1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This is the final pass of the compiler.
21 It looks at the rtl code for a function and outputs assembler code.
23 Call `final_start_function' to output the assembler code for function entry,
24 `final' to output assembler code for some RTL code,
25 `final_end_function' to output assembler code for function exit.
26 If a function is compiled in several pieces, each piece is
27 output separately with `final'.
29 Some optimizations are also done at this level.
30 Move instructions that were made unnecessary by good register allocation
31 are detected and omitted from the output. (Though most of these
32 are removed by the last jump pass.)
34 Instructions to set the condition codes are omitted when it can be
35 seen that the condition codes already had the desired values.
37 In some cases it is sufficient if the inherited condition codes
38 have related values, but this may require the following insn
39 (the one that tests the condition codes) to be modified.
41 The code for the function prologue and epilogue are generated
42 directly in assembler by the target functions function_prologue and
43 function_epilogue. Those instructions never exist as rtl. */
47 #include "coretypes.h"
55 #include "insn-config.h"
56 #include "insn-attr.h"
58 #include "conditions.h"
60 #include "hard-reg-set.h"
64 #include "rtl-error.h"
65 #include "toplev.h" /* exact_log2, floor_log2 */
68 #include "basic-block.h"
70 #include "targhooks.h"
73 #include "tree-pass.h"
81 #include "tree-pretty-print.h" /* for dump_function_header */
84 #ifdef XCOFF_DEBUGGING_INFO
85 #include "xcoffout.h" /* Needed for external data
86 declarations for e.g. AIX 4.x. */
89 #include "dwarf2out.h"
91 #ifdef DBX_DEBUGGING_INFO
95 #ifdef SDB_DEBUGGING_INFO
99 /* Most ports that aren't using cc0 don't need to define CC_STATUS_INIT.
100 So define a null default for it to save conditionalization later. */
101 #ifndef CC_STATUS_INIT
102 #define CC_STATUS_INIT
105 /* Is the given character a logical line separator for the assembler? */
106 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
107 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) ((C) == ';')
110 #ifndef JUMP_TABLES_IN_TEXT_SECTION
111 #define JUMP_TABLES_IN_TEXT_SECTION 0
114 /* Bitflags used by final_scan_insn. */
116 #define SEEN_EMITTED 2
118 /* Last insn processed by final_scan_insn. */
119 static rtx debug_insn
;
120 rtx current_output_insn
;
122 /* Line number of last NOTE. */
123 static int last_linenum
;
125 /* Last discriminator written to assembly. */
126 static int last_discriminator
;
128 /* Discriminator of current block. */
129 static int discriminator
;
131 /* Highest line number in current block. */
132 static int high_block_linenum
;
134 /* Likewise for function. */
135 static int high_function_linenum
;
137 /* Filename of last NOTE. */
138 static const char *last_filename
;
140 /* Override filename and line number. */
141 static const char *override_filename
;
142 static int override_linenum
;
144 /* Whether to force emission of a line note before the next insn. */
145 static bool force_source_line
= false;
147 extern const int length_unit_log
; /* This is defined in insn-attrtab.c. */
149 /* Nonzero while outputting an `asm' with operands.
150 This means that inconsistencies are the user's fault, so don't die.
151 The precise value is the insn being output, to pass to error_for_asm. */
152 rtx this_is_asm_operands
;
154 /* Number of operands of this insn, for an `asm' with operands. */
155 static unsigned int insn_noperands
;
157 /* Compare optimization flag. */
159 static rtx last_ignored_compare
= 0;
161 /* Assign a unique number to each insn that is output.
162 This can be used to generate unique local labels. */
164 static int insn_counter
= 0;
167 /* This variable contains machine-dependent flags (defined in tm.h)
168 set and examined by output routines
169 that describe how to interpret the condition codes properly. */
173 /* During output of an insn, this contains a copy of cc_status
174 from before the insn. */
176 CC_STATUS cc_prev_status
;
179 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
181 static int block_depth
;
183 /* Nonzero if have enabled APP processing of our assembler output. */
187 /* If we are outputting an insn sequence, this contains the sequence rtx.
192 #ifdef ASSEMBLER_DIALECT
194 /* Number of the assembler dialect to use, starting at 0. */
195 static int dialect_number
;
198 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
199 rtx current_insn_predicate
;
201 /* True if printing into -fdump-final-insns= dump. */
202 bool final_insns_dump_p
;
204 /* True if profile_function should be called, but hasn't been called yet. */
205 static bool need_profile_function
;
207 static int asm_insn_count (rtx
);
208 static void profile_function (FILE *);
209 static void profile_after_prologue (FILE *);
210 static bool notice_source_line (rtx
, bool *);
211 static rtx
walk_alter_subreg (rtx
*, bool *);
212 static void output_asm_name (void);
213 static void output_alternate_entry_point (FILE *, rtx
);
214 static tree
get_mem_expr_from_op (rtx
, int *);
215 static void output_asm_operand_names (rtx
*, int *, int);
216 #ifdef LEAF_REGISTERS
217 static void leaf_renumber_regs (rtx
);
220 static int alter_cond (rtx
);
222 #ifndef ADDR_VEC_ALIGN
223 static int final_addr_vec_align (rtx
);
225 static int align_fuzz (rtx
, rtx
, int, unsigned);
227 /* Initialize data in final at the beginning of a compilation. */
230 init_final (const char *filename ATTRIBUTE_UNUSED
)
235 #ifdef ASSEMBLER_DIALECT
236 dialect_number
= ASSEMBLER_DIALECT
;
240 /* Default target function prologue and epilogue assembler output.
242 If not overridden for epilogue code, then the function body itself
243 contains return instructions wherever needed. */
245 default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED
,
246 HOST_WIDE_INT size ATTRIBUTE_UNUSED
)
251 default_function_switched_text_sections (FILE *file ATTRIBUTE_UNUSED
,
252 tree decl ATTRIBUTE_UNUSED
,
253 bool new_is_cold ATTRIBUTE_UNUSED
)
257 /* Default target hook that outputs nothing to a stream. */
259 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED
)
263 /* Enable APP processing of subsequent output.
264 Used before the output from an `asm' statement. */
271 fputs (ASM_APP_ON
, asm_out_file
);
276 /* Disable APP processing of subsequent output.
277 Called from varasm.c before most kinds of output. */
284 fputs (ASM_APP_OFF
, asm_out_file
);
289 /* Return the number of slots filled in the current
290 delayed branch sequence (we don't count the insn needing the
291 delay slot). Zero if not in a delayed branch sequence. */
295 dbr_sequence_length (void)
297 if (final_sequence
!= 0)
298 return XVECLEN (final_sequence
, 0) - 1;
304 /* The next two pages contain routines used to compute the length of an insn
305 and to shorten branches. */
307 /* Arrays for insn lengths, and addresses. The latter is referenced by
308 `insn_current_length'. */
310 static int *insn_lengths
;
312 vec
<int> insn_addresses_
;
314 /* Max uid for which the above arrays are valid. */
315 static int insn_lengths_max_uid
;
317 /* Address of insn being processed. Used by `insn_current_length'. */
318 int insn_current_address
;
320 /* Address of insn being processed in previous iteration. */
321 int insn_last_address
;
323 /* known invariant alignment of insn being processed. */
324 int insn_current_align
;
326 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
327 gives the next following alignment insn that increases the known
328 alignment, or NULL_RTX if there is no such insn.
329 For any alignment obtained this way, we can again index uid_align with
330 its uid to obtain the next following align that in turn increases the
331 alignment, till we reach NULL_RTX; the sequence obtained this way
332 for each insn we'll call the alignment chain of this insn in the following
335 struct label_alignment
341 static rtx
*uid_align
;
342 static int *uid_shuid
;
343 static struct label_alignment
*label_align
;
345 /* Indicate that branch shortening hasn't yet been done. */
348 init_insn_lengths (void)
359 insn_lengths_max_uid
= 0;
361 if (HAVE_ATTR_length
)
362 INSN_ADDRESSES_FREE ();
370 /* Obtain the current length of an insn. If branch shortening has been done,
371 get its actual length. Otherwise, use FALLBACK_FN to calculate the
374 get_attr_length_1 (rtx insn
, int (*fallback_fn
) (rtx
))
380 if (!HAVE_ATTR_length
)
383 if (insn_lengths_max_uid
> INSN_UID (insn
))
384 return insn_lengths
[INSN_UID (insn
)];
386 switch (GET_CODE (insn
))
396 length
= fallback_fn (insn
);
400 body
= PATTERN (insn
);
401 if (GET_CODE (body
) == USE
|| GET_CODE (body
) == CLOBBER
)
404 else if (GET_CODE (body
) == ASM_INPUT
|| asm_noperands (body
) >= 0)
405 length
= asm_insn_count (body
) * fallback_fn (insn
);
406 else if (GET_CODE (body
) == SEQUENCE
)
407 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
408 length
+= get_attr_length_1 (XVECEXP (body
, 0, i
), fallback_fn
);
410 length
= fallback_fn (insn
);
417 #ifdef ADJUST_INSN_LENGTH
418 ADJUST_INSN_LENGTH (insn
, length
);
423 /* Obtain the current length of an insn. If branch shortening has been done,
424 get its actual length. Otherwise, get its maximum length. */
426 get_attr_length (rtx insn
)
428 return get_attr_length_1 (insn
, insn_default_length
);
431 /* Obtain the current length of an insn. If branch shortening has been done,
432 get its actual length. Otherwise, get its minimum length. */
434 get_attr_min_length (rtx insn
)
436 return get_attr_length_1 (insn
, insn_min_length
);
439 /* Code to handle alignment inside shorten_branches. */
441 /* Here is an explanation how the algorithm in align_fuzz can give
444 Call a sequence of instructions beginning with alignment point X
445 and continuing until the next alignment point `block X'. When `X'
446 is used in an expression, it means the alignment value of the
449 Call the distance between the start of the first insn of block X, and
450 the end of the last insn of block X `IX', for the `inner size of X'.
451 This is clearly the sum of the instruction lengths.
453 Likewise with the next alignment-delimited block following X, which we
456 Call the distance between the start of the first insn of block X, and
457 the start of the first insn of block Y `OX', for the `outer size of X'.
459 The estimated padding is then OX - IX.
461 OX can be safely estimated as
466 OX = round_up(IX, X) + Y - X
468 Clearly est(IX) >= real(IX), because that only depends on the
469 instruction lengths, and those being overestimated is a given.
471 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
472 we needn't worry about that when thinking about OX.
474 When X >= Y, the alignment provided by Y adds no uncertainty factor
475 for branch ranges starting before X, so we can just round what we have.
476 But when X < Y, we don't know anything about the, so to speak,
477 `middle bits', so we have to assume the worst when aligning up from an
478 address mod X to one mod Y, which is Y - X. */
481 #define LABEL_ALIGN(LABEL) align_labels_log
485 #define LOOP_ALIGN(LABEL) align_loops_log
488 #ifndef LABEL_ALIGN_AFTER_BARRIER
489 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
493 #define JUMP_ALIGN(LABEL) align_jumps_log
497 default_label_align_after_barrier_max_skip (rtx insn ATTRIBUTE_UNUSED
)
503 default_loop_align_max_skip (rtx insn ATTRIBUTE_UNUSED
)
505 return align_loops_max_skip
;
509 default_label_align_max_skip (rtx insn ATTRIBUTE_UNUSED
)
511 return align_labels_max_skip
;
515 default_jump_align_max_skip (rtx insn ATTRIBUTE_UNUSED
)
517 return align_jumps_max_skip
;
520 #ifndef ADDR_VEC_ALIGN
522 final_addr_vec_align (rtx addr_vec
)
524 int align
= GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec
)));
526 if (align
> BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
)
527 align
= BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
;
528 return exact_log2 (align
);
532 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
535 #ifndef INSN_LENGTH_ALIGNMENT
536 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
539 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
541 static int min_labelno
, max_labelno
;
543 #define LABEL_TO_ALIGNMENT(LABEL) \
544 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
546 #define LABEL_TO_MAX_SKIP(LABEL) \
547 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
549 /* For the benefit of port specific code do this also as a function. */
552 label_to_alignment (rtx label
)
554 if (CODE_LABEL_NUMBER (label
) <= max_labelno
)
555 return LABEL_TO_ALIGNMENT (label
);
560 label_to_max_skip (rtx label
)
562 if (CODE_LABEL_NUMBER (label
) <= max_labelno
)
563 return LABEL_TO_MAX_SKIP (label
);
567 /* The differences in addresses
568 between a branch and its target might grow or shrink depending on
569 the alignment the start insn of the range (the branch for a forward
570 branch or the label for a backward branch) starts out on; if these
571 differences are used naively, they can even oscillate infinitely.
572 We therefore want to compute a 'worst case' address difference that
573 is independent of the alignment the start insn of the range end
574 up on, and that is at least as large as the actual difference.
575 The function align_fuzz calculates the amount we have to add to the
576 naively computed difference, by traversing the part of the alignment
577 chain of the start insn of the range that is in front of the end insn
578 of the range, and considering for each alignment the maximum amount
579 that it might contribute to a size increase.
581 For casesi tables, we also want to know worst case minimum amounts of
582 address difference, in case a machine description wants to introduce
583 some common offset that is added to all offsets in a table.
584 For this purpose, align_fuzz with a growth argument of 0 computes the
585 appropriate adjustment. */
587 /* Compute the maximum delta by which the difference of the addresses of
588 START and END might grow / shrink due to a different address for start
589 which changes the size of alignment insns between START and END.
590 KNOWN_ALIGN_LOG is the alignment known for START.
591 GROWTH should be ~0 if the objective is to compute potential code size
592 increase, and 0 if the objective is to compute potential shrink.
593 The return value is undefined for any other value of GROWTH. */
596 align_fuzz (rtx start
, rtx end
, int known_align_log
, unsigned int growth
)
598 int uid
= INSN_UID (start
);
600 int known_align
= 1 << known_align_log
;
601 int end_shuid
= INSN_SHUID (end
);
604 for (align_label
= uid_align
[uid
]; align_label
; align_label
= uid_align
[uid
])
606 int align_addr
, new_align
;
608 uid
= INSN_UID (align_label
);
609 align_addr
= INSN_ADDRESSES (uid
) - insn_lengths
[uid
];
610 if (uid_shuid
[uid
] > end_shuid
)
612 known_align_log
= LABEL_TO_ALIGNMENT (align_label
);
613 new_align
= 1 << known_align_log
;
614 if (new_align
< known_align
)
616 fuzz
+= (-align_addr
^ growth
) & (new_align
- known_align
);
617 known_align
= new_align
;
622 /* Compute a worst-case reference address of a branch so that it
623 can be safely used in the presence of aligned labels. Since the
624 size of the branch itself is unknown, the size of the branch is
625 not included in the range. I.e. for a forward branch, the reference
626 address is the end address of the branch as known from the previous
627 branch shortening pass, minus a value to account for possible size
628 increase due to alignment. For a backward branch, it is the start
629 address of the branch as known from the current pass, plus a value
630 to account for possible size increase due to alignment.
631 NB.: Therefore, the maximum offset allowed for backward branches needs
632 to exclude the branch size. */
635 insn_current_reference_address (rtx branch
)
640 if (! INSN_ADDRESSES_SET_P ())
643 seq
= NEXT_INSN (PREV_INSN (branch
));
644 seq_uid
= INSN_UID (seq
);
645 if (!JUMP_P (branch
))
646 /* This can happen for example on the PA; the objective is to know the
647 offset to address something in front of the start of the function.
648 Thus, we can treat it like a backward branch.
649 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
650 any alignment we'd encounter, so we skip the call to align_fuzz. */
651 return insn_current_address
;
652 dest
= JUMP_LABEL (branch
);
654 /* BRANCH has no proper alignment chain set, so use SEQ.
