trans-decl.c (create_function_arglist): Add hidden coarray
[official-gcc.git] / gcc / tree-ssa-math-opts.c
blobb965ad1b7f36cf84275629a4b7bc1a2397ef11f2
1 /* Global, SSA-based optimizations using mathematical identities.
2 Copyright (C) 2005-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* Currently, the only mini-pass in this file tries to CSE reciprocal
21 operations. These are common in sequences such as this one:
23 modulus = sqrt(x*x + y*y + z*z);
24 x = x / modulus;
25 y = y / modulus;
26 z = z / modulus;
28 that can be optimized to
30 modulus = sqrt(x*x + y*y + z*z);
31 rmodulus = 1.0 / modulus;
32 x = x * rmodulus;
33 y = y * rmodulus;
34 z = z * rmodulus;
36 We do this for loop invariant divisors, and with this pass whenever
37 we notice that a division has the same divisor multiple times.
39 Of course, like in PRE, we don't insert a division if a dominator
40 already has one. However, this cannot be done as an extension of
41 PRE for several reasons.
43 First of all, with some experiments it was found out that the
44 transformation is not always useful if there are only two divisions
45 hy the same divisor. This is probably because modern processors
46 can pipeline the divisions; on older, in-order processors it should
47 still be effective to optimize two divisions by the same number.
48 We make this a param, and it shall be called N in the remainder of
49 this comment.
51 Second, if trapping math is active, we have less freedom on where
52 to insert divisions: we can only do so in basic blocks that already
53 contain one. (If divisions don't trap, instead, we can insert
54 divisions elsewhere, which will be in blocks that are common dominators
55 of those that have the division).
57 We really don't want to compute the reciprocal unless a division will
58 be found. To do this, we won't insert the division in a basic block
59 that has less than N divisions *post-dominating* it.
61 The algorithm constructs a subset of the dominator tree, holding the
62 blocks containing the divisions and the common dominators to them,
63 and walk it twice. The first walk is in post-order, and it annotates
64 each block with the number of divisions that post-dominate it: this
65 gives information on where divisions can be inserted profitably.
66 The second walk is in pre-order, and it inserts divisions as explained
67 above, and replaces divisions by multiplications.
69 In the best case, the cost of the pass is O(n_statements). In the
70 worst-case, the cost is due to creating the dominator tree subset,
71 with a cost of O(n_basic_blocks ^ 2); however this can only happen
72 for n_statements / n_basic_blocks statements. So, the amortized cost
73 of creating the dominator tree subset is O(n_basic_blocks) and the
74 worst-case cost of the pass is O(n_statements * n_basic_blocks).
76 More practically, the cost will be small because there are few
77 divisions, and they tend to be in the same basic block, so insert_bb
78 is called very few times.
80 If we did this using domwalk.c, an efficient implementation would have
81 to work on all the variables in a single pass, because we could not
82 work on just a subset of the dominator tree, as we do now, and the
83 cost would also be something like O(n_statements * n_basic_blocks).
84 The data structures would be more complex in order to work on all the
85 variables in a single pass. */
87 #include "config.h"
88 #include "system.h"
89 #include "coretypes.h"
90 #include "tm.h"
91 #include "flags.h"
92 #include "tree.h"
93 #include "basic-block.h"
94 #include "tree-ssa-alias.h"
95 #include "internal-fn.h"
96 #include "gimple-fold.h"
97 #include "gimple-expr.h"
98 #include "is-a.h"
99 #include "gimple.h"
100 #include "gimple-iterator.h"
101 #include "gimplify-me.h"
102 #include "stor-layout.h"
103 #include "gimple-ssa.h"
104 #include "tree-cfg.h"
105 #include "tree-phinodes.h"
106 #include "ssa-iterators.h"
107 #include "stringpool.h"
108 #include "tree-ssanames.h"
109 #include "expr.h"
110 #include "tree-dfa.h"
111 #include "tree-ssa.h"
112 #include "tree-pass.h"
113 #include "alloc-pool.h"
114 #include "target.h"
115 #include "gimple-pretty-print.h"
117 /* FIXME: RTL headers have to be included here for optabs. */
118 #include "rtl.h" /* Because optabs.h wants enum rtx_code. */
119 #include "expr.h" /* Because optabs.h wants sepops. */
120 #include "optabs.h"
122 /* This structure represents one basic block that either computes a
123 division, or is a common dominator for basic block that compute a
124 division. */
125 struct occurrence {
126 /* The basic block represented by this structure. */
127 basic_block bb;
129 /* If non-NULL, the SSA_NAME holding the definition for a reciprocal
130 inserted in BB. */
131 tree recip_def;
133 /* If non-NULL, the GIMPLE_ASSIGN for a reciprocal computation that
134 was inserted in BB. */
135 gimple recip_def_stmt;
137 /* Pointer to a list of "struct occurrence"s for blocks dominated
138 by BB. */
139 struct occurrence *children;
141 /* Pointer to the next "struct occurrence"s in the list of blocks
142 sharing a common dominator. */
143 struct occurrence *next;
145 /* The number of divisions that are in BB before compute_merit. The
146 number of divisions that are in BB or post-dominate it after
147 compute_merit. */
148 int num_divisions;
150 /* True if the basic block has a division, false if it is a common
151 dominator for basic blocks that do. If it is false and trapping
152 math is active, BB is not a candidate for inserting a reciprocal. */
153 bool bb_has_division;
156 static struct
158 /* Number of 1.0/X ops inserted. */
159 int rdivs_inserted;
161 /* Number of 1.0/FUNC ops inserted. */
162 int rfuncs_inserted;
163 } reciprocal_stats;
165 static struct
167 /* Number of cexpi calls inserted. */
168 int inserted;
169 } sincos_stats;
171 static struct
173 /* Number of hand-written 16-bit bswaps found. */
174 int found_16bit;
176 /* Number of hand-written 32-bit bswaps found. */
177 int found_32bit;
179 /* Number of hand-written 64-bit bswaps found. */
180 int found_64bit;
181 } bswap_stats;
183 static struct
185 /* Number of widening multiplication ops inserted. */
186 int widen_mults_inserted;
188 /* Number of integer multiply-and-accumulate ops inserted. */
189 int maccs_inserted;
191 /* Number of fp fused multiply-add ops inserted. */
192 int fmas_inserted;
193 } widen_mul_stats;
195 /* The instance of "struct occurrence" representing the highest
196 interesting block in the dominator tree. */
197 static struct occurrence *occ_head;
199 /* Allocation pool for getting instances of "struct occurrence". */
200 static alloc_pool occ_pool;
204 /* Allocate and return a new struct occurrence for basic block BB, and
205 whose children list is headed by CHILDREN. */
206 static struct occurrence *
207 occ_new (basic_block bb, struct occurrence *children)
209 struct occurrence *occ;
211 bb->aux = occ = (struct occurrence *) pool_alloc (occ_pool);
212 memset (occ, 0, sizeof (struct occurrence));
214 occ->bb = bb;
215 occ->children = children;
216 return occ;
220 /* Insert NEW_OCC into our subset of the dominator tree. P_HEAD points to a
221 list of "struct occurrence"s, one per basic block, having IDOM as
222 their common dominator.
224 We try to insert NEW_OCC as deep as possible in the tree, and we also
225 insert any other block that is a common dominator for BB and one
226 block already in the tree. */
228 static void
229 insert_bb (struct occurrence *new_occ, basic_block idom,
230 struct occurrence **p_head)
232 struct occurrence *occ, **p_occ;
234 for (p_occ = p_head; (occ = *p_occ) != NULL; )
236 basic_block bb = new_occ->bb, occ_bb = occ->bb;
237 basic_block dom = nearest_common_dominator (CDI_DOMINATORS, occ_bb, bb);
238 if (dom == bb)
240 /* BB dominates OCC_BB. OCC becomes NEW_OCC's child: remove OCC
241 from its list. */
242 *p_occ = occ->next;
243 occ->next = new_occ->children;
244 new_occ->children = occ;
246 /* Try the next block (it may as well be dominated by BB). */
249 else if (dom == occ_bb)
251 /* OCC_BB dominates BB. Tail recurse to look deeper. */
252 insert_bb (new_occ, dom, &occ->children);
253 return;
256 else if (dom != idom)
258 gcc_assert (!dom->aux);
260 /* There is a dominator between IDOM and BB, add it and make
261 two children out of NEW_OCC and OCC. First, remove OCC from
262 its list. */
263 *p_occ = occ->next;
264 new_occ->next = occ;
265 occ->next = NULL;
267 /* None of the previous blocks has DOM as a dominator: if we tail
268 recursed, we would reexamine them uselessly. Just switch BB with
269 DOM, and go on looking for blocks dominated by DOM. */
270 new_occ = occ_new (dom, new_occ);
273 else
275 /* Nothing special, go on with the next element. */
276 p_occ = &occ->next;
280 /* No place was found as a child of IDOM. Make BB a sibling of IDOM. */
281 new_occ->next = *p_head;
282 *p_head = new_occ;
285 /* Register that we found a division in BB. */
287 static inline void
288 register_division_in (basic_block bb)
290 struct occurrence *occ;
292 occ = (struct occurrence *) bb->aux;
293 if (!occ)
295 occ = occ_new (bb, NULL);
296 insert_bb (occ, ENTRY_BLOCK_PTR_FOR_FN (cfun), &occ_head);
299 occ->bb_has_division = true;
300 occ->num_divisions++;
304 /* Compute the number of divisions that postdominate each block in OCC and
305 its children. */
307 static void
308 compute_merit (struct occurrence *occ)
310 struct occurrence *occ_child;
311 basic_block dom = occ->bb;
313 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
315 basic_block bb;
316 if (occ_child->children)
317 compute_merit (occ_child);
319 if (flag_exceptions)
320 bb = single_noncomplex_succ (dom);
321 else
322 bb = dom;
324 if (dominated_by_p (CDI_POST_DOMINATORS, bb, occ_child->bb))
325 occ->num_divisions += occ_child->num_divisions;
330 /* Return whether USE_STMT is a floating-point division by DEF. */
331 static inline bool
332 is_division_by (gimple use_stmt, tree def)
334 return is_gimple_assign (use_stmt)
335 && gimple_assign_rhs_code (use_stmt) == RDIV_EXPR
336 && gimple_assign_rhs2 (use_stmt) == def
337 /* Do not recognize x / x as valid division, as we are getting
338 confused later by replacing all immediate uses x in such
339 a stmt. */
340 && gimple_assign_rhs1 (use_stmt) != def;
343 /* Walk the subset of the dominator tree rooted at OCC, setting the
344 RECIP_DEF field to a definition of 1.0 / DEF that can be used in
345 the given basic block. The field may be left NULL, of course,
346 if it is not possible or profitable to do the optimization.
348 DEF_BSI is an iterator pointing at the statement defining DEF.
349 If RECIP_DEF is set, a dominator already has a computation that can
350 be used. */
352 static void
353 insert_reciprocals (gimple_stmt_iterator *def_gsi, struct occurrence *occ,
354 tree def, tree recip_def, int threshold)
356 tree type;
357 gimple new_stmt;
358 gimple_stmt_iterator gsi;
359 struct occurrence *occ_child;
361 if (!recip_def
362 && (occ->bb_has_division || !flag_trapping_math)
363 && occ->num_divisions >= threshold)
365 /* Make a variable with the replacement and substitute it. */
366 type = TREE_TYPE (def);
367 recip_def = create_tmp_reg (type, "reciptmp");
368 new_stmt = gimple_build_assign_with_ops (RDIV_EXPR, recip_def,
369 build_one_cst (type), def);
371 if (occ->bb_has_division)
373 /* Case 1: insert before an existing division. */
374 gsi = gsi_after_labels (occ->bb);
375 while (!gsi_end_p (gsi) && !is_division_by (gsi_stmt (gsi), def))
376 gsi_next (&gsi);
378 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
380 else if (def_gsi && occ->bb == def_gsi->bb)
382 /* Case 2: insert right after the definition. Note that this will
383 never happen if the definition statement can throw, because in
384 that case the sole successor of the statement's basic block will
385 dominate all the uses as well. */
386 gsi_insert_after (def_gsi, new_stmt, GSI_NEW_STMT);
388 else
390 /* Case 3: insert in a basic block not containing defs/uses. */
391 gsi = gsi_after_labels (occ->bb);
392 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
395 reciprocal_stats.rdivs_inserted++;
397 occ->recip_def_stmt = new_stmt;
400 occ->recip_def = recip_def;
401 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
402 insert_reciprocals (def_gsi, occ_child, def, recip_def, threshold);
406 /* Replace the division at USE_P with a multiplication by the reciprocal, if
407 possible. */
409 static inline void
410 replace_reciprocal (use_operand_p use_p)
412 gimple use_stmt = USE_STMT (use_p);
413 basic_block bb = gimple_bb (use_stmt);
414 struct occurrence *occ = (struct occurrence *) bb->aux;
416 if (optimize_bb_for_speed_p (bb)
417 && occ->recip_def && use_stmt != occ->recip_def_stmt)
419 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
420 gimple_assign_set_rhs_code (use_stmt, MULT_EXPR);
421 SET_USE (use_p, occ->recip_def);
422 fold_stmt_inplace (&gsi);
423 update_stmt (use_stmt);
428 /* Free OCC and return one more "struct occurrence" to be freed. */
430 static struct occurrence *
431 free_bb (struct occurrence *occ)
433 struct occurrence *child, *next;
435 /* First get the two pointers hanging off OCC. */
436 next = occ->next;
437 child = occ->children;
438 occ->bb->aux = NULL;
439 pool_free (occ_pool, occ);
441 /* Now ensure that we don't recurse unless it is necessary. */
442 if (!child)
443 return next;
444 else
446 while (next)
447 next = free_bb (next);
449 return child;
454 /* Look for floating-point divisions among DEF's uses, and try to
455 replace them by multiplications with the reciprocal. Add
456 as many statements computing the reciprocal as needed.
