEC. */
1724 #define FIND_BASE_TERM(X) ix86_find_base_term (X)
1726 /* Try machine-dependent ways of modifying an illegitimate address
1727 to be legitimate. If we find one, return the new, valid address.
1728 This macro is used in only one place: `memory_address' in explow.c.
1730 OLDX is the address as it was before break_out_memory_refs was called.
1731 In some cases it is useful to look at this to decide what needs to be done.
1733 MODE and WIN are passed so that this macro can use
1734 GO_IF_LEGITIMATE_ADDRESS.
1736 It is always safe for this macro to do nothing. It exists to recognize
1737 opportunities to optimize the output.
1739 For the 80386, we handle X+REG by loading X into a register R and
1740 using R+REG. R will go in a general reg and indexing will be used.
1741 However, if REG is a broken-out memory address or multiplication,
1742 nothing needs to be done because REG can certainly go in a general reg.
1744 When -fpic is used, special handling is needed for symbolic references.
1745 See comments by legitimize_pic_address in i386.c for details. */
1747 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
1748 do { \
1749 (X) = legitimize_address ((X), (OLDX), (MODE)); \
1750 if (memory_address_p ((MODE), (X))) \
1751 goto WIN; \
1752 } while (0)
1754 #define REWRITE_ADDRESS(X) rewrite_address (X)
1756 /* Nonzero if the constant value X is a legitimate general operand
1757 when generating PIC code. It is given that flag_pic is on and
1758 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1760 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
1762 #define SYMBOLIC_CONST(X) \
1763 (GET_CODE (X) == SYMBOL_REF \
1764 || GET_CODE (X) == LABEL_REF \
1765 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
1767 /* Go to LABEL if ADDR (a legitimate address expression)
1768 has an effect that depends on the machine mode it is used for.
1769 On the 80386, only postdecrement and postincrement address depend thus
1770 (the amount of decrement or increment being the length of the operand).
1771 These are now caught in recog.c. */
1772 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL)
1774 /* Max number of args passed in registers. If this is more than 3, we will
1775 have problems with ebx (register #4), since it is a caller save register and
1776 is also used as the pic register in ELF. So for now, don't allow more than
1777 3 registers to be passed in registers. */
1779 #define REGPARM_MAX (TARGET_64BIT ? 6 : 3)
1781 /* ??? Currently disabled, as reg-stack.c does not know how to
1782 rearrange input registers if some arguments are left unused. */
1783 #define X87_REGPARM_MAX 0
1785 #define SSE_REGPARM_MAX (TARGET_64BIT ? 8 : (TARGET_SSE ? 3 : 0))
1787 #define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
1790 /* Specify the machine mode that this machine uses
1791 for the index in the tablejump instruction. */
1792 #define CASE_VECTOR_MODE (!TARGET_64BIT || flag_pic ? SImode : DImode)
1794 /* Define this as 1 if `char' should by default be signed; else as 0. */
1795 #define DEFAULT_SIGNED_CHAR 1
1797 /* Max number of bytes we can move from memory to memory
1798 in one reasonably fast instruction. */
1799 #define MOVE_MAX 16
1801 /* MOVE_MAX_PIECES is the number of bytes at a time which we can
1802 move efficiently, as opposed to MOVE_MAX which is the maximum
1803 number of bytes we can move with a single instruction. */
1804 #define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4)
1806 /* If a memory-to-memory move would take MOVE_RATIO or more simple
1807 move-instruction pairs, we will do a movmem or libcall instead.
1808 Increasing the value will always make code faster, but eventually
1809 incurs high cost in increased code size.
1811 If you don't define this, a reasonable default is used. */
1813 #define MOVE_RATIO (optimize_size ? 3 : ix86_cost->move_ratio)
1815 /* If a clear memory operation would take CLEAR_RATIO or more simple
1816 move-instruction sequences, we will do a clrmem or libcall instead. */
1818 #define CLEAR_RATIO (optimize_size ? 2 \
1819 : ix86_cost->move_ratio > 6 ? 6 : ix86_cost->move_ratio)
1821 /* Define if shifts truncate the shift count
1822 which implies one can omit a sign-extension or zero-extension
1823 of a shift count. */
1824 /* On i386, shifts do truncate the count. But bit opcodes don't. */
1826 /* #define SHIFT_COUNT_TRUNCATED */
1828 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1829 is done just by pretending it is already truncated. */
1830 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1832 /* A macro to update M and UNSIGNEDP when an object whose type is
1833 TYPE and which has the specified mode and signedness is to be
1834 stored in a register. This macro is only called when TYPE is a
1835 scalar type.