655 BRANCH also has no INSN_SHUID. */
656 if (INSN_SHUID (seq
) < INSN_SHUID (dest
))
658 /* Forward branch. */
659 return (insn_last_address
+ insn_lengths
[seq_uid
]
660 - align_fuzz (seq
, dest
, length_unit_log
, ~0));
664 /* Backward branch. */
665 return (insn_current_address
666 + align_fuzz (dest
, seq
, length_unit_log
, ~0));
670 /* Compute branch alignments based on frequency information in the
674 compute_alignments (void)
676 int log
, max_skip
, max_log
;
679 int freq_threshold
= 0;
687 max_labelno
= max_label_num ();
688 min_labelno
= get_first_label_num ();
689 label_align
= XCNEWVEC (struct label_alignment
, max_labelno
- min_labelno
+ 1);
691 /* If not optimizing or optimizing for size, don't assign any alignments. */
692 if (! optimize
|| optimize_function_for_size_p (cfun
))
697 dump_reg_info (dump_file
);
698 dump_flow_info (dump_file
, TDF_DETAILS
);
699 flow_loops_dump (dump_file
, NULL
, 1);
701 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
);
702 FOR_EACH_BB_FN (bb
, cfun
)
703 if (bb
->frequency
> freq_max
)
704 freq_max
= bb
->frequency
;
705 freq_threshold
= freq_max
/ PARAM_VALUE (PARAM_ALIGN_THRESHOLD
);
708 fprintf (dump_file
, "freq_max: %i\n",freq_max
);
709 FOR_EACH_BB_FN (bb
, cfun
)
711 rtx label
= BB_HEAD (bb
);
712 int fallthru_frequency
= 0, branch_frequency
= 0, has_fallthru
= 0;
717 || optimize_bb_for_size_p (bb
))
721 "BB %4i freq %4i loop %2i loop_depth %2i skipped.\n",
722 bb
->index
, bb
->frequency
, bb
->loop_father
->num
,
726 max_log
= LABEL_ALIGN (label
);
727 max_skip
= targetm
.asm_out
.label_align_max_skip (label
);
729 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
731 if (e
->flags
& EDGE_FALLTHRU
)
732 has_fallthru
= 1, fallthru_frequency
+= EDGE_FREQUENCY (e
);
734 branch_frequency
+= EDGE_FREQUENCY (e
);
738 fprintf (dump_file
, "BB %4i freq %4i loop %2i loop_depth"
739 " %2i fall %4i branch %4i",
740 bb
->index
, bb
->frequency
, bb
->loop_father
->num
,
742 fallthru_frequency
, branch_frequency
);
743 if (!bb
->loop_father
->inner
&& bb
->loop_father
->num
)
744 fprintf (dump_file
, " inner_loop");
745 if (bb
->loop_father
->header
== bb
)
746 fprintf (dump_file
, " loop_header");
747 fprintf (dump_file
, "\n");
750 /* There are two purposes to align block with no fallthru incoming edge:
751 1) to avoid fetch stalls when branch destination is near cache boundary
752 2) to improve cache efficiency in case the previous block is not executed
753 (so it does not need to be in the cache).
755 We to catch first case, we align frequently executed blocks.
756 To catch the second, we align blocks that are executed more frequently
757 than the predecessor and the predecessor is likely to not be executed
758 when function is called. */
761 && (branch_frequency
> freq_threshold
762 || (bb
->frequency
> bb
->prev_bb
->frequency
* 10
763 && (bb
->prev_bb
->frequency
764 <= ENTRY_BLOCK_PTR_FOR_FN (cfun
)->frequency
/ 2))))
766 log
= JUMP_ALIGN (label
);
768 fprintf (dump_file
, " jump alignment added.\n");
772 max_skip
= targetm
.asm_out
.jump_align_max_skip (label
);
775 /* In case block is frequent and reached mostly by non-fallthru edge,
776 align it. It is most likely a first block of loop. */
778 && !(single_succ_p (bb
)
779 && single_succ (bb
) == EXIT_BLOCK_PTR_FOR_FN (cfun
))
780 && optimize_bb_for_speed_p (bb
)
781 && branch_frequency
+ fallthru_frequency
> freq_threshold
783 > fallthru_frequency
* PARAM_VALUE (PARAM_ALIGN_LOOP_ITERATIONS
)))
785 log
= LOOP_ALIGN (label
);
787 fprintf (dump_file
, " internal loop alignment added.\n");
791 max_skip
= targetm
.asm_out
.loop_align_max_skip (label
);
794 LABEL_TO_ALIGNMENT (label
) = max_log
;
795 LABEL_TO_MAX_SKIP (label
) = max_skip
;
798 loop_optimizer_finalize ();
799 free_dominance_info (CDI_DOMINATORS
);
803 /* Grow the LABEL_ALIGN array after new labels are created. */
806 grow_label_align (void)
808 int old
= max_labelno
;
812 max_labelno
= max_label_num ();
814 n_labels
= max_labelno
- min_labelno
+ 1;
815 n_old_labels
= old
- min_labelno
+ 1;
817 label_align
= XRESIZEVEC (struct label_alignment
, label_align
, n_labels
);
819 /* Range of labels grows monotonically in the function. Failing here
820 means that the initialization of array got lost. */
821 gcc_assert (n_old_labels
<= n_labels
);
823 memset (label_align
+ n_old_labels
, 0,
824 (n_labels
- n_old_labels
) * sizeof (struct label_alignment
));
827 /* Update the already computed alignment information. LABEL_PAIRS is a vector
828 made up of pairs of labels for which the alignment information of the first
829 element will be copied from that of the second element. */
832 update_alignments (vec
<rtx
> &label_pairs
)
835 rtx iter
, label
= NULL_RTX
;
837 if (max_labelno
!= max_label_num ())
840 FOR_EACH_VEC_ELT (label_pairs
, i
, iter
)
843 LABEL_TO_ALIGNMENT (label
) = LABEL_TO_ALIGNMENT (iter
);
844 LABEL_TO_MAX_SKIP (label
) = LABEL_TO_MAX_SKIP (iter
);
852 const pass_data pass_data_compute_alignments
=
855 "alignments", /* name */
856 OPTGROUP_NONE
, /* optinfo_flags */
857 true, /* has_execute */
859 0, /* properties_required */
860 0, /* properties_provided */
861 0, /* properties_destroyed */
862 0, /* todo_flags_start */
863 TODO_verify_rtl_sharing
, /* todo_flags_finish */
866 class pass_compute_alignments
: public rtl_opt_pass
869 pass_compute_alignments (gcc::context
*ctxt
)
870 : rtl_opt_pass (pass_data_compute_alignments
, ctxt
)
873 /* opt_pass methods: */
874 virtual unsigned int execute (function
*) { return compute_alignments (); }
876 }; // class pass_compute_alignments
881 make_pass_compute_alignments (gcc::context
*ctxt
)
883 return new pass_compute_alignments (ctxt
);
887 /* Make a pass over all insns and compute their actual lengths by shortening
888 any branches of variable length if possible. */
890 /* shorten_branches might be called multiple times: for example, the SH
891 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
892 In order to do this, it needs proper length information, which it obtains
893 by calling shorten_branches. This cannot be collapsed with
894 shorten_branches itself into a single pass unless we also want to integrate
895 reorg.c, since the branch splitting exposes new instructions with delay
899 shorten_branches (rtx first
)
906 #define MAX_CODE_ALIGN 16
908 int something_changed
= 1;
909 char *varying_length
;
912 rtx align_tab
[MAX_CODE_ALIGN
];
914 /* Compute maximum UID and allocate label_align / uid_shuid. */
915 max_uid
= get_max_uid ();
917 /* Free uid_shuid before reallocating it. */
920 uid_shuid
= XNEWVEC (int, max_uid
);
922 if (max_labelno
!= max_label_num ())
925 /* Initialize label_align and set up uid_shuid to be strictly
926 monotonically rising with insn order. */
927 /* We use max_log here to keep track of the maximum alignment we want to
928 impose on the next CODE_LABEL (or the current one if we are processing
929 the CODE_LABEL itself). */
934 for (insn
= get_insns (), i
= 1; insn
; insn
= NEXT_INSN (insn
))
938 INSN_SHUID (insn
) = i
++;
945 bool next_is_jumptable
;
947 /* Merge in alignments computed by compute_alignments. */
948 log
= LABEL_TO_ALIGNMENT (insn
);
952 max_skip
= LABEL_TO_MAX_SKIP (insn
);
955 next
= next_nonnote_insn (insn
);
956 next_is_jumptable
= next
&& JUMP_TABLE_DATA_P (next
);
957 if (!next_is_jumptable
)
959 log
= LABEL_ALIGN (insn
);
963 max_skip
= targetm
.asm_out
.label_align_max_skip (insn
);
966 /* ADDR_VECs only take room if read-only data goes into the text
968 if ((JUMP_TABLES_IN_TEXT_SECTION
969 || readonly_data_section
== text_section
)
970 && next_is_jumptable
)
972 log
= ADDR_VEC_ALIGN (next
);
976 max_skip
= targetm
.asm_out
.label_align_max_skip (insn
);
979 LABEL_TO_ALIGNMENT (insn
) = max_log
;
980 LABEL_TO_MAX_SKIP (insn
) = max_skip
;
984 else if (BARRIER_P (insn
))
988 for (label
= insn
; label
&& ! INSN_P (label
);
989 label
= NEXT_INSN (label
))
992 log
= LABEL_ALIGN_AFTER_BARRIER (insn
);
996 max_skip
= targetm
.asm_out
.label_align_after_barrier_max_skip (label
);
1002 if (!HAVE_ATTR_length
)
1005 /* Allocate the rest of the arrays. */
1006 insn_lengths
= XNEWVEC (int, max_uid
);
1007 insn_lengths_max_uid
= max_uid
;
1008 /* Syntax errors can lead to labels being outside of the main insn stream.
1009 Initialize insn_addresses, so that we get reproducible results. */
1010 INSN_ADDRESSES_ALLOC (max_uid
);
1012 varying_length
= XCNEWVEC (char, max_uid
);
1014 /* Initialize uid_align. We scan instructions
1015 from end to start, and keep in align_tab[n] the last seen insn
1016 that does an alignment of at least n+1, i.e. the successor
1017 in the alignment chain for an insn that does / has a known
1019 uid_align
= XCNEWVEC (rtx
, max_uid
);
1021 for (i
= MAX_CODE_ALIGN
; --i
>= 0;)
1022 align_tab
[i
] = NULL_RTX
;
1023 seq
= get_last_insn ();
1024 for (; seq
; seq
= PREV_INSN (seq
))
1026 int uid
= INSN_UID (seq
);
1028 log
= (LABEL_P (seq
) ? LABEL_TO_ALIGNMENT (seq
) : 0);
1029 uid_align
[uid
] = align_tab
[0];
1032 /* Found an alignment label. */
1033 uid_align
[uid
] = align_tab
[log
];
1034 for (i
= log
- 1; i
>= 0; i
--)
1039 /* When optimizing, we start assuming minimum length, and keep increasing
1040 lengths as we find the need for this, till nothing changes.
1041 When not optimizing, we start assuming maximum lengths, and
1042 do a single pass to update the lengths. */
1043 bool increasing
= optimize
!= 0;
1045 #ifdef CASE_VECTOR_SHORTEN_MODE
1048 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
1051 int min_shuid
= INSN_SHUID (get_insns ()) - 1;
1052 int max_shuid
= INSN_SHUID (get_last_insn ()) + 1;
1055 for (insn
= first
; insn
!= 0; insn
= NEXT_INSN (insn
))
1057 rtx min_lab
= NULL_RTX
, max_lab
= NULL_RTX
, pat
;
1058 int len
, i
, min
, max
, insn_shuid
;
1060 addr_diff_vec_flags flags
;
1062 if (! JUMP_TABLE_DATA_P (insn
)
1063 || GET_CODE (PATTERN (insn
)) != ADDR_DIFF_VEC
)
1065 pat
= PATTERN (insn
);
1066 len
= XVECLEN (pat
, 1);
1067 gcc_assert (len
> 0);
1068 min_align
= MAX_CODE_ALIGN
;
1069 for (min
= max_shuid
, max
= min_shuid
, i
= len
- 1; i
>= 0; i
--)
1071 rtx lab
= XEXP (XVECEXP (pat
, 1, i
), 0);
1072 int shuid
= INSN_SHUID (lab
);
1083 if (min_align
> LABEL_TO_ALIGNMENT (lab
))
1084 min_align
= LABEL_TO_ALIGNMENT (lab
);
1086 XEXP (pat
, 2) = gen_rtx_LABEL_REF (Pmode
, min_lab
);
1087 XEXP (pat
, 3) = gen_rtx_LABEL_REF (Pmode
, max_lab
);
1088 insn_shuid
= INSN_SHUID (insn
);
1089 rel
= INSN_SHUID (XEXP (XEXP (pat
, 0), 0));
1090 memset (&flags
, 0, sizeof (flags
));
1091 flags
.min_align
= min_align
;
1092 flags
.base_after_vec
= rel
> insn_shuid
;
1093 flags
.min_after_vec
= min
> insn_shuid
;
1094 flags
.max_after_vec
= max
> insn_shuid
;
1095 flags
.min_after_base
= min
> rel
;
1096 flags
.max_after_base
= max
> rel
;
1097 ADDR_DIFF_VEC_FLAGS (pat
) = flags
;
1100 PUT_MODE (pat
, CASE_VECTOR_SHORTEN_MODE (0, 0, pat
));
1103 #endif /* CASE_VECTOR_SHORTEN_MODE */
1105 /* Compute initial lengths, addresses, and varying flags for each insn. */
1106 int (*length_fun
) (rtx
) = increasing
? insn_min_length
: insn_default_length
;
1108 for (insn_current_address
= 0, insn
= first
;
1110 insn_current_address
+= insn_lengths
[uid
], insn
= NEXT_INSN (insn
))
1112 uid
= INSN_UID (insn
);
1114 insn_lengths
[uid
] = 0;
1118 int log
= LABEL_TO_ALIGNMENT (insn
);
1121 int align
= 1 << log
;
1122 int new_address
= (insn_current_address
+ align
- 1) & -align
;
1123 insn_lengths
[uid
] = new_address
- insn_current_address
;
1127 INSN_ADDRESSES (uid
) = insn_current_address
+ insn_lengths
[uid
];
1129 if (NOTE_P (insn
) || BARRIER_P (insn
)
1130 || LABEL_P (insn
) || DEBUG_INSN_P (insn
))
1132 if (INSN_DELETED_P (insn
))
1135 body
= PATTERN (insn
);
1136 if (JUMP_TABLE_DATA_P (insn
))
1138 /* This only takes room if read-only data goes into the text
1140 if (JUMP_TABLES_IN_TEXT_SECTION
1141 || readonly_data_section
== text_section
)
1142 insn_lengths
[uid
] = (XVECLEN (body
,
1143 GET_CODE (body
) == ADDR_DIFF_VEC
)
1144 * GET_MODE_SIZE (GET_MODE (body
)));
1145 /* Alignment is handled by ADDR_VEC_ALIGN. */
1147 else if (GET_CODE (body
) == ASM_INPUT
|| asm_noperands (body
) >= 0)
1148 insn_lengths
[uid
] = asm_insn_count (body
) * insn_default_length (insn
);
1149 else if (GET_CODE (body
) == SEQUENCE
)
1152 int const_delay_slots
;
1154 const_delay_slots
= const_num_delay_slots (XVECEXP (body
, 0, 0));
1156 const_delay_slots
= 0;
1158 int (*inner_length_fun
) (rtx
)
1159 = const_delay_slots
? length_fun
: insn_default_length
;
1160 /* Inside a delay slot sequence, we do not do any branch shortening
1161 if the shortening could change the number of delay slots
1163 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
1165 rtx inner_insn
= XVECEXP (body
, 0, i
);
1166 int inner_uid
= INSN_UID (inner_insn
);
1169 if (GET_CODE (body
) == ASM_INPUT
1170 || asm_noperands (PATTERN (XVECEXP (body
, 0, i
))) >= 0)
1171 inner_length
= (asm_insn_count (PATTERN (inner_insn
))
1172 * insn_default_length (inner_insn
));
1174 inner_length
= inner_length_fun (inner_insn
);
1176 insn_lengths
[inner_uid
] = inner_length
;
1177 if (const_delay_slots
)
1179 if ((varying_length
[inner_uid
]
1180 = insn_variable_length_p (inner_insn
)) != 0)
1181 varying_length
[uid
] = 1;
1182 INSN_ADDRESSES (inner_uid
) = (insn_current_address
1183 + insn_lengths
[uid
]);
1186 varying_length
[inner_uid
] = 0;
1187 insn_lengths
[uid
] += inner_length
;
1190 else if (GET_CODE (body
) != USE
&& GET_CODE (body
) != CLOBBER
)
1192 insn_lengths
[uid
] = length_fun (insn
);
1193 varying_length
[uid
] = insn_variable_length_p (insn
);
1196 /* If needed, do any adjustment. */
1197 #ifdef ADJUST_INSN_LENGTH
1198 ADJUST_INSN_LENGTH (insn
, insn_lengths
[uid
]);
1199 if (insn_lengths
[uid
] < 0)
1200 fatal_insn ("negative insn length", insn
);
1204 /* Now loop over all the insns finding varying length insns. For each,
1205 get the current insn length. If it has changed, reflect the change.