458 DEF must be a GIMPLE register of a floating-point type. */
460 static void
461 execute_cse_reciprocals_1 (gimple_stmt_iterator *def_gsi, tree def)
463 use_operand_p use_p;
464 imm_use_iterator use_iter;
465 struct occurrence *occ;
466 int count = 0, threshold;
468 gcc_assert (FLOAT_TYPE_P (TREE_TYPE (def)) && is_gimple_reg (def));
470 FOR_EACH_IMM_USE_FAST (use_p, use_iter, def)
472 gimple use_stmt = USE_STMT (use_p);
473 if (is_division_by (use_stmt, def))
475 register_division_in (gimple_bb (use_stmt));
476 count++;
480 /* Do the expensive part only if we can hope to optimize something. */
481 threshold = targetm.min_divisions_for_recip_mul (TYPE_MODE (TREE_TYPE (def)));
482 if (count >= threshold)
484 gimple use_stmt;
485 for (occ = occ_head; occ; occ = occ->next)
487 compute_merit (occ);
488 insert_reciprocals (def_gsi, occ, def, NULL, threshold);
491 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, def)
493 if (is_division_by (use_stmt, def))
495 FOR_EACH_IMM_USE_ON_STMT (use_p, use_iter)
496 replace_reciprocal (use_p);
501 for (occ = occ_head; occ; )
502 occ = free_bb (occ);
504 occ_head = NULL;
507 /* Go through all the floating-point SSA_NAMEs, and call
508 execute_cse_reciprocals_1 on each of them. */
509 namespace {
511 const pass_data pass_data_cse_reciprocals =
513 GIMPLE_PASS, /* type */
514 "recip", /* name */
515 OPTGROUP_NONE, /* optinfo_flags */
516 true, /* has_execute */
517 TV_NONE, /* tv_id */
518 PROP_ssa, /* properties_required */
519 0, /* properties_provided */
520 0, /* properties_destroyed */
521 0, /* todo_flags_start */
522 ( TODO_update_ssa | TODO_verify_ssa
523 | TODO_verify_stmts ), /* todo_flags_finish */
526 class pass_cse_reciprocals : public gimple_opt_pass
528 public:
529 pass_cse_reciprocals (gcc::context *ctxt)
530 : gimple_opt_pass (pass_data_cse_reciprocals, ctxt)
533 /* opt_pass methods: */
534 virtual bool gate (function *) { return optimize && flag_reciprocal_math; }
535 virtual unsigned int execute (function *);
537 }; // class pass_cse_reciprocals
539 unsigned int
540 pass_cse_reciprocals::execute (function *fun)
542 basic_block bb;
543 tree arg;
545 occ_pool = create_alloc_pool ("dominators for recip",
546 sizeof (struct occurrence),
547 n_basic_blocks_for_fn (fun) / 3 + 1);
549 memset (&reciprocal_stats, 0, sizeof (reciprocal_stats));
550 calculate_dominance_info (CDI_DOMINATORS);
551 calculate_dominance_info (CDI_POST_DOMINATORS);
553 #ifdef ENABLE_CHECKING
554 FOR_EACH_BB_FN (bb, fun)
555 gcc_assert (!bb->aux);
556 #endif
558 for (arg = DECL_ARGUMENTS (fun->decl); arg; arg = DECL_CHAIN (arg))
559 if (FLOAT_TYPE_P (TREE_TYPE (arg))
560 && is_gimple_reg (arg))
562 tree name = ssa_default_def (fun, arg);
563 if (name)
564 execute_cse_reciprocals_1 (NULL, name);
567 FOR_EACH_BB_FN (bb, fun)
569 gimple_stmt_iterator gsi;
570 gimple phi;
571 tree def;
573 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
575 phi = gsi_stmt (gsi);
576 def = PHI_RESULT (phi);
577 if (! virtual_operand_p (def)
578 && FLOAT_TYPE_P (TREE_TYPE (def)))
579 execute_cse_reciprocals_1 (NULL, def);
582 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
584 gimple stmt = gsi_stmt (gsi);
586 if (gimple_has_lhs (stmt)
587 && (def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF)) != NULL
588 && FLOAT_TYPE_P (TREE_TYPE (def))
589 && TREE_CODE (def) == SSA_NAME)
590 execute_cse_reciprocals_1 (&gsi, def);
593 if (optimize_bb_for_size_p (bb))
594 continue;
596 /* Scan for a/func(b) and convert it to reciprocal a*rfunc(b). */
597 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
599 gimple stmt = gsi_stmt (gsi);
600 tree fndecl;
602 if (is_gimple_assign (stmt)
603 && gimple_assign_rhs_code (stmt) == RDIV_EXPR)
605 tree arg1 = gimple_assign_rhs2 (stmt);
606 gimple stmt1;
608 if (TREE_CODE (arg1) != SSA_NAME)
609 continue;
611 stmt1 = SSA_NAME_DEF_STMT (arg1);
613 if (is_gimple_call (stmt1)
614 && gimple_call_lhs (stmt1)
615 && (fndecl = gimple_call_fndecl (stmt1))
616 && (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
617 || DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD))
619 enum built_in_function code;
620 bool md_code, fail;
621 imm_use_iterator ui;
622 use_operand_p use_p;
624 code = DECL_FUNCTION_CODE (fndecl);
625 md_code = DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD;
627 fndecl = targetm.builtin_reciprocal (code, md_code, false);
628 if (!fndecl)
629 continue;
631 /* Check that all uses of the SSA name are divisions,
632 otherwise replacing the defining statement will do
633 the wrong thing. */
634 fail = false;
635 FOR_EACH_IMM_USE_FAST (use_p, ui, arg1)
637 gimple stmt2 = USE_STMT (use_p);
638 if (is_gimple_debug (stmt2))
639 continue;
640 if (!is_gimple_assign (stmt2)
641 || gimple_assign_rhs_code (stmt2) != RDIV_EXPR
642 || gimple_assign_rhs1 (stmt2) == arg1
643 || gimple_assign_rhs2 (stmt2) != arg1)
645 fail = true;
646 break;
649 if (fail)
650 continue;
652 gimple_replace_ssa_lhs (stmt1, arg1);
653 gimple_call_set_fndecl (stmt1, fndecl);
654 update_stmt (stmt1);
655 reciprocal_stats.rfuncs_inserted++;
657 FOR_EACH_IMM_USE_STMT (stmt, ui, arg1)
659 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
660 gimple_assign_set_rhs_code (stmt, MULT_EXPR);
661 fold_stmt_inplace (&gsi);
662 update_stmt (stmt);
669 statistics_counter_event (fun, "reciprocal divs inserted",
670 reciprocal_stats.rdivs_inserted);
671 statistics_counter_event (fun, "reciprocal functions inserted",
672 reciprocal_stats.rfuncs_inserted);
674 free_dominance_info (CDI_DOMINATORS);
675 free_dominance_info (CDI_POST_DOMINATORS);
676 free_alloc_pool (occ_pool);
677 return 0;
680 } // anon namespace
682 gimple_opt_pass *
683 make_pass_cse_reciprocals (gcc::context *ctxt)
685 return new pass_cse_reciprocals (ctxt);
688 /* Records an occurrence at statement USE_STMT in the vector of trees
689 STMTS if it is dominated by *TOP_BB or dominates it or this basic block
690 is not yet initialized. Returns true if the occurrence was pushed on
691 the vector. Adjusts *TOP_BB to be the basic block dominating all
692 statements in the vector. */
694 static bool
695 maybe_record_sincos (vec<gimple> *stmts,
696 basic_block *top_bb, gimple use_stmt)
698 basic_block use_bb = gimple_bb (use_stmt);
699 if (*top_bb
700 && (*top_bb == use_bb
701 || dominated_by_p (CDI_DOMINATORS, use_bb, *top_bb)))
702 stmts->safe_push (use_stmt);
703 else if (!*top_bb
704 || dominated_by_p (CDI_DOMINATORS, *top_bb, use_bb))
706 stmts->safe_push (use_stmt);
707 *top_bb = use_bb;
709 else
710 return false;
712 return true;
715 /* Look for sin, cos and cexpi calls with the same argument NAME and
716 create a single call to cexpi CSEing the result in this case.