1837 On i386 it is sometimes useful to promote HImode and QImode
1838 quantities to SImode. The choice depends on target type. */
1840 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
1841 do { \
1842 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
1843 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
1844 (MODE) = SImode; \
1845 } while (0)
1847 /* Specify the machine mode that pointers have.
1848 After generation of rtl, the compiler makes no further distinction
1849 between pointers and any other objects of this machine mode. */
1850 #define Pmode (TARGET_64BIT ? DImode : SImode)
1852 /* A function address in a call instruction
1853 is a byte address (for indexing purposes)
1854 so give the MEM rtx a byte's mode. */
1855 #define FUNCTION_MODE QImode
1857 /* A C expression for the cost of moving data from a register in class FROM to
1858 one in class TO. The classes are expressed using the enumeration values
1859 such as `GENERAL_REGS'. A value of 2 is the default; other values are
1860 interpreted relative to that.
1862 It is not required that the cost always equal 2 when FROM is the same as TO;
1863 on some machines it is expensive to move between registers if they are not
1864 general registers. */
1866 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
1867 ix86_register_move_cost ((MODE), (CLASS1), (CLASS2))
1869 /* A C expression for the cost of moving data of mode M between a
1870 register and memory. A value of 2 is the default; this cost is
1871 relative to those in `REGISTER_MOVE_COST'.
1873 If moving between registers and memory is more expensive than
1874 between two registers, you should define this macro to express the
1875 relative cost. */
1877 #define MEMORY_MOVE_COST(MODE, CLASS, IN) \
1878 ix86_memory_move_cost ((MODE), (CLASS), (IN))
1880 /* A C expression for the cost of a branch instruction. A value of 1
1881 is the default; other values are interpreted relative to that. */
1883 #define BRANCH_COST ix86_branch_cost
1885 /* Define this macro as a C expression which is nonzero if accessing
1886 less than a word of memory (i.e. a `char' or a `short') is no
1887 faster than accessing a word of memory, i.e., if such access
1888 require more than one instruction or if there is no difference in
1889 cost between byte and (aligned) word loads.
1891 When this macro is not defined, the compiler will access a field by
1892 finding the smallest containing object; when it is defined, a
1893 fullword load will be used if alignment permits. Unless bytes
1894 accesses are faster than word accesses, using word accesses is
1895 preferable since it may eliminate subsequent memory access if
1896 subsequent accesses occur to other fields in the same word of the
1897 structure, but to different bytes. */
1899 #define SLOW_BYTE_ACCESS 0
1901 /* Nonzero if access to memory by shorts is slow and undesirable. */
1902 #define SLOW_SHORT_ACCESS 0
1904 /* Define this macro to be the value 1 if unaligned accesses have a
1905 cost many times greater than aligned accesses, for example if they
1906 are emulated in a trap handler.
1908 When this macro is nonzero, the compiler will act as if
1909 `STRICT_ALIGNMENT' were nonzero when generating code for block
1910 moves. This can cause significantly more instructions to be
1911 produced. Therefore, do not set this macro nonzero if unaligned
1912 accesses only add a cycle or two to the time for a memory access.
1914 If the value of this macro is always zero, it need not be defined. */
1916 /* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
1918 /* Define this macro if it is as good or better to call a constant
1919 function address than to call an address kept in a register.
1921 Desirable on the 386 because a CALL with a constant address is
1922 faster than one with a register address. */
1924 #define NO_FUNCTION_CSE
1926 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1927 return the mode to be used for the comparison.
1929 For floating-point equality comparisons, CCFPEQmode should be used.
1930 VOIDmode should be used in all other cases.
1932 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
1933 possible, to allow for more combinations. */
1935 #define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
1937 /* Return nonzero if MODE implies a floating point inequality can be
1938 reversed. */
1940 #define REVERSIBLE_CC_MODE(MODE) 1
1942 /* A C expression whose value is reversed condition code of the CODE for
1943 comparison done in CC_MODE mode. */
1944 #define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
1947 /* Control the assembler format that we output, to the extent
1948 this does not vary between assemblers. */
1950 /* How to refer to registers in assembler output.