1206 When nothing changes for a full pass, we are done. */
1208 while (something_changed
)
1210 something_changed
= 0;
1211 insn_current_align
= MAX_CODE_ALIGN
- 1;
1212 for (insn_current_address
= 0, insn
= first
;
1214 insn
= NEXT_INSN (insn
))
1217 #ifdef ADJUST_INSN_LENGTH
1222 uid
= INSN_UID (insn
);
1226 int log
= LABEL_TO_ALIGNMENT (insn
);
1228 #ifdef CASE_VECTOR_SHORTEN_MODE
1229 /* If the mode of a following jump table was changed, we
1230 may need to update the alignment of this label. */
1232 bool next_is_jumptable
;
1234 next
= next_nonnote_insn (insn
);
1235 next_is_jumptable
= next
&& JUMP_TABLE_DATA_P (next
);
1236 if ((JUMP_TABLES_IN_TEXT_SECTION
1237 || readonly_data_section
== text_section
)
1238 && next_is_jumptable
)
1240 int newlog
= ADDR_VEC_ALIGN (next
);
1244 LABEL_TO_ALIGNMENT (insn
) = log
;
1245 something_changed
= 1;
1250 if (log
> insn_current_align
)
1252 int align
= 1 << log
;
1253 int new_address
= (insn_current_address
+ align
- 1) & -align
;
1254 insn_lengths
[uid
] = new_address
- insn_current_address
;
1255 insn_current_align
= log
;
1256 insn_current_address
= new_address
;
1259 insn_lengths
[uid
] = 0;
1260 INSN_ADDRESSES (uid
) = insn_current_address
;
1264 length_align
= INSN_LENGTH_ALIGNMENT (insn
);
1265 if (length_align
< insn_current_align
)
1266 insn_current_align
= length_align
;
1268 insn_last_address
= INSN_ADDRESSES (uid
);
1269 INSN_ADDRESSES (uid
) = insn_current_address
;
1271 #ifdef CASE_VECTOR_SHORTEN_MODE
1273 && JUMP_TABLE_DATA_P (insn
)
1274 && GET_CODE (PATTERN (insn
)) == ADDR_DIFF_VEC
)
1276 rtx body
= PATTERN (insn
);
1277 int old_length
= insn_lengths
[uid
];
1278 rtx rel_lab
= XEXP (XEXP (body
, 0), 0);
1279 rtx min_lab
= XEXP (XEXP (body
, 2), 0);
1280 rtx max_lab
= XEXP (XEXP (body
, 3), 0);
1281 int rel_addr
= INSN_ADDRESSES (INSN_UID (rel_lab
));
1282 int min_addr
= INSN_ADDRESSES (INSN_UID (min_lab
));
1283 int max_addr
= INSN_ADDRESSES (INSN_UID (max_lab
));
1286 addr_diff_vec_flags flags
;
1287 enum machine_mode vec_mode
;
1289 /* Avoid automatic aggregate initialization. */
1290 flags
= ADDR_DIFF_VEC_FLAGS (body
);
1292 /* Try to find a known alignment for rel_lab. */
1293 for (prev
= rel_lab
;
1295 && ! insn_lengths
[INSN_UID (prev
)]
1296 && ! (varying_length
[INSN_UID (prev
)] & 1);
1297 prev
= PREV_INSN (prev
))
1298 if (varying_length
[INSN_UID (prev
)] & 2)
1300 rel_align
= LABEL_TO_ALIGNMENT (prev
);
1304 /* See the comment on addr_diff_vec_flags in rtl.h for the
1305 meaning of the flags values. base: REL_LAB vec: INSN */
1306 /* Anything after INSN has still addresses from the last
1307 pass; adjust these so that they reflect our current
1308 estimate for this pass. */
1309 if (flags
.base_after_vec
)
1310 rel_addr
+= insn_current_address
- insn_last_address
;
1311 if (flags
.min_after_vec
)
1312 min_addr
+= insn_current_address
- insn_last_address
;
1313 if (flags
.max_after_vec
)
1314 max_addr
+= insn_current_address
- insn_last_address
;
1315 /* We want to know the worst case, i.e. lowest possible value
1316 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1317 its offset is positive, and we have to be wary of code shrink;
1318 otherwise, it is negative, and we have to be vary of code
1320 if (flags
.min_after_base
)
1322 /* If INSN is between REL_LAB and MIN_LAB, the size
1323 changes we are about to make can change the alignment
1324 within the observed offset, therefore we have to break
1325 it up into two parts that are independent. */
1326 if (! flags
.base_after_vec
&& flags
.min_after_vec
)
1328 min_addr
-= align_fuzz (rel_lab
, insn
, rel_align
, 0);
1329 min_addr
-= align_fuzz (insn
, min_lab
, 0, 0);
1332 min_addr
-= align_fuzz (rel_lab
, min_lab
, rel_align
, 0);
1336 if (flags
.base_after_vec
&& ! flags
.min_after_vec
)
1338 min_addr
-= align_fuzz (min_lab
, insn
, 0, ~0);
1339 min_addr
-= align_fuzz (insn
, rel_lab
, 0, ~0);
1342 min_addr
-= align_fuzz (min_lab
, rel_lab
, 0, ~0);
1344 /* Likewise, determine the highest lowest possible value
1345 for the offset of MAX_LAB. */
1346 if (flags
.max_after_base
)
1348 if (! flags
.base_after_vec
&& flags
.max_after_vec
)
1350 max_addr
+= align_fuzz (rel_lab
, insn
, rel_align
, ~0);
1351 max_addr
+= align_fuzz (insn
, max_lab
, 0, ~0);
1354 max_addr
+= align_fuzz (rel_lab
, max_lab
, rel_align
, ~0);
1358 if (flags
.base_after_vec
&& ! flags
.max_after_vec
)
1360 max_addr
+= align_fuzz (max_lab
, insn
, 0, 0);
1361 max_addr
+= align_fuzz (insn
, rel_lab
, 0, 0);
1364 max_addr
+= align_fuzz (max_lab
, rel_lab
, 0, 0);
1366 vec_mode
= CASE_VECTOR_SHORTEN_MODE (min_addr
- rel_addr
,
1367 max_addr
- rel_addr
, body
);
1369 || (GET_MODE_SIZE (vec_mode
)
1370 >= GET_MODE_SIZE (GET_MODE (body
))))
1371 PUT_MODE (body
, vec_mode
);
1372 if (JUMP_TABLES_IN_TEXT_SECTION
1373 || readonly_data_section
== text_section
)
1376 = (XVECLEN (body
, 1) * GET_MODE_SIZE (GET_MODE (body
)));
1377 insn_current_address
+= insn_lengths
[uid
];
1378 if (insn_lengths
[uid
] != old_length
)
1379 something_changed
= 1;
1384 #endif /* CASE_VECTOR_SHORTEN_MODE */
1386 if (! (varying_length
[uid
]))
1388 if (NONJUMP_INSN_P (insn
)
1389 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
1393 body
= PATTERN (insn
);
1394 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
1396 rtx inner_insn
= XVECEXP (body
, 0, i
);
1397 int inner_uid
= INSN_UID (inner_insn
);
1399 INSN_ADDRESSES (inner_uid
) = insn_current_address
;
1401 insn_current_address
+= insn_lengths
[inner_uid
];
1405 insn_current_address
+= insn_lengths
[uid
];
1410 if (NONJUMP_INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
1414 body
= PATTERN (insn
);
1416 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
1418 rtx inner_insn
= XVECEXP (body
, 0, i
);
1419 int inner_uid
= INSN_UID (inner_insn
);
1422 INSN_ADDRESSES (inner_uid
) = insn_current_address
;
1424 /* insn_current_length returns 0 for insns with a
1425 non-varying length. */
1426 if (! varying_length
[inner_uid
])
1427 inner_length
= insn_lengths
[inner_uid
];
1429 inner_length
= insn_current_length (inner_insn
);
1431 if (inner_length
!= insn_lengths
[inner_uid
])
1433 if (!increasing
|| inner_length
> insn_lengths
[inner_uid
])
1435 insn_lengths
[inner_uid
] = inner_length
;
1436 something_changed
= 1;
1439 inner_length
= insn_lengths
[inner_uid
];
1441 insn_current_address
+= inner_length
;
1442 new_length
+= inner_length
;
1447 new_length
= insn_current_length (insn
);
1448 insn_current_address
+= new_length
;
1451 #ifdef ADJUST_INSN_LENGTH
1452 /* If needed, do any adjustment. */
1453 tmp_length
= new_length
;
1454 ADJUST_INSN_LENGTH (insn
, new_length
);
1455 insn_current_address
+= (new_length
- tmp_length
);
1458 if (new_length
!= insn_lengths
[uid
]
1459 && (!increasing
|| new_length
> insn_lengths
[uid
]))
1461 insn_lengths
[uid
] = new_length
;
1462 something_changed
= 1;
1465 insn_current_address
+= insn_lengths
[uid
] - new_length
;
1467 /* For a non-optimizing compile, do only a single pass. */
1472 free (varying_length
);
1475 /* Given the body of an INSN known to be generated by an ASM statement, return
1476 the number of machine instructions likely to be generated for this insn.
1477 This is used to compute its length. */
1480 asm_insn_count (rtx body
)
1484 if (GET_CODE (body
) == ASM_INPUT
)
1485 templ
= XSTR (body
, 0);
1487 templ
= decode_asm_operands (body
, NULL
, NULL
, NULL
, NULL
, NULL
);
1489 return asm_str_count (templ
);
1492 /* Return the number of machine instructions likely to be generated for the
1493 inline-asm template. */
1495 asm_str_count (const char *templ
)
1502 for (; *templ
; templ
++)
1503 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*templ
, templ
)
1510 /* ??? This is probably the wrong place for these. */
1511 /* Structure recording the mapping from source file and directory
1512 names at compile time to those to be embedded in debug
1514 typedef struct debug_prefix_map
1516 const char *old_prefix
;
1517 const char *new_prefix
;
1520 struct debug_prefix_map
*next
;
1523 /* Linked list of such structures. */
1524 static debug_prefix_map
*debug_prefix_maps
;
1527 /* Record a debug file prefix mapping. ARG is the argument to
1528 -fdebug-prefix-map and must be of the form OLD=NEW. */
1531 add_debug_prefix_map (const char *arg
)
1533 debug_prefix_map
*map
;
1536 p
= strchr (arg
, '=');
1539 error ("invalid argument %qs to -fdebug-prefix-map", arg
);
1542 map
= XNEW (debug_prefix_map
);
1543 map
->old_prefix
= xstrndup (arg
, p
- arg
);
1544 map
->old_len
= p
- arg
;
1546 map
->new_prefix
= xstrdup (p
);
1547 map
->new_len
= strlen (p
);
1548 map
->next
= debug_prefix_maps
;
1549 debug_prefix_maps
= map
;
1552 /* Perform user-specified mapping of debug filename prefixes. Return
1553 the new name corresponding to FILENAME. */
1556 remap_debug_filename (const char *filename
)
1558 debug_prefix_map
*map
;
1563 for (map
= debug_prefix_maps
; map
; map
= map
->next
)
1564 if (filename_ncmp (filename
, map
->old_prefix
, map
->old_len
) == 0)
1568 name
= filename
+ map
->old_len
;
1569 name_len
= strlen (name
) + 1;
1570 s
= (char *) alloca (name_len
+ map
->new_len
);
1571 memcpy (s
, map
->new_prefix
, map
->new_len
);
1572 memcpy (s
+ map
->new_len
, name
, name_len
);
1573 return ggc_strdup (s
);
1576 /* Return true if DWARF2 debug info can be emitted for DECL. */
1579 dwarf2_debug_info_emitted_p (tree decl
)
1581 if (write_symbols
!= DWARF2_DEBUG
&& write_symbols
!= VMS_AND_DWARF2_DEBUG
)
1584 if (DECL_IGNORED_P (decl
))
1590 /* Return scope resulting from combination of S1 and S2. */
1592 choose_inner_scope (tree s1
, tree s2
)
1598 if (BLOCK_NUMBER (s1
) > BLOCK_NUMBER (s2
))
1603 /* Emit lexical block notes needed to change scope from S1 to S2. */
1606 change_scope (rtx orig_insn
, tree s1
, tree s2
)
1608 rtx insn
= orig_insn
;
1609 tree com
= NULL_TREE
;
1610 tree ts1
= s1
, ts2
= s2
;
1615 gcc_assert (ts1
&& ts2
);
1616 if (BLOCK_NUMBER (ts1
) > BLOCK_NUMBER (ts2
))
1617 ts1
= BLOCK_SUPERCONTEXT (ts1
);
1618 else if (BLOCK_NUMBER (ts1
) < BLOCK_NUMBER (ts2
))
1619 ts2
= BLOCK_SUPERCONTEXT (ts2
);
1622 ts1
= BLOCK_SUPERCONTEXT (ts1
);
1623 ts2
= BLOCK_SUPERCONTEXT (ts2
);
1632 rtx note
= emit_note_before (NOTE_INSN_BLOCK_END
, insn
);
1633 NOTE_BLOCK (note
) = s
;
1634 s
= BLOCK_SUPERCONTEXT (s
);
1641 insn
= emit_note_before (NOTE_INSN_BLOCK_BEG
, insn
);
1642 NOTE_BLOCK (insn
) = s
;
1643 s
= BLOCK_SUPERCONTEXT (s
);
1647 /* Rebuild all the NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes based
1648 on the scope tree and the newly reordered instructions. */
1651 reemit_insn_block_notes (void)
1653 tree cur_block
= DECL_INITIAL (cfun
->decl
);
1656 insn
= get_insns ();
1657 for (; insn
; insn
= NEXT_INSN (insn
))
1661 /* Prevent lexical blocks from straddling section boundaries. */
1662 if (NOTE_P (insn
) && NOTE_KIND (insn
) == NOTE_INSN_SWITCH_TEXT_SECTIONS
)
1664 for (tree s
= cur_block
; s
!= DECL_INITIAL (cfun
->decl
);
1665 s
= BLOCK_SUPERCONTEXT (s
))
1667 rtx note
= emit_note_before (NOTE_INSN_BLOCK_END
, insn
);
1668 NOTE_BLOCK (note
) = s
;
1669 note
= emit_note_after (NOTE_INSN_BLOCK_BEG
, insn
);
1670 NOTE_BLOCK (note
) = s
;
1674 if (!active_insn_p (insn
))
1677 /* Avoid putting scope notes between jump table and its label. */
1678 if (JUMP_TABLE_DATA_P (insn
))
1681 this_block
= insn_scope (insn
);
1682 /* For sequences compute scope resulting from merging all scopes
1683 of instructions nested inside. */
1684 if (GET_CODE (PATTERN (insn
)) == SEQUENCE
)
1687 rtx body
= PATTERN (insn
);
1690 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
1691 this_block
= choose_inner_scope (this_block
,
1692 insn_scope (XVECEXP (body
, 0, i
)));
1696 if (INSN_LOCATION (insn
) == UNKNOWN_LOCATION
)
1699 this_block
= DECL_INITIAL (cfun
->decl
);
1702 if (this_block
!= cur_block
)
1704 change_scope (insn
, cur_block
, this_block
);
1705 cur_block
= this_block
;
1709 /* change_scope emits before the insn, not after. */
1710 note
= emit_note (NOTE_INSN_DELETED
);
1711 change_scope (note
, cur_block
, DECL_INITIAL (cfun
->decl
));
1717 /* Output assembler code for the start of a function,
1718 and initialize some of the variables in this file
1719 for the new function. The label for the function and associated
1720 assembler pseudo-ops have already been output in `assemble_start_function'.