717 We first walk over all immediate uses of the argument collecting
718 statements that we can CSE in a vector and in a second pass replace
719 the statement rhs with a REALPART or IMAGPART expression on the
720 result of the cexpi call we insert before the use statement that
721 dominates all other candidates. */
723 static bool
724 execute_cse_sincos_1 (tree name)
726 gimple_stmt_iterator gsi;
727 imm_use_iterator use_iter;
728 tree fndecl, res, type;
729 gimple def_stmt, use_stmt, stmt;
730 int seen_cos = 0, seen_sin = 0, seen_cexpi = 0;
731 vec<gimple> stmts = vNULL;
732 basic_block top_bb = NULL;
733 int i;
734 bool cfg_changed = false;
736 type = TREE_TYPE (name);
737 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, name)
739 if (gimple_code (use_stmt) != GIMPLE_CALL
740 || !gimple_call_lhs (use_stmt)
741 || !(fndecl = gimple_call_fndecl (use_stmt))
742 || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL)
743 continue;
745 switch (DECL_FUNCTION_CODE (fndecl))
747 CASE_FLT_FN (BUILT_IN_COS):
748 seen_cos |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
749 break;
751 CASE_FLT_FN (BUILT_IN_SIN):
752 seen_sin |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
753 break;
755 CASE_FLT_FN (BUILT_IN_CEXPI):
756 seen_cexpi |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
757 break;
759 default:;
763 if (seen_cos + seen_sin + seen_cexpi <= 1)
765 stmts.release ();
766 return false;
769 /* Simply insert cexpi at the beginning of top_bb but not earlier than
770 the name def statement. */
771 fndecl = mathfn_built_in (type, BUILT_IN_CEXPI);
772 if (!fndecl)
773 return false;
774 stmt = gimple_build_call (fndecl, 1, name);
775 res = make_temp_ssa_name (TREE_TYPE (TREE_TYPE (fndecl)), stmt, "sincostmp");
776 gimple_call_set_lhs (stmt, res);
778 def_stmt = SSA_NAME_DEF_STMT (name);
779 if (!SSA_NAME_IS_DEFAULT_DEF (name)
780 && gimple_code (def_stmt) != GIMPLE_PHI
781 && gimple_bb (def_stmt) == top_bb)
783 gsi = gsi_for_stmt (def_stmt);
784 gsi_insert_after (&gsi, stmt, GSI_SAME_STMT);
786 else
788 gsi = gsi_after_labels (top_bb);
789 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
791 sincos_stats.inserted++;
793 /* And adjust the recorded old call sites. */
794 for (i = 0; stmts.iterate (i, &use_stmt); ++i)
796 tree rhs = NULL;
797 fndecl = gimple_call_fndecl (use_stmt);
799 switch (DECL_FUNCTION_CODE (fndecl))
801 CASE_FLT_FN (BUILT_IN_COS):
802 rhs = fold_build1 (REALPART_EXPR, type, res);
803 break;
805 CASE_FLT_FN (BUILT_IN_SIN):
806 rhs = fold_build1 (IMAGPART_EXPR, type, res);
807 break;
809 CASE_FLT_FN (BUILT_IN_CEXPI):
810 rhs = res;
811 break;
813 default:;
814 gcc_unreachable ();
817 /* Replace call with a copy. */
818 stmt = gimple_build_assign (gimple_call_lhs (use_stmt), rhs);
820 gsi = gsi_for_stmt (use_stmt);
821 gsi_replace (&gsi, stmt, true);
822 if (gimple_purge_dead_eh_edges (gimple_bb (stmt)))
823 cfg_changed = true;
826 stmts.release ();
828 return cfg_changed;
831 /* To evaluate powi(x,n), the floating point value x raised to the
832 constant integer exponent n, we use a hybrid algorithm that
833 combines the "window method" with look-up tables. For an
834 introduction to exponentiation algorithms and "addition chains",
835 see section 4.6.3, "Evaluation of Powers" of Donald E. Knuth,
836 "Seminumerical Algorithms", Vol. 2, "The Art of Computer Programming",
837 3rd Edition, 1998, and Daniel M. Gordon, "A Survey of Fast Exponentiation
838 Methods", Journal of Algorithms, Vol. 27, pp. 129-146, 1998. */
840 /* Provide a default value for POWI_MAX_MULTS, the maximum number of
841 multiplications to inline before calling the system library's pow
842 function. powi(x,n) requires at worst 2*bits(n)-2 multiplications,
843 so this default never requires calling pow, powf or powl. */
845 #ifndef POWI_MAX_MULTS
846 #define POWI_MAX_MULTS (2*HOST_BITS_PER_WIDE_INT-2)
847 #endif
849 /* The size of the "optimal power tree" lookup table. All
850 exponents less than this value are simply looked up in the
851 powi_table below. This threshold is also used to size the
852 cache of pseudo registers that hold intermediate results. */
853 #define POWI_TABLE_SIZE 256
855 /* The size, in bits of the window, used in the "window method"
856 exponentiation algorithm. This is equivalent to a radix of
857 (1<<POWI_WINDOW_SIZE) in the corresponding "m-ary method". */
858 #define POWI_WINDOW_SIZE 3
860 /* The following table is an efficient representation of an
861 "optimal power tree". For each value, i, the corresponding
862 value, j, in the table states than an optimal evaluation
863 sequence for calculating pow(x,i) can be found by evaluating
864 pow(x,j)*pow(x,i-j). An optimal power tree for the first
865 100 integers is given in Knuth's "Seminumerical algorithms". */
867 static const unsigned char powi_table[POWI_TABLE_SIZE] =
869 0, 1, 1, 2, 2, 3, 3, 4, /* 0 - 7 */
870 4, 6, 5, 6, 6, 10, 7, 9, /* 8 - 15 */
871 8, 16, 9, 16, 10, 12, 11, 13, /* 16 - 23 */
872 12, 17, 13, 18, 14, 24, 15, 26, /* 24 - 31 */
873 16, 17, 17, 19, 18, 33, 19, 26, /* 32 - 39 */
874 20, 25, 21, 40, 22, 27, 23, 44, /* 40 - 47 */
875 24, 32, 25, 34, 26, 29, 27, 44, /* 48 - 55 */
876 28, 31, 29, 34, 30, 60, 31, 36, /* 56 - 63 */
877 32, 64, 33, 34, 34, 46, 35, 37, /* 64 - 71 */
878 36, 65, 37, 50, 38, 48, 39, 69, /* 72 - 79 */
879 40, 49, 41, 43, 42, 51, 43, 58, /* 80 - 87 */
880 44, 64, 45, 47, 46, 59, 47, 76, /* 88 - 95 */
881 48, 65, 49, 66, 50, 67, 51, 66, /* 96 - 103 */
882 52, 70, 53, 74, 54, 104, 55, 74, /* 104 - 111 */
883 56, 64, 57, 69, 58, 78, 59, 68, /* 112 - 119 */
884 60, 61, 61, 80, 62, 75, 63, 68, /* 120 - 127 */
885 64, 65, 65, 128, 66, 129, 67, 90, /* 128 - 135 */
886 68, 73, 69, 131, 70, 94, 71, 88, /* 136 - 143 */
887 72, 128, 73, 98, 74, 132, 75, 121, /* 144 - 151 */
888 76, 102, 77, 124, 78, 132, 79, 106, /* 152 - 159 */
889 80, 97, 81, 160, 82, 99, 83, 134, /* 160 - 167 */
890 84, 86, 85, 95, 86, 160, 87, 100, /* 168 - 175 */
891 88, 113, 89, 98, 90, 107, 91, 122, /* 176 - 183 */
892 92, 111, 93, 102, 94, 126, 95, 150, /* 184 - 191 */
893 96, 128, 97, 130, 98, 133, 99, 195, /* 192 - 199 */
894 100, 128, 101, 123, 102, 164, 103, 138, /* 200 - 207 */
895 104, 145, 105, 146, 106, 109, 107, 149, /* 208 - 215 */
896 108, 200, 109, 146, 110, 170, 111, 157, /* 216 - 223 */
897 112, 128, 113, 130, 114, 182, 115, 132, /* 224 - 231 */
898 116, 200, 117, 132, 118, 158, 119, 206, /* 232 - 239 */
899 120, 240, 121, 162, 122, 147, 123, 152, /* 240 - 247 */
900 124, 166, 125, 214, 126, 138, 127, 153, /* 248 - 255 */
904 /* Return the number of multiplications required to calculate
905 powi(x,n) where n is less than POWI_TABLE_SIZE. This is a
906 subroutine of powi_cost. CACHE is an array indicating
907 which exponents have already been calculated. */
909 static int
910 powi_lookup_cost (unsigned HOST_WIDE_INT n, bool *cache)
912 /* If we've already calculated this exponent, then this evaluation
913 doesn't require any additional multiplications. */
914 if (cache[n])
915 return 0;
917 cache[n] = true;
918 return powi_lookup_cost (n - powi_table[n], cache)
919 + powi_lookup_cost (powi_table[n], cache) + 1;
922 /* Return the number of multiplications required to calculate
923 powi(x,n) for an arbitrary x, given the exponent N. This
924 function needs to be kept in sync with powi_as_mults below. */
926 static int
927 powi_cost (HOST_WIDE_INT n)
929 bool cache[POWI_TABLE_SIZE];
930 unsigned HOST_WIDE_INT digit;
931 unsigned HOST_WIDE_INT val;
932 int result;
934 if (n == 0)
935 return 0;
937 /* Ignore the reciprocal when calculating the cost. */
938 val = (n < 0) ? -n : n;
940 /* Initialize the exponent cache. */
941 memset (cache, 0, POWI_TABLE_SIZE * sizeof (bool));
942 cache[1] = true;
944 result = 0;
946 while (val >= POWI_TABLE_SIZE)
948 if (val & 1)
950 digit = val & ((1 << POWI_WINDOW_SIZE) - 1);
951 result += powi_lookup_cost (digit, cache)
952 + POWI_WINDOW_SIZE + 1;
953 val >>= POWI_WINDOW_SIZE;
955 else
957 val >>= 1;
958 result++;
962 return result + powi_lookup_cost (val, cache);
965 /* Recursive subroutine of powi_as_mults. This function takes the
966 array, CACHE, of already calculated exponents and an exponent N and
967 returns a tree that corresponds to CACHE[1]**N, with type TYPE. */
969 static tree
970 powi_as_mults_1 (gimple_stmt_iterator *gsi, location_t loc, tree type,
971 HOST_WIDE_INT n, tree *cache)
973 tree op0, op1, ssa_target;
974 unsigned HOST_WIDE_INT digit;
975 gimple mult_stmt;
977 if (n < POWI_TABLE_SIZE && cache[n])
978 return cache[n];
980 ssa_target = make_temp_ssa_name (type, NULL, "powmult");
982 if (n < POWI_TABLE_SIZE)
984 cache[n] = ssa_target;
985 op0 = powi_as_mults_1 (gsi, loc, type, n - powi_table[n], cache);
986 op1 = powi_as_mults_1 (gsi, loc, type, powi_table[n], cache);
988 else if (n & 1)
990 digit = n & ((1 << POWI_WINDOW_SIZE) - 1);
991 op0 = powi_as_mults_1 (gsi, loc, type, n - digit, cache);
992 op1 = powi_as_mults_1 (gsi, loc, type, digit, cache);
994 else
996 op0 = powi_as_mults_1 (gsi, loc, type, n >> 1, cache);
997 op1 = op0;
1000 mult_stmt = gimple_build_assign_with_ops (MULT_EXPR, ssa_target, op0, op1);
1001 gimple_set_location (mult_stmt, loc);
1002 gsi_insert_before (gsi, mult_stmt, GSI_SAME_STMT);
1004 return ssa_target;
1007 /* Convert ARG0**N to a tree of multiplications of ARG0 with itself.
1008 This function needs to be kept in sync with powi_cost above. */
1010 static tree
1011 powi_as_mults (gimple_stmt_iterator *gsi, location_t loc,
1012 tree arg0, HOST_WIDE_INT n)
1014 tree cache[POWI_TABLE_SIZE], result, type = TREE_TYPE (arg0);
1015 gimple div_stmt;
1016 tree target;
1018 if (n == 0)
1019 return build_real (type, dconst1);
1021 memset (cache, 0, sizeof (cache));
1022 cache[1] = arg0;
1024 result = powi_as_mults_1 (gsi, loc, type, (n < 0) ? -n : n, cache);
1025 if (n >= 0)
1026 return result;
1028 /* If the original exponent was negative, reciprocate the result. */
1029 target = make_temp_ssa_name (type, NULL, "powmult");
1030 div_stmt = gimple_build_assign_with_ops (RDIV_EXPR, target,
1031 build_real (type, dconst1),
1032 result);
1033 gimple_set_location (div_stmt, loc);
1034 gsi_insert_before (gsi, div_stmt, GSI_SAME_STMT);
1036 return target;
1039 /* ARG0 and N are the two arguments to a powi builtin in GSI with
1040 location info LOC. If the arguments are appropriate, create an
1041 equivalent sequence of statements prior to GSI using an optimal
1042 number of multiplications, and return an expession holding the
1043 result. */
1045 static tree
1046 gimple_expand_builtin_powi (gimple_stmt_iterator *gsi, location_t loc,
1047 tree arg0, HOST_WIDE_INT n)
1049 /* Avoid largest negative number. */
1050 if (n != -n
1051 && ((n >= -1 && n <= 2)
1052 || (optimize_function_for_speed_p (cfun)
1053 && powi_cost (n) <= POWI_MAX_MULTS)))
1054 return powi_as_mults (gsi, loc, arg0, n);
1056 return NULL_TREE;
1059 /* Build a gimple call statement that calls FN with argument ARG.
1060 Set the lhs of the call statement to a fresh SSA name. Insert the
1061 statement prior to GSI's current position, and return the fresh
1062 SSA name. */
1064 static tree
1065 build_and_insert_call (gimple_stmt_iterator *gsi, location_t loc,
1066 tree fn, tree arg)
1068 gimple call_stmt;
1069 tree ssa_target;
1071 call_stmt = gimple_build_call (fn, 1, arg);
1072 ssa_target = make_temp_ssa_name (TREE_TYPE (arg), NULL, "powroot");
1073 gimple_set_lhs (call_stmt, ssa_target);
1074 gimple_set_location (call_stmt, loc);
1075 gsi_insert_before (gsi, call_stmt, GSI_SAME_STMT);
1077 return ssa_target;
1080 /* Build a gimple binary operation with the given CODE and arguments
1081 ARG0, ARG1, assigning the result to a new SSA name for variable
1082 TARGET. Insert the statement prior to GSI's current position, and
1083 return the fresh SSA name.*/
1085 static tree
1086 build_and_insert_binop (gimple_stmt_iterator *gsi, location_t loc,
1087 const char *name, enum tree_code code,
1088 tree arg0, tree arg1)
1090 tree result = make_temp_ssa_name (TREE_TYPE (arg0), NULL, name);
1091 gimple stmt = gimple_build_assign_with_ops (code, result, arg0, arg1);
1092 gimple_set_location (stmt, loc);
1093 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1094 return result;