1951 This sequence is indexed by compiler's hard-register-number (see above). */
1953 /* In order to refer to the first 8 regs as 32 bit regs, prefix an "e".
1954 For non floating point regs, the following are the HImode names.
1956 For float regs, the stack top is sometimes referred to as "%st(0)"
1957 instead of just "%st". PRINT_OPERAND handles this with the "y" code. */
1959 #define HI_REGISTER_NAMES \
1960 {"ax","dx","cx","bx","si","di","bp","sp", \
1961 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
1962 "argp", "flags", "fpsr", "fpcr", "dirflag", "frame", \
1963 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
1964 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \
1965 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
1966 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
1968 #define REGISTER_NAMES HI_REGISTER_NAMES
1970 /* Table of additional register names to use in user input. */
1972 #define ADDITIONAL_REGISTER_NAMES \
1973 { { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
1974 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
1975 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
1976 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
1977 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
1978 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 } }
1980 /* Note we are omitting these since currently I don't know how
1981 to get gcc to use these, since they want the same but different
1982 number as al, and ax.
1985 #define QI_REGISTER_NAMES \
1986 {"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
1988 /* These parallel the array above, and can be used to access bits 8:15
1989 of regs 0 through 3. */
1991 #define QI_HIGH_REGISTER_NAMES \
1992 {"ah", "dh", "ch", "bh", }
1994 /* How to renumber registers for dbx and gdb. */
1996 #define DBX_REGISTER_NUMBER(N) \
1997 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
1999 extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2000 extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2001 extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
2003 /* Before the prologue, RA is at 0(%esp). */
2004 #define INCOMING_RETURN_ADDR_RTX \
2005 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
2007 /* After the prologue, RA is at -4(AP) in the current frame. */
2008 #define RETURN_ADDR_RTX(COUNT, FRAME) \
2009 ((COUNT) == 0 \
2010 ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
2011 : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
2013 /* PC is dbx register 8; let's use that column for RA. */
2014 #define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
2016 /* Before the prologue, the top of the frame is at 4(%esp). */
2017 #define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
2019 /* Describe how we implement __builtin_eh_return. */
2020 #define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
2021 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 2)
2024 /* Select a format to encode pointers in exception handling data. CODE
2025 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2026 true if the symbol may be affected by dynamic relocations.
2028 ??? All x86 object file formats are capable of representing this.
2029 After all, the relocation needed is the same as for the call insn.
2030 Whether or not a particular assembler allows us to enter such, I
2031 guess we'll have to see. */
2032 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
2033 asm_preferred_eh_data_format ((CODE), (GLOBAL))
2035 /* This is how to output an insn to push a register on the stack.
2036 It need not be very fast code. */
2038 #define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
2039 do { \
2040 if (TARGET_64BIT) \
2041 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
2042 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2043 else \
2044 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
2045 } while (0)
2047 /* This is how to output an insn to pop a register from the stack.
2048 It need not be very fast code. */
2050 #define ASM_OUTPUT_REG_POP(FILE, REGNO) \
2051 do { \
2052 if (TARGET_64BIT) \
2053 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
2054 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2055 else \
2056 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
2057 } while (0)
2059 /* This is how to output an element of a case-vector that is absolute. */
2061 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
2062 ix86_output_addr_vec_elt ((FILE), (VALUE))
2064 /* This is how to output an element of a case-vector that is relative. */
2066 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2067 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
2069 /* Under some conditions we need jump tables in the text section,
2070 because the assembler cannot handle label differences between
2071 sections. This is the case for x86_64 on Mach-O for example. */
2073 #define JUMP_TABLES_IN_TEXT_SECTION \
2074 (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2075 || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
2077 /* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2078 and switch back. For x86 we do this only to save a few bytes that
2079 would otherwise be unused in the text section. */
2080 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2081 asm (SECTION_OP "\n\t" \
2082 "call " USER_LABEL_PREFIX #FUNC "\n" \
2083 TEXT_SECTION_ASM_OP);
2085 /* Print operand X (an rtx) in assembler syntax to file FILE.