1722 FIRST is the first insn of the rtl for the function being compiled.
1723 FILE is the file to write assembler code to.
1724 OPTIMIZE_P is nonzero if we should eliminate redundant
1725 test and compare insns. */
1728 final_start_function (rtx first
, FILE *file
,
1729 int optimize_p ATTRIBUTE_UNUSED
)
1733 this_is_asm_operands
= 0;
1735 need_profile_function
= false;
1737 last_filename
= LOCATION_FILE (prologue_location
);
1738 last_linenum
= LOCATION_LINE (prologue_location
);
1739 last_discriminator
= discriminator
= 0;
1741 high_block_linenum
= high_function_linenum
= last_linenum
;
1743 if (flag_sanitize
& SANITIZE_ADDRESS
)
1744 asan_function_start ();
1746 if (!DECL_IGNORED_P (current_function_decl
))
1747 debug_hooks
->begin_prologue (last_linenum
, last_filename
);
1749 if (!dwarf2_debug_info_emitted_p (current_function_decl
))
1750 dwarf2out_begin_prologue (0, NULL
);
1752 #ifdef LEAF_REG_REMAP
1753 if (crtl
->uses_only_leaf_regs
)
1754 leaf_renumber_regs (first
);
1757 /* The Sun386i and perhaps other machines don't work right
1758 if the profiling code comes after the prologue. */
1759 if (targetm
.profile_before_prologue () && crtl
->profile
)
1761 if (targetm
.asm_out
.function_prologue
1762 == default_function_pro_epilogue
1763 #ifdef HAVE_prologue
1769 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
1775 else if (NOTE_KIND (insn
) == NOTE_INSN_BASIC_BLOCK
1776 || NOTE_KIND (insn
) == NOTE_INSN_FUNCTION_BEG
)
1778 else if (NOTE_KIND (insn
) == NOTE_INSN_DELETED
1779 || NOTE_KIND (insn
) == NOTE_INSN_VAR_LOCATION
)
1788 need_profile_function
= true;
1790 profile_function (file
);
1793 profile_function (file
);
1796 /* If debugging, assign block numbers to all of the blocks in this
1800 reemit_insn_block_notes ();
1801 number_blocks (current_function_decl
);
1802 /* We never actually put out begin/end notes for the top-level
1803 block in the function. But, conceptually, that block is
1805 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl
)) = 1;
1808 if (warn_frame_larger_than
1809 && get_frame_size () > frame_larger_than_size
)
1811 /* Issue a warning */
1812 warning (OPT_Wframe_larger_than_
,
1813 "the frame size of %wd bytes is larger than %wd bytes",
1814 get_frame_size (), frame_larger_than_size
);
1817 /* First output the function prologue: code to set up the stack frame. */
1818 targetm
.asm_out
.function_prologue (file
, get_frame_size ());
1820 /* If the machine represents the prologue as RTL, the profiling code must
1821 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1822 #ifdef HAVE_prologue
1823 if (! HAVE_prologue
)
1825 profile_after_prologue (file
);
1829 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED
)
1831 if (!targetm
.profile_before_prologue () && crtl
->profile
)
1832 profile_function (file
);
1836 profile_function (FILE *file ATTRIBUTE_UNUSED
)
1838 #ifndef NO_PROFILE_COUNTERS
1839 # define NO_PROFILE_COUNTERS 0
1841 #ifdef ASM_OUTPUT_REG_PUSH
1842 rtx sval
= NULL
, chain
= NULL
;
1844 if (cfun
->returns_struct
)
1845 sval
= targetm
.calls
.struct_value_rtx (TREE_TYPE (current_function_decl
),
1847 if (cfun
->static_chain_decl
)
1848 chain
= targetm
.calls
.static_chain (current_function_decl
, true);
1849 #endif /* ASM_OUTPUT_REG_PUSH */
1851 if (! NO_PROFILE_COUNTERS
)
1853 int align
= MIN (BIGGEST_ALIGNMENT
, LONG_TYPE_SIZE
);
1854 switch_to_section (data_section
);
1855 ASM_OUTPUT_ALIGN (file
, floor_log2 (align
/ BITS_PER_UNIT
));
1856 targetm
.asm_out
.internal_label (file
, "LP", current_function_funcdef_no
);
1857 assemble_integer (const0_rtx
, LONG_TYPE_SIZE
/ BITS_PER_UNIT
, align
, 1);
1860 switch_to_section (current_function_section ());
1862 #ifdef ASM_OUTPUT_REG_PUSH
1863 if (sval
&& REG_P (sval
))
1864 ASM_OUTPUT_REG_PUSH (file
, REGNO (sval
));
1865 if (chain
&& REG_P (chain
))
1866 ASM_OUTPUT_REG_PUSH (file
, REGNO (chain
));
1869 FUNCTION_PROFILER (file
, current_function_funcdef_no
);
1871 #ifdef ASM_OUTPUT_REG_PUSH
1872 if (chain
&& REG_P (chain
))
1873 ASM_OUTPUT_REG_POP (file
, REGNO (chain
));
1874 if (sval
&& REG_P (sval
))
1875 ASM_OUTPUT_REG_POP (file
, REGNO (sval
));
1879 /* Output assembler code for the end of a function.
1880 For clarity, args are same as those of `final_start_function'
1881 even though not all of them are needed. */
1884 final_end_function (void)
1888 if (!DECL_IGNORED_P (current_function_decl
))
1889 debug_hooks
->end_function (high_function_linenum
);
1891 /* Finally, output the function epilogue:
1892 code to restore the stack frame and return to the caller. */
1893 targetm
.asm_out
.function_epilogue (asm_out_file
, get_frame_size ());
1895 /* And debug output. */
1896 if (!DECL_IGNORED_P (current_function_decl
))
1897 debug_hooks
->end_epilogue (last_linenum
, last_filename
);
1899 if (!dwarf2_debug_info_emitted_p (current_function_decl
)
1900 && dwarf2out_do_frame ())
1901 dwarf2out_end_epilogue (last_linenum
, last_filename
);
1905 /* Dumper helper for basic block information. FILE is the assembly
1906 output file, and INSN is the instruction being emitted. */
1909 dump_basic_block_info (FILE *file
, rtx insn
, basic_block
*start_to_bb
,
1910 basic_block
*end_to_bb
, int bb_map_size
, int *bb_seqn
)
1914 if (!flag_debug_asm
)
1917 if (INSN_UID (insn
) < bb_map_size
1918 && (bb
= start_to_bb
[INSN_UID (insn
)]) != NULL
)
1923 fprintf (file
, "%s BLOCK %d", ASM_COMMENT_START
, bb
->index
);
1925 fprintf (file
, " freq:%d", bb
->frequency
);
1927 fprintf (file
, " count:" HOST_WIDEST_INT_PRINT_DEC
,
1929 fprintf (file
, " seq:%d", (*bb_seqn
)++);
1930 fprintf (file
, "\n%s PRED:", ASM_COMMENT_START
);
1931 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
1933 dump_edge_info (file
, e
, TDF_DETAILS
, 0);
1935 fprintf (file
, "\n");
1937 if (INSN_UID (insn
) < bb_map_size
1938 && (bb
= end_to_bb
[INSN_UID (insn
)]) != NULL
)
1943 fprintf (asm_out_file
, "%s SUCC:", ASM_COMMENT_START
);
1944 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
1946 dump_edge_info (asm_out_file
, e
, TDF_DETAILS
, 1);
1948 fprintf (file
, "\n");
1952 /* Output assembler code for some insns: all or part of a function.
1953 For description of args, see `final_start_function', above. */
1956 final (rtx first
, FILE *file
, int optimize_p
)
1961 /* Used for -dA dump. */
1962 basic_block
*start_to_bb
= NULL
;
1963 basic_block
*end_to_bb
= NULL
;
1964 int bb_map_size
= 0;
1967 last_ignored_compare
= 0;
1970 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
1972 /* If CC tracking across branches is enabled, record the insn which
1973 jumps to each branch only reached from one place. */
1974 if (optimize_p
&& JUMP_P (insn
))
1976 rtx lab
= JUMP_LABEL (insn
);
1977 if (lab
&& LABEL_P (lab
) && LABEL_NUSES (lab
) == 1)
1979 LABEL_REFS (lab
) = insn
;
1993 bb_map_size
= get_max_uid () + 1;
1994 start_to_bb
= XCNEWVEC (basic_block
, bb_map_size
);
1995 end_to_bb
= XCNEWVEC (basic_block
, bb_map_size
);
1997 /* There is no cfg for a thunk. */
1998 if (!cfun
->is_thunk
)
1999 FOR_EACH_BB_REVERSE_FN (bb
, cfun
)
2001 start_to_bb
[INSN_UID (BB_HEAD (bb
))] = bb
;
2002 end_to_bb
[INSN_UID (BB_END (bb
))] = bb
;
2006 /* Output the insns. */
2007 for (insn
= first
; insn
;)
2009 if (HAVE_ATTR_length
)
2011 if ((unsigned) INSN_UID (insn
) >= INSN_ADDRESSES_SIZE ())
2013 /* This can be triggered by bugs elsewhere in the compiler if
2014 new insns are created after init_insn_lengths is called. */
2015 gcc_assert (NOTE_P (insn
));
2016 insn_current_address
= -1;
2019 insn_current_address
= INSN_ADDRESSES (INSN_UID (insn
));
2022 dump_basic_block_info (file
, insn
, start_to_bb
, end_to_bb
,
2023 bb_map_size
, &bb_seqn
);
2024 insn
= final_scan_insn (insn
, file
, optimize_p
, 0, &seen
);
2033 /* Remove CFI notes, to avoid compare-debug failures. */
2034 for (insn
= first
; insn
; insn
= next
)
2036 next
= NEXT_INSN (insn
);
2038 && (NOTE_KIND (insn
) == NOTE_INSN_CFI
2039 || NOTE_KIND (insn
) == NOTE_INSN_CFI_LABEL
))
2045 get_insn_template (int code
, rtx insn
)
2047 switch (insn_data
[code
].output_format
)
2049 case INSN_OUTPUT_FORMAT_SINGLE
:
2050 return insn_data
[code
].output
.single
;
2051 case INSN_OUTPUT_FORMAT_MULTI
:
2052 return insn_data
[code
].output
.multi
[which_alternative
];
2053 case INSN_OUTPUT_FORMAT_FUNCTION
:
2055 return (*insn_data
[code
].output
.function
) (recog_data
.operand
, insn
);
2062 /* Emit the appropriate declaration for an alternate-entry-point
2063 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
2064 LABEL_KIND != LABEL_NORMAL.
2066 The case fall-through in this function is intentional. */
2068 output_alternate_entry_point (FILE *file
, rtx insn
)
2070 const char *name
= LABEL_NAME (insn
);
2072 switch (LABEL_KIND (insn
))
2074 case LABEL_WEAK_ENTRY
:
2075 #ifdef ASM_WEAKEN_LABEL
2076 ASM_WEAKEN_LABEL (file
, name
);
2078 case LABEL_GLOBAL_ENTRY
:
2079 targetm
.asm_out
.globalize_label (file
, name
);
2080 case LABEL_STATIC_ENTRY
:
2081 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
2082 ASM_OUTPUT_TYPE_DIRECTIVE (file
, name
, "function");
2084 ASM_OUTPUT_LABEL (file
, name
);
2093 /* Given a CALL_INSN, find and return the nested CALL. */
2095 call_from_call_insn (rtx insn
)
2098 gcc_assert (CALL_P (insn
));
2101 while (GET_CODE (x
) != CALL
)
2103 switch (GET_CODE (x
))
2108 x
= COND_EXEC_CODE (x
);
2111 x
= XVECEXP (x
, 0, 0);
2121 /* The final scan for one insn, INSN.
2122 Args are same as in `final', except that INSN
2123 is the insn being scanned.
2124 Value returned is the next insn to be scanned.
2126 NOPEEPHOLES is the flag to disallow peephole processing (currently
2127 used for within delayed branch sequence output).
2129 SEEN is used to track the end of the prologue, for emitting
2130 debug information. We force the emission of a line note after
2131 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG. */
2134 final_scan_insn (rtx insn
, FILE *file
, int optimize_p ATTRIBUTE_UNUSED
,
2135 int nopeepholes ATTRIBUTE_UNUSED
, int *seen
)
2144 /* Ignore deleted insns. These can occur when we split insns (due to a
2145 template of "#") while not optimizing. */
2146 if (INSN_DELETED_P (insn
))
2147 return NEXT_INSN (insn
);
2149 switch (GET_CODE (insn
))
2152 switch (NOTE_KIND (insn
))
2154 case NOTE_INSN_DELETED
:
2157 case NOTE_INSN_SWITCH_TEXT_SECTIONS
:
2158 in_cold_section_p
= !in_cold_section_p
;
2160 if (dwarf2out_do_frame ())
2161 dwarf2out_switch_text_section ();
2162 else if (!DECL_IGNORED_P (current_function_decl
))
2163 debug_hooks
->switch_text_section ();
2165 switch_to_section (current_function_section ());
2166 targetm
.asm_out
.function_switched_text_sections (asm_out_file
,
2167 current_function_decl
,
2169 /* Emit a label for the split cold section. Form label name by
2170 suffixing "cold" to the original function's name. */
2171 if (in_cold_section_p
)
2173 tree cold_function_name
2174 = clone_function_name (current_function_decl
, "cold");
2175 ASM_OUTPUT_LABEL (asm_out_file
,
2176 IDENTIFIER_POINTER (cold_function_name
));
2180 case NOTE_INSN_BASIC_BLOCK
:
2181 if (need_profile_function
)
2183 profile_function (asm_out_file
);
2184 need_profile_function
= false;
2187 if (targetm
.asm_out
.unwind_emit
)
2188 targetm
.asm_out
.unwind_emit (asm_out_file
, insn
);
2190 discriminator
= NOTE_BASIC_BLOCK (insn
)->discriminator
;
2194 case NOTE_INSN_EH_REGION_BEG
:
2195 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, "LEHB",
2196 NOTE_EH_HANDLER (insn
));
2199 case NOTE_INSN_EH_REGION_END
:
2200 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, "LEHE",
2201 NOTE_EH_HANDLER (insn
));
2204 case NOTE_INSN_PROLOGUE_END
:
2205 targetm
.asm_out
.function_end_prologue (file
);
2206 profile_after_prologue (file
);
2208 if ((*seen
& (SEEN_EMITTED
| SEEN_NOTE
)) == SEEN_NOTE
)
2210 *seen
|= SEEN_EMITTED
;
2211 force_source_line
= true;
2218 case NOTE_INSN_EPILOGUE_BEG
:
2219 if (!DECL_IGNORED_P (current_function_decl
))
2220 (*debug_hooks
->begin_epilogue
) (last_linenum
, last_filename
);
2221 targetm
.asm_out
.function_begin_epilogue (file
);
2225 dwarf2out_emit_cfi (NOTE_CFI (insn
));
2228 case NOTE_INSN_CFI_LABEL
:
2229 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, "LCFI",
2230 NOTE_LABEL_NUMBER (insn
));
2233 case NOTE_INSN_FUNCTION_BEG
:
2234 if (need_profile_function
)
2236 profile_function (asm_out_file
);
2237 need_profile_function
= false;
2241 if (!DECL_IGNORED_P (current_function_decl
))
2242 debug_hooks
->end_prologue (last_linenum
, last_filename
);
2244 if ((*seen
& (SEEN_EMITTED
| SEEN_NOTE
)) == SEEN_NOTE
)
2246 *seen
|= SEEN_EMITTED
;
2247 force_source_line
= true;
2254 case NOTE_INSN_BLOCK_BEG
:
2255 if (debug_info_level
== DINFO_LEVEL_NORMAL
2256 || debug_info_level
== DINFO_LEVEL_VERBOSE
2257 || write_symbols
== DWARF2_DEBUG
2258 || write_symbols
== VMS_AND_DWARF2_DEBUG
2259 || write_symbols
== VMS_DEBUG
)
2261 int n
= BLOCK_NUMBER (NOTE_BLOCK (insn
));
2265 high_block_linenum
= last_linenum
;
2267 /* Output debugging info about the symbol-block beginning. */
2268 if (!DECL_IGNORED_P (current_function_decl
))
2269 debug_hooks
->begin_block (last_linenum
, n
);
2271 /* Mark this block as output. */
2272 TREE_ASM_WRITTEN (NOTE_BLOCK (insn
)) = 1;
2274 if (write_symbols
== DBX_DEBUG
2275 || write_symbols
== SDB_DEBUG
)
2277 location_t
*locus_ptr
2278 = block_nonartificial_location (NOTE_BLOCK (insn
));
2280 if (locus_ptr
!= NULL
)
2282 override_filename
= LOCATION_FILE (*locus_ptr
);
2283 override_linenum
= LOCATION_LINE (*locus_ptr
);
2288 case NOTE_INSN_BLOCK_END
:
2289 if (debug_info_level
== DINFO_LEVEL_NORMAL
2290 || debug_info_level
== DINFO_LEVEL_VERBOSE
2291 || write_symbols
== DWARF2_DEBUG
2292 || write_symbols
== VMS_AND_DWARF2_DEBUG
2293 || write_symbols
== VMS_DEBUG
)
2295 int n
= BLOCK_NUMBER (NOTE_BLOCK (insn
));
2299 /* End of a symbol-block. */
2301 gcc_assert (block_depth
>= 0);
2303 if (!DECL_IGNORED_P (current_function_decl
))
2304 debug_hooks
->end_block (high_block_linenum
, n
);
2306 if (write_symbols
== DBX_DEBUG
2307 || write_symbols
== SDB_DEBUG
)
2309 tree outer_block
= BLOCK_SUPERCONTEXT (NOTE_BLOCK (insn
));
2310 location_t
*locus_ptr
2311 = block_nonartificial_location (outer_block
);
2313 if (locus_ptr
!= NULL
)
2315 override_filename
= LOCATION_FILE (*locus_ptr
);
2316 override_linenum
= LOCATION_LINE (*locus_ptr
);
2320 override_filename
= NULL
;
2321 override_linenum
= 0;
2326 case NOTE_INSN_DELETED_LABEL
:
2327 /* Emit the label. We may have deleted the CODE_LABEL because
2328 the label could be proved to be unreachable, though still
2329 referenced (in the form of having its address taken. */
2330 ASM_OUTPUT_DEBUG_LABEL (file
, "L", CODE_LABEL_NUMBER (insn
));
2333 case NOTE_INSN_DELETED_DEBUG_LABEL
:
2334 /* Similarly, but need to use different namespace for it. */
2335 if (CODE_LABEL_NUMBER (insn
) != -1)
2336 ASM_OUTPUT_DEBUG_LABEL (file
, "LDL", CODE_LABEL_NUMBER (insn
));
2339 case NOTE_INSN_VAR_LOCATION
:
2340 case NOTE_INSN_CALL_ARG_LOCATION
:
2341 if (!DECL_IGNORED_P (current_function_decl
))
2342 debug_hooks
->var_location (insn
);
2355 /* The target port might emit labels in the output function for
2356 some insn, e.g. sh.c output_branchy_insn. */
2357 if (CODE_LABEL_NUMBER (insn
) <= max_labelno
)
2359 int align
= LABEL_TO_ALIGNMENT (insn
);
2360 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2361 int max_skip
= LABEL_TO_MAX_SKIP (insn
);
2364 if (align
&& NEXT_INSN (insn
))
2366 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2367 ASM_OUTPUT_MAX_SKIP_ALIGN (file
, align
, max_skip
);
2369 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
2370 ASM_OUTPUT_ALIGN_WITH_NOP (file
, align
);
2372 ASM_OUTPUT_ALIGN (file
, align
);
2379 if (!DECL_IGNORED_P (current_function_decl
) && LABEL_NAME (insn
))
2380 debug_hooks
->label (insn
);
2384 next
= next_nonnote_insn (insn
);
2385 /* If this label is followed by a jump-table, make sure we put
2386 the label in the read-only section. Also possibly write the
2387 label and jump table together. */
2388 if (next
!= 0 && JUMP_TABLE_DATA_P (next
))
2390 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2391 /* In this case, the case vector is being moved by the
2392 target, so don't output the label at all. Leave that
2393 to the back end macros. */
2395 if (! JUMP_TABLES_IN_TEXT_SECTION
)
2399 switch_to_section (targetm
.asm_out
.function_rodata_section
2400 (current_function_decl
));
2402 #ifdef ADDR_VEC_ALIGN
2403 log_align
= ADDR_VEC_ALIGN (next
);
2405 log_align
= exact_log2 (BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
);
2407 ASM_OUTPUT_ALIGN (file
, log_align
);
2410 switch_to_section (current_function_section ());
2412 #ifdef ASM_OUTPUT_CASE_LABEL
2413 ASM_OUTPUT_CASE_LABEL (file
, "L", CODE_LABEL_NUMBER (insn
),
2416 targetm
.asm_out
.internal_label (file
, "L", CODE_LABEL_NUMBER (insn
));
2421 if (LABEL_ALT_ENTRY_P (insn
))
2422 output_alternate_entry_point (file
, insn
);
2424 targetm
.asm_out
.internal_label (file
, "L", CODE_LABEL_NUMBER (insn
));
2429 rtx body
= PATTERN (insn
);
2430 int insn_code_number
;
2434 /* Reset this early so it is correct for ASM statements. */
2435 current_insn_predicate
= NULL_RTX
;
2437 /* An INSN, JUMP_INSN or CALL_INSN.
2438 First check for special kinds that recog doesn't recognize. */
2440 if (GET_CODE (body
) == USE
/* These are just declarations. */
2441 || GET_CODE (body
) == CLOBBER
)
2446 /* If there is a REG_CC_SETTER note on this insn, it means that
2447 the setting of the condition code was done in the delay slot
2448 of the insn that branched here. So recover the cc status
2449 from the insn that set it. */
2451 rtx note
= find_reg_note (insn
, REG_CC_SETTER
, NULL_RTX
);
2454 NOTICE_UPDATE_CC (PATTERN (XEXP (note
, 0)), XEXP (note
, 0));
2455 cc_prev_status
= cc_status
;
2460 /* Detect insns that are really jump-tables
2461 and output them as such. */
2463 if (JUMP_TABLE_DATA_P (insn
))
2465 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2469 if (! JUMP_TABLES_IN_TEXT_SECTION
)
2470 switch_to_section (targetm
.asm_out
.function_rodata_section
2471 (current_function_decl
));
2473 switch_to_section (current_function_section ());
2477 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2478 if (GET_CODE (body
) == ADDR_VEC
)
2480 #ifdef ASM_OUTPUT_ADDR_VEC
2481 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn
), body
);
2488 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2489 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn
), body
);
2495 vlen
= XVECLEN (body
, GET_CODE (body
) == ADDR_DIFF_VEC
);
2496 for (idx
= 0; idx
< vlen
; idx
++)
2498 if (GET_CODE (body
) == ADDR_VEC
)
2500 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2501 ASM_OUTPUT_ADDR_VEC_ELT
2502 (file
, CODE_LABEL_NUMBER (XEXP (XVECEXP (body
, 0, idx
), 0)));
2509 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2510 ASM_OUTPUT_ADDR_DIFF_ELT
2513 CODE_LABEL_NUMBER (XEXP (XVECEXP (body
, 1, idx
), 0)),
2514 CODE_LABEL_NUMBER (XEXP (XEXP (body
, 0), 0)));
2520 #ifdef ASM_OUTPUT_CASE_END
2521 ASM_OUTPUT_CASE_END (file
,
2522 CODE_LABEL_NUMBER (PREV_INSN (insn
)),
2527 switch_to_section (current_function_section ());
2531 /* Output this line note if it is the first or the last line
2533 if (!DECL_IGNORED_P (current_function_decl
)
2534 && notice_source_line (insn
, &is_stmt
))
2535 (*debug_hooks
->source_line
) (last_linenum
, last_filename
,
2536 last_discriminator
, is_stmt
);
2538 if (GET_CODE (body
) == ASM_INPUT
)
2540 const char *string
= XSTR (body
, 0);
2542 /* There's no telling what that did to the condition codes. */
2547 expanded_location loc
;
2550 loc
= expand_location (ASM_INPUT_SOURCE_LOCATION (body
));
2551 if (*loc
.file
&& loc
.line
)
2552 fprintf (asm_out_file
, "%s %i \"%s\" 1\n",
2553 ASM_COMMENT_START
, loc
.line
, loc
.file
);
2554 fprintf (asm_out_file
, "\t%s\n", string
);
2555 #if HAVE_AS_LINE_ZERO
2556 if (*loc
.file
&& loc
.line
)
2557 fprintf (asm_out_file
, "%s 0 \"\" 2\n", ASM_COMMENT_START
);
2563 /* Detect `asm' construct with operands. */
2564 if (asm_noperands (body
) >= 0)
2566 unsigned int noperands
= asm_noperands (body
);
2567 rtx
*ops
= XALLOCAVEC (rtx
, noperands
);
2570 expanded_location expanded
;
2572 /* There's no telling what that did to the condition codes. */
2575 /* Get out the operand values. */
2576 string
= decode_asm_operands (body
, ops
, NULL
, NULL
, NULL
, &loc
);
2577 /* Inhibit dying on what would otherwise be compiler bugs. */
2578 insn_noperands
= noperands
;
2579 this_is_asm_operands
= insn
;
2580 expanded
= expand_location (loc
);
2582 #ifdef FINAL_PRESCAN_INSN
2583 FINAL_PRESCAN_INSN (insn
, ops
, insn_noperands
);
2586 /* Output the insn using them. */
2590 if (expanded
.file
&& expanded
.line
)
2591 fprintf (asm_out_file
, "%s %i \"%s\" 1\n",
2592 ASM_COMMENT_START
, expanded
.line
, expanded
.file
);
2593 output_asm_insn (string
, ops
);
2594 #if HAVE_AS_LINE_ZERO
2595 if (expanded
.file
&& expanded
.line
)
2596 fprintf (asm_out_file
, "%s 0 \"\" 2\n", ASM_COMMENT_START
);
2600 if (targetm
.asm_out
.final_postscan_insn
)
2601 targetm
.asm_out
.final_postscan_insn (file
, insn
, ops
,
2604 this_is_asm_operands
= 0;
2610 if (GET_CODE (body
) == SEQUENCE
)
2612 /* A delayed-branch sequence */
2615 final_sequence
= body
;
2617 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2618 force the restoration of a comparison that was previously
2619 thought unnecessary. If that happens, cancel this sequence
2620 and cause that insn to be restored. */
2622 next
= final_scan_insn (XVECEXP (body
, 0, 0), file
, 0, 1, seen
);
2623 if (next
!= XVECEXP (body
, 0, 1))
2629 for (i
= 1; i
< XVECLEN (body
, 0); i
++)
2631 rtx insn
= XVECEXP (body
, 0, i
);
2632 rtx next
= NEXT_INSN (insn
);
2633 /* We loop in case any instruction in a delay slot gets
2636 insn
= final_scan_insn (insn
, file
, 0, 1, seen
);
2637 while (insn
!= next
);
2639 #ifdef DBR_OUTPUT_SEQEND
2640 DBR_OUTPUT_SEQEND (file
);
2644 /* If the insn requiring the delay slot was a CALL_INSN, the
2645 insns in the delay slot are actually executed before the
2646 called function. Hence we don't preserve any CC-setting
2647 actions in these insns and the CC must be marked as being
2648 clobbered by the function. */
2649 if (CALL_P (XVECEXP (body
, 0, 0)))
2656 /* We have a real machine instruction as rtl. */
2658 body
= PATTERN (insn
);
2661 set
= single_set (insn
);
2663 /* Check for redundant test and compare instructions
2664 (when the condition codes are already set up as desired).
2665 This is done only when optimizing; if not optimizing,
2666 it should be possible for the user to alter a variable
2667 with the debugger in between statements
2668 and the next statement should reexamine the variable
2669 to compute the condition codes. */
2674 && GET_CODE (SET_DEST (set
)) == CC0
2675 && insn
!= last_ignored_compare
)
2678 if (GET_CODE (SET_SRC (set
)) == SUBREG
)
2679 SET_SRC (set
) = alter_subreg (&SET_SRC (set
), true);
2681 src1
= SET_SRC (set
);
2683 if (GET_CODE (SET_SRC (set
)) == COMPARE
)
2685 if (GET_CODE (XEXP (SET_SRC (set
), 0)) == SUBREG
)
2686 XEXP (SET_SRC (set
), 0)
2687 = alter_subreg (&XEXP (SET_SRC (set
), 0), true);
2688 if (GET_CODE (XEXP (SET_SRC (set
), 1)) == SUBREG
)
2689 XEXP (SET_SRC (set
), 1)
2690 = alter_subreg (&XEXP (SET_SRC (set
), 1), true);
2691 if (XEXP (SET_SRC (set
), 1)
2692 == CONST0_RTX (GET_MODE (XEXP (SET_SRC (set
), 0))))
2693 src2
= XEXP (SET_SRC (set
), 0);
2695 if ((cc_status
.value1
!= 0
2696 && rtx_equal_p (src1
, cc_status
.value1
))
2697 || (cc_status
.value2
!= 0
2698 && rtx_equal_p (src1
, cc_status
.value2
))
2699 || (src2
!= 0 && cc_status
.value1
!= 0
2700 && rtx_equal_p (src2
, cc_status
.value1
))
2701 || (src2
!= 0 && cc_status
.value2
!= 0
2702 && rtx_equal_p (src2
, cc_status
.value2
)))
2704 /* Don't delete insn if it has an addressing side-effect. */
2705 if (! FIND_REG_INC_NOTE (insn
, NULL_RTX
)
2706 /* or if anything in it is volatile. */
2707 && ! volatile_refs_p (PATTERN (insn
)))
2709 /* We don't really delete the insn; just ignore it. */
2710 last_ignored_compare
= insn
;
2717 /* If this is a conditional branch, maybe modify it
2718 if the cc's are in a nonstandard state
2719 so that it accomplishes the same thing that it would
2720 do straightforwardly if the cc's were set up normally. */
2722 if (cc_status
.flags
!= 0
2724 && GET_CODE (body
) == SET
2725 && SET_DEST (body
) == pc_rtx
2726 && GET_CODE (SET_SRC (body
)) == IF_THEN_ELSE
2727 && COMPARISON_P (XEXP (SET_SRC (body
), 0))
2728 && XEXP (XEXP (SET_SRC (body
), 0), 0) == cc0_rtx
)
2730 /* This function may alter the contents of its argument
2731 and clear some of the cc_status.flags bits.
2732 It may also return 1 meaning condition now always true
2733 or -1 meaning condition now always false
2734 or 2 meaning condition nontrivial but altered. */
2735 int result
= alter_cond (XEXP (SET_SRC (body
), 0));
2736 /* If condition now has fixed value, replace the IF_THEN_ELSE
2737 with its then-operand or its else-operand. */
2739 SET_SRC (body
) = XEXP (SET_SRC (body
), 1);
2741 SET_SRC (body
) = XEXP (SET_SRC (body
), 2);
2743 /* The jump is now either unconditional or a no-op.
2744 If it has become a no-op, don't try to output it.
2745 (It would not be recognized.) */
2746 if (SET_SRC (body
) == pc_rtx
)
2751 else if (ANY_RETURN_P (SET_SRC (body
)))
2752 /* Replace (set (pc) (return)) with (return). */
2753 PATTERN (insn
) = body
= SET_SRC (body
);
2755 /* Rerecognize the instruction if it has changed. */
2757 INSN_CODE (insn
) = -1;
2760 /* If this is a conditional trap, maybe modify it if the cc's
2761 are in a nonstandard state so that it accomplishes the same
2762 thing that it would do straightforwardly if the cc's were
2764 if (cc_status
.flags
!= 0
2765 && NONJUMP_INSN_P (insn
)
2766 && GET_CODE (body
) == TRAP_IF
2767 && COMPARISON_P (TRAP_CONDITION (body
))
2768 && XEXP (TRAP_CONDITION (body
), 0) == cc0_rtx
)
2770 /* This function may alter the contents of its argument
2771 and clear some of the cc_status.flags bits.
2772 It may also return 1 meaning condition now always true
2773 or -1 meaning condition now always false
2774 or 2 meaning condition nontrivial but altered. */
2775 int result
= alter_cond (TRAP_CONDITION (body
));
2777 /* If TRAP_CONDITION has become always false, delete the
2785 /* If TRAP_CONDITION has become always true, replace
2786 TRAP_CONDITION with const_true_rtx. */
2788 TRAP_CONDITION (body
) = const_true_rtx
;
2790 /* Rerecognize the instruction if it has changed. */
2792 INSN_CODE (insn
) = -1;
2795 /* Make same adjustments to instructions that examine the
2796 condition codes without jumping and instructions that
2797 handle conditional moves (if this machine has either one). */
2799 if (cc_status
.flags
!= 0
2802 rtx cond_rtx
, then_rtx
, else_rtx
;
2805 && GET_CODE (SET_SRC (set
)) == IF_THEN_ELSE
)
2807 cond_rtx
= XEXP (SET_SRC (set
), 0);
2808 then_rtx
= XEXP (SET_SRC (set
), 1);
2809 else_rtx
= XEXP (SET_SRC (set
), 2);
2813 cond_rtx
= SET_SRC (set
);
2814 then_rtx
= const_true_rtx
;
2815 else_rtx
= const0_rtx
;
2818 if (COMPARISON_P (cond_rtx
)
2819 && XEXP (cond_rtx
, 0) == cc0_rtx
)
2822 result
= alter_cond (cond_rtx
);
2824 validate_change (insn
, &SET_SRC (set
), then_rtx
, 0);
2825 else if (result
== -1)
2826 validate_change (insn
, &SET_SRC (set
), else_rtx
, 0);
2827 else if (result
== 2)
2828 INSN_CODE (insn
) = -1;
2829 if (SET_DEST (set
) == SET_SRC (set
))
2836 #ifdef HAVE_peephole
2837 /* Do machine-specific peephole optimizations if desired. */
2839 if (optimize_p
&& !flag_no_peephole
&& !nopeepholes
)
2841 rtx next
= peephole (insn
);
2842 /* When peepholing, if there were notes within the peephole,
2843 emit them before the peephole. */
2844 if (next
!= 0 && next
!= NEXT_INSN (insn
))
2846 rtx note
, prev
= PREV_INSN (insn
);
2848 for (note
= NEXT_INSN (insn
); note
!= next
;
2849 note
= NEXT_INSN (note
))
2850 final_scan_insn (note
, file
, optimize_p
, nopeepholes
, seen
);
2852 /* Put the notes in the proper position for a later
2853 rescan. For example, the SH target can do this
2854 when generating a far jump in a delayed branch
2856 note
= NEXT_INSN (insn
);
2857 PREV_INSN (note
) = prev
;
2858 NEXT_INSN (prev
) = note
;
2859 NEXT_INSN (PREV_INSN (next
)) = insn
;
2860 PREV_INSN (insn
) = PREV_INSN (next
);
2861 NEXT_INSN (insn
) = next
;
2862 PREV_INSN (next
) = insn
;
2865 /* PEEPHOLE might have changed this. */
2866 body
= PATTERN (insn
);
2870 /* Try to recognize the instruction.
2871 If successful, verify that the operands satisfy the
2872 constraints for the instruction. Crash if they don't,
2873 since `reload' should have changed them so that they do. */
2875 insn_code_number
= recog_memoized (insn
);
2876 cleanup_subreg_operands (insn
);
2878 /* Dump the insn in the assembly for debugging (-dAP).
2879 If the final dump is requested as slim RTL, dump slim
2880 RTL to the assembly file also. */
2881 if (flag_dump_rtl_in_asm
)
2883 print_rtx_head
= ASM_COMMENT_START
;
2884 if (! (dump_flags
& TDF_SLIM
))
2885 print_rtl_single (asm_out_file
, insn
);
2887 dump_insn_slim (asm_out_file
, insn
);
2888 print_rtx_head
= "";
2891 if (! constrain_operands_cached (1))
2892 fatal_insn_not_found (insn
);
2894 /* Some target machines need to prescan each insn before
2897 #ifdef FINAL_PRESCAN_INSN
2898 FINAL_PRESCAN_INSN (insn
, recog_data
.operand
, recog_data
.n_operands
);
2901 if (targetm
.have_conditional_execution ()
2902 && GET_CODE (PATTERN (insn
)) == COND_EXEC
)
2903 current_insn_predicate
= COND_EXEC_TEST (PATTERN (insn
));
2906 cc_prev_status
= cc_status
;
2908 /* Update `cc_status' for this instruction.
2909 The instruction's output routine may change it further.
2910 If the output routine for a jump insn needs to depend
2911 on the cc status, it should look at cc_prev_status. */
2913 NOTICE_UPDATE_CC (body
, insn
);
2916 current_output_insn
= debug_insn
= insn
;
2918 /* Find the proper template for this insn. */
2919 templ
= get_insn_template (insn_code_number
, insn
);
2921 /* If the C code returns 0, it means that it is a jump insn
2922 which follows a deleted test insn, and that test insn
2923 needs to be reinserted. */
2928 gcc_assert (prev_nonnote_insn (insn
) == last_ignored_compare
);
2930 /* We have already processed the notes between the setter and
2931 the user. Make sure we don't process them again, this is
2932 particularly important if one of the notes is a block
2933 scope note or an EH note. */
2935 prev
!= last_ignored_compare
;
2936 prev
= PREV_INSN (prev
))
2939 delete_insn (prev
); /* Use delete_note. */
2945 /* If the template is the string "#", it means that this insn must
2947 if (templ
[0] == '#' && templ
[1] == '\0')
2949 rtx new_rtx
= try_split (body
, insn
, 0);
2951 /* If we didn't split the insn, go away. */
2952 if (new_rtx
== insn
&& PATTERN (new_rtx
) == body
)
2953 fatal_insn ("could not split insn", insn
);
2955 /* If we have a length attribute, this instruction should have
2956 been split in shorten_branches, to ensure that we would have
2957 valid length info for the splitees. */
2958 gcc_assert (!HAVE_ATTR_length
);
2963 /* ??? This will put the directives in the wrong place if
2964 get_insn_template outputs assembly directly. However calling it
2965 before get_insn_template breaks if the insns is split. */
2966 if (targetm
.asm_out
.unwind_emit_before_insn
2967 && targetm
.asm_out
.unwind_emit
)
2968 targetm
.asm_out
.unwind_emit (asm_out_file
, insn
);
2972 rtx x
= call_from_call_insn (insn
);
2974 if (x
&& MEM_P (x
) && GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
)
2978 t
= SYMBOL_REF_DECL (x
);
2980 assemble_external (t
);
2982 if (!DECL_IGNORED_P (current_function_decl
))
2983 debug_hooks
->var_location (insn
);
2986 /* Output assembler code from the template. */
2987 output_asm_insn (templ
, recog_data
.operand
);
2989 /* Some target machines need to postscan each insn after
2991 if (targetm
.asm_out
.final_postscan_insn
)
2992 targetm
.asm_out
.final_postscan_insn (file
, insn
, recog_data
.operand
,
2993 recog_data
.n_operands
);
2995 if (!targetm
.asm_out
.unwind_emit_before_insn
2996 && targetm
.asm_out
.unwind_emit
)
2997 targetm
.asm_out
.unwind_emit (asm_out_file
, insn
);
2999 current_output_insn
= debug_insn
= 0;
3002 return NEXT_INSN (insn
);
3005 /* Return whether a source line note needs to be emitted before INSN.
3006 Sets IS_STMT to TRUE if the line should be marked as a possible
3007 breakpoint location. */
3010 notice_source_line (rtx insn
, bool *is_stmt
)
3012 const char *filename
;
3015 if (override_filename
)
3017 filename
= override_filename
;
3018 linenum
= override_linenum
;
3022 filename
= insn_file (insn
);
3023 linenum
= insn_line (insn
);
3026 if (filename
== NULL
)
3029 if (force_source_line
3030 || filename
!= last_filename
3031 || last_linenum
!= linenum
)
3033 force_source_line
= false;
3034 last_filename
= filename
;
3035 last_linenum
= linenum
;
3036 last_discriminator
= discriminator
;
3038 high_block_linenum
= MAX (last_linenum
, high_block_linenum
);
3039 high_function_linenum
= MAX (last_linenum
, high_function_linenum
);
3043 if (SUPPORTS_DISCRIMINATOR
&& last_discriminator
!= discriminator
)
3045 /* If the discriminator changed, but the line number did not,
3046 output the line table entry with is_stmt false so the
3047 debugger does not treat this as a breakpoint location. */
3048 last_discriminator
= discriminator
;
3056 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
3057 directly to the desired hard register. */
3060 cleanup_subreg_operands (rtx insn
)
3063 bool changed
= false;
3064 extract_insn_cached (insn
);
3065 for (i
= 0; i
< recog_data
.n_operands
; i
++)
3067 /* The following test cannot use recog_data.operand when testing
3068 for a SUBREG: the underlying object might have been changed
3069 already if we are inside a match_operator expression that
3070 matches the else clause. Instead we test the underlying
3071 expression directly. */
3072 if (GET_CODE (*recog_data
.operand_loc
[i
]) == SUBREG
)
3074 recog_data
.operand
[i
] = alter_subreg (recog_data
.operand_loc
[i
], true);
3077 else if (GET_CODE (recog_data
.operand
[i
]) == PLUS
3078 || GET_CODE (recog_data
.operand
[i
]) == MULT
3079 || MEM_P (recog_data
.operand
[i
]))
3080 recog_data
.operand
[i
] = walk_alter_subreg (recog_data
.operand_loc
[i
], &changed
);
3083 for (i
= 0; i
< recog_data
.n_dups
; i
++)
3085 if (GET_CODE (*recog_data
.dup_loc
[i
]) == SUBREG
)
3087 *recog_data
.dup_loc
[i
] = alter_subreg (recog_data
.dup_loc
[i
], true);
3090 else if (GET_CODE (*recog_data
.dup_loc
[i
]) == PLUS
3091 || GET_CODE (*recog_data
.dup_loc
[i
]) == MULT
3092 || MEM_P (*recog_data
.dup_loc
[i
]))
3093 *recog_data
.dup_loc
[i
] = walk_alter_subreg (recog_data
.dup_loc
[i
], &changed
);
3096 df_insn_rescan (insn
);
3099 /* If X is a SUBREG, try to replace it with a REG or a MEM, based on
3100 the thing it is a subreg of. Do it anyway if FINAL_P. */
3103 alter_subreg (rtx
*xp
, bool final_p
)
3106 rtx y
= SUBREG_REG (x
);
3108 /* simplify_subreg does not remove subreg from volatile references.
3109 We are required to. */
3112 int offset
= SUBREG_BYTE (x
);
3114 /* For paradoxical subregs on big-endian machines, SUBREG_BYTE
3115 contains 0 instead of the proper offset. See simplify_subreg. */
3117 && GET_MODE_SIZE (GET_MODE (y
)) < GET_MODE_SIZE (GET_MODE (x
)))
3119 int difference
= GET_MODE_SIZE (GET_MODE (y
))
3120 - GET_MODE_SIZE (GET_MODE (x
));
3121 if (WORDS_BIG_ENDIAN
)
3122 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
3123 if (BYTES_BIG_ENDIAN
)
3124 offset
+= difference
% UNITS_PER_WORD
;
3128 *xp
= adjust_address (y
, GET_MODE (x
), offset
);
3130 *xp
= adjust_address_nv (y
, GET_MODE (x
), offset
);
3134 rtx new_rtx
= simplify_subreg (GET_MODE (x
), y
, GET_MODE (y
),
3139 else if (final_p
&& REG_P (y
))
3141 /* Simplify_subreg can't handle some REG cases, but we have to. */
3143 HOST_WIDE_INT offset
;
3145 regno
= subreg_regno (x
);
3146 if (subreg_lowpart_p (x
))
3147 offset
= byte_lowpart_offset (GET_MODE (x
), GET_MODE (y
));
3149 offset
= SUBREG_BYTE (x
);
3150 *xp
= gen_rtx_REG_offset (y
, GET_MODE (x
), regno
, offset
);
3157 /* Do alter_subreg on all the SUBREGs contained in X. */
3160 walk_alter_subreg (rtx
*xp
, bool *changed
)
3163 switch (GET_CODE (x
))
3168 XEXP (x
, 0) = walk_alter_subreg (&XEXP (x
, 0), changed
);
3169 XEXP (x
, 1) = walk_alter_subreg (&XEXP (x
, 1), changed
);
3174 XEXP (x
, 0) = walk_alter_subreg (&XEXP (x
, 0), changed
);
3179 return alter_subreg (xp
, true);
3190 /* Given BODY, the body of a jump instruction, alter the jump condition
3191 as required by the bits that are set in cc_status.flags.
3192 Not all of the bits there can be handled at this level in all cases.
3194 The value is normally 0.
3195 1 means that the condition has become always true.
3196 -1 means that the condition has become always false.
3197 2 means that COND has been altered. */
3200 alter_cond (rtx cond
)
3204 if (cc_status
.flags
& CC_REVERSED
)
3207 PUT_CODE (cond
, swap_condition (GET_CODE (cond
)));
3210 if (cc_status
.flags
& CC_INVERTED
)
3213 PUT_CODE (cond
, reverse_condition (GET_CODE (cond
)));
3216 if (cc_status
.flags
& CC_NOT_POSITIVE
)
3217 switch (GET_CODE (cond
))
3222 /* Jump becomes unconditional. */
3228 /* Jump becomes no-op. */
3232 PUT_CODE (cond
, EQ
);
3237 PUT_CODE (cond
, NE
);
3245 if (cc_status
.flags
& CC_NOT_NEGATIVE
)
3246 switch (GET_CODE (cond
))
3250 /* Jump becomes unconditional. */
3255 /* Jump becomes no-op. */
3260 PUT_CODE (cond
, EQ
);
3266 PUT_CODE (cond
, NE
);
3274 if (cc_status
.flags
& CC_NO_OVERFLOW
)
3275 switch (GET_CODE (cond
))
3278 /* Jump becomes unconditional. */
3282 PUT_CODE (cond
, EQ
);
3287 PUT_CODE (cond
, NE
);
3292 /* Jump becomes no-op. */
3299 if (cc_status
.flags
& (CC_Z_IN_NOT_N
| CC_Z_IN_N
))
3300 switch (GET_CODE (cond
))
3306 PUT_CODE (cond
, cc_status
.flags
& CC_Z_IN_N
? GE
: LT
);
3311 PUT_CODE (cond
, cc_status
.flags
& CC_Z_IN_N
? LT
: GE
);
3316 if (cc_status
.flags
& CC_NOT_SIGNED
)
3317 /* The flags are valid if signed condition operators are converted
3319 switch (GET_CODE (cond
))
3322 PUT_CODE (cond
, LEU
);
3327 PUT_CODE (cond
, LTU
);
3332 PUT_CODE (cond
, GTU
);
3337 PUT_CODE (cond
, GEU
);
3349 /* Report inconsistency between the assembler template and the operands.
3350 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
3353 output_operand_lossage (const char *cmsgid
, ...)