1097 /* Build a gimple reference operation with the given CODE and argument
1098 ARG, assigning the result to a new SSA name of TYPE with NAME.
1099 Insert the statement prior to GSI's current position, and return
1100 the fresh SSA name. */
1102 static inline tree
1103 build_and_insert_ref (gimple_stmt_iterator *gsi, location_t loc, tree type,
1104 const char *name, enum tree_code code, tree arg0)
1106 tree result = make_temp_ssa_name (type, NULL, name);
1107 gimple stmt = gimple_build_assign (result, build1 (code, type, arg0));
1108 gimple_set_location (stmt, loc);
1109 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1110 return result;
1113 /* Build a gimple assignment to cast VAL to TYPE. Insert the statement
1114 prior to GSI's current position, and return the fresh SSA name. */
1116 static tree
1117 build_and_insert_cast (gimple_stmt_iterator *gsi, location_t loc,
1118 tree type, tree val)
1120 tree result = make_ssa_name (type, NULL);
1121 gimple stmt = gimple_build_assign_with_ops (NOP_EXPR, result, val, NULL_TREE);
1122 gimple_set_location (stmt, loc);
1123 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1124 return result;
1127 /* ARG0 and ARG1 are the two arguments to a pow builtin call in GSI
1128 with location info LOC. If possible, create an equivalent and
1129 less expensive sequence of statements prior to GSI, and return an
1130 expession holding the result. */
1132 static tree
1133 gimple_expand_builtin_pow (gimple_stmt_iterator *gsi, location_t loc,
1134 tree arg0, tree arg1)
1136 REAL_VALUE_TYPE c, cint, dconst1_4, dconst3_4, dconst1_3, dconst1_6;
1137 REAL_VALUE_TYPE c2, dconst3;
1138 HOST_WIDE_INT n;
1139 tree type, sqrtfn, cbrtfn, sqrt_arg0, sqrt_sqrt, result, cbrt_x, powi_cbrt_x;
1140 enum machine_mode mode;
1141 bool hw_sqrt_exists, c_is_int, c2_is_int;
1143 /* If the exponent isn't a constant, there's nothing of interest
1144 to be done. */
1145 if (TREE_CODE (arg1) != REAL_CST)
1146 return NULL_TREE;
1148 /* If the exponent is equivalent to an integer, expand to an optimal
1149 multiplication sequence when profitable. */
1150 c = TREE_REAL_CST (arg1);
1151 n = real_to_integer (&c);
1152 real_from_integer (&cint, VOIDmode, n, n < 0 ? -1 : 0, 0);
1153 c_is_int = real_identical (&c, &cint);
1155 if (c_is_int
1156 && ((n >= -1 && n <= 2)
1157 || (flag_unsafe_math_optimizations
1158 && optimize_bb_for_speed_p (gsi_bb (*gsi))
1159 && powi_cost (n) <= POWI_MAX_MULTS)))
1160 return gimple_expand_builtin_powi (gsi, loc, arg0, n);
1162 /* Attempt various optimizations using sqrt and cbrt. */
1163 type = TREE_TYPE (arg0);
1164 mode = TYPE_MODE (type);
1165 sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1167 /* Optimize pow(x,0.5) = sqrt(x). This replacement is always safe
1168 unless signed zeros must be maintained. pow(-0,0.5) = +0, while
1169 sqrt(-0) = -0. */
1170 if (sqrtfn
1171 && REAL_VALUES_EQUAL (c, dconsthalf)
1172 && !HONOR_SIGNED_ZEROS (mode))
1173 return build_and_insert_call (gsi, loc, sqrtfn, arg0);
1175 /* Optimize pow(x,0.25) = sqrt(sqrt(x)). Assume on most machines that
1176 a builtin sqrt instruction is smaller than a call to pow with 0.25,
1177 so do this optimization even if -Os. Don't do this optimization
1178 if we don't have a hardware sqrt insn. */
1179 dconst1_4 = dconst1;
1180 SET_REAL_EXP (&dconst1_4, REAL_EXP (&dconst1_4) - 2);
1181 hw_sqrt_exists = optab_handler (sqrt_optab, mode) != CODE_FOR_nothing;
1183 if (flag_unsafe_math_optimizations
1184 && sqrtfn
1185 && REAL_VALUES_EQUAL (c, dconst1_4)
1186 && hw_sqrt_exists)
1188 /* sqrt(x) */
1189 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1191 /* sqrt(sqrt(x)) */
1192 return build_and_insert_call (gsi, loc, sqrtfn, sqrt_arg0);
1195 /* Optimize pow(x,0.75) = sqrt(x) * sqrt(sqrt(x)) unless we are
1196 optimizing for space. Don't do this optimization if we don't have
1197 a hardware sqrt insn. */
1198 real_from_integer (&dconst3_4, VOIDmode, 3, 0, 0);
1199 SET_REAL_EXP (&dconst3_4, REAL_EXP (&dconst3_4) - 2);
1201 if (flag_unsafe_math_optimizations
1202 && sqrtfn
1203 && optimize_function_for_speed_p (cfun)
1204 && REAL_VALUES_EQUAL (c, dconst3_4)
1205 && hw_sqrt_exists)
1207 /* sqrt(x) */
1208 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1210 /* sqrt(sqrt(x)) */
1211 sqrt_sqrt = build_and_insert_call (gsi, loc, sqrtfn, sqrt_arg0);
1213 /* sqrt(x) * sqrt(sqrt(x)) */
1214 return build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1215 sqrt_arg0, sqrt_sqrt);
1218 /* Optimize pow(x,1./3.) = cbrt(x). This requires unsafe math
1219 optimizations since 1./3. is not exactly representable. If x
1220 is negative and finite, the correct value of pow(x,1./3.) is
1221 a NaN with the "invalid" exception raised, because the value
1222 of 1./3. actually has an even denominator. The correct value
1223 of cbrt(x) is a negative real value. */
1224 cbrtfn = mathfn_built_in (type, BUILT_IN_CBRT);
1225 dconst1_3 = real_value_truncate (mode, dconst_third ());
1227 if (flag_unsafe_math_optimizations
1228 && cbrtfn
1229 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
1230 && REAL_VALUES_EQUAL (c, dconst1_3))
1231 return build_and_insert_call (gsi, loc, cbrtfn, arg0);
1233 /* Optimize pow(x,1./6.) = cbrt(sqrt(x)). Don't do this optimization
1234 if we don't have a hardware sqrt insn. */
1235 dconst1_6 = dconst1_3;
1236 SET_REAL_EXP (&dconst1_6, REAL_EXP (&dconst1_6) - 1);
1238 if (flag_unsafe_math_optimizations
1239 && sqrtfn
1240 && cbrtfn
1241 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
1242 && optimize_function_for_speed_p (cfun)
1243 && hw_sqrt_exists
1244 && REAL_VALUES_EQUAL (c, dconst1_6))
1246 /* sqrt(x) */
1247 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1249 /* cbrt(sqrt(x)) */
1250 return build_and_insert_call (gsi, loc, cbrtfn, sqrt_arg0);
1253 /* Optimize pow(x,c), where n = 2c for some nonzero integer n
1254 and c not an integer, into
1256 sqrt(x) * powi(x, n/2), n > 0;
1257 1.0 / (sqrt(x) * powi(x, abs(n/2))), n < 0.
1259 Do not calculate the powi factor when n/2 = 0. */
1260 real_arithmetic (&c2, MULT_EXPR, &c, &dconst2);
1261 n = real_to_integer (&c2);
1262 real_from_integer (&cint, VOIDmode, n, n < 0 ? -1 : 0, 0);
1263 c2_is_int = real_identical (&c2, &cint);
1265 if (flag_unsafe_math_optimizations
1266 && sqrtfn
1267 && c2_is_int
1268 && !c_is_int
1269 && optimize_function_for_speed_p (cfun))
1271 tree powi_x_ndiv2 = NULL_TREE;
1273 /* Attempt to fold powi(arg0, abs(n/2)) into multiplies. If not
1274 possible or profitable, give up. Skip the degenerate case when
1275 n is 1 or -1, where the result is always 1. */
1276 if (absu_hwi (n) != 1)
1278 powi_x_ndiv2 = gimple_expand_builtin_powi (gsi, loc, arg0,
1279 abs_hwi (n / 2));
1280 if (!powi_x_ndiv2)
1281 return NULL_TREE;
1284 /* Calculate sqrt(x). When n is not 1 or -1, multiply it by the
1285 result of the optimal multiply sequence just calculated. */
1286 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1288 if (absu_hwi (n) == 1)
1289 result = sqrt_arg0;
1290 else
1291 result = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1292 sqrt_arg0, powi_x_ndiv2);
1294 /* If n is negative, reciprocate the result. */
1295 if (n < 0)
1296 result = build_and_insert_binop (gsi, loc, "powroot", RDIV_EXPR,
1297 build_real (type, dconst1), result);
1298 return result;
1301 /* Optimize pow(x,c), where 3c = n for some nonzero integer n, into
1303 powi(x, n/3) * powi(cbrt(x), n%3), n > 0;
1304 1.0 / (powi(x, abs(n)/3) * powi(cbrt(x), abs(n)%3)), n < 0.
1306 Do not calculate the first factor when n/3 = 0. As cbrt(x) is
1307 different from pow(x, 1./3.) due to rounding and behavior with
1308 negative x, we need to constrain this transformation to unsafe
1309 math and positive x or finite math. */
1310 real_from_integer (&dconst3, VOIDmode, 3, 0, 0);
1311 real_arithmetic (&c2, MULT_EXPR, &c, &dconst3);
1312 real_round (&c2, mode, &c2);
1313 n = real_to_integer (&c2);
1314 real_from_integer (&cint, VOIDmode, n, n < 0 ? -1 : 0, 0);
1315 real_arithmetic (&c2, RDIV_EXPR, &cint, &dconst3);
1316 real_convert (&c2, mode, &c2);
1318 if (flag_unsafe_math_optimizations
1319 && cbrtfn
1320 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
1321 && real_identical (&c2, &c)
1322 && !c2_is_int
1323 && optimize_function_for_speed_p (cfun)
1324 && powi_cost (n / 3) <= POWI_MAX_MULTS)
1326 tree powi_x_ndiv3 = NULL_TREE;
1328 /* Attempt to fold powi(arg0, abs(n/3)) into multiplies. If not
1329 possible or profitable, give up. Skip the degenerate case when
1330 abs(n) < 3, where the result is always 1. */
1331 if (absu_hwi (n) >= 3)
1333 powi_x_ndiv3 = gimple_expand_builtin_powi (gsi, loc, arg0,
1334 abs_hwi (n / 3));
1335 if (!powi_x_ndiv3)
1336 return NULL_TREE;
1339 /* Calculate powi(cbrt(x), n%3). Don't use gimple_expand_builtin_powi
1340 as that creates an unnecessary variable. Instead, just produce
1341 either cbrt(x) or cbrt(x) * cbrt(x). */
1342 cbrt_x = build_and_insert_call (gsi, loc, cbrtfn, arg0);
1344 if (absu_hwi (n) % 3 == 1)
1345 powi_cbrt_x = cbrt_x;
1346 else
1347 powi_cbrt_x = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1348 cbrt_x, cbrt_x);
1350 /* Multiply the two subexpressions, unless powi(x,abs(n)/3) = 1. */
1351 if (absu_hwi (n) < 3)
1352 result = powi_cbrt_x;
1353 else
1354 result = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1355 powi_x_ndiv3, powi_cbrt_x);
1357 /* If n is negative, reciprocate the result. */
1358 if (n < 0)
1359 result = build_and_insert_binop (gsi, loc, "powroot", RDIV_EXPR,
1360 build_real (type, dconst1), result);
1362 return result;
1365 /* No optimizations succeeded. */
1366 return NULL_TREE;
1369 /* ARG is the argument to a cabs builtin call in GSI with location info
1370 LOC. Create a sequence of statements prior to GSI that calculates
1371 sqrt(R*R + I*I), where R and I are the real and imaginary components
1372 of ARG, respectively. Return an expression holding the result. */
1374 static tree
1375 gimple_expand_builtin_cabs (gimple_stmt_iterator *gsi, location_t loc, tree arg)
1377 tree real_part, imag_part, addend1, addend2, sum, result;
1378 tree type = TREE_TYPE (TREE_TYPE (arg));
1379 tree sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1380 enum machine_mode mode = TYPE_MODE (type);
1382 if (!flag_unsafe_math_optimizations
1383 || !optimize_bb_for_speed_p (gimple_bb (gsi_stmt (*gsi)))
1384 || !sqrtfn
1385 || optab_handler (sqrt_optab, mode) == CODE_FOR_nothing)
1386 return NULL_TREE;
1388 real_part = build_and_insert_ref (gsi, loc, type, "cabs",
1389 REALPART_EXPR, arg);
1390 addend1 = build_and_insert_binop (gsi, loc, "cabs", MULT_EXPR,
1391 real_part, real_part);
1392 imag_part = build_and_insert_ref (gsi, loc, type, "cabs",
1393 IMAGPART_EXPR, arg);
1394 addend2 = build_and_insert_binop (gsi, loc, "cabs", MULT_EXPR,
1395 imag_part, imag_part);
1396 sum = build_and_insert_binop (gsi, loc, "cabs", PLUS_EXPR, addend1, addend2);
1397 result = build_and_insert_call (gsi, loc, sqrtfn, sum);
1399 return result;
1402 /* Go through all calls to sin, cos and cexpi and call execute_cse_sincos_1
1403 on the SSA_NAME argument of each of them. Also expand powi(x,n) into
1404 an optimal number of multiplies, when n is a constant. */
1406 namespace {
1408 const pass_data pass_data_cse_sincos =
1410 GIMPLE_PASS, /* type */
1411 "sincos", /* name */
1412 OPTGROUP_NONE, /* optinfo_flags */
1413 true, /* has_execute */
1414 TV_NONE, /* tv_id */
1415 PROP_ssa, /* properties_required */
1416 0, /* properties_provided */
1417 0, /* properties_destroyed */
1418 0, /* todo_flags_start */
1419 ( TODO_update_ssa | TODO_verify_ssa
1420 | TODO_verify_stmts ), /* todo_flags_finish */
1423 class pass_cse_sincos : public gimple_opt_pass
1425 public:
1426 pass_cse_sincos (gcc::context *ctxt)
1427 : gimple_opt_pass (pass_data_cse_sincos, ctxt)
1430 /* opt_pass methods: */
1431 virtual bool gate (function *)
1433 /* We no longer require either sincos or cexp, since powi expansion
1434 piggybacks on this pass. */
1435 return optimize;
1438 virtual unsigned int execute (function *);
1440 }; // class pass_cse_sincos
1442 unsigned int
1443 pass_cse_sincos::execute (function *fun)
1445 basic_block bb;
1446 bool cfg_changed = false;
1448 calculate_dominance_info (CDI_DOMINATORS);
1449 memset (&sincos_stats, 0, sizeof (sincos_stats));
1451 FOR_EACH_BB_FN (bb, fun)
1453 gimple_stmt_iterator gsi;
1454 bool cleanup_eh = false;
1456 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1458 gimple stmt = gsi_stmt (gsi);
1459 tree fndecl;
1461 /* Only the last stmt in a bb could throw, no need to call
1462 gimple_purge_dead_eh_edges if we change something in the middle
1463 of a basic block. */
1464 cleanup_eh = false;
1466 if (is_gimple_call (stmt)
1467 && gimple_call_lhs (stmt)
1468 && (fndecl = gimple_call_fndecl (stmt))
1469 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
1471 tree arg, arg0, arg1, result;
1472 HOST_WIDE_INT n;
1473 location_t loc;
1475 switch (DECL_FUNCTION_CODE (fndecl))
1477 CASE_FLT_FN (BUILT_IN_COS):
1478 CASE_FLT_FN (BUILT_IN_SIN):
1479 CASE_FLT_FN (BUILT_IN_CEXPI):
1480 /* Make sure we have either sincos or cexp. */
1481 if (!targetm.libc_has_function (function_c99_math_complex)
1482 && !targetm.libc_has_function (function_sincos))
1483 break;
1485 arg = gimple_call_arg (stmt, 0);
1486 if (TREE_CODE (arg) == SSA_NAME)
1487 cfg_changed |= execute_cse_sincos_1 (arg);
1488 break;
1490 CASE_FLT_FN (BUILT_IN_POW):
1491 arg0 = gimple_call_arg (stmt, 0);
1492 arg1 = gimple_call_arg (stmt, 1);
1494 loc = gimple_location (stmt);
1495 result = gimple_expand_builtin_pow (&gsi, loc, arg0, arg1);
1497 if (result)
1499 tree lhs = gimple_get_lhs (stmt);
1500 gimple new_stmt = gimple_build_assign (lhs, result);
1501 gimple_set_location (new_stmt, loc);
1502 unlink_stmt_vdef (stmt);
1503 gsi_replace (&gsi, new_stmt, true);
1504 cleanup_eh = true;
1505 if (gimple_vdef (stmt))
1506 release_ssa_name (gimple_vdef (stmt));
1508 break;
1510 CASE_FLT_FN (BUILT_IN_POWI):
1511 arg0 = gimple_call_arg (stmt, 0);
1512 arg1 = gimple_call_arg (stmt, 1);
1513 loc = gimple_location (stmt);
1515 if (real_minus_onep (arg0))
1517 tree t0, t1, cond, one, minus_one;
1518 gimple stmt;
1520 t0 = TREE_TYPE (arg0);
1521 t1 = TREE_TYPE (arg1);
1522 one = build_real (t0, dconst1);
1523 minus_one = build_real (t0, dconstm1);
1525 cond = make_temp_ssa_name (t1, NULL, "powi_cond");
1526 stmt = gimple_build_assign_with_ops (BIT_AND_EXPR, cond,
1527 arg1,
1528 build_int_cst (t1,
1529 1));
1530 gimple_set_location (stmt, loc);
1531 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1533 result = make_temp_ssa_name (t0, NULL, "powi");
1534 stmt = gimple_build_assign_with_ops (COND_EXPR, result,
1535 cond,
1536 minus_one, one);
1537 gimple_set_location (stmt, loc);
1538 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1540 else
1542 if (!tree_fits_shwi_p (arg1))
1543 break;
1545 n = tree_to_shwi (arg1);
1546 result = gimple_expand_builtin_powi (&gsi, loc, arg0, n);
1549 if (result)
1551 tree lhs = gimple_get_lhs (stmt);
1552 gimple new_stmt = gimple_build_assign (lhs, result);
1553 gimple_set_location (new_stmt, loc);
1554 unlink_stmt_vdef (stmt);
1555 gsi_replace (&gsi, new_stmt, true);
1556 cleanup_eh = true;
1557 if (gimple_vdef (stmt))
1558 release_ssa_name (gimple_vdef (stmt));
1560 break;
1562 CASE_FLT_FN (BUILT_IN_CABS):
1563 arg0 = gimple_call_arg (stmt, 0);
1564 loc = gimple_location (stmt);
1565 result = gimple_expand_builtin_cabs (&gsi, loc, arg0);
1567 if (result)
1569 tree lhs = gimple_get_lhs (stmt);
1570 gimple new_stmt = gimple_build_assign (lhs, result);
1571 gimple_set_location (new_stmt, loc);
1572 unlink_stmt_vdef (stmt);
1573 gsi_replace (&gsi, new_stmt, true);
1574 cleanup_eh = true;
1575 if (gimple_vdef (stmt))
1576 release_ssa_name (gimple_vdef (stmt));
1578 break;
1580 default:;
1584 if (cleanup_eh)
1585 cfg_changed |= gimple_purge_dead_eh_edges (bb);
1588 statistics_counter_event (fun, "sincos statements inserted",
1589 sincos_stats.inserted);
1591 free_dominance_info (CDI_DOMINATORS);
1592 return cfg_changed ? TODO_cleanup_cfg : 0;
1595 } // anon namespace
1597 gimple_opt_pass *
1598 make_pass_cse_sincos (gcc::context *ctxt)
1600 return new pass_cse_sincos (ctxt);
1603 /* A symbolic number is used to detect byte permutation and selection
1604 patterns. Therefore the field N contains an artificial number
1605 consisting of byte size markers:
1607 0 - byte has the value 0
1608 1..size - byte contains the content of the byte
1609 number indexed with that value minus one */
1611 struct symbolic_number {
1612 unsigned HOST_WIDEST_INT n;
1613 int size;
1616 /* Perform a SHIFT or ROTATE operation by COUNT bits on symbolic
1617 number N. Return false if the requested operation is not permitted
1618 on a symbolic number. */
1620 static inline bool
1621 do_shift_rotate (enum tree_code code,
1622 struct symbolic_number *n,
1623 int count)
1625 if (count % 8 != 0)
1626 return false;
1628 /* Zero out the extra bits of N in order to avoid them being shifted
1629 into the significant bits. */
1630 if (n->size < (int)sizeof (HOST_WIDEST_INT))
1631 n->n &= ((unsigned HOST_WIDEST_INT)1 << (n->size * BITS_PER_UNIT)) - 1;
1633 switch (code)
1635 case LSHIFT_EXPR:
1636 n->n <<= count;
1637 break;
1638 case RSHIFT_EXPR:
1639 n->n >>= count;
1640 break;
1641 case LROTATE_EXPR:
1642 n->n = (n->n << count) | (n->n >> ((n->size * BITS_PER_UNIT) - count));
1643 break;
1644 case RROTATE_EXPR:
1645 n->n = (n->n >> count) | (n->n << ((n->size * BITS_PER_UNIT) - count));
1646 break;
1647 default:
1648 return false;
1650 /* Zero unused bits for size. */
1651 if (n->size < (int)sizeof (HOST_WIDEST_INT))
1652 n->n &= ((unsigned HOST_WIDEST_INT)1 << (n->size * BITS_PER_UNIT)) - 1;
1653 return true;
1656 /* Perform sanity checking for the symbolic number N and the gimple
1657 statement STMT. */
1659 static inline bool
1660 verify_symbolic_number_p (struct symbolic_number *n, gimple stmt)
1662 tree lhs_type;
1664 lhs_type = gimple_expr_type (stmt);
1666 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
1667 return false;
1669 if (TYPE_PRECISION (lhs_type) != n->size * BITS_PER_UNIT)
1670 return false;
1672 return true;
1675 /* find_bswap_1 invokes itself recursively with N and tries to perform
1676 the operation given by the rhs of STMT on the result. If the
1677 operation could successfully be executed the function returns the
1678 tree expression of the source operand and NULL otherwise. */
1680 static tree
1681 find_bswap_1 (gimple stmt, struct symbolic_number *n, int limit)
1683 enum tree_code code;
1684 tree rhs1, rhs2 = NULL;
1685 gimple rhs1_stmt, rhs2_stmt;
1686 tree source_expr1;
1687 enum gimple_rhs_class rhs_class;
1689 if (!limit || !is_gimple_assign (stmt))
1690 return NULL_TREE;
1692 rhs1 = gimple_assign_rhs1 (stmt);
1694 if (TREE_CODE (rhs1) != SSA_NAME)
1695 return NULL_TREE;
1697 code = gimple_assign_rhs_code (stmt);
1698 rhs_class = gimple_assign_rhs_class (stmt);
1699 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
1701 if (rhs_class == GIMPLE_BINARY_RHS)
1702 rhs2 = gimple_assign_rhs2 (stmt);
1704 /* Handle unary rhs and binary rhs with integer constants as second
1705 operand. */
1707 if (rhs_class == GIMPLE_UNARY_RHS
1708 || (rhs_class == GIMPLE_BINARY_RHS
1709 && TREE_CODE (rhs2) == INTEGER_CST))
1711 if (code != BIT_AND_EXPR
1712 && code != LSHIFT_EXPR
1713 && code != RSHIFT_EXPR
1714 && code != LROTATE_EXPR
1715 && code != RROTATE_EXPR
1716 && code != NOP_EXPR
1717 && code != CONVERT_EXPR)
1718 return NULL_TREE;
1720 source_expr1 = find_bswap_1 (rhs1_stmt, n, limit - 1);
1722 /* If find_bswap_1 returned NULL STMT is a leaf node and we have
1723 to initialize the symbolic number. */
1724 if (!source_expr1)
1726 /* Set up the symbolic number N by setting each byte to a
1727 value between 1 and the byte size of rhs1. The highest
1728 order byte is set to n->size and the lowest order
1729 byte to 1. */
1730 n->size = TYPE_PRECISION (TREE_TYPE (rhs1));
1731 if (n->size % BITS_PER_UNIT != 0)
1732 return NULL_TREE;
1733 n->size /= BITS_PER_UNIT;
1734 n->n = (sizeof (HOST_WIDEST_INT) < 8 ? 0 :
1735 (unsigned HOST_WIDEST_INT)0x08070605 << 32 | 0x04030201);
1737 if (n->size < (int)sizeof (HOST_WIDEST_INT))
1738 n->n &= ((unsigned HOST_WIDEST_INT)1 <<
1739 (n->size * BITS_PER_UNIT)) - 1;
1741 source_expr1 = rhs1;
1744 switch (code)
1746 case BIT_AND_EXPR:
1748 int i;
1749 unsigned HOST_WIDEST_INT val = widest_int_cst_value (rhs2);
1750 unsigned HOST_WIDEST_INT tmp = val;
1752 /* Only constants masking full bytes are allowed. */
1753 for (i = 0; i < n->size; i++, tmp >>= BITS_PER_UNIT)
1754 if ((tmp & 0xff) != 0 && (tmp & 0xff) != 0xff)
1755 return NULL_TREE;
1757 n->n &= val;
1759 break;
1760 case LSHIFT_EXPR:
1761 case RSHIFT_EXPR:
1762 case LROTATE_EXPR:
1763 case RROTATE_EXPR:
1764 if (!do_shift_rotate (code, n, (int)TREE_INT_CST_LOW (rhs2)))
1765 return NULL_TREE;
1766 break;
1767 CASE_CONVERT:
1769 int type_size;
1771 type_size = TYPE_PRECISION (gimple_expr_type (stmt));
1772 if (type_size % BITS_PER_UNIT != 0)
1773 return NULL_TREE;
1775 if (type_size / BITS_PER_UNIT < (int)(sizeof (HOST_WIDEST_INT)))
1777 /* If STMT casts to a smaller type mask out the bits not
1778 belonging to the target type. */
1779 n->n &= ((unsigned HOST_WIDEST_INT)1 << type_size) - 1;
1781 n->size = type_size / BITS_PER_UNIT;
1783 break;
1784 default:
1785 return NULL_TREE;
1787 return verify_symbolic_number_p (n, stmt) ? source_expr1 : NULL;
1790 /* Handle binary rhs. */
1792 if (rhs_class == GIMPLE_BINARY_RHS)
1794 int i;
1795 struct symbolic_number n1, n2;
1796 unsigned HOST_WIDEST_INT mask;
1797 tree source_expr2;
1799 if (code != BIT_IOR_EXPR)
1800 return NULL_TREE;
1802 if (TREE_CODE (rhs2) != SSA_NAME)
1803 return NULL_TREE;
1805 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
1807 switch (code)
1809 case BIT_IOR_EXPR:
1810 source_expr1 = find_bswap_1 (rhs1_stmt, &n1, limit - 1);
1812 if (!source_expr1)
1813 return NULL_TREE;
1815 source_expr2 = find_bswap_1 (rhs2_stmt, &n2, limit - 1);
1817 if (source_expr1 != source_expr2
1818 || n1.size != n2.size)
1819 return NULL_TREE;
1821 n->size = n1.size;
1822 for (i = 0, mask = 0xff; i < n->size; i++, mask <<= BITS_PER_UNIT)
1824 unsigned HOST_WIDEST_INT masked1, masked2;
1826 masked1 = n1.n & mask;
1827 masked2 = n2.n & mask;
1828 if (masked1 && masked2 && masked1 != masked2)
1829 return NULL_TREE;
1831 n->n = n1.n | n2.n;
1833 if (!verify_symbolic_number_p (n, stmt))
1834 return NULL_TREE;
1836 break;
1837 default:
1838 return NULL_TREE;
1840 return source_expr1;
1842 return NULL_TREE;
1845 /* Check if STMT completes a bswap implementation consisting of ORs,
1846 SHIFTs and ANDs. Return the source tree expression on which the
1847 byte swap is performed and NULL if no bswap was found. */
1849 static tree
1850 find_bswap (gimple stmt)
1852 /* The number which the find_bswap result should match in order to
1853 have a full byte swap. The number is shifted to the left according
1854 to the size of the symbolic number before using it. */
1855 unsigned HOST_WIDEST_INT cmp =
1856 sizeof (HOST_WIDEST_INT) < 8 ? 0 :
1857 (unsigned HOST_WIDEST_INT)0x01020304 << 32 | 0x05060708;
1859 struct symbolic_number n;
1860 tree source_expr;
1861 int limit;
1863 /* The last parameter determines the depth search limit. It usually
1864 correlates directly to the number of bytes to be touched. We
1865 increase that number by three here in order to also
1866 cover signed -> unsigned converions of the src operand as can be seen
1867 in libgcc, and for initial shift/and operation of the src operand. */
1868 limit = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (gimple_expr_type (stmt)));
1869 limit += 1 + (int) ceil_log2 ((unsigned HOST_WIDE_INT) limit);
1870 source_expr = find_bswap_1 (stmt, &n, limit);
1872 if (!source_expr)
1873 return NULL_TREE;
1875 /* Zero out the extra bits of N and CMP. */
1876 if (n.size < (int)sizeof (HOST_WIDEST_INT))
1878 unsigned HOST_WIDEST_INT mask =
1879 ((unsigned HOST_WIDEST_INT)1 << (n.size * BITS_PER_UNIT)) - 1;
1881 n.n &= mask;
1882 cmp >>= (sizeof (HOST_WIDEST_INT) - n.size) * BITS_PER_UNIT;
1885 /* A complete byte swap should make the symbolic number to start
1886 with the largest digit in the highest order byte. */
1887 if (cmp != n.n)
1888 return NULL_TREE;
1890 return source_expr;
1893 /* Find manual byte swap implementations and turn them into a bswap
1894 builtin invokation. */
1896 namespace {
1898 const pass_data pass_data_optimize_bswap =
1900 GIMPLE_PASS, /* type */
1901 "bswap", /* name */
1902 OPTGROUP_NONE, /* optinfo_flags */
1903 true, /* has_execute */
1904 TV_NONE, /* tv_id */
1905 PROP_ssa, /* properties_required */
1906 0, /* properties_provided */
1907 0, /* properties_destroyed */
1908 0, /* todo_flags_start */
1909 0, /* todo_flags_finish */
1912 class pass_optimize_bswap : public gimple_opt_pass
1914 public:
1915 pass_optimize_bswap (gcc::context *ctxt)
1916 : gimple_opt_pass (pass_data_optimize_bswap, ctxt)
1919 /* opt_pass methods: */
1920 virtual bool gate (function *)
1922 return flag_expensive_optimizations && optimize;
1925 virtual unsigned int execute (function *);
1927 }; // class pass_optimize_bswap
1929 unsigned int
1930 pass_optimize_bswap::execute (function *fun)
1932 basic_block bb;
1933 bool bswap16_p, bswap32_p, bswap64_p;
1934 bool changed = false;
1935 tree bswap16_type = NULL_TREE, bswap32_type = NULL_TREE, bswap64_type = NULL_TREE;
1937 if (BITS_PER_UNIT != 8)
1938 return 0;
1940 if (sizeof (HOST_WIDEST_INT) < 8)
1941 return 0;
1943 bswap16_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP16)
1944 && optab_handler (bswap_optab, HImode) != CODE_FOR_nothing);
1945 bswap32_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP32)
1946 && optab_handler (bswap_optab, SImode) != CODE_FOR_nothing);
1947 bswap64_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP64)
1948 && (optab_handler (bswap_optab, DImode) != CODE_FOR_nothing
1949 || (bswap32_p && word_mode == SImode)));
1951 if (!bswap16_p && !bswap32_p && !bswap64_p)
1952 return 0;
1954 /* Determine the argument type of the builtins. The code later on
1955 assumes that the return and argument type are the same. */
1956 if (bswap16_p)
1958 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP16);
1959 bswap16_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
1962 if (bswap32_p)
1964 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
1965 bswap32_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
1968 if (bswap64_p)
1970 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
1971 bswap64_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
1974 memset (&bswap_stats, 0, sizeof (bswap_stats));
1976 FOR_EACH_BB_FN (bb, fun)
1978 gimple_stmt_iterator gsi;
1980 /* We do a reverse scan for bswap patterns to make sure we get the
1981 widest match. As bswap pattern matching doesn't handle
1982 previously inserted smaller bswap replacements as sub-
1983 patterns, the wider variant wouldn't be detected. */
1984 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
1986 gimple stmt = gsi_stmt (gsi);
1987 tree bswap_src, bswap_type;
1988 tree bswap_tmp;
1989 tree fndecl = NULL_TREE;
1990 int type_size;
1991 gimple call;
1993 if (!is_gimple_assign (stmt)
1994 || gimple_assign_rhs_code (stmt) != BIT_IOR_EXPR)
1995 continue;
1997 type_size = TYPE_PRECISION (gimple_expr_type (stmt));
1999 switch (type_size)
2001 case 16:
2002 if (bswap16_p)
2004 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP16);
2005 bswap_type = bswap16_type;
2007 break;
2008 case 32:
2009 if (bswap32_p)
2011 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
2012 bswap_type = bswap32_type;
2014 break;
2015 case 64:
2016 if (bswap64_p)
2018 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
2019 bswap_type = bswap64_type;
2021 break;
2022 default:
2023 continue;
2026 if (!fndecl)
2027 continue;
2029 bswap_src = find_bswap (stmt);
2031 if (!bswap_src)
2032 continue;
2034 changed = true;
2035 if (type_size == 16)
2036 bswap_stats.found_16bit++;
2037 else if (type_size == 32)
2038 bswap_stats.found_32bit++;
2039 else
2040 bswap_stats.found_64bit++;
2042 bswap_tmp = bswap_src;
2044 /* Convert the src expression if necessary. */
2045 if (!useless_type_conversion_p (TREE_TYPE (bswap_tmp), bswap_type))
2047 gimple convert_stmt;
2048 bswap_tmp = make_temp_ssa_name (bswap_type, NULL, "bswapsrc");
2049 convert_stmt = gimple_build_assign_with_ops
2050 (NOP_EXPR, bswap_tmp, bswap_src, NULL);
2051 gsi_insert_before (&gsi, convert_stmt, GSI_SAME_STMT);
2054 call = gimple_build_call (fndecl, 1, bswap_tmp);
2056 bswap_tmp = gimple_assign_lhs (stmt);
2058 /* Convert the result if necessary. */
2059 if (!useless_type_conversion_p (TREE_TYPE (bswap_tmp), bswap_type))
2061 gimple convert_stmt;
2062 bswap_tmp = make_temp_ssa_name (bswap_type, NULL, "bswapdst");
2063 convert_stmt = gimple_build_assign_with_ops
2064 (NOP_EXPR, gimple_assign_lhs (stmt), bswap_tmp, NULL);
2065 gsi_insert_after (&gsi, convert_stmt, GSI_SAME_STMT);
2068 gimple_call_set_lhs (call, bswap_tmp);
2070 if (dump_file)
2072 fprintf (dump_file, "%d bit bswap implementation found at: ",
2073 (int)type_size);
2074 print_gimple_stmt (dump_file, stmt, 0, 0);
2077 gsi_insert_after (&gsi, call, GSI_SAME_STMT);
2078 gsi_remove (&gsi, true);
2082 statistics_counter_event (fun, "16-bit bswap implementations found",
2083 bswap_stats.found_16bit);
2084 statistics_counter_event (fun, "32-bit bswap implementations found",
2085 bswap_stats.found_32bit);
2086 statistics_counter_event (fun, "64-bit bswap implementations found",
2087 bswap_stats.found_64bit);
2089 return (changed ? TODO_update_ssa | TODO_verify_ssa
2090 | TODO_verify_stmts : 0);
2093 } // anon namespace
2095 gimple_opt_pass *
2096 make_pass_optimize_bswap (gcc::context *ctxt)
2098 return new pass_optimize_bswap (ctxt);
2101 /* Return true if stmt is a type conversion operation that can be stripped
2102 when used in a widening multiply operation. */
2103 static bool
2104 widening_mult_conversion_strippable_p (tree result_type, gimple stmt)
2106 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
2108 if (TREE_CODE (result_type) == INTEGER_TYPE)
2110 tree op_type;
2111 tree inner_op_type;
2113 if (!CONVERT_EXPR_CODE_P (rhs_code))
2114 return false;
2116 op_type = TREE_TYPE (gimple_assign_lhs (stmt));
2118 /* If the type of OP has the same precision as the result, then
2119 we can strip this conversion. The multiply operation will be
2120 selected to create the correct extension as a by-product. */
2121 if (TYPE_PRECISION (result_type) == TYPE_PRECISION (op_type))
2122 return true;
2124 /* We can also strip a conversion if it preserves the signed-ness of
2125 the operation and doesn't narrow the range. */
2126 inner_op_type = TREE_TYPE (gimple_assign_rhs1 (stmt));
2128 /* If the inner-most type is unsigned, then we can strip any
2129 intermediate widening operation. If it's signed, then the
2130 intermediate widening operation must also be signed. */
2131 if ((TYPE_UNSIGNED (inner_op_type)
2132 || TYPE_UNSIGNED (op_type) == TYPE_UNSIGNED (inner_op_type))
2133 && TYPE_PRECISION (op_type) > TYPE_PRECISION (inner_op_type))
2134 return true;
2136 return false;
2139 return rhs_code == FIXED_CONVERT_EXPR;
2142 /* Return true if RHS is a suitable operand for a widening multiplication,
2143 assuming a target type of TYPE.
2144 There are two cases:
2146 - RHS makes some value at least twice as wide. Store that value
2147 in *NEW_RHS_OUT if so, and store its type in *TYPE_OUT.