2086 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2087 Effect of various CODE letters is described in i386.c near
2088 print_operand function. */
2090 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2091 ((CODE) == '*' || (CODE) == '+' || (CODE) == '&')
2093 #define PRINT_OPERAND(FILE, X, CODE) \
2094 print_operand ((FILE), (X), (CODE))
2096 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
2097 print_operand_address ((FILE), (ADDR))
2099 #define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL) \
2100 do { \
2101 if (! output_addr_const_extra (FILE, (X))) \
2102 goto FAIL; \
2103 } while (0);
2105 /* a letter which is not needed by the normal asm syntax, which
2106 we can use for operand syntax in the extended asm */
2108 #define ASM_OPERAND_LETTER '#'
2109 #define RET return ""
2110 #define AT_SP(MODE) (gen_rtx_MEM ((MODE), stack_pointer_rtx))
2112 /* Which processor to schedule for. The cpu attribute defines a list that
2113 mirrors this list, so changes to i386.md must be made at the same time. */
2115 enum processor_type
2117 PROCESSOR_I386, /* 80386 */
2118 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2119 PROCESSOR_PENTIUM,
2120 PROCESSOR_PENTIUMPRO,
2121 PROCESSOR_GEODE,
2122 PROCESSOR_K6,
2123 PROCESSOR_ATHLON,
2124 PROCESSOR_PENTIUM4,
2125 PROCESSOR_K8,
2126 PROCESSOR_NOCONA,
2127 PROCESSOR_CORE2,
2128 PROCESSOR_GENERIC32,
2129 PROCESSOR_GENERIC64,
2130 PROCESSOR_max
2133 extern enum processor_type ix86_tune;
2134 extern enum processor_type ix86_arch;
2136 enum fpmath_unit
2138 FPMATH_387 = 1,
2139 FPMATH_SSE = 2
2142 extern enum fpmath_unit ix86_fpmath;
2144 enum tls_dialect
2146 TLS_DIALECT_GNU,
2147 TLS_DIALECT_GNU2,
2148 TLS_DIALECT_SUN
2151 extern enum tls_dialect ix86_tls_dialect;
2153 enum cmodel {
2154 CM_32, /* The traditional 32-bit ABI. */
2155 CM_SMALL, /* Assumes all code and data fits in the low 31 bits. */
2156 CM_KERNEL, /* Assumes all code and data fits in the high 31 bits. */
2157 CM_MEDIUM, /* Assumes code fits in the low 31 bits; data unlimited. */
2158 CM_LARGE, /* No assumptions. */
2159 CM_SMALL_PIC, /* Assumes code+data+got/plt fits in a 31 bit region. */
2160 CM_MEDIUM_PIC /* Assumes code+got/plt fits in a 31 bit region. */
2163 extern enum cmodel ix86_cmodel;
2165 /* Size of the RED_ZONE area. */
2166 #define RED_ZONE_SIZE 128
2167 /* Reserved area of the red zone for temporaries. */
2168 #define RED_ZONE_RESERVE 8
2170 enum asm_dialect {
2171 ASM_ATT,
2172 ASM_INTEL
2175 extern enum asm_dialect ix86_asm_dialect;
2176 extern unsigned int ix86_preferred_stack_boundary;
2177 extern int ix86_branch_cost, ix86_section_threshold;
2179 /* Smallest class containing REGNO. */
2180 extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2182 extern rtx ix86_compare_op0; /* operand 0 for comparisons */
2183 extern rtx ix86_compare_op1; /* operand 1 for comparisons */
2184 extern rtx ix86_compare_emitted;
2186 /* To properly truncate FP values into integers, we need to set i387 control
2187 word. We can't emit proper mode switching code before reload, as spills
2188 generated by reload may truncate values incorrectly, but we still can avoid
2189 redundant computation of new control word by the mode switching pass.
2190 The fldcw instructions are still emitted redundantly, but this is probably
2191 not going to be noticeable problem, as most CPUs do have fast path for
2192 the sequence.
2194 The machinery is to emit simple truncation instructions and split them
2195 before reload to instructions having USEs of two memory locations that
2196 are filled by this code to old and new control word.