3357 const char *pfx_str
;
3360 va_start (ap
, cmsgid
);
3362 pfx_str
= this_is_asm_operands
? _("invalid 'asm': ") : "output_operand: ";
3363 asprintf (&fmt_string
, "%s%s", pfx_str
, _(cmsgid
));
3364 vasprintf (&new_message
, fmt_string
, ap
);
3366 if (this_is_asm_operands
)
3367 error_for_asm (this_is_asm_operands
, "%s", new_message
);
3369 internal_error ("%s", new_message
);
3376 /* Output of assembler code from a template, and its subroutines. */
3378 /* Annotate the assembly with a comment describing the pattern and
3379 alternative used. */
3382 output_asm_name (void)
3386 int num
= INSN_CODE (debug_insn
);
3387 fprintf (asm_out_file
, "\t%s %d\t%s",
3388 ASM_COMMENT_START
, INSN_UID (debug_insn
),
3389 insn_data
[num
].name
);
3390 if (insn_data
[num
].n_alternatives
> 1)
3391 fprintf (asm_out_file
, "/%d", which_alternative
+ 1);
3393 if (HAVE_ATTR_length
)
3394 fprintf (asm_out_file
, "\t[length = %d]",
3395 get_attr_length (debug_insn
));
3397 /* Clear this so only the first assembler insn
3398 of any rtl insn will get the special comment for -dp. */
3403 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
3404 or its address, return that expr . Set *PADDRESSP to 1 if the expr
3405 corresponds to the address of the object and 0 if to the object. */
3408 get_mem_expr_from_op (rtx op
, int *paddressp
)
3416 return REG_EXPR (op
);
3417 else if (!MEM_P (op
))
3420 if (MEM_EXPR (op
) != 0)
3421 return MEM_EXPR (op
);
3423 /* Otherwise we have an address, so indicate it and look at the address. */
3427 /* First check if we have a decl for the address, then look at the right side
3428 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
3429 But don't allow the address to itself be indirect. */
3430 if ((expr
= get_mem_expr_from_op (op
, &inner_addressp
)) && ! inner_addressp
)
3432 else if (GET_CODE (op
) == PLUS
3433 && (expr
= get_mem_expr_from_op (XEXP (op
, 1), &inner_addressp
)))
3437 || GET_RTX_CLASS (GET_CODE (op
)) == RTX_BIN_ARITH
)
3440 expr
= get_mem_expr_from_op (op
, &inner_addressp
);
3441 return inner_addressp
? 0 : expr
;
3444 /* Output operand names for assembler instructions. OPERANDS is the
3445 operand vector, OPORDER is the order to write the operands, and NOPS
3446 is the number of operands to write. */
3449 output_asm_operand_names (rtx
*operands
, int *oporder
, int nops
)
3454 for (i
= 0; i
< nops
; i
++)
3457 rtx op
= operands
[oporder
[i
]];
3458 tree expr
= get_mem_expr_from_op (op
, &addressp
);
3460 fprintf (asm_out_file
, "%c%s",
3461 wrote
? ',' : '\t', wrote
? "" : ASM_COMMENT_START
);
3465 fprintf (asm_out_file
, "%s",
3466 addressp
? "*" : "");
3467 print_mem_expr (asm_out_file
, expr
);
3470 else if (REG_P (op
) && ORIGINAL_REGNO (op
)
3471 && ORIGINAL_REGNO (op
) != REGNO (op
))
3472 fprintf (asm_out_file
, " tmp%i", ORIGINAL_REGNO (op
));
3476 #ifdef ASSEMBLER_DIALECT
3477 /* Helper function to parse assembler dialects in the asm string.
3478 This is called from output_asm_insn and asm_fprintf. */
3480 do_assembler_dialects (const char *p
, int *dialect
)
3491 output_operand_lossage ("nested assembly dialect alternatives");
3495 /* If we want the first dialect, do nothing. Otherwise, skip
3496 DIALECT_NUMBER of strings ending with '|'. */
3497 for (i
= 0; i
< dialect_number
; i
++)
3499 while (*p
&& *p
!= '}')
3507 /* Skip over any character after a percent sign. */
3519 output_operand_lossage ("unterminated assembly dialect alternative");
3526 /* Skip to close brace. */
3531 output_operand_lossage ("unterminated assembly dialect alternative");
3535 /* Skip over any character after a percent sign. */
3536 if (*p
== '%' && p
[1])
3550 putc (c
, asm_out_file
);
3555 putc (c
, asm_out_file
);
3566 /* Output text from TEMPLATE to the assembler output file,
3567 obeying %-directions to substitute operands taken from
3568 the vector OPERANDS.
3570 %N (for N a digit) means print operand N in usual manner.
3571 %lN means require operand N to be a CODE_LABEL or LABEL_REF
3572 and print the label name with no punctuation.
3573 %cN means require operand N to be a constant
3574 and print the constant expression with no punctuation.
3575 %aN means expect operand N to be a memory address
3576 (not a memory reference!) and print a reference
3578 %nN means expect operand N to be a constant
3579 and print a constant expression for minus the value
3580 of the operand, with no other punctuation. */
3583 output_asm_insn (const char *templ
, rtx
*operands
)
3587 #ifdef ASSEMBLER_DIALECT
3590 int oporder
[MAX_RECOG_OPERANDS
];
3591 char opoutput
[MAX_RECOG_OPERANDS
];
3594 /* An insn may return a null string template
3595 in a case where no assembler code is needed. */
3599 memset (opoutput
, 0, sizeof opoutput
);
3601 putc ('\t', asm_out_file
);
3603 #ifdef ASM_OUTPUT_OPCODE
3604 ASM_OUTPUT_OPCODE (asm_out_file
, p
);
3611 if (flag_verbose_asm
)
3612 output_asm_operand_names (operands
, oporder
, ops
);
3613 if (flag_print_asm_name
)
3617 memset (opoutput
, 0, sizeof opoutput
);
3619 putc (c
, asm_out_file
);
3620 #ifdef ASM_OUTPUT_OPCODE
3621 while ((c
= *p
) == '\t')
3623 putc (c
, asm_out_file
);
3626 ASM_OUTPUT_OPCODE (asm_out_file
, p
);
3630 #ifdef ASSEMBLER_DIALECT
3634 p
= do_assembler_dialects (p
, &dialect
);
3639 /* %% outputs a single %. %{, %} and %| print {, } and | respectively
3640 if ASSEMBLER_DIALECT defined and these characters have a special
3641 meaning as dialect delimiters.*/
3643 #ifdef ASSEMBLER_DIALECT
3644 || *p
== '{' || *p
== '}' || *p
== '|'
3648 putc (*p
, asm_out_file
);
3651 /* %= outputs a number which is unique to each insn in the entire
3652 compilation. This is useful for making local labels that are
3653 referred to more than once in a given insn. */
3657 fprintf (asm_out_file
, "%d", insn_counter
);
3659 /* % followed by a letter and some digits
3660 outputs an operand in a special way depending on the letter.
3661 Letters `acln' are implemented directly.
3662 Other letters are passed to `output_operand' so that
3663 the TARGET_PRINT_OPERAND hook can define them. */
3664 else if (ISALPHA (*p
))
3667 unsigned long opnum
;
3670 opnum
= strtoul (p
, &endptr
, 10);
3673 output_operand_lossage ("operand number missing "
3675 else if (this_is_asm_operands
&& opnum
>= insn_noperands
)
3676 output_operand_lossage ("operand number out of range");
3677 else if (letter
== 'l')
3678 output_asm_label (operands
[opnum
]);
3679 else if (letter
== 'a')
3680 output_address (operands
[opnum
]);
3681 else if (letter
== 'c')
3683 if (CONSTANT_ADDRESS_P (operands
[opnum
]))
3684 output_addr_const (asm_out_file
, operands
[opnum
]);
3686 output_operand (operands
[opnum
], 'c');
3688 else if (letter
== 'n')
3690 if (CONST_INT_P (operands
[opnum
]))
3691 fprintf (asm_out_file
, HOST_WIDE_INT_PRINT_DEC
,
3692 - INTVAL (operands
[opnum
]));
3695 putc ('-', asm_out_file
);
3696 output_addr_const (asm_out_file
, operands
[opnum
]);
3700 output_operand (operands
[opnum
], letter
);
3702 if (!opoutput
[opnum
])
3703 oporder
[ops
++] = opnum
;
3704 opoutput
[opnum
] = 1;
3709 /* % followed by a digit outputs an operand the default way. */
3710 else if (ISDIGIT (*p
))
3712 unsigned long opnum
;
3715 opnum
= strtoul (p
, &endptr
, 10);
3716 if (this_is_asm_operands
&& opnum
>= insn_noperands
)
3717 output_operand_lossage ("operand number out of range");
3719 output_operand (operands
[opnum
], 0);
3721 if (!opoutput
[opnum
])
3722 oporder
[ops
++] = opnum
;
3723 opoutput
[opnum
] = 1;
3728 /* % followed by punctuation: output something for that
3729 punctuation character alone, with no operand. The
3730 TARGET_PRINT_OPERAND hook decides what is actually done. */
3731 else if (targetm
.asm_out
.print_operand_punct_valid_p ((unsigned char) *p
))
3732 output_operand (NULL_RTX
, *p
++);
3734 output_operand_lossage ("invalid %%-code");
3738 putc (c
, asm_out_file
);
3741 /* Write out the variable names for operands, if we know them. */
3742 if (flag_verbose_asm
)
3743 output_asm_operand_names (operands
, oporder
, ops
);
3744 if (flag_print_asm_name
)
3747 putc ('\n', asm_out_file
);
3750 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3753 output_asm_label (rtx x
)
3757 if (GET_CODE (x
) == LABEL_REF
)
3761 && NOTE_KIND (x
) == NOTE_INSN_DELETED_LABEL
))
3762 ASM_GENERATE_INTERNAL_LABEL (buf
, "L", CODE_LABEL_NUMBER (x
));
3764 output_operand_lossage ("'%%l' operand isn't a label");
3766 assemble_name (asm_out_file
, buf
);
3769 /* Helper rtx-iteration-function for mark_symbol_refs_as_used and
3770 output_operand. Marks SYMBOL_REFs as referenced through use of
3771 assemble_external. */
3774 mark_symbol_ref_as_used (rtx
*xp
, void *dummy ATTRIBUTE_UNUSED
)
3778 /* If we have a used symbol, we may have to emit assembly
3779 annotations corresponding to whether the symbol is external, weak
3780 or has non-default visibility. */
3781 if (GET_CODE (x
) == SYMBOL_REF
)
3785 t
= SYMBOL_REF_DECL (x
);
3787 assemble_external (t
);
3795 /* Marks SYMBOL_REFs in x as referenced through use of assemble_external. */
3798 mark_symbol_refs_as_used (rtx x
)
3800 for_each_rtx (&x
, mark_symbol_ref_as_used
, NULL
);
3803 /* Print operand X using machine-dependent assembler syntax.
3804 CODE is a non-digit that preceded the operand-number in the % spec,
3805 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3806 between the % and the digits.
3807 When CODE is a non-letter, X is 0.
3809 The meanings of the letters are machine-dependent and controlled
3810 by TARGET_PRINT_OPERAND. */
3813 output_operand (rtx x
, int code ATTRIBUTE_UNUSED
)
3815 if (x
&& GET_CODE (x
) == SUBREG
)
3816 x
= alter_subreg (&x
, true);
3818 /* X must not be a pseudo reg. */
3819 gcc_assert (!x
|| !REG_P (x
) || REGNO (x
) < FIRST_PSEUDO_REGISTER
);
3821 targetm
.asm_out
.print_operand (asm_out_file
, x
, code
);
3826 for_each_rtx (&x
, mark_symbol_ref_as_used
, NULL
);
3829 /* Print a memory reference operand for address X using
3830 machine-dependent assembler syntax. */
3833 output_address (rtx x
)
3835 bool changed
= false;
3836 walk_alter_subreg (&x
, &changed
);
3837 targetm
.asm_out
.print_operand_address (asm_out_file
, x
);
3840 /* Print an integer constant expression in assembler syntax.
3841 Addition and subtraction are the only arithmetic
3842 that may appear in these expressions. */
3845 output_addr_const (FILE *file
, rtx x
)
3850 switch (GET_CODE (x
))
3857 if (SYMBOL_REF_DECL (x
))
3858 assemble_external (SYMBOL_REF_DECL (x
));
3859 #ifdef ASM_OUTPUT_SYMBOL_REF
3860 ASM_OUTPUT_SYMBOL_REF (file
, x
);
3862 assemble_name (file
, XSTR (x
, 0));
3870 ASM_GENERATE_INTERNAL_LABEL (buf
, "L", CODE_LABEL_NUMBER (x
));
3871 #ifdef ASM_OUTPUT_LABEL_REF
3872 ASM_OUTPUT_LABEL_REF (file
, buf
);
3874 assemble_name (file
, buf
);
3879 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, INTVAL (x
));
3883 /* This used to output parentheses around the expression,
3884 but that does not work on the 386 (either ATT or BSD assembler). */
3885 output_addr_const (file
, XEXP (x
, 0));
3889 if (GET_MODE (x
) == VOIDmode
)
3891 /* We can use %d if the number is one word and positive. */
3892 if (CONST_DOUBLE_HIGH (x
))
3893 fprintf (file
, HOST_WIDE_INT_PRINT_DOUBLE_HEX
,
3894 (unsigned HOST_WIDE_INT
) CONST_DOUBLE_HIGH (x
),
3895 (unsigned HOST_WIDE_INT
) CONST_DOUBLE_LOW (x
));
3896 else if (CONST_DOUBLE_LOW (x
) < 0)
3897 fprintf (file
, HOST_WIDE_INT_PRINT_HEX
,
3898 (unsigned HOST_WIDE_INT
) CONST_DOUBLE_LOW (x
));
3900 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, CONST_DOUBLE_LOW (x
));
3903 /* We can't handle floating point constants;
3904 PRINT_OPERAND must handle them. */
3905 output_operand_lossage ("floating constant misused");
3909 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, CONST_FIXED_VALUE_LOW (x
));
3913 /* Some assemblers need integer constants to appear last (eg masm). */
3914 if (CONST_INT_P (XEXP (x
, 0)))
3916 output_addr_const (file
, XEXP (x
, 1));
3917 if (INTVAL (XEXP (x
, 0)) >= 0)
3918 fprintf (file
, "+");
3919 output_addr_const (file
, XEXP (x
, 0));
3923 output_addr_const (file
, XEXP (x
, 0));
3924 if (!CONST_INT_P (XEXP (x
, 1))
3925 || INTVAL (XEXP (x
, 1)) >= 0)
3926 fprintf (file
, "+");
3927 output_addr_const (file
, XEXP (x
, 1));
3932 /* Avoid outputting things like x-x or x+5-x,
3933 since some assemblers can't handle that. */
3934 x
= simplify_subtraction (x
);
3935 if (GET_CODE (x
) != MINUS
)
3938 output_addr_const (file
, XEXP (x
, 0));
3939 fprintf (file
, "-");
3940 if ((CONST_INT_P (XEXP (x
, 1)) && INTVAL (XEXP (x
, 1)) >= 0)
3941 || GET_CODE (XEXP (x
, 1)) == PC
3942 || GET_CODE (XEXP (x
, 1)) == SYMBOL_REF
)
3943 output_addr_const (file
, XEXP (x
, 1));
3946 fputs (targetm
.asm_out
.open_paren
, file
);
3947 output_addr_const (file
, XEXP (x
, 1));
3948 fputs (targetm
.asm_out
.close_paren
, file
);
3956 output_addr_const (file
, XEXP (x
, 0));
3960 if (targetm
.asm_out
.output_addr_const_extra (file
, x
))
3963 output_operand_lossage ("invalid expression as operand");
3967 /* Output a quoted string. */
3970 output_quoted_string (FILE *asm_file
, const char *string
)
3972 #ifdef OUTPUT_QUOTED_STRING
3973 OUTPUT_QUOTED_STRING (asm_file
, string
);
3977 putc ('\"', asm_file
);
3978 while ((c
= *string
++) != 0)
3982 if (c
== '\"' || c
== '\\')
3983 putc ('\\', asm_file
);
3987 fprintf (asm_file
, "\\%03o", (unsigned char) c
);
3989 putc ('\"', asm_file
);
3993 /* Write a HOST_WIDE_INT number in hex form 0x1234, fast. */
3996 fprint_whex (FILE *f
, unsigned HOST_WIDE_INT value
)
3998 char buf
[2 + CHAR_BIT
* sizeof (value
) / 4];
4003 char *p
= buf
+ sizeof (buf
);
4005 *--p
= "0123456789abcdef"[value
% 16];
4006 while ((value
/= 16) != 0);
4009 fwrite (p
, 1, buf
+ sizeof (buf
) - p
, f
);
4013 /* Internal function that prints an unsigned long in decimal in reverse.
4014 The output string IS NOT null-terminated. */
4017 sprint_ul_rev (char *s
, unsigned long value
)
4022 s
[i
] = "0123456789"[value
% 10];
4025 /* alternate version, without modulo */
4026 /* oldval = value; */
4028 /* s[i] = "0123456789" [oldval - 10*value]; */
4035 /* Write an unsigned long as decimal to a file, fast. */
4038 fprint_ul (FILE *f
, unsigned long value
)
4040 /* python says: len(str(2**64)) == 20 */
4044 i
= sprint_ul_rev (s
, value
);
4046 /* It's probably too small to bother with string reversal and fputs. */
4055 /* Write an unsigned long as decimal to a string, fast.
4056 s must be wide enough to not overflow, at least 21 chars.
4057 Returns the length of the string (without terminating '\0'). */
4060 sprint_ul (char *s
, unsigned long value
)
4067 len
= sprint_ul_rev (s
, value
);
4070 /* Reverse the string. */
4084 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
4085 %R prints the value of REGISTER_PREFIX.
4086 %L prints the value of LOCAL_LABEL_PREFIX.
4087 %U prints the value of USER_LABEL_PREFIX.
4088 %I prints the value of IMMEDIATE_PREFIX.
4089 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
4090 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
4092 We handle alternate assembler dialects here, just like output_asm_insn. */
4095 asm_fprintf (FILE *file
, const char *p
, ...)
4099 #ifdef ASSEMBLER_DIALECT
4104 va_start (argptr
, p
);
4111 #ifdef ASSEMBLER_DIALECT
4115 p
= do_assembler_dialects (p
, &dialect
);
4122 while (strchr ("-+ #0", c
))
4127 while (ISDIGIT (c
) || c
== '.')
4138 case 'd': case 'i': case 'u':
4139 case 'x': case 'X': case 'o':
4143 fprintf (file
, buf
, va_arg (argptr
, int));
4147 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
4148 'o' cases, but we do not check for those cases. It
4149 means that the value is a HOST_WIDE_INT, which may be
4150 either `long' or `long long'. */
4151 memcpy (q
, HOST_WIDE_INT_PRINT
, strlen (HOST_WIDE_INT_PRINT
));
4152 q
+= strlen (HOST_WIDE_INT_PRINT
);
4155 fprintf (file
, buf
, va_arg (argptr
, HOST_WIDE_INT
));
4160 #ifdef HAVE_LONG_LONG
4166 fprintf (file
, buf
, va_arg (argptr
, long long));
4173 fprintf (file
, buf
, va_arg (argptr
, long));
4181 fprintf (file
, buf
, va_arg (argptr
, char *));
4185 #ifdef ASM_OUTPUT_OPCODE
4186 ASM_OUTPUT_OPCODE (asm_out_file
, p
);
4191 #ifdef REGISTER_PREFIX
4192 fprintf (file
, "%s", REGISTER_PREFIX
);
4197 #ifdef IMMEDIATE_PREFIX
4198 fprintf (file
, "%s", IMMEDIATE_PREFIX
);
4203 #ifdef LOCAL_LABEL_PREFIX
4204 fprintf (file
, "%s", LOCAL_LABEL_PREFIX
);
4209 fputs (user_label_prefix
, file
);
4212 #ifdef ASM_FPRINTF_EXTENSIONS
4213 /* Uppercase letters are reserved for general use by asm_fprintf
4214 and so are not available to target specific code. In order to
4215 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
4216 they are defined here. As they get turned into real extensions
4217 to asm_fprintf they should be removed from this list. */
4218 case 'A': case 'B': case 'C': case 'D': case 'E':
4219 case 'F': case 'G': case 'H': case 'J': case 'K':
4220 case 'M': case 'N': case 'P': case 'Q': case 'S':
4221 case 'T': case 'V': case 'W': case 'Y': case 'Z':
4224 ASM_FPRINTF_EXTENSIONS (file
, argptr
, p
)
4237 /* Return nonzero if this function has no function calls. */
4240 leaf_function_p (void)
4244 if (crtl
->profile
|| profile_arc_flag
)
4247 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
4250 && ! SIBLING_CALL_P (insn
))
4252 if (NONJUMP_INSN_P (insn
)
4253 && GET_CODE (PATTERN (insn
)) == SEQUENCE
4254 && CALL_P (XVECEXP (PATTERN (insn
), 0, 0))
4255 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn
), 0, 0)))
4262 /* Return 1 if branch is a forward branch.
4263 Uses insn_shuid array, so it works only in the final pass. May be used by
4264 output templates to customary add branch prediction hints.
4267 final_forward_branch_p (rtx insn
)
4269 int insn_id
, label_id
;
4271 gcc_assert (uid_shuid
);
4272 insn_id
= INSN_SHUID (insn
);
4273 label_id
= INSN_SHUID (JUMP_LABEL (insn
));
4274 /* We've hit some insns that does not have id information available. */
4275 gcc_assert (insn_id
&& label_id
);
4276 return insn_id
< label_id
;
4279 /* On some machines, a function with no call insns
4280 can run faster if it doesn't create its own register window.
4281 When output, the leaf function should use only the "output"
4282 registers. Ordinarily, the function would be compiled to use
4283 the "input" registers to find its arguments; it is a candidate
4284 for leaf treatment if it uses only the "input" registers.
4285 Leaf function treatment means renumbering so the function
4286 uses the "output" registers instead. */
4288 #ifdef LEAF_REGISTERS
4290 /* Return 1 if this function uses only the registers that can be
4291 safely renumbered. */
4294 only_leaf_regs_used (void)
4297 const char *const permitted_reg_in_leaf_functions
= LEAF_REGISTERS
;
4299 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
4300 if ((df_regs_ever_live_p (i
) || global_regs
[i
])
4301 && ! permitted_reg_in_leaf_functions
[i
])
4304 if (crtl
->uses_pic_offset_table
4305 && pic_offset_table_rtx
!= 0
4306 && REG_P (pic_offset_table_rtx
)
4307 && ! permitted_reg_in_leaf_functions
[REGNO (pic_offset_table_rtx
)])
4313 /* Scan all instructions and renumber all registers into those
4314 available in leaf functions. */
4317 leaf_renumber_regs (rtx first
)
4321 /* Renumber only the actual patterns.
4322 The reg-notes can contain frame pointer refs,
4323 and renumbering them could crash, and should not be needed. */
4324 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
4326 leaf_renumber_regs_insn (PATTERN (insn
));
4329 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
4330 available in leaf functions. */
4333 leaf_renumber_regs_insn (rtx in_rtx
)
4336 const char *format_ptr
;
4341 /* Renumber all input-registers into output-registers.
4342 renumbered_regs would be 1 for an output-register;
4349 /* Don't renumber the same reg twice. */
4353 newreg
= REGNO (in_rtx
);
4354 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
4355 to reach here as part of a REG_NOTE. */
4356 if (newreg
>= FIRST_PSEUDO_REGISTER
)
4361 newreg
= LEAF_REG_REMAP (newreg
);
4362 gcc_assert (newreg
>= 0);
4363 df_set_regs_ever_live (REGNO (in_rtx
), false);
4364 df_set_regs_ever_live (newreg
, true);
4365 SET_REGNO (in_rtx
, newreg
);
4369 if (INSN_P (in_rtx
))
4371 /* Inside a SEQUENCE, we find insns.
4372 Renumber just the patterns of these insns,
4373 just as we do for the top-level insns. */
4374 leaf_renumber_regs_insn (PATTERN (in_rtx
));
4378 format_ptr
= GET_RTX_FORMAT (GET_CODE (in_rtx
));
4380 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (in_rtx
)); i
++)
4381 switch (*format_ptr
++)
4384 leaf_renumber_regs_insn (XEXP (in_rtx
, i
));
4388 if (NULL
!= XVEC (in_rtx
, i
))
4390 for (j
= 0; j
< XVECLEN (in_rtx
, i
); j
++)
4391 leaf_renumber_regs_insn (XVECEXP (in_rtx
, i
, j
));
4410 /* Turn the RTL into assembly. */
4412 rest_of_handle_final (void)
4417 /* Get the function's name, as described by its RTL. This may be
4418 different from the DECL_NAME name used in the source file. */
4420 x
= DECL_RTL (current_function_decl
);
4421 gcc_assert (MEM_P (x
));
4423 gcc_assert (GET_CODE (x
) == SYMBOL_REF
);
4424 fnname
= XSTR (x
, 0);
4426 assemble_start_function (current_function_decl
, fnname
);
4427 final_start_function (get_insns (), asm_out_file
, optimize
);
4428 final (get_insns (), asm_out_file
, optimize
);
4429 final_end_function ();
4431 /* The IA-64 ".handlerdata" directive must be issued before the ".endp"
4432 directive that closes the procedure descriptor. Similarly, for x64 SEH.
4433 Otherwise it's not strictly necessary, but it doesn't hurt either. */
4434 output_function_exception_table (fnname
);
4436 assemble_end_function (current_function_decl
, fnname
);
4438 user_defined_section_attribute
= false;
4440 /* Free up reg info memory. */
4444 fflush (asm_out_file
);
4446 /* Write DBX symbols if requested. */
4448 /* Note that for those inline functions where we don't initially
4449 know for certain that we will be generating an out-of-line copy,
4450 the first invocation of this routine (rest_of_compilation) will
4451 skip over this code by doing a `goto exit_rest_of_compilation;'.
4452 Later on, wrapup_global_declarations will (indirectly) call
4453 rest_of_compilation again for those inline functions that need
4454 to have out-of-line copies generated. During that call, we
4455 *will* be routed past here. */
4457 timevar_push (TV_SYMOUT
);
4458 if (!DECL_IGNORED_P (current_function_decl
))
4459 debug_hooks
->function_decl (current_function_decl
);
4460 timevar_pop (TV_SYMOUT
);
4462 /* Release the blocks that are linked to DECL_INITIAL() to free the memory. */
4463 DECL_INITIAL (current_function_decl
) = error_mark_node
;
4465 if (DECL_STATIC_CONSTRUCTOR (current_function_decl
)
4466 && targetm
.have_ctors_dtors
)
4467 targetm
.asm_out
.constructor (XEXP (DECL_RTL (current_function_decl
), 0),
4468 decl_init_priority_lookup
4469 (current_function_decl
));
4470 if (DECL_STATIC_DESTRUCTOR (current_function_decl
)
4471 && targetm
.have_ctors_dtors
)
4472 targetm
.asm_out
.destructor (XEXP (DECL_RTL (current_function_decl
), 0),
4473 decl_fini_priority_lookup
4474 (current_function_decl
));
4480 const pass_data pass_data_final
=
4482 RTL_PASS
, /* type */
4484 OPTGROUP_NONE
, /* optinfo_flags */
4485 true, /* has_execute */
4486 TV_FINAL
, /* tv_id */
4487 0, /* properties_required */
4488 0, /* properties_provided */
4489 0, /* properties_destroyed */
4490 0, /* todo_flags_start */
4491 0, /* todo_flags_finish */
4494 class pass_final
: public rtl_opt_pass
4497 pass_final (gcc::context
*ctxt
)
4498 : rtl_opt_pass (pass_data_final
, ctxt
)
4501 /* opt_pass methods: */
4502 virtual unsigned int execute (function
*) { return rest_of_handle_final (); }
4504 }; // class pass_final
4509 make_pass_final (gcc::context
*ctxt
)
4511 return new pass_final (ctxt
);
4516 rest_of_handle_shorten_branches (void)
4518 /* Shorten branches. */
4519 shorten_branches (get_insns ());
4525 const pass_data pass_data_shorten_branches
=
4527 RTL_PASS
, /* type */
4528 "shorten", /* name */
4529 OPTGROUP_NONE
, /* optinfo_flags */
4530 true, /* has_execute */
4531 TV_SHORTEN_BRANCH
, /* tv_id */
4532 0, /* properties_required */
4533 0, /* properties_provided */
4534 0, /* properties_destroyed */
4535 0, /* todo_flags_start */
4536 0, /* todo_flags_finish */
4539 class pass_shorten_branches
: public rtl_opt_pass
4542 pass_shorten_branches (gcc::context
*ctxt
)
4543 : rtl_opt_pass (pass_data_shorten_branches
, ctxt
)
4546 /* opt_pass methods: */
4547 virtual unsigned int execute (function
*)
4549 return rest_of_handle_shorten_branches ();
4552 }; // class pass_shorten_branches
4557 make_pass_shorten_branches (gcc::context
*ctxt
)
4559 return new pass_shorten_branches (ctxt
);
4564 rest_of_clean_state (void)
4567 FILE *final_output
= NULL
;
4568 int save_unnumbered
= flag_dump_unnumbered
;
4569 int save_noaddr
= flag_dump_noaddr
;
4571 if (flag_dump_final_insns
)
4573 final_output
= fopen (flag_dump_final_insns
, "a");
4576 error ("could not open final insn dump file %qs: %m",
4577 flag_dump_final_insns
);
4578 flag_dump_final_insns
= NULL
;
4582 flag_dump_noaddr
= flag_dump_unnumbered
= 1;
4583 if (flag_compare_debug_opt
|| flag_compare_debug
)
4584 dump_flags
|= TDF_NOUID
;
4585 dump_function_header (final_output
, current_function_decl
,
4587 final_insns_dump_p
= true;
4589 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
4591 INSN_UID (insn
) = CODE_LABEL_NUMBER (insn
);
4595 set_block_for_insn (insn
, NULL
);
4596 INSN_UID (insn
) = 0;
4601 /* It is very important to decompose the RTL instruction chain here:
4602 debug information keeps pointing into CODE_LABEL insns inside the function
4603 body. If these remain pointing to the other insns, we end up preserving
4604 whole RTL chain and attached detailed debug info in memory. */
4605 for (insn
= get_insns (); insn
; insn
= next
)
4607 next
= NEXT_INSN (insn
);
4608 NEXT_INSN (insn
) = NULL
;
4609 PREV_INSN (insn
) = NULL
;
4612 && (!NOTE_P (insn
) ||
4613 (NOTE_KIND (insn
) != NOTE_INSN_VAR_LOCATION
4614 && NOTE_KIND (insn
) != NOTE_INSN_CALL_ARG_LOCATION
4615 && NOTE_KIND (insn
) != NOTE_INSN_BLOCK_BEG
4616 && NOTE_KIND (insn
) != NOTE_INSN_BLOCK_END
4617 && NOTE_KIND (insn
) != NOTE_INSN_DELETED_DEBUG_LABEL
)))
4618 print_rtl_single (final_output
, insn
);
4623 flag_dump_noaddr
= save_noaddr
;
4624 flag_dump_unnumbered
= save_unnumbered
;
4625 final_insns_dump_p
= false;
4627 if (fclose (final_output
))
4629 error ("could not close final insn dump file %qs: %m",
4630 flag_dump_final_insns
);
4631 flag_dump_final_insns
= NULL
;
4635 /* In case the function was not output,
4636 don't leave any temporary anonymous types
4637 queued up for sdb output. */
4638 #ifdef SDB_DEBUGGING_INFO
4639 if (write_symbols
== SDB_DEBUG
)
4640 sdbout_types (NULL_TREE
);
4643 flag_rerun_cse_after_global_opts
= 0;
4644 reload_completed
= 0;
4645 epilogue_completed
= 0;
4647 regstack_completed
= 0;
4650 /* Clear out the insn_length contents now that they are no
4652 init_insn_lengths ();
4654 /* Show no temporary slots allocated. */
4657 free_bb_for_insn ();
4661 /* We can reduce stack alignment on call site only when we are sure that
4662 the function body just produced will be actually used in the final
4664 if (decl_binds_to_current_def_p (current_function_decl
))
4666 unsigned int pref
= crtl
->preferred_stack_boundary
;
4667 if (crtl
->stack_alignment_needed
> crtl
->preferred_stack_boundary
)
4668 pref
= crtl
->stack_alignment_needed
;
4669 cgraph_rtl_info (current_function_decl
)->preferred_incoming_stack_boundary
4673 /* Make sure volatile mem refs aren't considered valid operands for
4674 arithmetic insns. We must call this here if this is a nested inline
4675 function, since the above code leaves us in the init_recog state,
4676 and the function context push/pop code does not save/restore volatile_ok.
4678 ??? Maybe it isn't necessary for expand_start_function to call this
4679 anymore if we do it here? */
4681 init_recog_no_volatile ();
4683 /* We're done with this function. Free up memory if we can. */
4684 free_after_parsing (cfun
);
4685 free_after_compilation (cfun
);
4691 const pass_data pass_data_clean_state
=
4693 RTL_PASS
, /* type */
4694 "*clean_state", /* name */
4695 OPTGROUP_NONE
, /* optinfo_flags */
4696 true, /* has_execute */
4697 TV_FINAL
, /* tv_id */
4698 0, /* properties_required */
4699 0, /* properties_provided */
4700 PROP_rtl
, /* properties_destroyed */
4701 0, /* todo_flags_start */
4702 0, /* todo_flags_finish */
4705 class pass_clean_state
: public rtl_opt_pass
4708 pass_clean_state (gcc::context
*ctxt
)
4709 : rtl_opt_pass (pass_data_clean_state
, ctxt
)
4712 /* opt_pass methods: */
4713 virtual unsigned int execute (function
*)
4715 return rest_of_clean_state ();
4718 }; // class pass_clean_state
4723 make_pass_clean_state (gcc::context
*ctxt
)
4725 return new pass_clean_state (ctxt
);