2149 - RHS is an integer constant. Store that value in *NEW_RHS_OUT if so,
2150 but leave *TYPE_OUT untouched. */
2152 static bool
2153 is_widening_mult_rhs_p (tree type, tree rhs, tree *type_out,
2154 tree *new_rhs_out)
2156 gimple stmt;
2157 tree type1, rhs1;
2159 if (TREE_CODE (rhs) == SSA_NAME)
2161 stmt = SSA_NAME_DEF_STMT (rhs);
2162 if (is_gimple_assign (stmt))
2164 if (! widening_mult_conversion_strippable_p (type, stmt))
2165 rhs1 = rhs;
2166 else
2168 rhs1 = gimple_assign_rhs1 (stmt);
2170 if (TREE_CODE (rhs1) == INTEGER_CST)
2172 *new_rhs_out = rhs1;
2173 *type_out = NULL;
2174 return true;
2178 else
2179 rhs1 = rhs;
2181 type1 = TREE_TYPE (rhs1);
2183 if (TREE_CODE (type1) != TREE_CODE (type)
2184 || TYPE_PRECISION (type1) * 2 > TYPE_PRECISION (type))
2185 return false;
2187 *new_rhs_out = rhs1;
2188 *type_out = type1;
2189 return true;
2192 if (TREE_CODE (rhs) == INTEGER_CST)
2194 *new_rhs_out = rhs;
2195 *type_out = NULL;
2196 return true;
2199 return false;
2202 /* Return true if STMT performs a widening multiplication, assuming the
2203 output type is TYPE. If so, store the unwidened types of the operands
2204 in *TYPE1_OUT and *TYPE2_OUT respectively. Also fill *RHS1_OUT and
2205 *RHS2_OUT such that converting those operands to types *TYPE1_OUT
2206 and *TYPE2_OUT would give the operands of the multiplication. */
2208 static bool
2209 is_widening_mult_p (gimple stmt,
2210 tree *type1_out, tree *rhs1_out,
2211 tree *type2_out, tree *rhs2_out)
2213 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
2215 if (TREE_CODE (type) != INTEGER_TYPE
2216 && TREE_CODE (type) != FIXED_POINT_TYPE)
2217 return false;
2219 if (!is_widening_mult_rhs_p (type, gimple_assign_rhs1 (stmt), type1_out,
2220 rhs1_out))
2221 return false;
2223 if (!is_widening_mult_rhs_p (type, gimple_assign_rhs2 (stmt), type2_out,
2224 rhs2_out))
2225 return false;
2227 if (*type1_out == NULL)
2229 if (*type2_out == NULL || !int_fits_type_p (*rhs1_out, *type2_out))
2230 return false;
2231 *type1_out = *type2_out;
2234 if (*type2_out == NULL)
2236 if (!int_fits_type_p (*rhs2_out, *type1_out))
2237 return false;
2238 *type2_out = *type1_out;
2241 /* Ensure that the larger of the two operands comes first. */
2242 if (TYPE_PRECISION (*type1_out) < TYPE_PRECISION (*type2_out))
2244 tree tmp;
2245 tmp = *type1_out;
2246 *type1_out = *type2_out;
2247 *type2_out = tmp;
2248 tmp = *rhs1_out;
2249 *rhs1_out = *rhs2_out;
2250 *rhs2_out = tmp;
2253 return true;
2256 /* Process a single gimple statement STMT, which has a MULT_EXPR as
2257 its rhs, and try to convert it into a WIDEN_MULT_EXPR. The return
2258 value is true iff we converted the statement. */
2260 static bool
2261 convert_mult_to_widen (gimple stmt, gimple_stmt_iterator *gsi)
2263 tree lhs, rhs1, rhs2, type, type1, type2;
2264 enum insn_code handler;
2265 enum machine_mode to_mode, from_mode, actual_mode;
2266 optab op;
2267 int actual_precision;
2268 location_t loc = gimple_location (stmt);
2269 bool from_unsigned1, from_unsigned2;
2271 lhs = gimple_assign_lhs (stmt);
2272 type = TREE_TYPE (lhs);
2273 if (TREE_CODE (type) != INTEGER_TYPE)
2274 return false;
2276 if (!is_widening_mult_p (stmt, &type1, &rhs1, &type2, &rhs2))
2277 return false;
2279 to_mode = TYPE_MODE (type);
2280 from_mode = TYPE_MODE (type1);
2281 from_unsigned1 = TYPE_UNSIGNED (type1);
2282 from_unsigned2 = TYPE_UNSIGNED (type2);
2284 if (from_unsigned1 && from_unsigned2)
2285 op = umul_widen_optab;
2286 else if (!from_unsigned1 && !from_unsigned2)
2287 op = smul_widen_optab;
2288 else
2289 op = usmul_widen_optab;
2291 handler = find_widening_optab_handler_and_mode (op, to_mode, from_mode,
2292 0, &actual_mode);
2294 if (handler == CODE_FOR_nothing)
2296 if (op != smul_widen_optab)
2298 /* We can use a signed multiply with unsigned types as long as
2299 there is a wider mode to use, or it is the smaller of the two
2300 types that is unsigned. Note that type1 >= type2, always. */
2301 if ((TYPE_UNSIGNED (type1)
2302 && TYPE_PRECISION (type1) == GET_MODE_PRECISION (from_mode))
2303 || (TYPE_UNSIGNED (type2)
2304 && TYPE_PRECISION (type2) == GET_MODE_PRECISION (from_mode)))
2306 from_mode = GET_MODE_WIDER_MODE (from_mode);
2307 if (GET_MODE_SIZE (to_mode) <= GET_MODE_SIZE (from_mode))
2308 return false;
2311 op = smul_widen_optab;
2312 handler = find_widening_optab_handler_and_mode (op, to_mode,
2313 from_mode, 0,
2314 &actual_mode);
2316 if (handler == CODE_FOR_nothing)
2317 return false;
2319 from_unsigned1 = from_unsigned2 = false;
2321 else
2322 return false;
2325 /* Ensure that the inputs to the handler are in the correct precison
2326 for the opcode. This will be the full mode size. */
2327 actual_precision = GET_MODE_PRECISION (actual_mode);
2328 if (2 * actual_precision > TYPE_PRECISION (type))
2329 return false;
2330 if (actual_precision != TYPE_PRECISION (type1)
2331 || from_unsigned1 != TYPE_UNSIGNED (type1))
2332 rhs1 = build_and_insert_cast (gsi, loc,
2333 build_nonstandard_integer_type
2334 (actual_precision, from_unsigned1), rhs1);
2335 if (actual_precision != TYPE_PRECISION (type2)
2336 || from_unsigned2 != TYPE_UNSIGNED (type2))
2337 rhs2 = build_and_insert_cast (gsi, loc,
2338 build_nonstandard_integer_type
2339 (actual_precision, from_unsigned2), rhs2);
2341 /* Handle constants. */
2342 if (TREE_CODE (rhs1) == INTEGER_CST)
2343 rhs1 = fold_convert (type1, rhs1);
2344 if (TREE_CODE (rhs2) == INTEGER_CST)
2345 rhs2 = fold_convert (type2, rhs2);
2347 gimple_assign_set_rhs1 (stmt, rhs1);
2348 gimple_assign_set_rhs2 (stmt, rhs2);
2349 gimple_assign_set_rhs_code (stmt, WIDEN_MULT_EXPR);
2350 update_stmt (stmt);
2351 widen_mul_stats.widen_mults_inserted++;
2352 return true;
2355 /* Process a single gimple statement STMT, which is found at the
2356 iterator GSI and has a either a PLUS_EXPR or a MINUS_EXPR as its
2357 rhs (given by CODE), and try to convert it into a
2358 WIDEN_MULT_PLUS_EXPR or a WIDEN_MULT_MINUS_EXPR. The return value
2359 is true iff we converted the statement. */
2361 static bool
2362 convert_plusminus_to_widen (gimple_stmt_iterator *gsi, gimple stmt,
2363 enum tree_code code)
2365 gimple rhs1_stmt = NULL, rhs2_stmt = NULL;
2366 gimple conv1_stmt = NULL, conv2_stmt = NULL, conv_stmt;
2367 tree type, type1, type2, optype;
2368 tree lhs, rhs1, rhs2, mult_rhs1, mult_rhs2, add_rhs;
2369 enum tree_code rhs1_code = ERROR_MARK, rhs2_code = ERROR_MARK;
2370 optab this_optab;
2371 enum tree_code wmult_code;
2372 enum insn_code handler;
2373 enum machine_mode to_mode, from_mode, actual_mode;
2374 location_t loc = gimple_location (stmt);
2375 int actual_precision;
2376 bool from_unsigned1, from_unsigned2;
2378 lhs = gimple_assign_lhs (stmt);
2379 type = TREE_TYPE (lhs);
2380 if (TREE_CODE (type) != INTEGER_TYPE
2381 && TREE_CODE (type) != FIXED_POINT_TYPE)
2382 return false;
2384 if (code == MINUS_EXPR)
2385 wmult_code = WIDEN_MULT_MINUS_EXPR;
2386 else
2387 wmult_code = WIDEN_MULT_PLUS_EXPR;
2389 rhs1 = gimple_assign_rhs1 (stmt);
2390 rhs2 = gimple_assign_rhs2 (stmt);
2392 if (TREE_CODE (rhs1) == SSA_NAME)
2394 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
2395 if (is_gimple_assign (rhs1_stmt))
2396 rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
2399 if (TREE_CODE (rhs2) == SSA_NAME)
2401 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
2402 if (is_gimple_assign (rhs2_stmt))
2403 rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
2406 /* Allow for one conversion statement between the multiply
2407 and addition/subtraction statement. If there are more than
2408 one conversions then we assume they would invalidate this
2409 transformation. If that's not the case then they should have
2410 been folded before now. */
2411 if (CONVERT_EXPR_CODE_P (rhs1_code))
2413 conv1_stmt = rhs1_stmt;
2414 rhs1 = gimple_assign_rhs1 (rhs1_stmt);
2415 if (TREE_CODE (rhs1) == SSA_NAME)
2417 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
2418 if (is_gimple_assign (rhs1_stmt))
2419 rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
2421 else
2422 return false;
2424 if (CONVERT_EXPR_CODE_P (rhs2_code))
2426 conv2_stmt = rhs2_stmt;
2427 rhs2 = gimple_assign_rhs1 (rhs2_stmt);
2428 if (TREE_CODE (rhs2) == SSA_NAME)
2430 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
2431 if (is_gimple_assign (rhs2_stmt))
2432 rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
2434 else
2435 return false;
2438 /* If code is WIDEN_MULT_EXPR then it would seem unnecessary to call
2439 is_widening_mult_p, but we still need the rhs returns.
2441 It might also appear that it would be sufficient to use the existing
2442 operands of the widening multiply, but that would limit the choice of
2443 multiply-and-accumulate instructions.
2445 If the widened-multiplication result has more than one uses, it is
2446 probably wiser not to do the conversion. */
2447 if (code == PLUS_EXPR
2448 && (rhs1_code == MULT_EXPR || rhs1_code == WIDEN_MULT_EXPR))
2450 if (!has_single_use (rhs1)
2451 || !is_widening_mult_p (rhs1_stmt, &type1, &mult_rhs1,
2452 &type2, &mult_rhs2))
2453 return false;
2454 add_rhs = rhs2;
2455 conv_stmt = conv1_stmt;
2457 else if (rhs2_code == MULT_EXPR || rhs2_code == WIDEN_MULT_EXPR)
2459 if (!has_single_use (rhs2)
2460 || !is_widening_mult_p (rhs2_stmt, &type1, &mult_rhs1,
2461 &type2, &mult_rhs2))
2462 return false;
2463 add_rhs = rhs1;
2464 conv_stmt = conv2_stmt;
2466 else
2467 return false;
2469 to_mode = TYPE_MODE (type);
2470 from_mode = TYPE_MODE (type1);
2471 from_unsigned1 = TYPE_UNSIGNED (type1);
2472 from_unsigned2 = TYPE_UNSIGNED (type2);
2473 optype = type1;
2475 /* There's no such thing as a mixed sign madd yet, so use a wider mode. */
2476 if (from_unsigned1 != from_unsigned2)
2478 if (!INTEGRAL_TYPE_P (type))
2479 return false;
2480 /* We can use a signed multiply with unsigned types as long as
2481 there is a wider mode to use, or it is the smaller of the two
2482 types that is unsigned. Note that type1 >= type2, always. */
2483 if ((from_unsigned1
2484 && TYPE_PRECISION (type1) == GET_MODE_PRECISION (from_mode))
2485 || (from_unsigned2
2486 && TYPE_PRECISION (type2) == GET_MODE_PRECISION (from_mode)))
2488 from_mode = GET_MODE_WIDER_MODE (from_mode);
2489 if (GET_MODE_SIZE (from_mode) >= GET_MODE_SIZE (to_mode))
2490 return false;
2493 from_unsigned1 = from_unsigned2 = false;
2494 optype = build_nonstandard_integer_type (GET_MODE_PRECISION (from_mode),
2495 false);
2498 /* If there was a conversion between the multiply and addition
2499 then we need to make sure it fits a multiply-and-accumulate.
2500 The should be a single mode change which does not change the
2501 value. */
2502 if (conv_stmt)
2504 /* We use the original, unmodified data types for this. */
2505 tree from_type = TREE_TYPE (gimple_assign_rhs1 (conv_stmt));
2506 tree to_type = TREE_TYPE (gimple_assign_lhs (conv_stmt));
2507 int data_size = TYPE_PRECISION (type1) + TYPE_PRECISION (type2);
2508 bool is_unsigned = TYPE_UNSIGNED (type1) && TYPE_UNSIGNED (type2);
2510 if (TYPE_PRECISION (from_type) > TYPE_PRECISION (to_type))
2512 /* Conversion is a truncate. */
2513 if (TYPE_PRECISION (to_type) < data_size)
2514 return false;
2516 else if (TYPE_PRECISION (from_type) < TYPE_PRECISION (to_type))
2518 /* Conversion is an extend. Check it's the right sort. */
2519 if (TYPE_UNSIGNED (from_type) != is_unsigned
2520 && !(is_unsigned && TYPE_PRECISION (from_type) > data_size))
2521 return false;
2523 /* else convert is a no-op for our purposes. */
2526 /* Verify that the machine can perform a widening multiply
2527 accumulate in this mode/signedness combination, otherwise
2528 this transformation is likely to pessimize code. */
2529 this_optab = optab_for_tree_code (wmult_code, optype, optab_default);
2530 handler = find_widening_optab_handler_and_mode (this_optab, to_mode,
2531 from_mode, 0, &actual_mode);
2533 if (handler == CODE_FOR_nothing)
2534 return false;
2536 /* Ensure that the inputs to the handler are in the correct precison
2537 for the opcode. This will be the full mode size. */
2538 actual_precision = GET_MODE_PRECISION (actual_mode);
2539 if (actual_precision != TYPE_PRECISION (type1)
2540 || from_unsigned1 != TYPE_UNSIGNED (type1))
2541 mult_rhs1 = build_and_insert_cast (gsi, loc,
2542 build_nonstandard_integer_type
2543 (actual_precision, from_unsigned1),
2544 mult_rhs1);
2545 if (actual_precision != TYPE_PRECISION (type2)
2546 || from_unsigned2 != TYPE_UNSIGNED (type2))
2547 mult_rhs2 = build_and_insert_cast (gsi, loc,
2548 build_nonstandard_integer_type
2549 (actual_precision, from_unsigned2),
2550 mult_rhs2);
2552 if (!useless_type_conversion_p (type, TREE_TYPE (add_rhs)))
2553 add_rhs = build_and_insert_cast (gsi, loc, type, add_rhs);
2555 /* Handle constants. */
2556 if (TREE_CODE (mult_rhs1) == INTEGER_CST)
2557 mult_rhs1 = fold_convert (type1, mult_rhs1);
2558 if (TREE_CODE (mult_rhs2) == INTEGER_CST)
2559 mult_rhs2 = fold_convert (type2, mult_rhs2);
2561 gimple_assign_set_rhs_with_ops_1 (gsi, wmult_code, mult_rhs1, mult_rhs2,
2562 add_rhs);
2563 update_stmt (gsi_stmt (*gsi));
2564 widen_mul_stats.maccs_inserted++;
2565 return true;
2568 /* Combine the multiplication at MUL_STMT with operands MULOP1 and MULOP2
2569 with uses in additions and subtractions to form fused multiply-add
2570 operations. Returns true if successful and MUL_STMT should be removed. */
2572 static bool
2573 convert_mult_to_fma (gimple mul_stmt, tree op1, tree op2)
2575 tree mul_result = gimple_get_lhs (mul_stmt);
2576 tree type = TREE_TYPE (mul_result);
2577 gimple use_stmt, neguse_stmt, fma_stmt;
2578 use_operand_p use_p;
2579 imm_use_iterator imm_iter;
2581 if (FLOAT_TYPE_P (type)
2582 && flag_fp_contract_mode == FP_CONTRACT_OFF)
2583 return false;
2585 /* We don't want to do bitfield reduction ops. */
2586 if (INTEGRAL_TYPE_P (type)
2587 && (TYPE_PRECISION (type)
2588 != GET_MODE_PRECISION (TYPE_MODE (type))))
2589 return false;
2591 /* If the target doesn't support it, don't generate it. We assume that
2592 if fma isn't available then fms, fnma or fnms are not either. */
2593 if (optab_handler (fma_optab, TYPE_MODE (type)) == CODE_FOR_nothing)
2594 return false;
2596 /* If the multiplication has zero uses, it is kept around probably because
2597 of -fnon-call-exceptions. Don't optimize it away in that case,
2598 it is DCE job. */
2599 if (has_zero_uses (mul_result))
2600 return false;
2602 /* Make sure that the multiplication statement becomes dead after
2603 the transformation, thus that all uses are transformed to FMAs.
2604 This means we assume that an FMA operation has the same cost
2605 as an addition. */
2606 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, mul_result)
2608 enum tree_code use_code;
2609 tree result = mul_result;
2610 bool negate_p = false;
2612 use_stmt = USE_STMT (use_p);
2614 if (is_gimple_debug (use_stmt))
2615 continue;
2617 /* For now restrict this operations to single basic blocks. In theory
2618 we would want to support sinking the multiplication in
2619 m = a*b;
2620 if ()
2621 ma = m + c;
2622 else
2623 d = m;
2624 to form a fma in the then block and sink the multiplication to the
2625 else block. */
2626 if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
2627 return false;
2629 if (!is_gimple_assign (use_stmt))
2630 return false;
2632 use_code = gimple_assign_rhs_code (use_stmt);
2634 /* A negate on the multiplication leads to FNMA. */
2635 if (use_code == NEGATE_EXPR)
2637 ssa_op_iter iter;
2638 use_operand_p usep;
2640 result = gimple_assign_lhs (use_stmt);
2642 /* Make sure the negate statement becomes dead with this
2643 single transformation. */
2644 if (!single_imm_use (gimple_assign_lhs (use_stmt),
2645 &use_p, &neguse_stmt))
2646 return false;
2648 /* Make sure the multiplication isn't also used on that stmt. */
2649 FOR_EACH_PHI_OR_STMT_USE (usep, neguse_stmt, iter, SSA_OP_USE)
2650 if (USE_FROM_PTR (usep) == mul_result)
2651 return false;
2653 /* Re-validate. */
2654 use_stmt = neguse_stmt;
2655 if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
2656 return false;
2657 if (!is_gimple_assign (use_stmt))
2658 return false;
2660 use_code = gimple_assign_rhs_code (use_stmt);
2661 negate_p = true;
2664 switch (use_code)
2666 case MINUS_EXPR:
2667 if (gimple_assign_rhs2 (use_stmt) == result)
2668 negate_p = !negate_p;
2669 break;
2670 case PLUS_EXPR:
2671 break;
2672 default:
2673 /* FMA can only be formed from PLUS and MINUS. */
2674 return false;
2677 /* If the subtrahend (gimple_assign_rhs2 (use_stmt)) is computed
2678 by a MULT_EXPR that we'll visit later, we might be able to
2679 get a more profitable match with fnma.
2680 OTOH, if we don't, a negate / fma pair has likely lower latency
2681 that a mult / subtract pair. */
2682 if (use_code == MINUS_EXPR && !negate_p
2683 && gimple_assign_rhs1 (use_stmt) == result
2684 && optab_handler (fms_optab, TYPE_MODE (type)) == CODE_FOR_nothing
2685 && optab_handler (fnma_optab, TYPE_MODE (type)) != CODE_FOR_nothing)
2687 tree rhs2 = gimple_assign_rhs2 (use_stmt);
2689 if (TREE_CODE (rhs2) == SSA_NAME)
2691 gimple stmt2 = SSA_NAME_DEF_STMT (rhs2);
2692 if (has_single_use (rhs2)
2693 && is_gimple_assign (stmt2)
2694 && gimple_assign_rhs_code (stmt2) == MULT_EXPR)
2695 return false;
2699 /* We can't handle a * b + a * b. */
2700 if (gimple_assign_rhs1 (use_stmt) == gimple_assign_rhs2 (use_stmt))
2701 return false;
2703 /* While it is possible to validate whether or not the exact form
2704 that we've recognized is available in the backend, the assumption
2705 is that the transformation is never a loss. For instance, suppose
2706 the target only has the plain FMA pattern available. Consider
2707 a*b-c -> fma(a,b,-c): we've exchanged MUL+SUB for FMA+NEG, which
2708 is still two operations. Consider -(a*b)-c -> fma(-a,b,-c): we
2709 still have 3 operations, but in the FMA form the two NEGs are
2710 independent and could be run in parallel. */
2713 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, mul_result)
2715 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
2716 enum tree_code use_code;
2717 tree addop, mulop1 = op1, result = mul_result;
2718 bool negate_p = false;
2720 if (is_gimple_debug (use_stmt))
2721 continue;
2723 use_code = gimple_assign_rhs_code (use_stmt);
2724 if (use_code == NEGATE_EXPR)
2726 result = gimple_assign_lhs (use_stmt);
2727 single_imm_use (gimple_assign_lhs (use_stmt), &use_p, &neguse_stmt);
2728 gsi_remove (&gsi, true);
2729 release_defs (use_stmt);
2731 use_stmt = neguse_stmt;
2732 gsi = gsi_for_stmt (use_stmt);
2733 use_code = gimple_assign_rhs_code (use_stmt);
2734 negate_p = true;
2737 if (gimple_assign_rhs1 (use_stmt) == result)
2739 addop = gimple_assign_rhs2 (use_stmt);
2740 /* a * b - c -> a * b + (-c) */
2741 if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
2742 addop = force_gimple_operand_gsi (&gsi,
2743 build1 (NEGATE_EXPR,
2744 type, addop),
2745 true, NULL_TREE, true,
2746 GSI_SAME_STMT);
2748 else
2750 addop = gimple_assign_rhs1 (use_stmt);
2751 /* a - b * c -> (-b) * c + a */
2752 if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
2753 negate_p = !negate_p;
2756 if (negate_p)
2757 mulop1 = force_gimple_operand_gsi (&gsi,
2758 build1 (NEGATE_EXPR,
2759 type, mulop1),
2760 true, NULL_TREE, true,
2761 GSI_SAME_STMT);
2763 fma_stmt = gimple_build_assign_with_ops (FMA_EXPR,
2764 gimple_assign_lhs (use_stmt),
2765 mulop1, op2,
2766 addop);
2767 gsi_replace (&gsi, fma_stmt, true);
2768 widen_mul_stats.fmas_inserted++;
2771 return true;
2774 /* Find integer multiplications where the operands are extended from
2775 smaller types, and replace the MULT_EXPR with a WIDEN_MULT_EXPR
2776 where appropriate. */
2778 namespace {
2780 const pass_data pass_data_optimize_widening_mul =
2782 GIMPLE_PASS, /* type */
2783 "widening_mul", /* name */
2784 OPTGROUP_NONE, /* optinfo_flags */
2785 true, /* has_execute */
2786 TV_NONE, /* tv_id */
2787 PROP_ssa, /* properties_required */
2788 0, /* properties_provided */
2789 0, /* properties_destroyed */
2790 0, /* todo_flags_start */
2791 ( TODO_verify_ssa | TODO_verify_stmts
2792 | TODO_update_ssa ), /* todo_flags_finish */
2795 class pass_optimize_widening_mul : public gimple_opt_pass
2797 public:
2798 pass_optimize_widening_mul (gcc::context *ctxt)
2799 : gimple_opt_pass (pass_data_optimize_widening_mul, ctxt)
2802 /* opt_pass methods: */
2803 virtual bool gate (function *)
2805 return flag_expensive_optimizations && optimize;
2808 virtual unsigned int execute (function *);
2810 }; // class pass_optimize_widening_mul
2812 unsigned int
2813 pass_optimize_widening_mul::execute (function *fun)
2815 basic_block bb;
2816 bool cfg_changed = false;
2818 memset (&widen_mul_stats, 0, sizeof (widen_mul_stats));
2820 FOR_EACH_BB_FN (bb, fun)
2822 gimple_stmt_iterator gsi;
2824 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi);)
2826 gimple stmt = gsi_stmt (gsi);
2827 enum tree_code code;
2829 if (is_gimple_assign (stmt))
2831 code = gimple_assign_rhs_code (stmt);
2832 switch (code)
2834 case MULT_EXPR:
2835 if (!convert_mult_to_widen (stmt, &gsi)
2836 && convert_mult_to_fma (stmt,
2837 gimple_assign_rhs1 (stmt),
2838 gimple_assign_rhs2 (stmt)))
2840 gsi_remove (&gsi, true);
2841 release_defs (stmt);
2842 continue;
2844 break;
2846 case PLUS_EXPR:
2847 case MINUS_EXPR:
2848 convert_plusminus_to_widen (&gsi, stmt, code);
2849 break;
2851 default:;
2854 else if (is_gimple_call (stmt)
2855 && gimple_call_lhs (stmt))
2857 tree fndecl = gimple_call_fndecl (stmt);
2858 if (fndecl
2859 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
2861 switch (DECL_FUNCTION_CODE (fndecl))
2863 case BUILT_IN_POWF:
2864 case BUILT_IN_POW:
2865 case BUILT_IN_POWL:
2866 if (TREE_CODE (gimple_call_arg (stmt, 1)) == REAL_CST
2867 && REAL_VALUES_EQUAL
2868 (TREE_REAL_CST (gimple_call_arg (stmt, 1)),
2869 dconst2)
2870 && convert_mult_to_fma (stmt,
2871 gimple_call_arg (stmt, 0),
2872 gimple_call_arg (stmt, 0)))
2874 unlink_stmt_vdef (stmt);
2875 if (gsi_remove (&gsi, true)
2876 && gimple_purge_dead_eh_edges (bb))
2877 cfg_changed = true;
2878 release_defs (stmt);
2879 continue;
2881 break;
2883 default:;
2887 gsi_next (&gsi);
2891 statistics_counter_event (fun, "widening multiplications inserted",
2892 widen_mul_stats.widen_mults_inserted);
2893 statistics_counter_event (fun, "widening maccs inserted",
2894 widen_mul_stats.maccs_inserted);
2895 statistics_counter_event (fun, "fused multiply-adds inserted",
2896 widen_mul_stats.fmas_inserted);
2898 return cfg_changed ? TODO_cleanup_cfg : 0;
2901 } // anon namespace
2903 gimple_opt_pass *
2904 make_pass_optimize_widening_mul (gcc::context *ctxt)
2906 return new pass_optimize_widening_mul (ctxt);