2198 Post-reload pass may be later used to eliminate the redundant fildcw if
2199 needed. */
2201 enum ix86_entity
2203 I387_TRUNC = 0,
2204 I387_FLOOR,
2205 I387_CEIL,
2206 I387_MASK_PM,
2207 MAX_386_ENTITIES
2210 enum ix86_stack_slot
2212 SLOT_TEMP = 0,
2213 SLOT_CW_STORED,
2214 SLOT_CW_TRUNC,
2215 SLOT_CW_FLOOR,
2216 SLOT_CW_CEIL,
2217 SLOT_CW_MASK_PM,
2218 MAX_386_STACK_LOCALS
2221 /* Define this macro if the port needs extra instructions inserted
2222 for mode switching in an optimizing compilation. */
2224 #define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2225 ix86_optimize_mode_switching[(ENTITY)]
2227 /* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2228 initializer for an array of integers. Each initializer element N
2229 refers to an entity that needs mode switching, and specifies the
2230 number of different modes that might need to be set for this
2231 entity. The position of the initializer in the initializer -
2232 starting counting at zero - determines the integer that is used to
2233 refer to the mode-switched entity in question. */
2235 #define NUM_MODES_FOR_MODE_SWITCHING \
2236 { I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
2238 /* ENTITY is an integer specifying a mode-switched entity. If
2239 `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
2240 return an integer value not larger than the corresponding element
2241 in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
2242 must be switched into prior to the execution of INSN. */
2244 #define MODE_NEEDED(ENTITY, I) ix86_mode_needed ((ENTITY), (I))
2246 /* This macro specifies the order in which modes for ENTITY are
2247 processed. 0 is the highest priority. */
2249 #define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
2251 /* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE
2252 is the set of hard registers live at the point where the insn(s)
2253 are to be inserted. */
2255 #define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
2256 ((MODE) != I387_CW_ANY && (MODE) != I387_CW_UNINITIALIZED \
2257 ? emit_i387_cw_initialization (MODE), 0 \
2258 : 0)
2261 /* Avoid renaming of stack registers, as doing so in combination with
2262 scheduling just increases amount of live registers at time and in
2263 the turn amount of fxch instructions needed.
2265 ??? Maybe Pentium chips benefits from renaming, someone can try.... */
2267 #define HARD_REGNO_RENAME_OK(SRC, TARGET) \
2268 (! IN_RANGE ((SRC), FIRST_STACK_REG, LAST_STACK_REG))
2271 #define DLL_IMPORT_EXPORT_PREFIX '#'
2273 #define FASTCALL_PREFIX '@'
2275 struct machine_function GTY(())
2277 struct stack_local_entry *stack_locals;
2278 const char *some_ld_name;
2279 rtx force_align_arg_pointer;
2280 int save_varrargs_registers;
2281 int accesses_prev_frame;
2282 int optimize_mode_switching[MAX_386_ENTITIES];
2283 /* Set by ix86_compute_frame_layout and used by prologue/epilogue expander to
2284 determine the style used. */
2285 int use_fast_prologue_epilogue;
2286 /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE has been computed
2287 for. */
2288 int use_fast_prologue_epilogue_nregs;
2289 /* If true, the current function needs the default PIC register, not
2290 an alternate register (on x86) and must not use the red zone (on
2291 x86_64), even if it's a leaf function. We don't want the
2292 function to be regarded as non-leaf because TLS calls need not
2293 affect register allocation. This flag is set when a TLS call
2294 instruction is expanded within a function, and never reset, even
2295 if all such instructions are optimized away. Use the
2296 ix86_current_function_calls_tls_descriptor macro for a better
2297 approximation. */
2298 int tls_descriptor_call_expanded_p;
2301 #define ix86_stack_locals (cfun->machine->stack_locals)
2302 #define ix86_save_varrargs_registers (cfun->machine->save_varrargs_registers)
2303 #define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
2304 #define ix86_tls_descriptor_calls_expanded_in_cfun \
2305 (cfun->machine->tls_descriptor_call_expanded_p)
2306 /* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2307 calls are optimized away, we try to detect cases in which it was
2308 optimized away. Since such instructions (use (reg REG_SP)), we can
2309 verify whether there's any such instruction live by testing that
2310 REG_SP is live. */
2311 #define ix86_current_function_calls_tls_descriptor \
2312 (ix86_tls_descriptor_calls_expanded_in_cfun && regs_ever_live[SP_REG])
2314 /* Control behavior of x86_file_start. */
2315 #define X86_FILE_START_VERSION_DIRECTIVE false
2316 #define X86_FILE_START_FLTUSED false
2318 /* Flag to mark data that is in the large address area. */
2319 #define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2320 #define SYMBOL_REF_FAR_ADDR_P(X) \
2321 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
2323 Local variables:
2324 version-control: t
2325 End: